WorldWideScience

Sample records for dynorphins

  1. Spinal astrocytes produce and secrete dynorphin neuropeptides.

    Science.gov (United States)

    Wahlert, Andrew; Funkelstein, Lydiane; Fitzsimmons, Bethany; Yaksh, Tony; Hook, Vivian

    2013-04-01

    Dynorphin peptide neurotransmitters (neuropeptides) have been implicated in spinal pain processing based on the observations that intrathecal delivery of dynorphin results in proalgesic effects and disruption of extracellular dynorphin activity (by antisera) prevents injury evoked hyperalgesia. However, the cellular source of secreted spinal dynorphin has been unknown. For this reason, this study investigated the expression and secretion of dynorphin-related neuropeptides from spinal astrocytes (rat) in primary culture. Dynorphin A (1-17), dynorphin B, and α-neoendorphin were found to be present in the astrocytes, illustrated by immunofluorescence confocal microscopy, in a discrete punctate pattern of cellular localization. Measurement of astrocyte cellular levels of these dynorphins by radioimmunoassays confirmed the expression of these three dynorphin-related neuropeptides. Notably, BzATP (3'-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate) and KLA (di[3-deoxy-D-manno-octulosonyl]-lipid A) activation of purinergic and toll-like receptors, respectively, resulted in stimulated secretion of dynorphins A and B. However, α-neoendorphin secretion was not affected by BzATP or KLA. These findings suggest that dynorphins A and B undergo regulated secretion from spinal astrocytes. These findings also suggest that spinal astrocytes may provide secreted dynorphins that participate in spinal pain processing.

  2. Mephedrone alters basal ganglia and limbic dynorphin systems.

    Science.gov (United States)

    German, Christopher L; Alburges, Mario E; Hoonakker, Amanda J; Fleckenstein, Annette E; Hanson, Glen R

    2014-08-25

    Mephedrone (4-methymethcathinone) is a synthetic cathinone designer drug that disrupts central nervous system (CNS) dopamine (DA) signaling. Numerous central neuropeptide systems reciprocally interact with dopaminergic neurons to provide regulatory counterbalance, and are altered by aberrant DA activity associated with stimulant exposure. Endogenous opioid neuropeptides are highly concentrated within dopaminergic CNS regions and facilitate many rewarding and aversive properties associated with drug use. Dynorphin, an opioid neuropeptide and kappa receptor agonist, causes dysphoria and aversion to drug consumption through signaling within the basal ganglia and limbic systems, which is affected by stimulants. This study evaluated how mephedrone alters basal ganglia and limbic system dynorphin content, and the role of DA signaling in these changes. Repeated mephedrone administrations (4 × 25 mg/kg/injection, 2-h intervals) selectively increased dynorphin content throughout the dorsal striatum and globus pallidus, decreased dynorphin content within the frontal cortex, and did not alter dynorphin content within most limbic system structures. Pretreatment with D1 -like (SCH-23380) or D2 -like (eticlopride) antagonists blocked mephedrone-induced changes in dynorphin content in most regions examined, indicating altered dynorphin activity is a consequence of excessive DA signaling. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  3. Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit

    Directory of Open Access Journals (Sweden)

    Nicole A. Crowley

    2016-03-01

    Full Text Available Kappa opioid receptors (KORs are involved in a variety of aversive behavioral states, including anxiety. To date, a circuit-based mechanism for KOR-driven anxiety has not been described. Here, we show that activation of KORs inhibits glutamate release from basolateral amygdala (BLA inputs to the bed nucleus of the stria terminalis (BNST and occludes the anxiolytic phenotype seen with optogenetic activation of BLA-BNST projections. In addition, deletion of KORs from amygdala neurons results in an anxiolytic phenotype. Furthermore, we identify a frequency-dependent, optically evoked local dynorphin-induced heterosynaptic plasticity of glutamate inputs in the BNST. We also find that there is cell type specificity to the KOR modulation of the BLA-BNST input with greater KOR-mediated inhibition of BLA dynorphin-expressing neurons. Collectively, these results provide support for a model in which local dynorphin release can inhibit an anxiolytic pathway, providing a discrete therapeutic target for the treatment of anxiety disorders.

  4. A non-opioid pathway for dynorphin-caused spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Yu Chen; Liangbi Xiang; Jun Liu; Dapeng Zhou; Hailong Yu; Qi Wang; Wenfeng Han; Mingming Guo

    2012-01-01

    Intrathecal injection of dynorphin into rats via subarachnoid catheter induces damage to spinal cord tissue and motor function. Injection of the kappa opioid receptor antagonist nor-binaltorphine, or the excitatory amino acid N-methyl-D-aspartate receptor antagonist MK-801 into rats alleviated the pathological changes of dynorphin-caused spinal cord tissue injury and reduced the acid phosphatase activity in the spinal cord. The experimental findings indicate that there are opioid and non-opioid pathways for dynorphin-induced spinal cord injury, and that the non-opioid receptor pathway may be mediated by the excitatory amino acid N-methyl-D-aspartate receptor.

  5. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy

    Science.gov (United States)

    Crocker, Amanda; España, Rodrigo A.; Papadopoulou, Maria; Saper, Clifford B.; Faraco, Juliette; Sakurai, Takeshi; Honda, Makoto; Mignot, Emmanuel; Scammell, Thomas E.

    2008-01-01

    Background Narcolepsy with cataplexy is associated with a loss of orexin/hypocretin. It is speculated that an autoimmune process kills the orexin-producing neurons, but these cells may survive yet fail to produce orexin. Objective To examine whether other markers of the orexin neurons are lost in narcolepsy with cataplexy. Methods We used immunohistochemistry and in situ hybridization to examine the expression of orexin, neuronal activity-regulated pentraxin (NARP), and prodynorphin in hypothalami from five control and two narcoleptic individuals. Results In the control hypothalami, at least 80% of the orexin-producing neurons also contained prodynorphin mRNA and NARP. In the patients with narcolepsy, the number of cells producing these markers was reduced to about 5–10% of normal. Conclusions Narcolepsy with cataplexy is likely caused by a loss of the orexin-producing neurons. In addition, loss of dynorphin and NARP may contribute to the symptoms of narcolepsy. PMID:16247044

  6. Minocycline prevents dynorphin-induced neurotoxicity during neuropathic pain in rats.

    Science.gov (United States)

    Rojewska, Ewelina; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2014-11-01

    Despite many advances, our understanding of the involvement of prodynorphin systems in the development of neuropathic pain is not fully understood. Recent studies suggest an important role of neuro-glial interactions in the dynorphin effects associated with neuropathic pain conditions. Our studies show that minocycline reduced prodynorphin mRNA levels that were previously elevated in the spinal and/or dorsal root ganglia (DRG) following sciatic nerve injury. The repeated intrathecal administration of minocycline enhanced the analgesic effects of low-dose dynorphin (0.15 nmol) and U50,488H (25-100 nmol) and prevented the development of flaccid paralysis following high-dose dynorphin administration (15 nmol), suggesting a neuroprotective effect. Minocycline reverts the expression of IL-1β and IL-6 mRNA within the spinal cord and IL-1β mRNA in DRG, which was elevated following intrathecal administration of dynorphin (15 nmol). These results suggest an important role of these proinflammatory cytokines in the development of the neurotoxic effects of dynorphin. Similar to minocycline, a selective inhibitor of MMP-9 (MMP-9 levels are reduced by minocycline) exerts an analgesic effect in behavioral studies, and its administration prevents the occurrence of flaccid paralysis caused by high-dose dynorphin administration (15 nmol). In conclusion, our results underline the importance of neuro-glial interactions as evidenced by the involvement of IL-1β and IL-6 and the minocycline effect in dynorphin-induced toxicity, which suggests that drugs that alter the prodynorphin system could be used to better control neuropathic pain.

  7. Aladan scanning: The structure-activity relationship of dynorphin A

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An unnatural amino acid, β-[6′-(N, N-dimethyl)amino-2′-naphthoyl]alanine (Ald) showing polarity-sen sitive fluorescence characteristics, was synthesized. A thorough Ald-scan of dynorphin A (Dyn A), the putative endogenous ligand for κ opioid receptors, was then performed. Replacement of the amino acid residues in positions 5, 8, 10, 12 or 14 of Dyn A(1-13)-NH2 with Ald resulted in compounds that had almost equal κ binding affinity compared with that of the parent compound; on the other hand, substi-tution of residues in position 1 or 4 with Ald decreased κ-receptor binding affinity. These results indi-cate that Tyr and Phe in Dyn A are very important for maintaining its κ-opioid activity. Evidence from receptor binding assay clearly displays that [Ald5]Dyn A(1-13)-NH2 is a highly selective κ-opioid re-ceptor agonist. An evaluation of the interaction of Ald-containing Dyn A(1-13)-NH2 analogues with SDS and DPC micelles was also performed. Interestingly, [Ald1]Dyn A(1-13)-NH2 and [Ald4]Dyn A(1-13)-NH2 showed quite different fluorescence emission maxima in SDS and DPC micelles. This indicates that both peptides are sensitive to electronic properties of the polar surface of the micelles.

  8. Aladan scanning: The structure-activity relationship of dynorphin A

    Institute of Scientific and Technical Information of China (English)

    CHEN He-Ru; YANG Yang; WENG Jiang-Duo

    2009-01-01

    An unnatural amino acid, β-[6'-(N, N-dimethyl)amino-2'-naphthoyl]alanine (Ald) showing polarity-sen sitive fluorescence characteristics, was synthesized. A thorough Aid-scan of dynorphin A (Dyn A), the putative endogenous ligand for κ opioid receptors, was then performed. Replacement of the amino acid residues in positions 5, 8, 10, 12 or 14 of Dyn A(1-13)-NH2 with Ald resulted in compounds that had almost equal κ binding affinity compared with that of the parent compound; on the other hand, substi-tution of residues in position 1 or 4 with Aid decreased x-receptor binding affinity. These results indi-cate that Tyr and Phe in Dyn A are very important for maintaining its κ-opioid activity. Evidence from receptor binding assay clearly displays that [Ald5]Dyn A(1-13)-NH2 is a highly selective κ-opioid re-ceptor agonist. An evaluation of the interaction of Aid-containing Dyn A(1-13)-NH2 analogues with SDS and DPC micelles was also performed. Interestingly, [Ald1]Dyn A(1-13)-NH2 and [Ald4]Dyn A(1-13)-NH2 showed quite different fluorescence emission maxima in SDS and DPC micelles. This indicates that both peptides are sensitive to electronic properties of the polar surface of the micelles.

  9. EFFECTS OF DYNORPHIN A ( 1-17) ON MOTOR FUNCTION AND SPINAL INTRACELLULAR MESSENGER SYSTEMS IN RAT

    Institute of Scientific and Technical Information of China (English)

    张志媛; 李富春; 任民峰; 刘景生

    1996-01-01

    The effect of intrathecal injection of dynorphin A(1-17) on second messenger systems of spinal cord relative to behavioral change in rats was studied. Dynorphin A(1-17) 5,10 (20nmol) caused dose-depen-dent flaccid paralysis of hindlimbs. Dynorphin A (1-17) 10, 20 nmol do,e-dependently decreased spinal adenylate cyclase (AC) activity, cyclic AMP production, calmodulin (CAM) level and cyclic-nucleotidephosphodiesterase(PDE) activity 10 rain after intrathecal injection. They recovered to a varying extent two hours later. Pretreatment -with selective K-opioid receptor antagonist nor-BN| 30 nmol 10 min before dynorphin A(1-17) markedly antagonized the effects of dynorphin A(1-17) at 20 nmol on hindlimb paralysis and inhibition of intraeelhilar second messengers. The L-type calcium channel blocker verapamil (100nmol) also played a role in blocking dynorphin neurotoxicity. The NMDA receptor antagonist APV toddpartially or completely block dynorphin inhibition of CaM level and PDE activity without affecting paralysis and decrease of AC-cAMP level induced by dynorphin A(1-17) 10 rain after intrathecal injection.

  10. RELATIONSHIP BETWEEN ACUPUNCTURE ANALGESIA AND MET- ENKEPHALIN OR DYNORPHIN

    Institute of Scientific and Technical Information of China (English)

    TsogoevAlanS; 王一菱; 吴景兰; 金辉

    2001-01-01

    subjective: The effect of 4~5 Hz electroacupuncture (EA) on alterations of both met-enkephalin (MEK) and dynorphin (Dyn) in the patient plasma or mouse spinal cord and its relation with analgesic effect were studied. Methods: In acupuncture clinic 10 patients with acute pain were treated with 4 Hz EA at Zusanli(ST 36) and/or Hegu(LI 4) acupoints for 30 min. 20 BALB/C mice were randomly divided into 2 groups: a. EA group(n=10), treated with 4~5 Hz EA at bilateral "Zusanli"(ST 36) for 15 min; b. control group(n=10) treated with no EA, but also restrained for 15 min. Before and after EA or restraining acupoints, the pain threshold of the patients or mice was detected. 10 μI of the patient plasma before and after EA and each mouse spinal cord suspension, of the 2 groups were blotted onto nitrocellulose membrane (NCM) respectively. The protein dot blot signals were detected by immunoreactivity (IR) and using Shimadu TLC Scanner and analyzed statistically. Results: The results showed that an increase in patient plasma MEK-IR or Dyn-IR and a decrease in mouse spinal MEK-IR or Dyn-IR could be detected, and the alteration of plasma or spinal MEK-IR was more significant than that of plasma or spinal Dyn-IR. There was a positive correlation in alteration between plasma or spinal MEK-IR and plasma or spinal Dyn-IR with respective parallel levels in individuals. The increased plasma MEK-IR or the decreased spinal MEK-IR was positively or negatively correlated with the analgesic effect, while the correlation between plasma or spinal Dyn-IR and analgesic effect was insignificant. Conclusion: The results suggest that under lower frequency EA the met-enkephalin may play an important role in analgesia.

  11. Kappa opioid receptor antagonist and N-methyl-D- aspartate receptor antagonist affect dynorphin- induced spinal cord electrophysiologic impairment

    Institute of Scientific and Technical Information of China (English)

    Yu Chen; Liangbi Xiang; Jun Liu; Dapeng Zhou; Hailong Yu; Qi Wang; Wenfeng Han; Weijian Ren

    2012-01-01

    The latencies of motor- and somatosensory-evoked potentials were prolonged to different degrees, and wave amplitude was obviously decreased, after injection of dynorphin into the rat subarachnoid cavity.The wave amplitude and latencies of motor- and somatosensory-evoked potentials were significantly recovered at 7 and 14 days after combined injection of dynorphin and either the kappa opioid receptor antagonist nor-binaltorphimine or the N-methyl-D-aspartate receptor antagonist MK-801.The wave amplitude and latency were similar in rats after combined injection of dynorphin and nor-binaltorphimine or MK-801.These results suggest that intrathecal injection of dynorphin causes damage to spinal cord function.Prevention of N-methyl-D-aspartate receptor or kappa receptor activation lessened the injury to spinal cord function induced by dynorphin.

  12. Dynorphin A(6-12) analogs suppress thermal edema.

    Science.gov (United States)

    Wei, E T; Thomas, H A; Gjerde, E A; Reed, R K; Burov, S V; Korolkov, V I; Glynskaya, O V; Dorosh, M Y; Vlasov, G P

    1998-01-01

    Dynorphin A (Dyn A) is a 17-residue opioid peptide derived from prodynorphin precursors found in mammalian tissues. Removal of Tyr1 from Dyn A produces a peptide that is more potent than Dyn A in attenuating the acute phase of the inflammatory response, as measured by inhibition of heat-induced edema in the anesthetized rat's paw (exposure to 58 degrees C water for 1 min). Dyn A(2-17), however, no longer interacts with opioid receptors. It was postulated that the non-opioid anti-inflammatory actions of Dyn A(2-17) may reside in Dyn A(6-12); that is, Arg-Arg-Ile-Arg-Pro-Lys-Leu. here we report on the activities of Dyn A(6-12) analogs modified by substitutions on the N terminus, by single N-methyl substitution and by single replacement of residues by alanine. The results indicated that the minimal sequence required for an anti-edema ED50 of <1.0 micromol/kg i.v. was anisoyl-Arg6-Arg7-Xaa8-Arg9-Pro10)-Xaa11-+ ++Xaa12-NH2. A prototype, p-anisoyl-[D-Leu12] Dyn A(6-12)-NH2, with an ED50 of 0.20 micromol/kg i.v. compared to an ED50 of 0.08 micromol/kg i.v. for Dyn A(2-17), was selected for further tests of biological activity. This analog, like Dyn A(2-17), lowered blood pressure in anesthetized rats. In a model of neurogenic inflammation, produced by antidromic stimulation of the vagus in the anesthetized rat, p-anisoyl-[D-Leu12] Dyn A(6-12)-NH2, 0.23 micromol/kg i.v., attenuated the negativity of tracheal tissue interstitial pressure (Pif), which normally develops after nerve stimulation. Modulation of interstitial pressure may be the mechanistic basis for the anti-edema properties of these Dyn A(6-12) analogs.

  13. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23

    NARCIS (Netherlands)

    Smeets, Cleo J. L. M.; Jezierska, Justyna; Watanabe, Hiroyuki; Duarri Pique, Anna; Fokkens, Michiel R.; Meijer, Michel; Zhou, Qin; Yakovleva, Tania; Boddeke, Erik; den Dunnen, Wilfred; van Deursen, Jan; Bakalkin, Georgy; Kampinga, Harm H.; van de Sluis, Bart; Verbeek, Dineke S.

    2015-01-01

    Spinocerebellar ataxia type 23 is caused by mutations in PDYN, which encodes the opioid neuropeptide precursor protein, prodynorphin. Prodynorphin is processed into the opioid peptides, a-neoendorphin, and dynorphins A and B, that normally exhibit opioid-receptor mediated actions in pain signalling

  14. CHANGES OF PLASMA DYNORPHIN LEVELS BEFORE AND AFTER PERCUTANEOUS BALLOON MITRAL COMMISSUROTOMY IN PATIENTS WITH MITRAL STENOSIS

    Institute of Scientific and Technical Information of China (English)

    尹瑞兴; 陶新智; 曾知恒; 赵定菁; 朱树雄; 夏树楹

    1995-01-01

    Plamna dynorphin Al-13 levels were measured in 33 patients with mitral stenosis before and afteT percutaneous balloon mitral eommimurotomy (PBMC). The results show that the basal levels of plasma dynorphin in blood from the antecubital vein in the patients were signifieantly higher than those in 31 healthy control subjects. The increase in circulating dynorphin closely correlated with the functional cardiac status and the presence of atrial fibrillation. Ten to fifteen minutes after PBMC, plasma dynorphln levels in blood from the femoral vein increased significantly. Seventy-two hours after the procedure, the levels of plasma dynorphin in blood from the anteeubltal vein had decreased significantly, but they did not decrease to the normal range. Plasmm dynorphin levels in blood from the femoral vein were positively correlated with the mean laft atrial pressure and the mean right atrial pressure before the first balloon inflation. Plasma dynorphin levels in blood from the anteeubital vein were positively correlated with the heart rate and the mean transmittal presstme gradient,and negatively with the mitral valve area before and 72 hours after PBMC.

  15. Photoperiod affects distribution of dynorphin A in the brain of Siberian hamster.

    Science.gov (United States)

    Meyza, Ksenia Z; Sotowska-Brochocka, Jolanta

    2006-01-01

    Dynorphin A1-77 (DYN A1-17) acting in the CNS is known to affect thermoregulation, water and energy balance in the short time scale. In this study a long-term alteration of these functions induced by changes of day length in the highly photoperiodic species, the Siberian hamster (Phodopus sungorus) was studied using immunohistochemistry for DYN A1-17. We found that in the long day (LD, L:D 16 h:8 h) more brain areas express DYN A1-17 peptide than in the short day (SD, L:D 8 h:16 h) conditions. Structures of the hypothalamo-pituitary axis as well as cells of the ependyma, subcomissural organ and choroid plexus of the lateral and third brain ventricles are immunoreactive to anti-dynorphin IgG only in the LD. This might indicate a seasonal regulatory role of DYN A1-17 in physiological adaptations to severe climate changes.

  16. The opioid peptide dynorphin A induces leukocyte responses via integrin Mac-1 (αMβ2, CD11b/CD18).

    Science.gov (United States)

    Podolnikova, Nataly P; Brothwell, Julie A; Ugarova, Tatiana P

    2015-06-03

    Opioid peptides, including dynorphin A, besides their analgesic action in the nervous system, exert a broad spectrum of effects on cells of the immune system, including leukocyte migration, degranulation and cytokine production. The mechanisms whereby opioid peptides induce leukocyte responses are poorly understood. The integrin Mac-1 (αMβ2, CD11b/CD18) is a multiligand receptor which mediates numerous reactions of neutrophils and monocyte/macrophages during the immune-inflammatory response. Our recent elucidation of the ligand recognition specificity of Mac-1 suggested that dynorphin A and dynorphin B contain Mac-1 recognition motifs and can potentially interact with this receptor. In this study, we have synthesized the peptide library spanning the sequence of dynorphin AB, containing dynorphin A and B, and showed that the peptides bound recombinant αMI-domain, the ligand binding region of Mac-1. In addition, immobilized dynorphins A and B supported adhesion of the Mac-1-expressing cells. In binding to dynorphins A and B, Mac-1 cooperated with cell surface proteoglycans since both anti-Mac-1 function-blocking reagents and heparin were required to block adhesion. Further focusing on dynorphin A, we showed that its interaction with the αMI-domain was activation independent as both the α7 helix-truncated (active conformation) and helix-extended (nonactive conformation) αMI-domains efficiently bound dynorphin A. Dynorphin A induced a potent migratory response of Mac-1-expressing, but not Mac-1-deficient leukocytes, and enhanced Mac-1-mediated phagocytosis of latex beads by murine IC-21 macrophages. Together, the results identify dynorphins A and B as novel ligands for Mac-1 and suggest a role for the Dynorphin A-Mac-1 interactions in the induction of nonopiod receptor-dependent effects in leukocytes.

  17. Relationship between NOC/oFQ, dynorphin, and COX-2 activation in impaired NMDA cerebrovasodilation after brain injury.

    Science.gov (United States)

    Kulkarni, Miriam; Armstead, William M

    2002-08-01

    Previous studies have observed that the recently described endogenous opioid, nociceptin/orphanin FQ (NOC/oFQ), contributes to impairment of N-methyl-D-aspartate (NMDA)-induced cerebrovasodilation following fluid percussion brain injury (FPI) via a cyclooxygenase (COX)-dependent generation of superoxide anion (O(2)(-)). This study was designed to investigate the relationship between NOC/oFQ, another opioid, dynorphin, and activation of the COX-2 isoform of the enzyme in such impaired dilation to NMDA after FPI in piglets equipped with a closed cranial window. Superoxide dismutase (SOD)-inhibitable nitroblue tetrazolium (NBT) reduction was determined as an index of O(-)(2) generation. Under non-brain injury conditions, NOC/oFQ (10(-10) M), the CSF concentration observed after FPI, increased CSF dynorphin, while the NOC/oFQ antagonist [F/G] NOC/oFQ (1-13) NH(2) attenuated the stimulated release of dynorphin following FPI (34 +/- 3 and 97 +/- 6 vs. 36 +/- 3 and 68 +/- 8 pg/mol for CSF dynorphin before and after FPI in untreated and NOC/oFQ antagonist-pretreated animals). FPI increased SOD-inhibitable NBT reduction, but pretreatment with norbinaltorphimine, a dynorphin antagonist, or NS398, a COX-2 inhibitor, blunted such reduction (1 +/- 1 vs. 19 +/- 3 vs. 4 +/- 1 vs. 4 +/- 1 pmol/mm(2) for control, FPI, FPI-norbinaltorphimine and FPI-NS398, respectively). Under non-brain injury conditions, dynorphin, in a concentration observed in CSF after FPI, also increased SOD-inhibitable NBT reduction, which was blunted by NS398. NMDA-induced pial artery dilation was reversed to vasoconstriction following FPI, but pretreatment with norbinaltorphimine or NS398 partially protected such responses (9 +/- 1 and 16 +/- 1, control; - 8 +/- 1 and - 13 +/- 2, FPI; 6 +/- 1 and 12 +/- 1% FPI-norbinaltorphimine for NMDA 10(-8), 10(-6) M, respectively). These data show that NOC/oFQ modulates the CSF release of dynorphin after FPI. These data also show that dynorphin contributes to O(2

  18. Dynorphin A-(1-13)-morphine interactions: quantitative and qualitative EEG properties differ in morphine-naive vs. morphine-tolerant rats.

    Science.gov (United States)

    Meng, Y; Young, G A

    1994-01-01

    The effects of dynorphin A-(1-13) on cumulative IV morphine-induced EEG and EEG power spectra were studied in naive and morphine-tolerant rats. Adult female Sprague-Dawley rats were implanted with cortical EEG electrodes and permanent indwelling ICV and IV cannulae. In naive rats, dynorphin A-(1-13) quantitatively decreased cumulative IV morphine-induced EEG spectral power as well as qualitatively shifting the relative distribution of spectral power to predominantly faster frequencies. In morphine-tolerant rats, the quantitative and qualitative EEG properties were identical to those in dynorphin A-(1-13) pretreated morphine-naive rats. Thus, dynorphin A-(1-13) pretreatment apparently produced instantaneous acute morphine tolerance. Furthermore, in morphine-tolerant rats, dynorphin A-(1-13) pretreatment quantitatively increased morphine-induced EEG power without qualitatively changing the relative distribution of EEG spectral power. This latter effect may be due to a summation of increased endogenous levels of dynorphin A-(1-13) associated with the development of morphine tolerance and the experimentally administered dynorphin A-(1-13). These results indicate that dynorphin-induced quantitative and qualitative EEG changes of morphine may reflect different underlying processes. That is, quantitative changes may reflect the number of receptors that are activated, while qualitative changes may reflect the nature of the receptor-effector coupling.

  19. A genetic polymorphism of the endogenous opioid dynorphin modulates monetary reward anticipation in the corticostriatal loop.

    Directory of Open Access Journals (Sweden)

    Mikhail Votinov

    Full Text Available The dynorphin/κ-opioid receptor (KOP-R system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype of the variable nucleotide tandem repeat (68-bp VNTR functional polymorphism of the prodynorphin (PDYN gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype. We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse.

  20. Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23

    NARCIS (Netherlands)

    Smeets, Cleo J L M; Zmorzyńska, Justyna; Melo, Manuel N; Stargardt, Anita; Dooley, Colette; Bakalkin, Georgy; McLaughlin, Jay; Sinke, Richard J; Marrink, Siewert-Jan; Reits, Eric; Verbeek, Dineke S

    2016-01-01

    Spinocerebellar ataxia type 23 (SCA23) is caused by missense mutations in prodynorphin (PDYN), encoding the precursor protein for the opioid neuropeptides α-neoendorphin, Dynorphin (Dyn) A, and Dyn B, leading to neurotoxic elevated mutant Dyn A levels. Dyn A acts on opioid receptors to reduce pain i

  1. Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23

    NARCIS (Netherlands)

    Watanabe, Hiroyuki; Mizoguchi, Hirokazu; Verbeek, Dineke S.; Kuzmin, Alexander; Nyberg, Fred; Krishtal, Oleg; Sakurada, Shinobu; Bakalkin, Georgy

    2012-01-01

    We previously identified four missense mutations in the prodynorphin gene that cause human neurodegenerative disorder spinocerebellar ataxia type 23 (SCA23). Three mutations substitute Leu(5), Arg(6), and Arg(9) to Ser (L5S), Trp (R6W) and Cys (R9C) in dynorphin A(1-17) (Dyn A), a peptide with both

  2. Involvement of dynorphin A in the inhibition of morphine physical dependence by N-nitro-L-arginine in rats

    Institute of Scientific and Technical Information of China (English)

    万兴旺; 黄矛; 何雅琴; 李万亥; 由振东; 路长林

    2003-01-01

    Objective To investigate the involvement of immunoreactive-dynorphin A in the inhibitory effect of N-nitro-L-arginine on the morphine physical dependence in rats. Methods The rats were rendered dependent on morphine by subcutaneous administration of morphine solution three times daily in a manner of dose increment of 5 mg*kg-1 for 6 days. The degree of morphine physical dependence was monitored by scoring the abstinence syndromes precipitated by 5 mg*kg-1 naloxone of the rats. The expression levels of immunoreactive dynorphin A in tissues were determined using a radioimmunoassay.Results Intraperitoneal injection of 5 mg*kg-1 N-nitro-L-arginine suppresses most of the withdrawal symptoms of morphine dependent rats. N-nitro-L-arginine can elevate the expression of immunoreactive dynorphin. Conclusions Chronic N-nitro-L-arginine administration can inhibit the development of morphine physical dependence in a manner of dose-dependence, which is significantly related to its role of regulating the endogeneous dynorphin system.

  3. Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23

    NARCIS (Netherlands)

    Watanabe, Hiroyuki; Mizoguchi, Hirokazu; Verbeek, Dineke S.; Kuzmin, Alexander; Nyberg, Fred; Krishtal, Oleg; Sakurada, Shinobu; Bakalkin, Georgy

    2012-01-01

    We previously identified four missense mutations in the prodynorphin gene that cause human neurodegenerative disorder spinocerebellar ataxia type 23 (SCA23). Three mutations substitute Leu(5), Arg(6), and Arg(9) to Ser (L5S), Trp (R6W) and Cys (R9C) in dynorphin A(1-17) (Dyn A), a peptide with both

  4. Perivascular expression and potent vasoconstrictor effect of dynorphin A in cerebral arteries.

    Directory of Open Access Journals (Sweden)

    Éva Ruisanchez

    Full Text Available BACKGROUND: Numerous literary data indicate that dynorphin A (DYN-A has a significant impact on cerebral circulation, especially under pathophysiological conditions, but its potential direct influence on the tone of cerebral vessels is obscure. The aim of the present study was threefold: 1 to clarify if DYN-A is present in cerebral vessels, 2 to determine if it exerts any direct effect on cerebrovascular tone, and if so, 3 to analyze the role of κ-opiate receptors in mediating the effect. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical analysis revealed the expression of DYN-A in perivascular nerves of rat pial arteries as well as in both rat and human intraparenchymal vessels of the cerebral cortex. In isolated rat basilar and middle cerebral arteries (BAs and MCAs DYN-A (1-13 and DYN-A (1-17 but not DYN-A (1-8 or dynorphin B (DYN-B induced strong vasoconstriction in micromolar concentrations. The maximal effects, compared to a reference contraction induced by 124 mM K(+, were 115±6% and 104±10% in BAs and 113±3% and 125±9% in MCAs for 10 µM of DYN-A (1-13 and DYN-A (1-17, respectively. The vasoconstrictor effects of DYN-A (1-13 could be inhibited but not abolished by both the κ-opiate receptor antagonist nor-Binaltorphimine dihydrochloride (NORBI and blockade of G(i/o-protein mediated signaling by pertussis toxin. Finally, des-Tyr(1 DYN-A (2-13, which reportedly fails to activate κ-opiate receptors, induced vasoconstriction of 45±11% in BAs and 50±5% in MCAs at 10 µM, which effects were resistant to NORBI. CONCLUSION/SIGNIFICANCE: DYN-A is present in rat and human cerebral perivascular nerves and induces sustained contraction of rat cerebral arteries. This vasoconstrictor effect is only partly mediated by κ-opiate receptors and heterotrimeric G(i/o-proteins. To our knowledge our present findings are the first to indicate that DYN-A has a direct cerebral vasoconstrictor effect and that a dynorphin-induced vascular action may be

  5. Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Corey Baimel

    2017-02-01

    Full Text Available Circuit-specific signaling of ventral tegmental area (VTA dopamine neurons drives different aspects of motivated behavior, but the neuromodulatory control of these circuits is unclear. We tested the actions of co-expressed lateral hypothalamic peptides, orexin A (oxA and dynorphin (dyn, on projection-target-defined dopamine neurons in mice. We determined that VTA dopamine neurons that project to the nucleus accumbens lateral shell (lAcbSh, medial shell (mAcbSh, and basolateral amygdala (BLA are largely non-overlapping cell populations with different electrophysiological properties. Moreover, the neuromodulatory effects of oxA and dyn on these three projections differed. OxA selectively increased firing in lAcbSh- and mAcbSh-projecting dopamine neurons. Dyn decreased firing in the majority of mAcbSh- and BLA-projecting dopamine neurons but reduced firing only in a small fraction of those that project to the lAcbSh. In conclusion, the oxA-dyn input to the VTA may drive reward-seeking behavior by tuning dopaminergic output in a projection-target-dependent manner.

