WorldWideScience

Sample records for dynamics drying processes

  1. Assessment of Fevicol (adhesive Drying Process through Dynamic Speckle Techniques

    Directory of Open Access Journals (Sweden)

    Mohammad Z. Ansari

    2015-04-01

    Full Text Available Dynamic laser speckle (or biospeckle analysis is a useful measurement tool to analyze micro-motion on a sample surface via temporal statistics based on a sequence of speckle images. The aim of this work was to evaluate the use of dynamic speckles as an alternative tool to monitoring Fevicol drying process. Experimental demonstration of intensity-based algorithm to monitor Fevicol drying process is reported. The experiment was explored with the technique called Inertia Moment of co-occurrence matrix. The results allowed verifying the drying process and it was possible to observe different activity stages during the drying process. Statistical Tukey test at 5% significance level allowed differentiating different stages of drying. In conclusion, speckle activity, measured by the Inertia Moment, can be used to monitor drying processes of the Fevicol.

  2. Application of Dynamic Speckle Techniques in Monitoring Biofilms Drying Process

    Science.gov (United States)

    Enes, Adilson M.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; da Silva, Washington A.; Pereira, Joelma

    2008-04-01

    Horticultural crops exhibit losses far greater than grains in Brazil which are associated to inappropriate maturation, mechanical bruising, infestation by microorganisms, wilting, etc. Appropriate packing prevents excessive mass loss associated to transpiration as well as to respiration, by controlling gas exchanging with outside environment. Common packing materials are identified as plastic films, waxes and biofilms. Although research developed with edible films and biopolymers has increased during last years to attend the food industry demands, avoiding environmental problems, little efforts have been reported on biofilm physical properties investigations. These properties, as drying time and biofilm interactions with environment are considered of basic importance. This research work aimed to contribute to development of a methodology to evaluate yucca (Maniot vulgaris) based biofilms drying time supported by a biospeckle technique. Biospeckle is a phenomenon generated by a laser beam scattered on a dynamic active surface, producing a time varying pattern which is proportional to the surface activity level. By capturing and processing the biospeckle image it is possible to attribute a numerical quantity to the surface bioactivity. Materials exhibiting high moisture content will also show high activity, which will support the drying time determination. Tests were set by placing biofilm samples on polyetilen plates and further submitted to laser exposition at four hours interval to capture the pattern images, generating the Intensities Dispersion Modulus. Results indicates that proposed methodology is applicable in determining biofilm drying time as well as vapor losses to environment.

  3. Nonequilibrium Thermal Dynamic Modeling of Porous Medium Vacuum Drying Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2012-01-01

    Full Text Available Porous medium vacuum drying is a complicated heat and mass transfer process. Based on the theory of heat and mass transfer, a coupled model for the porous medium vacuum drying process is constructed. The model is implemented and solved using COMSOL software. The water evaporation rate is determined using a nonequilibrium method with the rate constant parameter Kr.  Kr values of 1, 10, 1000, and 10000 are simulated. The effects of vapor pressures of 1000, 5000, and 9000 Pa; initial moistures of 0.6, 0.5, and 0.4 water saturation; heat temperatures of 323, 333, and 343 K; and intrinsic permeability of 10−13, 10−14, and 10−15 m2 are studied. The results facilitate a better understanding of the porous medium vacuum drying process.

  4. Ocean Dynamics: Vietnam DRI

    Science.gov (United States)

    2014-09-30

    Dynamics: Vietnam DRI Robert Pinkel Marine Physical Laboratory Scripps Institution of Oceanography La Jolla California 92093-0213 Phone: (858) 534...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Ocean Dynamics: Vietnam DRI 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...cycle.. The Thorpe-scale estimates are local to Site III. South China Sea Process Cruise 2014 Under Vietnam DRI funding, Researcher Drew Lucas

  5. Vadose-zone moisture dynamics under radiation boundary conditions during a drying process

    Institute of Scientific and Technical Information of China (English)

    韩江波; 周志芳; 傅志敏; 王锦国

    2014-01-01

    In order to better understand the soil moisture dynamics during a drying process, a soil column experiment is conducted in the laboratory, followed by the numerical modeling with consideration of the coupled liquid water, water vapor and heat transport in the vadose zone. Results show that there are three distinct subzones above the water table according to the temporally dynamic variation of the water content profiles. Zone 1 sees a decrease in the water contents in the upper profiles (0 m-0.05 m) due to a negative net water flux in this zone where the upward isothermal water vapor flux becomes the main flow mechanism in the soils. In contrast, the water content within Zone 2 in the depth ranging from 0.05 m to 0.37 m sees an apparent increase over time, resulting from the positive net thermal water-vapor and isothermal liquid-water fluxes into this layer. Zone 3 (0.37 m-0.65 m) also sees an apparent decrease in the water content since the isothermal liquid water flux carries the liquid water either upward out of this region for vaporization or downward to the water table as a recharge to the groundwater.

  6. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations.

    Science.gov (United States)

    André, L; Ndiaye, M; Pernier, M; Lespinard, O; Pauss, A; Lamy, E; Ribeiro, T

    2016-05-01

    Several 60L dry batch anaerobic digestion (AD) reactors were implemented with or without liquid reserve on cattle manure. The immersed part modulation of cattle manure increased the methane flow of about 13%. The quantitative real time PCR and the optimized DNA extraction were implemented and validated to characterize and quantify the methanogen dynamic in dry batch AD process. Final quantities of methanogens converged toward the same level in several inocula at the end of AD. Methanogen dynamic was shown by dominance of Methanosarcinaceae for acetotrophic methanogens and Methanobacteriales for the hydrogenotrophic methanogens. Overall, methanogens populations were stabilized in liquid phase, except Methanosaetaceae. Solid phase was colonized by Methanomicrobiales and Methanosarcinaceae populations giving a support to biofilm development. The methane increase could be explained by a raise of Methanosarcinaceae population in presence of a total contact between solid and liquid phases. Methanosarcinaceae was a bio-indicator of the methane production.

  7. Degradation Dynamics and Dietary Risk Assessments of Two Neonicotinoid Insecticides during Lonicera japonica Planting, Drying, and Tea Brewing Processes.

    Science.gov (United States)

    Fang, Qingkui; Shi, Yanhong; Cao, Haiqun; Tong, Zhou; Xiao, Jinjing; Liao, Min; Wu, Xiangwei; Hua, Rimao

    2017-03-01

    The degradation dynamics and dietary risk assessments of thiamethoxam and thiacloprid during Lonicera japonica planting, drying, and tea brewing processes were systematically investigated using high-performance liquid chromatography. The half-lives of thiamethoxam and thiacloprid were 1.0-4.1 d in the honeysuckle flowers and leaves, with degradation rate constants k ranging from -0.169 to -0.696. The safety interval time was 7 d. The sun- and oven-drying (70 °C) percent digestions were 59.4-81.0% for the residues, which were higher than the shade- and oven-drying percentages at lower temperatures (30, 40, 50, and 60 °C, which ranged from 37.7% to 57.0%). The percent transfers of thiamethoxam and thiacloprid were 0-48.4% and 0-25.2%, respectively, for the different tea brewing conditions. On the basis of the results of this study, abiding by the safety interval time is important, and using reasonable drying methods and tea brewing conditions can reduce the transfer of thiamethoxam and thiacloprid to humans.

  8. Temperature dynamic models of heat exchanger for photosensitive material coating and drying processes; Kanko zairyo tofu kanso process ni okeru kucho system no ondo doteki model

    Energy Technology Data Exchange (ETDEWEB)

    Kido, K.; Sato, N.; Shimoji, M. [Konica Co. Ltd., Tokyo (Japan); Nakanishi, E. [Kobe University, Kobe (Japan). Faculty of Engineering

    1996-01-20

    Nonlinear and linear temperature dynamic models of a heat exchanger were investigated for air conditioning control of coating and drying processes for photosensitive materials. The nonlinear model was derived from heat balance based on the assumption of lumped parameter system that the heat exchanger is divided into small parts in the direction of flow (divided cell model). In each part, the temperature of the heating fluid, heated fluid and heat transfer tube with fin are assumed to be uniform. Parameters involved in this model were estimated from experimental data of the step response characteristics of temperature. The linear model is obtained by linearizing this nonlinear model. It was confirmed that the dynamic behavior of temperature can be successfully expressed by both nonlinear and linear models. Both models are considered to be utilizable for process analysis and control system design of the air conditioning system under consideration. 1 ref., 13 figs., 2 tabs.

  9. Application of pulse combustion technology in spray drying process

    Directory of Open Access Journals (Sweden)

    I. Zbicinski

    2000-12-01

    Full Text Available The paper presents development of valved pulse combustor designed for application in drying process and drying tests performed in a specially built installation. Laser technique was applied to investigate the flow field and structure of dispersed phase during pulse combustion spray drying process. PDA technique was used to determine initial atomization parameters as well as particle size distribution, velocity of the particles, mass concentration of liquid phase in the cross section of spray stream, etc., in the drying chamber during drying tests. Water was used to estimate the level of evaporation and 5 and 10% solutions of sodium chloride to carry out drying tests. The Computational Fluid Dynamics technique was used to perform theoretical predictions of time-dependent velocity, temperature distribution and particle trajectories in the drying chamber. Satisfactory agreement between calculations and experimental results was found in certain regions of the drying chamber.

  10. Game-theoretic model of dispersed material drying process

    Science.gov (United States)

    Oleg, Malafeyev; Denis, Rylow; Irina, Zaitseva; Pavel, Zelenkovskii; Marina, Popova; Lydia, Novozhilova

    2017-07-01

    Continuous and discrete game-theoretic models of dispersed material drying process are formalized and studied in the paper. The existence of optimal drying strategies is shown through application of results from the theory of differential games and dynamic programming. These optimal strategies can be found numerically.

  11. A Dynamic Design Space for Primary Drying During Batch Freeze-Drying

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F C; Van Bockstal, Pieter Jan; Nopens, Ingmar;

    2016-01-01

    model is used to determine the optimal values for the adaptable variables, hereby accounting for the uncertainty in all involved model parameters. A dynamic Design Space was constructed with a risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation. Even for a risk of failure of 0......Biopharmaceutical products are emerging within the pharmaceutical industry. However, biopharmaceuticals are often unstable in aqueous solution. Freeze-drying (lyophilisation) is the preferred method to achieve a stable product with an increased shelf-life. During batch freeze-drying, there are only...... two adaptable process variables, i.e. the shelf temperature and the pressure in the drying chamber. The value of both should be optimized, preferably in a dynamic way, to minimise the primary drying time while respecting process and equipment constraints and ensuring end product quality. A mechanistic...

  12. High-intensity drying processes-impulse drying

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.

    1991-06-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. To eliminate sheet delamination, low thermal mass ceramic press roll coatings were developed to reduce heat transfer to the sheet, while maintaining high heat flux during early stages of the process. In so doing, most of the transferred energy is used to form steam that displaces liquid water, rather than in excessively heating the sheet. During this period, a prototype ceramic coating was developed and its impulse drying performance was compared to that of steel surfaces. It was observed that ceramic platens can be operated at higher temperatures and pressures resulting in improved water removal and physical properties without inducing sheet delamination. Heat flux measurement techniques were developed to provide a mechanistic explanation for the superior performance of the prototype. The work confirmed that the prototype ceramic coating is more energy efficient than the steel surface.

  13. High-intensity drying processes-impulse drying. Yearly report

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.

    1991-06-01

    Impulse drying is an innovative process for drying paper that holds great promise for reducing the energy consumed during the manufacture of paper and similar web products. impulse drying occurs when a wet paper web passes through a press nip in which one of the rolls is heated to a high temperature. A steam layer adjacent to the heated surface grows and displaces water from the sheet in a very efficient manner. The energy required for water removal is very much less than that required for conventional evaporative drying. To eliminate sheet delamination, low thermal mass ceramic press roll coatings were developed to reduce heat transfer to the sheet, while maintaining high heat flux during early stages of the process. In so doing, most of the transferred energy is used to form steam that displaces liquid water, rather than in excessively heating the sheet. During this period, a prototype ceramic coating was developed and its impulse drying performance was compared to that of steel surfaces. It was observed that ceramic platens can be operated at higher temperatures and pressures resulting in improved water removal and physical properties without inducing sheet delamination. Heat flux measurement techniques were developed to provide a mechanistic explanation for the superior performance of the prototype. The work confirmed that the prototype ceramic coating is more energy efficient than the steel surface.

  14. Extrusion processing : effects on dry canine diets

    NARCIS (Netherlands)

    Tran, Q.D.

    2008-01-01

    Keywords: Extrusion, Canine diet, Protein, Lysine, Starch gelatinization, Palatability, Drying. Extrusion cooking is a useful and economical tool for processing animal feed. This high temperature, short time processing technology causes chemical and physical changes that alter the nutritional and

  15. EUV extendibility via dry development rinse process

    Science.gov (United States)

    Sayan, Safak; Zheng, Tao; De Simone, Danilo; Vandenberghe, Geert

    2016-03-01

    Conventional photoresist processing involves resist coating, exposure, post-exposure bake, development, rinse and spin drying of a wafer. DDRP mitigates pattern collapse by applying a special polymer material (DDRM) which replaces the exposed/developed part of the photoresist material before wafer is spin dried. As noted above, the main mechanism of pattern collapse is the capillary forces governed by surface tension of rinse water and its asymmetrical recession from both sides of the lines during the drying step of the develop process. DDRP essentially eliminates these failure mechanisms by replacing remaining rinse water with DDRM and providing a structural framework that support resist lines from both sides during spin dry process. Dry development rinse process (DDRP) eliminates the root causes responsible for pattern collapse of photoresist line structures. Since these collapse mechanisms are mitigated, without the need for changes in the photoresist itself, achievable resolution of the state-of-the-art EUV photoresists can further be improved.

  16. Dynamic Processes

    Science.gov (United States)

    Klingshirn, C.

    . Phys. Lett. 92:211105, 2008). For this point, recall Figs. 6.16 and 6.33. Since the polarisation amplitude is gone in any case after the recombination process, there is an upper limit for T 2 given by T 2 ≤ 2 T1. The factor of two comes from the fact that T 2 describes the decay of an amplitude and T 1 the decay of a population, which is proportional to the amplitude squared. Sometimes T 2 is subdivided in a term due to recombination described by T 1 and another called 'pure dephasing' called T 2 ∗ with the relation 1 / T 2 = 1 / 2 T 1 + 1 / T2 ∗. The quantity T 2 ∗ can considerably exceed 2 T 1. In the part on relaxation processes that is on processes contributing to T 3, we give also examples for the capture of excitons into bound, localized, or deep states. For more details on dynamics in semiconductors in general see for example, the (text-) books [Klingshirn, Semiconductor Optics, 3rd edn. (Springer, Berlin, 2006); Haug and Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th edn. (World Scientific, Singapore, 2004); Haug and Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer Series in Solid State Sciences vol. 123 (Springer, Berlin, 1996); J. Shah, Ultrafast Spectroscopy of Semiconductors and of Semiconductor Nanostructures, Springer Series in Solid State Sciences vol. 115 (Springer, Berlin, 1996); Schafer and Wegener, Semiconductor Optics and Transport Phenomena (Springer, Berlin, 2002)]. We present selected data for free, bound and localized excitons, biexcitons and electron-hole pairs in an EHP and examples for bulk materials, epilayers, quantum wells, nano rods and nano crystals with the restriction that - to the knowledge of the author - data are not available for all these systems, density ranges and temperatures. Therefore, we subdivide the topic below only according to the three time constants T 2, T 3 and T 1.

  17. FINAL REPORT: Transformational electrode drying process

    Energy Technology Data Exchange (ETDEWEB)

    Claus Daniel, C.; Wixom, M.(A123 Systems, Inc.)

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  18. Dynamics of swelling and drying in a spherical gel

    CERN Document Server

    Bertrand, Thibault; Mukhopadhyay, Shomeek; MacMinn, Christopher W

    2016-01-01

    Swelling is a volumetric-growth process in which a porous material expands by spontaneous imbibition of additional pore fluid. Swelling is distinct from other growth processes in that it is inherently poromechanical: Local expansion of the pore structure requires that additional fluid be drawn from elsewhere in the material, or into the material from across the boundaries. Here, we study the swelling and subsequent drying of a sphere of hydrogel. We develop a dynamic model based on large-deformation poromechanics and compare the predictions of the model with a series of experiments performed with polyacrylamide spheres. We use the model and the experiments to study the complex internal dynamics of swelling and drying, and to highlight the fundamental differences between these two processes. Although we assume spherical symmetry, the model also provides insight into the transient patterns that form and then vanish during swelling as well as the risk of fracture during drying.

  19. Optimisation of the two-phase dry-thermophilic anaerobic digestion process of sulphate-containing municipal solid waste: population dynamics.

    Science.gov (United States)

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-11-01

    Microbial population dynamics and anaerobic digestion (AD) process to eight different hydraulic retention times (HRTs) (from 25d to 3.5d) in two-phase dry-thermophilic AD from sulphate-containing solid waste were investigated. Maximum values of gas production (1.9 ± 0.2 l H2/l/d; 5.4 ± 0.3 l CH4/l/d and 82 ± 9 ml H2S/l/d) and microbial activities were obtained at 4.5d HRT; where basically comprised hydrolysis step in the first phase (HRT=1.5d) and acidogenic step finished in the second phase as well as acetogenic-methanogenic steps (HRT=3d). In the first phase, hydrolytic-acidogenic bacteria (HABs) was the main group (44-77%) and Archaea, acetogens and sulphate-reducing bacteria (SRBs) contents were not significant; in the second phase (except to 2d HRT), microbial population was able to adapt to change in substrate and HRTs to ensure the proper functioning of the system and both acetogens and Archaea were dominated over SRBs. Decreasing HRT resulted in an increase in microbial activities.

  20. Spray drying technique. I: Hardware and process parameters.

    Science.gov (United States)

    Cal, Krzysztof; Sollohub, Krzysztof

    2010-02-01

    Spray drying is a transformation of feed from a fluid state into a dried particulate form by spraying the feed into a hot drying medium. The main aim of drying by this method in pharmaceutical technology is to obtain dry particles with desired properties. This review presents the hardware and process parameters that affect the properties of the dried product. The atomization devices, drying chambers, air-droplet contact systems, the collection of dried product, auxiliary devices, the conduct of the spray drying process, and the significance of the individual parameters in the drying process, as well as the obtained product, are described and discussed.

  1. Quantitative imaging of heterogeneous dynamics in drying and aging paints.

    Science.gov (United States)

    van der Kooij, Hanne M; Fokkink, Remco; van der Gucht, Jasper; Sprakel, Joris

    2016-09-29

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing dynamics is, however, intrinsically difficult because the dynamics are typically heterogeneous and span a wide range of time scales. Moreover, the high turbidity of paints precludes conventional imaging techniques from reaching deep inside the paint. To address these challenges, we apply a scattering technique, Laser Speckle Imaging, as a versatile and quantitative tool to elucidate the internal dynamics, with microscopic resolution and spanning seven decades of time. We present a toolbox of data analysis and image processing methods that allows a tailored investigation of virtually any turbid dispersion, regardless of the geometry and substrate. Using these tools we watch a variety of paints dry and age with unprecedented detail.

  2. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  3. Dynamics of convective hot air drying of filiform Lagenaria siceraria

    Directory of Open Access Journals (Sweden)

    Zhu Aishi

    2013-01-01

    Full Text Available In this study, a laboratory convective hot air dryer was used for the thin-layer drying of filiform Lagenaria siceraria and the influences of the drying temperature and air velocity on the drying process were investigated. The drying temperature and the air velocity were varied in the range of 60-80°C and 0.6-1.04 m•s-1, respectively. The experimental data of moisture ratio of filiform Lagenaria siceraria were used to fit the mathematical models, and the dynamics parameters such as convective heat transfer coefficient α and mass transfer coefficient kH were calculated. The results showed that the drying temperature and air velocity influenced the drying process significantly. The Logarithmic model showed the best fit to experimental drying data. It was also found that, the air velocity and the drying temperature influence notable on both of the convective heat transfer coefficient α and the mass transfer coefficient kH. With the increase of hot air velocity from 0.423 to 1.120 ms-1, the values of α varied from 111.3 to 157.7 W•m-2•K-1, the values of kH varied from 13.12 to 18.58 g•m-2• s-1•ΔH-1. With the increase of air temperature from 60 to 80°C, the values of α varied between 150.2 and 156.9 W•m-2•K-1, the values of kH varied between 18.26 and 18.75 g•m-2•s-1•ΔH-1.

  4. Computational analysis of fluid dynamics in pharmaceutical freeze-drying.

    Science.gov (United States)

    Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L

    2009-09-01

    Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.

  5. Dynamic characterization of the cutting conditions in dry turning

    Energy Technology Data Exchange (ETDEWEB)

    Serra, R [ENI Val de Loire, Universite Francois Rabelais de Tours, Laboratoire de Mecanique et Rheologie, E.A. 2640, B.P. 3410, 41034 Blois Cedex (France); Chibane, H [Universite Francois Rabelais, Laboratoire de Mecanique et Rheologie, E.A. 2640, B.P. 3410, 41034 Blois Cedex (France); Leroy, R, E-mail: roger.serra@univ-tours.f [Universite Francois Rabelais, Polytech' Tours, Laboratoire de Mecanique et Rheologie, E.A. 2640, 7 Avenue Marcel Dassault, 37200 Tours (France)

    2009-08-01

    Machining instability in the form of violent vibrations or chatter is a physical process characterized by extreme cutting force at the cutting point. The process has very negative impact on machine integrity, tool life, surface quality and dimensional accuracy. Thus it could significantly compromise productivity and manufacturing quality. In the present paper, the importance of characterization and identification of dynamic instability in dry turning operation are shown. The stability behaviour of machine vibration or chatter has been examined and the various relevant parameters are studied and discuted. For chatter detection and identification of the transition between stable and unstable states, different methods are used. Results obtained proof the accuracy of these methods.

  6. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process.

    Science.gov (United States)

    Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas

    2017-01-12

    Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer).

  7. Dry process for economic cell manufacturing

    Science.gov (United States)

    Donon, J.; Lauvray, H.; Aubril, P.; David, G.; Loubly, P.

    Plasma dry etching technologies and screen printing processes for the dopant and the contacts were employed in an attempt to develop a completely dry process for solar cell manufacturing. Plasma etching within a barrel reactor produced etch rates of 0.3 and 0.6 micron/min, compared with acid etching rates of 13 microns/min and basic etching rates of 5 microns/min. Ring etching was also carried out in a barrel reactor with 200 wafers positioned in a stack, power levels of 850 W, a CF4 + 8 pct O2 plasma, a flow rate of 200 cc/min, and a run time of 15 min. The ring etching process was also tested and proven to have good reproducibility. A doping paste was employed, together with a thermal treatment at 850 C for 1 hr, to obtain good diffusion homogeneity. The results included cell efficiencies more than half those from chemical etching with both monocrystalline and polycrystalline materials. The techniques are concluded to produce negligible pollution, waste little material, and be amenable to automation.

  8. OPTIMIZATION OF THE PROCESS OF DRYING THE FILTRATE DISTILLERY DREGS

    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov

    2013-01-01

    Full Text Available The interactions of various factors affecting the process of drying the filtrate distillery dregs are investigated. Rational conditions for the process of drying the filtrate distillery dregs in a spray dryer are obtained.

  9. CFD modelling of condensers for freeze-drying processes

    Indian Academy of Sciences (India)

    Miriam Petitti; Antonello A Barresi; Daniele L Marchisio

    2013-12-01

    The aim of the present research is the development of a computational tool for investigating condensation processes and equipment with particular attention to freeze-dryers. These condensers in fact are usually operated at very low pressures, making it difficult to experimentally acquire quantitative knowledge of all the variables involved. Mathematical modelling and CFD (Computational Fluid Dynamics) simulations are used here to achieve a better comprehension of the flow dynamics and of the process of ice condensation and deposition in the condenser, in order to evaluate condenser efficiency and gain deeper insights of the process to be used for the improvement of its design. Both a complete laboratory-scale freeze-drying apparatus and an industrial-scale condenser have been investigated in this work, modelling the process of water vapour deposition. Different operating conditions have been considered and the influence exerted by the inert gas as well as other parameters has been investigated.

  10. 9 CFR 590.542 - Spray process drying operations.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying operations. 590..., Processing, and Facility Requirements § 590.542 Spray process drying operations. (a) The drying room shall be... interrupted. (1) Spray nozzles, orifices, cores, or whizzers shall be cleaned immediately after cessation...

  11. Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying

    DEFF Research Database (Denmark)

    Mortier, Severine Therese F. C.; Van Bockstal, Pieter-Jan; Corver, Jos

    2016-01-01

    values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse...... of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated...... with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk...

  12. Particle removal process during application of impinging dry ice jet

    OpenAIRE

    Liu, Yi-Hung; Hirama, Daisuke; Matsusaka, Shuji

    2012-01-01

    In this study, we have investigated the application of dry ice blasting to remove fine particles adhering to surfaces and examined the removal process. The removal efficiency, area, and frequency have been analyzed using images captured with a high-speed microscope camera. In addition, the temperature of the dry ice jet has been measured in order to evaluate the dry ice particles and their effects on the particle removal process. The removal processes due to the impacts of primary dry ice par...

  13. Fabric-drying process in domestic dryers

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.; Moon, C.G. [Department of Mechanical Engineering, The University of Auckland, Auckland 1142 (New Zealand)

    2008-02-15

    A theoretical analysis of the drying process occurring inside the household electric tumbler clothes-dryer is performed to determine various thermo-physical parameters affecting the energy consumption and for the development of a simulation model. Experiments are conducted on a test set-up, based on a compact tumble-dryer, to measure the values of the parameters necessary for evaluating the performance. Widely-accepted economy standards are considered for comparison of simulation and experimental results. The simulation results are in reasonable agreement with experimental data. An empirical correlation for the specific moisture-extraction rate (SMER) is developed to translate energy-consumption information from one standard to the other. (author)

  14. Coffee-stain growth dynamics on dry and wet surfaces

    CERN Document Server

    Boulogne, François; Stone, Howard A

    2016-01-01

    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamic...

  15. Dynamics of Drying in Phenolically Tanned Materials

    Institute of Scientific and Technical Information of China (English)

    Julian F. V. Vincent

    2004-01-01

    The cuticle of a maggot goes through a mechanical transition when it dries, increasing in stiffness by about an order of magnitude (e. g. from 0.5 GPa to 5 GPa) as the water content drops from about 1 g/g (weight of water per unit dry weight) to 0.4 g/g. Thus stiffness represents the loss of freezable water and is more or less diagnostic of a material stabilized by hydrogen bonds. Further loss in water results in a smaller increase in stiffness. In natural systems the water content is controlled by the addition of phenolic residues, resulting in tanning or sclerotisation, which drives the matrix components towards co-operative interaction and makes the material permanently waterproof.

  16. Dynamics of dry matter synthesis during corn development

    Directory of Open Access Journals (Sweden)

    Latković Dragana S.

    2006-01-01

    Full Text Available Effects of mineral nutrition and combinations of mineral and organic nutrients on the dynamics of vegetative mass development in corn have been examined in a long-term stationary trial. The dynamics was monitored per phenological stage and per plant part. The obtained results showed that the dynamics of dry matter accumulation changed in dependence of development stage and nutrition variant. Smallest gains in dry matter in all stages under study were obtained in the control variant. Highest gains were obtained in the variants which combined mineral nutrition and manuring. The smallest gain of dry matter, 7.22% of the dry matter accumulated at full maturity, was registered at the seven-leaf stage.

  17. 9 CFR 590.540 - Spray process drying facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Spray process drying facilities. 590.540 Section 590.540 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF..., Processing, and Facility Requirements § 590.540 Spray process drying facilities. (a) Driers shall be of...

  18. Dynamical laser spike processing

    CERN Document Server

    Shastri, Bhavin J; Tait, Alexander N; Rodriguez, Alejandro W; Wu, Ben; Prucnal, Paul R

    2015-01-01

    Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate that graphene-coupled laser systems offer a unified low-level spike optical processing paradigm that goes well beyond previously studied laser dynamics. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation---fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system, but the addit...

  19. Solute based Lagrangian scheme in modeling the drying process of soft matter solutions.

    Science.gov (United States)

    Meng, Fanlong; Luo, Ling; Doi, Masao; Ouyang, Zhongcan

    2016-02-01

    We develop a new dynamical model to study the drying process of a droplet of soft matter solutions. The model includes the processes of solute diffusion, gel-layer formation and cavity creation. A new scheme is proposed to handle the diffusion dynamics taking place in such processes. In this scheme, the dynamics is described by the motion of material points taken on solute. It is convenient to apply this scheme to solve problems that involve moving boundaries and phase changes. As an example, we show results of a numerical calculation for a drying spherical droplet, and discuss how initial concentration and evaporation rate affect the structural evolution of the droplet.

  20. Exergetic simulation of a combined infrared-convective drying process

    Science.gov (United States)

    Aghbashlo, Mortaza

    2016-04-01

    Optimal design and performance of a combined infrared-convective drying system with respect to the energy issue is extremely put through the application of advanced engineering analyses. This article proposes a theoretical approach for exergy analysis of the combined infrared-convective drying process using a simple heat and mass transfer model. The applicability of the developed model to actual drying processes was proved using an illustrative example for a typical food.

  1. Persistence and survival of pathogens in dry foods and dry food processing environments

    NARCIS (Netherlands)

    L. Beuchat; E. Komitopoulou; R. Betts; H. Beckers; F. Bourdichon; H. Joosten; S. Fanning; B. ter Kuile

    2011-01-01

    Low-moisture foods and food ingredients, i.e., those appearing to be dry or that have been subjected to a drying process, represent important nutritional constituents of human diets. Some of these foods are naturally low in moisture, such as cereals, honey and nuts, whereas others are produced from

  2. Stepwise drying of medicinal plants as alternative to reduce time and energy processing

    Science.gov (United States)

    Cuervo-Andrade, S. P.; Hensel, O.

    2016-07-01

    used. Drying curves were obtained to observe the dynamics of the process for different combinations of temperature and points of change, corresponding to different conditions of moisture content of the product.

  3. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations.

  4. Impact of tilling on biosolids drying and indicator microorganisms survival during solar drying process.

    Science.gov (United States)

    Song, Inhong; Dominguez, Teodulo; Choi, Christopher Y; Kang, Moon Seong

    2014-01-01

    As biosolids application to croplands becomes a common practice, potential harm from pathogenic microbes needs to be mitigated for its safe reuse. The objective of this study was to investigate the impacts of tilling treatment on biosolids drying and microbial inactivation during the solar drying process in a semi-arid and temperate region. Solar drying experiments were conducted in sand and gravel dying beds open-to-the-air and under covering structures with biosolids to 20 cm depth from 2004 to 2006. Anaerobically- and Aerobically-digested biosolids received different tilling treatments throughout the drying process, while a series of biosolids samples were collected to determine the impact on total solids and microbial concentrations (Salmonella spp and heminth ova). Tilling treatments appeared to enhance the biosolids drying and microbial inactivation. Tilling was more effective during the cold season compared with the summer season and tilling treatments were also helpful in elevating biosolids temperature by expediting biosolids drying. The combined effect of temperature increase and moisture decrease by tilling may have resulted in faster microbial inactivation, particularly for persistent helminth ova. It was concluded that incorporation of tilling into biosolids solar drying can expedite biosolids drying as well as microbial inactivation, and thus can be an effective measure for shortening the biosolids conversion to Class A biosolids in which pathogens are reduced to below detectable levels.

  5. Modeling of electrohydrodynamic drying process using response surface methodology.

    Science.gov (United States)

    Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin

    2014-05-01

    Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box-Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM.

  6. Characterisation of Aronia powders obtained by different drying processes.

    Science.gov (United States)

    Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried

    2013-12-01

    Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product.

  7. Coffee-stain growth dynamics on dry and wet surfaces

    Science.gov (United States)

    Boulogne, François; Ingremeau, François; Stone, Howard A.

    2017-02-01

    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamics is modified by the evaporation conditions, not the final accumulation at the contact line.

  8. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    Science.gov (United States)

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  9. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes.

    Science.gov (United States)

    Mascarin, Gabriel Moura; Jackson, Mark A; Behle, Robert W; Kobori, Nilce N; Júnior, Ítalo Delalibera

    2016-10-01

    The yeast form (blastospore) of the dimorphic insect-pathogenic fungus Beauveria bassiana can be rapidly produced using liquid fermentation methods but is generally unable to survive rapid dehydration processes or storage under non-refrigerated conditions. In this study, we evaluated the influence of two convective drying methods, various modified atmosphere packaging systems, and storage temperatures on the desiccation tolerance, storage stability, and virulence of blastospores of B. bassiana ESALQ 1432. All blastospore formulations were dried to <5 % water content equivalent to aw < 0.3. The viability of B. bassiana blastospores after air drying and spray drying was greater than 80 %. Vacuum-packaged blastospores remained viable longer when stored at 4 °C compared with 28 °C with virtually no loss in viability over 9 months regardless the drying method. When both oxygen and moisture scavengers were added to sealed packages of dried blastospore formulations stored at 28 °C, viability was significantly prolonged for both air- and spray-dried blastospores. The addition of ascorbic acid during spray drying did not improve desiccation tolerance but enhanced cell stability (∼twofold higher half-life) when stored at 28 °C. After storage for 4 months at 28 °C, air-dried blastospores produced a lower LC80 and resulted in higher mortality to whitefly nymphs (Bemisia tabaci) when compared with spray-dried blastospores. These studies identified key storage conditions (low aw and oxygen availability) that improved blastospore storage stability at 28 °C and will facilitate the commercial development of blastospores-based bioinsecticides.

  10. ON THE QUESTION OF PROCESS CONTROL COMBINED GRAIN DRYING

    Directory of Open Access Journals (Sweden)

    Valentina Afonkina

    2016-03-01

    Full Text Available A large part of the grain produced in the South Urals has high humidity and needs to be dried before storage. Drying is an energy-intensive process and is about 70 % of the total energy consumption for post-harvest processing of grain. Modern grain drying equip¬ment, implements high-convection drying, and heat provides cost 5 350–5 500 kJ per 1 kg of evaporated moisture, which is well above the theoretical calculations. Combined drying, which involves high-temperature drying step and aeration enables to reduce heat costs up to 30 %. To control the combined drying process it is necessary that final grain moisture relates to such parameters of high-temperature drying and aeration as the initial moisture content, the temperature of grain and the time subsequent aering. The paper describes the said relation as a mathematical model of the second order obtained experi¬mentally for wheat. The model has been derived from the implementation of Box-Benkin plan for three factors – the initial grain moisture, temperature and time of grain heating and aering. The experiment was conducted for a 200 mm thick fixed grain bed. We also have got a model relating energy consumption to the said parameters. The model of the final grain moisture within the variation of factors can be used to create a control algorithm for combined drying. Taking as the set parameters final moisture, initial moisture and grain heating temperature, a microcontroller calculates the time for active aering necessary to obtain final grain moisture and an unloading mechanism provides the necessary time through regulating the discharge rate. The model makes it possible to calculate the energy usage for drying at different values of initial moisture, temperature and time of grain heating and aering.

  11. Sporulation dynamics and spore heat resistance in wet and dry biofilms of Bacillus cereus

    NARCIS (Netherlands)

    Hayrapetyan, Hasmik; Abee, Tjakko; Nierop Groot, Masja

    2016-01-01

    Environmental conditions and growth history can affect the sporulation process as well as subsequent properties of formed spores. The sporulation dynamics was studied in wet and air-dried biofilms formed on stainless steel (SS) and polystyrene (PS) for Bacillus cereus ATCC 10987 and the

  12. MODELLING THE PROCESSES OF HYGROTHERMAL MECHANICS IN RICE DRYING

    Directory of Open Access Journals (Sweden)

    S. A. Podgornyi

    2015-01-01

    Full Text Available Grain-crops are justly considered to be the staple food in Russia as well as all over the world. The specific feature is that postharvest processing of the grain and, above all, drying is an essential stage of providing products of high quality in the sufficient amount. The changes of the technological parameters of the drying process which take place over time, have a significant practical value in terms of monitoring the process and defining the modes providing the quality of the product as well as calculating energy demands necessary to carry out this process. Hereof, the quality of the product received is defined by minimum crack formation of rice grain after the process. The aim of the work is to get a mathematical model of hygrothermal mechanics of rice drying. On the basis of A.V. Lykov’s system of differential equations which describe the changes in moisture content, temperature and pressure, transition to the system of ordinary differential equations was offered which is based on drawing up balance of mass and heat during the process of drying. This approach does not consider the properties of moisture content and temperature within the material but takes into account their mean value. Using a simplified model of hygrothermal mechanics of rice drying that we have got enabled us to reproduce the process of drying in the conditions of minimum crack formation within the studied range (the temperature of the drying agent from 50 to 70 °C, speed from 2.3 to 2.8 м/sеk. The dependences we have got enable us to predict the quality of rice grain during drying.

  13. High-intensity drying processes: Impulse drying. Progress report on furnish evaluations for impulse drying commercialization demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.; Phelan, P.M.; Rudman, I.