  6. Evaluation of an on-capillary copper complexation methodology for the investigation of in vitro metabolism of dynorphin A 1-17.

    Science.gov (United States)

    Kuhnline, Courtney D; Lunte, Susan M

    2010-08-01

    Dynorphin A 1-17 is an endogenous neuropeptide implicated in a variety of neurological disorders including Alzheimer's and Parkinson's diseases and neuropathic pain. Metabolites of this peptide can exhibit their own unique effects in vivo, and it is possible that one of these metabolites is responsible for the neurotoxicity. In this article, the use of CE for the separation of dynorphin A 1-17 from four of its metabolites is described. Buffer additives were investigated to eliminate peptide adsorption to the capillary wall and to improve resolution between closely related metabolites. On-capillary copper complexation was employed and was shown to improve separation efficiency as compared with the separation of native peptides. The method was then applied to in vitro dynorphin metabolism in human plasma as well as rat brain and rat spinal cord slices.

  7. Dynorphin-dependent reduction of excitability and attenuation of inhibitory afferents of NPS neurons in the pericoerulear region of mice

    Directory of Open Access Journals (Sweden)

    Kay eJuengling

    2016-03-01

    Full Text Available The Neuropeptide S system, consisting of the 20-amino acid peptide neuropeptide S (NPS and its G-protein coupled receptor (NPSR, modulates arousal, wakefulness, anxiety, and fear-extinction in mice. In addition, recent evidence indicates that the NPS system attenuates stress-dependent impairment of fear extinction, and that NPS-expressing neurons in close proximity to the locus coeruleus (pericoerulear, periLC region are activated by stress. Furthermore, periLC NPS neurons receive afferents from neurons of the centrolateral nucleus of the amygdala (CeL, of which a substantial population expresses the kappa opioid receptor (KOR ligand precursor prodynorphin. This study aims to identify the effect of the dynorphinergic system on NPS neurons in the periLC via pre- and postsynaptic mechanisms. Using electrophysiological recordings in mouse brain slices, we provide evidence that NPS neurons in the periLC region are directly inhibited by dynorphin A via activation of κ-opioid receptor 1 (KOR1 and a subsequent increase of potassium conductances. Thus, the dynorphinergic system is suited to inactivate NPS neurons in the periLC. In addition to this direct, somatic effect, dynorphin A reduces the efficacy of GABAergic synapses on NPS neurons via KOR1 and KOR2. In conclusion, the present study provides evidence for the interaction of the NPS and the kappa opioid system in the periLC. Therefore, the endogenous opioid dynorphin is suited to inhibit NPS neurons with a subsequent decrease in NPS release in putative target regions leading to a variety of physiological consequences such as increased anxiety or vulnerability to stress exposure.

  8. The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity

    Science.gov (United States)

    Cepriano, L. M.; Schreibman, M. P.

    1993-01-01

    Immunoreactive neuropeptide Y and dynorphin have been localized in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, at different ages and stages of development from birth to sexual maturity. Immunoreactive neuropeptide Y was found in perikarya and tracts of the nucleus olfactoretinalis, telencephalon, ventral tegmentum and in the neurohypophysis and in the three regions of the adenohypophysis. Immunoreactive dynorphin was found in nerve tracts in the olfactory bulb and in cells of the pars intermedia and the rostral pars distalis of the pituitary gland.

  9. Thioperamide, a histamine H3 receptor antagonist, suppresses NPY-but not dynorphin A-induced feeding in rats.

    Science.gov (United States)

    Itoh, E; Fujimiya, M; Inui, A

    1998-09-25

    Whether or not neuropeptide Y (NPY)-induced feeding in rats is influenced by the histaminergic system in the brain was investigated by intracerebroventricular (i.c.v.) administration of a selective histamine H3 receptor antagonist prior to i.c.v. administration of NPY. NPY (10 microg/10 microl) strongly induced feeding in sated rats during the light phase of the day. Dynorphin A1-17 (10 microg/10 microl), a kappa-opioid agonist, and rat pancreatic polypeptide (rPP, 30 microg/10 microl) also stimulated ingestive behavior in sated rats, but food intake in both cases was less than that induced by NPY. Thioperamide maleate, a specific histamine H3 receptor antagonist (408.5 microg/10 microl) reduced the feeding response to NPY by 52% (P < 0.0001), but not to dynorphin A1-17 and rPP. Thioperamide at i.c.v. doses of 40.8-408.5 microg/10 microl had no effect on food intake in sated rats. These results suggest that the thioperamide may have a specific effect on NPY receptor-mediated neuronal systems related to feeding.

  10. Role of the non-opioid dynorphin peptide des-Tyr-dynorphin (DYN-A(2-17)) in food intake and physical activity, and its interaction with orexin-A.

    Science.gov (United States)

    Gac, L; Butterick, T A; Duffy, C M; Teske, J A; Perez-Leighton, C E

    2016-02-01

    Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A(2-17), a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A(2-17) and OXA in the PVN further increases food intake compared to DYN-A(2-17) or OXA alone. This is the first report describing the effects of non-opioid DYN-A(2-17) on food intake and SPA, and suggests that DYN-A(2-17) interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A(2-17) on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides.

  11. Delayed kindling development after rapidly recurring seizures: relation to mossy fiber sprouting and neurotrophin, GAP-43 and dynorphin gene expression.

    Science.gov (United States)

    Elmér, E; Kokaia, M; Kokaia, Z; Ferencz, I; Lindvall, O

    1996-03-11

    Development of kindling and mossy fiber sprouting, and changes of gene expression were studied after 40 seizures produced during about 3 h by electrical stimulation every 5 min in the ventral hippocampus. As assessed by 5 test stimulations, enhanced responsiveness was present already after 6-24 h but from 1 week post-seizure increased gradually up to 4 weeks without additional stimuli. Sprouting of mossy fibers in the dentate gyrus was demonstrated only at 4 weeks with Timm's staining. In situ hybridization showed a transient increase (maximum at 2 h) of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), TrkB and TrkC mRNA levels and reduction (maximum at 12-24 h) of neurotrophin-3 (NT-3) mRNA expression in dentate granule cells after the seizures. In addition, BDNF mRNA levels were elevated in CA1 and CA3 regions, amygdala and piriform cortex. Marked increases of mRNA for growth-associated protein (GAP-43), with maximum expression at 12-24 h, were observed in dentate granule cells and in amygdala-piriform cortex. Dynorphin mRNA levels showed biphasic changes in dentate granule cells with an increase at 2 h followed by a decrease at 24 h. No long-term alterations of gene expression were observed. These findings indicate that increased responsiveness develops rapidly after recurring seizures but that the kindled state is reached gradually in about 4 weeks. Mossy fiber sprouting occurs in parallel to epileptogenesis and may play a causative role. Short-term changes of neurotrophin and Trk, GAP-43 and dynorphin mRNA levels and the assumed alterations of the corresponding proteins could trigger structural rearrangements underlying kindling but might also contribute to the initial increase of seizure susceptibility.

  12. Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Anna Ljungdahl

    Full Text Available L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors

  13. Enkephalin and dynorphin mRNA expression are associated with resilience or vulnerability to chronic social defeat stress.

    Science.gov (United States)

    Bérubé, Patrick; Laforest, Sylvie; Bhatnagar, Seema; Drolet, Guy

    2013-10-02

    There are important and enduring differences between individuals in the magnitude of all aspects of the stress response. Among the neuropeptide systems, the endogenous opioids enkephalin (ENK) and dynorphin (DYN), are very interesting candidates to participate in the naturally occurring variations in coping styles and to determine the individual capacity for adaptation during chronic stress exposure. Under chronic social stress exposure, we hypothesize that changes in the ENKergic vs DYNergic neuronal systems within specific nuclei of the basal forebrain contribute to naturally occurring variations in coping styles and will determine individual capacities for stress adaptation. Sprague-Dawley rats were exposed to a resident-intruder model of defeat for 7 days. The average latency to be defeated over seven consecutive days was calculated for each intruder rat. Based on this distribution, we chose an average defeat latency of 350s as a cutoff criterion to define resilient and vulnerable rats. A subpopulation assumed a subordinate posture in a relatively short latency (350s, LL) to assume this posture and were identified as being vulnerable and resilient respectively. Rats were euthanized 24h after the last stress session. ENK mRNA expression was lower in the basolateral nucleus of the amygdala in vulnerable compared to control and resilient individuals. In contrast, there was no difference between resilient and control individuals. DYN mRNA is increased only within the dorsal and medial shell of the NAc of vulnerable rats compared to control individuals. There was no difference between resilient and control individuals. DYN mRNA is increased in resilient individuals in the central area of the striatum, caudal part, compared to control individuals. DYN is also increased in medial area of the striatum, caudal part in resilient and vulnerable compared to control individuals. These results have broad implications for understanding the functional roles of opioid

  14. Effect of Melatonin on the Level of Dynorphin in Rat Brain%褪黑素对大鼠脑内强啡肽水平的影响

    Institute of Scientific and Technical Information of China (English)

    俞昌喜; 吴根诚; 许绍芬; 陈崇宏

    2000-01-01

    Purpose To observe the changes of dynorphin-like immunoreactivities of neurons in some rat brain nuclei that are related to analgesia following exogenous administration of melatonin. Methods The experimental rats were divided into two groups, injected intraperitoneally with melatonin 110 mg/kg and with vehicle, respectively. One hour after the injection, the rat brain was processed for coronal sections. The sections were stained with immunohistochemical ABC technique. The integral optical density (IOD) of the stained section was measured by the computer-assisted image processing technique. Results Dynorphin-like immunoreactivities in the supraoptic nucleus and nucleus raphe dorsalis showed obvious reduction following the single injection of melatonin.IOD values in the above nuclei were decreased significantly (P0.05) about the IOD values between melatonin-treated group and vehicle-treated group. Conclusions Melatonin may result in the decrease of dynorphin content in the supraoptic nucleus and nucleus raphe dorsalis.%目的观察褪黑素(MLT)对大鼠脑内某些镇痛相关核团内神经细胞的强啡肽样免疫反应强度的影响。方法实验大鼠分给药组及对照组,分别腹腔注射MLT 110 mg/kg或配药液,1 h后灌注取脑、冰冻切片,进行免疫组化染色,计算机图像处理技术测定染色脑片积分光密度(IOD)值。结果给药组大鼠视上核、中缝背核内强啡肽样免疫阳性反应减弱,其IOD值显著减少(P<0.01);给药组大鼠下丘脑室旁核、中脑导水管周围灰质腹外侧区、中缝大核的IOD值,与对照组比较差别无显著意义。结论 MLT可致视上核、中缝背核内强啡肽含量减少。

  15. The permeation of dynorphin A 1-6 across the blood brain barrier and its effect on bovine brain microvessel endothelial cell monolayer permeability.

    Science.gov (United States)

    Sloan, Courtney D Kuhnline; Audus, Kenneth L; Aldrich, Jane V; Lunte, Susan M

    2012-12-01

    Dynorphin A 1-17 (Dyn A 1-17) is an endogenous neuropeptide known to act at the kappa opioid receptor; it has been implicated in a number of neurological disorders, including neuropathic pain, stress, depression, and Alzheimer's and Parkinson's diseases. The investigation of Dyn A 1-17 metabolism at the blood-brain barrier (BBB) is important since the metabolites exhibit unique biological functions compared to the parent compound. In this work, Dyn A 1-6 is identified as a metabolite of Dyn A 1-17 in the presence of bovine brain microvessel endhothelial cells (BBMECs), using LC-MS/MS. The transport of Dyn A 1-6 at the BBB was examined using this in vitro cell culture model of the BBB. Furthermore, the permeation of the BBB by the low molecular weight permeability marker fluorescein was characterized in the presence and absences of Dyn A 1-6.

  16. Selective involvement of kappa opioid and phencyclidine receptors in the analgesic and motor effects of dynorphin-A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro.

    Science.gov (United States)

    Shukla, V K; Bansinath, M; Dumont, M; Lemaire, S

    1992-09-18

    Dynorphin A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro (Dyn Ia; 1-8 nmol) injected intracerebroventricularly in the mouse produces two independent behavioral effects: (1) a norbinaltorphimine (kappa opioid antagonist)-reversible analgesia in the acetic acid-induced writhing test and (2) motor dysfunction characterized by wild running, pop-corn jumping, hindlimb jerking and barrel rolling and antagonized by the irreversible phencyclidine (PCP) and sigma (sigma) receptor antagonist, metaphit and the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, dextromethorphan and ketamine. The specific involvement of the PCP receptor in the motor effects of Dyn Ia is supported by the direct competitive interaction of the peptide with the binding of [3H]MK-801 (Ki: 0.63 microM) and [3H]TCP (Ki: 4.6 microM) to mouse brain membrane preparations.

  17. Age-related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats.

    Science.gov (United States)

    Kunimura, Yuyu; Iwata, Kinuyo; Ishigami, Akihito; Ozawa, Hitoshi

    2017-02-01

    Pulsatile secretion of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) decreases during aging. Kisspeptin (encoded by Kiss1) neurons in the arcuate nucleus coexpress neurokinin B (Tac3) and dynorphin (Pdyn) and are critical for regulating the GnRH/LH pulse. We therefore examined kisspeptin neurons by histochemistry and pulsatile LH release in rats aged 2-3 (Young), 12-13 (Young-Middle), 19-22 (Late-Middle), and 24-26 (Old) months. Total LH concentrations, sampled for 3 hours, decreased in both sexes with aging. In females, numbers of Tac3 and Pdyn neurons were significantly reduced in all aging rats, and numbers of Kiss1 neurons were significantly reduced in Late-Middle and Old rats. In males, numbers of all 3 neuron-types were significantly decreased in all aging rats. GnRH agonist induced LH release in all animals; however, the increased LH concentration in all aging rats was less than that in Young rats. These results suggest that expression of each gene in kisspeptin neurons may be controlled individually during aging, and that reduction of their expression or change in pituitary responsiveness may cause attenuated pulsatile LH secretion.

  18. Nonopioid motor effects of dynorphin A and related peptides: structure dependence and role of the N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Shukla, V K; Prasad, J A; Lemaire, S

    1997-11-01

    Dynorphin (Dyn) A and related opioid and nonopioid peptides were tested for their ability to produce motor effects in mice. Central (intracerebroventricular) administration of Dyn A in mice produced marked motor effects characterized by wild running, jumping, circling and/or barrel rolling with an ED50 value of 14.32 (95% confidence limits, 10.09-20.32) nmol/mouse. The order of potency of the various Dyn A-related peptides and fragments in producing motor effects was Dyn A approximately Dyn A-(1-13) > [Ala1]Dyn A-(1-13) approximately Dyn A-(2-13) > alpha-Neo-End > Dyn A-(1-8) approximately Dyn B approximately Dyn A-(2-8) > Dyn A-(3-8). Dyn A-(1- 5) (or Leu-Enk) and Dyn A-(6-10) displayed no motor effect at doses up to 100 nmol/mouse. The potencies of Dyn A and Dyn A-(2-13) were not affected by preadministration of naloxone (5 mg/kg s.c.), but the motor effects of Dyn A-(1-13) (20 nmol/mouse i.c.v.) were significantly reduced by coadministration of low doses (0.2-0.6 nmol/mouse) of the N-methyl-D-aspartate (NMDA) receptor antagonists dextrorphan, MK-801 and CPP. Dyn A was also a potent inhibitor of the binding of the phencyclidine receptor ligand, [3H]MK-801, to rat brain membranes, with a Ki value of 0.41 microM. However, the order of potency of the various Dyn A-related peptides and fragments in inhibiting [3H]MK-801 binding did not correlate with their ability to produce motor effects. On the other hand, Dyn A and related peptides produced a significant potentiation of the binding of the competitive NMDA antagonist [3H]CGP-39653 to rat brain membranes, an effect that correlated well (r = 0.91) with their potency in producing motor effects. These results indicate that the nonopioid motor effects of Dyn A and related peptides are structure dependent, with Dyn A-(2-8) being the minimal core peptide for motor activity. In addition, these effects most likely involve the participation of the excitatory amino acid binding domain on the NMDA receptor complex.

  19. Behavioral stress may increase the rewarding valence of cocaine-associated cues through a dynorphin/kappa-opioid receptor-mediated mechanism without affecting associative learning or memory retrieval mechanisms.

    Science.gov (United States)

    Schindler, Abigail G; Li, Shuang; Chavkin, Charles

    2010-08-01

    Stress exposure increases the risk of addictive drug use in human and animal models of drug addiction by mechanisms that are not completely understood. Mice subjected to repeated forced swim stress (FSS) before cocaine develop significantly greater conditioned place preference (CPP) for the drug-paired chamber than unstressed mice. Analysis of the dose dependency showed that FSS increased both the maximal CPP response and sensitivity to cocaine. To determine whether FSS potentiated CPP by enhancing associative learning mechanisms, mice were conditioned with cocaine in the absence of stress, then challenged after association was complete with the kappa-opioid receptor (KOR) agonist U50,488 or repeated FSS, before preference testing. Mice challenged with U50,488 60 min before CPP preference testing expressed significantly greater cocaine-CPP than saline-challenged mice. Potentiation by U50,488 was dose and time dependent and blocked by the KOR antagonist norbinaltorphimine (norBNI). Similarly, mice subjected to repeated FSS before the final preference test expressed significantly greater cocaine-CPP than unstressed controls, and FSS-induced potentiation was blocked by norBNI. Novel object recognition (NOR) performance was not affected by U50,488 given 60 min before assay, but was impaired when given 15 min before NOR assay, suggesting that KOR activation did not potentiate CPP by facilitating memory retrieval or expression. The results from this study show that the potentiation of cocaine-CPP by KOR activation does not result from an enhancement of associative learning mechanisms and that stress may instead enhance the rewarding valence of cocaine-associated cues by a dynorphin-dependent mechanism.

  20. Chronic oestradiol reduces the dendritic spine density of KNDy (kisspeptin/neurokinin B/dynorphin) neurones in the arcuate nucleus of ovariectomised Tac2-enhanced green fluorescent protein transgenic mice.

    Science.gov (United States)

    Cholanian, M; Krajewski-Hall, S J; McMullen, N T; Rance, N E

    2015-04-01

    Neurones in the arcuate nucleus that express neurokinin B (NKB), kisspeptin and dynorphin (KNDy) play an important role in the reproductive axis. Oestradiol modulates the gene expression and somatic size of these neurones, although there is limited information available about whether their dendritic structure, a correlate of cellular plasticity, is altered by oestrogens. In the present study, we investigated the morphology of KNDy neurones by filling fluorescent neurones in the arcuate nucleus of Tac2-enhanced green fluorescent protein (EGFP) transgenic mice with biocytin. Filled neurones from ovariectomised (OVX) or OVX plus 17β-oestradiol (E2)-treated mice were visualised with anti-biotin immunohistochemistry and reconstructed in three dimensions with computer-assisted microscopy. KNDy neurones exhibited two primary dendrites, each with a few branches confined to the arcuate nucleus. Quantitative analysis revealed that E2 treatment of OVX mice decreased the cell size and dendritic spine density of KNDy neurones. The axons of KNDy neurones originated from the cell body or proximal dendrite and gave rise to local branches that appeared to terminate within the arcuate nucleus. Numerous terminal boutons were also visualised within the ependymal layer of the third ventricle adjacent to the arcuate nucleus. Axonal branches also projected to the adjacent median eminence and exited the arcuate nucleus. Confocal microscopy revealed close apposition of EGFP and gonadotrophin-releasing hormone-immunoreactive fibres within the median eminence and confirmed the presence of KNDy axon terminals in the ependymal layer of the third ventricle. The axonal branching pattern of KNDy neurones suggests that a single KNDy neurone could influence multiple arcuate neurones, tanycytes in the wall of the third ventricle, axon terminals in the median eminence and numerous areas outside of the arcuate nucleus. In parallel with its inhibitory effects on electrical excitability, E2 treatment

  1. Effect of Early Acupuncture at Huatuo Jiajipoints on Striatalβ-endorphin and Dynorphin Levels in MCAO Rats%早期针刺夹脊穴对 MCAO 大鼠脑纹状体β-内啡肽和强啡肽水平的影响

    Institute of Scientific and Technical Information of China (English)

    王春琛; 王麟鹏

    2016-01-01

    Objective To investigate the effect of early acupuncture at Huatuo jiaji points on striatalβ-endorphin and dynorphin levels in rats with post-stroke limb spasm.Methods Seventy SD rats were randomized into group A (normal) of 9 rats and group B (sham operation) of 10 rats. After a model of post-stroke limb spasm was made in the remaining rats, they were randomized into groups C (model), D (acupuncture at Huatuo jiaji points) and E (baclofen). Group D received acupuncture at Huatuo jiaji points and group E, an oral gavage of baclofen tablets. After seven days of treatment, striatalβ-endorphin and dynorphin levels were neasured by radioimmunoassay.Resultsβ-endorphin levels increased significantly in groups C, D and E compared with groups A and B (P0.05). Dynorphin levels increased significantly in groups C, D and E compared with groups A and B (P0.05).Conclusions Acupuncture at Huatuo jiaji points can increase striatalβ-endorphin levels but not change striatal dynorphin levels, which conforms to the relationship between enkephalin and spasm, and improve the animal’s spasticity.%目的:观察早期针刺夹脊穴对卒中后肢体痉挛大鼠脑纹状体β-内啡肽和强啡肽水平的影响。方法将70只SD大鼠随机分为A组(正常组)9只和B组(假手术组)10只,剩余大鼠制备卒中后肢体痉挛大鼠模型后随机分为C组(模型组)、D组(针刺夹脊穴组)和E组(巴氯芬组)。D组采用针刺夹脊穴治疗,E组采用巴氯芬片灌胃治疗。治疗7 d后,采用放射免疫方法检测各组动物脑纹状体β-内啡肽和强啡肽水平。结果与A组和B组比较,C组、D组和E组β-内啡肽水平均显著升高(P<0.01);与C组比较,D组和E组β-内啡肽水平均显著升高(P<0.01,P<0.05);D组β-内啡肽水平与E组比较,差异无统计学意义(P>0.05)。与A组和B组比较,C组、D组和E组内强啡肽水平均均显著升高(P<0.05,P<0.01);D组内强啡肽水平和E组比

  2. Photoperiodic Co-Regulation of Kisspeptin, Neurokinin B and Dynorphin in the Hypothalamus of a Seasonal Rodent

    DEFF Research Database (Denmark)

    Bartzen-Sprauer, J; Klosen, P; Ciofi, P;

    2014-01-01

    In many species, sexual activity varies on a seasonal basis. Kisspeptin (Kp), a hypothalamic neuropeptide acting as a strong activator of gonadotrophin-releasing hormone neurones, plays a critical role in this adaptive process. Recent studies report that two other neuropeptides, namely neurokinin B......-dependent in a seasonal rodent, the Syrian hamster, which exhibits robust seasonal rhythms in reproductive activity. The majority of Kp neurones in the arcuate nucleus co-express NKB and DYN and the expression of all three peptides is decreased under a short (compared to long) photoperiod, leading to a 60% decrease...... in the number of KNDy neurones under photo-inhibitory conditions. In seasonal rodents, RFamide-related peptide (RFRP) neurones of the dorsomedial hypothalamus are also critical for seasonal reproduction. Interestingly, NKB and DYN are also expressed in the dorsomedial hypothalamus but do not co...

  3. The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse.

    Science.gov (United States)

    Wee, Sunmee; Koob, George F

    2010-06-01

    Initial hypotheses regarding the role of the kappa opioid system in drug addiction suggested that kappa receptor stimulation had anti-addictive effects. However, recent research suggests that kappa receptor antagonists may reverse motivational aspects of dependence. In the present review, we revisit the studies that measured the effects of kappa receptor ligands on the reinforcing and rewarding effects of drugs and postulate underlying neurobiological mechanisms for these effects to elaborate a more complex view of the role of kappa receptor ligands in drug addiction. The review of studies indicates that kappa receptor stimulation generally antagonizes the acute reinforcing/rewarding effects of drugs whereas kappa receptor blockade has no consistent effect. However, in a drug dependent-like state, kappa receptor blockade was effective in reducing increased drug intake. In animal models of reinstatement, kappa receptor stimulation can induce reinstatement via a stress-like mechanism. Results in conditioned place preference/aversion and intracranial self-stimulation indicate that kappa receptor agonists produce, respectively, aversive-like and dysphoric-like effects. Additionally, preclinical and postmortem studies show that administration or self-administration of cocaine, ethanol, and heroin activate the kappa opioid system. kappa receptor agonists antagonize the reinforcing/rewarding effects of drugs possibly through punishing/aversive-like effects and reinstate drug seeking through stress-like effects. Evidence suggests that abused drugs activate the kappa opioid system, which may play a key role in motivational aspects of dependence. Kappa opioid systems may have an important role in driving compulsive drug intake.

  4. AcEST: BP916703 [AcEST

    Lifescience Database Archive (English)

    Full Text Available .. 31 2.8 sp|P06300|PDYN_RAT Beta-neoendorphin-dynorphin OS=Rattus norvegi... 30 3.5 sp|P18146|EGR1_HUMAN Ea...27 >sp|P06300|PDYN_RAT Beta-neoendorphin-dynorphin OS=Rattus norvegicus GN=Pdyn PE=1 SV=2 Length = 248 Score

  5. Positron Emission Tomography (PET) Imaging of Opioid Receptors

    NARCIS (Netherlands)

    van Waarde, Aren; Absalom, Anthony; Visser, Anniek; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; De Vries, Erik FJ; Van Waarde, Aren; Luiten, Paul GM

    2014-01-01

    The opioid system consists of opioid receptors (which mediate the actions of opium), their endogenous ligands (the enkephalins, endorphins, endomorphins, dynorphin, and nociceptin), and the proteins involved in opioid production, transport, and degradation. PET tracers for the various opioid recepto

  6. Positron Emission Tomography (PET) Imaging of Opioid Receptors

    NARCIS (Netherlands)

    van Waarde, Aren; Absalom, Anthony; Visser, Anniek; Dierckx, Rudi; Dierckx, Rudi AJO; Otte, Andreas; De Vries, Erik FJ; Van Waarde, Aren; Luiten, Paul GM

    2014-01-01

    The opioid system consists of opioid receptors (which mediate the actions of opium), their endogenous ligands (the enkephalins, endorphins, endomorphins, dynorphin, and nociceptin), and the proteins involved in opioid production, transport, and degradation. PET tracers for the various opioid

  7. c-fos and its Consequences in Pain.

    Science.gov (United States)

    Ahmad, Asma Hayati; Ismail, Zalina

    2002-01-01

    The discovery that c-fos, a proto-oncogene, has a role in pain, has triggered extensive research on the consequences of c-fos expression. It has been shown that c-fos, through its protein form, FOS, leads to expression of dynorphin gene and subsequently dynorphin protein which is implicated in the development of a pain state. This mini review looks at the properties of c-fos and the consequences of its expression following noxious (painful) stimulation.

  8. Evolution of gnathostome prodynorphin and proenkephalin: characterization of a shark proenkephalin and prodynorphin cDNAs.

    Science.gov (United States)

    Komorowski, Leanne K; Lecaude, Stephanie G; Westring, Christian G; Danielson, Phillip B; Dores, Robert M

    2012-07-01

    Analyses of prodynorphin and proenkephalin cDNAs cloned from the central nervous system of the shark, Heterodontus portusjacksoni, provided additional evidence that these two opioid precursor-coding genes were most likely directly derived from a common ancestral gene. The two cDNAs could be aligned by inserting only seven gaps. The prodynorphin cDNA encodes five opioid sequences which could be aligned to opioid positions B through F in the proenkephalin cDNA. The sequence identity within the opioid positions was 59% at the amino acid level. Shark α-neo-endorphin, dynorphin A, and dynorphin B have amino acid motifs in common with shark met-enkephalin-8, and shark proenkephalin opioid positions E and F, respectively, which have not been observed in other gnathostome prodynorphin and proenkephalin precursor sequences. Shark prodynorphin encodes both kappa (α-neo-endorphin, dynorphin A, and dynorphin B) and delta (met-enkephalin and leu-enkephalin) opioid sequences. Mixed function prodynorphin precursors (encoding both enkephalins and dynorphins) are also found in representatives of the teleost fishes, lungfishes, and amphibians. It appears that only mammals evolved a prodynorphin precursor that exclusively encodes kappa opioid agonists (dynorphins). Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Kappa Opioids, Salvinorin A and Major Depressive Disorder.

    Science.gov (United States)

    Taylor, George T; Manzella, Francesca

    2016-01-01

    Opioids are traditionally associated with pain, analgesia and drug abuse. It is now clear, however, that the opioids are central players in mood. The implications for mood disorders, particularly clinical depression, suggest a paradigm shift from the monoamine neurotransmitters to the opioids either alone or in interaction with monoamine neurons. We have a special interest in dynorphin, the last of the major endogenous opioids to be isolated and identified. Dynorphin is derived from the Greek word for power, dynamis, which hints at the expectation that the neuropeptide held for its discoverers. Yet, dynorphin and its opioid receptor subtype, kappa, has always taken a backseat to the endogenous b-endorphin and the exogenous morphine that both bind the mu opioid receptor subtype. That may be changing as the dynorphin/ kappa system has been shown to have different, often opposite, neurophysiological and behavioral influences. This includes major depressive disorder (MDD). Here, we have undertaken a review of dynorphin/ kappa neurobiology as related to behaviors, especially MDD. Highlights include the unique features of dynorphin and kappa receptors and the special relation of a plant-based agonist of the kappa receptor salvinorin A. In addition to acting as a kappa opioid agonist, we conclude that salvinorin A has a complex pharmacologic profile, with potential additional mechanisms of action. Its unique neurophysiological effects make Salvinorina A an ideal candidate for MDD treatment research.

  10. Stress sensitivity and resilience in the chronic mild stress rat model of depression; an in situ hybridization study

    DEFF Research Database (Denmark)

    Bergström, A; Jayatissa, M N; Mørk, A

    2008-01-01

    for development of anhedonia. CMS induced anhedonia was not related to mRNA expression differences of the dopamine receptors D(1) and D(2), enkephalin, dynorphin, the NMDA receptor subtype NR2B in the ventral striatum, BDNF expression in the dentate gyrus, nor corticotrophin releasing hormone (CRH) and arginine...

  11. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain

    NARCIS (Netherlands)

    Kononenko, Olga; Bazov, Igor; Watanabe, Hiroyuki; Gerashchenko, Ganna; Dyachok, Oleg; Verbeek, Dineke S; Alkass, Kanar; Druid, Henrik; Andersson, Malin; Mulder, Jan; Svenningsen, Åsa Fex; Rajkowska, Grazyna; Stockmeier, Craig A; Krishtal, Oleg; Yakovleva, Tatiana; Bakalkin, Georgy

    2017-01-01

    BACKGROUND: Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. Alternative mRNA splicing of neuropeptide genes may regulate cell- and tissu

  12. OPIOID PRECURSOR PROTEIN ISOFORM IS TARGETED TO THE CELL NUCLEI IN THE HUMAN BRAIN

    DEFF Research Database (Denmark)

    Kononenko, Olga; Bazov, Igor; Watanabe, Hiroyuki;

    2016-01-01

    Neuropeptide precursors are traditionally viewed as proteins giving rise to small neuropeptide molecules. Prodynorphin (PDYN) is the precursor protein to dynorphins, endogenous ligands for the κ-opioid receptor. We here describe two novel splicing variants of human PDYN mRNA. Expression of one...

  13. Inhibition of [gamma]-endorphin generating endopeptidase activity of rat brain by peptides: Structure activity relationship

    NARCIS (Netherlands)

    Lebouille, J.L.M.; Visser, W.H.; Hendriks, R.W.; Nispen, J.W. van; Greven, H.M.; Burbach, J.P.H.