    1995-02-01

    Laboratory and pilot scale experiments were performed to identify potential furnishes and operating parameters for upcoming high-speed pilot scale trials and commercial demonstration of impulse drying of heavy weight grades of paper. Results indicate that hydrodynamic specific surface is highly dependent on sheet formation and prehandling. Mill refined pulp and machine paper were comparable to laboratory prepared samples in regards to permeability and impulse drying. Process variables such as platen surface coating, felt type, felt moisture, and presteaming temperature profiles were investigated. Substantial improvements in sheet smoothness were achieved.

  14. 9 CFR 590.546 - Albumen flake process drying facilities.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Albumen flake process drying facilities. 590.546 Section 590.546 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.546 Albumen flake process...

  15. 9 CFR 590.547 - Albumen flake process drying operations.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Albumen flake process drying operations. 590.547 Section 590.547 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... INSPECTION ACT) Sanitary, Processing, and Facility Requirements § 590.547 Albumen flake process...

  16. Dry process fuel performance technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K. (and others)

    2006-06-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  17. Process Fairness and Dynamic Consistency

    NARCIS (Netherlands)

    S.T. Trautmann (Stefan); P.P. Wakker (Peter)

    2010-01-01

    textabstractAbstract: When process fairness deviates from outcome fairness, dynamic inconsistencies can arise as in nonexpected utility. Resolute choice (Machina) can restore dynamic consistency under nonexpected utility without using Strotz's precommitment. It can similarly justify dynamically

  18. Application of single neuron adaptive PID controller during the process of timber drying

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dong-yan; LIU Ya-qiu; CAO Jun

    2003-01-01

    The paper presents a method of using single neuron adaptive PID control for adjusting system or servo system to implement timber drying process control, which combines the thought of parameter adaptive PID control and the character of neural network on exactly describing nonlinear and uncertainty dynamic process organically. The method implements functions of adaptive and self-learning by adjusting weighting parameters. Adaptive neural network can make some output trail given hoping value to decouple in static state. The simulation result indicates the validity, veracity and robustness of the method used in the timber drying process

  19. Drying paint: from micro-scale dynamics to mechanical instabilities

    CERN Document Server

    Goehring, Lucas; Kiatkirakajorn, Pree-Cha

    2016-01-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarise the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients around a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle x-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities -- shear-banding and fracture -- can be controlled.

  20. Modeling a Dry Etch Process for Large-Area Devices

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Hebner, G.A.; Ruby, D.S.; Yang, P.

    1999-07-28

    There has been considerable interest in developing dry processes which can effectively replace wet processing in the manufacture of large area photovoltaic devices. Environmental and health issues are a driver for this activity because wet processes generally increase worker exposure to toxic and hazardous chemicals and generate large volumes of liquid hazardous waste. Our work has been directed toward improving the performance of screen-printed solar cells while using plasma processing to reduce hazardous chemical usage.

  1. Effect of pretreatments and vacuum drying on instant dried pork process optimization.

    Science.gov (United States)

    Laopoolkit, Pattra; Suwannaporn, Prisana

    2011-07-01

    Dehydrated meat which can be instantly rehydrated is needed by the industry. This research was aimed to investigate a more economical drying process. Central composite design was applied with three variables: cooking pressure, cooking time, and vacuum drying temperature. The responses were shear force (N), work of shear (N.mm) and % rehydration. The multiple linear regression equation models could predict 91.7, 90.9 and 94.8% of each response, respectively. Cooked pork meat was used for target responses. Its maximum shear force was 43.39±5.42 N, and work of shear was 419.50±64.17 N.mm. Vacuum drying temperature highly affected all responses. Validation of the predicted data was done using two optimum conditions. First condition was cooking pressure of 21.6 lb/in.(2), cooking time of 50 min, and vacuum drying temperature of 95°C. The second condition was cooking pressure of 38.4 lb/in.(2), cooking time of 35 min, and vacuum drying temperature of 100°C. A t-test confirmed that the observed data were not statistically different from the predicted data.

  2. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process

    DEFF Research Database (Denmark)

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka

    2013-01-01

    -infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from ß-mannitol to d-mannitol with increasing protein concentration in freeze-dried formulations. In spray......-dried formulations an increase in protein concentration resulted in a shift from ß-mannitol to a-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying...

  3. Advanced Drying Process for Lower Manufacturing Cost of Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Iftikhar [Lambda Technologies, Inc., Morrisville, NC (United States); Zhang, Pu [Lambda Technologies, Inc., Morrisville, NC (United States)

    2016-11-30

    For this Vehicle Technologies Incubator/Energy Storage R&D topic, Lambda Technologies teamed with Navitas Systems and proposed a new advanced drying process that promised a 5X reduction in electrode drying time and significant reduction in the cost of large format lithium batteries used in PEV's. The operating principle of the proposed process was to use penetrating radiant energy source Variable Frequency Microwaves (VFM), that are selectively absorbed by the polar water or solvent molecules instantly in the entire volume of the electrode. The solvent molecules are thus driven out of the electrode thickness making the process more efficient and much faster than convective drying method. To evaluate the Advanced Drying Process (ADP) a hybrid prototype system utilizing VFM and hot air flow was designed and fabricated. While VFM drives the solvent out of the electrode thickness, the hot air flow exhausts the solvent vapors out of the chamber. The drying results from this prototype were very encouraging. For water based anodes there is a 5X drying advantage (time & length of oven) in using ADP over standard drying system and for the NMP based cathodes the reduction in drying time has 3X benefit. For energy savings the power consumption measurements were performed to ADP prototype and compared with the convection standard drying oven. The data collected demonstrated over 40% saving in power consumption with ADP as compared to the convection drying systems. The energy savings are one of the operational cost benefits possible with ADP. To further speed up the drying process, the ADP prototype was explored as a booster module before the convection oven and for the electrode material being evaluated it was possible to increase the drying speed by a factor of 4, which could not be accomplished with the standard dryer without surface defects and cracks. The instantaneous penetration of microwave in the entire slurry thickness showed a major advantage in rapid drying of

  4. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    Science.gov (United States)

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes.

  5. Dynamics of biomolecular processes

    Science.gov (United States)

    Behringer, Hans; Eichhorn, Ralf; Wallin, Stefan

    2013-05-01

    The last few years have seen enormous progress in the availability of computational resources, so that the size and complexity of physical systems that can be investigated numerically has increased substantially. The physical mechanisms behind the processes creating life, such as those in a living cell, are of foremost interest in biophysical research. A main challenge here is that complexity not only emerges from interactions of many macro-molecular compounds, but is already evident at the level of a single molecule. An exciting recent development in this context is, therefore, that detailed atomistic level characterization of large-scale dynamics of individual bio-macromolecules, such as proteins and DNA, is starting to become feasible in some cases. This has contributed to a better understanding of the molecular mechanisms of, e.g. protein folding and aggregation, as well as DNA dynamics. Nevertheless, simulations of the dynamical behaviour of complex multicomponent cellular processes at an all-atom level will remain beyond reach for the foreseeable future, and may not even be desirable. Ultimate understanding of many biological processes will require the development of methods targeting different time and length scales and, importantly, ways to bridge these in multiscale approaches. At the scientific programme Dynamics of biomolecular processes: from atomistic representations to coarse-grained models held between 27 February and 23 March 2012, and hosted by the Nordic Institute for Theoretical Physics, new modelling approaches and results for particular biological systems were presented and discussed. The programme was attended by around 30 scientists from the Nordic countries and elsewhere. It also included a PhD and postdoc 'winter school', where basic theoretical concepts and techniques of biomolecular modelling and simulations were presented. One to two decades ago, the biomolecular modelling field was dominated by two widely different and largely

  6. Aerosol dynamics within and above forest in relation to turbulent transport and dry deposition

    DEFF Research Database (Denmark)

    Rannik, Üllar; Zhou, Luxi; Zhou, Putian;

    2016-01-01

    of 10 days in May 2013 to a pine forest site in southern Finland. The period was characterized by frequent new particle formation events and simultaneous intensive aerosol transformation. The aim of the study was to analyze and quantify the role of aerosol and ABL dynamics in the vertical transport...... of aerosols. It was of particular interest to what extent the fluxes above the canopy deviate from the particle dry deposition on the canopy foliage due to the above-mentioned processes. The model simulations revealed that the particle concentration change due to aerosol dynamics frequently exceeded...... the effect of particle deposition by even an order of magnitude or more. The impact was, however, strongly dependent on particle size and time. In spite of the fact that the timescale of turbulent transfer inside the canopy is much smaller than the timescales of aerosol dynamics and dry deposition, leading...

  7. Effects of extrusion processing on nutrients in dry pet food

    NARCIS (Netherlands)

    Tran, Q.D.; Hendriks, W.H.; Poel, van der A.F.B.

    2008-01-01

    Extrusion cooking is commonly used to produce dry pet foods. As a process involving heat treatment, extrusion cooking can have both beneficial and detrimental effects on the nutritional quality of the product. Desirable effects of extrusion comprise increase in palatability, destruction of

  8. Dynamic response of dry and water-saturated sand systems

    Science.gov (United States)

    LaJeunesse, J. W.; Hankin, M.; Kennedy, G. B.; Spaulding, D. K.; Schumaker, M. G.; Neel, C. H.; Borg, J. P.; Stewart, S. T.; Thadhani, N. N.

    2017-07-01

    The effect of grain size and moisture content on the dynamic macroscopic response of granular geological materials was explored by performing uniaxial planar impact experiments on high purity, Oklahoma #1, sand samples composed of either fine (75-150 μm) or coarse (425-500 μm) grain sizes in either dry or fully water-saturated conditions. Oklahoma #1 sand was chosen for its smooth, quasi-spherical grain shapes, narrow grain size distributions, and nearly pure SiO2 composition (99.8 wt. %). The water-saturated samples were completely saturated ensuring a two-phase mixture with roughly 65% sand and 35% water. Sand samples were dynamically loaded to pressures between 1 and 11 GPa. Three-dimensional meso-scale simulations using an Eulerian hydrocode, CTH, were created to model the response of each sand sample. Multi-phase equations of state were used for both silicon dioxide, which comprised individual sand grains, and water, which surrounded individual grains. Particle velocity profiles measured from the rear surface of the sand, both experimentally and computationally, reveal that fine grain samples have steeper rise characteristics than coarse grain samples and water-saturated samples have an overall much stiffer response than dry samples. The experimentally determined particle velocity vs. shock velocity response of dry sand was linear over this pressure range, with little difference between the two grain sizes investigated. The experimental response for the water saturated sand exhibited a piecewise continuous response with a transition region between particle velocities of 0.6 km s-1 and 0.8 km s-1 and a pressure of 4.5-6 GPa. Hypotheses for the cause of this transition region are drawn based on results of the meso-scale simulations.

  9. Intensifying drying process with creation of functional plant compositions

    Directory of Open Access Journals (Sweden)

    Zh. Petrova

    2015-05-01

    Full Text Available Introduction. The process of drying agricultural raw products is associated with loss of bioactive substances by the products exposed to heat, light, oxygen, or рН medium. It is reasonable to enhance the table beet processing technology in order to achieve maximum betanin conservation at lower energy consumption. Materials and methods. Table beets, rhubarbs, lemons, and tomatoes were dried at temperature of 50 to 100 ºС, air speed of 1.5 to 3.5 m/s, heat carrier water content of 7 to 15 g/kg, and layer thickness of 2 to 20 mm. The betanіn content was determined via absorption spectra, using the optical density value at 540 nm wavelength. A differential microcalorimeter was used for measuring evaporation heat consumption. Results and discussion.The effect of raw product pre-drying preparation was studied. With no preliminary preparation, the loss of betanin after drying reaches 66 %. The preliminary preparation technology we have developed includes boiling whole root crops with optimal selection of acid medium and allows us to reduce the betanin loss down to 6 %. Regretfully, the process requires large energy consumption. Low energy consumption pre-drying preparation method was developed for antioxidant raw products with thermal processing replaced by blending. The betanin loss, in this case, does not exceed 5 %. Optimal drying temperature of betanin-containing raw stock, after its preliminary processing, is 60 °С. It allows to keep up to 95 % of betanіn. Specific heat consumption for water evaporation out of the developed table beet based antioxidant plant compositions, with addition of rhubarb and lemon, is less by 4 to 5 % as compared to the initial components. Conclusions. Dependence of betanin loss in plant raw stock on the material temperature and composition components, in the course of their pre-drying preparation, was found. It was also found that water evaporation heat, for some antioxidant plant compositions developed, is less

  10. An engineering and economic evaluation of wet and dry pre-fractionation processes for dry-grind ethanol facilities.

    Science.gov (United States)

    Lin, Tao; Rodríguez, Luis F; Li, Changying; Eckhoff, Steven R

    2011-10-01

    An engineering-economic model was developed to compare the profitability of the wet fractionation process, a generic dry fractionation process, and the conventional dry grind process. Under market conditions as of January 2011, only fractionation processes generated a positive cash flow. Reduced unit manufacturing costs and increased ethanol production capacity were two major contributions. Corn and ethanol price sensitivity analysis showed that the wet fractionation process always outperformed a generic dry fractionation process at any scenario considered in this research. A generic dry fractionation process would provide better economic performance than the conventional dry grind process if corn price was low and ethanol price was high. All three processes would perform more resiliently if the DDGS price was determined by its composition. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Drying paint: from micro-scale dynamics to mechanical instabilities

    Science.gov (United States)

    Goehring, Lucas; Li, Joaquim; Kiatkirakajorn, Pree-Cha

    2017-04-01

    Charged colloidal dispersions make up the basis of a broad range of industrial and commercial products, from paints to coatings and additives in cosmetics. During drying, an initially liquid dispersion of such particles is slowly concentrated into a solid, displaying a range of mechanical instabilities in response to highly variable internal pressures. Here we summarize the current appreciation of this process by pairing an advection-diffusion model of particle motion with a Poisson-Boltzmann cell model of inter-particle interactions, to predict the concentration gradients in a drying colloidal film. We then test these predictions with osmotic compression experiments on colloidal silica, and small-angle X-ray scattering experiments on silica dispersions drying in Hele-Shaw cells. Finally, we use the details of the microscopic physics at play in these dispersions to explore how two macroscopic mechanical instabilities-shear-banding and fracture-can be controlled. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  12. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    Science.gov (United States)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  13. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin

    Science.gov (United States)

    Lin, Yen-Heng; Lo, Min-Hui; Chou, Chia

    2016-02-01

    Adding a groundwater component to land surface models affects modeled precipitation. The additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focuses on how groundwater dynamics affect atmospheric convection in the Amazon River basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. Additionally, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation that results from downwelling transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, with implications for precipitation changes during the dry season, observed in most current climate models.

  14. Potential Negative Effects of Groundwater Dynamics on Dry Season Convection in the Amazon River Basin

    Science.gov (United States)

    Lin, Y. H.; Lo, M. H.; Chou, C.

    2014-12-01

    Adding a groundwater component to land surface models affects modeled precipitation because the additional water supply from the subsurface contributes to increased water vapor in the atmosphere, resulting in modifications of atmospheric convection. This study focused on how groundwater dynamics affect atmospheric convection in the Amazon River Basin (ARB) during July, typically the driest month. Coupled groundwater-land-atmosphere model simulations show that groundwater storage increases evapotranspiration rates (latent heat fluxes) and lowers surface temperatures, which increases the surface pressure gradient and thus, anomalous surface divergence. Therefore, the convection over the Southern Hemispheric ARB during the dry season becomes weaker when groundwater dynamics are included in the model. In addition, the changes in atmospheric vertical water vapor advection are associated with decreases in precipitation resulting from downward transport anomalies. The results of this study highlight the importance of subsurface hydrological processes in the Amazon climate system, which have implications for precipitation changes during the dry season observed in most current climate models.

  15. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  16. Dry processing versus dense medium processing for preparing thermal coal

    CSIR Research Space (South Africa)

    De Korte, GJ

    2013-10-01

    Full Text Available in the region. In addition to not requiring water, the technique is less expensive than dense medium processing - both in terms of capital cost and operating cost. An added benefit when preparing coal for use in power stations is the lower moisture content...

  17. Effect of drying parameters on physiochemical and sensory properties of fruit powders processed by PGSS-, Vacuum- and Spray-drying.

    Science.gov (United States)

    Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko

    2015-01-01

    Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.

  18. Drying: a key-step of your industrial process; Le sechage: une etape cle de votre process industriel

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, D. [Ecole Nationale Superieure d' Ingenieurs en Arts Chimiques et Technologiques, ENSIACET, 31 - Toulouse (France); Leconte, J.M. [NEU Sechage Industriel, 59 - Templemars (France); Gayot, A. [Faculte de Pharmacie de Lille, 59 (France)] [and others

    2001-03-01

    This document brings together 13 testimonies of experts about the drying techniques used in industrial processes. The following points are approached: understanding and mastering of drying parameters: characterization of the products do be dried, affinity between product and solvent, humidity retaking, energy transfer..; domains of applications of the main drying techniques: conduction drying, atomization process, fluidized bed drying, microwave drying; which help drying engineering can provide to industrial processes (optimization and operation); industrial applications and case studies in pharmacy, chemistry and agriculture and food industry. (J.S.)

  19. The Experiment of Drying Process of the Fibrous Material

    Directory of Open Access Journals (Sweden)

    Jiří RASZKA

    2015-06-01

    Full Text Available The article describes the experiment of water evaporation from fibrous material (cotton. The material is placed in the tube and hot air flows through (process of drying. Temperature of air is measured by thermocouple. The textile represents porous medium with certain amount of water (wet textile. Porous layer makes pressure drop when airflow starts. Properties of air (temperature, relative humidity change during evaporation process. Values of pressure drop, temperature and humidity measured during experiment are used for set up of boundary condition, porous layer and evaporation model in Ansys Fluent 13.

  20. 77 FR 64834 - Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications

    Science.gov (United States)

    2012-10-23

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is requesting public comments on draft NUREG-2152, ``Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications.'' The draft NUREG-2152 report provides best practice guidelines for undertaking simulations used to evaluate the thermal response of dry casks. Dry cask applications include transfer, transport, and......

  1. Dynamic failure of dry and fully saturated limestone samples based on incubation time concept

    Directory of Open Access Journals (Sweden)

    Yuri V. Petrov

    2017-02-01

    Full Text Available This paper outlines the results of experimental study of the dynamic rock failure based on the comparison of dry and saturated limestone samples obtained during the dynamic compression and split tests. The tests were performed using the Kolsky method and its modifications for dynamic splitting. The mechanical data (e.g. strength, time and energy characteristics of this material at high strain rates are obtained. It is shown that these characteristics are sensitive to the strain rate. A unified interpretation of these rate effects, based on the structural–temporal approach, is hereby presented. It is demonstrated that the temporal dependence of the dynamic compressive and split tensile strengths of dry and saturated limestone samples can be predicted by the incubation time criterion. Previously discovered possibilities to optimize (minimize the energy input for the failure process is discussed in connection with industrial rock failure processes. It is shown that the optimal energy input value associated with critical load, which is required to initialize failure in the rock media, strongly depends on the incubation time and the impact duration. The optimal load shapes, which minimize the momentum for a single failure impact, are demonstrated. Through this investigation, a possible approach to reduce the specific energy required for rock cutting by means of high-frequency vibrations is also discussed.

  2. The NEST Dry-Run Mode: Efficient Dynamic Analysis of Neuronal Network Simulation Code

    Directory of Open Access Journals (Sweden)

    Susanne Kunkel

    2017-06-01

    Full Text Available NEST is a simulator for spiking neuronal networks that commits to a general purpose approach: It allows for high flexibility in the design of network models, and its applications range from small-scale simulations on laptops to brain-scale simulations on supercomputers. Hence, developers need to test their code for various use cases and ensure that changes to code do not impair scalability. However, running a full set of benchmarks on a supercomputer takes up precious compute-time resources and can entail long queuing times. Here, we present the NEST dry-run mode, which enables comprehensive dynamic code analysis without requiring access to high-performance computing facilities. A dry-run simulation is carried out by a single process, which performs all simulation steps except communication as if it was part of a parallel environment with many processes. We show that measurements of memory usage and runtime of neuronal network simulations closely match the corresponding dry-run data. Furthermore, we demonstrate the successful application of the dry-run mode in the areas of profiling and performance modeling.

  3. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes

    Science.gov (United States)

    Zhou, Zilong; Cai, Xin; Cao, Wenzhuo; Li, Xibing; Xiong, Cheng

    2016-08-01

    Water content has a pronounced influence on the properties of rock materials, which is responsible for many rock engineering hazards, such as landslides and karst collapse. Meanwhile, water injection is also used for the prevention of some engineering disasters like rock-bursts. To comprehensively investigate the effect of water content on mechanical properties of rocks, laboratory tests were carried out on sandstone specimens with different water contents in both saturation and drying processes. The Nuclear Magnetic Resonance technique was applied to study the water distribution in specimens with variation of water contents. The servo-controlled rock mechanics testing machine and Split Hopkinson Pressure Bar technique were used to conduct both compressive and tensile tests on sandstone specimens with different water contents. From the laboratory tests, reductions of the compressive and tensile strength of sandstone under static and dynamic states in different saturation processes were observed. In the drying process, all of the saturated specimens could basically regain their mechanical properties and recover its strength as in the dry state. However, for partially saturated specimens in the saturation and drying processes, the tensile strength of specimens with the same water content was different, which could be related to different water distributions in specimens.

  4. Development and demonstration of calculation tool for industrial drying processes ''DryPack''; Udvikling og demonstration af beregningsvaerktoej til industrielle toerreprocesser ''DryPack''

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Weinkauff Kristoffersen, J.; Blazniak Andreasen, M. [Teknologisk Institut, Aarhus (Denmark); Elmegaard, B.; Kaern, M. [Danmarks Tekniske Univ.. DTU Mekanik, Kgs. Lyngby (Denmark); Monrad Andersen, C. [Lokal Energi, Viby J. (Denmark); Grony, K. [SE Big Blue, Kolding (Denmark); Stihoej, A. [Enervision, Kolding (Denmark)

    2013-03-15

    In this project we have developed a calculation tool for calculating energy consumption in different drying processes - primarily drying processes with air. The program can be used to determine the energy consumption of a current drying process, after which it can be calculated how much energy can be saved by various measures. There is also developed a tool for the simulation of a batch drier, which calculates the drying of a batch depending on the time. The programs have demonstrated their usefulness in connection with three cases that are reviewed in the report. In the project measurements on four different dryers have been carried out, and energy consumption is calculated using ''DryPack''. With ''DryPack'' it is possible to find potential savings by optimizing the drying processes. The program package includes utilities for the calculation of moist air: 1) Calculation of the thermodynamic properties of moist air; 2) Device operation with moist air (mixing, heating, cooling and humidification); 3) Calculation of the relative change of the drying time by changing the process parameters; 4) IX-diagram at a temperature above 100 deg. C. (LN)

  5. Pyrochemical and Dry Processing Methods Program. A selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    McDuffie, H.F.; Smith, D.H.; Owen, P.T.

    1979-03-01

    This selected bibliography with abstracts was compiled to provide information support to the Pyrochemical and Dry Processing Methods (PDPM) Program sponsored by DOE and administered by the Argonne National Laboratory. Objectives of the PDPM Program are to evaluate nonaqueous methods of reprocessing spent fuel as a route to the development of proliferation-resistant and diversion-resistant methods for widespread use in the nuclear industry. Emphasis was placed on the literature indexed in the ERDA--DOE Energy Data Base (EDB). The bibliography includes indexes to authors, subject descriptors, EDB subject categories, and titles.

  6. Radiation processing of dry food ingredients - a review

    Science.gov (United States)

    Farkas, J.

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives, does not leave residues and is highly efficient. Its dose requirement is moderate. Radiation doses of 3 to 10 kGy proved to be sufficient to reduce the viable cell counts to a satisfactory level. Ionizing radiations do not cause any significant rise in temperature and the flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for a satisfactory decontamination. The microflora surviving the cell-count reduction by irradiation is more sensitive to subsequent food processing treatments than the microflora of untreated ingredients. Recontamination can be prevented since the product can be irradiated in its final packaging. Irradiation can be carried out in commercial containers and it results in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of dry ingredients is an emerging technology in several countries and more-and-more clearances on irradiated foods are issued or expected to be granted in the near future.

  7. Surface modification of magnesium hydroxide using vinyltriethoxysilane by dry process

    Science.gov (United States)

    Lan, Shengjie; Li, Lijuan; Xu, Defang; Zhu, Donghai; Liu, Zhiqi; Nie, Feng

    2016-09-01

    In order to improve the compatibility between magnesium hydroxide (MH) and polymer matrix, the surface of MH was modified using vinyltriethoxysilane (VTES) by dry process and the interfacial interaction between MH and VTES was also studied. Zeta potential measurements implied that the MH particles had better dispersion and less aggregation after modification. Sedimentation tests showed that the surface of MH was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MH particles significantly improved in the organic phase. Scanning electronic microscopy (SEM), Transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that a thin layer had formed on the surface of the modified MH, but did not alter the material's crystalline phase. Fourier transform infrared (FT-IR) spectra, X-ray photoelectron spectra (XPS) and Thermogravimetric analysis (TGA) showed that the VTES molecules bound strongly to the surface of MH after modification. Chemical bonds (Sisbnd Osbnd Mg) formed by the reaction between Si-OC2H5 and hydroxyl group of MH, also there have physical adsorption effect in the interface simultaneously. A modification mechanism of VTES on the MH surface by dry process was proposed, which different from the modification mechanism by wet process.

  8. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  9. Population dynamic of the swallowtail butterfly, Papilio polytes (Lepidoptera: Papilionidae) in dry and wet seasons

    OpenAIRE

    SUWARNO

    2010-01-01

    Suwarno (2010) Population dynamic of the swallowtail butterfly, Papilio polytes (Lepidoptera: Papilionidae) in dry and wet seasons. Biodiversitas 11: 19-23. The population dynamic of Papilio polytes L. (Lepidoptera: Papilionidae) in dry and wet seasons was investigated in the citrus orchard in Tasek Gelugor, Pulau Pinang, Malaysia. Population of immature stages of P. polytes was observed alternate day from January to March 2006 (dry season, DS), from April to July 2006 (secondary wet season, ...

  10. Dynamic similarity in erosional processes

    Science.gov (United States)

    Scheidegger, A.E.

    1963-01-01

    A study is made of the dynamic similarity conditions obtaining in a variety of erosional processes. The pertinent equations for each type of process are written in dimensionless form; the similarity conditions can then easily be deduced. The processes treated are: raindrop action, slope evolution and river erosion. ?? 1963 Istituto Geofisico Italiano.

  11. Dynamic analysis of process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.

  12. A numerical approach to drying process of hygroscopic polymeric granulates with different drying configurations and parameter comparison

    Science.gov (United States)

    Mahbub, A. M. Ishtiaque; Mawa, Zannatul

    2017-06-01

    Some polymers tend to possess affinity with water and eventually, absorb significant moisture content from the surrounding air, causing difficulties during their industrial processing. Drying of these hygroscopic polymers, therefore, plays a vital role in their usability in industrial applications. In this work, the drying kinetics of the polymeric granulates is numerically formulated and the influence of different parameters pertaining to the drying procedure has been investigated. Backward Euler or implicit algorithm has been considered for solving the second order partial differential heat and mass transfer equations for simulating the drying kinetics of Polyamide 6 (PA-6). At first, the conduction of heat from the granulate surface towards the core was formulated using one dimensional transient heat conduction law and corresponding diffusion coefficients were determined using Arrhenius diffusion model. Afterwards, the migration of moisture from the granulate core towards the surface has been calculated using Fick's second law of diffusion. The data obtained from the single polymer granulate was then used to calculate the amount of moisture removed and the drying rate. The numerical results showed similitude with the experimental data obtained from the literature, although deviated quantitatively. To investigate the influence of different parameters on the drying process, different cases with varying drying air temperature, granulate radius and initial moisture content were compared. The numerical analysis qualitatively predicted all the dependencies to be expected. With higher drying air temperature, drying rate was observed to be faster and with higher granulate radius, drying rate was slower. With better approximations of the applied parameters and algorithms, the accuracy of the developed numerical model could be improved and used as a prediction tool for the drying process of polymer samples with reasonable tolerance.

  13. Radiation decontamination of dry food ingredients and processing aids

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J.

    1984-01-01

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives and is highly efficient. Its dose requirement is moderate. Radiation doses of 3-10 kGy (0.3-1 mrad) have proved sufficient to reduce the viable counts to a satisfactory level. Ionising radiations do not cause any significant rise in temperature. The flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for satisfactory decontamination, and radiation obviates the chemical residue problem. The microflora surviving radiation decontamination of dry ingredients are more susceptible to subsequent antimicrobial treatments. Recontamination can be prevented as the product can be irradiated in its final packaging. Irradiation could be carried out in commercial containers and would result in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of these commodities is an established technology in several countries and more clearances on irradiated foods are expected to be granted in the near future.

  14. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages.

    Science.gov (United States)

    Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva

    2016-09-01

    The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p sausages made with lyophilised celery juice were characterised by higher lightness and lower hardness than those made with the addition of other vegetable products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages.

  15. Production of Salvianolic Acid B in Roots of Salvia miltiorrhiza (Danshen During the Post-Harvest Drying Process

    Directory of Open Access Journals (Sweden)

    Guo-Jun Zhou

    2012-02-01

    Full Text Available Drying is the most common and fundamental procedure in the post-harvest processing which contributes to the quality and valuation of medicinal plants. However, attention to and research work on this aspect is relatively poor. In this paper, we reveal dynamic variations of concentrations of five major bioactive components, namely salvianolic acid B (SaB, dihydrotanshinone I, cryptotanshinone, tanshinone I and tanshinone IIA, in roots of Salvia miltiorrhiza (Dashen during the drying process at different oven temperatures. A minor amount of SaB was found in fresh materials while an noticeable increase in SaB was detected in drying at 50~160 °C. The maximal value occured after 40 min of drying at 130 °C and its variation showed a reverse V-shaped curve. Production of SaB exhibited a significant positive correlation with drying temperatures and a significant negative correlation with sample moistures. The amounts of tanshinones were nearly doubled in the early stage of drying and their variations showed similar changing trends with drying temperatures and sample moistures. The results supported our speculation that postharvest fresh plant materials, especially roots, were still physiologically active organs and would exhibit a series of anti-dehydration mechanisms including production of related secondary metabolites at the early stage of dehydration. Hence, the proper design of drying processes could contribute to promoting rather than reducing the quality of Danshen and other similar medicinal plants.

  16. Hydroclimatological Processes in the Central American Dry Corridor

    Science.gov (United States)

    Hidalgo, H. G.; Duran-Quesada, A. M.; Amador, J. A.; Alfaro, E. J.; Mora, G.

    2015-12-01

    This work studies the hydroclimatological variability and the climatic precursors of drought in the Central American Dry Corridor (CADC), a subregion located in the Pacific coast of Southern Mexico and Central America. Droughts are frequent in the CADC, which is featured by a higher climatological aridity compared to the highlands and Caribbean coast of Central America. The CADC region presents large social vulnerability to hydroclimatological impacts originated from dry conditions, as there is a large part of population that depends on subsistance agriculture. The influence of large-scale climatic precursors such as ENSO, the Caribbean Low-Level Jet (CLLJ), low frequency signals from the Pacific and Caribbean and some intra-seasonal signals such as the MJO are evaluated. Previous work by the authors identified a connection between the CLLJ and CADC precipitation. This connection is more complex than a simple rain-shadow effect, and instead it was suggested that convection at the exit of the jet in the Costa-Rica and Nicaragua Caribbean coasts and consequent subsidence in the Pacific could be playing a role in this connection. During summer, when the CLLJ is stronger than normal, the Inter-Tropical Convergence Zone (located mainly in the Pacific) displaces to a more southern position, and vice-versa, suggesting a connection between these two processes that has not been fully explained yet. The role of the Western Hemisphere Warm Pool also needs more research. All this is important, as it suggest a working hypothesis that during summer, the effect of the Caribbean wind strength may be responsible for the dry climate of the CADC. Another previous analysis by the authors was based on downscaled precipitation and temperature from GCMs and the NCEP/NCAR reanalysis. The data was later used in a hydrological model. Results showed a negative trend in reanalysis' runoff for 1980-2012 in San José (Costa Rica) and Tegucigalpa (Honduras). This highly significant drying trend

  17. Effects of Drying Processes on the Antioxidant Properties in Sweet Potatoes

    Institute of Scientific and Technical Information of China (English)

    YANG Jing; CHEN Jin-feng; ZHAO Yu-ying; MAO Lin-chun

    2010-01-01

    The effects of different drying methods (hot-air drying, microwave drying and vacuum-freeze drying) on the antioxidant activity and antioxidants in sweet potato (Ipomoea batatas L. Lam.) tubers were investigated to determine the potential drying process. Sweet potato tubers were cut into 5 mm thick slices, steamed at 100~C for 10 rain, then dried in either hot-air, microwave, or vacuum-freeze. The dried sweet potatoes in microwave possessed the highest antioxidant activity,while the lowest activity was observed in hot-air dried samples. The phenolic contents were positively correlated with scavenging activity and reducing power of DPPH+. The microwave drying retains the highest antioxidant activity with the highest content of phenolic compounds in dried sweet potatoes. β-carotene and ascorbic acid showed minor contribution to the antioxidant activity in dried sweet potatoes.

  18. The dynamics of stochastic processes

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...

  19. High performance controller for drying processes - doi: 10.4025/actascitechnol.v35i2.14775

    Directory of Open Access Journals (Sweden)

    Camila Nicola Boeri

    2013-04-01

    Full Text Available This paper proposes a high performance nonlinear fuzzy multi-input-multi-output controller for a drying control process. The highly nonlinear characteristics of drying processes make classical control theory unable to provide the same performance results as it does in more well behaved systems. Advanced control strategies may be used to design temperature, relative humidity and air velocity nonlinear tracking controllers to overcome its highly non-linear dynamics over the whole drying operating conditions. Open-loop experiments were carried out to collect experienced-based knowledge of the process. PID and Fuzzy logic (FLC real-time-based controllers were designed to perform food drying tests and compared without controllers’ retuning. Absolute errors reached by FLC-based controller were 3.71 and 3.93 times lower than PID for temperature and relative humidity, respectively.  

  20. Computer Modelling of Dynamic Processes

    Directory of Open Access Journals (Sweden)

    B. Rybakin

    2000-10-01

    Full Text Available Results of numerical modeling of dynamic problems are summed in the article up. These problems are characteristic for various areas of human activity, in particular for problem solving in ecology. The following problems are considered in the present work: computer modeling of dynamic effects on elastic-plastic bodies, calculation and determination of performances of gas streams in gas cleaning equipment, modeling of biogas formation processes.

  1. Mathematical modeling of a convective textile drying process

    Directory of Open Access Journals (Sweden)

    G. Johann

    2014-12-01

    Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.

  2. High purity tellurium production using dry refining processes

    Indian Academy of Sciences (India)

    N R Munirathnam; D S Prasad; J V Rao; T L Prakash

    2005-07-01

    Tellurium (99.95 at.% purity) is purified using dry processes such as selective vapourization and zone melting in a thoroughly etched and cleaned quartz boat, under continuous flow of hydrogen (H2) gas. The tellurium ingot was quadruple zone refined (QZR) under continuous flow of H2 gas. Thus, the purified tellurium of ultra high purity (UHP) grade is analysed for 60 impurity elements in the periodic table using glow discharge mass spectrometer (GDMS). The sum of all elemental impurities indicate that the purity of tellurium as 7N (99.99999 at.%). The total content of gas and gas forming impurities like O, N and C are found to be within acceptable limits for opto-electronic applications.

  3. SDSim: A Novel Simulator for Solar Drying Processes

    Directory of Open Access Journals (Sweden)

    Yolanda Bolea

    2012-01-01

    Full Text Available SDSim is a novel solar dryer simulator based in a multicrop, inclined multipass solar air heather with in-built thermal storage mathematical model. This model has been developed as a designing and developing tool used to study and forecast the behavior of the system model in order to improve its drying efficiency and achieving a return on the dryer investment. The main feature of this simulator is that most of the parameters are permitted to be changed during the simulation process allowing finding the more suitable system for any specific situation with a user-friendly environment. The model has been evaluated in a real solar dryer system by comparing model estimates to collected data.

  4. Dynamical Processes in Globular Clusters

    CERN Document Server

    McMillan, Stephen L W

    2014-01-01

    Globular clusters are among the most congested stellar systems in the Universe. Internal dynamical evolution drives them toward states of high central density, while simultaneously concentrating the most massive stars and binary systems in their cores. As a result, these clusters are expected to be sites of frequent close encounters and physical collisions between stars and binaries, making them efficient factories for the production of interesting and observable astrophysical exotica. I describe some elements of the competition among stellar dynamics, stellar evolution, and other processes that control globular cluster dynamics, with particular emphasis on pathways that may lead to the formation of blue stragglers.

  5. Study of Energy Consumption of Potato Slices During Drying Process

    Directory of Open Access Journals (Sweden)

    Hafezi Negar

    2015-06-01

    Full Text Available One of the new methods of food drying using infrared heating under vacuum is to increase the drying rate and maintain the quality of dried product. In this study, potato slices were dried using vacuum-infrared drying. Experiments were performed with the infrared lamp power levels 100, 150 and 200 W, absolute pressure levels 20, 80, 140 and 760 mmHg, and with three thicknesses of slices 1, 2 and 3 mm, in three repetitions. The results showed that the infrared lamp power, absolute pressure and slice thickness have important effects on the drying of potato. With increasing the radiation power, reducing the absolute pressure (acts of vacuum in the dryer chamber and also reducing the thickness of potato slices, drying time and the amount of energy consumed is reduced. In relation to thermal utilization efficiency, results indicated that with increasing the infrared radiation power and decreasing the absolute pressure, thermal efficiency increased.