    1985-01-01

    Gamma-Endorphin generating endopeptidase (gammaEGE) activity is an enzyme activity which converts beta-endorphin into gamma-endorphin and beta-endorphin-(18–31). The inhibitory potency on gammaEGE activity of neuropeptides and analogues or fragments of neuropeptides was tested. Dynorphin-(1–13) (IC5

  14. KNDy Neurons Modulate the Magnitude of the Steroid-Induced Luteinizing Hormone Surges in Ovariectomized Rats.

    Science.gov (United States)

    Helena, Cleyde V; Toporikova, Natalia; Kalil, Bruna; Stathopoulos, Andrea M; Pogrebna, Veronika V; Carolino, Ruither O; Anselmo-Franci, Janete A; Bertram, Richard

    2015-11-01

    Kisspeptin is the most potent stimulator of LH release. There are two kisspeptin neuronal populations in the rodent brain: in the anteroventral periventricular nucleus (AVPV) and in the arcuate nucleus. The arcuate neurons coexpress kisspeptin, neurokinin B, and dynorphin and are called KNDy neurons. Because estradiol increases kisspeptin expression in the AVPV whereas it inhibits KNDy neurons, AVPV and KNDy neurons have been postulated to mediate the positive and negative feedback effects of estradiol on LH secretion, respectively. Yet the role of KNDy neurons during the positive feedback is not clear. In this study, ovariectomized rats were microinjected bilaterally into the arcuate nucleus with a saporin-conjugated neurokinin B receptor agonist for targeted ablation of approximately 70% of KNDy neurons. In oil-treated animals, ablation of KNDy neurons impaired the rise in LH after ovariectomy and kisspeptin content in both populations. In estradiol-treated animals, KNDy ablation did not influence the negative feedback of steroids during the morning. Surprisingly, KNDy ablation increased the steroid-induced LH surges, accompanied by an increase of kisspeptin content in the AVPV. This increase seems to be due to lack of dynorphin input from KNDy neurons to the AVPV as the following: 1) microinjections of a dynorphin antagonist into the AVPV significantly increased the LH surge in estradiol-treated rats, similar to KNDy ablation, and 2) intra-AVPV microinjections of dynorphin in KNDy-ablated rats restored LH surge levels. Our results suggest that KNDy neurons provide inhibition to AVPV kisspeptin neurons through dynorphin and thus regulate the amplitude of the steroid-induced LH surges.

  15. Disparate Changes in Kisspeptin and Neurokinin B Expression in the Arcuate Nucleus After Sex Steroid Manipulation Reveal Differential Regulation of the Two KNDy Peptides in Rats

    DEFF Research Database (Denmark)

    Overgaard, Agnete; Ruiz-Pino, Francisco; Castellano, Juan M;

    2014-01-01

    Kisspeptin, neurokinin B (NKB) and dynorphin A are coexpressed in a population of neurons in the arcuate nucleus (ARC), termed KNDy neurons, which were recently recognized as important elements for the generation of GnRH pulses. However, the topographic distribution of these peptides and their re......Kisspeptin, neurokinin B (NKB) and dynorphin A are coexpressed in a population of neurons in the arcuate nucleus (ARC), termed KNDy neurons, which were recently recognized as important elements for the generation of GnRH pulses. However, the topographic distribution of these peptides...... of kisspeptin and NKB peptide contents in the ARC as a function of sex and steroid milieu enlarge our understanding on how these neuropeptides are posttranscriptionally regulated in KNDy neurons....

  16. REGULATION OF ANTI-SRBC ANTIBODY PRODUCTION BY OPIOIDS AND THEIR MECHANISMS

    Institute of Scientific and Technical Information of China (English)

    王慧琴; 林嘉友; 刘景生

    1995-01-01

    This study focused on the influences of opioids on the generation of antibody againse sheep erythrocyte in vitro.It was found that morphine,a-CAO,DADLE,MENK were able to inhibit the capacity of murine spleen cells to generate antibody and leukotriene C4 and conversely,dynorphin was able to stimulate the capacity of murine spleen cells to generate antibody and leukotriene C4. Morphine,a-CAO,MENK,DA-DLE,dynorphin decreased intracellular cAMP level,increased [Ca2+]i and calmodulin activity.The effects were completely blocked by naloxone,the specific opioid antagonist.Our results showed that opioids regulate the production of antibody in murine spleen cells,and alter intracellular cAMP,[Ca2+]i calmodulin activity,and leukotriene C4 production by way of binding to different receptor types.

  17. Noribogaine is a G-protein biased κ-opioid receptor agonist.

    Science.gov (United States)

    Maillet, Emeline L; Milon, Nicolas; Heghinian, Mari D; Fishback, James; Schürer, Stephan C; Garamszegi, Nandor; Mash, Deborah C

    2015-12-01

    Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of action remained uncharacterized thus far. Our binding experiments and computational simulations indicate that noribogaine may bind to the orthosteric morphinan binding site of the opioid receptors. Functional activities of noribogaine at G-protein and non G-protein pathways of the mu and kappa opioid receptors were characterized. Noribogaine was a weak mu antagonist with a functional inhibition constants (Ke) of 20 μM at the G-protein and β-arrestin signaling pathways. Conversely, noribogaine was a G-protein biased kappa agonist 75% as efficacious as dynorphin A at stimulating GDP-GTP exchange (EC50=9 μM) but only 12% as efficacious at recruiting β-arrestin, which could contribute to the lack of dysphoric effects of noribogaine. In turn, noribogaine functionally inhibited dynorphin-induced kappa β-arrestin recruitment and was more potent than its G-protein agonistic activity with an IC50 of 1 μM. This biased agonist/antagonist pharmacology is unique to noribogaine in comparison to various other ligands including ibogaine, 18-MC, nalmefene, and 6'-GNTI. We predict noribogaine to promote certain analgesic effects as well as anti-addictive effects at effective concentrations>1 μM in the brain. Because elevated levels of dynorphins are commonly observed and correlated with anxiety, dysphoric effects, and decreased dopaminergic tone, a therapeutically relevant functional inhibition bias to endogenously released dynorphins by noribogaine might be worthy of consideration for treating anxiety and substance related disorders.

  18. Peptidases prevent μ-opioid receptor internalization in dorsal horn neurons by endogenously released opioids

    OpenAIRE

    Song, Bingbing; Marvizón, Juan Carlos G.

    2003-01-01

    To evaluate the effect of peptidases on μ-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and α-neoendorphin, but not endomorphins or β...

  19. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.

    Science.gov (United States)

    Bodor, Andrea; Kövér, Katalin E; Mäler, Lena

    2015-03-01

    Small fast-tumbling bicelles are ideal for studies of membrane interactions at molecular level; they allow analysis of lipid properties using solution-state NMR. In the present study we used 31P NMR relaxation to obtain detailed information on lipid head-group dynamics. We explored the effect of two topologically different membrane-interacting peptides on bicelles containing either dimyristoylphosphocholine (DMPC), or a mixture of DMPC and dimyristoylphosphoglycerol (DMPG), and dihexanoylphosphocholine (DHPC). KALP21 is a model transmembrane peptide, designed to span a DMPC bilayer and dynorphin B is a membrane surface active neuropeptide. KALP21 causes significant increase in bicelle size, as evidenced by both dynamic light scattering and 31P T2 relaxation measurements. The effect of dynorphin B on bicelle size is more modest, although significant effects on T2 relaxation are observed at higher temperatures. A comparison of 31P T1 values for the lipids with and without the peptides showed that dynorphin B has a greater effect on lipid head-group dynamics than KALP21, especially at elevated temperatures. From the field-dependence of T1 relaxation data, a correlation time describing the overall lipid motion was derived. Results indicate that the positively charged dynorphin B decreases the mobility of the lipid molecules--in particular for the negatively charged DMPG--while KALP21 has a more modest influence. Our results demonstrate that while a transmembrane peptide has severe effects on overall bilayer properties, the surface bound peptide has a more dramatic effect in reducing lipid head-group mobility. These observations may be of general importance for understanding peptide-membrane interactions.

  20. United States Air Force Graduate Student Research Program. 1989 Program Technical Report. Volume 1

    Science.gov (United States)

    1989-12-01

    Report as Dr. Barbara Alvin *** School of Aerospace Medicine 93 Investigation of the Release of Sudarkodi Alagarsamy Glutamate and Dynorphin A(1-8) by...Universal Energy Systems for their administration and especially Barbara Vincent for her patience and help with my security clearance. I would like to...rapid solution of several technical problems. Finally, I would like to express my gratitude to my research director, Dr. William R. Carper for his

  1. Enzymatic properties of venoms from Brazilian scorpions of Tityus genus and the neutralisation potential of therapeutical antivenoms.

    Science.gov (United States)

    Venancio, Emerson J; Portaro, Fernanda C V; Kuniyoshi, Alexandre K; Carvalho, Daniela Cajado; Pidde-Queiroz, Giselle; Tambourgi, Denise V

    2013-07-01

    Tityus scorpion stings are an important public health problem in Brazil, where the incidence of such stings exceeds the incidence of the health problems caused by other venomous animals, including snakes. In this study, we have analysed specific enzymatic activities of the venom from the Brazilian scorpions of Tityus genus, i.e., Tityus serrulatus, Tityus bahiensis and Tityus stigmurus. The data presented here revealed that Tityus spp. venoms exhibited significant hyaluronidase activity but no phospholipase activity. All the venom samples exhibited the ability to hydrolyse Abz-FLRRV-EDDnp and dynorphin 1-13 substrates. These activities were inhibited by 1,10-phenanthroline but not by PMSF, indicating the presence of metalloproteinases in the Tityus spp. venoms. The venom peptidase activity on Abz-FLRRV-EDDnp and on dynorphin 1-13 was partially inhibited by therapeutic Brazilian anti-scorpion and anti-arachnidic antivenoms. Dynorphin 1-13 (YGGFLRRIRPKLK) contains two scissile bonds between the residues Leu-Arg and Arg-Arg that are susceptible to cleavage by the Tityus venom metallopeptidase(s). Their cleavage releases leu-enkephalin, an important bioactive peptide. The detection of metalloproteinase(s) with specificity for both dynorphin 1-13 degradation and leu-enkephalin releasing can be important for the mechanistic understanding of hypotension and bradycardia induction in cases of scorpion stings, whereas hyaluronidases might contribute to the diffusion of the toxins present in these venoms. Furthermore, the limited inhibition of the toxic enzymatic activities by commercial antivenoms illustrates the necessity of improvements in current antivenom preparation.

  2. Both Estrogen and Androgen Modify the Response to Activation of Neurokinin-3 and κ-Opioid Receptors in Arcuate Kisspeptin Neurons From Male Mice.

    Science.gov (United States)

    Ruka, Kristen A; Burger, Laura L; Moenter, Suzanne M

    2016-02-01

    Gonadal steroids regulate the pattern of GnRH secretion. Arcuate kisspeptin (kisspeptin, neurokinin B, and dynorphin [KNDy]) neurons may convey steroid feedback to GnRH neurons. KNDy neurons increase action potential firing upon the activation of neurokinin B receptors (neurokinin-3 receptor [NK3R]) and decrease firing upon the activation of dynorphin receptors (κ-opioid receptor [KOR]). In KNDy neurons from intact vs castrated male mice, NK3R-mediated stimulation is attenuated and KOR-mediated inhibition enhanced, suggesting gonadal secretions are involved. Estradiol suppresses spontaneous GnRH neuron firing in male mice, but the mediators of the effects on firing in KNDy neurons are unknown. We hypothesized the same gonadal steroids affecting GnRH firing pattern would regulate KNDy neuron response to NK3R and KOR agonists. To test this possibility, extracellular recordings were made from KNDy neurons in brain slices from intact, untreated castrated or castrated adult male mice treated in vivo with steroid receptor agonists. As observed previously, the stimulation of KNDy neurons by the NK3R agonist senktide was attenuated in intact vs castrated mice and suppression by dynorphin was enhanced. In contrast to observations of steroid effects on the GnRH neuron firing pattern, both estradiol and DHT suppressed senktide-induced KNDy neuron firing and enhanced the inhibition caused by dynorphin. An estrogen receptor-α agonist but not an estrogen receptor-β agonist mimicked the effects of estradiol on NK3R activation. These observations suggest the steroid modulation of responses to activation of NK3R and KOR as mechanisms for negative feedback in KNDy neurons and support the contribution of these neurons to steroid-sensitive elements of a GnRH pulse generator.

  3. 强啡肽的研究进展

    Institute of Scientific and Technical Information of China (English)

    农善华

    2014-01-01

    强啡肤(Dynorphin,DYN)是1979年 Goldstein 等[1]首先从猪的垂体中发现的不同于脑啡肤和β内啡肽的另一种内源性阿片肽。本文对强啡肽的分布、药理作用及其机制、临床研究进展作介绍。

  4. The kisspeptin-GnRH pathway in human reproductive health and disease

    OpenAIRE

    Skorupskaite, Karolina; George, Jyothis T.; Anderson, Richard A.

    2014-01-01

    BACKGROUND The discovery of kisspeptin as key central regulator of GnRH secretion has led to a new level of understanding of the neuroendocrine regulation of human reproduction. The related discovery of the kisspeptin-neurokinin B-dynorphin (KNDy) pathway in the last decade has further strengthened our understanding of the modulation of GnRH secretion by endocrine, metabolic and environmental inputs. In this review, we summarize current understanding of the physiological roles of these novel ...

  5. Does the kappa opioid receptor system contribute to pain aversion?

    Directory of Open Access Journals (Sweden)

    Catherine M Cahill

    2014-11-01

    Full Text Available The kappa opioid receptor (KOR and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.

  6. The prenatal developmental profile of expression of opioid peptides and receptors in the mouse brain

    Science.gov (United States)

    Rius, R. Adrian; Barg, Jacob; Bem, Wojciech T.; Coscia, Carmine J.; Loh, Y. Peng

    2008-01-01

    Although the postnatal development of opioid systems of mammalian brain has been well studied, little is known about the ontogeny of and relationship between embryonic (E) opioid peptides and their receptors. Moreover, a simultaneous assessment of levels of the 3 classes of opioid peptides and their putative receptors during embryonal development has not been made. To this end, the ontogeny of opioid peptides and receptors in mouse brain were examined during the period E11.5 to postnatal day 1 (P1). Met-enkephalin, dynorphin and β-endorphin immunoreactivity were detected before their putative opioid receptors. β-Endorphin can be discerned as early as E11.5, whereas μ binding was first observed at E12.5. Although dynorphin and Met-enkephalin were measurable at the same time as β-endorphin, κ-receptors were not detected until E14.5 and δ sites were not found at all prenatally. Differences in immunoreactivity levels of the 3 peptides occur with dynorphin being lower than Met-enkephalin and β-endorphin, consistent with a low Bmax for κ binding. Expression of the 3 opioid peptides as well as μ and κ opioid receptors rapidly increase in parallel from E14.5 to E18.5, Interestingly, levels of β-endorphin diminish by P1, the stage at which a sharp rise of μ receptors occurs. In a comparative study of the binding of β-endorphin1–31, its truncated form (1–27) and their N-acetyl derivatives to E14.5 brain membranes, β-endorphin1–31 exhibited the highest affinity. PMID:1674235

  7. The endogenous opioids related with antinociceptive effects induced by electrical stimulation into the amygdala.

    Science.gov (United States)

    Nakamura, Takami; Tomida, Mihoko; Yamamoto, Toshiharu; Ando, Hiroshi; Takamata, Tetsuya; Kondo, Eiji; Kurasawa, Ikufumi; Asanuma, Naokazu

    2013-01-01

    Pain relief is necessary and essential for dental treatments. Recently, the relationships of pain and emotion were studied, and electrical stimulation applied to the amygdala depressed the nociceptive response in the anterior cingulate cortex (ACC). Thus, the antinociceptive effects of the amygdala are elucidated, but its mechanism is not yet clarified. The present study was performed to investigate whether endogenous opioid system is related to the depression, and the quantitative changes of endogenous opioids induced by electrical stimulation to the amygdala. We investigated immunohistologically c-Fos expression to confirm the activated neurons, as well as the distribution and the amount of endogenous opioids (β-endorphin, enkephalin and dynorphin A) in the brain using male Wistar rats, when electrical stimulation was applied to the central nucleus of the amygdala (CeA) or noxious stimulation was delivered to the peripheral tissue. c-Fos expression in the ipsilateral ACC was increased by electrical stimulation to the CeA. However, only a small amount of endogenous opioids was observed in the ACC when noxious stimulation or electrical stimulation was applied. In contrast, the amount of dynorphin A in the periaqueductal gray (PAG) was increased by electrical stimulation to the CeA, and the amount of β-endorphin in the PAG was increased by noxious stimulation to the peripheral tissue. The results suggest that dynorphin A in the PAG induced by electrical stimulation to the CeA activate the descending antinociceptive system, and suggest that the nociceptive response in the ACC is depressed indirectly.

  8. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery.

    Science.gov (United States)

    Lapchak, P A; Miller, P J; Collins, F; Jiao, S

    1997-05-01

    The effects of intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor were tested on low dose (0.05 mg/kg) apomorphine-induced rotations and tyrosine hydroxylase activity in the substantia nigra and striatum of stable 6-hydroxydopamine-lesioned rats. In addition, we determined if 6-hydroxydopamine lesions in the absence or presence of treatment affected neuropeptide (substance P, met-enkephalin, dynorphin) content in the striatum. Glial cell line-derived neurotrophic factor, when administered intranigrally, prevented apomorphine-induced rotational behaviour for 11 weeks following a single injection. In comparison, intraventricularly-administered glial cell line-derived neurotrophic factor produced a transient reduction in rotational behaviour that lasted for two to three weeks following a single injection. We also show that rotational behaviour is reduced following each subsequent intraventricular injection of glial cell line-derived neurotrophic factor given every six weeks, a time-point when baseline rotation deficits were re-established. Intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor significantly reduced weight gain in all 6-hydroxydopamine-lesioned rats in this study. Following behavioural analysis where a confirmed improvement of behaviour was established, tissues were dissected for neurochemical analysis. In lesioned rats with intranigral injections of administered glial cell line-derived neurotrophic factor, significant increases of nigral, but not striatal tyrosine hydroxylase activity were measured. Additionally, 6-hydroxydopamine lesions significantly increased striatal dynorphin (61-139%) and met-enkephalin (81-139%), but not substance P levels. In these rats, intranigrally-administered glial cell line-derived neurotrophic factor injections reversed lesion-induced increases in nigral dynorphin A levels and increased nigral dopamine levels, but did not alter nigral met

  9. Opioid precursor protein isoform is targeted to the cell nuclei in the human brain

    DEFF Research Database (Denmark)

    Kononenko, Olga; Bazov, Igor; Watanabe, Hiroyuki

    2017-01-01

    of them was confined to the striatum where its levels constituted up to 30% of total PDYN mRNA. This transcript may be translated into ∆SP-PDYN protein lacking 13 N-terminal amino acids, a fragment of the signal peptide. ∆SP-PDYN was not processed to mature dynorphins and surprisingly, was targeted...... to the cell nuclei in a model cellular system. This may be driven by bipartite nuclear localization signal (NLS) that is cryptic in the full-length PDYN molecule and becomes functional when signal peptide is truncated. Nuclear PDYN isoform was identified by western blot and radioimmunoassay in neuronal nuclei...

  10. Neuropeptides in the hypothalamo-hypophyseal system: lateral retrochiasmatic area as a common gate for neuronal fibers towards the median eminence.

    Science.gov (United States)

    Palkovits, M

    1984-01-01

    The source and topography of neuropeptide-containing axons in the median eminence are summarized. Several of these neuropeptide-containing neurons (thyrotropin-releasing hormone, corticotropin-releasing hormone, vasopressin, oxytocin, cholecystokinin) are localized in the paraventricular nucleus. The periventricular and medial preoptic nuclei constitute the main sources of somatostatin and luteinizing hormone releasing hormone axons in the median eminence, respectively. Dynorphins and alpha-neo-endorphin-synthetizing neurons in the supraoptic nucleus also project to the median eminence. Wherever they originate, the projections may follow a common organization pattern and use a common gate--the lateral retrochiasmatic area--to enter the median eminence.

  11. Opiate receptors: an introduction.

    Science.gov (United States)

    Carmody, J J

    1987-02-01

    Current status of opiate receptors and their agonists is reviewed--basic aspects of receptor theory, the importance of stereospecificity in drug-receptor interactions and the role of 'second messengers' in drug action. The three classes of endogenous opioids, originating from three distinct genes, are discussed: pro-opiomelanocortin, giving rise to beta-endorphin, ACTH and various MSHs; pro-enkephalin, giving methionine enkephalin and leucine enkephalin; and prodynorphin; their anatomical distribution and the main classes of receptors with which they interact, the mu-receptor, with a high affinity for met-enkephalin and beta-endorphin (as well as morphine and dynorphin A); the delta-receptor for which the primary ligand is leu-enkephalin; and the kappa-receptor which is the main target for the dynorphins. Functional roles for endogenous opioids are considered. Essentially they are inhibitory to target neurones, depressing motor reflexes, baroreflexes and nociception. They also have roles in the response to physical and psychological stress.

  12. Synaptic localization of. kappa. opioid receptors in guinea pig neostriatum

    Energy Technology Data Exchange (ETDEWEB)

    Jomary, C.; Beaudet, A. (McGill Univ., Montreal, Quebec (Canada)); Gairin, J.E. (Centre National de la Recherche Scientifique, Toulouse (France))

    1992-01-15

    Distribution of {kappa} opioid receptors was examined by EM radioautography in sections of guinea pig neostriatum with the selective {sup 125}I-labeled dynorphin analog (D-Pro{sup 10})dynorphin-(1-11). Most specifically labeled binding sites were found by probability circle analysis to be associated with neuronal membrane appositions. Because of limitations in resolution of the method, the radioactive sources could not be ascribed directly to either one of the apposed plasma membranes. Nevertheless, three lines of evidence favored a predominant association of ligand with dendrites of intrinsic striatal neurons: (1) the high frequency with which labeled interfaces implicated a dendrite, (2) the enrichment of dendrodendritic interfaces, and (3) the occurrence of dendritic profiles labeled at several contact points along their plasma membranes. A small proportion of labeled sites was associated with axo-axonic interfaces, which may subserve the {kappa} opioid-induced regulation of presynaptic dopamine and acetylcholine release documented in guinea pig neostriatum. These results support the hypothesis that in mammalian brain {kappa} opioid receptors are conformationally and functionally distinct from {mu} and {delta} types.

  13. Molecular modelling of the ORL1 receptor and its complex with nociceptin.

    Science.gov (United States)

    Topham, C M; Moulédous, L; Poda, G; Maigret, B; Meunier, J C

    1998-12-01

    The opioid receptor like (ORL1) receptor is a G-protein coupled receptor superfamily, and regulates a plethora of neurophysiological functions. The structural requirements for receptor activation by its endogenous agonist, nociceptin (FGGFTGARKSARKLANQ), differ markedly from those of the kappa-opioid receptor and its putative peptide agonist, dynorphin A (YGGFLRRIRPKLKWDNQ). In order to probe the functional architecture of the ORL1 receptor, a molecular model of the receptor has been built, including the TM domain and the extra- and intracellular loops. An extended binding site able to accommodate nociceptin-(1-13), the shortest fully active analogue of nociceptin, has been characterized. The N-terminal FGGF tetrapeptide is proposed to bind in a highly conserved region, comprising two distinct hydrophobic pockets in a cavity formed by TM helices 3, 5, 6 and 7, capped by the acidic second extracellular (EL2) loop controlling access to the TM elements of the peptide binding site. The nociceptin conformation provides for the selective preference of the ORL1 receptor for nociceptin over dynorphin A, conferred by residue positions 5 and 6 (TG versus LR), and the favourable interaction of its highly positively charged core (residues 8-13) with the EL2 loop, thought to mediate receptor activation. The functional roles of the EL2 loop and the conserved N-terminal tetrapeptide opioid 'message' binding site are discussed in the context of the different structural requirements of the ORL1 and kappa-opioid receptors for activation.

  14. Enkephalin levels and the number of neuropeptide Y-containing interneurons in the hippocampus are decreased in female cannabinoid-receptor 1 knock-out mice.

    Science.gov (United States)

    Rogers, Sophie A; Kempen, Tracey A Van; Pickel, Virginia M; Milner, Teresa A

    2016-05-04

    Drug addiction requires learning and memory processes that are facilitated by activation of cannabinoid-1 (CB1) and opioid receptors in the hippocampus. This involves activity-dependent synaptic plasticity that is partially regulated by endogenous opioid (enkephalin and dynorphin) and non-opioid peptides, specifically cholecystokinin, parvalbumin and neuropeptide Y, the neuropeptides present in inhibitory interneurons that co-express CB1 or selective opioid receptors. We tested the hypothesis that CB1 receptor expression is a determinant of the availability of one or more of these peptide modulators in the hippocampus. This was achieved by quantitatively analyzing the immunoperoxidase labeling for each of these neuropeptide in the dorsal hippocampus of female wild-type (CB1+/+) and cannabinoid receptor 1 knockout (CB1-/-) C57/BL6 mice. The levels of Leu(5)-enkephalin-immunoreactivity were significantly reduced in the hilus of the dentate gyrus and in stratum lucidum of CA3 in CB1-/- mice. Moreover, the numbers of neuropeptide Y-immunoreactive interneurons in the dentate hilus were significantly lower in the CB1-/- compared to wild-type mice. However, CB1+/+ and CB1-/- mice did not significantly differ in expression levels of either dynorphin or cholecystokinin, and showed no differences in numbers of parvalbumin-containing interneurons. These findings suggest that the cannabinoid and opioid systems have a nuanced, regulatory relationship that could affect the balance of excitation and inhibition in the hippocampus and thus processes such as learning that rely on this balance.

  15. Salvinorin A, a kappa-opioid receptor agonist hallucinogen: pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    Science.gov (United States)

    Butelman, Eduardo R.; Kreek, Mary Jeanne

    2015-01-01

    Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr) agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins) in higher functions, including cognition and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A-containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and chemical reinforcers (including drugs of abuse). KOPr activation (including by salvinorin A) can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects), with a reduced burden of undesirable effects associated with salvinorin A. PMID:26441647

  16. Salvinorin A, a kappa-opioid receptor (KOP-r agonist hallucinogen: Pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders

    Directory of Open Access Journals (Sweden)

    Eduardo eButelman

    2015-09-01

    Full Text Available Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins in higher functions, including cognition, and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A- containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and drug reinforcers (including drugs of abuse. KOPr activation (including by salvinorin A can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike all other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects, with a reduced burden of undesirable effects associated with salvinorin A.

  17. Salvinorin A, a kappa-opioid receptor agonist hallucinogen: pharmacology and potential template for novel pharmacotherapeutic agents in neuropsychiatric disorders.

    Science.gov (United States)

    Butelman, Eduardo R; Kreek, Mary Jeanne

    2015-01-01

    Salvinorin A is a potent hallucinogen, isolated from the ethnomedical plant Salvia divinorum. Salvinorin A is a selective high efficacy kappa-opioid receptor (KOPr) agonist, and thus implicates the KOPr system and its endogenous agonist ligands (the dynorphins) in higher functions, including cognition and perceptual effects. Salvinorin A is the only selective KOPr ligand to be widely available outside research or medical settings, and salvinorin A-containing products have undergone frequent non-medical use. KOPr/dynorphin systems in the brain are known to be powerful counter-modulatory mechanisms to dopaminergic function, which is important in mood and reward engendered by natural and chemical reinforcers (including drugs of abuse). KOPr activation (including by salvinorin A) can thus cause aversion and anhedonia in preclinical models. Salvinorin A is also a completely new scaffold for medicinal chemistry approaches, since it is a non-nitrogenous neoclerodane, unlike other known opioid ligands. Ongoing efforts have the goal of discovering novel semi-synthetic salvinorin analogs with potential KOPr-mediated pharmacotherapeutic effects (including partial agonist or biased agonist effects), with a reduced burden of undesirable effects associated with salvinorin A.

  18. Kappa opioid receptors stimulate phosphoinositide turnover in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Periyasamy, S.; Hoss, W. (Univ. of Toledo, OH (USA))

    1990-01-01

    The effects of various subtype-selective opioid agonists and antagonists on the phosphoinositide (PI) turnover response were investigated in the rat brain. The {kappa}-agonists U-50,488H and ketocyclazocine produced a concentration-dependent increase in the accumulation of IP's in hippocampal slices. The other {kappa}-agonists Dynorphin-A (1-13) amide, and its protected analog D(Ala){sup 2}-dynorphin-A (1-13) amide also produced a significant increase in the formation of ({sup 3}H)-IP's, whereas the {mu}-selective agonists (D-Ala{sup 2}-N-Me-Phe{sup 4}-Gly{sup 5}-ol)-enkephalin and morphine and the {delta}-selective agonist (D-Pen{sup 2,5})-enkephalin were ineffective. The increase in IP's formation elicited by U-50,488H was partially antagonized by naloxone and more completely antagonized by the {kappa}-selective antagonists nor-binaltorphimine and MR 2266. The formation of IP's induced by U-50,488H varies with the regions of the brain used, being highest in hippocampus and amygdala, and lowest in striatum and pons-medullar. The results indicate that brain {kappa}- but neither {mu}- nor {delta}- receptors are coupled to the PI turnover response.

  19. Chronic and acute effects of 3,4-methylenedioxy-N-methylamphetamine ('Ecstasy') administration on the dynorphinergic system in the rat brain.

    Science.gov (United States)

    Di Benedetto, M; D'addario, C; Candeletti, S; Romualdi, P

    2006-01-01

    The prodynorphin system is implicated in the neurochemical mechanism of psychostimulants. Exposure to different drugs of abuse can induce neuroadaptations in the brain and affect opioid gene expression. The present study aims to examine the possibility of a common neurobiological substrate in drug addiction processes. We studied the effects of single and repeated 3,4-methylenedioxy-N-methylamphetamine ('Ecstasy') on the gene expression of the opioid precursor prodynorphin, and on the levels of peptide dynorphin A in the rat brain. Acute (8 mg/kg, intraperitoneally) 3,4-methylenedioxy-N-methylamphetamine markedly raised, two hours later, prodynorphin mRNA levels in the prefrontal cortex, and in the caudate putamen, whereas it decreased gene expression in the ventral tegmental area. Chronic (8 mg/kg, intraperitoneally, twice a day for 7 days) 3,4-methylenedioxy-N-methylamphetamine increased prodynorphin mRNA in the nucleus accumbens, hypothalamus and caudate putamen and decreased it in the ventral tegmental area. Dynorphin A levels increased after chronic treatment in the ventral tegmental area and decreased after acute treatment in the nucleus accumbens, prefrontal cortex and hypothalamus. These findings confirm the role of the dynorphinergic system in mediating the effects of drugs of abuse, such as 3,4-methylenedioxy-N-methylamphetamine, in various regions of the rat brain, which may be important sites for the opioidergic mechanisms activated by addictive drugs.

  20. Effects of Electroacupuncture of Different Frequencies on the Release Profile of Endogenous Opioid Peptides in the Central Nerve System of Goats

    Directory of Open Access Journals (Sweden)

    Li-Li Cheng

    2012-01-01

    Full Text Available To investigate the release profile of met-enkephalin, β-endorphin, and dynorphin-A in ruminants’ CNS, goats were stimulated by electroacupuncture of 0, 2, 40, 60, 80, or 100 Hz for 30 min. The pain threshold was measured using potassium iontophoresis. The peptide levels were determined with SABC immunohistochemisty. The results showed that 60 Hz increased pain threshold by 91%; its increasing rate was higher (P<0.01 than any other frequency did. 2 Hz and 100 Hz increased met-enkephalin immunoactivities (P<0.05 in nucleus accumbens, septal area, caudate nucleus, amygdala, paraventricular nucleus of hypothalamus, periaqueductal gray, dorsal raphe nucleus, and locus ceruleus. The two frequencies elicited β-endorphin release (P<0.05 in nucleus accumbens, septal area, supraoptic nucleus, ventromedial nucleus of hypothalamus, periaqueductal gray, dorsal raphe nucleus, locus ceruleus, solitary nucleus and amygdala. 60 Hz increased (P<0.05 met-enkephalin or β-endorphin immunoactivities in the nuclei and areas mentioned above, and habenular nucleus, substantia nigra, parabrachial nucleus, and nucleus raphe magnus. High frequencies increased dynorphin-A release (P<0.05 in spinal cord dorsal horn and most analgesia-related nuclei. It suggested that 60 Hz induced the simultaneous release of the three peptides in extensive analgesia-related nuclei and areas of the CNS, which may be contributive to optimal analgesic effects and species variation.

  1. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    Science.gov (United States)

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  2. Neuromolecular imaging, a nanobiotechnology for Parkinson's disease: advancing pharmacotherapy for personalized medicine.

    Science.gov (United States)

    Broderick, P A; Wenning, L; Li, Y-S

    2017-01-01

    limits in non-Parkinsonian animals. After administration of L-DOPA, biogenic amines significantly increased in these non-Parkinson's animals. Nevertheless, it is intriguing to see that L-DOPA could not enable synaptic dopamine release in Parkinson's animals, thereby demonstrating that biogenic amines are biomarkers for Parkinson's disease. Biomarkers are biochemical, genetic, or molecular measures of biological reactions. Importantly, there were other significant biomarkers present in Parkinsonian animals and absent in non-Parkinsonian animals; these were peptide neurotransmitters that include dynorphin and somatostatin in the brain with detection limits of 40 nM for dynorphin and 37 nM for somatostatin (see Table 1). Furthermore, L-DOPA significantly increased these peptide biomarkers, dynorphin and somatostatin, in Parkinson's animals. Targeting biomarkers enables new diagnostic devices and treatments for Parkinson's disease through nanotechnology and nanobiotechnology.

  3. Opioid system genes in alcoholism: a case-control study in Croatian population.

    Science.gov (United States)

    Cupic, B; Stefulj, J; Zapletal, E; Matosic, A; Bordukalo-Niksic, T; Cicin-Sain, L; Gabrilovac, J

    2013-10-01

    Due to their involvement in dependence pathways, opioid system genes represent strong candidates for association studies investigating alcoholism. In this study, single nucleotide polymorphisms within the genes for mu (OPRM1) and kappa (OPRK1) opioid receptors and precursors of their ligands - proopiomelanocortin (POMC), coding for beta-endorphin and prodynorphin (PDYN) coding for dynorphins, were analyzed in a case-control study that included 354 male alcohol-dependent and 357 male control subjects from Croatian population. Analysis of allele and genotype frequencies of the selected polymorphisms of the genes OPRM1/POMC and OPRK1/PDYN revealed no differences between the tested groups. The same was true when alcohol-dependent persons were subdivided according to the Cloninger's criteria into type-1 and type-2 groups, known to differ in the extent of genetic control. Thus, the data obtained suggest no association of the selected polymorphisms of the genes OPRM1/POMC and OPRK1/PDYN with alcoholism in Croatian population.

  4. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    Science.gov (United States)

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  5. Determination of specific neuropeptides modulation time course in a rat model of osteoarthritis pain by liquid chromatography ion trap mass spectrometry.

    Science.gov (United States)

    Ferland, Catherine E; Pailleux, Floriane; Vachon, Pascal; Beaudry, Francis

    2011-12-01

    Animal models are useful to evaluate pharmacological therapies to alleviate joint pain. The present study characterized central neuropeptides modulation in the monoiodoacetate (MIA) rat model. Animals receiving a single 3mg MIA injection were euthanized at 3, 7, 14, 21 and 28 days post injection. Spinal cords were analyzed by liquid chromatography ion trap mass spectrometry. Up-regulations of the calcitonin gene-related peptide and substance P were observed starting on days 7 and 28 respectively, whereas big dynorphin(₁₋₃₂) content decreased significantly on day 14 in comparison to control animals (P<0.05). Preclinical drug evaluations using this model should be conducted between 7 and 21 days post injection when the lesions resemble most to human osteoarthritis.

  6. [Endomorphins--endogenous ligands of the mu-opioid receptor].

    Science.gov (United States)

    Perlikowska, Renata; Fichna, Jakub; Janecka, Anna

    2009-01-01

    Two endogenous opioid peptides with extremely high mu-opioid receptor affinity and selectivity, endomorphin-1 and endomorphin-2, were: discovered and isolated from the mammalian brain in 1997. Endomorphins are amidated tetrapeptides, structurally different from so called typical opioids: enkephalins, dynorphins and endorphins. A protein precursor of endomorphins and a gene encoding their sequence remain unknown. Endomorphins are unable to cross the blood-brain barrier because of their low hydrophobicity. In animal models, these peptides turned out to be very potent in relieving neuropathic and inflammatory pain. In comparison with morphine, a prototype opioid receptor ligand, endomorphins produces less undesired side effects. In this article we describe the discovery of endomorphins, their cellular localization and functions in the organism, as well as their structure-activity relationships and biodegradation pathways.

  7. Kappa-opioid receptor signaling in the striatum as a potential modulator of dopamine transmission in cocaine dependence

    Directory of Open Access Journals (Sweden)

    Pierre eTrifilieff

    2013-06-01

    Full Text Available Cocaine addiction is accompanied by a decrease in striatal dopamine signaling, measured as a decrease in dopamine D2 receptor binding as well as blunted dopamine release in the striatum. These alterations in dopamine transmission have clinical relevance, and have been shown to correlate with cocaine-seeking behavior and response to treatment for cocaine dependence. However, the mechanisms contributing to the hypodopaminergic state in cocaine addiction remain unknown. Here we review the Positron Emission Tomography (PET imaging studies showing alterations in D2 receptor binding potential and dopamine transmission in cocaine abusers and their significance in cocaine-seeking behavior. Based on animal and human studies, we propose that the kappa receptor/dynorphin system, because of its impact on dopamine transmission and upregulation following cocaine exposure, could contribute to the hypodopaminergic state reported in cocaine addiction, and could thus be a relevant target for treatment development.

  8. Neuroscience of opiates for addiction medicine: From stress-responsive systems to behavior.

    Science.gov (United States)

    Zhou, Yan; Leri, Francesco

    2016-01-01

    Opiate addiction, similarly to addiction to other psychoactive drugs, is chronic relapsing brain disease caused by drug-induced short-term and long-term neuroadaptations at the molecular, cellular, and behavioral levels. Preclinical research in laboratory animals has found important interactions between opiate exposure and stress-responsive systems. In this review, we will discuss the dysregulation of several stress-responsive systems in opiate addiction: vasopressin and its receptor system, endogenous opioid systems (including proopiomelanocortin/mu opioid receptor and dynorphin/kappa opioid receptor), orexin and its receptor system, and the hypothalamic-pituitary-adrenal axis. A more complete understanding of how opiates alter these stress systems, through further laboratory-based studies, is required to identify novel and effective pharmacological targets for the long-term treatment of heroin addiction.

  9. Identification of spinal circuits transmitting and gating mechanical pain

    Science.gov (United States)

    Bourane, Steeve; Britz, Olivier; Padilla, Christopher; Garcia-Campmany, Lidia; Krashes, Michael; Knowlton, Wendy; Velasquez, Tomoko; Ren, Xiangyu; Ross, Sarah; Lowell, Bradford B.; Wang, Yun; Goulding, Martyn; Ma, Qiufu

    2014-01-01

    SUMMARY Pain processing in the spinal cord has been postulated to rely on nociceptive transmission (T) neurons receiving inputs from nociceptors and Aβ mechanoreceptors, with Aβ inputs gated through feed-forward activation of spinal inhibitory neurons (IN). Here we used intersectional genetic manipulations to identify these critical components of pain transduction. Marking and ablating six populations of spinal excitatory and inhibitory neurons, coupled with behavioral and electrophysiological analysis, showed that excitatory neurons expressing somatostatin (SOM) represent T-type cells, whose ablation causes loss of mechanical pain. Inhibitory neurons marked by the expression of dynorphin (Dyn) represent IN-type neurons, which are necessary to gate Aβ fibers from activating SOM+ neurons to evoke pain. Therefore, peripheral mechanical nociceptors and Aβ mechanoreceptors, together with spinal SOM+ excitatory and Dyn+ inhibitory neurons form a microcircuit that transmits and gates mechanical pain. PMID:25467445

  10. Peptides and aging: Their role in anorexia and memory.

    Science.gov (United States)

    Morley, John E

    2015-10-01

    The rapid aging of the world's population has led to a need to increase our understanding of the pathophysiology of the factors leading to frailty and cognitive decline. Peptides have been shown to be involved in the pathophysiology of frailty and cognitive decline. Weight loss is a major component of frailty. In this review, we demonstrate a central role for both peripheral peptides (e.g., cholecystokinin and ghrelin) and neuropeptides (e.g., dynorphin and alpha-MSH) in the pathophysiology of the anorexia of aging. Similarly, peripheral peptides (e.g., ghrelin, glucagon-like peptide 1, and cholecystokinin) are modulators of memory. A number of centrally acting neuropeptides have also been shown to modulate cognitive processes. Amyloid-beta peptide in physiological levels is a memory enhancer, while in high (pathological) levels, it plays a key role in the development of Alzheimer's disease.

  11. Kappa-opioid receptor antagonism improves recovery from myocardial stunning in chronically instrumented dogs.

    Science.gov (United States)

    Grosse Hartlage, Maike A; Theisen, Marc M; Monteiro de Oliveira, Nelson P; Van Aken, Hugo; Fobker, Manfred; Weber, Thomas P

    2006-10-01

    We tested the hypothesis that the selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI) improves recovery from myocardial stunning. Ten dogs were chronically instrumented for measurement of heart rate, left atrial, aortic and left ventricular pressure (LVP), and the maximum rate of LVP increase (LV dP/dt(max)) and decrease (LV dP/dt(max)), coronary blood flow velocity and myocardial wall-thickening fraction. Regional myocardial blood flow was determined with fluorescent microspheres. Catecholamine plasma levels were measured by high-performance liquid chromatography, and beta-endorphin and dynorphin plasma levels by radioimmunoassay. An occluder around the left anterior descending artery (LAD) allowed induction of a reversible LAD-ischemia. Animals underwent two experiments in a randomized crossover fashion on separate days: (a) 10 min LAD-occlusion (control experiment), (b) second ischemic episode 24 h after nor-BNI (2.5 mg/kg IV) (intervention). Dogs receiving nor-BNI showed an increase in wall-thickening fraction, LV dP/dt(max) and LV dP/dt(min) before ischemia and during the whole reperfusion (P < 0.05 versus control experiment). After nor-BNI pretreatment, dynorphin levels increased after induction of ischemia to a peak level of 15.1 +/- 3.6 pg/mL (P < 0.05 versus control experiment). The increase in plasma beta-endorphin during ischemia and early reperfusion was attenuated after nor-BNI. Compared with the control experiment, nor-BNI left global hemodynamics, regional myocardial blood flow, and catecholamine levels unchanged. In conclusion, nor-BNI improves recovery from myocardial stunning after regional myocardial ischemia in chronically instrumented dogs.

  12. Effect of estrogen on morphine- and oxycodone-induced antinociception in a female femur bone cancer pain model.

    Science.gov (United States)

    Ono, Hiroko; Nakamura, Atsushi; Kanemasa, Toshiyuki; Sakaguchi, Gaku; Shinohara, Shunji

    2016-02-15

    Although estrous cycle has been reported to influence antiociceptive effect of morphine in several pain conditions, its effect on cancer pain is not well established. We investigated the effect of estrogen on morphine antinociception using a bone cancer pain model and compared its potency with that of oxycodone. Female mice were ovariectomized (OVX) for preparation of a femur bone cancer pain (FBC) model. β-estradiol was subcutaneously (s.c.) administered and antinociceptive effects of opioids was assessed using the von Frey monofilament test. Although morphine (5-20mg/kg, s.c.) did have significant antinociceptive effects in the FBC-OVX group, its effects in the FBC-OVX+β-estradiol (OVX+E) group was limited. Oxycodone (1-5mg/kg, s.c.) exhibited significant effects in both groups. Expression changes in opioid-related genes (μ-, κ-, δ-opioid receptors, prodynorphin, proenkephalin, proopiomelanocortin) in the spinal and supraspinal sites were examined among the sham-OVX, sham-OVX+E, FBC-OVX, and FBC-OVX+E groups by in situ hybridization. These studies detected a significant increase in prodynorphin in the spinal dorsal horn of the FBC-OVX+E group. Spinal injection of a dynorphin-A antibody to FBC-OVX+E mice restored antinociception of morphine. In conclusion, we detected a differential effect of estrogen on morphine- and oxycodone-induced antinociception in a female FBC model. The effect of morphine was limited with estrogen exposure, which may be due to estrogen- and pain-mediated spinal expression of dynorphin-A.

  13. The DPP-IV inhibitor linagliptin and GLP-1 induce synergistic effects on body weight loss and appetite suppression in the diet-induced obese rat.

    Science.gov (United States)

    Hansen, Henrik H; Hansen, Gitte; Paulsen, Sarah; Vrang, Niels; Mark, Michael; Jelsing, Jacob; Klein, Thomas

    2014-10-15

    Linagliptin is a dipeptidyl peptidase (DPP)-IV inhibitor approved for the treatment of type 2 diabetes. DPP-IV inhibitors are considered weight neutral, suggesting that elevation of endogenous incretin levels is not sufficient to promote weight loss per se. Here we evaluated the effect of linagliptin in combination with subcutaneous treatment of GLP-1(7-36) on body weight regulation in diet-induced obese (DIO) rats. Linagliptin administered perorally (1.5mg/kg, b.i.d.), but not subcutaneously (0.5mg/kg, b.i.d.), evoked a very modest body weight loss (2.2%) after 28 days of treatment. GLP-1 (0.5mg/kg, s.c.) treatment alone induced a body weight loss of 4.1%. In contrast, combined linagliptin (1.5mg/kg, p.o., or 0.5mg/kg, s.c.) and GLP-1 (0.5mg/kg) treatment evoked a marked anorectic response with both routes of linagliptin administration being equally effective on final body weight loss (7.5-8.0%). In comparison, liraglutide monotherapy (0.2mg/kg, s.c., b.i.d.) reduced body weight by 10.1%. Interestingly, the weight lowering effect of combined linagliptin and GLP-1 treatment was associated with a marked increase in chow preference, being more pronounced as compared to liraglutide treatment. In addition, linagliptin and GLP-1 co-treatment, but not liraglutide, specifically increased prepro-dynorphin mRNA levels in the caudate-putamen, an effect not obtained with administration of the compounds individually. In conclusion, co-treatment with linagliptin and GLP-1 synergistically reduces body weight in obese rats. The anti-obesity effect was caused by appetite suppression with a concomitant change in diet preference, which may potentially be associated with increased dynorphin activity in forebrain regions involved in reward anticipation and habit learning.

  14. Role of NOC/oFQ in impaired opioid-induced pial artery dilation following brain injury.

    Science.gov (United States)

    Armstead, W M

    2000-06-30

    Previous studies in piglets show that opioid-induced pial artery dilation was impaired following fluid percussion brain injury (FPI). This study was designed to determine the role of the newly described opioid nociceptin orphanin FQ (NOC/oFQ) in such impaired dilation to other opioids after FPI. CSF NOC/oFQ concentration was elevated from 70+/-6 to 444+/-56 pg/ml ( approximately 10(-10) M) within 1 h of FPI. Coadministration of NOC/oFQ (10(-10) M) with methionine enkephalin (10(-10), 10(-8), 10(-6) M) attenuated pial dilation induced by this opioid (7+/-1, 13+/-2, and 19+/-2 vs. 2+/-1, 6+/-1, and 7+/-2%) under non-brain injury conditions. Similar inhibition by NOC/oFQ was observed for leucine enkephalin and dynorphin. Methionine enkephalin (10(-10), 10(-8), 10(-6) M)-induced pial artery dilation was also inhibited within 1 h of FPI, but such responses were partially restored in animals pretreated with the NOC/oFQ receptor antagonist [F/G] NOC/oFQ (1-13) NH(2) (10(-6) M) (8+/-1, 14+/-1, and 21+/-1 vs. 1+/-1, 3+/-1, and 4+/-1 vs. 7+/-1, 11+/-1, and 17+/-1% for sham control, FPI and FPI pretreated with the NOC/oFQ receptor antagonist). Leucine enkephalin and dynorphin-induced pial artery dilation were similarly altered by FPI and partially restored by [F/G] NOC/oFQ (1-13) NH(2). These data indicate that the NOC/oFQ released by FPI contributes to impaired dilation to other opioids observed following this insult.

  15. The mystery of puberty initiation: genetics and epigenetics of idiopathic central precocious puberty (ICPP).

    Science.gov (United States)

    Leka-Emiri, Sofia; Chrousos, George P; Kanaka-Gantenbein, Christina

    2017-08-01

    Puberty is a major developmental stage. Damaging mutations, considered as "mistakes of nature", have contributed to the unraveling of the networks implicated in the normal initiation of puberty. Genes involved in the abnormal hypothalamic-pituitary-gonadal (HPG) axis development, in the normosmic idiopathic hypogonadotropic hypogonadism (nIHH), in the X-linked or autosomal forms of Kallmann syndrome and in precocious puberty have been identified (GNRH1, GNRHR, KISS1, GPR54, FGFR1, FGF8, PROK2, PROKR2, TAC3, TACR3, KAL1, PROK2, PROKR2, CHD7, LEP, LEPR, PC1, DAX1, SF-1, HESX-1, LHX3, PROP-1). Most of them were found to play critical roles in HPG axis development and regulation, the embryonic GnRH neuronal migration and secretion, the regulation and action of the hypothalamic GnRH. However, the specific neural and molecular mechanisms triggering GnRH secretion remain one of the scientific enigmas. Although GnRH neurons are probably capable of autonomously generating oscillations, many gonadal steroid-dependent and -independent mechanisms have also been proposed. It is now well proven that the secretion of GnRH is regulated by kisspeptin as well as by permissive or opposing signals mediated by neurokinin B and dynorphin. These three supra-GnRH regulators compose the kisspeptin-neurokinin B-dynorphin neuronal (KNDy) system, a key player in pubertal onset and progression. Moreover, an ongoing increasing number of inhibitory, stimulatory and permissive networks acting upstream on GnRH neurons, such as GABA, NPY, LIN28B, MKRN3 and others integrate diverse hormonal and peripheral signals and have been proposed as the "gate-keepers" of puberty, while epigenetic modifications play also an important role in puberty initiation.

  16. Effects of rearing conditions on behaviour and endogenous opioids in rats with alcohol access during adolescence.

    Directory of Open Access Journals (Sweden)

    Sara Palm

    Full Text Available Causal links between early-life stress, genes and later psychiatric diagnoses are not possible to fully address in human studies. Animal models therefore provide an important complement in which conditions can be well controlled and are here used to study and distinguish effects of early-life stress and alcohol exposure. The objective of this study was to investigate the impact of rearing conditions on behaviour in young rats and if these changes could be followed over time and to examine interaction effects between early-life environment and adolescent alcohol drinking on behaviour and immunoreactive levels of the opioid peptides dynorphin B, met-enkephalin-Arg(6Phe(7 and beta-endorphin. We employed a rodent model, maternal separation, to study the impact of rearing conditions on behaviour, voluntary alcohol consumption and alcohol-induced effects. The consequences of short, 15 min (MS 15, and long, 360 min (MS 360, maternal separation in combination with adolescent voluntary alcohol consumption on behaviour and peptides were examined. A difference in the development of risk taking behaviour was found between the MS15 and MS360 while the development of general activity was found to differ between intake groups. Beta-endorphin levels in the pituitary and the periaqueductal gray area was found to be higher in the MS15 than the MS360. Adolescent drinking resulted in higher dynorphin B levels in the hippocampus and higher met-enkephalin-Arg(6Phe(7 levels in the amygdala. Amygdala and hippocampus are involved in addiction processes and changes in these brain areas after adolescent alcohol drinking may have consequences for cognitive function and drug consumption behaviour in adulthood. The study shows that individual behavioural profiling over time in combination with neurobiological investigations provides means for studies of causality between early-life stress, behaviour and vulnerability to psychiatric disorders.

  17. Effects of Rearing Conditions on Behaviour and Endogenous Opioids in Rats with Alcohol Access during Adolescence

    Science.gov (United States)

    Roman, Erika; Nylander, Ingrid

    2013-01-01

    Causal links between early-life stress, genes and later psychiatric diagnoses are not possible to fully address in human studies. Animal models therefore provide an important complement in which conditions can be well controlled and are here used to study and distinguish effects of early-life stress and alcohol exposure. The objective of this study was to investigate the impact of rearing conditions on behaviour in young rats and if these changes could be followed over time and to examine interaction effects between early-life environment and adolescent alcohol drinking on behaviour and immunoreactive levels of the opioid peptides dynorphin B, met-enkephalin-Arg6Phe7 and beta-endorphin. We employed a rodent model, maternal separation, to study the impact of rearing conditions on behaviour, voluntary alcohol consumption and alcohol-induced effects. The consequences of short, 15 min (MS 15), and long, 360 min (MS 360), maternal separation in combination with adolescent voluntary alcohol consumption on behaviour and peptides were examined. A difference in the development of risk taking behaviour was found between the MS15 and MS360 while the development of general activity was found to differ between intake groups. Beta-endorphin levels in the pituitary and the periaqueductal gray area was found to be higher in the MS15 than the MS360. Adolescent drinking resulted in higher dynorphin B levels in the hippocampus and higher met-enkephalin-Arg6Phe7 levels in the amygdala. Amygdala and hippocampus are involved in addiction processes and changes in these brain areas after adolescent alcohol drinking may have consequences for cognitive function and drug consumption behaviour in adulthood. The study shows that individual behavioural profiling over time in combination with neurobiological investigations provides means for studies of causality between early-life stress, behaviour and vulnerability to psychiatric disorders. PMID:24098535

  18. Chromatin alterations in response to forced swimming underlie increased prodynorphin transcription.

    Science.gov (United States)

    Reed, B; Fang, N; Mayer-Blackwell, B; Chen, S; Yuferov, V; Zhou, Y; Kreek, M J

    2012-09-18

    Antagonism of the kappa opioid receptor (KOR) has been reported to have anti-depressant-like properties. The dynorphin/KOR system is a crucial neurochemical substrate underlying the pathologies of addictive diseases, affective disorders and other disease states. However, the molecular underpinnings and neuroanatomical localization of the dysregulation of this system have not yet been fully elucidated. Utilizing the Porsolt Forced Swim Test (FST), an acute stressor commonly used as in rodent models measuring antidepressant efficacy, male Sprague-Dawley rats were subject to forced swimming for 15 min, treated 1h with vehicle or norbinaltorphimine (nor-BNI) (5 or 10mg/kg), and then 1 day later subject to FST for 5 min. In accordance with previous findings, nor-BNI dose dependently increased climbing time and reduced immobility. In comparison to control animals not exposed to FST, we observed a significant elevation in prodynorphin (pDyn) mRNA levels following FST using real-time optical polymerase chain reaction (PCR) in the caudate putamen but not in the nucleus accumbens, hypothalamus, amygdala, frontal cortex, or hippocampus. nor-BNI treatment did not affect pDyn mRNA levels in comparison to animals that received vehicle. The corresponding brain regions from the opposite hemisphere were analyzed for underlying chromatin modifications of the prodynorphin gene promoter region using chromatin immunoprecipitation with antibodies against specifically methylated histones H3K27Me2, H3K27Me3, H3K4Me2, and H3K4Me3, as well as CREB-1 and MeCP2. Significant alterations in proteins bound to DNA in the Cre-3, Cre-4, and Sp1 regions of the prodynorphin promoter were found in the caudate putamen of the FST saline-treated animals compared to control animals, with no changes observed in the hippocampus. Epigenetic changes resulting in elevated dynorphin levels specifically in the caudate putamen may in part underlie the enduring effects of stress.

  19. Chromatin Alterations in Response to Forced Swimming Underlie Increased Prodynorphin Transcription

    Science.gov (United States)

    Reed, Brian; Fang, Nancy; Blackwell-Mayer, Brandan; Chen, Shasha; Yuferov, Vadim; Zhou, Yan; Kreek, Mary Jeanne

    2012-01-01

    Antagonism of the kappa opioid receptor (KOR) has been reported to have anti-depressant-like properties. The dynorphin/KOR system is a crucial neurochemical substrate underlying the pathologies of addictive diseases, affective disorders and other disease states. However, the molecular underpinnings and neuroanatomical localization of the dysregulation of this system have not yet been fully elucidated. Utilizing the Porsolt Forced Swim Test (FST), an acute stressor commonly used as in rodent models measuring antidepressant efficacy, male Sprague-Dawley rats were subject to forced swimming for 15 minutes, treated 1 hour with vehicle or nor-BNI (5 or 10 mg/kg), and then 1 day later subject to FST for five minutes. In accordance with previous findings, nor-BNI dose dependently increased climbing time and reduced immobility. In comparison to control animals not exposed to FST, we observed a significant elevation in prodynorphin (pDyn) mRNA levels following FST using real-time optical PCR in the caudate putamen but not in the nucleus accumbens, hypothalamus, amygdala, frontal cortex, or hippocampus. Nor-BNI treatment did not affect pDyn mRNA levels in comparison to animals that received vehicle. The corresponding brain regions from the opposite hemisphere were analyzed for underlying chromatin modifications of the prodynorphin gene promoter region using chromatin immunoprecipitation with antibodies against specifically methylated histones H3K27Me2, H3K27Me3, H3K4Me2, and H3K4Me3, as well as CREB-1 and MeCP2. Significant alterations in proteins bound to DNA in the Cre-3, Cre-4, and Sp1 regions of the prodynorphin promoter were found in the caudate putamen of the FST saline-treated animals compared to control animals, with no changes observed in the hippocampus. Epigenetic changes resulting in elevated dynorphin levels specifically in the caudate putamen may in part underlie the enduring effects of stress. PMID:22698692

  20. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Johannes Burtscher

    2017-08-01

    Full Text Available Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers, opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human

  1. The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential.

    Science.gov (United States)

    Burtscher, Johannes; Schwarzer, Christoph

    2017-01-01

    Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients often develop cognitive deficits and emotional blunting along the progression of the disease. The high incidence of resistance to antiepileptic drugs and a frequent lack of admissibility to surgery poses an unmet medical challenge. In the urgent quest of novel treatment strategies, neuropeptides are interesting candidates, however, their therapeutic potential has not yet been exploited. This review focuses on the functional role of the endogenous opioid system with respect to temporal lobe epilepsy, specifically in the hippocampus. The role of dynorphins and kappa opioid receptors (KOPr) as modulators of neuronal excitability is well understood: both the reduced release of glutamate as well of postsynaptic hyperpolarization were shown in glutamatergic neurons. In line with this, low levels of dynorphin in humans and mice increase the risk of epilepsy development. The role of enkephalins is not understood so well. On one hand, some agonists of the delta opioid receptors (DOPr) display pro-convulsant properties probably through inhibition of GABAergic interneurons. On the other hand, enkephalins play a neuro-protective role under hypoxic or anoxic conditions, most probably through positive effects on mitochondrial function. Despite the supposed absence of endorphins in the hippocampus, exogenous activation of the mu opioid receptors (MOPr) induces pro-convulsant effects. Recently-expanded knowledge of the complex ways opioid receptors ligands elicit their effects (including biased agonism, mixed binding, and opioid receptor heteromers), opens up exciting new therapeutic potentials with regards to seizures and epilepsy. Potential adverse side effects of KOPr agonists may be minimized through functional selectivity. Preclinical data suggest a high potential of such compounds to control seizures, with a strong predictive validity toward human patients. The

  2. The effect of remifentanil-induced hyperalgesia by different dose of μ-receptor antagonist CTOP%不同剂量μ受体拮抗剂CTOP对瑞芬太尼诱发痛觉过敏的影响

    Institute of Scientific and Technical Information of China (English)

    师瑾; 薛朝霞; 胡古月; 吕晓敏; 张鹏

    2013-01-01

    目的 观察不同剂量的CTOP对瑞芬太尼引起的切口痛大鼠痛觉过敏的影响.方法 采用完全随机法将30只SD雄性大鼠随机为5组(每组6只):正常组(A组);切口痛组(B组);切口痛+瑞芬太尼组(C组);切口痛+瑞芬太尼+CTOP低剂量组(D组);切口痛+瑞芬太尼+CTOP高剂量组(E组).测定各组大鼠基础状态下(T0)的热缩足反射潜伏期(pawwithdrawal thermal latency,PWTL)后,以5%水合氯醛350 mg/kg大鼠腹腔麻醉,A、B、C组尾静脉注射生理盐水0.4 ml,D、E组分别注射CTOP 0.5 μg/kg、0.5 mg/kg,溶于0.4 ml生理盐水内.给药结束10 min后,除A组外全部于右后爪做切口,同时由尾静脉以0.8 ml/h的速度40 μg/kg的剂量分别给A、B组泵生理盐水,C、D、E组泵瑞芬太尼,各30 min.术后2(T1)、24 h(T2)测定PWTL,处死大鼠取脊髓,用酶联免疫法(ELISA)测定强啡肽表达. 结果 T1、T2时间点C组PWTL结果[(10.2±3.0)、(6.2±2.6)s]与A组[(13.3±2.4)、(13.4±2.2)s]、B组[(13.5±2.7)、(11.5±4.1)s]比较,差异有统计学意义(P<0.05),PWTL时间缩短;且C组强啡肽结果(172±17) ng/L与A、B组(78±9)、(120±10) ng/L比较,差异有统计学意义(P<0.05),强啡肽表达增多;D、E两组T2的PWTL值和强啡肽结果与C组比较,差异均有统计学意义,PWTL时间延长,强啡肽表达减少;D、E两组强啡肽表达比较,差异有统计学意义(P<0.05). 结论 在大鼠切口痛模型中,瑞芬太尼导致了切口周围组织痛觉过敏;应用μ受体拮抗剂可以缓解痛觉过敏,低剂量的效果更加显著.%Objective To investigate the effect of different dose of μ-receptor antagonist CTOP on remifentanil-induced hyperalgesia in incisional pain rat model by observing rats' paw withdrawal thermal latency (PWTL)and the dynorphin expression in spinal cord.Methods Thirty male SD rats were randomly divided into 5 groups (n=6):control group (A),incisional pain group (B),incisional pain +remifentanil group (C),incisional pain

  3. Neuropeptide Y (NPY) in cerebrospinal fluid from patients with Huntington's Disease: increased NPY levels and differential degradation of the NPY1-30 fragment.