  6. Ocean-atmosphere dynamics linked to 800-1050 CE drying in mesoamerica

    Science.gov (United States)

    Bhattacharya, Tripti; Chiang, John C. H.; Cheng, Wei

    2017-08-01

    Proxy records from the last millennium in Mesoamerica suggest a widespread interval of drought at some point between the 7th and 13th centuries CE. In some records, this time period represents the driest proxy values in the last few millennia. There is currently no clear dynamical explanation for these droughts, nor consensus as to whether they were spatiotemporally coherent over the region. We perform several analyses to develop a novel hypothesis to explain these droughts that is consistent with our knowledge of the dynamics of the climate system. We use Bayesian age modeling techniques and a synthesis of regional proxy records to suggest that there is robust evidence of drying between 800 and 1050 CE, with the sites showing dry conditions clustered in southern central America. By studying control simulations of two general circulation models (GCMs), we suggest that this pattern may be diagnostic of hydroclimate changes associated with multidecadal variability in the Atlantic Basin. Models and instrumental data suggest that cooling of tropical Atlantic SSTs and strengthening of the North Atlantic Subtropical High drives a pattern of multidecadal drought with negative rainfall anomalies in southern central America and positive anomalies in northern Mexico. This process could have resulted in the droughts observed in the proxy record. Our work offers a novel hypothesis about the dynamics of multidecadal drought in Mesoamerica, and builds on previous efforts to synthesize proxy records from the region.

  7. Emission and drying kinetics of paper mill sludge during contact drying process

    Institute of Scientific and Technical Information of China (English)

    Wen-yi DENG; Xiao-dong LI; Jian-hua YAN; Fei WANG; Sheng-yong LU; Yong CHI; Ke-fa CEN

    2009-01-01

    The emission and contact drying kinetics of the paper mill sludge (PMS) were studied through experiments carried out in a paddle dryer. To get a better understanding of its drying mechanism, a penetration model developed by Tsotsas and Schlunder (1986) was used to simulate the drying kinetics of the PMS. The result indicated that this kinetics could be divided into three phases: pasty, lumpy and granular phases, and could be successfully simulated by the penetration model as the related sludge parameters were integrated into the model. The emission rate curves of the volatile compounds (VCs) were interrelated to the drying rate curve of the PMS, especially for volatile fatty acids (VFAs) and ammonia in this study.

  8. Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests

    NARCIS (Netherlands)

    Rozendaal, Danaë M.A.; Chazdon, Robin L.; Arreola-Villa, Felipe; Balvanera, Patricia; Bentos, Tony V.; Dupuy, Juan M.; Hernández-Stefanoni, J.L.; Jakovac, Catarina C.; Lebrija-Trejos, Edwin E.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo E.S.; Meave, Jorge A.; Mesquita, Rita C.G.; Mora, Francisco; Pérez-García, Eduardo A.; Romero-Pérez, I.E.; Saenz-Pedroza, Irving; Breugel, van Michiel; Williamson, G.B.; Bongers, Frans

    2016-01-01

    The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, b

  9. Phytoplankton dynamics of a tropical river: A dry and rainy season ...

    African Journals Online (AJOL)

    ... dynamics of a tropical river: A dry and rainy season comparison. ... Qualitative phytoplankton samples were collected by towing 55 ìm mesh plankton net while quantitative samples were obtained by sedimenting a known volume of water ...

  10. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  11. Study of the microwave vacuum drying process for a granulated product

    Directory of Open Access Journals (Sweden)

    M. N. Berteli

    2009-06-01

    Full Text Available The objectives of this work were to study and evaluate the process of drying a pharmaceutical granule from 21% to 3 % (d.b. moisture, also determining the power absorbed by the product, using a microwave assisted vacuum dryer with two absolute pressures: 50 and 75 mbar. A specific objective was to compare the drying kinetics of the microwave assisted vacuum process (MAVP with two other drying processes, one using hot air convection and the other combining microwaves with hot air convection. The results of such a study showed that the drying kinetics were not affected by the vacuum levels, whereas the absorbed microwave power was higher for smaller vacuum levels. It was also observed that the samples obtained by the microwave assisted vacuum process, when submitted to compression, complied with the required specifications. The drying kinetics of the MAVP showed the shortest drying times when compared to the other drying processes.

  12. Quantitative imaging of heterogeneous dynamics in drying and aging paints

    NARCIS (Netherlands)

    Kooij, Van Der Hanne M.; Fokkink, Remco; Gucht, Van Der Jasper; Sprakel, Joris

    2016-01-01

    Drying and aging paint dispersions display a wealth of complex phenomena that make their study fascinating yet challenging. To meet the growing demand for sustainable, high-quality paints, it is essential to unravel the microscopic mechanisms underlying these phenomena. Visualising the governing

  13. Using Dynamic Response Index (DRI) as a spinal injury predictor

    CSIR Research Space (South Africa)

    Ahmed, Rayeesa

    2014-09-01

    Full Text Available Injury Criterion (SIC). These, together with the DRI, were used to evaluate seat protection levels during a comparative seat testing study. The results of the study show that the SIC appears to produce more consistent results, in line with what...

  14. Automatic humidification system to support the assessment of food drying processes

    Science.gov (United States)

    Ortiz Hernández, B. D.; Carreño Olejua, A. R.; Castellanos Olarte, J. M.

    2016-07-01

    This work shows the main features of an automatic humidification system to provide drying air that match environmental conditions of different climate zones. This conditioned air is then used to assess the drying process of different agro-industrial products at the Automation and Control for Agro-industrial Processes Laboratory of the Pontifical Bolivarian University of Bucaramanga, Colombia. The automatic system allows creating and improving control strategies to supply drying air under specified conditions of temperature and humidity. The development of automatic routines to control and acquire real time data was made possible by the use of robust control systems and suitable instrumentation. The signals are read and directed to a controller memory where they are scaled and transferred to a memory unit. Using the IP address is possible to access data to perform supervision tasks. One important characteristic of this automatic system is the Dynamic Data Exchange Server (DDE) to allow direct communication between the control unit and the computer used to build experimental curves.

  15. Parameters influencing polymer particle layering of the dry coating process.

    Science.gov (United States)

    Kablitz, Caroline Désirée; Kappl, Michael; Urbanetz, Nora Anne

    2008-06-01

    The dry coating process is an emerging coating technology using neither organic solvents nor water. In contrast to liquid-borne coatings, coating material application and film formation are divided into two phases, the coating phase where the powdery coating material is applied together with the liquid plasticizer, and the curing phase. In this study the coating phase was characterized with respect to the forces acting between the polymer particles during material application. Atomic force microscopy was conducted measuring the interparticle forces which were related to the coating efficiency. The influence of different liquid additives on the interparticle forces and the coating efficiency were evaluated. HPMCAS was used as enteric resistant polymer, triethylcitrate (TEC), Myvacet (diacetylated monoglyceride) and a mixture of both as liquid additives. Interparticle forces were found to be similar when using TEC or a mixture of TEC and Myvacet. In contrast, interparticle forces were higher when using solely Myvacet. This is attributed to the fact that Myvacet does not penetrate into the polymer without TEC which is acting as a penetration enhancer. As Myvacet remains predominantly on the particle surface, capillary forces act between the particles explaining high interparticle forces. The highest interparticle force determined by AFM is in accordance to the highest coating efficiency which has been found for the corresponding coating formulation containing HPMCAS and Myvacet. Consequently, it is demonstrated that the ability of the liquid to remain on the surface of the polymer and to build up capillary forces is crucial for the material application.

  16. Spray Drying Processing: granules production and drying kinetics of droplets; El proceso de secado por atomizacion: formacion de granulos y cinetica de secado de gotas

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-09-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  17. OPTIMUM DRYING PROCESS. Best drying conditions to grind fruits and vegetables

    OpenAIRE

    Pina Laguna, Meritxell

    2013-01-01

    World’s population is increasing annually, thereby increasing world’s food demand. Considering current trends, changes in food production must be done in order to meet the estimated future demand. This problem and its possible solutions such as drying or pulverizing the foods, in which this thesis is focused on, are described in detail below.

  18. The Effect of Contact Angle on Dynamics of Dry Spots Spreading in a Horizontal Layer of Liquid at Local Heating

    Directory of Open Access Journals (Sweden)

    Zaitsev D.V.

    2015-01-01

    Full Text Available The effect of equilibrium contact angle on dynamics of dry spot spreading at disruption of a horizontal water layer heated locally from the substrate was studied using the high-speed Schlieren technique. Different methods of working surface processing were applied; this allowed variations of the equilibrium contact angle from 27±6° to 74±9° without a change in thermal properties of the system. It is found out that substrate wettability significantly affects the propagation velocity of dry spot and its final size. It is also found out that the velocity of contact line propagation is higher in the areas of substrate with a higher temperature.

  19. Improving energy efficiency in the production processes of dehydration smoked and dried fish.

    Directory of Open Access Journals (Sweden)

    Mihail Ershov

    2013-04-01

    Full Text Available The technology of dehydration fish with cyclical periods of drying and relaxation facility dehydration. This technology is aimed at improving the energy efficiency of the processes of dehydration by drying and cold-smoked fish. Relaxation object dehydration is most effective in a period of falling drying rate. The use of the proposed technology can reduce energy costs in the production of dried and smoked products by 8-12% as compared to conventional technology.

  20. Critical processing parameters of carbon dioxide spray drying for the production of dried protein formulations: A study with myoglobin.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Jiskoot, W

    2016-06-01

    The aim of this study was to gain fundamental insight into protein destabilization induced by supercritical CO2 spray drying processing parameters. Myoglobin was used as a model protein (5mg/ml with 50mg/ml trehalose in 10mM phosphate buffer, pH 6.2). The solution was exposed to sub- and supercritical CO2 conditions (65-130bar and 25-50°C), and CO2 spray drying under those conditions. The heme binding of myoglobin was determined by UV/Vis, fluorescence, and circular dichroism spectroscopy, while myoglobin aggregation was studied by using size-exclusion chromatography and flow imaging microscopy. It was found that pressure and temperature alone did not influence myoglobin's integrity. However, when pressurized CO2 was introduced into myoglobin solutions at any condition, the pH of the myoglobin formulation shifted to about 5 (measured after depressurization), resulting in heme binding destabilization and aggregation of myoglobin. When exposed to CO2, these degradation processes were enhanced by increasing temperature. Heme binding destabilization and myoglobin aggregation were also seen after CO2 spray drying, and to a greater extent. Moreover, the CO2 spray drying induced the partial loss of heme. In conclusion, pressurized CO2 destabilizes the myoglobin, leading to heme loss and protein aggregation upon spray drying.

  1. Advanced approach to build the design space for the primary drying of a pharmaceutical freeze-drying process.

    Science.gov (United States)

    Fissore, Davide; Pisano, Roberto; Barresi, Antonello A

    2011-11-01

    This paper deals with the design space of a pharmaceutical freeze-drying process. Mathematical modeling is used to investigate the effect of the operating conditions [shelf temperature (T(shelf)) and chamber pressure (P(c))] on product temperature (that has to remain below a limit value) and sublimation flux (that has to be lower than a level that would cause choked flow). The algorithm takes into account the variation of the design space with time due to the increase in the dried layer thickness. Besides T(shelf) and P(c), the dried layer thickness is used as the third coordinate of the diagram, thus resulting in just one graph that can be used to build recipes with variable operating conditions, as well as to analyze the effect of process failures. Such results are compared with those obtained when the variation of the design space with time is not accounted for; in this case, the design space comprises those operating conditions that fulfill the operation constraints throughout primary drying, thus giving a much more conservative recipe when designing the process or potentially misleading results when analyzing process failures. Finally, the proposed method has been used to design, and experimentally validate, a recipe for a pharmaceutical formulation. Copyright © 2011 Wiley-Liss, Inc.

  2. The Dynamics of a Railway Freight Wagon Wheelset with dry friction Damping

    DEFF Research Database (Denmark)

    True, Hans; Asmund, Rolf

    2002-01-01

    We investigate the dynamics of a simple model of a wheelset that supports one end of a railway freight wagon by springs with linear characteristics and dry friction dampers. The wagon runs on an ideal, straight and level track with constant speed. The lateral dynamics in dependence on the speed...

  3. The effects of barrier disruption and moisturization on the dynamic drying mechanics of human stratum corneum.

    Science.gov (United States)

    Liu, X; German, G K

    2015-09-01

    We study the dynamic drying mechanics of human stratum corneum, the most superficial layer of skin and essential physical and chemical barrier to the external environment. Barrier disruption caused by a depletion of lipids ordinarily found in healthy stratum corneum can occur with ageing, aggressive cleansing or with dry skin disorders and diseases such as atopic dermatitis and psoriasis. We establish the effects of severe barrier disruption on the dynamic drying mechanics of human stratum corneum by measuring variations in thickness and spatially resolved in-plane displacements in healthy and lipid depleted tissue samples drying in controlled environmental conditions. In-plane displacements recorded at regular intervals during drying are azimuthally averaged and fitted with a profile based on a linear elastic model. The measured thickness of the tissue sample is accounted for in each model fit. Dynamic variations in the drying stress and elastic modulus of the tissue are then established from the model fits. We find that barrier disruption causes dramatic reductions in drying timescales, increases in the elastic modulus of the tissue and larger drying stresses. We expect these changes to increase the propensity for cracking and chapping in skin. The maximum elastic modulus and drying stress of barrier disrupted stratum corneum (ESC=85.4±6.8 MPa, PSC=10.9±0.9 MPa) is reduced to levels comparable with stratum corneum containing lipids (ESC=26.1±3.2 MPa, PSC=2.58±0.45 MPa) after treatment with a 5% aqueous solution of glycerol. Neither 2% nor 5% glycerol solutions slow the accelerated drying timescales in barrier disrupted stratum corneum.

  4. Effect of drying temperature on lycopene content of processed tomatoes

    OpenAIRE

    Peter Czako; Ľubomír Mendel; Martina Fikselová; Andrea Mendelová

    2013-01-01

    Recently it has been increasing interest worldwide in the production of dehydrated tomato products, which are used in food industry and in pharmacy. An important indicator of the quality of products, beside the microbiological stability is health safety and lycopene content. The aim of this work was to evaluate the effect of drying temperature on changes of the content of lycopene in selected varieties of tomato. Drying was performed at 45 °C, 70 °C and 90 °C. Varieties of Darina F1, Denár, K...

  5. Preparation and pharmaceutical characterization of amorphous cefdinir using spray-drying and SAS-process.

    Science.gov (United States)

    Park, Junsung; Park, Hee Jun; Cho, Wonkyung; Cha, Kwang-Ho; Kang, Young-Shin; Hwang, Sung-Joo

    2010-08-30

    The aim of this study was to investigate the effects of micronization and amorphorization of cefdinir on solubility and dissolution rate. The amorphous samples were prepared by spray-drying (SD) and supercritical anti-solvent (SAS) process, respectively and their amorphous natures were confirmed by DSC, PXRD and FT-IR. Thermal gravimetric analysis was performed by TGA. SEM was used to investigate the morphology of particles and the processed particle had a spherical shape, while the unprocessed crystalline particle had a needle-like shape. The mean particle size and specific surface area were measured by dynamic light scattering (DLS) and BET, respectively. The DLS result showed that the SAS-processed particle was the smallest, followed by SD and the unprocessed cefdinir. The BET result was the same as DLS result in that the SAS-processed particle had the largest surface area. Therefore, the processed cefdinir, especially the SAS-processed particle, appeared to have enhanced apparent solubility, improved intrinsic dissolution rate and better drug release when compared with SD-processed and unprocessed crystalline cefdinir due not only to its amorphous nature, but also its reduced particle size. Conclusions were that the solubility and dissolution rate of crystalline cefdinir could be improved by physically modifying the particles using SD and SAS-process. Furthermore, SAS-process was a powerful methodology for improving the solubility and dissolution rate of cefdinir.

  6. Salt and intramuscular fat modulate dynamic perception of flavour and texture in dry-cured hams.

    Science.gov (United States)

    Lorido, Laura; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia

    2015-09-01

    The present study aimed to evaluate the influence of salt and intramuscular fat (IMF) content on the sensory characteristics of two different types of dry-cured hams (Iberian and Serrano) using the time-intensity (TI) method. All studied TI parameters of flavour attributes (overall flavour, saltiness, cured and rancid flavours) were significantly (p < 0.05) affected by variations in the salt and/or IMF content. However, regarding texture attributes only the maximum intensity (Imax) of hardness was significantly (p < 0.05) affected by the salt content of hams. Compared to Iberian dry-cured hams, the dynamic perception of the flavour and texture of Serrano dry-cured hams was less influenced by variations in salt and/or IMF content. The dynamic sensory techniques may be helpful to guarantee the quality of dry-cured products subjected to strategies of salt and fat reduction.

  7. Performance of a Big Scale Green House Type Dryer for Coffee Drying Process

    OpenAIRE

    Sukrisno Widyotomo

    2014-01-01

    Dying is one of important steps in coffee processing to produce good quality. Greenhouse is one of artificial drying alternatives that potential for coffee drying method cause of cleans environmental friendly, renewable energy sources and chippers. Indonesian Coffee and Cocoa Research Institute has developed and testing a big scale greenhouse type dryer for fresh coffee cherries and wet parchment coffee drying process. Greenhouse has 24 m length, 18 m width, also 3 m high of the front side an...

  8. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal an

  9. Optimization of frozen wild blueberry vacuum drying process

    Directory of Open Access Journals (Sweden)

    Šumić Zdravko M.

    2015-01-01

    Full Text Available The objective of this research was to optimize the vacuum drying of frozen blueberries in order to preserve health benefits phytochemicals using response surface methodology. The drying was performed in a new design of vacuum dryer equipment. Investigated range of temperature was 46-74°C and of pressure 38-464 mbar. Total solids, total phenolics, vitamin C, anthocyanin content and total color change were used as quality indicators of dried blueberries. Within the experimental range of studied variables, the optimum conditions of 60 °C and 100 mbar were established for vacuum drying of blueberries. Separate validation experiments were conducted at optimum conditions to verify predictions and adequacy of the second-order polynomial models. Under these optimal conditions, the predicted amount of total phenolics was 3.70 mgCAE/100dw, vitamin C 59.79 mg/100gdw, anthocyanin content 2746.33 mg/100gdw, total solids 89.50% and total color change 88.83. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  10. The effect of dryer load on freeze drying process design.

    Science.gov (United States)

    Patel, Sajal M; Jameel, Feroz; Pikal, Michael J

    2010-10-01

    Freeze-drying using a partial load is a common occurrence during the early manufacturing stages when insufficient amounts of active pharmaceutical ingredient (API) are available. In such cases, the immediate production needs are met by performing lyophilization with less than a full freeze dryer load. However, it is not obvious at what fractional load significant deviations from full load behavior begin. The objective of this research was to systematically study the effects of variation in product load on freeze drying behavior in laboratory, pilot and clinical scale freeze-dryers. Experiments were conducted with 5% mannitol (high heat and mass flux) and 5% sucrose (low heat and mass flux) at different product loads (100%, 50%, 10%, and 2%). Product temperature was measured in edge as well as center vials with thermocouples. Specific surface area (SSA) was measured by BET gas adsorption analysis and residual moisture was measured by Karl Fischer. In the lab scale freeze-dryer, the molar flux of inert gas was determined by direct flow measurement using a flowmeter and the molar flux of water vapor was determined by manometric temperature measurement (MTM) and tunable diode laser absorption spectroscopy (TDLAS) techniques. Comparative pressure measurement (capacitance manometer vs. Pirani) was used to determine primary drying time. For both 5% mannitol and 5% sucrose, primary drying time decreases and product temperature increases as the load on the shelves decreases. No systematic variation was observed in residual moisture and vapor composition as load decreased. Further, SSA data suggests that there are no significant freezing differences under different load conditions. Independent of dryer scale, among all the effects, variation in radiation heat transfer from the chamber walls to the product seems to be the dominant effect resulting in shorter primary drying time as the load on the shelf decreases (i.e., the fraction of edge vials increases).

  11. The effect of thermal processing condition on the physicochemical and sensory characteristics of fermented sausages dried by Quick-Dry-Slice process®.

    Science.gov (United States)

    Ferrini, G; Arnau, J; Guàrdia, M D; Comaposada, J

    2014-02-01

    The effect of different thermal processing conditions just after fermentation on physicochemical parameters and sensory attributes of salami and chorizo slices dried by Quick-Dry-Slice process®, was evaluated. Meat and common additives were mixed, stuffed and fermented. Previous to drying the sausages were subjected to thermal treatment at 53 °C at different exposure times (0, 50, 65, 80, 95 and 110 min). Finally, the sausages were sliced and dried using QDS process®. Color, instrumental texture and sensory analysis were performed. Lightness (L*) after fermentation increased with thermal processing in both products while redness (a*) and yellowness (b*) decreased only in salami. Thermal treatment after fermentation increased the initial force (F0). Cooked appearance, cooked fat odor, cooked flavor and stringiness increased when the thermal processing time was increased. Thermal processing of salami and chorizo at 53 °C for 50 min and drying up to 30% of weight loss resulted in a similar product to that obtained without thermal processing.

  12. The impact of antibacterial handsoap constituents on the dynamics of triclosan dissolution from dry sand.

    Science.gov (United States)

    Koehler, Daniel A; Strevett, Keith A; Papelis, Charalambos; Kibbey, Tohren C G

    2017-11-01

    Triclosan has been widely used as an antibacterial agent in consumer and industrial products, and large quantities continue to be discharged to natural waters annually. The focus of this work was on studying the dynamics of triclosan dissolution following evaporative drying. Warm weather can cause the water in intermittent streams or the unsaturated zone to evaporate, causing nonvolatile compounds to form solid precipitates. Because dissolution of precipitates is a relatively slow process, the dynamics of dissolution following evaporation may play an important role in controlling the release of contaminants to the environment. The specific purpose of the work was to explore the effects of surfactant co-contaminants from an industrial antibiotic handsoap on the dissolution dynamics of triclosan. The work used a fiber optic-based optical cell to conduct stirred-batch dissolution experiments for sands coated with different mass loadings of triclosan. Results show that the presence of surfactants from the hand soap not only increase the apparent equilibrium solubility, but also increase the rate of approach to equilibrium. A model describing the dissolution process was developed, and was found to be consistent with experimental data. Results of the work suggest that even small solubility enhancement by surfactant co-contaminants may have a significant impact on dissolution dynamics. Because waters containing significant quantities of triclosan are also among those most likely to contain surfactant co-contaminants, it is likely that the release of triclosan to the environment following evaporation may be faster in many cases than would be predicted from experiments based on pure triclosan. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    Science.gov (United States)

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures.

  14. Modified dry limestone process for control of sulfur dioxide emissions

    Science.gov (United States)

    Shale, Correll C.; Cross, William G.

    1976-08-24

    A method and apparatus for removing sulfur oxides from flue gas comprise cooling and conditioning the hot flue gas to increase the degree of water vapor saturation prior to passage through a bed of substantially dry carbonate chips or lumps, e.g., crushed limestone. The reaction products form as a thick layer of sulfites and sulfates on the surface of the chips which is easily removed by agitation to restore the reactive surface of the chips.

  15. CFD Study for the Optimization of the Drying Process of Foundry Moulds used in the Production of Wind Turbine Components

    Directory of Open Access Journals (Sweden)

    Giovanni Luca Di Muoio

    2015-02-01

    Full Text Available In order to drive down the cost of wind turbine cast components, the optimization of each production step is necessary. In particular, foundry moulds used for the production of cast components undergo a process of drying needed to avoid quality problems in the final parts. In order to reduce drying times forced convection by the use of fans is needed. In this work we perform Computational Fluid Dynamic studies with the aim to optimize the drying process for mould geometries typically used for the production of wind turbine components. Representative geometries are modelled in a 3D software, imported in a fluid flow solver and complete NavierStokes equations coupled with energy transport equations are solved. Velocity profiles from shop floor measurements are used as boundary conditions for the problem. Finally surface heat exchange coefficients are determined and results analyzed. Results show that it is possible to use this methodology to optimize the drying process, and determine areas of the moulds that are more difficult to dry than others. Optimal fan arrangement for typical geometries are also provided.

  16. Ultrasound-assisted osmotic dehydration and convective drying of apples: Process kinetics and quality issues

    Directory of Open Access Journals (Sweden)

    Mierzwa Dominik

    2016-09-01

    Full Text Available The aim of the present theme issue was to study the influence of ultrasound enhancement on the kinetics of osmotic dehydration and the effect of convective drying from the point of view of drying time and quality of dried products. Apple fruit was used as the experimental material. The kinetics of osmotic dehydration with (UAOD and without (OD ultrasound enhancement were examined for 40% fructose and sorbitol solutions. The effective dehydration time of osmotic process was determined. Preliminary dehydrated samples with OD and UAOD were next dried convectively with (CVUS and without (CV ultrasound assistance. The influence of OD and UAOD on the kinetics of CV and CVUS drying was analysed. The parameters of water activity and colour change were measured for the assessment of product quality after drying process.

  17. Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM).

    Science.gov (United States)

    Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir

    2016-07-15

    Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample.

  18. Dynamic security assessment processing system

    Science.gov (United States)

    Tang, Lei

    The architecture of dynamic security assessment processing system (DSAPS) is proposed to address online dynamic security assessment (DSA) with focus of the dissertation on low-probability, high-consequence events. DSAPS upgrades current online DSA functions and adds new functions to fit into the modern power grid. Trajectory sensitivity analysis is introduced and its applications in power system are reviewed. An index is presented to assess transient voltage dips quantitatively using trajectory sensitivities. Then the framework of anticipatory computing system (ACS) for cascading defense is presented as an important function of DSAPS. ACS addresses various security problems and the uncertainties in cascading outages. Corrective control design is automated to mitigate the system stress in cascading progressions. The corrective controls introduced in the dissertation include corrective security constrained optimal power flow, a two-stage load control for severe under-frequency conditions, and transient stability constrained optimal power flow for cascading outages. With state-of-the-art computing facilities to perform high-speed extended-term time-domain simulation and optimization for large-scale systems, DSAPS/ACS efficiently addresses online DSA for low-probability, high-consequence events, which are not addressed by today's industrial practice. Human interference is reduced in the computationally burdensome analysis.

  19. Effect of Selected Factors on Drying Process of Tomato in Forced Convection Solar Energy Dryer

    OpenAIRE

    U.S. Muhammed; A.M.I. El-Okene; Isiaka, M

    2012-01-01

    The effect of air velocity, slice thickness and grazing materials in drying process of tomato in forced convection solar energy dryer was evaluated. The result is to serve as an input for solar energy development for drying of vegetable and fruit products in North West Ecological zone of Nigeria. In order to evaluate the effects of the above factors in drying operation, a split-split-plot experimental design was used. Differences among the treatments and their interactions were tested with or...

  20. An analytical method for determining the temperature dependent moisture diffusivities of pumpkin seeds during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)

    2007-02-15

    This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)

  1. Ultrasound-assisted osmotic dehydration and convective drying of apples: Process kinetics and quality issues

    OpenAIRE

    Mierzwa Dominik; Kowalski Stefan J.

    2016-01-01

    The aim of the present theme issue was to study the influence of ultrasound enhancement on the kinetics of osmotic dehydration and the effect of convective drying from the point of view of drying time and quality of dried products. Apple fruit was used as the experimental material. The kinetics of osmotic dehydration with (UAOD) and without (OD) ultrasound enhancement were examined for 40% fructose and sorbitol solutions. The effective dehydration time of osmotic process was determined. Preli...

  2. Influence of Ripeness and Drying Process on the Polyphenols and Tocopherols of Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Gabriele Ballistreri

    2009-10-01

    Full Text Available This paper highlights, for the first time, the changes in the phenolics fraction (anthocyanins, flavonoids and stilbenes and tocopherols of unpeeled Pistacia vera L. var. bianca with ripening, and the effect of the sun-drying process. The total polyphenol levels in pistachios, measured as mg of Gallic Acid Equivalent (GAE, were: 201 ± 10.1, 349 ± 18.3 and 184.7 ± 6.2 mg GAE/100 g DM in unripe, ripe and dried ripe samples, respectively. Most phenolics in ripe pistachios were found to be anthocyanins. They increased with ripening, while the sun drying process caused a susbtantial loss. Flavonoids found in all pistachio samples were daidzein, genistein, daidzin, quercetin, eriodictyol, luteolin, genistin and naringenin, which decreased both with ripening and drying. Before the drying process both unripe and ripe pistachios showed a higher content of trans-resveratrol than dried ripe samples. γ-Tocopherol was the major vitamin E isomer found in pistachios. The total content (of α- and γ-tocopherols decreased, both during ripening and during the drying process. These results suggested that unpeeled pistachios can be considered an important source of phenolics, particularly of anthocyanins. Moreover, in order to preserve these healthy characteristics, new and more efficient drying processes should be adopted.

  3. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    Science.gov (United States)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  4. Parameters Online Detection and Model Predictive Control during the Grain Drying Process

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2013-01-01

    Full Text Available In order to improve the grain drying quality and automation level, combined with the structural characteristics of the cross-flow circulation grain dryer designed and developed by us, the temperature, moisture, and other parameters measuring sensors were placed on the dryer, to achieve online automatic detection of process parameters during the grain drying process. A drying model predictive control system was set up. A grain dry predictive control model at constant velocity and variable temperature was established, in which the entire process was dried at constant velocity (i.e., precipitation rate per hour is a constant and variable temperature. Combining PC with PLC, and based on LabVIEW, a system control platform was designed.

  5. Textile Dry Cleaning Using Carbon Dioxide: Process, Apparatus and Mechanical Action

    NARCIS (Netherlands)

    Sutanto, S.

    2014-01-01

    Fabrics that are sensitive to water, may wrinkle or shrink when washed in regular washing machines and are usually cleaned by professional dry cleaners. Dry cleaning is a process of removing soils from substrate, in this case textile, using a non-aqueous solvent. The most common solvent in conventio

  6. Textile Dry Cleaning Using Carbon Dioxide: Process, Apparatus and Mechanical Action

    NARCIS (Netherlands)

    Sutanto, S.

    2014-01-01

    Fabrics that are sensitive to water, may wrinkle or shrink when washed in regular washing machines and are usually cleaned by professional dry cleaners. Dry cleaning is a process of removing soils from substrate, in this case textile, using a non-aqueous solvent. The most common solvent in

  7. Performance of a Big Scale Green House Type Dryer for Coffee Drying Process

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2014-12-01

    Full Text Available Dying is one of important steps in coffee processing to produce good quality. Greenhouse is one of artificial drying alternatives that potential for coffee drying method cause of cleans environmental friendly, renewable energy sources and chippers. Indonesian Coffee and Cocoa Research Institute has developed and testing a big scale greenhouse type dryer for fresh coffee cherries and wet parchment coffee drying process. Greenhouse has 24 m length, 18 m width, also 3 m high of the front side and 2 m high of the rear side. The maximum capacity of greenhouse is 40 tons fresh coffee cherries. Fiber Reinforced Plastic (FRP used as greenhouse roof that combined with I and C profile of steel. Fresh coffee cherries and wet parchment coffee from Robusta variety use as main materials in this research. The treatment of this research was 30 kg/m2, 60 kg/m2 and 90 kg/m2 for coffee density. String process has done by manual, two times a day in the morning and in the afternoon. As control, fresh coffee cherries and wet parchment coffee has dried by fully sun drying method. The result showed that a big scale greenhouse has heat drying efficiency between 29.9-58.2% depend on type and density of coffee treatments. On the full sunny day, greenhouse has produced maximum drying air temperature up to 52oC. In radiation cumulative level 4-5 kW-jam/m2 per day, 12.9-38.8 tons fresh coffee cherries or wet parchment coffee with 58-64% moisture content can be dried to 12% moisture content for 6 up to 14 days drying process. Slowly drying mechanism can be avoided negative effect to degradation of quality precursor compound. Capacity of the dryer can be raise and fungi can be reduce with application of controllable mechanical stirring in the greenhouse. Keywords: greenhouse, coffee, drying, quality

  8. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design

  9. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design prope

  10. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    's oceans and seas is most significantly impacted by human activities. More than half of the world's population lives within 100 km of a coast and hence the overwhelming majority of anthropogenic fluxes to aquatic systems occur in the coastal zone. We discuss the particular challenges that arise from...... measurement requirements represent significant barriers to application to measurement of particle dry deposition fluxes although, as discussed, innovative solutions are now becoming available. In the final section, we examine meteorological controls on deposition to the coastal zone. This region of the world...... flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...

  11. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes

    Science.gov (United States)

    The yeast form (blastospore) of the dimorphic insect-pathogenic fungus Beauveria bassiana can be rapidly produced using liquid fermentation methods but is generally unable to survive rapid dehydration processes or storage under non-refrigerated conditions. In this study, we evaluated the influence o...

  12. Effects of drought stress on microbial dynamics in seasonally dry California ecosystems

    Science.gov (United States)

    Schaeffer, S. M.; Boot, C. M.; Doyle, A.; Clark, J.; Schimel, J. P.

    2008-12-01

    One of the key environmental factors controlling microbial activity is moisture. This water limitation is particularly strong in semi-arid and arid ecosystems such as those found along California's coast and interior range-lands. Cool, wet winters separated by long, dry summers present some the most challenging conditions for microbial survival and growth. Infrequent pulses of precipitation directly control microbial dynamics through soil wet-dry cycles, which in turn control the export of materials and nutrients into streams and groundwater. Recent research suggests that living microbial biomass can increase during the driest, hottest part of the year. We measured dissolved organic carbon and nitrogen (DOC, DON), microbial biomass carbon and nitrogen, inorganic nitrogen (NH4+, NO3-), and nitrification potential from July of 2007 to the present in California semi-arid grasslands. We also monitored inorganic nitrogen concentrations in soil pore water, shallow ground water, and stream water over the same period. Seasonal trends in DOC and DON show that they accumulate over the dry summer, and then decrease with the onset of the winter rains. Microbial biomass carbon showed a similar pattern, being higher in the summer and declining during winter (188.94±13.34 and 139.21±8.45 μg C g-1 dry soil respectively. However, biomass nitrogen remained unchanged over the same period (11.21±0.84 and 10.86±0.74 μg N g-1 dry soil respectively). Nitrification potentials were lowest during the winter wet season (5.26±0.40 μg N d-1 g-1 dry soil) and highest during the dry summer season (8.91±0.60 μg N d-1 g-1 dry soil). However, the seasonal patterns in NH4+ and NO3- availability suggest that net nitrification was not substantial until after the winter rains began. It is not currently known whether this increase in biomass represents actual growth of new organisms, or is a result of microbes accumulating internal solutes to avoid drying out. At the landscape-scale, these

  13. Dynamic Optimization of UV Flash Processes

    DEFF Research Database (Denmark)

    Ritschel, Tobias Kasper Skovborg; Capolei, Andrea; Jørgensen, John Bagterp

    2017-01-01

    UV ash processes, also referred to as isoenergetic-isochoric ash processes, occur for dynamic simulation and optimization of vapor-liquid equilibrium processes. Dynamic optimization and nonlinear model predictive control of distillation columns, certain two-phase ow problems, as well as oil reser...... that the optimization solver, the compiler, and high-performance linear algebra software are all important for e_cient dynamic optimization of UV ash processes....

  14. Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham.

    Science.gov (United States)

    Gallego, Marta; Mora, Leticia; Fraser, Paul D; Aristoy, María-Concepción; Toldrá, Fidel

    2014-04-15

    Extensive proteolysis takes place during the processing of dry-cured ham due to the action of muscle peptidases. The aim of this work was to study the degradation of LIM domain binding protein 3 (LDB3), which is located at the Z-lines of the sarcomere, at different times during the Spanish dry-cured ham processing (2, 3.5, 5, 6.5, and 9 months). A total of 107 peptides have been identified by mass spectrometry, most of them generated from the first region of the protein sequence (position 1-90) providing evidence for the complexity and variability of proteolytic reactions throughout the whole process of dry-curing. Methionine oxidation has been observed in several peptides by the end of the process. The potential of some of the identified peptides to be used as biomarkers of dry-cured ham processing has also been considered.

  15. Behavior of solid matters and heavy metals during conductive drying process of sewage sludge

    Directory of Open Access Journals (Sweden)

    Jianping Luo

    2016-12-01

    Full Text Available Behavior of solid matters and heavy metals during conductive drying process of sewage sludge was evaluated in a sewage sludge disposal center in Beijing, China. The results showed most of solid matters could be retained in the dried sludge after drying. Just about 3.1% of solid matters were evaporated with steam mainly by the form of volatile fatty acids. Zn was the dominant heavy metal in the sludge, followed by Cu, Cr, Pb, Ni, Hg, and Cd. The heavy metals in the condensate were all below the detection limit except Hg. Hg in the condensate accounted for less than 0.1% of the total Hg. It can be concluded that most of the heavy metals are also retained in the dried sludge during the drying process, but their bioavailability could be changed significantly. The results are useful for sewage sludge utilization and its condensate treatment.

  16. Spatiotemporal computed tomography of dynamic processes

    Science.gov (United States)

    Kaestner, Anders; Münch, Beat; Trtik, Pavel; Butler, Les

    2011-12-01

    Modern computed tomography (CT) equipment allowing fast 3-D imaging also makes it possible to monitor dynamic processes by 4-D imaging. Because the acquisition time of various 3-D-CT systems is still in the range of at least milliseconds or even hours, depending on the detector system and the source, the balance of the desired temporal and spatial resolution must be adjusted. Furthermore, motion artifacts will occur, especially at high spatial resolution and longer measuring times. We propose two approaches based on nonsequential projection angle sequences allowing a convenient postacquisition balance of temporal and spatial resolution. Both strategies are compatible with existing instruments, needing only a simple reprograming of the angle list used for projection acquisition and care with the projection order list. Both approaches will reduce the impact of artifacts due to motion. The strategies are applied and validated with cold neutron imaging of water desorption from originally saturated particles during natural air-drying experiments and with x-ray tomography of a polymer blend heated during imaging.

  17. Diagnosing dry eye with dynamic-area high-speed videokeratoscopy

    Science.gov (United States)

    Alonso-Caneiro, David; Turuwhenua, Jason; Iskander, D. Robert; Collins, Michael J.

    2011-07-01

    Dry eye syndrome is one of the most commonly reported eye health conditions. Dynamic-area high-speed videokeratoscopy (DA-HSV) represents a promising alternative to the most invasive clinical methods for the assessment of the tear film surface quality (TFSQ), particularly as Placido-disk videokeratoscopy is both relatively inexpensive and widely used for corneal topography assessment. Hence, improving this technique to diagnose dry eye is of clinical significance and the aim of this work. First, a novel ray-tracing model is proposed that simulates the formation of a Placido image. This model shows the relationship between tear film topography changes and the obtained Placido image and serves as a benchmark for the assessment of indicators of the ring's regularity. Further, a novel block-feature TFSQ indicator is proposed for detecting dry eye from a series of DA-HSV measurements. The results of the new indicator evaluated on data from a retrospective clinical study, which contains 22 normal and 12 dry eyes, have shown a substantial improvement of the proposed technique to discriminate dry eye from normal tear film subjects. The best discrimination was obtained under suppressed blinking conditions. In conclusion, this work highlights the potential of the DA-HSV as a clinical tool to diagnose dry eye syndrome.

  18. Mathematical modeling and determination of thermodynamic properties of jabuticaba peel during the drying process

    Directory of Open Access Journals (Sweden)

    Cristian F. Costa

    2016-06-01

    Full Text Available ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.

  19. Drying of water based foundry coatings: Innovative test, process design and optimization methods

    DEFF Research Database (Denmark)

    Di Muoio, Giovanni Luca; Johansen, Bjørn Budolph

    This work has been carried out in in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (PhD) at the Technical University of Denmark. Associate Professor Niels Skat Tiedje has been the university supervisor from March 2012 to February 2015. Casting Technology...... of Denmark with the overall aim to optimize the drying process of water based foundry coatings. Drying of foundry coatings is a relatively new process in the foundry industry that followed the introduction of water as a solvent. In order to avoid moisture related quality problems and reach production...... or adapted to better control drying processes of water based foundry coatings. Critical drying process related properties were obtained in the several laboratory tests performed and calculation and simulation methods were developed. Additionally, examples of improvement on full scale industrial production...

  20. Augmenting Lagoon Process Using Reactivated Freeze-dried Biogranules.

    Science.gov (United States)

    Pishgar, Roya; Hamza, Rania Ahmed; Tay, Joo Hwa

    2017-02-24

    This study investigated the feasibility of using freeze-dried biogranules in lagoon basins. The effect of different operational conditions on treatment performance and detention time of granule-based lagoons was examined in a series of laboratory-scale batch studies. Optimal granule dosage was 0.1 g/L under anaerobic condition, resulting in 80-94% removal of 1000 mg/L chemical oxygen demand (COD) in 7-10 days. Under aerobic condition, granule dosage of 0.2 g/L achieved the best result for identical COD concentration. However, adequate amount of nutrients (optimal COD/N/P ratio of 100/13/0.8) should be supplied to encourage the growth of aerobic species. At optimal COD/N/P ratio, aerobic treatment interval significantly reduced to 2-3 days with corresponding COD removal efficiency of 88-92%. Inhibition of high concentrations of COD (5000 mg/L) and ammonia (480 mg/L NH4-N) was observed on microbial activity and treatment capacity of the biogranules. Mixing was a crucial measure to overcome mass transfer limitation. Onetime inoculation of lagoon with fresh granules was the best approach to achieve a satisfactory treatment efficiency. This study suggested that utilization of the biogranules is a feasible and sustainable technique for augmenting lagoon plants in terms of improved effluent quality and reduced retention time. Graphical Abstract ᅟ.

  1. Infrared Thermography for Monitoring of Freeze-Drying Processes: Instrumental Developments and Preliminary Results

    Science.gov (United States)

    Emteborg, Håkan; Zeleny, Reinhard; Charoud-Got, Jean; Martos, Gustavo; Lüddeke, Jörg; Schellin, Holger; Teipel, Katharina

    2014-01-01

    Coupling an infrared (IR) camera to a freeze dryer for on-line monitoring of freeze-drying cycles is described for the first time. Normally, product temperature is measured using a few invasive Pt-100 probes, resulting in poor spatial resolution. To overcome this, an IR camera was placed on a process-scale freeze dryer. Imaging took place every 120 s through a Germanium window comprising 30,000 measurement points obtained contact-free from −40°C to 25°C. Results are presented for an empty system, bulk drying of cheese slurry, and drying of 1 mL human serum in 150 vials. During freezing of the empty system, differences of more than 5°C were measured on the shelf. Adding a tray to the empty system, a difference of more than 8°C was observed. These temperature differences probably cause different ice structures affecting the drying speed during sublimation. A temperature difference of maximum 13°C was observed in bulk mode during sublimation. When drying in vials, differences of more than 10°C were observed. Gradually, the large temperature differences disappeared during secondary drying and products were transformed into uniformly dry cakes. The experimental data show that the IR camera is a highly versatile on-line monitoring tool for different kinds of freeze-drying processes. © 2014 European Union 103:2088–2097, 2014 PMID:24902839

  2. Study on lycopene and antioxidant contents variations in tomatoes under air-drying process.

    Science.gov (United States)

    Chang, C-H; Liu, Y-C

    2007-11-01

    Effects of factors such as tomato cultivars, drying temperatures (40, 80, and 120 degrees C), and drying time (0 to 240 min) on tomato lycopene and the major antioxidant contents (MACs, herein as the sum of total phenolics and total flavonoids) during an air-drying process were investigated. The results showed that lycopene contents increased under all the drying temperatures during the first 60 min. However, the red tomato cultivars, that is, HR, SN, and TTL, exhibited a significant decrease in lycopene contents under 120 degrees C after drying for 75 min. According to the experimental data, an MAC threshold value of 500 mg/100 g dry matter of tomato is proposed. When the MAC is lower than this value during air-drying, lycopene contents in all tomato cultivars would drop rapidly. In addition, the tomatoes in yellow color group, containing more MACs initially and retaining more MACs under air-drying at 40 to 80 degrees C, are proposed to be the proper tomato cultivars for thermal processing.

  3. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata T.; Benes, N.E.; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate water-l

  4. Microstructure and textural and viscoelastic properties of model processed cheese with different dry matter and fat in dry matter content.

    Science.gov (United States)

    Černíková, Michaela; Nebesářová, Jana; Salek, Richardos Nikolaos; Řiháčková, Lada; Buňka, František

    2017-04-05

    The aim of this work was to examine the effect of a different dry matter (DM) contents (35 and 45% wt/wt) and fat in DM contents (40 and 50% wt/wt) on the textural and viscoelastic properties and microstructure of model processed cheeses made from real ingredients regularly used in the dairy industry. A constant DM content and constant fat in DM content were kept throughout the whole study. Apart from the basic chemical parameters, textural and viscoelastic properties of the model samples were measured and scanning electron microscopy was carried out. With increasing DM content, the rigidity of the products increased and the size of the fat globules in the model samples of the processed cheeses decreased. With increasing fat in DM content, the rigidity of the processed cheeses decreased and the size of the fat globules increased.

  5. Physical quality of grains subjected to moistening and drying processes for marketing

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    Full Text Available ABSTRACT The aim was to evaluate the physical quality of conventional and transgenic corn grains, through drying and wetting processes for marketing. The experimental design was completely randomized in a factorial scheme (7 x 3 x 2, corresponding to seven drying times (0, 20, 40, 60, 80, 100 and 120 min, three temperatures of the drying air (80, 100 and 120 °C and two hybrids of corn (conventional AG 1051 and transgenic Herculex@ 30S31H. Grain drying was held in convection oven with forced air ventilation while the wetting was done in a B.O.D chamber. The water movement in the grain, the volume and the electrical conductivity were evaluated periodically. The results showed that the transgenic corn grain reduced the negative effects of drying and moistening on the physical quality. The increase in drying air temperature accelerated the physical deterioration of conventional and transgenic corn grains. The increase in water content by the moistening process caused losses in grain physical quality, similar to the drying process, for both the conventional and transgenic corn grains.

  6. The analysis of the drying process on unsteady forced convection in thin films of ink

    Energy Technology Data Exchange (ETDEWEB)

    Avci, Atakan; Can, Muhiddin [Uludag Univ., Dept. of Mechanical Engineering, Bursa (Turkey)

    1999-06-01

    High velocity impinging air jets are commonly used to accelerate the evaporative ink drying process due to the high heat and mass transfer rates which are developed in the impingement region. Comparative heat transfer studies are given to establish the optimum variables such as nozzle shapes, size and pitch, nozzle distance from surface, to minimize the capital and running costs of the drying plant. At the present, when energy costs are high, designs which require large quantities of high air jet velocity and high air temperature are unattractive. In order to provide data for designers of industrial dryers, a program of research has been implemented to study the analogy between the heat and mass transfer processes which constitute the ink drying process. Different fuels for ink drying are compared on a common energy available basis. The most economical case for fan power and heating power was found to be natural gas as fuel. (Author)

  7. Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration.

    Science.gov (United States)

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Kitamura, Yutaka

    2016-05-01

    Reducing energy penalty caused by drying and oil extraction is the most critical challenge in microalgae biodiesel production. In this study, vapor recompression and heat integration are utilized to optimize the performance of wet microalgae drying and oil extraction. In the microalgae drying stage, the hot exhaust stream is recompressed and coupled with wet microalgae to recover the condensate heat. In the oil extraction stage, the exergy rate of recovered solvent is also elevated by compressor and then exchanged heat with feed and bottom stream in the distillation column. Energy and mass balance of the intensified process is investigated and compared with the conventional microalgae drying-extraction process. The simulation results indicated that the total energy consumption of the intensified process can be saved by 52.4% of the conventional route.

  8. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Science.gov (United States)

    2010-01-01

    ... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and... 7 Agriculture 5 2010-01-01 2010-01-01 false Importation of dried, cured, or processed fruits...

  9. Short-term post-wildfire dry-ravel processes in a chaparral fluvial system

    Science.gov (United States)

    Florsheim, Joan L.; Chin, Anne; O'Hirok, Linda S.; Storesund, Rune

    2016-01-01

    Dry ravel, the transport of sediment by gravity, transfers material from steep hillslopes to valley bottoms during dry conditions. Following wildfire, dry ravel greatly increases in the absence of vegetation on hillslopes, thereby contributing to sediment supply at the landscape scale. Dry ravel has been documented as a dominant hillslope erosion mechanism following wildfire in chaparral environments in southern California. However, alteration after initial deposition is not well understood, making prediction of post-fire flood hazards challenging. The majority of Big Sycamore Canyon burned during the May 2013 Springs Fire leaving ash and a charred layer that covered hillslopes and ephemeral channels. Dry-ravel processes following the fire produced numerous deposits in the hillslope-channel transition zone. Field data focus on: 1) deposition from an initial post-wildfire dry-ravel pulse; and 2) subsequent alteration of dry ravel deposits over a seven-month period between September 2013 and April 2014. We quantify geomorphic responses in dry ravel deposits including responses during the one small winter storm that generated runoff following the fire. Field measurements document volumetric changes after initial post-wildfire deposition of sediment derived from dry ravel. Erosion and deposition mechanisms that occurred within dry-ravel deposits situated in the hillslope-channel transition zone included: 1) mobilization and transport of a portion or the entire deposit by fluvial erosion; 2) rilling on the surface of the unconsolidated deposits; 3) deposition on deposits via continued hillslope sediment supply; and 4) mass wasting that transfers sediment within deposits where surface profiles are near the angle of repose. Terrestrial LiDAR scanning point clouds were analyzed to generate profiles quantifying depth of sediment erosion or deposition over remaining dry ravel deposits after the first storm season. This study contributes to the understanding of potential

  10. High-Throughput Dry Processes for Large-Area Devices

    Energy Technology Data Exchange (ETDEWEB)

    BUSS,RICHARD J.; HEBNER,GREGORY A.; RUBY,DOUGLAS S.; YANG,PIN

    1999-11-01

    In October 1996, an interdisciplinary team began a three-year LDRD project to study the plasma processes of reactive ion etching and plasma-enhanced chemical vapor deposition on large-area silicon devices. The goal was to develop numerical models that could be used in a variety of applications for surface cleaning, selective etching, and thin-film deposition. Silicon solar cells were chosen as the experimental vehicle for this project because an innovative device design was identified that would benefit from immediate performance improvement using a combination of plasma etching and deposition processes. This report presents a summary of the technical accomplishments and conclusions of the team.

  11. Process Parameter Study on Microwave-assisted Foam-mat Drying Properties of Corn Soaking Water

    Institute of Scientific and Technical Information of China (English)

    Zheng Xian-zhe

    2016-01-01

    In order to study the microwave-assisted foam-mat drying properties of corn soaking water and optimize process parameters, a quadratic regression orthogonal rotary method was used to analyze the influence of microwave power, material weight, material thickness and drying time on moisture content (dry basis), color value and protein content. Results showed that the primary and secondary sequence of parameters with regard to moisture content (d. b.) was drying time, microwave power, material weight and material thickness; the primary and secondary sequence of parameters with regard to color value was material weight, drying time, microwave power and material thickness; the primary and secondary sequence of parameters with regard to protein content was drying time, material weight, microwave power and material thickness. Optimum conditions were obtained as microwave power of 560 W, material weight of 46.88 g, material thickness of 6.20 mm and drying time of 8.01 min. The results might provide the theoretical basis and technical support for the microwave-assisted foam-mat drying of corn soaking water to produce yeast protein power.

  12. Benchmarking energy use and costs in salt-and-dry fish processing and lobster processing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The Canadian fish processing sector was the focus of this benchmarking analysis, which was conducted jointly by the Canadian Industry Program for Energy Conservation and the Fisheries Council of Canada, who retained Corporate Renaissance Group (CRG) to establish benchmarks for salt-and-dry processing operations in Nova Scotia and lobster processing operations in Prince Edward Island. The analysis was limited to the ongoing operations of the processing plants, and started with the landing of the fish/lobster and ended with freezer/cooler storage of the final products. Fuel used by the fishing fleet and in delivery trucks was not included in this study. The initial phase of each study involved interviews with management personnel at a number of plants in order to lay out process flow diagrams which were used to identify the series of stages of production for which energy consumption could be separately analyzed. Detailed information on annual plant production and total plant energy consumption and costs for the year by fuel type were collected, as well as inventories of energy-consuming machinery and equipment. At the completion of the data collection process, CRG prepared a summary of energy use, production data, assumptions and a preliminary analysis of each plant's energy use profile. Energy consumption and costs per short ton were calculated for each stage of production. Information derived from the calculations includes revised estimates of energy consumption by stage of production; energy costs per ton of fish; total energy consumption and costs associated with production of a standard product; and a detailed inter-plant comparison of energy consumption and costs per ton among the participating plants. Details of greenhouse gas (GHG) emissions and potential energy savings were also presented. 7 tabs., 3 figs.

  13. Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints

    Science.gov (United States)

    de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906

  14. MODEL REPRESENTATION OF THE SPRAY DRYING PROCESS OF THE DISTILLERY STILLAGE FILTRATE BASED ON NAVIERSTOKES EQUATIONS

    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov

    2015-01-01

    Full Text Available Spray drying of solutions and suspensions is among the most common methods of producing a wide range of powdered products in chemical, food and pharmaceutical industries. For the drying of heat-sensitive materials, which is fully applicable to the distillery stillage filtrate continuous-flow type of contact of drying agent and the solution droplets is examined. Two-phase simulation method of computational hydrodynamics in a stationary state for studying the process of drying of the distillery stillage filtrate in the pilot spray dryer under the following assumptions was used. The components form an ideal mixture, the properties of which are calculated directly from the properties of the components and their proportions. The droplets were presented in spherical form. The density and specific heat of the solution and the coefficient of vapors diffusion in the gas phase remained unchanged. To solve the heat exchange equations between the drying agent and the drops by the finite volume method the software package ANSYS CFX was used. The bind between the two phases was established by Navier-Stokes equations. The continuous phase (droplets of the distillery stillage filtrate was described by the k-ε turbulence model. The results obtained showed that the interaction of "drop-wall" causes a significant change of velocity, temperature and humidity both of a drying agent and the product particles. The behavior of the particles by spraying, collision with walls and deposition of the finished product allowed to determine the dependence of physical parameters of the drying process, of the geometric dimensions of the dryer. Comparison of simulation results with experimental data showed satisfactory convergence of the results: for the temperature of the powder 10% its humidity of 12% and temperature of the spent drying agent at the outlet from the drier of 13%. The possibility of using the model in the spray dryers designing, and control of the drying process

  15. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours.

    Science.gov (United States)

    Chen, Xuetao; Li, Xia; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Qu, Zhuo; Miao, Jing; Gao, Wenyuan

    2017-06-01

    The effects of five different drying processes, air drying (AD), sulphur fumigation drying (SFD), hot air drying (HAD), freeze drying (FD) and microwave drying (MWD) for yams in terms of starch-related properties and antioxidant activity were studied. From the results of scanning electron microscopy (SEM), polarized optical microscopy (POM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), the MWD sample was found to contain gelatinized starch granules. The FD yam had more slow digestible (SDS) and resistant starches (RS) compared with those processed with other modern drying methods. The bioactive components and the reducing power of the dried yams, were lower than those of fresh yam. When five dried samples were compared by principal component analysis, the HAD and SFD samples were observed to have the highest comprehensive principal component values. Based on our results, HAD would be a better method for yam drying than the more traditional SFD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. STUDIES ON CONTINUOUS GRINDING PROCESS FOR DRIED WATER CHESTNUT KERNEL

    Directory of Open Access Journals (Sweden)

    S.K. GARG

    2010-06-01

    Full Text Available Grinding is a unit operation to break big solid material into smaller pieces. As far as process of grinding is concerned, power consumption, specific energy consumption and particle size distribution and mill capacity are main considerations from engineering point of view. The experiments were conducted to study the effect of speed of mill, sieve size, feed rate and time of grinding on power consumption and average particle diameter of water chestnut in continuous grinding process. Power consumption was measured for a constant feed rate of 1 and 2 kg/h at different speed of the mill varied from 800 to 1200 rpm for the sieve openings of 0.5 mm, 1.0 mm and 2.0 mm. For all the sieve sizes and feed rates, it was observed that as the speed of the mill increases, there is an increase in power consumption and found significantly low for higher sieve size and lower feed rate. The size distribution of the water chestnut kernel for different speeds and sieve sizes at constant feed rate were obtained by sieve analysis. The milling speed has no significant effect on particle size distribution of ground product and mass fraction was minimum at lower feed rate and higher sieve size. Harris model was found best suitable to describe the size distribution in continuous grinding process. Fineness modulus decreases with increase of milling speed for experimental sieve size and feed rate.

  17. Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Cheol Shin, Woo; Hun Mun, Jeong; Yong Kim, Taek; Choi, Sung-Yool; Jin Cho, Byung, E-mail: bjcho@kaist.edu, E-mail: tskim1@kaist.ac.kr [Department of Electrical Engineering, Graphene Research Center, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yoon, Taeshik; Kim, Taek-Soo, E-mail: bjcho@kaist.edu, E-mail: tskim1@kaist.ac.kr [Department of Mechanical Engineering, Graphene Research Center, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2013-12-09

    We present the facile dry transfer of graphene synthesized via chemical vapor deposition on copper film to a functional device substrate. High quality uniform dry transfer of graphene to oxidized silicon substrate was achieved by exploiting the beneficial features of a poly(4-vinylphenol) adhesive layer involving a strong adhesion energy to graphene and negligible influence on the electronic and structural properties of graphene. The graphene field effect transistors (FETs) fabricated using the dry transfer process exhibit excellent electrical performance in terms of high FET mobility and low intrinsic doping level, which proves the feasibility of our approach in graphene-based nanoelectronics.

  18. Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process

    Science.gov (United States)

    Cheol Shin, Woo; Yoon, Taeshik; Hun Mun, Jeong; Yong Kim, Taek; Choi, Sung-Yool; Kim, Taek-Soo; Jin Cho, Byung

    2013-12-01

    We present the facile dry transfer of graphene synthesized via chemical vapor deposition on copper film to a functional device substrate. High quality uniform dry transfer of graphene to oxidized silicon substrate was achieved by exploiting the beneficial features of a poly(4-vinylphenol) adhesive layer involving a strong adhesion energy to graphene and negligible influence on the electronic and structural properties of graphene. The graphene field effect transistors (FETs) fabricated using the dry transfer process exhibit excellent electrical performance in terms of high FET mobility and low intrinsic doping level, which proves the feasibility of our approach in graphene-based nanoelectronics.

  19. Temperature and humidity response in the curing and drying process for Burley tobacco

    Directory of Open Access Journals (Sweden)

    Edilson Daniel Gomez Herrera

    2016-12-01

    Full Text Available This paper present the methodology development used for characterization and implementation of a control and automation of a camera for curing and drying of Burley tobacco, done with the purpose of analyzing its three stages: yellowing, color fixing and drying.As first step, the paper gives to know the process that is important for air curing of Burley tobacco. As second step, analysis of heating and humidification of system is presented, for determinate the most adequate control system for maintenance the ideal conditions for curing and drying of Burley. Results are presented through figures and tables.

  20. Population dynamic of the swallowtail butterfly, Papilio polytes (Lepidoptera: Papilionidae in dry and wet seasons

    Directory of Open Access Journals (Sweden)

    SUWARNO

    2010-01-01

    Full Text Available Suwarno (2010 Population dynamic of the swallowtail butterfly, Papilio polytes (Lepidoptera: Papilionidae in dry and wet seasons. Biodiversitas 11: 19-23. The population dynamic of Papilio polytes L. (Lepidoptera: Papilionidae in dry and wet seasons was investigated in the citrus orchard in Tasek Gelugor, Pulau Pinang, Malaysia. Population of immature stages of P. polytes was observed alternate day from January to March 2006 (dry season, DS, from April to July 2006 (secondary wet season, SWS, and from October to December 2006 (primary wet season, PWS. The population dynamics of the immature stages of P. polytes varied between seasons. The immature stages of P. polytes are more abundance and significantly different in the PWS than those of the DS and the SWS. The larval densities in all seasons decreased with progressive development of the instar stages. Predators and parasitoids are the main factor in regulating the population abundance of immature stages of P. polytes. There were positive correlations between the abundance of immature stages of P. polytes and their natural enemies abundance in each season. Ooencyrtus papilioni Ashmead (Hymenoptera: Encyrtidae is the most egg parasitoid. Oxyopes quadrifasciatus L. Koch. and O. elegans L. Koch. (Araneae: Oxyopidae are the main predators in the young larvae, meanwhile Sycanus dichotomus Stal. (Heteroptera: Reduviidae, Calotes versicolor Fitzinger (Squamata: Agamidae, birds and praying mantis attacked the older larvae.

  1. High-intensity drying processes -- Impulse drying: Report 14 (progress report). Status of the pilot-scale research program

    Energy Technology Data Exchange (ETDEWEB)

    Orloff, D.I.

    1998-04-01

    As of April 1998, the project was behind on schedule. This was as a result of the need for additional process development work. Work has focused on evaluating nip decompression and post-nip depressurization techniques as used on the Beloit X2 pilot paper machine. The authors have also concentrated on implementing impulse drying technology on Beloit`s No. 4 and No. 2 pilot paper machines. Experiments on Beloit`s X4 pilot paper machine demonstrated that roll coating durability problems have been solved. They also showed that further development work on sheet picking, implementation of delamination suppression techniques and CD temperature control are necessary in order to ensure success on the X4 machine. Experiments on the Beloit`s X2 pilot paper machine were carried out to resolve issues identified on the X4 machine. Two methods of implementing press nip decompression were investigated. The results confirmed that the technology can be used to increase impulse drying operating temperatures. The work also led to the development of techniques to minimize picking.

  2. A Model-Based Methodology for Spray-Drying Process Development

    OpenAIRE

    Dobry, Dan E.; Settell, Dana M.; Baumann, John M.; Ray, Rod J.; Graham, Lisa J; Beyerinck, Ron A.

    2009-01-01

    Solid amorphous dispersions are frequently used to improve the solubility and, thus, the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Spray-drying, a well-characterized pharmaceutical unit operation, is ideally suited to producing solid amorphous dispersions due to its rapid drying kinetics. This paper describes a novel flowchart methodology based on fundamental engineering models and state-of-the-art process characterization techniques that ensure that spray-dr...

  3. MODELING OF THE SPRAY DRYING PROCESS OF GREEN PROTEIN SUSPENSION CONCENTRATE (PGC

    Directory of Open Access Journals (Sweden)

    A. A. Shevtsov

    2015-01-01

    Full Text Available Development and implementation of high-tech and energy-efficient methods of feed production is important and ap¬propriate due to the fact that enterprises are not able to provide the market of feed consumers with high quality products at affordable prices. To solve this problem, an alternative technology for the production of protein green concentrate (PGC from the cormophyte mass of high protein plants was developed. The most energy-intensive process of obtaining PGC is spray drying. At the same time the problems of energy saving, and the product quality are solved by modeling. The drying model developed in this study is based on the falling edge of evaporation, which is used in many studies of drops drying. The problem of obtaining the basic equations of heat and mass transfer during the periods of constant and decreasing drying rate was to be solved. It is also supposed that the drying takes place during the periods of constant and decreasing drying rate. Basic equations of heat and mass transfer for both periods of drying were obtained. Changing of thermophysical characteristics were determined by statistical methods in the range of PGC humidity of 10 ... 75% and a temperature of 20 ... 100%. The model is solved by finite difference method with an accuracy of modeling results of 12%. Method of finite differences is a numerical method for solving differential equations based on the replacement of derivative differences schemes and is the grid method. Identification of model parameters to experimental data obtained in the experimental spray dryer was carried out. The solution allows the mathematical model to determine the change in moisture content (DS concentration and drop radial temperature in the spray drying of the PGC concentrate that is necessary both to select the geometrical sizes of the dryer and the drying process parameters controlling.

  4. Dry uranium tetrafluoride process preparation using the uranium hexafluoride reconversion process effluents

    Energy Technology Data Exchange (ETDEWEB)

    Silva Neto, J.B.; Urano de Carvalho, E.F.; Oliveira, F.B.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: jbsneto@ipen.br; elitaucf@ipen.br; fabio@ipen.br; Riella, H.G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)]. E-mail: riella@enq.ufsc.br

    2007-07-01

    It is a well known fact that the use of uranium tetrafluoride allows flexibility in the production of uranium silicide and uranium oxide fuel. To its obtention there are two conventional routes, the one which reduces uranium from the UF{sub 6} hydrolysis solution with stannous chloride, and the hydrofluorination of a solid uranium dioxide. In this work we are introducing a third and a dry way route, mainly utilized to the recovery of uranium from the liquid effluents generated in the uranium hexafluoride reconversion process, at IPEN/CNEN-SP. Working in the liquid phase, this route comprises the recuperation of ammonium fluoride by NH{sub 4}HF{sub 2} precipitation. Working with the solid residues, the crystallized bifluoride is added to the solid UO{sub 2}, which comes from the U miniplates recovery, also to its conversion in a solid state reaction, to obtain UF{sub 4}. That returns to the process of metallic uranium production unity to the U{sub 3}Si{sub 2} obtention. This fuel is considered in IPEN-CNEN/SP as the high density fuel phase for IEA-R1m reactor, which will replace the former low density U{sub 3}O{sub 8}-Al fuel. (author)

  5. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    Science.gov (United States)

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-01

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO2) upon rewetting, the mechanisms underlying the so-called ‘Birch effect’ are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO2 pulses with two soil carbon models: a conventional model assuming first-order decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis-Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.

  6. Effects of drying process on the physicochemical properties of nopal cladodes at different maturity stages.

    Science.gov (United States)

    Contreras-Padilla, Margarita; Gutiérrez-Cortez, Elsa; Valderrama-Bravo, María Del Carmen; Rojas-Molina, Isela; Espinosa-Arbeláez, Diego Germán; Suárez-Vargas, Raúl; Rodríguez-García, Mario Enrique

    2012-03-01

    Chemical proximate analysis was done in order to determine the changes of nutritional characteristics of nopal powders from three different maturity stages 50, 100, and 150 days and obtained by three different drying processes: freeze dried, forced air oven, and tunnel. Results indicate that nopal powder obtained by the process of freeze dried retains higher contents of protein, soluble fiber, and fat than the other two processes. Also, freeze dried process had less effect on color hue variable. No changes were observed in insoluble fiber content, chroma and lightness with the three different drying processes. Furthermore, the soluble fibers decreased with the age of nopal while insoluble fibers and ash content shows an opposite trend. In addition, the luminosity and hue values did not show differences among the maturity stages studied. The high content of dietary fibers of nopal pad powder could to be an interesting source of these important components for human diets and also could be used in food, cosmetics and pharmaceutical industry.

  7. Kinetic and thermodynamic properties of soybean grains during the drying process

    Directory of Open Access Journals (Sweden)

    Daniel Emanuel Cabral de Oliveira

    2013-09-01

    Full Text Available The aims of this work were to adjust different mathematical models to experimental data describing the drying of the Valiosa cultivar soybean grain, to determine and to evaluate the effective diffusion coefficient and to obtain the activation energy and the thermodynamic properties of the drying process under different air conditions. The experiments were conducted at the Federal Institute of Education, Science and Technology of Goiás (Instituto Federal de Educação, Ciência e Tecnologia Goiano – Câmpus Rio Verde. The Valiosa cultivar soybean grains, with an initial moisture content on a dry basis of 0.56 (d.b., decimal, were dried in an oven with forced air ventilation at five different temperatures (40, 55, 70, 85 and 100°C until reaching a moisture content of 0.133±0.019 (d.b.. Of the models analyzed, Page’s model was selected to best represent the drying phenomenon. The effective diffusion coefficient of soybeans increased with the air temperature and was described by the Arrhenius equation; an activation energy of 22.77 kJ mol–1 was reported for liquid diffusion in the drying of the soybeans. The enthalpy and entropy decreased with increasing temperature, while the Gibbs free energy increased with increasing drying temperature.

  8. A comprehensive sensitivity and uncertainty analysis of a milk drying process

    DEFF Research Database (Denmark)

    Ferrari, A.; Gutiérrez, S.; Sin, G.

    2015-01-01

    A simple steady state model of a milk drying process was built to help process understanding. It involves a spray chamber and also internal/external fluid beds. The model was subjected to a statistical analysis for quality assurance using sensitivity analysis (SA) of inputs/parameters, identifiab...

  9. Modeling a production scale milk drying process: parameter estimation, uncertainty and sensitivity analysis

    DEFF Research Database (Denmark)

    Ferrari, A.; Gutierrez, S.; Sin, Gürkan

    2016-01-01

    A steady state model for a production scale milk drying process was built to help process understanding and optimization studies. It involves a spray chamber and also internal/external fluid beds. The model was subjected to a comprehensive statistical analysis for quality assurance using sensitiv...

  10. Evaluation of hyperspectral reflectance for estimating dry matter and sugar concentration in processing potatoes

    Science.gov (United States)

    The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...

  11. Stevia rebaudiana Leaves: Effect of Drying Process Temperature on Bioactive Components, Antioxidant Capacity and Natural Sweeteners.

    Science.gov (United States)

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Honores, Carolina; Moraga, Nelson O

    2016-03-01

    Stevia leaves are usually used in dried state and undergo the inevitable effect of drying process that changes the quality characteristics of the final product. The aim of this study was to assess temperature effect on Stevia leaves through analysis of relevant bioactive components, antioxidant capacity and content of natural sweeteners and minerals. The drying process was performed in a convective dryer at constant temperatures ranging from 30 to 80 °C. Vitamin C was determined in the leaves and as expected showed a decrease during drying proportional to temperature. Phenolics and flavonoids were also determined and were found to increase during drying below 50 °C. Antioxidant activity was determined by DPPH and ORAC assays, and the latter showed the highest value at 40 °C, with a better correlation with the phenolics and flavonoids content. The content of eight natural sweeteners found in Stevia leaves was also determined and an increase in the content of seven of the sweeteners, excluding steviol bioside, was found at drying temperature up to 50 °C. At temperatures between 60 and 80 °C the increase in sweeteners content was not significant. Stevia leaves proved to be an excellent source of antioxidants and natural sweeteners.

  12. Study on drying and combustion process in 8rate-CFB incinerator

    Institute of Scientific and Technical Information of China (English)

    LI QingHai; ZHANG YanGuo; CHEN MeiQian; MENG AiHong; CHEN ChangHe

    2009-01-01

    The drying and combustion process in the combined grate and circulating fiuidized bed (grate-CFB)municipal solid waste (MSW) incinerator was investigated experimentally and mathematically. The drying grate bed was simulated by a muffle furnace, which could be controlled at a constant tempera-ture level. The kind of wastes, thickness of waste layer fed and temperature were chosen as the ad-justable parameters to study their effect on the drying process. The experimental results indicated that the hydrophilic wastes were more difficult to be dried than the hydrophobic wastes. The higher the temperature is the easier the waste is to be dried. The thinner waste layer is favorable to drying the waste. The pyrolysis experiment in the furnace showed that the higher temperature level could reduce the conversion rate of carbon to carbon monoxide. The semi-empirical mathematical model that in-cluded the bed material distribution subrnodel, volatile matter release submodel, carbon particle combustion submodel and so on was proposed. A 260 t/d grate-CFB incinerator was modeled and the model predicted bulk density agreed with the measured value from industrial field test. The predicted flue gas (e.g. CO2, CO) concentration deviated slightly from the industrial test data. The parameters and variables used in the model were determined by the experiments or practical field test. This model can be used to design the grate-CFB incinerator and guide its operation.

  13. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent

    Science.gov (United States)

    Saputra, Asep Handaya; Putri, Rizky Anggreini

    2017-05-01

    Water hyacinth is an aquatic weed that has a very fast growth which makes it becomes a problem to the ecosystem. On the other hand, water hyacinth has a high fiber content (up to 20% by weight) which makes it potential to become raw material for composites and textile industries. As an aquatic plant, water hyacinth has a high initial moisture content that reaches more than 90%. Meanwhile the moisture content of fiber as a raw material for composite and textile industry should not be more than 10% to maintain the good quality of the products. Mixed adsorption drying method is one of the innovative method that can replace conventional drying process. Fluidization method which has been commonly used in agricultural and pharmaceutical products drying, can be enhanced by combining it with the adsorption method as performed in this study. In mixed fluidization-adsorption drying method, fly ash as adsorbent and water hyacinth fiber were put together into the fluidization column where the drying air evaporate the moisture content in water hyacinth fiber. In addition, the adsorbent adsorb the moisture content in the drying air to make the moisture content of the drying air remain low. The drying process is performed in various temperature and composition of water hyacinth and adsorbent in order to obtain the optimum drying condition. In addition, the effect of fly ash pellet and fly ash powder to the drying process was also performed. The result shows that the higher temperature and the more amount of adsorbent results in the faster drying rate. Fly ash pellet shows a better adsorption since it has a smaller pore diameter and wider surface area. The optimum temperature obtained from this study is 60°C and the optimum ratio of water hyacinth and fly ash is 50:50.

  14. Modeling and numerical analysis of an atypical convective coal drying process

    Energy Technology Data Exchange (ETDEWEB)

    Stakic, M.; Tsotsas, E. [Otto von Guericke University, Magdeburg (Germany)

    2004-07-01

    This work presents modeling and numerical simulation of batch convective coal drying in a deep packed bed after a high-pressure steam treatment (a part of the Fleissner coal drying process). The process is atypical, because ambient air is used to dry, and cool hot particles, while usually, e.g., in the deep packed bed drying of biomaterials, hot air is contacting cold particles. Product-specific data (intraparticle mass transfer, gas-solids moisture equilibrium) for coal (here lignite) are taken from the literature. Available data on coal drying in packed beds of medium height are used for model validation. Then, the model is applied to the considered industrial process. The design point of the process is critically reviewed, and alternatives are developed by systematically simulating the influence of inlet air conditions (temperature, humidity, flow-rate) and coal particle size. This type of analysis is necessary for efficiently scheduling plant dryers, since coal particle size may change, and air inlet temperature and humidity are changing with the ambient conditions.