    Science.gov (United States)

    Wagner, Leona; Björkqvist, Maria; Lundh, Sofia Hult; Wolf, Raik; Börgel, Arne; Schlenzig, Dagmar; Ludwig, Hans-Henning; Rahfeld, Jens-Ulrich; Leavitt, Blair; Demuth, Hans-Ulrich; Petersén, Åsa; von Hörsten, Stephan

    2016-06-01

    Huntington's disease (HD) is an inherited and fatal polyglutamine neurodegenerative disorder caused by an expansion of the CAG triplet repeat coding region within the HD gene. Progressive dysfunction and loss of striatal GABAergic medium spiny neurons (MSNs) may account for some of the characteristic symptoms in HD patients. Interestingly, in HD, MSNs expressing neuropeptide Y (NPY) are spared and their numbers is even up-regulated in HD patients. Consistent with this, we report here on increased immuno-linked NPY (IL-NPY) levels in human cerebrospinal fluid (hCSF) from HD patients (Control n = 10; early HD n = 9; mid HD n = 11). As this antibody-based detection of NPY may provide false positive differences as a result of the antibody-based detections of only fragments of NPY, the initial finding was validated by investigating the proteolytic stability of NPY in hCSF using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and selective inhibitors. A comparison between resulting NPY-fragments and detailed epitope analysis verified significant differences in IL-NPY1-36/3-36 and NPY1-30 levels between HD patients and control subjects with no significant differences between early vs mid HD cases. Ex vivo degradomics analysis demonstrated that NPY is initially degraded to NPY1-30 by cathepsin D in both HD patients and control subjects. Yet, NPY1-30 is then further differentially hydrolyzed by thimet oligopeptidase (TOP) in HD patients and by neprilysin (NEP) in control subjects. Furthermore, altered hCSF TOP-inhibitor Dynorphin A1-13 (Dyn-A1-13 ) and TOP-substrate Dyn-A1-8 levels indicate an impaired Dyn-A-TOP network in HD patients. Thus, we conclude that elevated IL-NPY-levels in conjunction with TOP-/NEP-activity/protein as well as Dyn-A1-13 -peptide levels may serve as a potential biomarker in human CSF of HD. Huntington's disease (HD) patients' cerebrospinal fluid (CSF) exhibits higher neuropeptide Y (NPY) levels. Further

  4. Enhanced Neurohypophyseal Vasopressin Release is Associated with Increased Opioid Inhibition of Oxytocin Release.

    Science.gov (United States)

    Heijning, B J; Herik, I K; Rots, N Y; Greidanus, T B

    1991-02-01

    Abstract We tested the hypothesis of a cross-inhibition of oxytocin (OT) release by endogenous opioid peptides co-released with vasopressin (VP). This opioid cross-inhibition resulted in a selective block of OT release and hence in preferential release of VP. The effects of the opiate receptor antagonist naloxone were tested on neurohypophyseal VP release during dehydration, ethanol administration and sulphated cholecystokinin octapeptide (CCK-8S) application, assuming that the inhibition of pituitary OT release by endogenous opioids increases as neurohypophyseal VP output increases. A high VP output was found to coincide with increased inhibition of OT release: Subcutaneous injection of graded doses of naloxone (30 min prior to decapitation), augmented OT plasma levels significantly more in 24 h water-deprived male rats than in normally hydrated rats. Naloxone had no effect on VP release. Ethanol (10% in saline) administered intragastrically 50 min prior to decapitation and 20 min before subcutaneous naloxone (5 mg/kg) resulted in the inhibition of VP output. The ethanol treatment resulted in a rise in plasma OT levels that was additional to the effect of naloxone. These features were present in normally hydrated as well as in 24 h water-deprived animals, but were more pronounced in the latter group. Peripheral CCK-8S administration induces an abrupt and selective secretion of OT. Blocking the opioid inhibition of OT release with naloxone resulted in a significant rise of OT compared to that with CCK-8S alone. The magnitude of the opioid inhibition coincided with the activity of the VP system, and a higher dose of naloxone was needed to potentiate the CCK-8S effect on OT release in the water-deprived group than in euhydrated rats. No effect of CCK-8S and/or naloxone was found on VP plasma levels. The data indicate that opioid peptides co-released with VP (like dynorphin) may be responsible for cross-inhibition of OT release during dehydration. This suggests that

  5. Addiction as a stress surfeit disorder.

    Science.gov (United States)

    Koob, George F; Buck, Cara L; Cohen, Ami; Edwards, Scott; Park, Paula E; Schlosburg, Joel E; Schmeichel, Brooke; Vendruscolo, Leandro F; Wade, Carrie L; Whitfield, Timothy W; George, Olivier

    2014-01-01

    Drug addiction has been conceptualized as a chronically relapsing disorder of compulsive drug seeking and taking that progresses through three stages: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Drug addiction impacts multiple motivational mechanisms and can be conceptualized as a disorder that progresses from positive reinforcement (binge/intoxication stage) to negative reinforcement (withdrawal/negative affect stage). The construct of negative reinforcement is defined as drug taking that alleviates a negative emotional state. Our hypothesis is that the negative emotional state that drives such negative reinforcement is derived from dysregulation of key neurochemical elements involved in the brain stress systems within the frontal cortex, ventral striatum, and extended amygdala. Specific neurochemical elements in these structures include not only recruitment of the classic stress axis mediated by corticotropin-releasing factor (CRF) in the extended amygdala as previously hypothesized but also recruitment of dynorphin-κ opioid aversive systems in the ventral striatum and extended amygdala. Additionally, we hypothesized that these brain stress systems may be engaged in the frontal cortex early in the addiction process. Excessive drug taking engages activation of CRF not only in the extended amygdala, accompanied by anxiety-like states, but also in the medial prefrontal cortex, accompanied by deficits in executive function that may facilitate the transition to compulsive-like responding. Excessive activation of the nucleus accumbens via the release of mesocorticolimbic dopamine or activation of opioid receptors has long been hypothesized to subsequently activate the dynorphin-κ opioid system, which in turn can decrease dopaminergic activity in the mesocorticolimbic dopamine system. Blockade of the κ opioid system can also block anxiety-like and reward deficits associated with withdrawal from drugs of abuse and block the

  6. The kisspeptin-GnRH pathway in human reproductive health and disease.

    Science.gov (United States)

    Skorupskaite, Karolina; George, Jyothis T; Anderson, Richard A

    2014-01-01

    The discovery of kisspeptin as key central regulator of GnRH secretion has led to a new level of understanding of the neuroendocrine regulation of human reproduction. The related discovery of the kisspeptin-neurokinin B-dynorphin (KNDy) pathway in the last decade has further strengthened our understanding of the modulation of GnRH secretion by endocrine, metabolic and environmental inputs. In this review, we summarize current understanding of the physiological roles of these novel neuropeptides, and discuss the clinical relevance of these discoveries and their potential translational applications. A systematic literature search was performed using PUBMED for all English language articles up to January 2014. In addition, the reference lists of all relevant original research articles and reviews were examined. This review focuses mainly on published human studies but also draws on relevant animal data. Kisspeptin is a principal regulator of the secretion of gonadotrophins, and through this key role it is critical for the onset of puberty, the regulation of sex steroid-mediated feedback and the control of adult fertility. Although there is some sexual dimorphism, both neuroanatomically and functionally, these functions are apparent in both men and women. Kisspeptin acts upstream of GnRH and, following paracrine stimulatory and inhibitory inputs from neurokinin B and dynorphin (KNDy neuropeptides), signals directly to GnRH neurones to control pulsatile GnRH release. When administered to humans in different isoforms, routes and doses, kisspeptin robustly stimulates LH secretion and LH pulse frequency. Manipulation of the KNDy system is currently the focus of translational research with the possibility of future clinical application to regulate LH pulsatility, increasing gonadal sex steroid secretion in reproductive disorders characterized by decreased LH pulsatility, including hypothalamic amenorrhoea and hypogonadotropic hypogonadism. Conversely there may be scope to

  7. CRF2 receptor-deficiency eliminates opiate withdrawal distress without impairing stress coping.

    Science.gov (United States)

    Ingallinesi, M; Rouibi, K; Le Moine, C; Papaleo, F; Contarino, A

    2012-12-01

    The opiate withdrawal syndrome is a severe stressor that powerfully triggers addictive drug intake. However, no treatment yet exists that effectively relieves opiate withdrawal distress and spares stress-coping abilities. The corticotropin-releasing factor (CRF) system mediates the stress response, but its role in opiate withdrawal distress and bodily strategies aimed to cope with is unknown. CRF-like signaling is transmitted by two receptor pathways, termed CRF(1) and CRF(2). Here, we report that CRF(2) receptor-deficient (CRF(2)(-/-)) mice lack the dysphoria-like and the anhedonia-like states of opiate withdrawal. Moreover, in CRF(2)(-/-) mice opiate withdrawal does not increase the activity of brain dynorphin, CRF and periaqueductal gray circuitry, which are major substrates of opiate withdrawal distress. Nevertheless, CRF(2) receptor-deficiency does not impair brain, neuroendocrine and autonomic stress-coping responses to opiate withdrawal. The present findings point to the CRF(2) receptor pathway as a unique target to relieve opiate withdrawal distress without impairing stress-coping abilities.

  8. The Role of Acupuncture in Pain Management.

    Science.gov (United States)

    Patil, Shilpadevi; Sen, Sudipta; Bral, Matthew; Reddy, Shanthi; Bradley, Kevin K; Cornett, Elyse M; Fox, Charles J; Kaye, Alan David

    2016-04-01

    Acupuncture is a traditional Chinese practice of medicine that has gained popularity in Western culture and around the world. It involves the insertion of thin needles into the skin to stimulate nerves, muscles, and connective tissues throughout the body with the goal of alleviating pain, tension, and stress. More broadly, acupuncture is actually a family of different procedures. Conceptually, it is believed to stimulate the body's meridians, or energy-carrying channels, in an attempt to correct imbalances and to restore health. These benefits are thought to be derived from the proximity of acupoints with nerves through intracellular calcium ions. This lesson outlines a brief history of acupuncture and how it may be used to treat various types of physical and emotional pain and specific conditions, including overactive bladder and psoriasis. Acupuncture has been demonstrated to enhance endogenous opiates, such as dynorphin, endorphin, encephalin, and release corticosteroids, relieving pain and enhancing the healing process. There are associated risks; however, serious side effects are rare. When compared to traditional methods of pain management, more studies are warranted in order to establish the efficacy of acupuncture and its place in pain management.

  9. The use of transcutaneous electrical nerve stimulation (tens in the treatment of the spasticity - a review

    Directory of Open Access Journals (Sweden)

    Dahyan Wagner da Silva Silveira

    2008-01-01

    Full Text Available This study it has as objective to argue the job of TENS in the spasticity, observing the main parameters, form of application and the mechanism for which TENS it acts in the spasticity. One is about a bibliographical revision based in the literature specialized selected scientific articles through search in the data base of scielo and of bireme, from the sources Medline and Lilacs. The studies found on the job of TENS in the spasticity, had pointed mainly that this chain reduces the spasticity significantly, in lower degrees. The stimulation electrical parameters had disclosed that TENS it (about 100Hz of raised frequency provides one better effect in the reduction of the spasticity. The types of TENS more used had been the conventional and the soon-intense one, however some studies had not presented the used duration of pulse, limit the determination of one better modality of TENS. Few studies had explained the mechanism of performance of the current related one. The ones that had made it, had pointed the release of opioid endogenous (Dynorphins for the central nervous system as main mechanism of performance, however this contrasts with the neurophysiologic bases of the high-frequency stimulation, that demonstrated better resulted in the joined studies. Still it is necessary more studies on the job of this modality of stimulation electrical in the spasticity, since important parameters as duration of pulse, time of application, numbers of attendance and performance mechanism remains without scientific evidence.

  10. Haplosufficient genomic androgen receptor signaling is adequate to protect female mice from induction of polycystic ovary syndrome features by prenatal hyperandrogenization.

    Science.gov (United States)

    Caldwell, A S L; Eid, S; Kay, C R; Jimenez, M; McMahon, A C; Desai, R; Allan, C M; Smith, J T; Handelsman, D J; Walters, Kirsty A

    2015-04-01

    Polycystic ovary syndrome (PCOS) is associated with reproductive, endocrine, and metabolic abnormalities. Because hyperandrogenism is the most consistent PCOS feature, we used wild-type (WT) and androgen receptor (AR) knockout (ARKO) mice, together with a mouse model of PCOS, to investigate the contribution of genomic AR-mediated actions in the development of PCOS traits. PCOS features were induced by prenatal exposure to dihydrotestosterone (250 μg) or oil vehicle (control) on days 16-18 of gestation in WT, heterozygote, and homozygote ARKO mice. DHT treatment of WT mice induced ovarian cysts (100% vs 0%), disrupted estrous cycles (42% vs 100% cycling), and led to fewer corpora lutea (5.0±0.4 vs 9.8±1.8). However, diestrus serum LH and FSH, and estradiol-induced-negative feedback as well as hypothalamic expression of kisspeptin, neurokinin B, and dynorphin, were unaffected by DHT treatment in WT mice. DHT-treated WT mice exhibited a more than 48% increase in adipocyte area but without changes in body fat. In contrast, heterozygous and homozygous ARKO mice exposed to DHT maintained comparable ovarian (histo)morphology, estrous cycling, and corpora lutea numbers, without any increase in adipocyte size. These findings provide strong evidence that genomic AR signaling is an important mediator in the development of these PCOS traits with a dose dependency that allows even AR haplosufficiency to prevent induction by prenatal androgenization of PCOS features in adult life.

  11. Neurokinin B and reproductive functions: "KNDy neuron" model in mammals and the emerging story in fish.

    Science.gov (United States)

    Hu, Guangfu; Lin, Chengyuan; He, Mulan; Wong, Anderson O L

    2014-11-01

    In mammals, neurokinin B (NKB), the gene product of the tachykinin family member TAC3, is known to be a key regulator for episodic release of luteinizing hormone (LH). Its regulatory actions are mediated by a subpopulation of kisspeptin neurons within the arcuate nucleus with co-expression of NKB and dynorphin A (commonly called the "KNDy neurons"). By forming an "autosynaptic feedback loop" within the hypothalamus, the KNDy neurons can modulate gonadotropin-releasing hormone (GnRH) pulsatility and subsequent LH release in the pituitary. NKB regulation of LH secretion has been recently demonstrated in zebrafish, suggesting that the reproductive functions of NKB may be conserved from fish to mammals. Interestingly, the TAC3 genes in fish not only encode the mature peptide of NKB but also a novel tachykinin-like peptide, namely NKB-related peptide (or neurokinin F). Recent studies in zebrafish also reveal that the neuroanatomy of TAC3/kisspeptin system within the fish brain is quite different from that of mammals. In this article, the current ideas of "KNDy neuron" model for GnRH regulation and steroid feedback, other reproductive functions of NKB including its local actions in the gonad and placenta, the revised model of tachykinin evolution from invertebrates to vertebrates, as well as the emerging story of the two TAC3 gene products in fish, NKB and NKB-related peptide, will be reviewed with stress on the areas with interesting questions for future investigations.

  12. 阿片样肽类的微离子透入对猫小脑浦肯野氏细胞的作用%Effects of microiontophoretically-applied opioid peptides on Purkinje cells in the cat cerebellum

    Institute of Scientific and Technical Information of China (English)

    Kyoji TAGUCHI; Kenji ABE; Touichiro CHYUMA; Masatoshi KATO; Toshiro SHIGENAGA; Kazuki KUSHIDA; Toshiyuki CHIKUMA

    2000-01-01

    AIM: The purpose of the present study was to examine the effects of microiontophoretically-applied opioid peptides on Purkinje cell of the cerebellum. METHODS:The effects of microiontophoretically-applied morphine,leucine-enkephalin ( Leu-Enk ), methionine-enkephalin (Met-Enk), and dynorphin 1- 13 (Dyn) on the spontaneous discharge of Purkinje cells in the cerebellum of the anesthetized cat were examined. RESULTS: Microiontophoretic applications of Leu-Enk and morphine produced inhibitory and excitatory responses, respectively in Purkinje cells. Application of both morphine and Leu-Enk induced dose-dependent responses. The excitatory responses were antagonized by naloxone, whereas the inhibitory responses were not. Bicuculline, a GABA-Aantagonist, completely abolished both the Leu-Enk-and morphine-induced-inhibitory responses. Iontophoretic application of Met-Enk and dyn produced inhibitory responses only. Met-enk- and dyn-induced inhibition was antagonized by naloxone. CONCLUSION: In Purkinje cell activity, microiontophoretically applied Leu-Enk-and morphine-induced excitation is connected with opiate receptors, whereas inhibition is related to the GABA receptor. However, Met-Enk and dyn produced only inhibitory effects via an opiate receptor in the cerebellum of cats.

  13. Real Time Imaging of Biomarkers in the Parkinson's Brain Using Mini-Implantable Biosensors. II. Pharmaceutical Therapy with Bromocriptine

    Directory of Open Access Journals (Sweden)

    Patricia A. Broderick

    2009-12-01

    Full Text Available We used Neuromolecular Imaging (NMI and trademarked BRODERICK PROBE® mini-implantable biosensors, to selectively and separately detect neurotransmitters in vivo, on line, within seconds in the dorsal striatal brain of the Parkinson’s Disease (PD animal model. We directly compared our results derived from PD to the normal striatal brain of the non-Parkinson’s Disease (non-PD animal. This advanced biotechnology enabled the imaging of dopamine (DA, serotonin (5-HT, homovanillic acid (HVA a metabolite of DA, L-tryptophan (L-TP a precursor to 5-HT and peptides, dynorphin A 1-17 (Dyn A and somatostatin (somatostatin releasing inhibitory factor (SRIF. Each neurotransmitter and neurochemical was imaged at a signature electroactive oxidation/half-wave potential in dorsal striatum of the PD as compared with the non-PD animal. Both endogenous and bromocriptine-treated neurochemical profiles in PD and non-PD were imaged using the same experimental paradigm and detection sensitivities. Results showed that we have found significant neurotransmitter peptide biomarkers in the dorsal striatal brain of endogenous and bromocriptine-treated PD animals. The peptide biomarkers were not imaged in dorsal striatal brain of non-PD animals, either endogenously or bromocriptine-treated. These findings provide new pharmacotherapeutic strategies for PD patients. Thus, our findings are highly applicable to the clinical treatment of PD.

  14. Histopathological, biomechanical, and behavioral pain findings of Achilles tendinopathy using an animal model of overuse injury

    Science.gov (United States)

    Jafari, Leila; Vachon, Pascal; Beaudry, Francis; Langelier, Eve

    2015-01-01

    Abstract Animal models of forced running are used to study overuse tendinopathy, a common health problem for which clear evidence for effective and accessible treatments is still lacking. In these models, pain evaluation is necessary to better understand the disease, help design and evaluate therapies, and ensure humane treatment of the animals. Therefore, the main objective of this study was to evaluate pain and pathologic findings in an animal model of moderate Achilles tendinopathy induced by treadmill running. Air puffs, instead of electrical shocks, were used to stimulate running so that pain associated with stimulation would be avoided. Pressure pain sensitivity was evaluated in vivo using a new instrumented plier, whereas spinal cord peptides were analyzed ex vivo with high‐performance liquid chromatography tandem mass spectrometry. Tendon histologic slides were semiquantitatively evaluated, using the Bonar score technique and biomechanical properties, using the traction test. After 8 weeks of treadmill running (2 weeks for adaptation and 6 weeks for the lesion protocol), the protocol was stopped because the air puffs became ineffective to stimulate running. We, nevertheless, observed some histologic changes characteristic of overuse tendinopathy as well as decreased mechanical properties, increased Substance P and dynorphin A peptides but without pressure pain sensitivity. These results suggest that air‐puffs stimulation is sufficient to induce an early stage tendinopathy to study new therapeutic drugs without inducing unnecessary pain. They also indicate that pain‐associated peptides could be related with movement evoked pain and with the sharp breakdown of the running performance. PMID:25602018

  15. Neuropeptides as therapeutic targets to combat stress-associated behavioral and neuroendocrinological effects.

    Science.gov (United States)

    Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2014-03-01

    Stress has become an integral part of human life and organisms are being constantly subjected to stress and the ability to cope with such stress is a crucial determinant of health and disease. Neuropeptides (bioactive peptides) play a crucial role in mediating different effects of acute and chronic stress. Some of these neuropeptides including oxytocin, urocortins, neuropeptide Y (NPY), neuropeptide S, cocaine and amphetamine regulated transcript, endorphins, enkephalins, ghrelin and thyrotropin-releasing hormone primarily attenuate stress and act as anxiolytic. On the other hand, neuropeptides including corticotropin releasing hormone, vasopressin, dynorphin, angiotensin, nesfatin-1, orexin and cholecystokinin primarily tend to promote stress related anxiety behavior. However, these neuropeptide tend to produce different actions depending on the type of receptors, the nature and intensity of the stressor. For example, NPY may exhibit anxiolytic effects by activating NPY1 and Y5 receptors, while pro-depressive effects are produced through NPY2 and Y4 receptors. Galanin may produce 'prodepressive' effects by activating its Gal 1 receptors and exert 'antidepressant' effects through Gal 2 receptors. The present review describes different neuropeptides as therapeutic targets to attenuate stress-induced behavioral and neuroendocrinological effects.

  16. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human

    Directory of Open Access Journals (Sweden)

    Katalin eSkrapits

    2015-02-01

    Full Text Available Hypothalamic peptidergic neurons using kisspeptin (KP and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory species. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine. These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

  17. Rapid Preconcentration for Liquid Chromatography-Mass Spectrometry Assay of Trace Level Neuropeptides

    Science.gov (United States)

    Zhou, Ying; Mabrouk, Omar S.; Kennedy, Robert T.

    2013-11-01

    Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MSn) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MSn based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ˜30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MSn measurement of neuropeptides in vivo more practical.

  18. Neuropeptides as targets for the development of anticonvulsant drugs.

    Science.gov (United States)

    Clynen, Elke; Swijsen, Ann; Raijmakers, Marjolein; Hoogland, Govert; Rigo, Jean-Michel

    2014-10-01

    Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.

  19. Neuropeptides in epilepsy.

    Science.gov (United States)

    Kovac, Stjepana; Walker, Matthew C

    2013-12-01

    Neuropeptides play an important role in modulating seizures and epilepsy. Unlike neurotransmitters which operate on a millisecond time-scale, neuropeptides have longer half lives; this leads to modulation of neuronal and network activity over prolonged periods, so contributing to setting the seizure threshold. Most neuropeptides are stored in large dense vesicles and co-localize with inhibitory interneurons. They are released upon high frequency stimulation making them attractive targets for modulation of seizures, during which high frequency discharges occur. Numerous neuropeptides have been implicated in epilepsy; one, ACTH, is already used in clinical practice to suppress seizures. Here, we concentrate on neuropeptides that have a direct effect on seizures, and for which therapeutic interventions are being developed. We have thus reviewed the abundant reports that support a role for neuropeptide Y (NPY), galanin, ghrelin, somatostatin and dynorphin in suppressing seizures and epileptogenesis, and for tachykinins having pro-epileptic effects. Most in vitro and in vivo studies are performed in hippocampal tissue in which receptor expression is usually high, making translation to other brain areas less clear. We highlight recent therapeutic strategies to treat epilepsy with neuropeptides, which are based on viral vector technology, and outline how such interventions need to be refined in order to address human disease.

  20. Role of kinin B2 receptors in opioid-induced hyperalgesia in inflammatory pain in mice.

    Science.gov (United States)

    Grastilleur, Sébastien; Mouledous, Lionel; Bedel, Jerome; Etcheverry, Jonathan; Bader, Michael; Girolami, Jean-Pierre; Fourcade, Olivier; Frances, Bernard; Minville, Vincent

    2013-03-01

    Postoperative pain management is a clinical challenge that can be complicated by opioid-induced hyperalgesia (OIH). Kinin receptors could mediate both the acute and chronic phases of inflammation and pain. A few recent studies suggest that dynorphin A could maintain neuropathic pain by activating the bradykinin (BK) receptor. Thus, the effect of a single administration of sufentanil (a μ-opioid receptor agonist) was investigated in a model of carrageenan-induced inflammatory pain using three strains of mice, i.e., knockout mice for one kinin receptor, B1R or B2R (B1KO, B2KO), and wild-type C57/BL6J mice (WT) treated with either a B1R (R954) or a B2R antagonist (HOE140) or a KKS inhibitor (aprotinin). Pain was assessed and compared between the different groups using two behavioral tests exploring mechanical (von Frey filaments) and thermal (Hargreaves test) sensitivity. Pretreatment with sufentanil induced a sustained increase in pain sensitivity with a delayed return to baseline values characterizing an OIH in carrageenan-injected mice only. Sufentanil-induced OIH was not observed in B2KO but persisted in B1KO and was blunted by aprotinin and the B2R antagonist only. Collectively, our data indicate that the B2R receptor and BK synthesis or availability are essential peripheral steps in the mechanism leading to OIH in a pain context.

  1. Cloning, expression and characterization of a 46.5-kDa metallopeptidase from Bacillus halodurans H4 sharing properties with the pitrilysin family.

    Science.gov (United States)

    Dabonné, Soumaila; Moallic, Claire; Sine, Jean-Pierre; Niamké, Sébastien; Dion, Michel; Colas, Bernard

    2005-08-30

    A 1242 base pair DNA fragment from Bacillus halodurans H4 isolated from alkaline sediments of Lake Bogoria (Kenya) coding for a potential protease was cloned and sequenced. The hexa-histidine-tagged enzyme was overexpressed in Escherichia coli and was purified in one step by immobilized-metal affinity chromatography (IMAC) on Ni-NTA resin. The protease (ppBH4) presents an inverted zincin motif, HXXEH, which defines the inverzincin family. It shares several biochemical and molecular properties with the clan ME family M16 metallopeptidases (pitrilysins), as well as with database hypothetical proteins that are potential M16 family enzymes. Thus, like insulysin and nardilysin, but contrary to bacterial pitrilysin, ppBH4 is inactivated by sulfhydryl alkylating agents. On the other hand, like bacterial pitrilysin, ppBH4 is sensitive to reducing agents. The enzymatic activity of ppBH4 is limited to substrates smaller than proteins. In contrast to insulin, dynorphin and insulin B-chain are very good substrates for ppBH4 and several cleavage sites are common with those observed with well-characterized pitrilysins. As deduced from amino acid sequence, as well as determined by gel-filtration and SDS-polyacrylamide gel electrophoresis, ppBH4 is an active monomer of 46.5 kDa. This feature distinguishes ppBH4 from all other enzymes of the pitrilysin family so far described whose molecular masses range from 100 to 140 kDa.

  2. Dopamine D₄ receptor counteracts morphine-induced changes in µ opioid receptor signaling in the striosomes of the rat caudate putamen.

    Science.gov (United States)

    Suárez-Boomgaard, Diana; Gago, Belén; Valderrama-Carvajal, Alejandra; Roales-Buján, Ruth; Van Craenenbroeck, Kathleen; Duchou, Jolien; Borroto-Escuela, Dasiel O; Medina-Luque, José; de la Calle, Adelaida; Fuxe, Kjell; Rivera, Alicia

    2014-01-21

    The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine.

  3. [Opioid receptors of the CNS: function, structure and distribution].

    Science.gov (United States)

    Slamberová, R

    2004-01-01

    Even though the alkaloids of opium, such as morphine and codeine, were isolated at the beginning of 19th century, the opioid receptors were not determined until 1970's. The discovery of endogenous opioid peptides, such as endorphins, enkephalins and dynorphins, has helped to differentiate between the specific opioid receptor subtypes, mu, delta and kappa, that are used up to now. Opioid receptors are distributed in the central nervous system unevenly. Each receptor subtype has its own specific and nonspecific agonists and antagonists. Opioides, as exogenous opioid receptor agonists, are drugs that are often used in medicine for their analgesic effects, but they are also some of the most heavily abused drugs in the world. Opioides may also induce long-term changes in the numbers and binding activities of opioid receptors. Some of our studies in fact demonstrate that prenatal morphine exposure can alter opioid receptors of adult rats. This may begin to provide insight into the sources of some of the morphological and behavioral changes in the progeny of mothers that received or abused opioides during pregnancy.

  4. [Effect of acetylcholine and acetylcholinesterase on the activity of contractile vacuole of Amoeba proteus].

    Science.gov (United States)

    Bagrov, Ia Iu; Manusova, N B

    2011-01-01

    Acetylcholine (ACh, 1 microM) stimulates activity of the contractile vacuole of proteus. The effect of ACh is not mimicked by its analogs which are not hydrolyzed by acetylcholinesterase (AChE), i. e., carbacholine and 5-methylfurmethide. The effect of ACh is not sensitive to the blocking action of M-cholinolytics, atropine and mytolone, but is suppressed by N-cholinolytic, tubocurarine. The inhibitors of AChE, eserine (0.01 microM) and armine (0.1 microM), suppress the effect of ACh on amoeba contractile vacuole. ACh does not affect activation of contractile vacuole induced by arginine-vasopressin (1 microM), but it blocks such effect of opiate receptors agonist, dynorphin A1-13 (0.01 microM). This effect of ACh is also suppressed by the inhibitors of AChE. These results suggest that, in the above-described effects of ACh, AChE acts not as an antagonist, but rather as a synergist.

  5. Distinct Effects of Nalmefene on Dopamine Uptake Rates and Kappa Opioid Receptor Activity in the Nucleus Accumbens Following Chronic Intermittent Ethanol Exposure

    Directory of Open Access Journals (Sweden)

    Jamie H. Rose

    2016-07-01

    Full Text Available The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc κ opioid receptors (KOR in chronic intermittent ethanol (CIE exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.

  6. Transmitter systems in the primate dentate gyrus.

    Science.gov (United States)

    Amaral, D G; Campbell, M J

    1986-01-01

    While the dentate gyrus is clearly the simplest of the cortical fields that constitute the hippocampal formation, it nonetheless occupies a pivotal position in the flow of information through this region. Though it has been the subject of anatomical study for over a century and its major connections have been known for almost as long, the use of newly developed histochemical and immunohistochemical techniques have demonstrated many new facets of its intrinsic connectivity and afferent innervation. These techniques have established that it is innervated by cholinergic, noradrenergic, serotonergic and dopaminergic fibers. More recent studies have shown that fibers and cell bodies of the dentate gyrus are immunoreactive for variety of neuroactive substances including the excitatory amino acids glutamate and aspartate, the inhibitory transmitter GABA, as well as peptides of many types including the opioid peptides, enkephalin and dynorphin, several forms of somatostatin, neuropeptide Y, cholycystokinin, vasoactive intestinal peptide and substance P. In this review, we will briefly summarize the distribution of each of these putative transmitter systems within the dentate gyrus. The perspective emerges that the plethora of newly identified and chemically specific fiber systems enriches the classical understanding of the organization of this relatively simple cortical structure. Since there is thus far no evidence for the exclusion from the dentate gyrus of any class of transmitter bearing fiber or neuron found in the neocortex, it can be viewed as a relatively simple model system for studying the interactions of specific transmitter systems in a laminated, cortical structure.

  7. Neocortical prodynorphin expression is transiently increased with learning: Implications for time- and learning-dependent neocortical kappa opioid receptor activation.

    Science.gov (United States)

    Loh, Ryan; Collins, Sean; Galvez, Roberto

    2017-09-29

    There are several lines of evidence that indicate a prominent role for the opioid system in the acquisition and consolidation of learned associations. Specifically, kappa opioid receptor (KOR) modulation has been demonstrated to alter various behavioral tasks including whisker trace eyeblink conditioning (WTEB). WTEB is an associative conditioning paradigm in which a neutral conditioned stimulus (CS; Whisker stimulation) is paired following a short stimulus free trace interval with a salient unconditioned stimulus that elicits a blink response (US; Eye shock). Work from our laboratory has shown that WTEB conditioning is dependent upon and induces plasticity in primary somatosensory cortex (S1), a likely site for memory storage. Our subsequent studies have shown that WTEB acquisition or consolidation are impaired when the initial or later phase of KOR activation in S1 is respectively blocked. Interestingly, this mechanism by which KOR is activated in S1 during learning remains unexplored. Dynorphin (DYN), KOR's endogenous ligand, is synthesized from the precursor prodynorphin (PD) that is synthesized from preprodynorphin (PPD). In S1, most PPD is found in inhibitory GABAergic somatostatin interneurons (SOM), suggesting that these SOM interneurons are upstream regulators of learning induced KOR activation. Using immunofluorescence to investigate the expression of PD and SOM, the current study found that PD/SOM expression was transiently increased in S1 during learning. Interestingly, these findings have direct implications towards a time- and learning-dependent role for KOR activation in neocortical mechanisms mediating learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Studies toward bivalent κ opioids derived from salvinorin A: heteromethylation of the furan ring reduces affinity

    Directory of Open Access Journals (Sweden)

    Thomas A. Munro

    2013-12-01

    Full Text Available The recent crystal structure of the κ-opioid receptor (κ-OR revealed, unexpectedly, that the antagonist JDTic is a bivalent ligand: in addition to the orthosteric pocket occupied by morphinans, JDTic also occupies a distinct (allotopic pocket. Mutagenesis data suggest that salvinorin A (1 also binds to this allotopic pocket, adjacent to the aspartate residue that anchors the basic nitrogen atom of classical opiates (Asp138. It has been suggested that an H-bond donor appended to 1 might interact with Asp138, increasing affinity. Such a bivalent ligand might also possess altered functional selectivity. Based on modeling and known N-furanylmethyl opioid antagonists, we appended H-bond donors to the furan ring of 1. (Dimethylaminomethyl groups at C-15 or C-16 abolished affinity for κ-OR. Hydroxymethylation at C-16 was tolerated, but 15,16-bis-hydroxymethylation was not. Since allosteric modulators may go undetected in binding assays, we also tested these and other low-affinity derivatives of 1 for allosteric modulation of dynorphin A in the [35S]GTPγS assay. No modulation was detected. As an alternative attachment point for bivalent derivatives, we prepared the 2-(hydroxyethoxymethyl ether, which retained high affinity for κ-OR. We discuss alternative design strategies for linked, fused or merged bivalent derivatives of 1.