  15. Effect of Spray Drying Technique on Processing of Stropharia rugoso-annulata Farl: Murrill Blanching Liquid

    Directory of Open Access Journals (Sweden)

    Junchen Chen

    2014-04-01

    Full Text Available Blanching liquid from processing of Stropharia rugoso-annulata fruits were traditionally discarded as bio-waste although it contains certain amount of soluble nutrients. The discarding may result not only in environment pollution but also in loss of valuable mushroom nutrients. In this study, spray drying technique was applied to process the liquid; and the processing factors were optimized with Response Surface Methodology. The results showed that the factors on Inlet Air Temperature, Atomization Pressure and Total Soluble Solid Content were for 172C, 920 bar and 15%, respectively, with the best spray drying efficiency for 60.26%. The products were estimated for the proper storage conditions based on the free radical scavenging activity for •OH. The results indicated that the storage temperature, lights and packaging are important for the products in maintaining their scavenging activity and the proper conditions to preserve the spray drying powder lasted for 60 days were at 0C, no lights and with packaged. It is suggested that spray drying technique may play effectively for processing of any mushroom blanching liquid and the darkness and dryness are crucial for the drying powder preservation.

  16. Socioeconomic transitions as common dynamic processes

    DEFF Research Database (Denmark)

    Gundlach, Erich; Paldam, Martin

    Long-run socioeconomic transitions can be observed as stylized facts across countries and over time. For instance, poor countries have more agriculture and less democracy than rich countries, and this pattern also holds within countries for transitions from a traditional to a modern society....... It is shown that the agricultural and the democratic transitions can be partly explained as the outcome of dynamic processes that are shared among countries. We identify the effects of common dynamic processes with panel estimators that allow for heterogeneous country effects and possible cross......-country spillovers. Common dynamic processes appear to be in line with alternative hypotheses on the causes of socioeconomic transitions....

  17. Mechanical and dielectric characterization of hemp fibre reinforced polypropylene (HFRPP by dry impregnation process

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Natural fibres such as jute, coir, sisal, bamboo and pineapple are known to have high specific strength and can be effectively used in composites in various applications. The use of hemp fibres to reinforce the polymer aroused great interest and expectations amongst scientists and materials engineers. In this paper, composites with isotactic polypropylene (iPP matrix and hemp fibres were studied. These materials were manufactured via the patented FIBROLINE process based on the principle of the dry impregnation of a fibre assembly with a thermoplastic powder (iPP, using an alternating electric field. The aim of this paper is to show the influence of fibre/matrix interfaces on dielectric properties coupled with mechanical behaviours. Fibres or more probably the fibre/matrix interfaces allow the diffusion of electric charges and delocalise the polarisation energy. In this way, damages are limited during mechanical loading and the mechanical properties of the composites increase. The structure of composite samples was investigated by X-ray and FTIR analysis. The mechanical properties were analysed by quasistatic and dynamic tests. The dielectric investigations were carried out using the SEMME (Scanning Electron Microscope Mirror Effect method coupled with the measurement of the induced current (ICM.

  18. Application of exopolysaccharides to improve the performance of ceramic bodies in the unidirectional dry pressing process

    Science.gov (United States)

    Caneira, Inês; Machado-Moreira, Bernardino; Dionísio, Amélia; Godinho, Vasco; Neves, Orquídia; Dias, Diamantino; Saiz-Jimenez, Cesareo; Miller, Ana Z.

    2015-04-01

    Ceramic industry represents an important sector of economic activity in the European countries and involves complex and numerous manufacturing processes. The unidirectional dry pressing process includes milling and stirring of raw materials (mainly clay and talc minerals) in aqueous suspensions, followed by spray drying to remove excess water obtaining spray-dried powders further subjected to dry pressing process (conformation). However, spray-dried ceramic powders exhibit an important variability in their performance when subjected to the dry pressing process, particularly in the adhesion to the mold and mechanical strength, affecting the quality of the final conformed ceramic products. Therefore, several synthetic additives (deflocculants, antifoams, binders, lubricants and plasticizers) are introduced in the ceramic slips to achieve uniform and homogeneous pastes, conditioning their rheological properties. However, an important variability associated with the performance of the conformed products is still reported. Exopolysaccharides or Extracellular Polymeric Substances (EPS) are polymers excreted by living organisms, such as bacteria, fungi and algae, which may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation. Polysaccharides, such as pullulan, gellan, carrageenan and xanthan have found a wide range of applications in food, pharmaceutical, petroleum, and in other industries. The aim of this study was the assessment of exopolysaccharides as natural additives to optimize the performance of spray-dried ceramic powders during the unidirectional dry pressing process, replacing the synthetic additives used in the ceramic production process. Six exopolysaccharides, namely pullulan, gellan, xanthan gum, κappa- and iota-carrageenan, and guar gum were tested in steatite-based spray-dried ceramic powders at different concentrations. Subsequently, these ceramic powders were

  19. Generated dynamics of Markov and quantum processes

    CERN Document Server

    Janßen, Martin

    2016-01-01

    This book presents Markov and quantum processes as two sides of a coin called generated stochastic processes. It deals with quantum processes as reversible stochastic processes generated by one-step unitary operators, while Markov processes are irreversible stochastic processes generated by one-step stochastic operators. The characteristic feature of quantum processes are oscillations, interference, lots of stationary states in bounded systems and possible asymptotic stationary scattering states in open systems, while the characteristic feature of Markov processes are relaxations to a single stationary state. Quantum processes apply to systems where all variables, that control reversibility, are taken as relevant variables, while Markov processes emerge when some of those variables cannot be followed and are thus irrelevant for the dynamic description. Their absence renders the dynamic irreversible. A further aim is to demonstrate that almost any subdiscipline of theoretical physics can conceptually be put in...

  20. Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham

    OpenAIRE

    2014-01-01

    Extensive proteolysis takes place during the processing of dry-cured ham due to the action of muscle peptidases. The aim of this work was to study the degradation of LIM domain binding protein 3 (LDB3), which is located at the Z-lines of the sarcomere, at different times during the Spanish dry-cured ham processing (2, 3.5, 5, 6.5, and 9 months). A total of 107 peptides have been identified by mass spectrometry, most of them generated from the first region of the protein sequence (position 1-9...

  1. Dynamic optics for ultrafast laser processing

    Directory of Open Access Journals (Sweden)

    Salter Patrick

    2013-11-01

    Full Text Available We present a range of dynamic optical methods to control focal fields for material processing using ultrafast lasers. Adaptive aberration correction maintains focal quality when focusing deep into materials. Dynamic parallelisation methods permit independent control of hundreds of fabrication spots. New adaptive methods for control of pulse front tilt are also presented.

  2. Review of the literature for dry reprocessing oxide, metal, and carbide fuel: The AIROX, RAHYD, and CARBOX pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.; Rhee, B.W. [Rockwell International Corp., Canoga Park, CA (United States). Energy Systems Group

    1979-09-30

    The state of the art of dry processing oxide, carbide, and metal fuel has been determined through an extensive literature review. Dry processing in one of the most proliferation resistant fuel reprocessing technologies available to date, and is one of the few which can be exported to other countries. Feasibility has been established for oxide, carbide, and metal fuel on a laboratory scale, and large-scale experiments on oxide and carbide fuel have shown viability of the dry processing concept. A complete dry processing cycle has been demonstrated by multicycle processing-refabrication-reirradiation experiments on oxide fuel. Additional experimental work is necessary to: (1) demonstrate the complete fuel cycle for carbide and metal fuel, (2) optimize dry processing conditions, and (3) establish fission product behavior. Dry process waste management is easier than for an aqueous processing facility since wastes are primarily solids and gases. Waste treatment can be accomplished by techniques which have been, or are being, developed for aqueous plants.

  3. Dynamic process management for engineering environments

    NARCIS (Netherlands)

    Mentink, R.J.; Houten, van F.J.A.M.; Kals, H.J.J.

    2003-01-01

    The research presented in this paper proposes a concept for dynamic process management as part of an integrated approach to engineering process support. The theory of information management is the starting point for the development of a process management system based on evolution of information con

  4. Development of a vibrofluidized bed and fluid-dynamic study with dry and wet adipic acid

    Directory of Open Access Journals (Sweden)

    Silva-Moris V.A.

    2003-01-01

    Full Text Available The vibrofluidized bed developed in this work, consisting of a transparent plexiglass tube with an inner diameter of 0.1 m and a height of 0.5 m, was designed for the fluidization of adipic acid. The fluidization behavior of dry adipic acid with particle diameters in the range of 75 - 600 mm and a density of 1340kg/m³ was studied using mechanical vibration for different sample loads. Variables studied for the wet material include frequency and amplitude of vibration and moisture content of the particles. On the basis of the quantitative flow curve data and visual observations, it is concluded that the fluid dynamics of the bed with wet sticky particles, both vibrating and not vibrating, is different from that of the bed with dry particles.

  5. Dynamical masses and non-homology of massive elliptical galaxies grown by dry mergers

    CERN Document Server

    Frigo, Matteo

    2016-01-01

    We study whether dry merger-driven size growth of massive elliptical galaxies depends on their initial structural concentration, and analyse the validity of the homology hypothesis for virial mass determination in massive ellipticals grown by dry mergers. High-resolution simulations of a few realistic merger trees, starting with compact progenitors of different structural concentrations (S\\'ersic indices n), show that galaxy growth has little dependence on the initial S\\'ersic index (larger n leads to slightly larger size growth), and depends more on other particulars of the merger history. We show that the deposition of accreted matter in the outer parts leads to a systematic and predictable breaking of the homology between remnants and progenitors, which we characterize through the evolution, during the course of the merger history, of virial coefficients K = GM/Re \\sigma^2 associated to the most commonly-used dynamical and stellar mass parameters. The virial coefficient for the luminous mass, K , is about ...

  6. Static sampling of dynamic processes - a paradox?

    Science.gov (United States)

    Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin

    2017-04-01

    Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark

  7. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  8. Thresholds in soil response to water stress: intensity and duration of dry-wet cycles induce differential soil C and bacterial diversity dynamics

    Science.gov (United States)

    Kaisermann, Aurore; Nunan, Naoise; Maron, Pierre-Alain; Terrat, Sébastien; Lata, Jean-Christophe

    2013-04-01

    After the wetting of dry soils, a CO2 flush (known as the 'Birch effect') is often observed. Although the Birch effect can often result in large CO2 fluxes, the process is not sufficiently well understood to predict its intensity. In particular, the impact of dry-wet cycles on microbial communities is poorly understood, as are the consequences of the possible changes for soil functioning. Using microcosm-based experiments, we investigated different climate change scenarios, such as drying periods of different durations (with co-variation of drying intensity and drought duration) and different rainfall intensities. The effects of four dry-wet cycles on the (i) immediate intensity of the Birch effect, (ii) rate of return to basal C mineralisation (functional resilience), (iii) total amount of CO2 released during a 5-month incubation and (iv) the dynamics of bacterial diversity were determined. Bacterial diversity was measured by pyrosequencing. The CO2 flush increased as a function of drying intensity, drought duration and wetting intensity but was not affected by the number of dry-wet cycles. However, the functional resilience was slower after the first dry-wet cycle than subsequent cycles, suggesting an adaptation of the microbial communities to water-stress. However, this was not associated with a higher stability of bacterial community since the pyrosequencing data showed that drying decreased bacterial diversity after each dry-wet cycle, but only if a threshold of minimal moisture is exceeded. These modifications were permanent over the long term and suggest that the communities were characterised by functional redundancy. Moderate droughts had no effect on overall CO2 emissions but severe droughts led to a lower loss of soil C due to the absence of mineralisation during the longer periods of desiccation that was not compensated by over-mineralisation during Birch effect. The study highlighted moisture threshold beyond which it can be observed a Birch effect and

  9. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  10. Mathematical modelling and analysis of the mushroom drying process at the optimal temperature

    Directory of Open Access Journals (Sweden)

    O. Kubaychuk

    2016-02-01

    Full Text Available To preserve food is used drying method. It was found experimentally that drying mushroom caps and legs should be conducted at temperatures close to 52,5°C and 55,5°C, accordingly. In this case, we can get the product of the highest quality. Statistically, we proved that the drying processes of mushroom caps are different for fixed levels of temperature (from 40° C to 80° C, by step 10° C. At the same time, at higher temperatures, the nature of the process changes abruptly. Based on the experimental data, the polynomial regression model was built. This model can used for estimating and forecasting a specific evaporation heat at the optimal temperature.

  11. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    Science.gov (United States)

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  12. Encapsulation of lycopene using spray-drying and molecular inclusion processes

    Directory of Open Access Journals (Sweden)

    Itaciara Larroza Nunes

    2007-09-01

    Full Text Available This study aimed to obtain encapsulated lycopene in a powder form, using either spray-drying or molecular inclusion with beta -cyclodextrin ( beta -CD followed by freeze-drying. The encapsulation efficiency using spray-drying ranged from 94 to 96%, with an average yield of 51%, with microcapsules showing superficial indentations and lack of cracks and breakages. Lycopene- beta -CD complexes were only formed at a molar ratio of 1:4, and irregular structures of different sizes that eventually formed aggregates, similar to those of beta -CD, were observed after freeze-drying. About 50% of the initial lycopene did not form complexes with beta -CD. Lycopene purity increased from 96.4 to 98.1% after spray-drying, whereas lycopene purity decreased from 97.7 to 91.3% after complex formation and freeze-drying. Both the drying processes yielded pale-pink, dry, free-flowing powders.Técnicas de encapsulamento, como "spray-drying" e formação de complexos por inclusão com ciclodextrinas, vêm sendo avaliadas para viabilizar a adição de carotenóides em sistemas hidrofílicos e aumentar a sua estabilidade durante o processamento e estocagem. Portanto, o objetivo do presente trabalho foi obter licopeno encapsulado na forma de pó, utilizando processos de "spray-drying" ou de inclusão molecular com beta -ciclodextrina (CD seguido de liofilização. A eficiência do encapsulamento utilizando "spray-drying" variou de 94 a 96% e o rendimento médio foi de 51%, com as microcápsulas apresentando indentações superficiais, porém sem falhas ou aberturas na superfície. A formação de complexo licopeno- beta -CD ocorreu apenas quando utilizada razão molar de 1:4, e estruturas irregulares de diferentes tamanhos que eventualmente formaram agregados, similares às da beta -CD, foram observadas após liofilização. O licopeno não complexado neste processo ficou em torno de 50%. A pureza do licopeno (% área do all-trans-licopeno aumentou de 96,4 para 98,1% ap

  13. The spray-drying process is sufficient to inactivate infectious porcine epidemic diarrhea virus in plasma.

    Science.gov (United States)

    Gerber, Priscilla F; Xiao, Chao-Ting; Chen, Qi; Zhang, Jianqiang; Halbur, Patrick G; Opriessnig, Tanja

    2014-11-07

    Porcine epidemic diarrhea virus (PEDV) is considered an emergent pathogen associated with high economic losses in many pig rearing areas. Recently it has been suggested that PEDV could be transmitted to naïve pig populations through inclusion of spray-dried porcine plasma (SDPP) into the nursery diet which led to a ban of SDPP in several areas in North America and Europe. To determine the effect of spray-drying on PEDV infectivity, 3-week-old pigs were intragastrically inoculated with (1) raw porcine plasma spiked with PEDV (RAW-PEDV-CONTROL), (2) porcine plasma spiked with PEDV and then spray dried (SD-PEDV-CONTROL), (3) raw plasma from PEDV infected pigs (RAW-SICK), (4) spray-dried plasma from PEDV infected pigs (SD-SICK), or (5) spray-dried plasma from PEDV negative pigs (SD-NEG-CONTROL). For the spray-drying process, a tabletop spray-dryer with industry-like settings for inlet and outlet temperatures was used. In the RAW-PEDV-CONTROL group, PEDV RNA was present in feces at day post infection (dpi) 3 and the pigs seroconverted by dpi 14. In contrast, PEDV RNA in feces was not detected in any of the pigs in the other groups including the SD-PEDV-CONTROL group and none of the pigs had seroconverted by termination of the project at dpi 28. This work provides direct evidence that the experimental spray-drying process used in this study was effective in inactivating infectious PEDV in the plasma. Additionally, plasma collected from PEDV infected pigs at peak disease did not contain infectious PEDV. These findings suggest that the risk for PEDV transmission through commercially produced SDPP is minimal.

  14. Study of a dry room in a battery manufacturing plant using a process model

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studies the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study is conducted with the help of a process model for a dry room with a volume of 16000 cubic meters. For a defined base case scenario it is found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  15. Study of a dry room in a battery manufacturing plant using a process model

    Science.gov (United States)

    Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.

    2016-09-01

    The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.

  16. Physically based modelling and optimal operation for product drying during post-harvest processing.

    NARCIS (Netherlands)

    Boxtel, van A.J.B.; Lukasse, L.; Farkas, I.; Rendik, Z.

    1996-01-01

    The development of new procedures for crop production and post-harvest processing requires models. Models based on physical backgrounds are most useful for this purpose because of their extrapolation potential. An optimal procedure is developed for alfalfa drying using a physical model. The model co

  17. Experimental Study of Heat Transfer Performance of Polysilicon Slurry Drying Process

    Science.gov (United States)

    Wang, Xiaojing; Ma, Dongyun; Liu, Yaqian; Wang, Zhimin; Yan, Yangyang; Li, Yuankui

    2016-12-01

    In recent years, the growth of the solar energy photovoltaic industry has greatly promoted the development of polysilicon. However, there has been little research into the slurry by-products of polysilicon production. In this paper the thermal performance of polysilicon slurry was studied in an industrial drying process with a twin-screw horizontal intermittent dryer. By dividing the drying process into several subunits, the parameters of each unit could be regarded as constant in that period. The time-dependent changes in parameters including temperature, specific heat and evaporation enthalpy were plotted. An equation for the change in the heat transfer coefficient over time was calculated based on heat transfer equations. The concept of a distribution coefficient was introduced to reflect the influence of stirring on the heat transfer area. The distribution coefficient ranged from 1.2 to 1.7 and was obtained with the fluid simulation software FLUENT, which simplified the calculation of heat transfer area during the drying process. These experimental data can be used to guide the study of polysilicon slurry drying and optimize the design of dryers for industrial processes.

  18. Laser cutting eliminates nucleic acid cross-contamination in dried-blood-spot processing.

    Science.gov (United States)

    Murphy, Sean C; Daza, Glenda; Chang, Ming; Coombs, Robert

    2012-12-01

    Dried blood spots (DBS) are useful for molecular assays but are prone to false positives from cross-contamination. In our malaria DBS assay, cross-contamination was encountered despite cleaning techniques suitable for HIV-1. We therefore developed a contact-free laser cutting system that effectively eliminated cross-contamination during DBS processing.

  19. A Model-Based Methodology for Spray-Drying Process Development.

    Science.gov (United States)

    Dobry, Dan E; Settell, Dana M; Baumann, John M; Ray, Rod J; Graham, Lisa J; Beyerinck, Ron A

    2009-09-01

    Solid amorphous dispersions are frequently used to improve the solubility and, thus, the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Spray-drying, a well-characterized pharmaceutical unit operation, is ideally suited to producing solid amorphous dispersions due to its rapid drying kinetics. This paper describes a novel flowchart methodology based on fundamental engineering models and state-of-the-art process characterization techniques that ensure that spray-drying process development and scale-up are efficient and require minimal time and API. This methodology offers substantive advantages over traditional process-development methods, which are often empirical and require large quantities of API and long development times. This approach is also in alignment with the current guidance on Pharmaceutical Development Q8(R1). The methodology is used from early formulation-screening activities (involving milligrams of API) through process development and scale-up for early clinical supplies (involving kilograms of API) to commercial manufacturing (involving metric tons of API). It has been used to progress numerous spray-dried dispersion formulations, increasing bioavailability of formulations at preclinical through commercial scales.

  20. Physically based modelling and optimal operation for product drying during post-harvest processing.

    NARCIS (Netherlands)

    Boxtel, van A.J.B.; Lukasse, L.; Farkas, I.; Rendik, Z.

    1996-01-01

    The development of new procedures for crop production and post-harvest processing requires models. Models based on physical backgrounds are most useful for this purpose because of their extrapolation potential. An optimal procedure is developed for alfalfa drying using a physical model. The model co

  1. Design of solar thermal dryers for 24-hour food drying processes (abstract)

    Science.gov (United States)

    Solar drying is a ubiquitous method that has been adopted for many years as a food preservation method. Most of the published articles in the literature provide insight on the performance of solar dryers in service but little information on the dryer construction material selection process or mater...

  2. Drying and Heating Modelling of Granular Flow: Application to the Mix-Asphalt Processes

    Directory of Open Access Journals (Sweden)

    L Le Guen

    2011-01-01

    Full Text Available Concrete asphalt is a hydrocarbon material that includes a mix of mineral components along with a bituminous binder. Prior to mixing, its production protocol requires drying and heating the aggregates. Generally performed in a rotary drum, these drying and heating steps within mix asphalt processes have never been studied from a physical perspective. We are thus proposing in the present paper to analyze the drying and heating mechanisms when granular materials and hot gases are involved in a co-current flow. This process step accounts for a large proportion of the overall energy consumed during hot-mix asphalt manufacturing. In the present context, the high energy cost associated with this step has encouraged developing new strategies specifically for the drying process. Applying new asphalt techniques so that an amount of moisture can be preserved in the asphalt concrete appears fundamental to such new strategies. This low-energy asphalt, also referred to as the "warm technique", depends heavily on a relevant prediction of the actual moisture content inside asphalt concrete during the mixing step. The purpose of this paper is to present a physical model dedicated to the evolution in temperature and moisture of granular solids throughout the drying and heating steps carried out inside a rotary drum. An initial experimental campaign to visualize inside a drum at the pilot scale (i.e. 1/3 scale has been carried out in order to describe the granular flow and establish the necessary physical assumptions for the drying and heating model. Energy and mass balance equations are solved by implementing an adequate heat and mass transfer coupling, yielding a 1D model from several parameters that in turn drives the physical modeling steps. Moreover, model results will be analyzed and compared to several measurements performed in an actual asphalt mix plant at the industrial scale (i.e. full scale.

  3. [Effect of spray drying process on physical properties and dissolution of tanshinone].

    Science.gov (United States)

    Jiang, Yan-Rong; Zhang, Zhen-Hai; Ding, Dong-Mei; Yan, Hong-Mei; Sun, E; Jia, Xiao-Bin

    2014-03-01

    In order to improve the dissolution in vitro of components by processing tanshinone with the pray drying method, the physical properties of tanshinone power was analyzed by BET, differential scanning calorimetry, scanning electron microscopy and X-ray powder diffraction, and its dissolution in vitro was also investigated. The results of characterization showed decreased power size and increased specific surface area of tanshinone powder, and its existence in an amorphous state. Within 4 h, the accumulated dissolutions of tanshinone I and tanshinone II(A) in components of tanshinone reached 78.3%, 81.9%, respectively. Therefore, the spray-drying method was conducive to enhance the dissolution of components of tanshinone.

  4. A study of energy balances in biomass drying and pelleting processes

    Energy Technology Data Exchange (ETDEWEB)

    Mani, S.; Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2004-07-01

    Making pellets from biomass is considered to be the best way to use biomass as a replacement for fossil fuels. This study developed a simulation tool and a rotary biomass drying model to optimize unit operations for pellet production. A pelletizing plant layout was presented along with a table indicating the typical energy and power consumptions per ton of pellets produced. The importance of the drying process was discussed with reference to drying results for timothy grass, alfalfa stems and leaves. It was shown that a dryer control system can reduce energy consumption from 12 GJ/ton to 6.5 GJ/ton. This drop in energy consumption by nearly 50 per cent is due to a reduction in moisture from 70 per cent to 10 per cent. Future research will focus on reducing the environmental emissions from the biomass dryer. tabs., figs.

  5. Dynamical masses and non-homology of massive elliptical galaxies grown by dry mergers

    Science.gov (United States)

    Frigo, M.; Balcells, M.

    2017-08-01

    We study whether dry merger-driven size growth of massive elliptical galaxies depends on their initial structural concentration, and analyse the validity of the homology hypothesis for virial mass determination in massive ellipticals grown by dry mergers. High-resolution simulations of a few realistic merger trees, starting with compact progenitors of different structural concentrations (Sérsic indices n), show that galaxy growth has little dependence on the initial Sérsic index (larger n leads to slightly larger size growth), and depends more on other particulars of the merger history. We show that the deposition of accreted matter in the outer parts leads to a systematic and predictable breaking of the homology between remnants and progenitors, which we characterize through the evolution, during the course of the merger history, of virial coefficients K≡ G M / R_e σ _e^2 associated with the most commonly used dynamical and stellar mass parameters. The virial coefficient for the luminous mass, K⋆, is ∼50 per cent larger at the start of the merger evolution at z ≈ 2 than in z = 0 remnants. Ignoring virial evolution leads to biased virial mass estimates. We provide K corresponding to a variety of dynamical and stellar mass parameters, and provide recipes for the dynamical determination of galaxy masses. For massive, non-compact ellipticals, the popular expression M = 5 R_e σ _e^2 / G underestimates the dynamical mass within the luminous body by factors of up to 4; it instead provides an approximation to the total stellar mass with smaller uncertainty than current stellar-population models.

  6. Optimization of Drying Process of Mushroom Powder Production from Pleurotus ostreatus using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Nurcan Doğan

    2015-12-01

    Full Text Available Pleurotus ostreatus that known as poplar, beech and oyster mushrooms is second generation after Agaricus bisporus with the fungal species. Fresh and processed mushrooms products are in great demand worldwide in terms of taste and flavor. Edible mushrooms produced in the world is consumed fresh 40-50%. However, due to the high moisture content and enzyme, harvested mushrooms that can be stored for about one week and shows rapid loss of quality in the storage process. This situation limits the consumption of fresh edible fungus, so the marketing of canned mushrooms, drying and freezing and storage technology has come to the fore. In this study, besides the drying, unlike other studies it is intended to optimize the pulverization of the fungus accordingto the food processing operation. As a result of optimization, drying conditions of 50 °C and 269.02 minutes was concluded as the most suitable drying standard. EC50 value, Total Phenolic Content and desirability rate are determinated respectively; 275.464, 0.762 and 0.976 in this norm.

  7. Investigation of the processes of impregnation and drying of granular silica gel

    Science.gov (United States)

    Fedorov, A. V.; Zhilin, A. A.; Korobeinikov, Yu. G.

    2011-09-01

    The process of capillary impregnation and drying of silica gel grains in the acousto-convective drier of the ITPM of the Siberian branch of the Russian Academy of Sciences has been investigated experimentally. Two methods for humidifying a material with developed surface and internal structures have been considered. A comparison of these methods has been made and the influence of the impregnation rate on the geometry of silica gel grains has been analyzed. Silica gel grains were dried by three methods: microwave, convective, and acousto-convective. The dependence of the drying rate and the quality of the dried material on the chosen drying method has been shown. To describe the moisture extraction, we propose a mathematical model based on a two-dimensional diffusion equation written in the cylindrical system of coordinates. The moisture distribution in cylindrical samples consisting of silica gel grains has been obtained numerically for various values of the initial moisture content with the use of certain diffusion coefficients and the dependence of the moisture transfer coefficient on the frequency of acousto-convective action.

  8. Effect of Selected Factors on Drying Process of Tomato in Forced Convection Solar Energy Dryer

    Directory of Open Access Journals (Sweden)

    U.S. Muhammed

    2012-09-01

    Full Text Available The effect of air velocity, slice thickness and grazing materials in drying process of tomato in forced convection solar energy dryer was evaluated. The result is to serve as an input for solar energy development for drying of vegetable and fruit products in North West Ecological zone of Nigeria. In order to evaluate the effects of the above factors in drying operation, a split-split-plot experimental design was used. Differences among the treatments and their interactions were tested with orthogonal contrast test to access their significance while further analysis were done to compare all possible pairs of treatment means using Duncan’s Multiple Range Test (DMRT. The results showed that there is no significant difference, at 95% probability level, between the means of the three glazing materials used. However, the variations in mean slice thickness and in mean air flow rate are highly significant at 99% probability level. The results further revealed that drying rate increasing with decrease in slice thickness and increase in air flow rate. Drying of 15, 20 and 25 mm slice thickness of tomato was achieved in time range of 21-24, 27-29 and 30-50 h, respectively.

  9. Study on drying and combustion process in grate-CFB incinerator

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The drying and combustion process in the combined grate and circulating fluidized bed(grate-CFB) municipal solid waste(MSW) incinerator was investigated experimentally and mathematically.The drying grate bed was simulated by a muffle furnace,which could be controlled at a constant tempera-ture level.The kind of wastes,thickness of waste layer fed and temperature were chosen as the ad-justable parameters to study their effect on the drying process.The experimental results indicated that the hydrophilic wastes were more difficult to be dried than the hydrophobic wastes.The higher the temperature is the easier the waste is to be dried.The thinner waste layer is favorable to drying the waste.The pyrolysis experiment in the furnace showed that the higher temperature level could reduce the conversion rate of carbon to carbon monoxide.The semi-empirical mathematical model that in-cluded the bed material distribution submodel,volatile matter release submodel,carbon particle combustion submodel and so on was proposed.A 260 t/d grate-CFB incinerator was modeled and the model predicted bulk density agreed with the measured value from industrial field test.The predicted flue gas(e.g.CO2,CO) concentration deviated slightly from the industrial test data.The parameters and variables used in the model were determined by the experiments or practical field test.This model can be used to design the grate-CFB incinerator and guide its operation.

  10. Diffusion processes through social groups' dynamics

    CERN Document Server

    Apolloni, Andrea

    2011-01-01

    Axelrod's model describes the dissemination of a set of cultural traits in a society constituted by individual agents. In a social context, nevertheless, individual choices toward a specific attitude are also at the basis of the formation of communities, groups and parties. The membership in a group changes completely the behavior of single agents who start acting according to a social identity. Groups act and interact among them as single entities, but still conserve an internal dynamics. We show that, under certain conditions of social dynamics, the introduction of group dynamics in a cultural dissemination process avoids the flattening of the culture into a single entity and preserves the multiplicity of cultural attitudes. We also considered diffusion processes on this dynamical background, showing the conditions under which information as well as innovation can spread through the population in a scenario where the groups' choices determine the social structure.

  11. Dynamic culture improves MSC adhesion on freeze-dried bone as a scaffold for bone engineering.

    Science.gov (United States)

    Gonçalves, Fabiany da Costa; Paz, Ana Helena da Rosa; Lora, Priscila Schmidt; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino

    2012-02-26

    To investigate the interaction between mesenchymal stem cells (MSCs) and bone grafts using two different cultivation methods: static and dynamic. MSCs were isolated from rat bone marrow. MSC culture was analyzed according to the morphology, cell differentiation potential, and surface molecular markers. Before cell culture, freeze-dried bone (FDB) was maintained in culture for 3 d in order to verify culture medium pH. MSCs were co-cultured with FDB using two different cultivation methods: static co-culture (two-dimensional) and dynamic co-culture (three-dimensional). After 24 h of cultivation by dynamic or static methods, histological analysis of Cell adhesion on FDB was performed. Cell viability was assessed by the Trypan Blue exclusion method on days 0, 3 and 6 after dynamic or static culture. Adherent cells were detached from FDB surface, stained with Trypan Blue, and quantified to determine whether the cells remained on the graft surface in prolonged non-dynamic culture. Statistical analyses were performed with SPSS and a P cultures. Rat MSCs were positive for CD44, CD90 and CD29 and negative for CD34, CD45 and CD11bc. FDBs were maintained in culture for 3 d and the results showed there was no significant variation in the culture medium pH with FDB compared to pure medium pH (P > 0.05). In histological analysis, there was a significant difference in the amount of adhered cells on FDB between the two cultivation methods (P culture method demonstrated greater adhesion on the bone surface than in static co-culture method. On day 0, the cell viability in the dynamic system was significantly higher than in the static system (P statistical difference in cell viability between days 0, 3 and 6 after dynamic culture (P culture, cell viability on day 6 was significantly lower than on day 3 and 0 (P culture provides a superior environment over static conditions.

  12. Konjac gel as pork backfat replacer in dry fermented sausages: processing and quality characteristics.

    Science.gov (United States)

    Ruiz-Capillas, C; Triki, M; Herrero, A M; Rodriguez-Salas, L; Jiménez-Colmenero, F

    2012-10-01

    The effect of replacing animal fat (0%, 50% and 80% of pork backfat) by an equal proportion of konjac gel, on processing and quality characteristics of reduced and low-fat dry fermented sausage was studied. Weight loss, pH, and water activity of the sausage were affected (Pfat reduction and processing time. Low lipid oxidation levels were observed during processing time irrespective of the dry sausage formulation. The fat content for normal-fat (NF), reduced-fat (RF) and low-fat (LF) sausages was 29.96%, 19.69% and 13.79%, respectively. This means an energy reduction of about 14.8% for RF and 24.5% for LF. As the fat content decreases there is an increase (P0.05) in the presence of microorganisms as a result of the reformulation. The sensory panel considered that NF and RF products had acceptable sensory characteristics.

  13. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    Science.gov (United States)

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  14. Optimization of spray drying process for developing seabuckthorn fruit juice powder using response surface methodology.

    Science.gov (United States)

    Selvamuthukumaran, Meenakshisundaram; Khanum, Farhath

    2014-12-01

    The response surface methodology was used to optimize the spray drying process for development of seabuckthorn fruit juice powder. The independent variables were different levels of inlet air temperature and maltodextrin concentration. The responses were moisture, solubility, dispersibility, vitamin C and overall color difference value. Statistical analysis revealed that independent variables significantly affected all the responses. The Inlet air temperature showed maximum influence on moisture and vitamin C content, while the maltodextrin concentration showed similar influence on solubility, dispersibility and overall color difference value. Contour plots for each response were used to generate an optimum area by superimposition. The seabuckthorn fruit juice powder was developed using the derived optimum processing conditions to check the validity of the second order polynomial model. The experimental values were found to be in close agreement to the predicted values and were within the acceptable limits indicating the suitability of the model in predicting quality attributes of seabuckthorn fruit juice powder. The recommended optimum spray drying conditions for drying 100 g fruit juice slurry were inlet air temperature and maltodextrin concentration of 162.5 °C and 25 g, respectively. The spray dried juice powder contains higher amounts of antioxidants viz., vitamin C, vitamin E, total carotenoids, total anthocyanins and total phenols when compared to commercial fruit juice powders and they are also found to be free flowing without any physical alterations such as caking, stickiness, collapse and crystallization by exhibiting greater glass transition temperature.

  15. Optimization of Agave tequilana Weber var. Azul Juice Spray Drying Process

    Directory of Open Access Journals (Sweden)

    Alejandra Chávez-Rodríguez

    2014-01-01

    Full Text Available In this work, the response surface methodology was employed to optimize the microencapsulation of Agave tequilana Weber var. azul juice with whey protein isolated using a spray drying technique. A Box-Behnken design was used to establish optimum spray drying conditions for Agave tequilana juice. The process was optimized to obtain maximum powder yield with the best solubility time, hygroscopicity, bulk density, water activity, and reducing sugars. The independent parameters for the spray drying process were outlet temperature of 70–80°C, atomizer speed of 20000–30000 rpm, and airflow of 0.20–0.23 m3 s−1. The best spray drying condition was at outlet temperature of 80°C, atomizer speed of 20000 rpm, and air flow rate of 0.23 m3 s−1 to obtain maximum powder yield (14.65%bm, minimum solubility time (352.8 s, maximum bulk density (560 kg m−3, minimum hygroscopicity (1.9×10-7 kgwater s−1, and minimum aw (0.39. The Agave tequilana powder may be considered as an interesting source of dietary fiber used as food additive in food and nutraceutical industries.

  16. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process

    Science.gov (United States)

    Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter

    2016-01-01

    Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263

  18. Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat

    Science.gov (United States)

    Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich

    2017-05-01

    The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of ∆t temperature difference, ∆p pressure difference, ∆c concentration difference, a difference of water activity in the product and the relative air humidity (a_{{w}} - \\varphi) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.

  19. Analysis of the moisture evaporation process during vacuum freeze-drying of koumiss and shubat

    Science.gov (United States)

    Shingisov, Azret Utebaevich; Alibekov, Ravshanbek Sultanbekovich

    2016-10-01

    The equation for the calculating of a moisture evaporation rate in the vacuum freeze-drying, wherein as a driving force instead of the generally accepted in the drying theory of ∆t temperature difference, ∆p pressure difference, ∆c concentration difference, a difference of water activity in the product and the relative air humidity (a_{w} - φ) is suggested. By using the proposed equation, the processes of vacuum freeze-drying of koumiss and shubat were analyzed, and it was found two drying periods: constant and falling. On the first drying period, a moisture evaporation rate of koumiss is j = 2.75 × 10-3 kg/(m2 h) and of shubat is j = 2.37 × 10-3 kg/(m2 h). On the second period, values decrease for koumiss from j = 2.65 × 10-3 kg/(m2 h) to j = 1.60 × 10-3 kg/(m2 h), and for shubat from j = 2.25 × 10-3 kg/(m2 h) to j = 1.62 × 10-3 kg/(m2 h). Specific humidity for koumiss is ueq = 0.61 kg/kg and for shubat is ueq = 0.58 kg/kg. The comparative analyze of the experimental data of the moisture evaporation rate versus the theoretical calculation shows that the approximation reliability is R2 = 0.99. Consequently, the proposed equation is useful for the analyzing a moisture evaporation rate during a vacuum freeze-drying of dairy products, including cultured milk foods.

  20. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: drying kinetics, modeling, temperature profile and energy aspect

    Science.gov (United States)

    Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni

    2017-09-01

    Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data (R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy (Ea) values were calculated from effective moisture diffusivity (Deff), thermal diffusivity (α) and the rate constant of the best model (k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.

  1. Kilogram-scale production of SnO(2) yolk-shell powders by a spray-drying process using dextrin as carbon source and drying additive.

    Science.gov (United States)

    Choi, Seung Ho; Kang, Yun Chan

    2014-05-05

    A simple and general method for the large-scale production of yolk-shell powders with various compositions by a spray-drying process is reported. Metal salt/dextrin composite powders with a spherical and dense structure were obtained by spray drying and transformed into yolk-shell powders by simple combustion in air. Dextrin plays a key role in the preparation of precursor powders for fabricating yolk-shell powders by spray drying. Droplets containing metal salts and dextrin show good drying characteristics even in a severe environment of high humidity. Sucrose, glucose, and polyvinylpyrrolidone are widely used as carbon sources in the preparation of metal oxide/carbon composite powders; however, they are not appropriate for large-scale spray-drying processes because of their caramelization properties and adherence to the surface of the spray dryer. SnO2 yolk-shell powders were studied as the first target material in the spray-drying process. Combustion of tin oxalate/dextrin composite powders at 600 °C in air produced single-shelled SnO2 yolk-shell powders with the configuration SnO2 @void@SnO2 . The SnO2 yolk-shell powders prepared by the simple spray-drying process showed superior electrochemical properties, even at high current densities. The discharge capacities of the SnO2 yolk-shell powders at a current density of 2000 mA g(-1) were 645 and 570 mA h g(-1) for the second and 100th cycles, respectively; the corresponding capacity retention measured for the second cycle was 88 %.

  2. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  3. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    Science.gov (United States)

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3.

  4. A dynamically reconfigurable data stream processing system

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J.M.; Trombly-Freytag, K.; /Fermilab

    2004-11-01

    This paper describes a component-based framework for data stream processing that allows for configuration, tailoring, and runtime system reconfiguration. The system's architecture is based on a pipes and filters pattern, where data is passed through routes between components. A network of pipes and filters can be dynamically reconfigured in response to a preplanned sequence of processing steps, operator intervention, or a change in one or more data streams. This framework provides several mechanisms supporting dynamic reconfiguration and can be used to build static data stream processing applications such as monitoring or data acquisition systems, as well as self-adjusting systems that can adapt their processing algorithm, presentation layer, or data persistency layer in response to changes in input data streams.

  5. Investigation of the drying process of linseed oil using FTIR and ToF-SIMS

    Science.gov (United States)

    Grehk, T. M.; Berger, R.; Bexell, U.

    2008-03-01

    The drying process of linseed oil, oxidized at 80 oC, has been investigated with rheology measurements, Fourier transformation infrared spectroscopy (FTIR), and time of flight secondary ion mass spectrometry (ToF-SIMS). The drying process can be divided into three main steps: initiation, propagation and termination. ToF-SIMS spectra show that the oxidation is initiated at the linolenic (three double bonds) and linoleic fatty acids (two double bonds). ToF-SIMS spectra reveal peaks that can be assigned to ketones, alcohols and hydroperoxides. In this article it is shown that FTIR in combination with ToF-SIMS are well suited tools for investigations of various fatty acid components and reaction products of linseed oil.

  6. Mechanistic modelling of fluidized bed drying processes of wet porous granules

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F.C.; De Beer, Thomas; Gernaey, Krist;

    2011-01-01

    Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet...... will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern...... Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian–Lagrangian and the Eulerian–Eulerian approach. Finally, the PBM and CFD frameworks can be integrated, to describe the evolution of the moisture content of granules during fluidized bed drying....

  7. Temperature Control of Heating Zone for Drying Process: Effect of Air Velocity Change

    Directory of Open Access Journals (Sweden)

    Wutthithanyawat Chananchai

    2016-01-01

    Full Text Available This paper proposes a temperature control technique to adjust air temperature in a heating zone for drying process. The controller design is achieved by using an internal model control (IMC approach. When the IMC controller parameters were designed by calculating from an actual process transfer function estimated through an open-loop step response with input step change from 50% to 60% at a reference condition at air velocity of 1.20 m/s, the performance of temperature controller was experimentally tested by varying an air velocity between 1.32 m/s and 1.57 m/s, respectively. The experimental results showed that IMC controller had a high competency for controlling the drying temperature.

  8. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations.

    Science.gov (United States)

    Paudel, Amrit; Worku, Zelalem Ayenew; Meeus, Joke; Guns, Sandra; Van den Mooter, Guy

    2013-08-30

    Spray drying is an efficient technology for solid dispersion manufacturing since it allows extreme rapid solvent evaporation leading to fast transformation of an API-carrier solution to solid API-carrier particles. Solvent evaporation kinetics certainly contribute to formation of amorphous solid dispersions, but also other factors like the interplay between the API, carrier and solvent, the solution state of the API, formulation parameters (e.g. feed concentration or solvent type) and process parameters (e.g. drying gas flow rate or solution spray rate) will influence the final physical structure of the obtained solid dispersion particles. This review presents an overview of the interplay between manufacturing process, formulation parameters, physical structure, and performance of the solid dispersions with respect to stability and drug release characteristics.

  9. Group Dynamic Processes in Email Groups

    Science.gov (United States)

    Alpay, Esat

    2005-01-01

    Discussion is given on the relevance of group dynamic processes in promoting decision-making in email discussion groups. General theories on social facilitation and social loafing are considered in the context of email groups, as well as the applicability of psychodynamic and interaction-based models. It is argued that such theories may indeed…

  10. Modeling evaporation processes in a saline soil from saturation to oven dry conditions

    Directory of Open Access Journals (Sweden)

    M. Gran

    2011-07-01

    Full Text Available Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and reactive transport model was developed to study mass and energy transfer mechanisms during an evaporation experiment from a sand column. Very dry and hot conditions, including the formation of a salt crust, necessitate the modification of the retention curve to represent oven dry conditions. Experimental observations (volumetric water content, temperature and concentration profiles were satisfactorily reproduced using mostly independently measured parameters, which suggests that the model can be used to assess the underlying processes. Results show that evaporation concentrates at a very narrow front and is controlled by heat flow, and limited by salinity and liquid and vapor fluxes. The front divides the soil into a dry and saline portion above and a moist and diluted portion below. Vapor diffusses not only upwards but also downwards from the evaporation front, as dictated by temperature gradients. Condensation of this downward flux causes dilution, so that salt concentration is minimum and lower than the initial one, just beneath the evaporation front. While this result is consistent with observations, it required adopting a vapor diffusion enhancement factor of 8.

  11. Continuous Process for the Etching, Rinsing and Drying of MEMS Using Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seon Ki; Han, Gap Su; You, Seong-sik [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2015-10-15

    The previous etching, rinsing and drying processes of wafers for MEMS (microelectromechanical system) using SC-CO{sub 2} (supercritical-CO{sub 2}) consists of two steps. Firstly, MEMS-wafers are etched by organic solvent in a separate etching equipment from the high pressure dryer and then moved to the high pressure dryer to rinse and dry them using SC-CO{sub 2}. We found that the previous two step process could be applied to etch and dry wafers for MEMS but could not confirm the reproducibility through several experiments. We thought the cause of that was the stiction of structures occurring due to vaporization of the etching solvent during moving MEMS wafer to high pressure dryer after etching it outside. In order to improve the structure stiction problem, we designed a continuous process for etching, rinsing and drying MEMS-wafers using SC-CO{sub 2} without moving them. And we also wanted to know relations of states of carbon dioxide (gas, liquid, supercritical fluid) to the structure stiction problem. In the case of using gas carbon dioxide (3 MPa, 25 .deg. C) as an etching solvent, we could obtain well-treated MEMS-wafers without stiction and confirm the reproducibility of experimental results. The quantity of rinsing solvent used could be also reduced compared with the previous technology. In the case of using liquid carbon dioxide (3 MPa, 5 .deg. C), we could not obtain well-treated MEMS-wafers without stiction due to the phase separation of between liquid carbon dioxide and etching co-solvent(acetone). In the case of using SC-CO{sub 2} (7.5 Mpa, 40 .deg. C), we had as good results as those of the case using gas-CO{sub 2}. Besides the processing time was shortened compared with that of the case of using gas-CO{sub 2}.

  12. Evaluation of Friction Stir Processing of HY-80 Steel Under Wet and Dry Conditions

    OpenAIRE

    Young, Garth William II

    2012-01-01

    This thesis describes the microstructural and mechanical property changes associated with Friction Stir Processing (FSP) of HY-80 steel under dry and underwater conditions. HY-80 is a low-carbon alloy steel that is used in a quenched and tempered condition and is highly susceptible to hydrogen assisted cracking associated with conventional fusion welding. FSW/P (400 RPM/ 2 IPM) was conducted using a polycrystalline cubic boron nitride tool having a pin length of 6.35 mm. Two sets ...

  13. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  14. Effects of Soil Moisture on Dynamic Distribution of Dry Matter Between Winter Wheat Root and Shoot

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yuan; LIU Xiao-ying; LUO Yuan-pei

    2003-01-01

    The dynamic relationship of dry matter accumulation and distribution between winter wheatroot and shoot was studied under different soil water conditions. The dry matter accumulation in root wasgreatly influenced by water stress, so as to the final root weight of the treatment with 40 % field moisturecapacity (FMC) was less than 1/4 of that of the treatment with 80 % FMC on average. Water stress duringthe 3-leaf stage to the tillering stage had the greatest influence on root, and the influence of water stressduring the jointing stage to the booting stage on shoot was greater than root. However, water stress duringthe tillering stage to the booting stage had a balanced effect on root and shoot, and the proportion of drymatter that distributed to root and shoot was almost the same after rewatering. Water recovery during thejointing stage to booting stage could promote R/S, but the increasing degree was related to the duration ofwater limitation. Soil water condition had the lowest effect on R/S during the flowering stage to the fillingstage and the maximal effect on R/S during the jointing stage to the heading stage, R/S of 40% FMCtreatment was 20.93 and 126.09 % higher than that of 60 % FMC and 80 % FMC treatments respectivelyat this period.

  15. Freeze-Drying Above the Glass Transition Temperature in Amorphous Protein Formulations While Maintaining Product Quality and Improving Process Efficiency.

    Science.gov (United States)

    Depaz, Roberto A; Pansare, Swapnil; Patel, Sajal Manubhai

    2016-01-01

    This study explored the ability to conduct primary drying during lyophilization at product temperatures above the glass transition temperature of the maximally freeze-concentrated solution (Tg′) in amorphous formulations for four proteins from three different classes. Drying above Tg′ resulted in significant reductions in lyophilization cycle time. At higher protein concentrations, formulations freeze dried above Tg′ but below the collapse temperature yielded pharmaceutically acceptable cakes. However, using an immunoglobulin G type 4 monoclonal antibody as an example, we found that as protein concentration decreased, minor extents of collapse were observed in formulations dried at higher temperatures. No other impacts to product quality, physical stability, or chemical stability were observed in this study among the different drying conditions for the different proteins. Drying amorphous formulations above Tg′, particularly high protein concentration formulations, is a viable means to achieve significant time and cost savings in freeze-drying processes.

  16. Study on the Decontamination Methodology for the Refurbishment of Spent Fuel Dry Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Won, H. J.; Jung, C. H.; Moon, J. K.; Byambatsere, Baigalmaa; Park, G. I.; Lee, D. Y.; Lee, J. W.; Song, K. C.

    2010-01-15

    As the increase of the operation age of the domestic high radiation facilities such as IMEF, PIEF and DFDF, the necessity of decontamination and refurbishment of hot cells in these facilities is also increased. In the near future, the possibilities of refurbishment of hot cells in compliance with the new regulations, the reuse of hot cells for the other purposes and the decommissioning of the facilities also exist. The following contents were studied. 1) State of the art on the decontamination technologies on the spent fuel dry processing facility - Case study on the decontamination and refurbishment of hot cells in the foreign countries. - Understanding of radioactive contamination characteristics of spent fuel powder treatment equipment operated under the high radiation field of the spent fuel dry processing facility. - Evaluation of applicable decontamination technologies 2) Comparative tests of the candidate decontamination technology - Preparation of the surrogate test specimens and derivation of gel decontamination condition - Decontamination tests and comparison with light ablation method 3) Establishment of decontamination methodology for the refurbishment of hot cells of the spent fuel dry processing facility - Derivation of required equipment for the hot cell decontamination - Establishment of decontamination methodologies on the contaminated equipment

  17. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy.

    Science.gov (United States)

    Xiao, Qian; Gu, Xiaohong; Tan, Suo

    2014-12-01

    Drying process of aqueous sodium alginate solutions at 50°C was investigated by ATR-FTIR spectroscopy and two-dimensional correlation infrared spectroscopy. Two-dimensional asynchronous spectrum at 1,800-1,350 cm(-1) wavenumber could be resolved into five separate bands, which were assigned to O-H bending vibrations in water (around 1,645 cm(-1)), antisymmetric and symmetric stretching vibrations of free and hydrogen-bonded COO(-) groups of alginate (around 1,595, 1,412, 1,572 and 1,390 cm(-1), respectively). As the drying process progressed, absorbance bands at around 1,127 and 1,035 cm(-1) significantly shifted to lower wavenumbers (1120 and 1027cm(-1), respectively). Suggesting that oxygen atoms at the 2th and 3th position in the pyranose ring might have hydrogen bonded with water or alginate chains. Further analysis using 2D asynchronous correlation spectroscopy between 1800-1500 and 1200-960 cm(-1) wavenumber regions revealed the sequence of spectral changes during the drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    Science.gov (United States)

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances.

  19. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels.

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, S. F.

    1999-03-24

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns.

  20. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed...... which includes Vd and an effective surface source strength, Si, which is a function of the true surface source strength, Si, and the particle transport properties below the reference height. The general expression for the surface flux is incorporated into a dynamic mixed layer model of the type...... developed by Davidson et al. (1983). This three layer model (diffusion sublayer, turbulent surface layer and mixed layer) is applied to an open ocean marine regime where boundary layer advection is ignored. The aerosol concentration in the boundary layer is considered to consist of sea salt particles...

  1. Understanding the Entrepreneurial Process: a Dynamic Approach

    Directory of Open Access Journals (Sweden)

    Vânia Maria Jorge Nassif

    2010-04-01

    Full Text Available There is considerable predominance in the adoption of perspectives based on characteristics in research into entrepreneurship. However, most studies describe the entrepreneur from a static or snapshot approach; very few adopt a dynamic perspective. The aim of this study is to contribute to the enhancement of knowledge concerning entrepreneurial process dynamics through an understanding of the values, characteristics and actions of the entrepreneur over time. By focusing on personal attributes, we have developed a framework that shows the importance of affective and cognitive aspects of entrepreneurs and the way that they evolve during the development of their business.

  2. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.

    Science.gov (United States)

    Briones, Alejandro M; Ervin, Jamie S; Putnam, Shawn A; Byrd, Larry W; Gschwender, Lois

    2010-08-17

    A comprehensive numerical and experimental investigation on micrometer-sized water droplet impact dynamics and evaporation on an unheated, flat, dry surface is conducted from the standpoint of spray-cooling technology. The axisymmetric time-dependent governing equations of continuity, momentum, energy, and species are solved. Surface tension, wall adhesion effect, gravitational body force, contact line dynamics, and evaporation are accounted for in the governing equations. The explicit volume of fluid (VOF) model with dynamic meshing and variable-time stepping in serial and parallel processors is used to capture the time-dependent liquid-gas interface motion throughout the computational domain. The numerical model includes temperature- and species-dependent thermodynamic and transport properties. The contact line dynamics and the evaporation rate are predicted using Blake's and Schrage's molecular kinetic models, respectively. An extensive grid independence study was conducted. Droplet impingement and evaporation data are acquired with a standard dispensing/imaging system and high-speed photography. The numerical results are compared with measurements reported in the literature for millimeter-size droplets and with current microdroplet experiments in terms of instantaneous droplet shape and temporal spread (R/D(0) or R/R(E)), flatness ratio (H/D(0)), and height (H/H(E)) profiles, as well as temporal volume (inverted A) profile. The Weber numbers (We) for impinging droplets vary from 1.4 to 35.2 at nearly constant Ohnesorge number (Oh) of approximately 0.025-0.029. Both numerical and experimental results show that there is air bubble entrapment due to impingement. Numerical results indicate that Blake's formulation provides better results than the static (SCA) and dynamic contact angle (DCA) approach in terms of temporal evolution of R/D(0) and H/D(0) (especially at the initial stages of spreading) and equilibrium flatness ratio (H(E)/D(0)). Blake's contact line

  3. Evaluation of a novel fine coal dry cleaning process at Greenfields Coal Company

    Energy Technology Data Exchange (ETDEWEB)

    Bratton, R.; Luttrell, G.; Kasindorf, H.; McGraw, G.; Robbins, R. [Virginia Polytechnic Institute & State University, Blacksburg, VA (United States)

    2010-07-01

    Coal mining and processing operations have in the past and continue to create large tonnages of fine coal and waste particles. While technological advances in wet processing has made it possible to efficiently recover coal fines, difficulties associated with dewatering make these fine particles unattractive economically for most coal markets. A novel system has been developed for cleaning fine raw coal utilizing a multistage dry classification process that removes the clay particles that are typically much smaller than the majority of the clean coal particles and that reduces the product surface moisture to as low as 1%. In this article, the novel dry coal-cleaning process under license to Greenfields Coal Company was evaluated. The classification process offers a viable alternative to traditional wet processing and dewatering of the fine particles, especially for operations recovering abandoned impoundments where a sufficient water source and/or a waste slurry disposal site are unavailable. This article presents the separation performance and operating results obtained from field testing with a 2t/hr pilot-scale unit located at an abandoned impoundment in southern West Virginia.

  4. Effects of texture on salt precipitation dynamics and deposition patterns in drying porous media

    Science.gov (United States)

    Norouzi Rad, Mansoureh; Shokri, Nima

    2015-04-01

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, CO2 sequestration and water quality. Also excess of salt accumulation in soil may result in soil salinization which is a global problem adversely affecting vegetation, plant growth and crop production. Thus it is important to understand the parameters affecting salt transport and precipitation in porous media. We applied X-ray micro-tomography to investigate the dynamics of salt precipitation during evaporation from porous media as influenced by the particle and pore sizes. The packed beds were saturated with NaCl solution of 3 Molal and the time-lapse X-ray imaging was continued for one day. The results show that the presence of preferential evaporation sites (associated with fine pores) on the surface of the sand columns influences significantly the patterns and dynamics of NaCl precipitation (Norouzi Rad et al., 2013; Norouzi Rad and Shokri, 2014). They confirm the formation of an increasingly thick and discrete salt crust with increasing grain size in the sand column due to the presence of fewer fine pores (preferential precipitation sites) at the surface compared to the sand packs with finer grains. Fewer fine pores on the surface also results in shorter stage-1 precipitation for the columns with larger grain sizes. A simple model for the evolution of salt crust thickness based on this principle shows a good agreement with our experiments. Our results provide new insights regarding the physics of salt precipitation and its complex dynamics in porous media during evaporation. References Norouzi Rad, M., Shokri, N., Sahimi, M. (2013), Pore-Scale Dynamics of Salt Precipitation in Drying Porous Media, Phys. Rev. E, 88, 032404. Norouzi Rad, M., Shokri, N. (2014), Effects of grain angularity on NaCl precipitation in porous media during evaporation, Water Resour. Res

  5. Analysis of air-conditioning and drying processes using spreadsheet add-in for psychrometric data

    Directory of Open Access Journals (Sweden)

    E.O. Diemuodeke

    2010-01-01

    Full Text Available A spreadsheet add-in for the psychrometric data at any barometric pressure and in the air-conditioning and drying temperatureranges was developed using appropriate correlations. It was then used to simulate and analyse air-conditioning and dryingprocesses in the Microsoft Excel environment by exploiting its spreadsheet and graphic potentials. The package allowsone to determine the properties of humid air at any desired state, and to simulate and analyse air-conditioning as well asdrying processes. This, as a teaching tool, evokes the intellectual curiosity of students and enhances their interest and abilityin the thermodynamics of humid-air processes.

  6. Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions?

    Science.gov (United States)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ichiki, Takanori; Chang, Jane P.; George, Steven M.; Kessels, W. M. M.; Lee, Hae June; Tinck, Stefan; Um, Jung Hwan; Kinoshita, Keizo

    2017-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands in achieving atomic-level control of material selectivity and physicochemical reactions involving ion bombardment. The discussion encompasses major challenges shared across the plasma science and technology community. Focus is placed on advances in the development of fabrication technologies for emerging materials, especially metallic and intermetallic compounds and multiferroic, and two-dimensional (2D) materials, as well as state-of-the-art techniques used in nanoscale semiconductor manufacturing with a brief summary of future challenges.

  7. Hydrophobicity control by a supercritical drying technique in a sol–gel process with hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Hongbo; Qiao, Zemin; Liu, Xiao; Cui, Xudong, E-mail: xudcui@gmail.com

    2015-10-15

    Highlights: • Sol–gel route is combined with polymerization without using modifier. • Supercritical drying control is the key to obtain super-hydrophobic surfaces. • The whole fabrication is technologically controllable and with low costs. • The production rate is higher than 90%. • The method provides a cost-effective way for industry applications. - Abstract: We successfully synthesized one type of cheap super-hydrophobic hybrid porous materials in a sol–gel process. In this route, hydrophilic polymers and TEOS-base sol are used as precursors, the ultraviolet ray-initiated polymerization and supercritical fluid drying techniques are combined together to fulfill this task. All fabricated samples exhibit lotus-leaf-like surface structures with super-hydrophobicity. The underlying mechanisms are carefully investigated using a field-emission scanning electron microscopy (FESEM) and an X-ray photoelectron spectroscopy (XPS). We found that a well-controlled drying process is crucial to the formation of such super-hydrophobic surfaces. As high as 90% production rate is obtained in our route and thus, it might provide a cost-effective way to produce super-hydrophobic hybrid materials for industry applications.

  8. Sabah snake grass extract pre-processing: Preliminary studies in drying and fermentation

    Science.gov (United States)

    Solibun, A.; Sivakumar, K.

    2016-06-01

    Clinacanthus nutans (Burm. F.) Lindau which also known as ‘Sabah Snake Grass’ among Malaysians have been studied in terms of its medicinal and chemical properties in Asian countries which is used to treat various diseases from cancer to viral-related diseases such as varicella-zoster virus lesions. Traditionally, this plant has been used by the locals to treat insect and snake bites, skin rashes, diabetes and dysentery. In Malaysia, the fresh leaves of this plant are usually boiled with water and consumed as herbal tea. The objectives of this study are to determine the key process parameters for Sabah Snake Grass fermentation which affect the chemical and biological constituent concentrations within the tea, extraction kinetics of fermented and unfermented tea and the optimal process parameters for the fermentation of this tea. Experimental methods such as drying, fermenting and extraction of C.nutans leaves were conducted before subjecting them to analysis of antioxidant capacity. Conventional oven- dried (40, 45 and 50°C) and fermented (6, 12 and 18 hours) whole C.nutans leaves were subjected to tea infusion extraction (water temperature was 80°C, duration was 90 minutes) and the sample liquid was extracted for every 5th, 10th, 15th, 25th, 40th, 60th and 90th minute. Analysis for antioxidant capacity and total phenolic content (TPC) were conducted by using 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) and Folin-Ciocaltheu reagent, respectively. The 40°C dried leaves sample produced the highest phenolic content at 0.1344 absorbance value in 15 minutes of extraction while 50°C dried leaves sample produced 0.1298 absorbance value in 10 minutes of extraction. The highest antioxidant content was produced by 50°C dried leaves sample with absorbance value of 1.6299 in 5 minutes of extraction. For 40°C dried leaves sample, the highest antioxidant content could be observed in 25 minutes of extraction with the absorbance value of 1.1456. The largest diameter of disc

  9. Development of the Laboratory Anaerobic Bioreactor for Wet and Dry Digestion Processes

    Directory of Open Access Journals (Sweden)

    Rusín Jiří

    2016-12-01

    Full Text Available This article presents partial results of the laboratory development of an anaerobic bioreactor designed for the physical modelling of (semicontinuous dry or wet anaerobic digestion processes. A horizontal cylindrical tank reactor of 0.4 m3 total capacity has been developed. The reactor allows the continuous stirring of a liquid batch or the intermittent stirring of a solid batch. The bioreactor has been used as a lab-scale digestor in the research project dealing with high-solids (dry anaerobic co-digestion organic fraction of mixed municipal solid waste. The first experiment was performed on the mixture of MSW with corn silage (1:1 with the weight of 300 kg.

  10. Modeling evaporation processes in a saline soil from saturation to oven dry conditions

    Directory of Open Access Journals (Sweden)

    M. Gran

    2011-01-01

    Full Text Available Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and a reactive transport model of a salty sand soil was developed to study such an intricate system. The model was calibrated with data from an evaporation experiment (volumetric water content, temperature and concentration. The retention curve and relative permeability functions were modified to simulate oven dry conditions. Experimental observations were satisfactorily reproduced, which suggests that the model can be used to assess the underlying processes. Results show that evaporation is controlled by heat, and limited by salinity and liquid and vapor fluxes. Below evaporation front vapor flows downwards controlled by temperature gradient and thus generates a dilution. Vapor diffusion and dilution are strongly influenced by heat boundary conditions. Gas diffusion plays a major role in the magnitude of vapor fluxes.

  11. Finite element simulation of a ceramic drying process considering pore shape and porosity

    Science.gov (United States)

    Keum, Y. T.; Oh, J. W.

    2005-03-01

    When a green ceramic is dried, the particles flocculate into a fishnet structure in the gel phase. The range of pore size is between the micro-scale and the nano-scale. In general, the elastic properties of porous materials are affected by both pore shape and porosity. Using the homogenization method, the elastic tensor of nanoscopic gel unit cell, varying with the porosity, is first computed. Using the finite element method, the drying process of a green ceramic insulator is simulated, based on the elastic properties of a microscopic particle aggregate unit cell with circular and cross pores, found from the nanoscopic elastic tensor using the homogenization method. Consideration of the pore shape and porosities in a simulation can provide a more accurate residual stress distribution.

  12. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions.

    Science.gov (United States)

    Figueroa, Carlos E; Bose, Sonali

    2013-11-01

    The use of fluid bed granulation for drying of pharmaceutical nanoparticulates on micron-sized granule substrates is a relatively new technique, with limited understanding in the current literature of the effects of process parameters on the physical properties of the dried nanoparticle powders. This work evaluated the effects of spray mode, spray rate and atomizing pressure for spray granulation of drug nanosuspensions through a systematic study. Naproxen and a proprietary Novartis compound were converted into nanosuspensions through wet media milling and dried onto a mannitol based substrate using spray granulation. For naproxen, various physical properties of the granules, as well as the in vitro re-dispersion and dissolution characteristics of the nano-crystals, were measured. It was found that the spray mode had the most drastic effect, where top spray yielded smaller re-dispersed particle sizes and faster release rates of drug from granules than bottom spray. This was attributed to the co-current spraying in bottom spray resulting in denser, homogenous films on the substrate. Similar in vitro results were obtained for the proprietary molecule, Compound A. In vivo studies in beagle dogs with Compound A showed no significant difference between the liquid and the dried forms of the nanosuspension in terms of overall AUC, differences were observed in the tmax which correlated with the rank ordering observed from the in vitro dissolution profiles. These findings make spray granulation amenable to the production of powders with desired processing and handling properties, without compromising the overall exposure of the compound under investigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Light habitat, structure, diversity and dynamic of the tropical dry forest

    Directory of Open Access Journals (Sweden)

    Omar Melo-Cruz

    2017-01-01

    Full Text Available Tropical dry forests are complex and fragile ecosystems with high anthropic intervention and restricted reproductive cycles. These have unique richness, structural diversity, physiological and phenological . This research was executed  in the Upper Magdalena Valley, in four forest fragments with different successional stages. In each fragment four permanent plots of 0.25 ha were established and lighting habitat associated with richness, relative abundance and rarity of species. The forest dynamics included the mortality, recruitment and diameter growth for a period of 5.25 years. The species rischness found in the mature riparian forestis higher than that reported in other studies of similar areas in Valle del Cauca and the Atlantic coast.  The values of richness, diversity and rarity species are more evidenced  than the magnitudes found in  drier areas of Tolima. The structure, diversity and dynamics of forests were correlated with the lighting habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. Forests with dense canopy have limited availability of photosynthetically active radiation in understory related low species richness, while illuminated undergrowth are richer and heterogeneous.

  14. Review of computational fluid dynamics applications in biotechnology processes.

    Science.gov (United States)

    Sharma, C; Malhotra, D; Rathore, A S

    2011-01-01

    Computational fluid dynamics (CFD) is well established as a tool of choice for solving problems that involve one or more of the following phenomena: flow of fluids, heat transfer,mass transfer, and chemical reaction. Unit operations that are commonly utilized in biotechnology processes are often complex and as such would greatly benefit from application of CFD. The thirst for deeper process and product understanding that has arisen out of initiatives such as quality by design provides further impetus toward usefulness of CFD for problems that may otherwise require extensive experimentation. Not surprisingly, there has been increasing interest in applying CFD toward a variety of applications in biotechnology processing in the last decade. In this article, we will review applications in the major unit operations involved with processing of biotechnology products. These include fermentation,centrifugation, chromatography, ultrafiltration, microfiltration, and freeze drying. We feel that the future applications of CFD in biotechnology processing will focus on establishing CFD as a tool of choice for providing process understanding that can be then used to guide more efficient and effective experimentation. This article puts special emphasis on the work done in the last 10 years.

  15. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.

    Science.gov (United States)

    Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-01-01

    Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating

  16. Dynamics of the tuning process between singers

    CERN Document Server

    Urteaga, R

    2004-01-01

    We present a dynamical model describing a predictable human behavior like the tuning process between singers. The purpose, inspired in physiological and behavioral grounds of human beings, is sensitive to all Fourier spectrum of each sound emitted and it contemplates an asymmetric coupling between individuals. We have recorded several tuning exercises and we have confronted the experimental evidence with the results of the model finding a very well agreement between calculated and experimental sonograms.

  17. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools.

    Science.gov (United States)

    De Beer, T R M; Vercruysse, P; Burggraeve, A; Quinten, T; Ouyang, J; Zhang, X; Vervaet, C; Remon, J P; Baeyens, W R G

    2009-09-01

    The aim of the present study was to examine the complementary properties of Raman and near infrared (NIR) spectroscopy as PAT tools for the fast, noninvasive, nondestructive and in-line process monitoring of a freeze drying process. Therefore, Raman and NIR probes were built in the freeze dryer chamber, allowing simultaneous process monitoring. A 5% (w/v) mannitol solution was used as model for freeze drying. Raman and NIR spectra were continuously collected during freeze drying (one Raman and NIR spectrum/min) and the spectra were analyzed using principal component analysis (PCA) and multivariate curve resolution (MCR). Raman spectroscopy was able to supply information about (i) the mannitol solid state throughout the entire process, (ii) the endpoint of freezing (endpoint of mannitol crystallization), and (iii) several physical and chemical phenomena occurring during the process (onset of ice nucleation, onset of mannitol crystallization). NIR spectroscopy proved to be a more sensitive tool to monitor the critical aspects during drying: (i) endpoint of ice sublimation and (ii) monitoring the release of hydrate water during storage. Furthermore, via NIR spectroscopy some Raman observations were confirmed: start of ice nucleation, end of mannitol crystallization and solid state characteristics of the end product. When Raman and NIR monitoring were performed on the same vial, the Raman signal was saturated during the freezing step caused by reflected NIR light reaching the Raman detector. Therefore, NIR and Raman measurements were done on a different vial. Also the importance of the position of the probes (Raman probe above the vial and NIR probe at the bottom of the sidewall of the vial) in order to obtain all required critical information is outlined. Combining Raman and NIR spectroscopy for the simultaneous monitoring of freeze drying allows monitoring almost all critical freeze drying process aspects. Both techniques do not only complement each other, they also

  18. A mathematical model and simulation of the drying process of thin layers of potatoes in a conveyor-belt dryer

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available This paper presents a mathematical model and numerical analysis of the convective drying process of small particles of potatoes slowly moving through the flow of a drying agent - hot moist air. The drying process was analyzed in the form of a one-dimensional thin layer. The mathematical model of the drying process is a system of two ordinary nonlinear differential equations with constant coefficients and an equation with a transcendent character. The appropriate boundary conditions of the mathematical model were given. The presented model is suitable in the automated control. The presented system of differential equations was solved numerically. The analysis presented here and the obtained results could be useful in predicting the drying kinetics of potatoes and similar natural products in a conveyor-belt dryer. [Projekat Ministarstva nauke Republike, br. TR-33049, br. TR-37002 i br. TR-37008

  19. Dry development rinse (DDR) process and material for ArF/EUV extension technique toward 1Xnm hp and beyond

    Science.gov (United States)

    Shigaki, Shuhei; Onishi, Ryuji; Sakamoto, Rikimaru

    2015-03-01

    Since the pattern pitch is getting smaller and smaller, the pattern collapse issue has been getting sever problem in the lithography process. Pattern collapse is one of the main reasons for minimizing of process margin at fine pitch by ArF-immersion or EUV lithography. The possible major cause of pattern collapse is the surface tension of the rinsing liquid and the shrinkage of resist pattern's surface. These surface tension or shrinkage are occurred in the spin drying process of the rinsing liquid. The influence of surface tension against very small pitch pattern is particularly severe. One of the most effective solution for this problem is thinning of the resist film thickness, however this strategy is reaching to its limits in terms of substrate etching process anymore. Recently the tri-layer resist process or hard mask processes have been used, but there is a limit to the thinning of resist film and there is no essential solution for this problem. On the other hand, dry development process such a supercritical drying method or DSA patterning by dry etching have been known as an ultimate way to suppress the pattern collapse issue. However, these processes are not applied to the mass production process right now because these have some problems such a defect issue, requirement of the special equipment and so on. We newly developed the novel process and material which can prevent the pattern collapse issue perfectly without using any special equipment. The process is Dry Development Rinse process (DDR process), and the material used in the process is Dry Development Rinse material (DDR material). DDR material is containing the special polymer which can replace the exposed and developed part. And finally, the resist pattern is developed by dry etching process without any pattern collapse issue. In this paper, we will discuss the approach for preventing the pattern collapse issue in ArF and EUV lithography process, and propose DDR process and DDR material as the

  20. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  1. Dynamical gluon mass in QCD processes

    Energy Technology Data Exchange (ETDEWEB)

    Ducati, M.B. Gay; Sauter, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas de Altas Energias (GFPAE)

    2007-06-15

    We perform phenomenological applications of modified gluon propagators and running coupling constants in scattering processes in Quantum Chromodynamics (QCD). The modified forms of propagators and running coupling constant are obtained by non-perturbative methods. The processes investigated includes the diffractive ones - proton-proton elastic scattering, light vector meson photo-production and double vector meson production in gamma-gamma scattering - as well as the pion and kaon meson form factors. The results are compared with experimental data (if available), showing a good agreement with a gluon with dynamical mass but do not indicate the correct gluon propagator functional form. (author)

  2. Coarsening dynamics of zero-range processes

    Science.gov (United States)

    Godrèche, Claude; Drouffe, Jean-Michel

    2017-01-01

    We consider a class of zero-range processes exhibiting a condensation transition in the stationary state, with a critical single-site distribution decaying faster than a power law. We present the analytical study of the coarsening dynamics of the system on the complete graph, both at criticality and in the condensed phase. In contrast with the class of zero-range processes with critical single-site distribution decaying as a power law, in the present case the role of finite-time corrections is essential for the understanding of the approach to scaling.

  3. Development of a Simulation Tool to Enable Optimisation of the Energy Consumption of the Industrial Timber-Drying Process

    NARCIS (Netherlands)

    Cronin, K.; Norton, B.; Taylor, J.; Riepen, M.; Dalhuijsen, A.J.

    1996-01-01

    Reducing the liquid content of green products is an important step in the manufacture of many products. Process conditions in the drying phase have significant influences on the quality of the end product and on energy consumption and required manufacturing time. Effective optimisation of the drying

  4. Fabrication characteristics of dry process fuel with a variation of fuel burn-ups

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Kim, W. K.; Lee, J. W. [and others

    2004-11-01

    Fabrication characteristics of the dry processed fuel with a variation of fuel burn-ups in a range of 27,300 to 65,000 MWD/tU were experimentally evaluated. Density comparison of powders which were fabricated from oxidation, OREOX and milling processes at same process conditions was performed with a function of fuel burn-ups respectively. The influence of fuel burn-ups on sintering characteristics of dry processed fuel was studied by comparing the density change of sintered pellet as well as green pellet. Weight gain by fuel oxidation to U{sub 3}O{sub 8} showed semi-linear dependence with increasing fuel burn-ups. OREOX powder density increased up to 3.7 g/cm{sup 3} at high burn-up fuel, and the density of milled powder with fuel burn-ups represented almost similar value of 3.2{+-}0.2 g/cm{sup 3}. Also, the green pellet density compacted by 120 MPa decreased smoothly with increasing fuel burn-ups, and the density change of sintered pellet showed the similar trend as green pellet. The sintered density of pellet in a range of 27,000 to 40,000 MWD/tU was found to be more 95% of Theoretical Density(T.D.), but the sintered pellet density fabricated from high burn-up fuel showed a range of 92 % to 93% of T.D.