  9. Studies toward bivalent κ opioids derived from salvinorin A: heteromethylation of the furan ring reduces affinity.

    Science.gov (United States)

    Munro, Thomas A; Xu, Wei; Ho, Douglas M; Liu-Chen, Lee-Yuan; Cohen, Bruce M

    2013-12-20

    The recent crystal structure of the κ-opioid receptor (κ-OR) revealed, unexpectedly, that the antagonist JDTic is a bivalent ligand: in addition to the orthosteric pocket occupied by morphinans, JDTic also occupies a distinct (allotopic) pocket. Mutagenesis data suggest that salvinorin A (1) also binds to this allotopic pocket, adjacent to the aspartate residue that anchors the basic nitrogen atom of classical opiates (Asp138). It has been suggested that an H-bond donor appended to 1 might interact with Asp138, increasing affinity. Such a bivalent ligand might also possess altered functional selectivity. Based on modeling and known N-furanylmethyl opioid antagonists, we appended H-bond donors to the furan ring of 1. (Dimethylamino)methyl groups at C-15 or C-16 abolished affinity for κ-OR. Hydroxymethylation at C-16 was tolerated, but 15,16-bis-hydroxymethylation was not. Since allosteric modulators may go undetected in binding assays, we also tested these and other low-affinity derivatives of 1 for allosteric modulation of dynorphin A in the [(35)S]GTPγS assay. No modulation was detected. As an alternative attachment point for bivalent derivatives, we prepared the 2-(hydroxyethoxy)methyl ether, which retained high affinity for κ-OR. We discuss alternative design strategies for linked, fused or merged bivalent derivatives of 1.

  10. Asymmetry of the endogenous opioid system in the human anterior cingulate: a putative molecular basis for lateralization of emotions and pain.

    Science.gov (United States)

    Watanabe, Hiroyuki; Fitting, Sylvia; Hussain, Muhammad Z; Kononenko, Olga; Iatsyshyna, Anna; Yoshitake, Takashi; Kehr, Jan; Alkass, Kanar; Druid, Henrik; Wadensten, Henrik; Andren, Per E; Nylander, Ingrid; Wedell, Douglas H; Krishtal, Oleg; Hauser, Kurt F; Nyberg, Fred; Karpyak, Victor M; Yakovleva, Tatjana; Bakalkin, Georgy

    2015-01-01

    Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the μ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 "classical" neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/μ- and κ-/μ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/μ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left-right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain.

  11. New insights into the neuroanatomical distribution and phylogeny of opioids and POMC-derived peptides in fish.

    Science.gov (United States)

    Vallarino, Mauro; d'Amora, Marta; Dores, Robert M

    2012-07-01

    This review re-evaluates the use of immunological probes to map enkephalinergic, dynorphinergic, and endorphinergic circuits in the CNS of lobe-finned fishes, ray-finned fishes, and cartilaginous fishes in light of the characterization of proenkephalin, prodynorphin, and POMC sequences from representatives of these groups of fish over the past 20 years. The use of α-MSH specific antisera is a reliable method for detecting POMC immunopositive cell bodies and fibers. Since α-MSH and β-endorphin are co-localized in the same neurons, these studies also reveal the distribution of endorphinergic networks. Met-enkephalin specific antisera can be used to detect enkephalinergic circuits in the CNS of gnathostomes because of the ubiquitous presence of this pentapeptide in the proenkephalin sequences of gnathostomes. However, the use of leu-enkephalin specific antisera to detect enkephalinergic networks is more problematic. While this immunological probe is appropriate for analyzing enkephalinergic networks in mammals and perhaps teleosts, for the lungfishes and cartilaginous fishes this probe is more likely able to detect dynorphinergic circuits. In this regard, there is a need to re-examine dynorphinergic networks in non-mammalian gnathostomes by using species specific antisera directed against dynorphin end-products. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Nicotine effects and the endogenous opioid system.

    Science.gov (United States)

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro

    2014-01-01

    Nicotine (NIC) is an exogenous ligand of the nicotinic acetylcholine receptor (nAChR), and it influences various functions in the central nervous system. Systemic administration of NIC elicits the release of endogenous opioids (endorphins, enkephalins, and dynorphins) in the supraspinal cord. Additionally, systemic NIC administration induces the release of methionine-enkephalin in the spinal dorsal horn. NIC has acute neurophysiological actions, including antinociceptive effects, and the ability to activate the hypothalamic-pituitary-adrenal (HPA) axis. The endogenous opioid system participates in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception is mediated by α4β2 and α7 nAChRs, while NIC-induced HPA axis activation is mediated by α4β2, not α7, suggesting that the effects of NIC on the endogenous opioid system are mediated by α7, not α4β2. NIC has substantial physical dependence liability. The opioid-receptor antagonist naloxone (NLX) elicits NIC withdrawal after repeated NIC administration, and NLX-induced NIC withdrawal is inhibited by concomitant administration of an opioid-receptor antagonist. NLX-induced NIC withdrawal is also inhibited by concomitant administration of an α7 antagonist, but not an α4β2 antagonist. Taken together, these findings suggest that NIC-induced antinociception and the development of physical dependence are mediated by the endogenous opioid system, via the α7 nAChR.

  13. Neuropeptide FF, but not prolactin-releasing peptide, mRNA is differentially regulated in the hypothalamic and medullary neurons after salt loading.

    Science.gov (United States)

    Kalliomäki, M-L; Panula, P

    2004-01-01

    Hypothalamic paraventricular and supraoptic nuclei are involved in the body fluid homeostasis. Especially vasopressin peptide and mRNA levels are regulated by hypo- and hyperosmolar stimuli. Other neuropeptides such as dynorphin, galanin and neuropeptide FF are coregulated with vasopressin. In this study neuropeptide FF and another RF-amide peptide, the prolactin-releasing peptide mRNA levels were studied by quantitative in situ hybridization after chronic salt loading, a laboratory model of chronic dehydration. The neuropeptide FF mRNA expressing cells virtually disappeared from the hypothalamic supraoptic and paraventricular nuclei after salt loading, suggesting that hyperosmolar stress downregulated the NPFF gene transcription. The neuropeptide FF mRNA signal levels were returned to control levels after the rehydration period of 7 days. No changes were observed in those medullary nuclei that express neuropeptide FF mRNA. No significant changes were observed in the hypothalamic or medullary prolactin-releasing peptide mRNA levels. Neuropeptide FF mRNA is drastically downregulated in the hypothalamic magnocellular neurons after salt loading. Other neuropeptides studied in this model are concomitantly coregulated with vasopressin: i.e. their peptide levels are downregulated and mRNA levels are upregulated which is in contrast to neuropeptide FF regulation. It can thus be concluded that neuropeptide FF is not regulated through the vasopressin regulatory system but via an independent pathway. The detailed mechanisms underlying the downregulation of neuropeptide FF mRNA in neurons remain to be clarified.

  14. 急性乙醇中毒大鼠下丘脑阿片肽含量的变化及葛根素的干预研究%The Change of Endogenous Opioid Peptides in the Hypothalamus of the Rats with Acute Alcohol Poinsing and the Intervention Study of the Puerarin

    Institute of Scientific and Technical Information of China (English)

    董学妍; 程秀臻

    2009-01-01

    目的 观察急性乙醇中毒大鼠下丘脑β-内啡肽(β-endorphine,β-EP)、亮脑啡肽(leu-enkephalin,LENK)和强啡肽A(dynorphin A,Dyn A)含量变化及葛根素的干预作用.方法 选雄性Wistar大鼠30只,随机分为对照组、模型组和葛根素组,分别测定血中乙醇浓度变化,下丘脑β-EP,LENK,Dyn A的含量.结果 葛根素组的血乙醇浓度比模型组低,与对照组相比,模型组大鼠下丘脑β- EP,LENK水平显著增高,Dyn A的含量变化不明显.葛根素组与模型组相比,β-EP,LENK水平均显著降低,Dyn A含量变化不明显.结论 急性乙醇中毒时阿片肽释放增加,葛根素可能通过降低血乙醇浓度来抑制阿片肽的释放,对乙醇中毒起到治疗作用.

  15. A comparative study of the dentate gyrus in hippocampal sclerosis in epilepsy and dementia.

    Science.gov (United States)

    Bandopadhyay, R; Liu, J Y W; Sisodiya, S M; Thom, M

    2014-02-01

    Hippocampal sclerosis (HS) is long-recognized in association with epilepsy (HSE ) and more recently in the context of cognitive decline or dementia in the elderly (HSD ), in some cases as a component of neurodegenerative diseases, including Alzheimer's disease (AD) and fronto-temporal lobe dementia (FTLD). There is an increased risk of seizures in AD and spontaneous epileptiform discharges in the dentate gyrus of transgenic AD models; epilepsy can be associated with an age-accelerated increase in AD-type pathology and cognitive decline. The convergence between these disease processes could be related to hippocampal pathology. HSE typically shows re-organization of both excitatory and inhibitory neuronal networks in the dentate gyrus, and is considered to be relevant to hippocampal excitability. We sought to compare the pathology of HSE and HSD , focusing on re-organization in the dentate gyrus. In nine post mortem cases with HSE and bilateral damage, 18 HSD and 11 controls we carried out immunostaining for mossy fibres (dynorphin), and interneuronal networks (NPY, calbindin and calretinin) on sections from the mid-hippocampal body. Fibre sprouting (FS) or loss of expression in the dentate gyrus was semi-quantitatively graded from grade 0 (normal) to grade 3 (marked alteration). Significantly more re-organization was seen with all four markers in the HSE than HSD group (P dentate gyrus is more typical of HSE . Subtle alterations in HSD may be a result of increased hippocampal excitability, including unrecognized seizure activity. An unexpected finding was the identification of NPY-positive Hirano bodies in HSD but not HSE , which may be a consequence of the relative vulnerabilities of interneurons in these conditions. © 2013 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  16. Glucocorticoids regulation of FosB/ΔFosB expression induced by chronic opiate exposure in the brain stress system.

    Directory of Open Access Journals (Sweden)

    Daniel García-Pérez

    Full Text Available Chronic use of drugs of abuse profoundly alters stress-responsive system. Repeated exposure to morphine leads to accumulation of the transcription factor ΔFosB, particularly in brain areas associated with reward and stress. The persistent effects of ΔFosB on target genes may play an important role in the plasticity induced by drugs of abuse. Recent evidence suggests that stress-related hormones (e.g., glucocorticoids, GC may induce adaptations in the brain stress system that is likely to involve alteration in gene expression and transcription factors. This study examined the role of GC in regulation of FosB/ΔFosB in both hypothalamic and extrahypothalamic brain stress systems during morphine dependence. For that, expression of FosB/ΔFosB was measured in control (sham-operated and adrenalectomized (ADX rats that were made opiate dependent after ten days of morphine treatment. In sham-operated rats, FosB/ΔFosB was induced after chronic morphine administration in all the brain stress areas investigated: nucleus accumbens(shell (NAc, bed nucleus of the stria terminalis (BNST, central amygdala (CeA, hypothalamic paraventricular nucleus (PVN and nucleus of the solitary tract noradrenergic cell group (NTS-A(2. Adrenalectomy attenuated the increased production of FosB/ΔFosB observed after chronic morphine exposure in NAc, CeA, and NTS. Furthermore, ADX decreased expression of FosB/ΔFosB within CRH-positive neurons of the BNST, PVN and CeA. Similar results were obtained in NTS-A(2 TH-positive neurons and NAc pro-dynorphin-positive neurons. These data suggest that neuroadaptation (estimated as accumulation of FosB/ΔFosB to opiates in brain areas associated with stress is modulated by GC, supporting the evidence of a link between brain stress hormones and addiction.

  17. Early life stress as a risk factor for substance use disorders: Clinical and neurobiological substrates

    Directory of Open Access Journals (Sweden)

    Sajoy Purathumuriyil Varghese

    2015-01-01

    Full Text Available Background: Early Life Stress (ELS can profoundly influence an individual′s genotype and phenotype. Effects of ELS can manifest in the short-term, late life and even in subsequent generations. ELS activate corticotrophin releasing factor (CRF; CRF influences drug seeking and addiction. The aim of this study was to examine the effects of endogenous elevated levels of CRF on addiction. Materials and Methods: Inducible forebrain over-expression of CRF mice (tetop-CRH x CaMKII-tTA was used for this study. Morphine (10 mg/kg was administered every other day for 10 days or with increasing doses of morphine: 20, 40, 60, 80, 100, and 100 mg/kg. The behavioral trials including morphine sensitization, Somatic Opiate Withdrawal Symptoms (SOWS were conducted in a single, open field, activity. After behavioral trial, animals were perfused for immunohistochemistry analysis. Results: CRF-over expressed (CRF-OE mice showed increase in morphine sensitization and withdrawal symptoms after morphine administration compared to wild type (WT mice. The two-way ANOVA in the morphine sensitization study showed a significant effect of treatment (P<0.05 and genotype for distance traveled (P<0.01. In the SOWS study, opiate withdrawal symptoms such as rearings, circling behavior, grooming, and jump in CRF-OE were amplified in parallel to WT mice. In the immunohistochemistry study, pro-dynorphine (PDYN expression was increased after morphine administration in both amygdala and nucleus accumbens (NAcc. Conclusions: CRF-OE in the forebrain increases the sensitization and withdrawal symptoms in morphine treated mice. On exposure to morphine, in CRF-OE mice the PDYN protein expression was increased as compared to WT mice in the amygdala and NAcc.

  18. Sodium-calcium exchanger and R-type Ca(2+) channels mediate spontaneous [Ca(2+)]i oscillations in magnocellular neurones of the rat supraoptic nucleus.

    Science.gov (United States)

    Kortus, Stepan; Srinivasan, Chinnapaiyan; Forostyak, Oksana; Zapotocky, Martin; Ueta, Yoichi; Sykova, Eva; Chvatal, Alexandr; Verkhratsky, Alexei; Dayanithi, Govindan

    2016-06-01

    Isolated supraoptic neurones generate spontaneous [Ca(2+)]i oscillations in isolated conditions. Here we report in depth analysis of the contribution of plasmalemmal ion channels (Ca(2+), Na(+)), Na(+)/Ca(2+) exchanger (NCX), intracellular Ca(2+) release channels (InsP3Rs and RyRs), Ca(2+) storage organelles, plasma membrane Ca(2+) pump and intracellular signal transduction cascades into spontaneous Ca(2+) activity. While removal of extracellular Ca(2+) or incubation with non-specific voltage-gated Ca(2+) channel (VGCC) blocker Cd(2+) suppressed the oscillations, neither Ni(2+) nor TTA-P2, the T-type VGCC blockers, had an effect. Inhibitors of VGCC nicardipine, ω-conotoxin GVIA, ω-conotoxin MVIIC, ω-agatoxin IVA (for L-, N-, P and P/Q-type channels, respectively) did not affect [Ca(2+)]i oscillations. In contrast, a specific R-type VGCC blocker SNX-482 attenuated [Ca(2+)]i oscillations. Incubation with TTX had no effect, whereas removal of the extracellular Na(+) or application of an inhibitor of the reverse operation mode of Na(+)/Ca(2+) exchanger KB-R7943 blocked the oscillations. The mitochondrial uncoupler CCCP irreversibly blocked spontaneous [Ca(2+)]i activity. Exposure of neurones to Ca(2+) mobilisers (thapsigargin, cyclopiazonic acid, caffeine and ryanodine); 4-aminopyridine (A-type K(+) current blocker); phospholipase C and adenylyl cyclase pathways blockers U-73122, Rp-cAMP, SQ-22536 and H-89 had no effect. Oscillations were blocked by GABA, but not by glutamate, apamin or dynorphin. In conclusion, spontaneous oscillations in magnocellular neurones are mediated by a concerted action of R-type Ca(2+) channels and the NCX fluctuating between forward and reverse modes.

  19. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans.

    Science.gov (United States)

    Maqueda, Ana Elda; Valle, Marta; Addy, Peter H; Antonijoan, Rosa Maria; Puntes, Montserrat; Coimbra, Jimena; Ballester, Maria Rosa; Garrido, Maite; González, Mireia; Claramunt, Judit; Barker, Steven; Johnson, Matthew W; Griffiths, Roland R; Riba, Jordi

    2015-06-05

    Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  20. Role of Endogenous Opioid System in Ischemic-Induced Late Preconditioning.

    Directory of Open Access Journals (Sweden)

    Jan Fraessdorf

    Full Text Available Opioid receptors (OR are involved in myocardial late preconditioning (LPC induced by morphine and δ1-opioid receptor (δ1-OR agonists. The role of OR in ischemic-induced LPC is unknown. We investigated whether 1 OR are involved in the trigger and/or mediation phase of LPC and 2 a time course effect on the expression of different opioid receptors and their endogenous ligands exists.Male Wistar rats were randomly allocated to four groups (each group n = 8. Awake animals were ischemic preconditioned by a 5 minutes coronary occlusion. 24 hours later, anesthetized animals underwent 25 minutes coronary occlusion followed by 2 hours of reperfusion. The role of OR was investigated by treatment with intraperitoneal naloxone (Nal 10 minutes prior to LPC (Nal-LPC; trigger phase or 10 min prior to sustained ischemia (LPC-Nal; mediation phase.LPC reduced infarct size from 61±10% in controls to 25±9% (P<0.001. Naloxone during trigger or mediation phase completely abolished LPC-induced cardioprotection (59±9% and 62±9%; P<0.001 vs. LPC. 8, 12 and 24 hours after the ischemic stimulus, expression of δ-OR in the heart was increased, whereas μ-opioid receptor (μ-OR and κ-opioid receptor (κ-OR were not. Plasma concentrations of β-endorphin and leu-enkephalin but not dynorphin were increased by LPC.Ischemic LPC is triggererd and mediated by OR. Expression of δ-OR and plasma levels of endogenous opioid peptides are increased after ischemic LPC.

  1. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart.

    Science.gov (United States)

    Headrick, John P; See Hoe, Louise E; Du Toit, Eugene F; Peart, Jason N

    2015-04-01

    Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.

  2. Interaction of trimebutine and Jo-1196 (fedotozine) with opioid receptors in the canine ileum

    Energy Technology Data Exchange (ETDEWEB)

    Allescher, H.D.; Ahmad, S.; Classen, M.; Daniel, E.E. (Technical Univ., Munich, (West Germany))

    1991-05-01

    Receptor binding of the opioid receptor antagonist, ({sup 3}H)diprenorphine, which has a similar affinity to the various opioid receptor subtypes, was characterized in subcellular fractions derived from either longitudinal or circular smooth muscle of the canine small intestine with their plexuses (myenteric plexus and deep muscular plexus, respectively) attached. The distribution of opioid binding activity showed a good correlation in the different fractions with the binding of the neuronal marker ({sup 3}H)saxitoxin but no correlation to the smooth muscle plasma membrane marker 5'-nucleotidase. The saturation data (Kd = 0.12 +/- 0.04 nM and maximum binding = 400 +/- 20 fmol/mg) and the data from kinetic experiments (Kd = 0.08 nmol) in the myenteric plexus were in good agreement with results obtained previously from the circular muscle/deep muscular plexus preparation. Competition experiments using selective drugs for mu (morphiceptin-analog (N-MePhe3-D-Pro4)-morphiceptin), delta (D-Pen2,5-enkephalin) and kappa (dynorphin 1-13, U50488-H) ligands showed the existence of all three receptor subtypes. The existence of kappa receptors was confirmed in saturation experiments using ({sup 3}H) ethylketocycloazocine as labeled ligand. Two putative opioid agonists, with effects on gastrointestinal motility, trimebutine and JO-1196 (fedotozin), were also examined. Trimebutine (Ki = 0.18 microM), Des-Met-trimebutine (Ki = 0.72 microM) and Jo-1196 (Ki = 0.19 microM) displaced specific opiate binding. The relative affinity for the opioid receptor subtypes was mu = 0.44, delta = 0.30 and kappa = 0.26 for trimebutine and mu = 0.25, delta = 0.22 and kappa = 0.52 for Jo-1196.

  3. THE USE OF TRANSCUTANEOUS ELECTRICAL NERVE STIMULATION (TENS IN THE TREATMENT OF THE SPASTICITY - A REVIEW

    Directory of Open Access Journals (Sweden)

    Dahyan Wagner da Silva Silveira

    2008-01-01

    Full Text Available This study it has as objective to argue the job of TENS in the spasticity, observing the main parameters, form of application and the mechanism for which TENS it acts in the spasticity. One is about a bibliographical revision based in the literature specialized selected scientific articles through search in the data base of scielo and of bireme, from the sources Medline and Lilacs. The studies found on the job of TENS in the spasticity, had pointed mainly that this chain reduces the spasticity significantly, in lower degrees. The stimulation electrical parameters had disclosed that TENS it (about A utilização da estimulação elétrica nervosa transcutânea (tens... 100Hz of raised frequency provides one better effect in the reduction of the spasticity. The types of TENS more used had been the conventional and the soon-intense one, however some studies had not presented the used duration of pulse, limit the determination of one better modality of TENS. Few studies had explained the mechanism of performance of the current related one. The ones that had made it, had pointed the release of opioid endogenous (Dynorphins for the central nervous system as main mechanism of performance, however this contrasts with the neurophysiologic bases of the high-frequency stimulation, that demonstrated better resulted in the joined studies. Still it is necessary more studies on the job of this modality of stimulation electrical in the spasticity, since important parameters as duration of pulse, time of application, numbers of attendance and performance mechanism remains without scientific evidence.

  4. nor-BNI Antagonism of Kappa Opioid Agonist-Induced Reinstatement of Ethanol-Seeking Behavior

    Directory of Open Access Journals (Sweden)

    Erin Harshberger

    2016-01-01

    Full Text Available Recent work suggests that the dynorphin (DYN/kappa opioid receptor (KOR system may be a key mediator in the behavioral effects of alcohol. The objective of the present study was to examine the ability of the KOR antagonist norbinaltorphimine (nor-BNI to attenuate relapse to ethanol seeking due to priming injections of the KOR agonist U50,488 at time points consistent with KOR selectivity. Male Wistar rats were trained to self-administer a 10% ethanol solution, and then responding was extinguished. Following extinction, rats were injected with U50,488 (0.1–10 mg/kg, i.p. or saline and were tested for the reinstatement of ethanol seeking. Next, the ability of the nonselective opioid receptor antagonist naltrexone (0 or 3.0 mg/kg, s.c. and nor-BNI (0 or 20.0 mg/kg, i.p. to block U50,488-induced reinstatement was examined. Priming injections U50,488 reinstated responding on the previously ethanol-associated lever. Pretreatment with naltrexone reduced the reinstatement of ethanol-seeking behavior. nor-BNI also attenuated KOR agonist-induced reinstatement, but to a lesser extent than naltrexone, when injected 24 hours prior to injections of U50,488, a time point that is consistent with KOR selectivity. While these results suggest that activation of KORs is a key mechanism in the regulation of ethanol-seeking behavior, U50,488-induced reinstatement may not be fully selective for KORs.

  5. Emergence of Sex Differences in the Development of Substance Use and Abuse during Adolescence

    Science.gov (United States)

    Kuhn, Dr. Cynthia

    2015-01-01

    Substance use and abuse begins during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse., Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use. PMID:26049025

  6. Phasic firing in vasopressin cells: understanding its functional significance through computational models.

    Directory of Open Access Journals (Sweden)

    Duncan J MacGregor

    Full Text Available Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response

  7. Species differences in the effects of the κ-opioid receptor antagonist zyklophin.

    Science.gov (United States)

    Sirohi, Sunil; Aldrich, Jane V; Walker, Brendan M

    2016-03-01

    We have shown that dysregulation of the dynorphin/kappa-opioid receptor (DYN/KOR) system contributes to escalated alcohol self-administration in alcohol dependence and that KOR antagonists with extended durations of action selectively reduce escalated alcohol consumption in alcohol-dependent animals. As KOR antagonism has gained widespread attention as a potential therapeutic target to treat alcoholism and multiple neuropsychiatric disorders, we tested the effect of zyklophin (a short-acting KOR antagonist) on escalated alcohol self-administration in rats made alcohol-dependent using intermittent alcohol vapor exposure. Following dependence induction, zyklophin was infused centrally prior to alcohol self-administration sessions and locomotor activity tests during acute withdrawal. Zyklophin did not impact alcohol self-administration or locomotor activity in either exposure condition. To investigate the neurobiological basis of this atypical effect for a KOR antagonist, we utilized a κ-, μ-, and δ-opioid receptor agonist-stimulated GTPyS coupling assay to examine the opioid receptor specificity of zyklophin in the rat brain and mouse brain. In rats, zyklophin did not affect U50488-, DAMGO-, or DADLE-stimulated GTPyS coupling, whereas the prototypical KOR antagonist nor-binaltorphimine (norBNI) attenuated U50488-induced stimulation in the rat brain tissue at concentrations that did not impact μ- and δ-receptor function. To reconcile the discrepancy between the present rat data and published mouse data, comparable GTPyS assays were conducted using mouse brain tissue; zyklophin effects were consistent with KOR antagonism in mice. Moreover, at higher concentrations, zyklophin exhibited agonist properties in rat and mouse brains. These results identify species differences in zyklophin efficacy that, given the rising interest in the development of short-duration KOR antagonists, should provide valuable information for therapeutic development efforts.

  8. Unique biological function of cathepsin L in secretory vesicles for biosynthesis of neuropeptides.

    Science.gov (United States)

    Funkelstein, Lydiane; Beinfeld, Margery; Minokadeh, Ardalan; Zadina, James; Hook, Vivian

    2010-12-01

    Neuropeptides are essential for cell-cell communication in the nervous and neuroendocrine systems. Production of active neuropeptides requires proteolytic processing of proneuropeptide precursors in secretory vesicles that produce, store, and release neuropeptides that regulate physiological functions. This review describes recent findings indicating the prominent role of cathepsin L in secretory vesicles for production of neuropeptides from their protein precursors. The role of cathepsin L in neuropeptide production was discovered using the strategy of activity-based probes for proenkephalin-cleaving activity for identification of the enzyme protein by mass spectrometry. The novel role of cathepsin L in secretory vesicles for neuropeptide production has been demonstrated in vivo by cathepsin L gene knockout studies, cathepsin L gene expression in neuroendocrine cells, and notably, cathepsin L localization in neuropeptide-containing secretory vesicles. Cathepsin L is involved in producing opioid neuropeptides consisting of enkephalin, β-endorphin, and dynorphin, as well as in generating the POMC-derived peptide hormones ACTH and α-MSH. In addition, NPY, CCK, and catestatin neuropeptides utilize cathepsin L for their biosynthesis. The neuropeptide-synthesizing functions of cathepsin L represent its unique activity in secretory vesicles, which contrasts with its role in lysosomes. Interesting evaluations of protease gene knockout studies in mice that lack cathepsin L compared to those lacking PC1/3 and PC2 (PC, prohormone convertase) indicate the key role of cathepsin L in neuropeptide production. Therefore, dual cathepsin L and prohormone convertase protease pathways participate in neuropeptide production. Significantly, the recent new findings indicate cathepsin L as a novel 'proprotein convertase' for production of neuropeptides that mediate cell-cell communication in health and disease.

  9. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.

    Science.gov (United States)

    Hallberg, Mathias

    2015-05-01

    The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals

  10. Emergence of sex differences in the development of substance use and abuse during adolescence.

    Science.gov (United States)

    Kuhn, Cynthia

    2015-09-01

    Substance use and abuse begin during adolescence. Male and female adolescent humans initiate use at comparable rates, but males increase use faster. In adulthood, more men than women use and abuse addictive drugs. However, some women progress more rapidly from initiation of use to entry into treatment. In animal models, adolescent males and females consume addictive drugs similarly. However, reproductively mature females acquire self-administration faster, and in some models, escalate use more. Sex/gender differences exist in neurobiologic factors mediating both reinforcement (dopamine, opioids) and aversiveness (CRF, dynorphin), as well as intrinsic factors (personality, psychiatric co-morbidities) and extrinsic factors (history of abuse, environment especially peers and family) which influence the progression from initial use to abuse. Many of these important differences emerge during adolescence, and are moderated by sexual differentiation of the brain. Estradiol effects which enhance both dopaminergic and CRF-mediated processes contribute to the female vulnerability to substance use and abuse. Testosterone enhances impulsivity and sensation seeking in both males and females. Several protective factors in females also influence initiation and progression of substance use including hormonal changes of pregnancy as well as greater capacity for self-regulation and lower peak levels of impulsivity/sensation seeking. Same sex peers represent a risk factor more for males than females during adolescence, while romantic partners increase risk for women during this developmental epoch. In summary, biologic factors, psychiatric co-morbidities as well as personality and environment present sex/gender-specific risks as adolescents begin to initiate substance use.

  11. Development of a homogeneous calcium mobilization assay for high throughput screening of mas-related gene receptor agonists

    Institute of Scientific and Technical Information of China (English)

    Rui ZHANG; Pang-ke YAN; Cai-hong ZHOU; Jia-yu LIAO; Ming-wei WANG

    2007-01-01

    Aim: To develop homogeneous calcium mobilization assay for high-throughput screening (HTS) of mas-related gene (Mrg) receptor agonists. Methods: CHO-K1 cells stably expressing the full-length MrgD receptor and a calcium-sensitive dye were used to develop an HTS assay based on intracellular calcium influx. This method was applied to large-scale screening of a library containing 8000 synthetic compounds and natural product extracts, cAMP measurements were camed out to verify the bioactivities of the hits found by the calcium mobilization assay. Similar approaches were also employed in the identification of the MrgA1 recep-tor agonists following HTS of 16 000 samples. Results: EC50 values of the positive control compounds (β-alanine for MrgD receptor and dynorphin A for MrgA1 receptor) determined by the calcium mobilization assay were consistent with those reported in the literature, and the Z' factors were 0.65 and 0.50 for MrgD and MrgA1 receptor assay, respectively. About 31 compounds for the MrgD receptor and 48 compounds for the MrgA1 receptor showing ≥20% of the maximal agonist activities found in the controls were initially identified as hits. Secondary screen- ing confirmed that 2 compounds for each receptor possessed specific agonist activities. Intracellular cAMP level measurements indicated that the 2 confirmed hits displayed the functionality of the MrgD receptor agonists. Conclusion: A series of validation studies demonstrated that the homogeneous calcium mobili-zation assay developed was highly efficient, amenable to automation and a robust tool to screen potential MrgD and MrgA1 receptor agonists. Its application may be expanded to other G-protein coupled receptors that mobilize calcium influx upon activation.

  12. Switch from excitatory to inhibitory actions of ethanol on dopamine levels after chronic exposure: Role of kappa opioid receptors.

    Science.gov (United States)

    Karkhanis, Anushree N; Huggins, Kimberly N; Rose, Jamie H; Jones, Sara R

    2016-11-01

    Acute ethanol exposure is known to stimulate the dopamine system; however, chronic exposure has been shown to downregulate the dopamine system. In rodents, chronic intermittent exposure (CIE) to ethanol also increases negative affect during withdrawal, such as, increases in anxiety- and depressive-like behavior. Moreover, CIE exposure results in increased ethanol drinking and preference during withdrawal. Previous literature documents reductions in CIE-induced anxiety-, depressive-like behaviors and ethanol intake in response to kappa opioid receptor (KOR) blockade. KORs are located on presynaptic dopamine terminals in the nucleus accumbens (NAc) and inhibit release, an effect which has been linked to negative affective behaviors. Previous reports show an upregulation in KOR function following extended CIE exposure; however it is not clear whether there is a direct link between KOR upregulation and dopamine downregulation during withdrawal from CIE. This study aimed to examine the effects of KOR modulation on dopamine responses to ethanol of behaving mice exposed to air or ethanol vapor in a repeated intermittent pattern. First, we showed that KORs have a greater response to an agonist after moderate CIE compared to air exposed mice using ex vivo fast scan cyclic voltammetry. Second, using in vivo microdialysis, we showed that, in contrast to the expected increase in extracellular levels of dopamine following an acute ethanol challenge in air exposed mice, CIE exposed mice exhibited a robust decrease in dopamine levels. Third, we showed that blockade of KORs reversed the aberrant inhibitory dopamine response to ethanol in CIE exposed mice while not affecting the air exposed mice demonstrating that inhibition of KORs "rescued" dopamine responses in CIE exposed mice. Taken together, these findings indicate that augmentation of dynorphin/KOR system activity drives the reduction in stimulated (electrical and ethanol) dopamine release in the NAc. Thus, blockade of

  13. Endomorphins and related opioid peptides.

    Science.gov (United States)

    Okada, Yoshio; Tsuda, Yuko; Bryant, Sharon D; Lazarus, Lawrence H

    2002-01-01

    Opioid peptides and their G-protein-coupled receptors (delta, kappa, mu) are located in the central nervous system and peripheral tissues. The opioid system has been studied to determine the intrinsic mechanism of modulation of pain and to develop uniquely effective pain-control substances with minimal abuse potential and side effects. Two types of endogenous opioid peptides exist, one containing Try-Gly-Gly-Phe as the message domain (enkephalins, endorphins, dynorphins) and the other containing the Tyr-Pro-Phe/Trp sequence (endomorphins-1 and -2). Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has high mu receptor affinity (Ki = 0.36 nM) and remarkable selectivity (4000- and 15,000-fold preference over the delta and kappa receptors, respectively), was isolated from bovine and human brain. In addition, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), isolated from the same sources, exhibited high mu receptor affinity (Ki = 0.69 nM) and very high selectivity (13,000- and 7500-fold preference relative to delta and kappa receptors, respectively). Both opioids bind to mu-opioid receptors, thereby activating G-proteins, resulting in regulation of gastrointestinal motility, manifestation of antinociception, and effects on the vascular systems and memory. To develop novel analgesics with less addictive properties, evaluation of the structure-activity relationships of the endomorphins led to the design of more potent and stable analgesics. Opioidmimetics and opioid peptides containing the amino acid sequence of the message domain of endomorphins, Tyr-Pro-Phe/Trp, could exhibit unique binding activity and lead to the development of new therapeutic drugs for controlling pain.

  14. Spinal Endomorphin 2 Antinociception and the Mechanisms That Produce It Are Both Sex- and Stage of Estrus Cycle–Dependent in Rats

    Science.gov (United States)

    Liu, Nai-Jiang; Gintzler, Alan R.

    2014-01-01

    Endomorphin 2 (EM2) is the predominant endogenous mu-opioid receptor (MOR) ligand in the spinal cord. Given its endogenous presence, antinociceptive responsiveness to the intrathecal application of EM2 most likely reflects its ability to modulate nociception when released in situ. In order to explore the physiological pliability of sex-dependent differences in spinal MOR-mediated antinociception, we investigated the antinociception produced by intrathecal EM2 in male, proestrus female, and diestrus female rats. Antinociception was reflected by changes in tail flick latency to radiant heat. In females, the spinal EM2 antinociceptive system oscillated between analgesically active and inactive states. During diestrus, when circulating estrogens are low, spinal EM2 antinociceptive responsiveness was minimal. In contrast, during proestrus, when circulating estrogens are high, spinal EM2 antinociception was robust and comparable in magnitude to that manifest by males. Furthermore, in proestrus females, spinal EM2 antinociception required spinal dynorphin and kappaopioid receptor activation, concomitant with MOR activation. This is required for neither spinal EM2 antinociception in males nor the antinociception elicited in proestrus females by spinal sufentanil or [d-Ala2,N-methyl-Phe4,Gly-ol5]-enkephalin, which are prototypic MOR-selective nonpeptide and peptide agonists, respectively. These results reveal that spinal EM2 antinociception and the signaling mechanisms used to produce it fundamentally differ in males and females. Perspective The inability to mount spinal EM2 antinociception during defined stages of the estrus (and presumably menstrual) cycle and impaired transition from spinal EM2 analgesically nonresponsive to responsive physiological states could be causally associated with the well-documented greater severity and frequency of chronic intractable pain syndromes in women vs men. PMID:24084000

  15. Effects of morphine and endomorphins on the polysynaptic reflex in the isolated rat spinal cord.

    Science.gov (United States)

    Tao, Pao-Luh; Lai, Yong-Shang; Chow, Lok-Hi; Huang, Eagle Yi-Kung

    2005-01-01

    At the spinal level, mu-opioids exert their actions on nociceptive primary afferent neurons both pre- and postsynaptically. In the present study, we used an in vitro isolated neonatal rat (11-15 days old) spinal cord preparation to examine the effects of morphine and the endogenous mu-opioid ligands endomorphin-1 (EM-1) and endomorphin-2 (EM-2) on the polysynaptic reflex (PSR) of dorsal root-ventral root (DR-VR) reflex. The actions of mu-opioids on spinal nociception were investigated by quantification of the firing frequency and the mean amplitude of the PSR evoked by stimuli with 20 x threshold intensity. EM-1 decreased the mean amplitude of PSR, whereas EM-2 and morphine decreased the firing frequency. The pattern of the effects elicited by morphine was the same as that for EM-2, except at high concentration. Naloxonazine, a selective mu(1) opioid receptor antagonist, had no significant effect on PSR by itself, but blocked the inhibition of PSR firing frequency or amplitude induced by EM-1, -2 and morphine. This may suggest that EM-1, EM-2 and morphine modulate spinal nociception differently and act mainly at the mu(1)-opioid receptors. Although they all act via mu(1)-opioid receptors, their different effects on the PSR may suggest the existence of different subtypes of the mu(1)-opioid receptor. The present data is also consistent with a further hypothesis, namely, that morphine and EM-2 activate a subtype of mu(1)-opioid receptor presynaptically, while EM-1 acts mainly through another subtype postsynaptically. However, since other reports indicate that EM-2, but not EM-1, could stimulate the release of enkephalins or dynorphin, presynaptic delta and kappa receptors may be also involved indirectly in the different regulation by mu-opioids at the spinal level.

  16. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    Directory of Open Access Journals (Sweden)

    Olivier Lesouhaitier

    2009-09-01

    Full Text Available Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction

  17. Concomitant duplications of opioid peptide and receptor genes before the origin of jawed vertebrates.

    Directory of Open Access Journals (Sweden)

    Görel Sundström

    Full Text Available BACKGROUND: The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R before the origin of jawed vertebrates formed the receptor family. METHODOLOGY/PRINCIPAL FINDINGS: Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. CONCLUSIONS/SIGNIFICANCE: The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution.

  18. CXCL10 controls inflammatory pain via opioid peptide-containing macrophages in electroacupuncture.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao--gall bladder meridian (day 0 and 1 and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A. The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10--as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture.

  19. Intrahypothalamic neuroendocrine actions of corticotropin-releasing factor.

    Science.gov (United States)

    Almeida, O F; Hassan, A H; Holsboer, F

    1993-01-01

    Most studies of the neuroendocrine effects of corticotropin-releasing factor (CRF) have focused on its role in the regulation of the pituitary-adrenal axis; activation of this axis follows release of the peptide from CRF-containing terminals in the median eminence. However, a sizeable proportion of CRF fibres terminate within the hypothalamus itself, where synaptic contacts with other hypothalamic neuropeptidergic neurons (e.g. gonadotropin-releasing hormone-containing and opioidergic neurons) have been identified. Here, we summarize physiological and pharmacological data which provide insights into the nature and significance of these intrahypothalamic connections. It is now clear that CRF is a potent secretagogue of the three major endogenous opioid peptides (beta-endorphin, Met-enkephalin and dynorphin) and that it stimulates opioidergic neurons tonically. In the case of beta-endorphin, another hypothalamic peptide, arginine vasopressin, appears to be an essential mediator of CRF's effect, suggesting the occurrence of CRF synapses on, or in the vicinity of, vasopressin neurons; morphological support for this assumption is still wanting. Evidence for direct and indirect inhibitory effects of CRF on sexual behaviour and secretion of reproductive hormones is also presented; the indirect pathways include opioidergic neurons. An important conclusion from all these studies is that, in addition to its better known functions in producing adaptive responses during stressful situations, CRF might also contribute to the coordinated functioning of various components of the neuroendocrine system under basal conditions. Although feedback regulation of hypothalamic neuronal activity by peripheral steroids is a well-established tenet of endocrinology, data on modulation of the intrahypothalamic actions of CRF by adrenal and sex steroids are just emerging. Some of these newer findings may be useful in framing questions related to the mechanisms underlying disease states (such as

  20. Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits.

    Science.gov (United States)

    Yano, M; Steiner, H

    2005-01-01

    Corticostriatal circuits participate in limbic, attentional, motor and other networks, and are implicated in psychostimulant addiction. The psychostimulant methylphenidate is used in the treatment of attention-deficit hyperactivity disorder and for recreational purposes. Recent studies indicate that methylphenidate alters gene expression in striatal neurons. We investigated whether methylphenidate affects gene regulation in specific corticostriatal circuits, by comparing drug-induced molecular changes in different functional domains of the striatum with changes in their cortical input regions. In order to assess the potential functional significance of methylphenidate-induced molecular changes, we examined members of two different classes of plasticity-related molecules, the transcription factor zif 268 and the synaptic plasticity factor Homer 1a. Acute methylphenidate administration in adult rats increased the expression of Homer 1a and zif 268 in both cortex and striatum in a dose-dependent and regionally selective manner. These changes in gene expression occurred after doses of 2 mg/kg (i.p.) and higher, and were highly correlated between cortical regions and their striatal targets. In the cortex, increases were maximal in the medial agranular (premotor) and cingulate cortex, followed by motor and somatosensory cortex, and were minimal in the insular cortex. Correspondingly, in the striatum, increases were most robust in sensorimotor sectors that receive medial agranular input, and were weaker or absent in ventral sectors. The methylphenidate-induced increases in cortical Homer 1a and zif 268 expression were also correlated with increases in striatal substance P and dynorphin expression (direct pathway). Overall, the regional distribution of methylphenidate-induced molecular changes in the striatum was similar to that of changes induced by psychostimulants such as cocaine. These findings demonstrate that methylphenidate affects transcription and synaptic

  1. Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides.

    Science.gov (United States)

    Yano, Motoyo; Steiner, Heinz

    2005-05-01

    Dopamine action alters gene regulation in striatal neurons. Methylphenidate increases extracellular levels of dopamine. We investigated the effects of acute methylphenidate treatment on gene expression in the striatum of adult rats. Molecular changes were mapped in 23 striatal sectors mostly defined by their predominant cortical inputs in order to determine the functional domains affected. Acute administration of 5 and 10 mg/kg (i.p.) of methylphenidate produced robust increases in the expression of the transcription factor c-fos and the neuropeptide substance P. Borderline effects were found with 2 mg/kg, but not with 0.5 mg/kg. For 5 mg/kg, c-fos mRNA levels peaked at 40 min and returned to baseline by 3 h after injection, while substance P mRNA levels peaked at 40-60 min and were back near control levels by 24 h. These molecular changes occurred in most sectors of the caudate-putamen, but were maximal in dorsal sectors that receive sensorimotor and medial agranular cortical inputs, on middle to caudal levels. In rostral and ventral striatal sectors, changes in c-fos and substance P expression were weaker or absent. No effects were seen in the nucleus accumbens, with the exception of c-fos induction in the lateral part of the shell. In contrast to c-fos and substance P, acute methylphenidate treatment had minimal effects on the opioid peptides dynorphin and enkephalin. These results demonstrate that acute methylphenidate alters the expression of c-fos and substance P preferentially in the sensorimotor striatum. These molecular changes are similar, but not identical, to those produced by other psychostimulants.

  2. Dopamine D1-D2 receptor heteromer in dual phenotype GABA/glutamate-coexpressing striatal medium spiny neurons: regulation of BDNF, GAD67 and VGLUT1/2.

    Directory of Open Access Journals (Sweden)

    Melissa L Perreault

    Full Text Available In basal ganglia a significant subset of GABAergic medium spiny neurons (MSNs coexpress D1 and D2 receptors (D1R and D2R along with the neuropeptides dynorphin (DYN and enkephalin (ENK. These coexpressing neurons have been recently shown to have a region-specific distribution throughout the mesolimbic and basal ganglia circuits. While the functional relevance of these MSNs remains relatively unexplored, they have been shown to exhibit the unique property of expressing the dopamine D1-D2 receptor heteromer, a novel receptor complex with distinct pharmacology and cell signaling properties. Here we showed that MSNs coexpressing the D1R and D2R also exhibited a dual GABA/glutamate phenotype. Activation of the D1R-D2R heteromer in these neurons resulted in the simultaneous, but differential regulation of proteins involved in GABA and glutamate production or vesicular uptake in the nucleus accumbens (NAc, ventral tegmental area (VTA, caudate putamen and substantia nigra (SN. Additionally, activation of the D1R-D2R heteromer in NAc shell, but not NAc core, differentially altered protein expression in VTA and SN, regions rich in dopamine cell bodies. The identification of a MSN with dual inhibitory and excitatory intrinsic functions provides new insights into the neuroanatomy of the basal ganglia and demonstrates a novel source of glutamate in this circuit. Furthermore, the demonstration of a dopamine receptor complex with the potential to differentially regulate the expression of proteins directly involved in GABAergic inhibitory or glutamatergic excitatory activation in VTA and SN may potentially provide new insights into the regulation of dopamine neuron activity. This could have broad implications in understanding how dysregulation of neurotransmission within basal ganglia contributes to dopamine neuronal dysfunction.

  3. The relationship between MRNA levels and the locomotor response to novelty.

    Science.gov (United States)

    Hooks, M S; Sorg, B A; Kalivas, P W

    1994-11-14

    Differences in behavioral and neurochemical responses to drugs of abuse and environmental stress have been observed between rats that have a greater locomotor response in a novel environment (high responders: HR) compared to those that have a low response to novelty (low responders: LR). This study examined nuclei associated with the nigrostriatal and mesolimbic systems for differences in mRNA content between HR and LR using Northern blot analysis. These brain regions were chosen because of their role in both drug abuse and stress responses. The mRNAs examined code for either peptide transmitters that interact with the dopaminergic system or components of the dopaminergic system that have not been previously examined for differences between HR and LR. HR rats had approximately 50% lower levels of mRNA for beta-preprotachykinin (PPT) in the core of the nucleus accumbens (NACC) compared to LR. No differences between HR and LR in mRNA levels for dynorphin (DYN), preproenkephalin (PPE), glutamic acid decarboxylase (GAD) or neurotensin (NT) were observed in the core of the NACC. In the shell region of the NACC, HR exhibited a 25% reduction in the level of mRNA for NT compared to LR. No differences between HR and LR in mRNA levels for PPT, DYN, PPE or GAD were observed in the shell of the NACC. In the medial frontal cortex and the dorsal striatum, no differences between HR and LR in mRNA levels for PPT, DYN, PPE, GAD or NT were found. In the substantia nigra and ventral tegmental area no differences between HR and LR in mRNA levels for tyrosine hydroxylase, GAD, cholecystokinin, or NT were noted.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Neurochemical and behavioural indices of exercise reward are independent of exercise controllability.

    Science.gov (United States)

    Herrera, Jonathan J; Fedynska, Sofiya; Ghasem, Parsa R; Wieman, Tyler; Clark, Peter J; Gray, Nathan; Loetz, Esteban; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2016-05-01

    Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary running (VR) and forced running (FR) protect rats against the anxiety-like and depression-like behavioural consequences of stress. Voluntary exercise is a natural reward, but whether rats find FR rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, VR, or FR groups. FR rats were forced to run in a pattern resembling the natural wheel running behavior of rats. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum and nucleus accumbens, and increased the activity of DA neurons in the lateral ventral tegmental area, as revealed by immunohistochemistry for tyrosine hydroxylase and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct-pathway (dynorphin-positive) neurons in the dorsal striatum and nucleus accumbens in both VR and FR rats, and in tyrosine hydroxylase-positive neurons in the lateral ventral tegmental area of VR rats only. The results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance.

  5. Addiction is a Reward Deficit and Stress Surfeit Disorder.

    Science.gov (United States)

    Koob, George F

    2013-01-01

    Drug addiction can be defined by a three-stage cycle - binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation - that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF) and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes). CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction.

  6. Addiction is a reward deficit and stress surfeit disorder

    Directory of Open Access Journals (Sweden)

    George F Koob

    2013-08-01

    Full Text Available Drug addiction can be defined by a three-stage cycle—binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation—that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain reward and stress systems. Specific neurochemical elements in these structures include not only decreases in reward system function (within-system opponent processes but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF and dynorphin-κ opioid systems in the ventral striatum, extended amygdala, and frontal cortex (both between-system opponent processes. CRF antagonists block anxiety-like responses associated with withdrawal, block increases in reward thresholds produced by withdrawal from drugs of abuse, and block compulsive-like drug taking during extended access. Excessive drug taking also engages the activation of CRF in the medial prefrontal cortex, paralleled by deficits in executive function that may facilitate the transition to compulsive-like responding. Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for ethanol similar to a CRF1 antagonist. Blockade of the κ opioid system can also block dysphoric-like effects associated with withdrawal from drugs of abuse and block the development of compulsive-like responding during extended access to drugs of abuse, suggesting another powerful brain stress system that contributes to compulsive drug seeking. The loss of reward function and recruitment of brain systems provide a powerful neurochemical basis that drives the compulsivity of addiction.

  7. Effects of kappa-opioid receptor ligands on intracranial self-stimulation in rats.

    Science.gov (United States)

    Todtenkopf, Mark S; Marcus, Jacqueline F; Portoghese, Philip S; Carlezon, William A

    2004-04-01

    Elevations in cAMP response element binding protein (CREB) function within the mesolimbic system of rats reduce cocaine reward in place conditioning studies and increase immobility in the forced swim test. Each of these behavioral adaptations can be interpreted as a depressive-like effect (i.e., anhedonia, despair) that may reflect reduced activity of brain reward systems. Furthermore, each effect appears due to increases in CREB-mediated expression of dynorphin, since each is attenuated by intracranial injections of the kappa-opioid receptor antagonist norBNI. Intracranial self-stimulation (ICSS) studies were conducted in rats to determine whether administration of a kappa-agonist would have depressive-like effects on brain stimulation reward, and whether pretreatment with a kappa-antagonist would attenuate any such effects. Conditions that have depressive effects in people (e.g., drug withdrawal) increase the threshold amounts of stimulation required to sustain ICSS in rats. Sprague-Dawley rats with lateral hypothalamic stimulating electrodes were tested in a "curve-shift" variant of the ICSS procedure after systemic administration of the kappa-agonist U-69593 alone, the novel kappa-antagonist 5'-acetamidinoethylnaltrindole (ANTI) alone, or co-administration of both drugs. U-69593 dose dependently increased ICSS thresholds, suggesting that activation of kappa-receptors reduced the rewarding impact of the brain stimulation. ANTI had no effects on its own, but it attenuated increases in ICSS thresholds caused by the agonist. These data provide further evidence that stimulation of brain kappa-receptors may trigger certain depressive-like signs, and that kappa antagonists may have efficacy as antidepressants without having reward-related actions of their own.

  8. Salvinorin A, an active component of the hallucinogenic sage salvia divinorum is a highly efficacious kappa-opioid receptor agonist: structural and functional considerations.

    Science.gov (United States)

    Chavkin, Charles; Sud, Sumit; Jin, Wenzhen; Stewart, Jeremy; Zjawiony, Jordan K; Siebert, Daniel J; Toth, Beth Ann; Hufeisen, Sandra J; Roth, Bryan L

    2004-03-01

    The diterpene salvinorin A from Salvia divinorum has recently been reported to be a high-affinity and selective kappa-opioid receptor agonist (Roth et al., 2002). Salvinorin A and selected derivatives were found to be potent and efficacious agonists in several measures of agonist activity using cloned human kappa-opioid receptors expressed in human embryonic kidney-293 cells. Thus, salvinorin A, salvinorinyl-2-propionate, and salvinorinyl-2-heptanoate were found to be either full (salvinorin A) or partial (2-propionate, 2-heptanoate) agonists for inhibition of forskolin-stimulated cAMP production. Additional studies of agonist potency and efficacy of salvinorin A, performed by cotransfecting either the chimeric G proteins Gaq-i5 or the universal G protein Ga16 and quantification of agonist-evoked intracellular calcium mobilization, affirmed that salvinorin A was a potent and effective kappa-opioid agonist. Results from structure-function studies suggested that the nature of the substituent at the 2-position of salvinorin A was critical for kappa-opioid receptor binding and activation. Because issues of receptor reserve complicate estimates of agonist efficacy and potency, we also examined the agonist actions of salvinorin A by measuring potassium conductance through G protein-gated K(+) channels coexpressed in Xenopus oocytes, a system in which receptor reserve is minimal. Salvinorin A was found to be a full agonist, being significantly more efficacious than (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U50488) or (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane-sulfonate hydrate (U69593) (two standard kappa-opioid agonists) and similar in efficacy to dynorphin A (the naturally occurring peptide ligand for kappa-opioid receptors). Salvinorin A thus represents the first known naturally occurring non-nitrogenous full agonist at kappa-opioid receptors.

  9. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans

    Science.gov (United States)

    Maqueda, Ana Elda; Valle, Marta; Addy, Peter H.; Antonijoan, Rosa Maria; Puntes, Montserrat; Coimbra, Jimena; Ballester, Maria Rosa; Garrido, Maite; González, Mireia; Claramunt, Judit; Barker, Steven; Johnson, Matthew W.; Griffiths, Roland R.

    2015-01-01

    Background: Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. Methods: A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. Results: Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. Conclusions: Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans. PMID:26047623

  10. Identification of the molecular mechanisms by which the diterpenoid salvinorin A binds to kappa-opioid receptors.

    Science.gov (United States)

    Yan, Feng; Mosier, Philip D; Westkaemper, Richard B; Stewart, Jeremy; Zjawiony, Jordan K; Vortherms, Timothy A; Sheffler, Douglas J; Roth, Bryan L

    2005-06-21

    Salvinorin A is a naturally occurring hallucinogenic diterpenoid from the plant Salvia divinorumthat selectively and potently activates kappa-opioid receptors (KORs). Salvinorin A is unique in that it is the only known lipid-like molecule that selectively and potently activates a G-protein coupled receptor (GPCR), which has as its endogenous agonist a peptide; salvinorin A is also the only known non-nitrogenous opioid receptor agonist. In this paper, we identify key residues in KORs responsible for the high binding affinity and agonist efficacy of salvinorin A. Surprisingly, we discovered that salvinorin A was stabilized in the binding pocket by interactions with tyrosine residues in helix 7 (Tyr313 and Tyr320) and helix 2 (Tyr119). Intriguingly, activation of KORs by salvinorin A required interactions with the helix 7 tyrosines Tyr312, Tyr313, and Tyr320 and with Tyr139 in helix 3. In contrast, the prototypical nitrogenous KOR agonist U69593 and the endogenous peptidergic agonist dynorphin A (1-13) showed differential requirements for these three residues for binding and activation. We also employed a novel approach, whereby we examined the effects of cysteine-substitution mutagenesis on the binding of salvinorin A and an analogue with a free sulfhydryl group, 2-thiosalvinorin B. We discovered that residues predicted to be in close proximity, especially Tyr313, to the free thiol of 2-thiosalvinorin B when mutated to Cys showed enhanced affinity for 2-thiosalvinorin B. When these findings are taken together, they imply that the diterpenoid salvinorin A utilizes unique residues within a commonly shared binding pocket to selectively activate KORs.

  11. Relative Timing Between Kappa Opioid Receptor Activation and Cocaine Determines the Impact on Reward and Dopamine Release

    Science.gov (United States)

    Chartoff, Elena H; Ebner, Shayla R; Sparrow, Angela; Potter, David; Baker, Phillip M; Ragozzino, Michael E; Roitman, Mitchell F

    2016-01-01

    Negative affective states can increase the rewarding value of drugs of abuse and promote drug taking. Chronic cocaine exposure increases levels of the neuropeptide dynorphin, an endogenous ligand at kappa opioid receptors (KOR) that suppresses dopamine release in the nucleus accumbens (NAc) and elicits negative affective states upon drug withdrawal. However, there is evidence that the effects of KOR activation on affective state are biphasic: immediate aversive effects are followed by delayed increases in reward. The impact of KOR-induced affective states on reward-related effects of cocaine over time is not known. We hypothesize that the initial aversive effects of KOR activation increase, whereas the delayed rewarding effects decrease, the net effects of cocaine on reward and dopamine release. We treated rats with cocaine at various times (15 min to 48 h) after administration of the selective KOR agonist salvinorin A (salvA). Using intracranial self-stimulation and fast scan cyclic voltammetry, we found that cocaine-induced increases in brain stimulation reward and evoked dopamine release in the NAc core were potentiated when cocaine was administered within 1 h of salvA, but attenuated when administered 24 h after salvA. Quantitative real-time PCR was used to show that KOR and prodynorphin mRNA levels were decreased in the NAc, whereas tyrosine hydroxylase and dopamine transporter mRNA levels and tissue dopamine content were increased in the ventral tegmental area 24 h post-salvA. These findings raise the possibility that KOR activation—as occurs upon withdrawal from chronic cocaine—modulates vulnerability to cocaine in a time-dependent manner. PMID:26239494

  12. Addiction and depression comorbidity approaches

    Directory of Open Access Journals (Sweden)

    Crnić Katarina A.B.

    2016-01-01

    Full Text Available Topic: Comorbidities, simultaneous occurrence of two or more disorders are common in psychiatry; therefore the concept of dual diagnosis was established due to new ethiopatogenetic dilemmas and principles of diagnosis and treatment of these conditions. The most common are comorbid affective disorders and comorbidity of drug addictions and affective disorders. Topic position in medical public: Epidemiological studies show a high percentage of comorbidity of drug addictions and depression. Various studies show that about one-third of individuals with depression have addiction, and often some other psychiatric disorders are present, such as personality disorder, anxiety, and bipolar affective disorder. Comorbid disorders exacerbate one another; have tendencies to chronicity and treatment resistance. The problem of adequate diagnosis is common; other diagnosis is neglected, leading to inadequate treatment and poor outcomes. Researches of possible causes of addiction and depression comorbidity follow different theoretical assumptions. One favor genetically determined vulnerability, the others are addressing to the impact of trauma in the formative stages of personality development. Widespread is the theoretical assumption on the deficit functioning of the same regions of the CNS and the same neurotransmitters system. In previous studies the preclinical ones dominate, which are theoretically placed in the context of the CNS of a man. Most of the research are related to dysfunction of the serotonergic and dopaminergic systems, whose influence on addiction and depression are clear, and recent studies show the importance of neuromodulators and their receptors, for example, the role of natural opioid dynorphin and 'kappa' receptors in the mesolimbic reward system. Further action: The better diagnosis would require proper screening of patients entering addiction treatments for affective disorders and vice versa. Treatment have to be combined; in addition

  13. A monomeric variant of insulin degrading enzyme (IDE loses its regulatory properties.

    Directory of Open Access Journals (Sweden)

    Eun Suk Song

    Full Text Available BACKGROUND: Insulin degrading enzyme (IDE is a key enzyme in the metabolism of both insulin and amyloid beta peptides. IDE is unique in that it is subject to allosteric activation which is hypothesized to occur through an oligomeric structure. METHODOLOGY/PRINCIPAL FINDINGS: IDE is known to exist as an equilibrium mixture of monomers, dimers, and higher oligomers, with the dimer being the predominant form. Based on the crystal structure of IDE we deleted the putative dimer interface in the C-terminal region, which resulted in a monomeric variant. Monomeric IDE retained enzymatic activity, however instead of the allosteric behavior seen with wild type enzyme it displayed Michaelis-Menten kinetic behavior. With the substrate Abz-GGFLRKHGQ-EDDnp, monomeric IDE retained approximately 25% of the wild type activity. In contrast with the larger peptide substrates beta-endorphin and amyloid beta peptide 1-40, monomeric IDE retained only 1 to 0.25% of wild type activity. Unlike wild type IDE neither bradykinin nor dynorphin B-9 activated the monomeric variant of the enzyme. Similarly, monomeric IDE was not activated by polyphosphates under conditions in which the activity of wild type enzyme was increased more than 50 fold. CONCLUSIONS/SIGNIFICANCE: These findings serve to establish the dimer interface in IDE and demonstrate the requirement for an oligomeric form of the enzyme for its regulatory properties. The data support a mechanism where the binding of activators to oligomeric IDE induces a conformational change that cannot occur in the monomeric variant. Since a conformational change from a closed to a more open structure is likely the rate-determining step in the IDE reaction, the subunit induced conformational change likely shifts the structure of the oligomeric enzyme to a more open conformation.

  14. Focus on acute diarrhoeal disease

    Institute of Scientific and Technical Information of China (English)

    Fabio Baldi; Maria Antonia Bianco; Gerardo Nardone; Alberto Pilotto; Emanuela Zamparo

    2009-01-01

    Diarrhoea is an alteration of normal bowel movement characterized by an increase in the water content,volume, or frequency of stools. Diarrhoea needs to be classified according to the trends over time (acute or chronic) and to the characteristics of the stools (watery, fatty, inflammatory). Secretory diarrhoeas,mostly acute and of viral aetiology in more than 70% of cases, are by far the most important subtype of diarrhoeas in terms of frequency, incidence and mortality (over 2.5 million deaths/year in developing countries). Natural and synthetic opiates such as morphine, codeine, and loperamide which react with endogenous opiates (enkephalins, beta-endorphins,dynorphins) mainly act on intestinal motility and slow down transit. An antidiarrhoeal drug developed in recent years, racecadotril, acts as an enkephalinase inhibitor.Clinical studies have shown that it is just as effective as loperamide in resolving acute diarrhoea but with greater reduction in pain and abdominal distension.Some studies have explored the prevalence of diarrhoea in old age. An epidemiological study carried out in Italy by 133 General Practitioners on 5515 elderly outpatients reported a prevalence of diarrhoea, defined according to the Rome criteria, of 9.1%. Infectious diseases (19%) and drug use (16%) were the most commoncauses of diarrhoea in old age. Regardless of the cause,the treatment of elderly patients with diarrhoea must include rehydration and nutritional support. Every year,more than 50 million tourists travel from industrialized countries to places where hygiene levels are poor. At least 75% of those travelling for short periods mention health problems, and in particular traveller's diarrhoea.

  15. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus1

    Science.gov (United States)

    Chee, Melissa J. S.; Pissios, Pavlos; Maratos-Flier, Eleftheria

    2013-01-01

    Melanin-concentrating hormone (MCH) is a hypothalamic neuropeptide that acts via MCH receptor 1 (MCHR1) in the mouse. It promotes positive energy balance thus mice lacking MCH or MCHR1 are lean, hyperactive, and resistant to diet-induced obesity. Identifying the cellular targets of MCH is an important step to understanding the mechanisms underlying MCH actions. We generated the Mchr1-cre mouse that expressed cre recombinase driven by the MCHR1 promoter and crossed it with a tdTomato reporter mouse. The resulting Mchr1-cre/tdTomato progeny expressed easily detectable tdTomato fluorescence in MCHR1 neurons, which were found throughout the olfactory system, striatum, and hypothalamus. To chemically identify MCH-targeted cell populations that play a role in energy balance, MCHR1 hypothalamic neurons were characterized by colabeling select hypothalamic neuropeptides with tdTomato fluorescence. TdTomato fluorescence colocalized with dynorphin, oxytocin, vasopressin, enkephalin, thyrothropin-releasing hormone, and corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus. In the lateral hypothalamus, neurotensin but neither orexin nor MCH neurons expressed tdTomato. In the arcuate nucleus, both Neuropeptide Y and proopiomelanocortin cells expressed tdTomato. We further demonstrated that some of these arcuate neurons were also targets of leptin action. Interestingly, MCHR1 was expressed in the vast majority of leptin-sensitive proopiomelanocortin neurons, highlighting their importance for the orexigenic actions of MCH. Taken together, this study supports the use of the Mchr1-cre mouse for outlining the neuroanatomical distribution and neurochemical phenotype of MCHR1 neurons. PMID:23605441

  16. Minimizing Postsampling Degradation of Peptides by a Thermal Benchtop Tissue Stabilization Method.

    Science.gov (United States)

    Segerström, Lova; Gustavsson, Jenny; Nylander, Ingrid

    2016-04-01

    Enzymatic degradation is a major concern in peptide analysis. Postmortem metabolism in biological samples entails considerable risk for measurements misrepresentative of true in vivo concentrations. It is therefore vital to find reliable, reproducible, and easy-to-use procedures to inhibit enzymatic activity in fresh tissues before subjecting them to qualitative and quantitative analyses. The aim of this study was to test a benchtop thermal stabilization method to optimize measurement of endogenous opioids in brain tissue. Endogenous opioid peptides are generated from precursor proteins through multiple enzymatic steps that include conversion of one bioactive peptide to another, often with a different function. Ex vivo metabolism may, therefore, lead to erroneous functional interpretations. The efficacy of heat stabilization was systematically evaluated in a number of postmortem handling procedures. Dynorphin B (DYNB), Leu-enkephalin-Arg(6) (LARG), and Met-enkephalin-Arg(6)-Phe(7) (MEAP) were measured by radioimmunoassay in rat hypothalamus, striatum (STR), and cingulate cortex (CCX). Also, simplified extraction protocols for stabilized tissue were tested. Stabilization affected all peptide levels to varying degrees compared to those prepared by standard dissection and tissue handling procedures. Stabilization increased DYNB in hypothalamus, but not STR or CCX, whereas LARG generally decreased. MEAP increased in hypothalamus after all stabilization procedures, whereas for STR and CCX, the effect was dependent on the time point for stabilization. The efficacy of stabilization allowed samples to be left for 2 hours in room temperature (20°C) without changes in peptide levels. This study shows that conductive heat transfer is an easy-to-use and efficient procedure for the preservation of the molecular composition in biological samples. Region- and peptide-specific critical steps were identified and stabilization enabled the optimization of tissue handling and opioid

  17. Theoretical frameworks and mechanistic aspects of alcohol addiction: alcohol addiction as a reward deficit disorder.

    Science.gov (United States)

    Koob, George F

    2013-01-01

    of withdrawal include norepinephrine, dynorphin, and neuropeptide Y. The combination of loss of reward function and recruitment of brain stress systems provides a powerful neurochemical basis for a negative emotional state that is responsible for the negative reinforcement driving, at least partially, the compulsivity of alcoholism.