  5. Methods to recover value-added coproducts from dry grind processing of grains into fuel ethanol.

    Science.gov (United States)

    Liu, Keshun; Barrows, Frederic T

    2013-07-31

    Three methods are described to fractionate condensed distillers solubles (CDS) into several new coproducts, including a protein-mineral fraction and a glycerol fraction by a chemical method; a protein fraction, an oil fraction and a glycerol-mineral fraction by a physical method; or a protein fraction, an oil fraction, a mineral fraction, and a glycerol fraction by a physicochemical method. Processing factors (ethanol concentration and centrifuge force) were also investigated. Results show that the three methods separated CDS into different fractions, with each fraction enriched with one or more of the five components (protein, oil, ash, glycerol and other carbohydrates) and thus having different targeted end uses. Furthermore, because glycerol, a hygroscopic substance, was mostly shifted to the glycerol or glycerol-mineral fraction, the other fractions had much faster moisture reduction rates than CDS upon drying in a forced air oven at 60 °C. Thus, these methods could effectively solve the dewatering problem of CDS, allowing elimination of the current industrial practice of blending distiller wet grains with CDS for drying together and production of distiller dried grains as a standalone coproduct in addition to a few new fractions.

  6. Dry coating of solid dosage forms: an overview of processes and applications.

    Science.gov (United States)

    Foppoli, Anastasia Anna; Maroni, Alessandra; Cerea, Matteo; Zema, Lucia; Gazzaniga, Andrea

    2017-08-30

    Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.

  7. Criticality safety evaluation report for the Cold Vacuum Drying Facility`s process water handling system

    Energy Technology Data Exchange (ETDEWEB)

    Roblyer, S.D.

    1998-02-12

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility (CVDF). The controls and limitations on equipment design and operations to control potential criticality occurrences are identified. The effectiveness of equipment design and operation controls in preventing criticality occurrences during normal and abnormal conditions is evaluated and documented in this report. Spent nuclear fuel (SNF) is removed from existing canisters in both the K East and K West Basins and loaded into a multicanister overpack (MCO) in the K Basin pool. The MCO is housed in a shipping cask surrounded by clean water in the annulus between the exterior of the MCO and the interior of the shipping cask. The fuel consists of spent N Reactor and some single pass reactor fuel. The MCO is transported to the CVDF near the K Basins to remove process water from the MCO interior and from the shipping cask annulus. After the bulk water is removed from the MCO, any remaining free liquid is removed by drawing a vacuum on the MCO`s interior. After cold vacuum drying is completed, the MCO is filled with an inert cover gas, the lid is replaced on the shipping cask, and the MCO is transported to the Canister Storage Building. The process water removed from the MCO contains fissionable materials from metallic uranium corrosion. The process water from the MCO is first collected in a geometrically safe process water conditioning receiver tank. The process water in the process water conditioning receiver tank is tested, then filtered, demineralized, and collected in the storage tank. The process water is finally removed from the storage tank and transported from the CVDF by truck.

  8. Dynamically slow processes in supercooled water confined between hydrophobic plates

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Giancarlo [Departamento de Fisica Fundamental, Universidad de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Santos, Francisco de los, E-mail: gfranzese@ub.ed, E-mail: fdlsant@ugr.e [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2009-12-16

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  9. Pore scale investigation of textural effects on salt precipitation dynamics and patterns in drying porous media

    Science.gov (United States)

    Norouzi Rad, Mansoureh; Shokri, Nima

    2014-05-01

    During stage-1 evaporation from saline porous media, the capillary-induced liquid flow from the interior to the surface of porous media supplies the evaporative demand and transfers the dissolved salt toward the surface where evaporation occurs. This mode of mass transfer is influenced by several factors such as properties of the evaporating fluid and transport properties of porous media. In this work, we carried out a comprehensive pore scale study using X-ray micro-tomography to understand the effects of the texture on the dynamics of salt precipitation and deposition patterns in drying saline porous media. To do so, four different samples of quartz sand with different particle size distributions were used enabling us to constrain the effects of particle size on the salt precipitation patterns and dynamics. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for 22 hours with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. During evaporation from saline porous media, salt concentration continuously increases in preferential evaporating sites at the surface until it reaches the solubility limit which is followed by salt precipitation. Thanking to the pore-scale information, the effects of pore size distribution on the dynamics and patterns of salt precipitation were delineated with high spatial and temporal resolutions. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of a fewer evaporation sites at the surface. Having more preferential evaporation sites at the surface of sand with finer particle sizes affects the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size which covered a larger area at the surface as opposed to the thicker patchy crusts in samples

  10. Effects of physical parameters on the heat and mass transfer characteristics in freeze-drying processes of fruits and vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuming; Liu, Lijuan; Liang, Li [Shanxi Agricultural Univ. (China). Coll. of Engineering and Technology], E-mail: guoyuming99@sina.com

    2008-07-01

    Studying the effects mechanism of material physical parameters on the heat and mass transfer characteristics, the process parameters and energy consumption during freeze-drying process is of importance in improving the vacuum freeze-drying process with low energy consumption. In this paper, the sliced and mashed carrots of one variety were selected to perform the vacuum freeze-drying experiments. First, the variation laws of surface temperatures and sublimation front temperatures of the two shapes samples during the freeze-drying processes were analyzed, and it was verified that the process of sliced carrots is controlled by mass transfer, while that of the mashed ones is heat-transfer control. Second, the variations of water loss rate, energy consumption and temperature of the two shapes samples under the appropriate heating plate temperature and the different drying chamber pressure were analyzed. In addition, the effects of thermal conductivity and thermal diffusivity on freeze-drying time and process parameters were discussed by utilizing the theory of heat and mass transfer. In conclusion, under the heat transfer condition, the temperature of the heating plate should be as high as possible within the permitted range, and the drying chamber pressure should be set at optimal level. While under the mass transport-limited condition, the pressure level need to be altered in short time. (author)

  11. INVESTIGATION OF THE POSSIBILITY OF OBTAINING DRY BASES FROM PROCESSED FISH PRODUCTS OF LITTLE VALUE

    Directory of Open Access Journals (Sweden)

    O. P. Dvoryaninova

    2014-01-01

    Full Text Available Summary. Competitive advantages of this direction of researches are in justification of actions and offers on a technical provision of production of a dry fish basis from meat- and bone residue of pond fishes that will allow to produce fast foods of high quality and biological value (broths, soups, sauces, to expand the assortment taking into account market demand, to introduce the new forms of food convenient in storage and use at home and outside as well as for special food. The first courses on dry fish broth are easily digestible, with the high contents of micro and macro elements in the quantity of them they surpass meat broths. Their other advantage is the content of the polynonsaturated fatty acids neutralizing negative impact of substances, destroying tendons, ligaments and cartilage in the human body, thereby eliminating joint pains that is especially important for the determined groups of the population, for example, the military personnel, sportsmen, etc. In addition, this technology includes sparing modes of processing of raw materials, keeping thereby native properties of useful substances (protein, fat as much as possible. Researches on selection of an optimum ratio of the heads and the bones providing high organoleptic rates of broths on their basis were carried out to produce dry fish bases. Conditions and parameters of convective drying of little value products of cutting of silver carp and cod are determined. The results allow to draw a preliminary conclusion on the possibility of creation a new technology of powdery products for broths fast preparation. The developed technology is of great importance in the creation of waste-free and low-waste production at the enterprises of fishery industry of the Russian Federation.

  12. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community

    DEFF Research Database (Denmark)

    Lasky, Jesse R.; Uriarte, Maria; Muscarella, Robert

    2016-01-01

    among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked...

  13. Temporal dynamics of arthropods on six tree species in dry woodlands on the Caribbean Island of Puerto Rico

    Science.gov (United States)

    W. Beltran; Joseph Wunderle Jr.

    2014-01-01

    The seasonal dynamics of foliage arthropod populations are poorly studied in tropical dry forests despite the importance of these studies for understanding arthropod population responses to environmental change.We monitored the abundance, temporal distributions, and body size of arthropods in five naturalized alien and one native tree species to characterize arthropod...

  14. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer (TM) disposable high-dose dry powder inhaler

    NARCIS (Netherlands)

    de Boer, Anne H.; Hagedoorn, Paul; Woolhouse, Robert; Wynn, Ed

    Objectives To use computational fluid dynamics (CFD) for evaluating and understanding the performance of the high-dose disposable Twincer (TM) dry powder inhaler, as well as to learn the effect of design modifications on dose entrainment, powder dispersion and retention behaviour. Methods Comparison

  15. Effect of drying, chemical and natural processing methods on black Biancolilla olives

    Directory of Open Access Journals (Sweden)

    Poiana, M.

    2012-06-01

    Full Text Available In the present work, the effects of different drying and brining treatments on pigmented Biancolilla olives were evaluated. The olive cultivar considered is typical of Sicily and was harvested at pigmented state. The carpological data revealed its good quality as table olives. A preliminary fermentation in brine was applied to the samples. Half of the samples were dried whereas the remaining olives were subjected to three different lye treatments and oxidation steps. After washing, the olives were stored according to a natural fermentation or drying process with or without a pretreatment of iron gluconate. The fermentation and oxidation steps conditioned the hygienic characteristics of the final product affecting the pH value of the brine. The use of iron salt for improving the darkening rate of processed olives influenced the color parameters as expected. The oxidation and the addition of iron salt affected the texture of dried olives making them softer than those directly dried. The results suggest that the Biancolilla cultivar is suitable for fermentation in brine without any previous treatment such as oxidation.En el presente trabajo se han evaluado los efectos de los diferentes tratamientos de secado y salado para aceitunas pigmentadas Biancolilla. La variedad de aceituna seleccionada es considerada la típica de Sicilia y fue cosechada en el estadío de pigmentación. Los datos morfolóficos revelan su buena calidad como aceituna de mesa. Se ha aplicado a las muestras una fermentación preliminar. La mitad de ellas se secaron, mientras que las restantes fueron sometidas a tres tratamientos diferentes con lejía y procesos oxidantes. Después del lavado, las aceitunas se almacenan mediante una fermentación natural o proceso de secado, con o sin un pretratamiento de gluconato de hierro. Los pasos de fermentación y oxidación condicionan las características higiénicas del producto final afectando al valor del pH de la salmuera. El uso de

  16. Drying process in the formation of sol-gel derived TiO2 ceramic membrane

    NARCIS (Netherlands)

    Kumar, K.N.P.; Kumar, K.N.P.; Zaspalis, V.T.; Zaspalis, V.T.; Keizer, Klaas; Burggraaf, Anthonie; Burggraaf, A.J.

    1993-01-01

    Accurate drying data for thin titania gel layers dried at 40°C and 20% relative humidity (RH) are given. The drying rate versus free moisture content diagram should show three regions as predicted by the classical drying theory. They are the constant rate period, the first falling rate period and

  17. Feasibility of energy efficient steam drying of paper and textile including process integration

    NARCIS (Netherlands)

    Deventer, H.C. van

    1997-01-01

    This article deals with a feasibility study on superheated steam drying of paper and textile. Drying with superheated steam in direct contact with the paper or textile web offers great advantages over conventional ways of drying with respect to energy efficiency, drying rate and quality aspects. The

  18. Feasibility of energy efficient steam drying of paper and textile including process integration

    NARCIS (Netherlands)

    Deventer, H.C. van

    1997-01-01

    This article deals with a feasibility study on superheated steam drying of paper and textile. Drying with superheated steam in direct contact with the paper or textile web offers great advantages over conventional ways of drying with respect to energy efficiency, drying rate and quality aspects. The

  19. Modelling and experimentation for the fabric-drying process in domestic dryers

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, V.; Moon, C.G. [Department of Mechanical Engineering, The University of Auckland, Auckland 1142 (New Zealand)

    2008-05-15

    Theoretical analysis of the physical drying process occurring inside the household electric tumbler cloth-dryer is performed to determine various thermo-physical parameters affecting the energy consumption and for the development of a simulation model. Experiments are conducted on a test set-up based on a compact tumble-dryer to measure the values of parameters necessary for evaluating the performance. Three widely-accepted economy standards are considered for comparison of simulation and experimental results. Simulation results are in fair agreement with experimental data. An empirical correlation for the specific moisture-extraction rate (SMER) is developed to translate energy consumption information from one standard to the other. (author)

  20. Multi-objective optimization of the dry electric discharge machining process

    CERN Document Server

    Saha, Sourabh

    2009-01-01

    Dry Electric Discharge Machining (EDM) is an environment-friendly modification of the conventional EDM process, which is obtained by replacing the liquid dielectric by a gaseous medium. In this study, multi-objective optimization of dry EDM process has been done using the non dominated sorting genetic algorithm (NSGA II), with material removal rate (MRR) and surface roughness (Ra) as the objective functions. Experiments were conducted with air as dielectric to develop polynomial models of MRR and Ra in terms of the six input parameters: gap voltage, discharge current, pulse-on time, duty factor, air pressure and spindle speed. A Pareto-optimal front was then obtained using NSGA II. Analysis of the front was done to identify separate regions for finish and rough machining. Designed experiments were then conducted in these focused regions to verify the optimization results and to identify the region-specific characteristics of the process. Finishing conditions were obtained at low current, high pulse-on time an...

  1. Competing dynamical processes on two interacting networks

    CERN Document Server

    Alvarez-Zuzek, L G; Braunstein, L A; Vazquez, F

    2016-01-01

    We propose and study a model for the competition between two different dynamical processes, one for opinion formation and the other for decision making, on two interconnected networks. The networks represent two interacting social groups, the society and the Congress. An opinion formation process takes place on the society, where the opinion S of each individual can take one of four possible values (S=-2,-1,1,2), describing its level of agreement on a given issue, from totally against (S=-2) to totally in favor (S=2). The dynamics is controlled by a reinforcement parameter r, which measures the ratio between the likelihood to become an extremist or a moderate. The dynamics of the Congress is akin to that of the Abrams-Strogatz model, where congressmen can adopt one of two possible positions, to be either in favor (+) or against (-) the issue. The probability that a congressman changes his decision is proportional to the fraction of interacting neighbors that hold the opposite opinion raised to a power $\\beta$...

  2. Dynamic rupture processes inferred from laboratory microearthquakes

    Science.gov (United States)

    Passelègue, François. X.; Schubnel, Alexandre; Nielsen, Stefan; Bhat, Harsha S.; Deldicque, Damien; Madariaga, Raúl

    2016-06-01

    We report macroscopic stick-slip events in saw-cut Westerly granite samples deformed under controlled upper crustal stress conditions in the laboratory. Experiments were conducted under triaxial loading (σ1>σ2=σ3) at confining pressures (σ3) ranging from 10 to 100 MPa. A high-frequency acoustic monitoring array recorded particle acceleration during macroscopic stick-slip events allowing us to estimate rupture speed. In addition, we record the stress drop dynamically and we show that the dynamic stress drop measured locally close to the fault plane is almost total in the breakdown zone (for normal stress >75 MPa), while the friction f recovers to values of f > 0.4 within only a few hundred microseconds. Enhanced dynamic weakening is observed to be linked to the melting of asperities which can be well explained by flash heating theory in agreement with our postmortem microstructural analysis. Relationships between initial state of stress, rupture velocities, stress drop, and energy budget suggest that at high normal stress (leading to supershear rupture velocities), the rupture processes are more dissipative. Our observations question the current dichotomy between the fracture energy and the frictional energy in terms of rupture processes. A power law scaling of the fracture energy with final slip is observed over 8 orders of magnitude in slip, from a few microns to tens of meters.

  3. Topic: Catchment system dynamics: Processes and feedbacks

    Science.gov (United States)

    Keesstra, Saskia

    2015-04-01

    In this meeting we can talk about my main expertise: the focus of my research ocus revolves around understanding catchment system dynamics in a holistic way by incorporating both processes on hillslopes as well as in the river channel. Process knowledge enables explanation of the impact of natural and human drivers on the catchment systems and which consequences these drivers have for water and sediment connectivity. Improved understanding of the catchment sediment and water dynamics will empower sustainable land and river management and mitigate soil threats like erosion and off-side water and sediment accumulation with the help of nature's forces. To be able to understand the system dynamics of a catchment, you need to study the catchment system in a holistic way. In many studies only the hillslopes or even plots are studied; or only the channel. However, these systems are connected and should be evaluated together. When studying a catchment system any intervention to the system will create both on- as well as off sites effects, which should especially be taken into account when transferring science into policy regulations or management decisions.

  4. Fabrication of Li{sub 2}TiO{sub 3} pebbles by a freeze drying process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin, E-mail: lee@mokpo.ac.kr [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of); Park, Yi-Hyun [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of); Yu, Min-Woo [Department of Advanced Materials Science and Engineering, Mokpo National University, Muan 534-729 (Korea, Republic of)

    2013-11-15

    Li{sub 2}TiO{sub 3} pebbles were successfully fabricated by using a freeze drying process. The Li{sub 2}TiO{sub 3} slurry was prepared using a commercial powder of particle size 0.5–1.5 μm and the pebble pre-form was prepared by dropping the slurry into liquid nitrogen through a syringe needle. The droplets were rapidly frozen, changing their morphology to spherical pebbles. The frozen pebbles were dried at −10 °C in vacuum. To make crack-free pebbles, some glycerin was employed in the slurry, and long drying time and a low vacuum condition were applied in the freeze drying process. In the process, the solid content in the slurry influenced the spheroidicity of the pebble green body. The dried pebbles were sintered at 1200 °C in an air atmosphere. The sintered pebbles showed almost 40% shrinkage. The sintered pebbles revealed a porous microstructure with a uniform pore distribution and the sintered pebbles were crushed under an average load of 50 N in a compressive strength test. In the present study, a freeze drying process for fabrication of spherical Li{sub 2}TiO{sub 3} pebbles is introduced. The processing parameters, such as solid content in the slurry and the conditions of freeze drying and sintering, are also examined.

  5. DEVELOPMENT OF MATHEMATICAL MODEL OF BLACK CURRANT BERRIES DRYING PROCESS IN VACUUM DEVICE WITH THE MICROWAVE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2014-01-01

    Full Text Available Summary. The mathematical model of black currant berries drying process in vacuum device with the microwave power supply, differing in high space and temporary specification is developed, the structure of separate berries and a layer of berries is considered, heat- and physical parameters depend on coordinate and time as well as in the accounting of berries form change and a berries layer structure in the dehydration process. We used the particles dynamics method for modeling of mechanical behavior of berries which is increasingly being used now in different branches of science and technology. To give the model the high space specification the modeled berries layer consists of 20–50 separate berries, each berry depending on diameter being broken into approximately 100 separate elements. Berries elements are divided into 3 types depending on the physical properties (peel, pulp, seeds. Therefore, in general, from the point of space detail, a layer of berries consists of 2000- 5000 elements. Modeling is carried out in two-dimensional Cartesian space X–Z. The condition of each element of circle is set by four variables: Cartesian coordinates of its center and two components of speed. Mechanical interaction of elements among themselves is accepted to be viscous and elastic that allows to consider the main mechanical properties of berries – the elasticity module, internal friction index. Within the developed model it is considered that between the neighbor elements there can be pushing away forces (at the introduction of elements into each other, or attractions (at a distance of the linked elements from each other. The description of the processes of warm and moisture exchange between the elements as well as between the elements and environment is based upon the standard equations of drying. In model it is considered that the microwave power brought is redistributed in the heated volume in proportion to elements moisture.

  6. Study on Drying Process of 3Al2O3·2SiO2 Mullite Gel

    Institute of Scientific and Technical Information of China (English)

    SONG Hui-feng; KANG Zhuang; GU Li-xia

    2008-01-01

    Monophasic mullite gel with composition 3Al2Q3·2SiO2 was prepared by the sol-gel method using aluminium nitrate nonahydrate, aluminium-tri-isopropoxide, and tetraethylorthosili-cate as reagents.Gels with different drying control chemical additives ( DCCAs ) and polyvinylpyrrolidone(PVP) as spinning assistant were dried at several temperatures.The influences of temperature.DCCAs and PVP in the drying process were investigated.N, N-dimethylformamide(DMF) was the optimum DCCA at 70℃ in the drying process.PVP decreased the solvent volatilization speed and prevented gel crack to a certain extent.FTIR results revealed that free water, ethanol, and isopropanol were completely removed by the drying procedure.

  7. Halogens in the Dry Valleys Lakes, Antarctica: dynamic cycling between water, sediment, and cryogenic evaporites

    Science.gov (United States)

    Snyder, G. T.; Dowling, C. B.; Harbert, A.; Lu, H.; Lyons, W. B.; Welch, K. A.

    2006-12-01

    Many of the McMurdo Dry Valleys lakes of Antarctica exhibit saline to hypersaline bottom waters whose chemistry is distinct from that of sea water. The source and relative abundance of dissolved Cl, Br, and I in these unusual waters has been modified by several potential processes including: seawater incursions, water- rock interactions, microbial scavenging, glacial melting and precipitation, and atmospheric deposition. Since all of these processes are affected by both long-term and short-term climate change, lake waters and the salts that are deposited around them provide sensitive indicators of lake dessication and refilling in the past. We present elemental analyses, not only of the lake water, but also of bottom sediments and cryogenic evaporites recovered from the Dry Valleys. XRD analyses indicate that gypsum and antarcticite are precipitated around saline lakes presently situated more than 40 km from the ocean (Vanda, Don Juan, Joyce), while mirabilite is found near small pools in the Garwood Valley, only a few km from the ocean. Lake water enrichments in Ca and Cl, relative to Na suggest that either dissolution of gypsum and antarcticite has occurred in Don Juan Pond and Lake Vanda, or that these two small bodies of water previously lost sodium to mirabilite formation. Lakes Fryxell and Joyce, as well as waters in Garwood Valley show near-sea water ratios. Dissolved iodine, and to a lesser extent bromine, are commonly associated with diagenesis of marine organic matter in regions of high productivity, so it is surprising that the Dry Valleys lake waters are enriched in these two elements. These enrichments are also apparent in pore fluids of shallow sediments on the lake bottoms. In addition, the sediments themselves are highly enriched in iodine in the upper 5 cm (up to 77 ppm). This is likely due to remobilization of dissolved iodide, which is mobile in reduced form, but becomes fixed as adsorbed or organic iodine upon diffusing into shallow oxic

  8. Cascading Edge Failures: A Dynamic Network Process

    CERN Document Server

    Zhang, June

    2016-01-01

    This paper considers the dynamics of edges in a network. The Dynamic Bond Percolation (DBP) process models, through stochastic local rules, the dependence of an edge $(a,b)$ in a network on the states of its neighboring edges. Unlike previous models, DBP does not assume statistical independence between different edges. In applications, this means for example that failures of transmission lines in a power grid are not statistically independent, or alternatively, relationships between individuals (dyads) can lead to changes in other dyads in a social network. We consider the time evolution of the probability distribution of the network state, the collective states of all the edges (bonds), and show that it converges to a stationary distribution. We use this distribution to study the emergence of global behaviors like consensus (i.e., catastrophic failure or full recovery of the entire grid) or coexistence (i.e., some failed and some operating substructures in the grid). In particular, we show that, depending on...

  9. Investigation of the process of vacuum freeze drying of bacterial concentrates for the meat industry with cryogenic freezing

    Directory of Open Access Journals (Sweden)

    V. V. Poymanov

    2016-01-01

    Full Text Available The research results of the nutritional value of the products manufactured are presented in the article. The main directions of bacterial concentrates application in the meat industry were determined. The analysis of starter cultures was given. The range of products manu-factured with bacterial concentrates was analyzed. It was shown that the introduction of innovative technologies will enable dynamic development of both large and small enterprises, which will create prerequisites for the growth of the Russian market of meat products. Economic efficiency of the studied substances treatment methods was proved. The relevance of the development of technology of pro-duction of dry bacterial concentrates with cryogenic freezing was proved. An integrated approach to the development of competitive domestic technologies and equipment for cryofreezing and sublimation dehydration by the use of granulation for the intensification of the internal heat and mass transfer, reducing specific energy consumption through the use of a combined cold supply system was pro-posed. Results of the study of the kinetics of the freezing process with the traditional method and cryofreezing are given in the paper. Rational parameters of the cryofreezing process were proposed. The optimum composition of cryoprotective medium was recommended. The research of the process of bacterial concentrate vacuum sublimation dehydration in the layer and granular form were conducted. The research confirmed that the use of the cryofreezing and granulation can increase the number of viable microorganisms in the bacterial concentrate and reduce the drying time. Rational vacuum sublimation dehydration modes were proposed. Methods of reduc-ing the defects of the processed products and improvement of the efficiency of production facilities were specified. Quality indicators of dried bacterial concentrates were given. The results obtained allow to carry out engineering calculations

  10. Performance of A Horizontal Cylinder Type Rotary Dryer for Drying Process ofOrganic Compost from Solid Waste Cocoa Pod

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2008-07-01

    Full Text Available Cocoa pod husk is the bigest component of cocoa pod, about 70% of total ht of mature pod, and to potentially used as organic compost source. Poten tial solid waste of cocoa pod husk from a cocoa processing centre is about 15— 22 m3/ha/year. A cocoa plantation needs about 20—30 ton/ha/year of organic matters. One of important steps in compos processing technology of cocoa pod solid waste is drying process. Organic compost with 20% moisture content is more easy in handling, application, storage and distribution. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal cylinder type rotary dryer for drying process of organic compos from solid waste cocoa pod with kerosene burner as energy sources. The objective of this research is to study performance of a horizontal cylinder type rotary dryer using kerosene burner as energy source for drying process of organic compost from solid waste cocoa pod. The material used was solid waste cocoa pod with 70—75% moisture content (wet basis, 70% size particle larger than 4.76 mm, and 30% size particle less than 4.76 mm, 690—695 kg/m3 bulk density. Drying process temperatures treatment were 60OC, 80OC, and 100OC, and cylinder rotary speed treatments were 7 rpm, 10 rpm, dan 16 rpm. The results showed that dryer had capacity about 102—150 kg/h depend on drying temperature and cylinder rotary speed. Optimum operation condition at 100OC drying temperature, and 10 rpm cylinder rotary speed with drying time to reach final moisture content of 20% was 1,6 h, capacity 136,14 kg/ h, bulk density 410 kg/m3, porocity 45,15%, kerosene consumption as energy source was 2,57 l/h, and drying efficiency 68,34%. Key words : cocoa, drying, rotary dryer, compost, waste

  11. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    Science.gov (United States)

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  12. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    Directory of Open Access Journals (Sweden)

    Adam Figiel

    2016-12-01

    Full Text Available The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  13. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  14. Detection of microparticles in dynamic processes

    Science.gov (United States)

    Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.; Rubtsov, I. A.; Shechtman, L. I.; Zhulanov, V. V.; Tolochko, B. P.; Rykovanov, G. N.; Muzyrya, A. K.; Smirnov, E. B.; Stolbikov, M. Yu; Prosvirnin, K. M.

    2016-11-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μs. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μs in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded.

  15. Temperature and relative humidity estimation and prediction in the tobacco drying process using Artificial Neural Networks.

    Science.gov (United States)

    Martínez-Martínez, Víctor; Baladrón, Carlos; Gomez-Gil, Jaime; Ruiz-Ruiz, Gonzalo; Navas-Gracia, Luis M; Aguiar, Javier M; Carro, Belén

    2012-10-17

    This paper presents a system based on an Artificial Neural Network (ANN) for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN). A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  16. Temperature and Relative Humidity Estimation and Prediction in the Tobacco Drying Process Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Belén Carro

    2012-10-01

    Full Text Available This paper presents a system based on an Artificial Neural Network (ANN for estimating and predicting environmental variables related to tobacco drying processes. This system has been validated with temperature and relative humidity data obtained from a real tobacco dryer with a Wireless Sensor Network (WSN. A fitting ANN was used to estimate temperature and relative humidity in different locations inside the tobacco dryer and to predict them with different time horizons. An error under 2% can be achieved when estimating temperature as a function of temperature and relative humidity in other locations. Moreover, an error around 1.5 times lower than that obtained with an interpolation method can be achieved when predicting the temperature inside the tobacco mass as a function of its present and past values with time horizons over 150 minutes. These results show that the tobacco drying process can be improved taking into account the predicted future value of the monitored variables and the estimated actual value of other variables using a fitting ANN as proposed.

  17. Dry cured ham quality as related to lipid quality of raw material and lipid changes during processing: a review.

    OpenAIRE

    Gilles, Gandemer

    2009-01-01

    Lipids play a key role in sensory traits of dry cured hams. Both the quantity and the composition of lipids in raw material affect dry-cured hams quality. The lipid characteristics strongly depend on rearing systems developed in different area in Europe. During processing, lipids undergo lipolysis and oxidation. Phospholipids are the main substrates of both lipolysis and oxidation. Lipolysis forms free fatty acids rich in polyunsaturated fatty acids all along the process. Lipids are also subj...

  18. The study of some physical properties and energy aspects of potatoes drying process by the infrared-vacuum method

    Directory of Open Access Journals (Sweden)

    N Hafezi

    2016-09-01

    Full Text Available Introduction Potato (Solanumtuberosum L. is one of the unique and most potential crops having high productivity, supplementing major food requirement in the world. Drying is generally carried out for two main reasons, one to reduce the water activity which eventually increases the shelf life of food and second to reduce the weight and bulk of food for cheaper transport and storage. The quality evaluation of the dried product was carried out on the basis of response variables such as rehydration ratio, shrinkage percentage, color and the overall acceptability. Drying is the most energy intensive process in food industry. Therefore, new drying techniques and dryers must be designed and studied to minimize the energy cost in drying process. Considering the fact that the highest energy consumption in agriculture is associated with drying operations, different drying methods can be evaluated to determine and compare the energy requirements for drying a particular product. Thermal drying operations are found in almost all industrial sectors and are known, according to various estimates, to consume 10-25% of the national industrial energy in the developed world. Infrared radiation drying has the unique characteristics of energy transfer mechanism. Kantrong et al. (2012 were studied the drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum combined with infrared drying. Motevali et al. (2011 were evaluated energy consumption for drying of mushroom slices using various drying methods including hot air, microwave, vacuum, infrared, microwave-vacuum and hot air-infrared. The objectives of this research were to experimental study of drying kinetics considering quality characteristics including the rehydration and color distribution of potato slices in a vacuum- infrared dryer and also assessment of specific energy consumption and thermal utilization efficiency of potato slices during drying process. Materials and Methods A

  19. The study of some physical properties and energy aspects of potatoes drying process by the infrared-vacuum method

    Directory of Open Access Journals (Sweden)

    N Hafezi

    2016-09-01

    Full Text Available Introduction Potato (Solanumtuberosum L. is one of the unique and most potential crops having high productivity, supplementing major food requirement in the world. Drying is generally carried out for two main reasons, one to reduce the water activity which eventually increases the shelf life of food and second to reduce the weight and bulk of food for cheaper transport and storage. The quality evaluation of the dried product was carried out on the basis of response variables such as rehydration ratio, shrinkage percentage, color and the overall acceptability. Drying is the most energy intensive process in food industry. Therefore, new drying techniques and dryers must be designed and studied to minimize the energy cost in drying process. Considering the fact that the highest energy consumption in agriculture is associated with drying operations, different drying methods can be evaluated to determine and compare the energy requirements for drying a particular product. Thermal drying operations are found in almost all industrial sectors and are known, according to various estimates, to consume 10-25% of the national industrial energy in the developed world. Infrared radiation drying has the unique characteristics of energy transfer mechanism. Kantrong et al. (2012 were studied the drying characteristics and quality of shiitake mushroom undergoing microwave-vacuum combined with infrared drying. Motevali et al. (2011 were evaluated energy consumption for drying of mushroom slices using various drying methods including hot air, microwave, vacuum, infrared, microwave-vacuum and hot air-infrared. The objectives of this research were to experimental study of drying kinetics considering quality characteristics including the rehydration and color distribution of potato slices in a vacuum- infrared dryer and also assessment of specific energy consumption and thermal utilization efficiency of potato slices during drying process. Materials and Methods A

  20. Effects of dry, wet, and rehydrated corn bran and corn processing method in beef finishing diets.

    Science.gov (United States)

    Macken, C N; Erickson, G E; Klopfenstein, T J; Milton, C T; Stock, R A

    2004-12-01

    Two finishing trials were conducted to determine the effects of adding different types of corn bran, a component of corn gluten feed, on cattle performance. In Trial 1, 60 English crossbred yearling steers (283 +/- 6.7 kg) were used in a completely randomized design with four dietary treatments. Treatments were diets with no corn bran, dry corn bran (86% DM), wet corn bran (37% DM), and rehydrated dry bran (37% DM). Bran was fed at 40% of dietary DM. All finishing diets had (DM basis) 9% corn steep liquor with distillers solubles, 7.5% alfalfa hay, 3% tallow, and 5% supplement. Gain efficiency and ADG were greater (P < 0.01) for cattle fed no corn bran compared with all treatments containing corn bran; however, no differences were detected across corn bran types. In Trial 2, 340 English crossbred yearling steers (354 +/- 0.6 kg) were used in a randomized block design with treatments assigned based on a 2 x 4 + 2 factorial arrangement (four pens per treatment). One factor was the corn processing method used (dry-rolled corn, DRC; or steam-flaked corn, SFC). The other factor was corn bran type: dry (90% DM), wet (40% DM), or dry bran rehydrated to 40 or 60% DM. Bran was fed at 30% of dietary DM, replacing either DRC or SFC. Two control diets (DRC and SFC) were fed with no added bran. All finishing diets contained (DM basis) 10% corn steep liquor with distiller's solubles, 3.5% alfalfa hay, 3.5% sorghum silage, and 5% supplement. Corn bran type did not affect DMI (P = 0.61), ADG (P = 0.53), or G:F (P = 0.10). Dry matter intake was greater (P < 0.01) by steers fed bran compared with those fed no bran, and was greater by steers fed DRC than by steers fed SFC (P < 0.01). Interactions occurred (P < 0.01) between grain source and bran inclusion for ADG and G:F. The ADG by steers fed the SFC diet without bran was greater (P < 0.01) than by steers fed SFC diets with bran, whereas the ADG by steers fed DRC diets with or without bran was similar. Daily gain was 15.2% greater

  1. Optimization of drying process of Zea Mays malt to use as alternative source of amylolytics enzymes

    Directory of Open Access Journals (Sweden)

    Joana Paula Menezes Biazus

    2005-06-01

    Full Text Available This work aimed to study the drying process optimization of maize (Zea Mays malt for obtaining maize malt, without affecting enzymatic activity of alpha e beta-amylases from maize malt. Results showed that dryer operation must occur in zone at 54°C and 5.18-6 h process time. The maize malt obtained had good enzymatic properties.Este trabalho objetivou a otimização da secagem do malte de milho (Zea Mays para obter um malte sem afetar a atividade das enzimas presentes neste, alfa e beta -amilases. Os resultados mostraram que a operação do secador deve ser feita a 54°C e entre 5,18-6 h de processo. O malte obtido possuiu boas propriedades enzimáticas.

  2. Optimized Synthesis of Carbon Aerogels via Ambient Pressure Drying Process as Electrode for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    YUAN Lei; CHANG Lijuan; FU Zhibing; YANG Xi; JIAO Xingli; TANG Yongjian; LIU Xichuan; WANG Chaoyang

    2015-01-01

    Carbon aerogels were synthesized via ambient pressure drying process using resorcinol-formaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 mA/cm2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950℃and 4 h, respectively.

  3. Insights into rupture processes of a laboratory-earthquake in dry and lubricated faults

    Science.gov (United States)

    Bayart, Elsa; Svetlizky, Ilya; Fineberg, Jay

    2016-04-01

    Our understanding of the dynamics of earthquakes requires us to understand the mechanisms of transition from static to sliding friction. The weakening of a fault is mediated by the propagation of rapid interfacial ruptures (earthquakes) that detach the solid contacts forming the frictional interface. By measuring the real contact area and strain fields near rough frictional interfaces, we have shown that these ruptures correspond to true shear cracks [1]. In particular, dynamic ruptures may spontaneously arrest at various locations along the interface. We show that a fracture-mechanics-based criterion can predict the location of the rupture arrest [2]. These results shed light on the selection of an earthquake's magnitude and arrest. Another interesting question is how interstitial fluids act to weaken a fault. By performing stick-slip experiments where the contacting surfaces are covered by a thin lubricating layer, we show that the established framework of fracture mechanics can also describe the measured strain fields when rupture of the interface takes place. A surprising result is that, although reducing the frictional strength of the interface (friction coefficient), lubricants actually significantly increase the fracture energy (amount of dissipated energy) during rupture. Thus surface lubrication, while strongly reducing the residual stresses in the wake of rupture propagation, actually toughens the contacting surfaces. [1] Svetlizky, I. & Fineberg, J. Classical shear cracks drive the onset of dry frictional motion. Nature 509, 205-208 (2014). [2] Bayart, E., Svetlizky, I. & Fineberg, J. Fracture mechanics determine the lengths of interface ruptures that mediate frictional motion. Nature Physics (2015).