  18. Desipramine and citalopram attenuate pretest swim-induced increases in prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis and the lateral division of the central nucleus of the amygdala in the forced swimming test.

    Science.gov (United States)

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Cho, Jin Hee; Cho, Yun Ha; Kim, Dong-Hoon; Shin, Kyung Ho

    2014-10-01

    Dynorphin in the nucleus accumbens shell plays an important role in antidepressant-like effect in the forced swimming test (FST), but it is unclear whether desipramine and citalopram treatments alter prodynorphin levels in other brain areas. To explore this possibility, we injected mice with desipramine and citalopram 0.5, 19, and 23 h after a 15-min pretest swim and observed changes in prodynorphin expression before the test swim, which was conducted 24 h after the pretest swim. The pretest swim increased prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis (dBNST) and lateral division of the central nucleus of the amygdala (CeL). This increase in prodynorphin immunoreactivity in the dBNST and CeL was blocked by desipramine and citalopram treatments. Similar changes in prodynorphin mRNA levels were observed in the dBNST and CeL, but these changes did not reach significance. To understand the underlying mechanism, we assessed changes in phosphorylated CREB at Ser(133) (pCREB) immunoreactivity in the dBNST and central nucleus of the amygdala (CeA). Treatment with citalopram but not desipramine after the pretest swim significantly increased pCREB immunoreactivity only in the dBNST. These results suggest that regulation of prodynorphin in the dBNST and CeL before the test swim may be involved in the antidepressant-like effect of desipramine and citalopram in the FST and suggest that changes in pCREB immunoreactivity in these areas may not play an important role in the regulation of prodynorphin in the dBNST and CeA.

  19. Enkephalins modulate inhibitory neuromuscular transmission in circular muscle of human colon via delta-opioid receptors.

    Science.gov (United States)

    Hoyle, C H; Kamm, M A; Burnstock, G; Lennard-Jones, J E

    1990-01-01

    1. A sucrose-gap technique was used to investigate the neuromodulatory actions of enkephalins on non-adrenergic, non-cholinergic inhibitory junction potentials (IJPs) in the circular muscle of the human large intestine. 2. The native enkephalins, [Leu5]enkephalin (LENK) and [Met5]enkephalin (MENK) caused a concentration-dependent reduction in amplitude of IJPs without a significant effect on the smooth muscle membrane. 3. The actions of LENK and MENK were mimicked by the delta-selective opioid receptor agonists [D-Pen2, D-Pen5]enkephalin (DPDPE) and [D-Ala2, D-Leu5]enkephalin (DADLE). 4. The actions of LENK, MENK and DPDPE were antagonized to similar extents by the delta-selective opioid receptor antagonist ICI 174,864. 5. The mu-selective opioid receptor agonist [D-Ala2, Me Phe, Gly-ol5]enkephalin was approximately 100-fold less potent than any of the native or synthetic enkephalins at reducing the amplitude of the IJP. Dynorphin A and beta-endorphin both had very weak activity. 6. Responses to all of the agonists were inhibited by naloxone. The degree of antagonism of DPDPE or DADLE by naloxone (1 microM) was the same as that of LENK or MENK. 7. Neither MENK nor LENK affected hyperpolarization of the smooth muscle membrane induced by ATP or 5-hydroxytryptamine. Vasoactive intestinal polypeptide (1 pM-1 microM) did not produce any observable responses and this lack of reactivity was not affected by the enkephalins. 8. It is concluded that in the circular muscle of the human colon, LENK and MENK can act on prejunctional delta-opioid receptors to produce inhibition of non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. Possible physiological significance of this prejunctional receptor is discussed. PMID:1966052

  20. Leptin and Reproduction: Past Milestones, Present Undertakings and Future Endeavors

    Science.gov (United States)

    Chehab, Farid F.

    2014-01-01

    The association between leptin and reproduction originated with the leptin-mediated correction of sterility in ob/ob mice and initiation of reproductive function in normal female mice. The uncovering of a central leptin pathway regulating food intake prompted the dissection of neuroendocrine mechanisms involving leptin in the metabolic control of reproduction. The absence of leptin receptors on GnRH neurons incited a search for intermediary neurons situated between leptin responsive and GnRH neurons. This review addresses the most significant findings that have furthered our understanding of recent progress in this new field. The role of leptin in puberty was impacted by the discovery of neurons that co-express kisspeptin, neurokinin B and dynorphin and that could act as leptin intermediates. Furthermore, the identification of first-order leptin-responsive neurons in the premammilary ventral nucleus and other brain regions opens new avenues to explore their relationship to GnRH neurons. Central to these advances is the unveiling that AgRP/NPY neurons project onto GnRH and kisspeptin neurons, allowing a crosstalk between food intake and reproduction. Finally, whereas puberty is a state of leptin sensitivity, mid-gestation represents a state of leptin resistance aimed at building energy stores to sustain pregnancy and lactation. Mechanisms underlying leptin resistance in pregnancy have lagged, however the establishment of this natural state is significant. Reproduction and energy balance are tightly controlled and backed up by redundant mechanisms that are critical for the survival of our species. It will be the goal of the next decade to shed new light on these complex and essential pathways. PMID:25118207

  1. Preparation and evaluation of open tubular C18-silica monolithic microcartridges for preconcentration of peptides by on-line solid phase extraction capillary electrophoresis.

    Science.gov (United States)

    Ortiz-Villanueva, Elena; Benavente, Fernando; Giménez, Estela; Yilmaz, Fatma; Sanz-Nebot, Victoria

    2014-10-10

    In this study, C18-silica monoliths were synthesized as a porous layer in open tubular capillary columns, to be cut later into microcartridges for the analysis of neuropeptides by on-line solid-phase extraction capillary electrophoresis with UV and MS detection (SPE-CE-UV and SPE-CE-MS). First, several types of C18-silica monolithic (MtC18) microcartridges were used to analyse standard solutions of five neuropeptides (i.e. dynorphin A (1-7), substance P (7-11), endomorphin 1, methionine enkephalin and [Ala]-methionine enkephalin). The MtC18 sorbents were especially selective against endomorphin 1 and substance P (7-11)). The best results in terms of sensitivity and inter-microcartridge reproducibility were achieved with the microcartridges obtained from a 10-cm open tubular capillary column with a thin monolithic coating with large through-pores (1-5μm). Run-to-run repeatability, microcartridge durability, linearity ranges and LODs were studied by MtC18-SPE-CE-MS. As expected due to their greater selectivity, the best LOD enhancement was obtained for End1 and SP (7-11) (50 times with regard to CE-MS). Finally, the suitability of the methodology for analysing biological fluids was tested with plasma samples spiked with End1 and SP (7-11). Results obtained were promising because both neuropeptides could be detected at 0.05μgmL(-1), which was almost the same concentration level as for the standard solutions (0.01μgmL(-1)).

  2. Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice.

    Science.gov (United States)

    Kastenberger, Iris; Lutsch, Christian; Herzog, Herbert; Schwarzer, Christoph

    2012-01-01

    The role of dynorphin/kappa opioid receptors in epilepsy and addiction are well accepted, but their function in emotional control is not yet fully understood. Data obtained from different strains of prodynorphin (Pdyn)- and kappa opioid receptor (KOP)-deficient mice do not provide a consistent picture of the functions of Dyn/KOP in anxiety, suggesting the influence of testing conditions and/or genetic background. Therefore, we investigated the behaviour and neurochemistry of male and female Pdyn KO mice on the balb/c and C57Bl/6N background. Consistent with our results obtained from male mice on the C57bl/6N background, we observed a less anxious phenotype in the elevated plus maze, open-field and light-dark test in male mice on the balb/c background. Female mice on the balb/c background also displayed less anxiety like behaviour; however these data reflect high trait anxiety and inter-individual differences. In contrast, female mice on the C57Bl/6N background displayed low trait anxiety and a paradigm-dependent reduction of anxiety. No differences were observed in the forced swim test, while balb/c Pdyn KO mice displayed prolonged immobility in the tail suspension test. In line with our previous results, we observed reduced CRH mRNA in the central amygdala in all groups of mice. In contrast, the recently observed CRH mRNA reduction in the hypothalamic paraventricular nucleus appears restricted to male, but not female mice. Our data support previous data suggesting a pronounced impact of endogenous prodynorphin-derived peptides on anxiety. Moreover, our data support the idea that the less anxious phenotype manifests only at elevated stress levels.

  3. Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Iris Kastenberger

    Full Text Available The role of dynorphin/kappa opioid receptors in epilepsy and addiction are well accepted, but their function in emotional control is not yet fully understood. Data obtained from different strains of prodynorphin (Pdyn- and kappa opioid receptor (KOP-deficient mice do not provide a consistent picture of the functions of Dyn/KOP in anxiety, suggesting the influence of testing conditions and/or genetic background. Therefore, we investigated the behaviour and neurochemistry of male and female Pdyn KO mice on the balb/c and C57Bl/6N background. Consistent with our results obtained from male mice on the C57bl/6N background, we observed a less anxious phenotype in the elevated plus maze, open-field and light-dark test in male mice on the balb/c background. Female mice on the balb/c background also displayed less anxiety like behaviour; however these data reflect high trait anxiety and inter-individual differences. In contrast, female mice on the C57Bl/6N background displayed low trait anxiety and a paradigm-dependent reduction of anxiety. No differences were observed in the forced swim test, while balb/c Pdyn KO mice displayed prolonged immobility in the tail suspension test. In line with our previous results, we observed reduced CRH mRNA in the central amygdala in all groups of mice. In contrast, the recently observed CRH mRNA reduction in the hypothalamic paraventricular nucleus appears restricted to male, but not female mice. Our data support previous data suggesting a pronounced impact of endogenous prodynorphin-derived peptides on anxiety. Moreover, our data support the idea that the less anxious phenotype manifests only at elevated stress levels.

  4. Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: Involvement of kappa opioid receptors

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2016-02-01

    Full Text Available Our laboratory has previously demonstrated that daily forced swim stress (FSS prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 hr/day x 4 days/week to ethanol vapor (CIE group or air (CTL group. Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 hour access to 15% ethanol. Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min, the KOR agonist U50,488 (5 mg/kg, or a vehicle injection (non-stressed condition prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0,1.25, 2.5, 5.0 mg/kg one hour prior to each daily drinking test (in lieu of FSS. All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was

  5. Hypothalamic energy balance gene responses in the Sprague-Dawley rat to supplementation of high-energy diet with liquid ensure and subsequent transfer to chow.

    Science.gov (United States)

    Archer, Z A; Rayner, D V; Barrett, P; Balik, A; Duncan, J S; Moar, K M; Mercer, J G

    2005-11-01

    Energy dense, high fat, high sugar, foods and beverages in our diet are a major contributor to the escalating global obesity problem. Here, we examine the physiological and neuroendocrine effects of feeding rats a solid high-energy (HE) diet with or without a liquid supplement (Ensure) and the consequence of subsequently transferring animals back to chow (C). Outbred Sprague-Dawley rats were fed C until 49-56 days of age, and then transferred a HE diet for 3 weeks before allocation to one of two weight-matched groups. Over the next 10 weeks, one group remained on HE diet, whereas the other had access to the liquid diet, chocolate Ensure (EN), in addition to HE diet (HE + EN). Half the rats from each group were then killed, and the remainder were returned to C for 3 weeks. Supplementation of the HE diet with EN accelerated weight gain and increased daily energy intake, adipose tissue mass, and circulating leptin levels. Transferring animals back to C caused a decrease in bodyweight in the HE + EN group, whereas HE animals were weight stable. Both groups also exhibited voluntary hypophagia, although the magnitude and duration of this response was greater in HE + EN animals. The only effect of Ensure on the hypothalamic genes studied was on tyrosine kinase B expression in the ventromedial hypothalamic nucleus (VMH), which was increased in rats given the supplement. Withdrawal of the obesogenic diets decreased gene expression for cocaine-and-amphetamine regulated transcript (CART) and dynorphin (DYN) in the arcuate nucleus (ARC), and DYN and brain-derived neurotrophic factor (BDNF) in the VMH, whereas neuropeptide Y (NPY) gene expression in the ARC was increased. These changes were independent of previous dietary history. EN supplementation generates distinct physiological responses, yet has a minimal effect on hypothalamic neuropeptide or receptor gene expression, possibly due to the development of leptin resistance. Withdrawal of obesogenic diets induces changes in

  6. Effects of casoxin 4 on morphine inhibition of small animal intestinal contractility and gut transit in the mouse

    Directory of Open Access Journals (Sweden)

    Glen S Patten

    2011-02-01

    Full Text Available Glen S Patten1,2, Richard J Head1, Mahinda Y Abeywardena1,21CSIRO Preventative Health National Research Flagship, Adelaide, Australia; 2CSIRO Food and Nutritional Sciences, Adelaide, AustraliaBackground and aims: Chronic opioid analgesia has the debilitating side-effect of constipation in human patients. The major aims of this study were to: 1 characterize the opioid-specific antagonism of morphine-induced inhibition of electrically driven contraction of the small intestine of mice, rats, and guinea pigs; and 2 test if the oral delivery of small milk-derived opioid antagonist peptides could block morphine-induced inhibition of intestinal transit in mice.Methods: Mouse, rat, and guinea pig intact ileal sections were electrically stimulated to contract and inhibited with morphine in vitro. Morphine inhibition was then blocked by opioid subtype antagonists in the mouse and guinea pig. Using a polymeric dye, Poly R-478, the opioid antagonists casoxin 4 and lactoferroxin A were tested orally for blocking activity of morphine inhibition of gut transit in vivo by single or double gavage techniques.Results: The guinea pig tissue was more sensitive to morphine inhibition compared with the mouse or the rat (IC50 [half maximal inhibitory concentration] values as nmol/L ± SEM were 34 ± 3, 230 ± 13, and 310 ± 14 respectively (P < 0.01. The inhibitory influence of opioid agonists (IC50 in electrically driven ileal mouse preparations were DADLE ([D-Ala2, D-Leu5]-enkephalin ≥ met-enkephalin ≥ dynorphin A ≥ DAMGO ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin > morphine > morphiceptin as nmol/L 13.9, 17.3, 19.5, 23.3, 230, and 403 respectively. The mouse demonstrated predominantly Κ- and δ-opioid receptor activity with a smaller µ-opioid receptor component. Both mouse and guinea pig tissue were sensitive to casoxin 4 antagonism of morphine inhibition of contraction. In contrast to naloxone, relatively high oral doses of the µ-opioid receptor antagonists

  7. Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity.

    Science.gov (United States)

    Walwyn, Wendy M; Chen, Wenling; Kim, Hyeyoung; Minasyan, Ani; Ennes, Helena S; McRoberts, James A; Marvizón, Juan Carlos G

    2016-01-06

    Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery ("remission") from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6β-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser(375) phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent sensitization is a phenomenon

  8. Sex differences in kappa opioid receptor function and their potential impact on addiction

    Directory of Open Access Journals (Sweden)

    Elena eChartoff

    2015-12-01

    Full Text Available Behavioral, biological and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN, an endogenous ligand at kappa opioid receptors (KORs, is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain,mood and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN gene, genetic linkage with the melanocortin-1 receptor (MC1R, heterodimerization of KORs and mu opioid receptors (MORs, and gonadal hormones

  9. The dark side of emotion: the addiction perspective.

    Science.gov (United States)

    Koob, George F

    2015-04-15

    Emotions are "feeling" states and classic physiological emotive responses that are interpreted based on the history of the organism and the context. Motivation is a persistent state that leads to organized activity. Both are intervening variables and intimately related and have neural representations in the brain. The present thesis is that drugs of abuse elicit powerful emotions that can be interwoven conceptually into this framework. Such emotions range from pronounced euphoria to a devastating negative emotional state that in the extreme can create a break with homeostasis and thus an allostatic hedonic state that has been considered key to the etiology and maintenance of the pathophysiology of addiction. Drug addiction can be defined as a three-stage cycle-binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation-that involves allostatic changes in the brain reward and stress systems. Two primary sources of reinforcement, positive and negative reinforcement, have been hypothesized to play a role in this allostatic process. The negative emotional state that drives negative reinforcement is hypothesized to derive from dysregulation of key neurochemical elements involved in the brain incentive salience and stress systems. Specific neurochemical elements in these structures include not only decreases in incentive salience system function in the ventral striatum (within-system opponent processes) but also recruitment of the brain stress systems mediated by corticotropin-releasing factor (CRF), dynorphin-κ opioid systems, and norepinephrine, vasopressin, hypocretin, and substance P in the extended amygdala (between-system opponent processes). Neuropeptide Y, a powerful anti-stress neurotransmitter, has a profile of action on compulsive-like responding for drugs similar to a CRF1 receptor antagonist. Other stress buffers include nociceptin and endocannabinoids, which may also work through interactions with the extended amygdala. The thesis argued

  10. Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism.

    Science.gov (United States)

    Al-Hasani, Ream; McCall, Jordan G; Foshage, Audra M; Bruchas, Michael R

    2013-11-01

    Activation of kappa-opioid receptors (KORs) in monoamine circuits results in dysphoria-like behaviors and stress-induced reinstatement of drug seeking in both conditioned place preference (CPP) and self-administration models. Noradrenergic (NA) receptor systems have also been implicated in similar behaviors. Dynorphinergic projections terminate within the locus coeruleus (LC), a primary source of norepinephrine in the forebrain, suggesting a possible link between the NA and dynorphin/kappa opioid systems, yet the implications of these putative interactions have not been investigated. We isolated the necessity of KORs in the LC in kappa opioid agonist (U50,488)-induced reinstatement of cocaine CPP by blocking KORs in the LC with NorBNI (KOR antagonist). KOR-induced reinstatement was significantly attenuated in mice injected with NorBNI in the LC. To determine the sufficiency of KORs in the LC on U50,488-induced reinstatement of cocaine CPP, we virally re-expressed KORs in the LC of KOR knockout mice. We found that KORs expression in the LC alone was sufficient to partially rescue KOR-induced reinstatement. Next we assessed the role of NA signaling in KOR-induced reinstatement of cocaine CPP in the presence and absence of a α2-agonist (clonidine), β-adrenergic receptor antagonist (propranolol), and β(1)- and β(2)-antagonist (betaxolol and ICI-118,551 HCl). Both the blockade of postsynaptic β(1)-adrenergic receptors and the activation of presynaptic inhibitory adrenergic autoreceptors selectively potentiated the magnitude of KOR-induced reinstatement of cocaine CPP but not cocaine-primed CPP reinstatement. Finally, viral restoration of KORs in the LC together with β-adrenergic receptor blockade did not potentiate KOR-induced reinstatement to cocaine CPP, suggesting that adrenergic receptor interactions occur at KOR-expressing regions external to the LC. These results identify a previously unknown interaction between KORs and NA systems and suggest a NA

  11. Comparison of the binding of [(3)H]nociceptin/orphaninFQ(1-13)NH(2), [(3)H]nociceptin/orphaninFQ(1-17)OH and [(125)I]Tyr(14)nociceptin/orphaninFQ(1-17)OH to recombinant human and native rat cerebrocortical nociceptin/orphanin FQ receptors.

    Science.gov (United States)

    Hashiba, E; Lambert, D G; Farkas, J; Toth, G; Smith, G

    2002-08-01

    Nociceptin/orphanin FQ (N/OFQ) is a 17-amino acid endogenous neuropeptide ligand for the nociceptin receptor (NOP). We have prepared a [(3)H]-labelled truncated N/OFQ peptide, [(3)H]N/OFQ(1-13)NH(2) and compared its binding characteristics with [(3)H]N/OFQ(1-17)OH and [(125)I]Y(14)N/OFQ(1-17)OH in membranes prepared from Chinese hamster ovary cells expressing the recombinant human NOP (CHO(hNOP)) and the rat cerebrocortex. [(3)H]N/OFQ(1-13)NH(2), [(3)H]N/OFQ(1-17)OH and [(125)I]Y(14)N/OFQ(1-17)OH binding to CHO(hNOP) was concentration dependent and saturable with receptor density (B(max)) and radioligand equilibrium dissociation constant (pK(d)) values (mean +/- SEM) of 1043 +/- 58 fmol/mg protein and 10.35 +/- 0.03, 1348 +/- 44 fmol/mg protein and 10.06 +/- 0.04, and 1169 +/- 76 fmol/mg protein and 10.45 +/- 0.06, respectively. In the rat, B(max) and pK(d) values for [(3)H]N/OFQ(1-13)NH(2) and [(3)H]N/OFQ(1-17)OH were 130 +/- 1 fmol/mg protein and 10.70 +/- 0.03, and 157 +/- 4 fmol/mg protein and 10.34 +/- 0.02, respectively. The binding of all radioligands was displaced by a range of peptide and non-peptide ligands. There was a strong correlation (r(2) = 0.92, P = 0.002) between pK(i) values estimated with [(3)H]N/OFQ(1-13)NH(2) and [(3)H]N/OFQ(1-17)OH. No such correlation was observed in comparison with the [(125)I]-labelled peptide (poor agreement with low affinity N/OFQ(1-9)NH(2), Dynorphin-A and Naloxone benzoylhydrazone). We suggest that [(3)H]N/OFQ(1-13)NH(2) may be a useful alternative to [(3)H]N/OFQ(1-17)OH.

  12. A comprehensive review of opioid-induced hyperalgesia.

    Science.gov (United States)

    Lee, Marion; Silverman, Sanford M; Hansen, Hans; Patel, Vikram B; Manchikanti, Laxmaiah

    2011-01-01

    Opioid-induced hyperalgesia (OIH) is defined as a state of nociceptive sensitization caused by exposure to opioids. The condition is characterized by a paradoxical response whereby a patient receiving opioids for the treatment of pain could actually become more sensitive to certain painful stimuli. The type of pain experienced might be the same as the underlying pain or might be different from the original underlying pain. OIH appears to be a distinct, definable, and characteristic phenomenon that could explain loss of opioid efficacy in some patients. Findings of the clinical prevalence of OIH are not available. However, several observational, cross-sectional, and prospective controlled trials have examined the expression and potential clinical significance of OIH in humans. Most studies have been conducted using several distinct cohorts and methodologies utilizing former opioid addicts on methadone maintenance therapy, perioperative exposure to opioids in patients undergoing surgery, and healthy human volunteers after acute opioid exposure using human experimental pain testing. The precise molecular mechanism of OIH, while not yet understood, varies substantially in the basic science literature, as well as clinical medicine. It is generally thought to result from neuroplastic changes in the peripheral and central nervous system (CNS) that lead to sensitization of pronociceptive pathways. While there are many proposed mechanisms for OIH, 5 mechanisms involving the central glutaminergic system, spinal dynorphins, descending facilitation, genetic mechanisms, and decreased reuptake and enhanced nociceptive response have been described as the important mechanisms. Of these, the central glutaminergic system is considered the most common possibility. Another is the hypothesis that N-methyl-D-aspartate (NMDA) receptors in OIH include activation, inhibition of the glutamate transporter system, facilitation of calcium regulated intracellular protein kinase C, and cross

  13. Controlled-release levodopa methyl ester/benserazide-loaded nanoparticles ameliorate levodopa-induced dyskinesia in rats

    Directory of Open Access Journals (Sweden)

    Yang X

    2012-04-01

    Full Text Available Xinxin Yang1*, Ruiyuan Zheng2*, Yunpeng Cai2, Meiling Liao2, Weien Yuan1,2, Zhenguo Liu11Department of Neurology, Xinhua Hospital (affiliated to Shanghai Jiaotong University School of Medicine, 2School of Pharmacy, Shanghai Jiaotong University, Shanghai, People's Republic of China*Xinxin Yang and Ruiyuan Zheng contributed equally to this workBackground: Levodopa remains the most effective drug in the treatment of Parkinson's disease. However, long-term administration of levodopa induces motor complications, such as levodopa-induced dyskinesia. The mechanisms underlying levodopa-induced dyskinesia are not fully understood.Methods: In this study, we prepared levodopa methyl ester (LDME/benserazide-loaded nanoparticles, which can release LDME and benserazide in a sustained manner. Dyskinesia was induced in rats by repeated administration of levodopa then treated with LDME plus benserazide or the same dose of LDME/benserazide-loaded nanoparticles. Apomorphine-induced rotations and abnormal involuntary movements (AIMs were measured on treatment days 1, 5, 10, 15, and 20. In addition, the levels of phosphorylated dopamine- and cyclic adenosine monophosphate-regulated phosphoprotein of 32 kDa, extracellular signal-regulated kinases 1/2, and ΔfosB were determined by Western blot. Tau levels were determined by Western blot and immunohistochemistry. Dynorphin levels in the striatum and cortex of rats were measured using enzyme-linked immunosorbent assay.Results: Over the course of levodopa treatment, the rats developed abnormal AIMs, classified as locomotive, axial, orolingual, and forelimb dyskinesia. The degree of reduction of apomorphine-induced rotations was comparable in dyskinetic rats treated with LDME plus benserazide or LDME/benserazide-loaded nanoparticles. The axial, limb, and orolingual (ALO AIMs of dyskinetic rats treated with LDME/benserazide-loaded nanoparticles were 14 ± 2.5, 9 ± 2.0, and 10 ± 2.1 on treatment days 10, 15, and 20

  14. The MONA LISA hypothesis in the time of leptin.

    Science.gov (United States)

    Bray, G A; York, D A

    1998-01-01

    The regulation of body fat stores is a problem of energy and nutrient balance that can be most readily viewed as a feedback system. Several elements are involved in any feedback system, including afferent signals, a controller that senses the afferent signals and transduces their information and then activates efferent controls that regulate the controlled system. The recent discovery of leptin has provided a major missing link in the feedback control system. This afferent signal is produced exclusively in fat cells of nonpregnant mammals but can be produced in the placenta as well. This circulating peptide has a very strong relationship to the level of body fat and its absence experimentally and clinically produces massive obesity. In the controller, or brain, several anatomic regions play a central role in regulating fat stores. Damage to the ventromedial nucleus (VMH) or the paraventricular nucleus (PVN) in the hypothalamus produces massive obesity in mammals and birds. Injury to the central nucleus of the amygala will also produce obesity. In contrast, damage to the lateral hypothalamus reduces body fat. The syndrome of leptin deficiency or defects in the leptin receptors produce a massive obesity that is metabolically similar to the VMH or PVN lesion syndromes of obesity, suggesting that leptin may have its metabolic effects through these medial hypothalamic centers. Support for this idea has come from studies showing that damage to the PVN or VMH will block the effects of leptin. A number of neuropeptides and monoamines are involved with modulating of food intake and fat stores. Both serotonin, acting through 5-HT2C receptors, and norepinephrine, acting through beta 2 and/or beta 3 receptors, reduce food intake. A variety of peptides also influence food intake and body fat. Neuropeptide Y, dynorphin, galanin, and melanocyte-stimulating hormone all increase food intake. In contrast, a large number of peptides--including cholecystokinin, corticotrophin

  15. Anorexia Nervosa: A Unified Neurological Perspective

    Directory of Open Access Journals (Sweden)

    Tasneem Fatema Hasan, Hunaid Hasan

    2011-01-01

    Full Text Available The roles of corticotrophin-releasing factor (CRF, opioid peptides, leptin and ghrelin in anorexia nervosa (AN were discussed in this paper. CRF is the key mediator of the hypothalamo-pituitary-adrenal (HPA axis and also acts at various other parts of the brain, such as the limbic system and the peripheral nervous system. CRF action is mediated through the CRF1 and CRF2 receptors, with both HPA axis-dependent and HPA axis-independent actions, where the latter shows nil involvement of the autonomic nervous system. CRF1 receptors mediate both the HPA axis-dependent and independent pathways through CRF, while the CRF2 receptors exclusively mediate the HPA axis-independent pathways through urocortin. Opioid peptides are involved in the adaptation and regulation of energy intake and utilization through reward-related behavior. Opioids play a role in the addictive component of AN, as described by the “auto-addiction opioids theory”. Their interactions have demonstrated the psychological aspect of AN and have shown to prevent the functioning of the physiological homeostasis. Important opioids involved are β-lipotropin, β-endorphin and dynorphin, which interact with both µ and κ opioids receptors to regulate reward-mediated behavior and describe the higher incidence of AN seen in females. Moreover, ghrelin is known as the “hunger” hormone and helps stimulate growth hormone (GH and hepatic insulin-like-growth-factor-1(IGF-1, maintaining anabolism and preserving a lean body mass. In AN, high levels of GH due to GH resistance along with low levels of IGF-1 are observed. Leptin plays a role in suppressing appetite through the inhibition of neuropeptide Y gene. Moreover, the CRF, opioid, leptin and ghrelin mechanisms operate collectively at the HPA axis and express the physiological and psychological components of AN. Fear conditioning is an intricate learning process occurring at the level of the hippocampus, amygdala, lateral septum and the

  16. 中枢内神经化学物质在癌症侵袭镜像痛中的作用及加巴喷丁对其的影响%Roles of neurochemicals in central nerve system of mirror image pain in cancer invasion pain model and effects of gabapentin on them

    Institute of Scientific and Technical Information of China (English)

    孙丹丹; 王丹巧; 王志国; 李涛; 赵小亮; 焦; 刘洋; 李玉娟; 欧阳竞锋; 牛晓红

    2015-01-01

    model may involve the changes of Glu, GABA in the spinal cord and SP, Dyn A1-13 in the cerebral cortex, through which gabapentin can relieve mirror image pain in cancer invasion pain model.%目的:研究脊髓组织神经化学物质谷氨酸( glutamate,Glu)、γ-氨基丁酸(γ-aminobutyric acid,GABA)及大脑皮质内P物质( substance P,SP)和强啡肽A1-13( dynorphin A1-13,DynA1-13)在癌症侵袭镜像痛中的作用及加巴喷丁对其影响。方法雄性BALB/c小鼠随机分为正常组、操作对照组(注射0.2 mL灭活的S180肉瘤细胞液)、模型组(于右腿股骨大转子处注射0.2 mL S180肉瘤细胞液)和加巴喷丁组(0.2 mL S180肉瘤细胞液+120 mg/kg加巴喷丁,ip),造模前及术后分别用Von Frey纤维丝测定术侧及对侧后足的机械痛阈值;采用高效液相-荧光法检测脊髓L3-L5节段内Glu、GABA浓度;放射免疫法检测大脑皮质内SP、DynA1-13的含量。结果伴随术侧癌症侵袭痛的产生,模型组小鼠术侧的镜像部位出现了与术侧发展趋势相同、程度近似的机械痛阈下降。模型组小鼠脊髓内Glu及大脑皮质内SP水平均显著升高(P<0.05,P<0.01),而脊髓内GABA及大脑皮质内Dyn A1-13的含量均显著降低(P<0.05);加巴喷丁给药后小鼠双侧的机械痛阈值均显著升高,可持续240 min(P<0.05,P<0.01),并逆转了癌症侵袭镜像痛小鼠中枢神经系统内上述神经化学物质的改变(P<0.01或P<0.05)。结论 S180肉瘤细胞所致癌症侵袭痛模型小鼠存在镜像痛现象,脊髓内Glu、GABA及大脑皮质中SP、Dyn A1-13可能参与癌症侵袭镜像痛的发生和维持机制,加巴喷丁通过这一机制对癌症侵袭镜像痛模型小鼠发挥镇痛作用。