  4. Dynamics of thin layer hot-air drying of lagenaria leucantha rusby%瓠瓜薄层热风干燥动力学研究

    Institute of Scientific and Technical Information of China (English)

    诸爱士; 夏凯

    2011-01-01

    为掌握瓠瓜薄层热风干燥特性,研究了一定条件下风温与风速对瓠瓜薄层热风干燥过程的影响,拟合了干燥曲线方程,计算了对流传热系数α与传质系数KH等动力学参数.结果表明:风温、风速均对干燥速度影响较大,以75℃、1.04 m/s为宜;干燥方程符合Page模型:随风速增大α与KH均增大,但风温对两者影响不大.结果可以为瓠瓜干制工业化生产和控制提供理论依据.%In order to master the thin layer hot-air drying character of lagenaria leucantha rusby, the influences of the wind temperature and speed on the drying process of thin layer hot-air drying of the lagenaria leucantha rusby under certain condition were studied. The equations of drying curve were fitted, and the dynamics parameters such as convective heat-transfer coefficient a, and quality transmission coefficient kH, were calculated. The results showed that the wind temperature and speed had greater influence on the dehydrating rate, and 75℃、 1.04 m/s were suitable parameters. The drying procedure could accurately be described by the Page model. With the wind speed rising, a and kH increased, but the wind temperature had a little effect on the two coefficients. The results can provide a theoretical basis for industrialization production and control of drying lagenaria leucantha rusby.

  5. Hadley cell dynamics of a cold and virtually dry Snowball Earth atmosphere

    Science.gov (United States)

    Voigt, Aiko; Held, Isaac; Marotzke, Jochem

    2010-05-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate a cold and virtually dry Snowball Earth atmosphere that results from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2. The aim of this study is the investigation of the zonal-mean circulation of a Snowball Earth atmosphere, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. To ease comparison with theories, incoming solar insolation follows permanent equinox conditions with disabled diurnal cycle. The meridional circulation consists of a thermally direct cell extending from the equator to 45 N/S with ascent in the equatorial region, and a weak thermally indirect cell with descent between 45 and 65 N/S and ascent in the polar region. The former cell corresponds to the present-day Earth's Hadley cell, while the latter can be viewed as an eddy-driven Ferrell cell; the present-day Earth's direct polar cell is missing. The Hadley cell itself is subdivided into a vigorous cell confined to the troposphere and a weak deep cell reaching well into the stratosphere. The dynamics of the vigorous Snowball Earth Hadley cell differ substantially from the dynamics of the present-day Hadley cell. The zonal momentum balance shows that in the poleward branch of the vigorous Hadley cell, mean flow meridional advection of absolute vorticity is not only balanced by eddy momentum flux convergence but also by vertical diffusion. Inside the poleward branch, eddies are more important in the upper part and vertical diffusion is more important in the lower part. Vertical diffusion also contributes to the meridional momentum balance as it decelerates the vigorous Hadley cell by downgradient momentum mixing between its poleward and equatorward branch. Zonal winds, therefore, are not in thermal wind balance in

  6. Analysis of process factors of dry fermented salami to control Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Enrico Novelli

    2017-01-01

    Full Text Available Challenge tests are a clear opportunity for manufacturers interested in the evaluation of their management system with the aim to reduce the spread of foodborne pathogens. This is a main concern especially in ready-to-eat food in relation to the risk associated with Listeria monocytogenes. For small and medium-scale food industry the manufacturing practices and products formulation are characterised by a wider variability and poor repeatability. The use of ad hoc challenge test and the comparison among different processing systems are strongly required. This paper reports a preliminary comparison among different challenge tests (n=12 commissioned by three manufacturers of raw-fermented salami during a period of three years (2013-2016. The challenge tests were designed to evaluate the growth potential (δ of L. monocytogenes during the whole processing period of the salami. The doughs were prepared according to different formulations: the simplest formulation was represented by the use of salt, potassium nitrate, black pepper and starter cultures, while the most composited formulations also included the use of sugars and ascorbic acid in addition to nitrite salt. All the processing steps were conducted within an experimental laboratory dedicated for the processing of meat. After stuffing, the salami were dried and ripened under temperature and relative humidity control. The sugar inclusion can be considered as a protective factor, while the drying step at high temperature (above 20°C was associated with higher δ values (δ>0.5 log10 cfu/g. The addition of starter cultures, and the subsequent acidification highlighted the importance of pH as the parameter able to affect the L. monocytogenes growth.

  7. Experiment on the improvement of OREOX process for fabrication of dry recycling nuclear fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woong Ki; Kim, S. S.; Park, G. I. [and others

    2004-01-01

    The OREOX(Oxidation and REduction of OXide fuel) process has been performed to fabricate dry recycling(DUPIC ; Direct Use of spent PWR fuel In CANDU reactor) nuclear fuel pellets by using spent PWR fuel. Generally, sinterable DUPIC powder has been manufactured from spent PWR fuel pellets by the 3 cycles of oxidation and reduction treatment. The OREOX process is one of the most important processes for DUPIC pellet fabrication. A lot of time more than 37 hours as well as a lot of reaction gas is required to perform 3 cycles of OREOX treatments. In this experiment, 1 cycle OREOX process was adopted to improve the powdering process of DUPIC pellet manufacturing processes. As a result of experiment, the densities of pellets sintered at 1800 .deg. C for 10 hours ranged from 10.15 to 10.22 g/cm{sup 3}(93.8{approx}94.5 % of T.D.). The pellets were sintered again to increase the sintered density. The sintered densities of pellets re-sintered at 1850 .deg. C for 7 hours ranged from 10.27 to 10.33 g/cm{sup 3}(94.9{approx} 95.5 % of T.D)

  8. Management type affects composition and facilitative processes in altoandine dry grassland

    Science.gov (United States)

    Catorci, Andrea; Cesaretti, Sabrina; Velasquez, Jose Luis; Burrascano, Sabina; Zeballos, Horacio

    2013-10-01

    We performed our study in the Dry Puna of the southern Peruvian Andes. Through a comparative approach we aimed to assess the effects of the two management systems, low grazing pressure by wild camelids vs. high grazing pressure by domestic livestock and periodic burning. Our general hypothesis was that the traditional high disturbance regime affects the dry Puna species diversity and composition through modifications of the magnitude of plant-plant-interactions and changes of the community structure due to shifts in species dominance. In 40 plots of 10 × 10 m, the cover value of each species was recorded and the species richness, floristic diversity, and community similarity of each treatment were compared. For each disturbance regime, differences of soil features (organic matter, carbon/nitrogen ratio, and potassium content) were tested. To evaluate plant-plant interactions, 4 linear transect divided into 500 plots of 10 × 10 cm were laid out and co-occurrence analysis was performed. We found that different disturbance regimes were associated with differences in the floristic composition, and that the high disturbance condition had lower species diversity and evenness. A decrease of tall species such as Festuca orthophylla and increase of dwarf and spiny Tetraglochin cristatum shrubs was observed as well. In addition, different disturbance intensities caused differences in the functional composition of the plant communities, since species with avoidance strategies are selected by high grazing pressure. High disturbance intensity was also associated to differences of soil features and to different clumped spatial structure of the dry Puna. Our results indicate also that: positive interactions are often species-specific mainly depending on the features of nurse and beneficiary species; the importance of positive interaction is higher at low grazing pressure than at high disturbance intensity; the magnitude and direction of the herbivory-mediated facilitation

  9. Preparation of polyaniline/sodium alanate hybrid using a spray-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, B. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Passador, F. R., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br; Pessan, L. A., E-mail: bru-rms@yahoo.com.br, E-mail: fabiopassador@gmail.com, E-mail: pessan@ufscar.br [Dep. de Engenharia de Materiais, Federal University of São Carlos (Brazil)

    2014-05-15

    Nowadays, hydrogen is highly interesting as an energy source, in particular in the automotive field. In fact, hydrogen is attractive as a fuel because it prevents air pollution and greenhouse emissions. One of the main problems with the utilization of hydrogen as a fuel is its on-board storage. The purpouse of this work was to develop a new hybrid material consisting of a polyaniline matrix with sodium alanate (NaAlH{sub 4}) using a spray-drying process. The polyaniline used for this experiment was synthesized by following a well-established method for the synthesis of the emeraldine base form of polyaniline using dodecylbenzenesulfonic acid as dopant. Micro particles of polyaniline/sodium alanate hybrids with 30 and 50 wt% of sodium alanate were prepared by using a spray-drying technique. Dilute solutions of polyaniline/sodium alanate were first prepared, 10g of the solid materials were mixed with 350 ml of toluene under stirring at room temperature for 24h and the solutions were dried using spray-dryer (Büchi, Switzerland) with 115°C of an inlet temperature. The hybrids were analyzed by differential scanning calorimetry, FT-IR and scanning electron microscopy (SEM). The addition of sodium alanate decreased the glass transition temperature of the hybrids when compared to neat polyaniline. FT-IR spectrum analysis was performed to identify the bonding environment of the synthesized material and was observed that simply physically mixture occurred between polyaniline and sodium alanate. The SEM images of the hybrids showed the formation of microspheres with sodium alanate dispersed in the polymer matrix.

  10. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded PLGA microparticles via spray-drying

    DEFF Research Database (Denmark)

    Wan, Feng; Bohr, Adam; Maltesen, Morten Jonas;

    2013-01-01

    ) microparticles prepared by spray-drying. METHODS: Binary mixtures of acetone and methanol at different molar ratios were applied to dissolve celecoxib and PLGA prior to spray-drying. The resulting microparticles were characterized with respect to morphology, texture, surface chemistry, solid state properties...... by the PLGA precipitation rate, which is solvent-dependent, and the migration rate of celecoxib molecules during drying. The texture and surface chemistry of the spray-dried PLGA microparticles can therefore be tailored by adjusting the solvent composition....... power of the feed solution. An obvious burst release was observed for the microparticles prepared by the feed solutions with the highest amount of poor solvent for PLGA. TGA analysis revealed distinct drying kinetics for the binary mixtures. CONCLUSIONS: The particle formation process is mainly governed...

  11. Extraction of green tea and drying with a high pressure spray process

    Directory of Open Access Journals (Sweden)

    Meterc Darja

    2007-01-01

    Full Text Available Green tea is a beverage widely consumed throughout the world and is produced from non-fermented leaves of Camellia Sinensis. Traditionally, green tea leaves are extracted with water. To form solid products, these aqueous products have to be dried. The main focus of the investigation is how to avoid antioxidant degradation during solvent removal. The work was separated in two major sections, firstly investigation of the extraction process secondly, optimizing of the drying process. In the first experiments extractions with different solvents (H2O, EtOH and MeOH, at different temperatures (20, 40, 60 and 80 °C and extraction times (15, 30, 60, 90 and 120 min were preformed to obtain optimum conditions for further processing. For further work extracts obtained with water extraction at 80°C for 15 min were used. In the PGSS (Particles from Gas Saturated Solutions drying process, extracts with up to 98 wt % water are mixed with preheated carbon dioxide in a static mixer in order to obtain a homogenous mixture. The mixture is led via a single path nozzle into a spray tower. Driven by the expansion of the gas, fine droplets are formed and the heated gas evaporates the solvent, which is exhausted together with CO^ by a blower. Fine powder is formed and collected in the spray tower. The amount of solvent which is to be removed and the residual humidity obtained in the product depend strongly on flow rate and temperature of the gas. From obtained results it can be seen, that high pre-expansion temperatures Tp (145 °C cause degradation of polyphenols (1.05 wt %. Maintaining Tp at approximately 130 °C and lower gave satisfying results; total amount of polyphenols in the obtained powders was between 4.97 and 8.77 wt %. Temperature in spray tower ranging from 33 to 65 °C has no significant effect on the amount of total polyphenols, but higher temperature results in lower water residue in the sample.

  12. Textile drying using solarized can dryers to demonstrate the application of solar energy to industrial drying or dehydration processes, Phase II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, P.D.; Beesing, M.E.; Bessler, G.L.

    1979-12-01

    This program has resulted in the installation of a solar energy collection system for providing process heat to a textile drying process. The solar collection subsystem uses 700 square meters (7500 square feet) of parabolic trough, single-axis tracking, concentrating collectors to heat water in a high temperature water (HTW) loop. The solar collectors nominally generate 193/sup 0/C (380/sup 0/F) water with the HTW loop at 1.9 x 10/sup 6/ Pa (275 psi). A steam generator is fueled with the HTW and produces 450 kg/hour (1000 pounds per hour) of process steam at the nominal design point conditions. The solar-generated process steam is at 0.5 x 10/sup 6/ Pa (75 psi) and 160/sup 0/C (321/sup 0/F). It is predicted that the solar energy system will provide 1.2 x 10/sup 6/ MJ/year (1.1 x 10/sup 9/ Btu/year) to the process. This is 46 percent of the direct isolation available to the collector field during the operational hours (300 days/year of the Fairfax mill. The process being solarized is textile drying using can dryers. The can dryers are part of a slashing operation in a WestPoint Pepperell mill in Fairfax, Alabama. Over 50 percent of all woven goods are processed through slashers and dried on can dryers. The collectors were fabricated by Honeywell at a pilot production facility in Minneapolis, Minnesota, under a 3000-square-meter (32,000-square-foot) production run. The collectors and other system components were installed at the site by the Bahnson Service Company and their subcontractors, acting as the project general contractor. System checkout and start-up was conducted. Preliminary system performance was determined from data collected during start-up. System design, fabrication and installation, data analysis, operation and maintenance procedures, and specifications and drawings are presented.

  13. Dynamics of organochlorine contaminants in surface water and in Myriophyllum aquaticum plants of the River Xanaes in central Argentina during the annual dry season.

    Science.gov (United States)

    Schreiber, René; Harguinteguy, Carlos A; Manetti, Martin D

    2013-10-01

    The dynamics of organochlorine pesticides (OCPs) and their major metabolites were studied in surface waters and plants of the River Xanaes (province of Córdoba, Argentina) during the annual dry season. The results of the 5-month monitoring study (April to August 2010) showed similar low contamination levels in nonagricultural mountain and agricultural areas in both water and plants. The concentrations of compounds detected in the surface water were plants were dry weight) with the exception of trans-permethrin (17.6 μg kg(-1), dry weight). Because no notable differences in the contamination level between samples from the mountain and the agricultural area were observed, it was assumed that OCPs may not play an important role in today's pesticide use in this area. Furthermore, the concentration-time trends for OCPs in the submerged plants showed a generally similar elimination behaviour independent of compound and sampling site, thus indicating an integral rather then a substance-specific process, such as partitioning between the plant and the ambient water. As known, rooted macrophytes can take up contaminants by way of roots, so sediments may be the principal source. To understand the dynamics of these compounds in the river area more deeply, thus further research should include study of the river sediment.

  14. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico

    Directory of Open Access Journals (Sweden)

    Eliane Ceccon

    2009-06-01

    Full Text Available In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest’s capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE. We found a strong seasonality in seed rain (96% of seeds fell in the dry season in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard’s similarity index between E and WE sites was relatively low (0.57. Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%, followed by anemochory (39% and zoochory (13%. In relation to seed density, anemochory was the most frequent dispersal mode (88%. Most species in the zone were categorized as small seeds (92%, and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the

  15. Combination method of digital holography and gravimetric measurement for assessment of a paint drying process

    Science.gov (United States)

    Yokota, Masayuki; Kimoto, Yoshiki

    2013-01-01

    A combination method to study the drying process of paints, based on digital holography and gravimetric measurement, is proposed. The proposed method allows taking holographic measurement in a simultaneous way to compare the results obtained by the reconstructed image changes with gravimetric data. By directly comparing a phase change in the reconstructed images of a paint surface and weight change of the paint film, it is found that a stationary state of the paint surface detected by the phase change occurs in the last stage of solvent evaporation and corresponds to a dry-hard of the paint film. The proposed technique can also analyze dryness of clear coat having no scattering particle using the phase change. It is shown that the present technique can allow us to further investigate not only a film formation of clear coat but also an estimation of specific gravity of solvents by comparing directly the phase change with weight loss due to solvent evaporation in the simultaneous measurement.

  16. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger, H. [University of Basel, Pharmacenter, Institute of Pharmaceutical Technology (Switzerland)], E-mail: hans.leuenberger@unibas.ch

    2002-04-15

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins.

  17. Honeycomb nano cerium oxide fabricated by vacuum drying process with sodium alginate

    Science.gov (United States)

    Zhao, Guozheng; Li, Changbo; Zhang, Honglin

    2017-06-01

    Nano cerium oxide (CeO2) with honeycomb structure were synthesized simply and rapidly by vacuum drying method with sodium alginate as the biological template agent, Ce(NO3)3·6H2O as cerium source. The composition, aperture size, specific surface area and morphology of the prepared samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption and scanning electron microscopy (SEM). Simultaneously, the effects on the morphology of the samples, which were caused by the drying method and the concentration of sodium alginate, were investigated. The results indicate that the prepared samples were nano CeO2 with high crystallinity and uniform dispersion, most of which had mesoporous, macroporous and honeycomb structure. The specific surface area of CeO2 is 210.0 m2/g, and the average aperture is 12.77 nm. The prepared samples can act as catalyst in the catalytic wet oxidation process for the treatment of high concentration organic wastewater, and the COD removal rate could exceed 90%.

  18. Study of caprine bones after moist and dry heat processes by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M., E-mail: carolmattosb@yahoo.com.br [Instituto de Arqueologia Brasileira (IAB), Belford Roxo, RJ (Brazil); Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: soraia@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/LIN/UFRJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Souza, Sheila M.F.M de, E-mail: sferraz@ensp.fiocruz.br [Fundacao Oswaldo Cruz (ENSP/FIOCRUZ), Rio de Janeiro, RJ (Brazil). Escola Nacional de Saude Publica Sergio Arouca

    2013-07-01

    Bone tissue is a biological material composed of hydroxyapatite (HAp) and collagen matrix. The bone X-ray diffraction (XRD) pattern presents characteristics of the hydroxyapatite crystallography planes. This paper presents the characterization by X-ray diffraction of caprine bone powder pattern and the comparison of this pattern with moist or dry heat cooked bone patterns. The parameters chosen to characterize the X-ray diffraction peaks were: angular position (2θ), full width at half maximumt (FWHM), and relative intensity (I{sub rel}). The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer. The caprine bone XRD pattern revealed a significant correlation of several crystallographic parameters (lattice data) with hydroxyapatite. The profiles of the three bone types analyzed presented differences. The study showed as small angular displacement (decrease of the 2θ angle) of some peaks was observed after moist and dry heat cooking processes. The characterization of bone tissue aimed to contribute to future analysis in the field of archeology. (author)

  19. Computational Fluid Dynamics - Applications in Manufacturing Processes

    Science.gov (United States)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  20. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    Science.gov (United States)

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  1. Processamento de tomate seco de diferentes cultivares Dried tomato processing of different cultivars

    Directory of Open Access Journals (Sweden)

    Dorivaldo da Silva Raupp

    2009-01-01

    Full Text Available O tomate seco apresenta um consumo crescente, principalmente como ingrediente de pizzas e lasanhas, e na forma de aperitivo. A pesquisa avaliou o processo de produção de tomate seco de quatro cultivares comerciais (Italiano, Débora Plus, Santa Cruz, Delícia e a qualidade dos produtos prontos. O tomate foi fatiado em quatro cortes longitudinais, sentido pedúnculo-ápice, e as fatias tiveram suas massas loculares removidas. O secador foi regulado nas primeiras três horas para 100ºC, seguido de 80ºC até completar a secagem do produto, o qual apresentou uma umidade residual em torno de 60%. A cv. Delícia produziu a maior perda de 39,8% durante o preparo das fatias frescas, sendo que as perdas para as demais cultivares variaram entre 32,7 a 34,3%. Os rendimentos dos tomates inteiros em produtos prontos foram iguais a: cv. Débora Plus 9,1%; cv. Santa Cruz 8,9%; cv. Delícia 8,6%; e cv. Italiano 8,3%. O maior tempo de secagem de 9 horas e 25 minutos foi para a cv. Delícia; as demais apresentaram um mínimo de 8 horas e 10 minutos (Italiano e um máximo de 8 horas e 35 minutos (Santa Cruz. Os tomates secos das cultivares Italiano e Débora Plus apresentaram-se levemente adocicados; o da cv. Santa Cruz foi ainda menos; e, esta característica foi de difícil percepção para o da cv. Delícia, que também teve uma mastigação não suave e mais prolongada. Apesar da diferença, os produtos tomates secos obtidos a partir dessas cultivares não diferiram significativamente quanto ao paladar quando degustados por provadores não treinados.Consumption of dried tomatoes has been increasing, mainly as an ingredient of pizzas and lasagnas, and also as an appetizer. This study evaluated the production process of four commercial varieties (Italiano, Débora Plus, Santa Cruz, Delícia and the quality of the finished products, which had a moisture content of around 60%. The tomatoes were sliced into four longitudinal cuts in the stalk-apex direction and

  2. Study of phenolic compound and antioxidant activity of date fruit as a function of ripening stages and drying process.

    Science.gov (United States)

    Shahdadi, F; Mirzaei, H O; Daraei Garmakhany, A

    2015-03-01

    Edible parts of two varieties of date palm (Mazfati and Kalute varieties) (Phoenix dactylifera) fruits (DPF) from Iran were analyzed to determine their phenolic compound and antioxidant activities (AA). Antioxidant activity evaluated using typical methods such as 2, 2-diphenyl-1-picrylhydrazyl (DPPH), reducing power and total antioxidant method. The total phenolic content (TPC) of the DPF was measured using Folin-Ciocalteau method. The samples used in this study included samples were gathered at three stages of khalaal, rutab, tamr and dried date from Bam and Jiroft date. The TPC ranged from 2.89 to 4.82, 1074 to 856.4 and 782.8 mg gallic acid equivalents (GAE/100 gdw sample) for khalal, rutab and tamr stage of Mozafati variety, respectively. This work demonstrates the potential of Iranian dates as good sources of antioxidant which can be used as functional food ingredients. The influence of sun drying process and oven drying at temperature ranged 50-80 °C on phenolic compounds and AA of date palm fruits were investigated. Result of drying process showed that TPC and AA varied with temperature and decreased by increase of drying temperature (from 667.3 to 610.5 mg galic acid in sun dried dates of Mozafati and Kaluteh respectively to 314.2 and 210.4 in dried dates (80 °C) of Mozafati and Kaluteh respectively).

  3. The influence of sun drying process and prolonged storage on composition of essential oil from clove buds (Syzygium aromaticum)

    Science.gov (United States)

    Hastuti, L. T.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Murni, V. W.; Haib, J.

    2017-07-01

    Clove (Syzygium aromaticum) is native to Indonesia and used as a spice in virtually all of the world's cuisine. Clove bud oil, a yellow liquid, is obtained from distillation of buds. The quality of oil is influenced by origin, post-harvest processing, pre-treatment before distillation, the distillation method, and post-distillation treatment. The objective of this study is to investigate the effect of drying process and prolonged storage on essential oil composition of clove bud from the Tolitoli, Indonesia. To determine the effect of drying, fresh clove bud was dried under sunlight until it reached moisture content 13±1 %. The effect of storage was studied in the oil extracted from clove bud that was stored in laboratory at 25 °C for 4 months. The essential oil of each treatment was obtained by steam distillation and its chemical composition was analyzed by GC/MS. The major components found in fresh and dried clove are as follows: eugenol, eugenyl acetate, and caryophyllene. Percentage of caryophyllene was slightly increase after drying but decrease during storage. While the content of eugenyl acetate decreased during drying and storage, the content of eugenol increased. The drying and storage also affect to the change on minor compounds of essential oil of clove.

  4. The influence of feedstock and process variables on the encapsulation of drug suspensions by spray-drying in fast drying regime: the case of novel antitubercular drug–palladium complex containing polymeric microparticles.

    Science.gov (United States)

    Giovagnoli, Stefano; Palazzo, Francesco; Di Michele, Alessandro; Schoubben, Aurelie; Blasi, Paolo; Ricci, Maurizio

    2014-04-01

    The purpose of this study was to address the effect of feedstock properties and process variables on the characteristics of antitubercular drug–palladium (Pd) containing poly(lactic) acid (PLA) microparticles (MP) obtained by spray-drying of noncolloidal particle dispersions in fast drying regime. Two different systems were compared: capreomycin–Pd (C–Pd) and ofloxacin–Pd (Ofx–Pd) dispersions in acetonitrile PLA solution. Particle size, dynamic light scattering, differential scanning calorimetry, SEM–energy dispersive X-ray, and spectrophotometric methods were used for MP characterization. C–Pd-loaded MP were optimized preliminarily by experimental design and compared with Ofx–Pd-loaded MP investigated in our previous work. Morphology of feedstock particles had a dominant role in determining MP morphology. The Charlesworth and Marshall theory was used to explain such behavior. The smaller and homogeneous C–Pd microparticulates favored MP inflation and buckling by forming a thick and nonporous shell. A percolation effect was proposed for the larger and irregular Ofx–Pd particles that produced smaller MP with a more porous shell. Increasing feedstock concentration led to higher particle loss. A tentative descriptive scheme of MP formation according to feedstock particle arrangement was proposed. This work suggested that spray-drying of drug dispersions should carefully consider the morphology of feedstock particles as a major parameter influencing final MP properties.

  5. Experiment research on grain drying process in the heat pump assisted fluidized beds

    Institute of Scientific and Technical Information of China (English)

    Jing Yang; Li Wang; Fi Xiang; Lige Tong; Hua Su

    2004-01-01

    A heat pump assisted fluidized bed grain drying experimental system was developed. Based on this system, a serial of experiments was performed under four kinds of air cycle conditions. According to the experimental analysis, an appropriate drying medium-air cycle for the heat pump assisted fluidized bed drying equipment was decided, which is different from the commonly used heat pump assisted drying system. The experimental results concerning the drying operation performance of the new system show that the averaged coefficient of performance (COP) can reach more than 2.5. The economical evaluation was performed and the powefficiency and great application potentiality in future market.

  6. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    Science.gov (United States)

    Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140

  7. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    Directory of Open Access Journals (Sweden)

    Z. A. Zakaria

    2011-01-01

    Full Text Available The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P<.05 reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.

  8. [Treatment of Flue Gas from Sludge Drying Process by A Thermophilic Biofilter].

    Science.gov (United States)

    Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Ding, Wen-iie; Li, Lin; Lin, Jian; Liu, Jun-xin

    2016-01-15

    A thermophilic biofilter was employed to treat the flue gas generated from sludge drying process, and the performance in both the start period and the stationary phase was studied under the gas flow rate of 2 700-3 100 m3 x h(-1) and retention time of 21.88-25.10 s. The results showed that the thermophilic biofilter could effectively treat gases containing sulfur dioxide, ammonia and volatile organic compounds (VOC). The removal efficiencies could reach 100%, 93.61% and 87.01%, respectively. Microbial analysis indicated that most of the population belonged to thermophilic bacteria. Paenibacillus sp., Chelatococcus sp., Bacillus sp., Clostridium thermosuccinogenes, Pseudoxanthomonas sp. and Geobacillus debilis which were abundant in the thermophilic biofilter, had the abilities of denitrification, desulfurization and degradation of volatile organic compounds.

  9. Approach to hp10nm resolution by applying Dry Development Rinse Process (DDRP) and Materials (DDRM)

    Science.gov (United States)

    Shibayama, Wataru; Shigaki, Shuhei; Takeda, Satoshi; Onishi, Ryuji; Nakajima, Makoto; Sakamoto, Rikimaru

    2016-03-01

    EUV lithography has been desired as the leading technology for single nm half-pitch patterning. However, the source power, masks and resist materials still have critical issues for mass production. Especially in resist materials, RLS trade-off is the key issue. To overcome this issue, we are suggesting Dry Development Rinse Process (DDRP) and Materials (DDRM) as the pattern collapse mitigation approach. This DDRM can perform not only as pattern collapse free materials for fine pitch, but also as the etching hard mask against bottom layer (spin on carbon : SOC). In this paper, we especially propose new approaches to achieve high resolution around hp10nm. The key points of our concepts are 1) control PR profiles, 2) new solvent system to avoid chemical mixture, 3) high etching selective DDR materilas and 4) high planar DDR materials. This new DDRM technology can be the promising approach for hp10nm level patterning in N7/N5 and beyond.

  10. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    Science.gov (United States)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P lipid oxidation. C18:0, C16:1n7, C19:0, and C22:6n3 showed clear changes in principle component one of a principle components analysis. These fatty acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P 0.931.

  11. Amenability to dry processing of high ash thermal coal using a pneumatic table

    Institute of Scientific and Technical Information of China (English)

    Dey Shobhana; Gangadhar B.; Gopalkrishna S.J.

    2015-01-01

    High ash thermal coal from India was used to conduct the dry processing of fine coal using a pneumatic table to evolve a techno-economically novel technique. The fine as-received sample having 55.2%ash was subjected to washability studies at variant densities from 1.4 to 2.2 to assess the amenability to separa-tion. The experiments were conducted using a central composite design for assessing the interactive effects of the variable parameters of a pneumatic table on the product yield and ash content. The perfor-mance of the pneumatic table was analyzed in terms of clean coal yield, recovery of combustibles, separation efficiency (Esp) and useful heat value of clean coal. The combustibles of clean coal obtained through a single stage operation at 35% and 38.7% ash were 40% and 63% respectively. However, the two stage processing was more effective in reducing the ash content in the clean coal. The rougher con-centrate generated at higher ash level was subsequently processed in different conditions at 35% ash level, and 58%combustibles could be recovered. Hence, two stage processing increases the combustibles by 18 units and the useful heat value of clean coal increases from 1190 kcal/kg to 3750 kcal/kg.

  12. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z.; Morikawa, M.; Fujii, Y. [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  13. Risk management for moisture related effects in dry manufacturing processes: a statistical approach.

    Science.gov (United States)

    Quiroz, Jorge; Strong, John; Zhang, Lanju

    2016-03-01

    A risk- and science-based approach to control the quality in pharmaceutical manufacturing includes a full understanding of how product attributes and process parameters relate to product performance through a proactive approach in formulation and process development. For dry manufacturing, where moisture content is not directly manipulated within the process, the variability in moisture of the incoming raw materials can impact both the processability and drug product quality attributes. A statistical approach is developed using individual raw material historical lots as a basis for the calculation of tolerance intervals for drug product moisture content so that risks associated with excursions in moisture content can be mitigated. The proposed method is based on a model-independent approach that uses available data to estimate parameters of interest that describe the population of blend moisture content values and which do not require knowledge of the individual blend moisture content values. Another advantage of the proposed tolerance intervals is that, it does not require the use of tabulated values for tolerance factors. This facilitates the implementation on any spreadsheet program like Microsoft Excel. A computational example is used to demonstrate the proposed method.

  14. Effect of steam thermal treatment on the drying process of Eucalyptus dunnii variables

    Directory of Open Access Journals (Sweden)

    Elias Taylor Durgante Severo

    2013-12-01

    Full Text Available The aim of this study was to evaluate the effect of steam treatment prior to drying on the initial moisture content, moisture gradient, and drying rate in Eucalyptus dunnii Maiden wood. Boards were steamed at 100ºC for 3 h after 1 h of heating-up. Part of these boards was dried in a drying electric oven at 50ºC, and part was dried at kiln. The results showed that the steaming prior to drying of wood: (1 significantly reduced by 9.2% the initial moisture content; (2 significantly increased by 6.2% the drying rate; (3 significantly decreased by 15.6 and 14.8% the moisture gradient between the outer layer and the center of boards and between the outer and intermediate layers of boards, respectively. Steamed boards when dried in an oven showed drying rate of 0.007065 whereas in kiln were 0.008200 and 0.034300 from green to 17 and 17 to 12% moisture content, respectively. It was demonstrated that the steaming prior to drying can be suitable for reduces the drying times of this kind of wood.

  15. Effect of Fluidized Bed Stirring on Drying Process of Adhesive Particles

    Directory of Open Access Journals (Sweden)

    P. Hoffman

    2017-04-01

    Full Text Available This paper presents an attempt to optimize fluidized bed drying of wet and adhesive particles (with an initial diameter of about 580 mm with the use of stirring, and discusses the influence of stirring on the total drying time. The goal was to demonstrate the positive effect of stirring a fluidized bed to the drying time, to find the optimal parameters (stirrer design, speed, and size. Experiments were conducted on a drying chamber in batch operation. The objective was to evaluate the effect of stirring on the total drying time. The drying chambers were 85 mm, 100 mm, and 140 mm in diameter. An optimal stirrer shape and speed were specified. Our arrangement of the fluidized bed resulted in a decrease in drying time by up to 40 %.

  16. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    Science.gov (United States)

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s).

  17. Dynamics of ranking processes in complex systems.

    Science.gov (United States)

    Blumm, Nicholas; Ghoshal, Gourab; Forró, Zalán; Schich, Maximilian; Bianconi, Ginestra; Bouchaud, Jean-Philippe; Barabási, Albert-László

    2012-09-21

    The world is addicted to ranking: everything, from the reputation of scientists, journals, and universities to purchasing decisions is driven by measured or perceived differences between them. Here, we analyze empirical data capturing real time ranking in a number of systems, helping to identify the universal characteristics of ranking dynamics. We develop a continuum theory that not only predicts the stability of the ranking process, but shows that a noise-induced phase transition is at the heart of the observed differences in ranking regimes. The key parameters of the continuum theory can be explicitly measured from data, allowing us to predict and experimentally document the existence of three phases that govern ranking stability.

  18. ICM METALLICITY EVOLUTION: EFFECTS OF DYNAMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    S. Cora

    2009-01-01

    Full Text Available We present a study on the origin of the metallicity evolution of the intracluster medium (ICM by applying a semi-analytic model of galaxy formation to N-Body/SPH non-radiative cosmological simulations of clusters of galaxies. The results obtained for a set of clusters with virial masses of - 1:5 - 1015 h-1M contribute to the theoretical interpretation of recent observational X-ray data, which indicate a decrease of the average iron content of the intracluster gas with increasing redshift, z. We nd that this evolution is mainly due to a progressive increase of the iron content within 15 per cent of the virial radius as a result of dynamical processes. The clusters have been considerably enriched by z - 1 with very low contribution from recent star formation. Low entropy gas that has been enriched at high z sink to the cluster centre contributing to the evolution of the metallicity pro les.

  19. Natural regeneration dynamics of three dry deciduous forest species in Chacocente Wildlife Reserve, Nicaragua

    Institute of Scientific and Technical Information of China (English)

    Guillermo Castro Marín; Mulualem Tigabu; Benigno González Rivas; Per Christer Odén

    2009-01-01

    A study was conducted to examine the natural regeneration of three dry forest species, Lysiloma divaricatum (Jacq.), Tabebuia ochracea (Cham.) and Lonchocarpus minimiflorus (Donn. Sm.) over a three-year period and to analyze heterogeneity of regeneration in relationship to topographic slope and incidence of light in Chacocente Wildlife Reserve in Nicaragua. Permanent sample plots were established in 2001, and all individuals with height as low as 10 cm and diameter as large as 10 cm were recorded for three consecutive years from 2001 to 2003. The results show that the density of naturally regenerated individuals varied significantly among species, as well as over time. L. minimiflorus and T. ochracea had higher densities compared with L. divaricatum, and the net change in population density was slightly positive for T. ochracea only. Regeneration was more abundant in the gentle and steep slopes under partial exposure of the crown to sunlight, thus resulting in aggregated pattern of distribution, especially for L. minimiflorus and T. ochracea. We concluded that natural regeneration alone is not sufficient to maintain the desired number of stocks of these species, and an immediate restoration measure should be taken to assist the natural regeneration process.

  20. Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon Valley, Western Himalaya, India

    OpenAIRE

    2014-01-01

    The present study aimed to analyze the vegetation dynamics and plant diversity from the dry deciduous forests of Doon Valley. Species richness, regeneration, and change in community composition of these forests were studied and change was noticed with Shorea robusta as the main dominant species, and Mallotus philippensis, Syzygium cumini, and Ehretia laevis as codominant tree species in all communities. The highest species richness and diversity rates were found to be increased with the decre...

  1. Processing of Polysulfone to Free Flowing Powder by Mechanical Milling and Spray Drying Techniques for Use in Selective Laser Sintering

    Directory of Open Access Journals (Sweden)

    Nicolas Mys

    2016-04-01

    Full Text Available Polysulfone (PSU has been processed into powder form by ball milling, rotor milling, and spray drying technique in an attempt to produce new materials for Selective Laser Sintering purposes. Both rotor milling and spray drying were adept to make spherical particles that can be used for this aim. Processing PSU pellets by rotor milling in a three-step process resulted in particles of 51.8 μm mean diameter, whereas spray drying could only manage a mean diameter of 26.1 μm. The resulting powders were characterized using Differential Scanning Calorimetry (DSC, Gel Permeation Chromatography (GPC and X-ray Diffraction measurements (XRD. DSC measurements revealed an influence of all processing techniques on the thermal behavior of the material. Glass transitions remained unaffected by spray drying and rotor milling, yet a clear shift was observed for ball milling, along with a large endothermic peak in the high temperature region. This was ascribed to the imparting of an orientation into the polymer chains due to the processing method and was confirmed by XRD measurements. Of all processed powder samples, the ball milled sample was unable to dissolve for GPC measurements, suggesting degradation by chain scission and subsequent crosslinking. Spray drying and rotor milling did not cause significant degradation.

  2. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    Production of large-area flat panel displays (FPDs) involves several pattern transfer and device fabrication steps that can be performed with dry etching technologies. Even though the dry etching using capacitively coupled plasma is generally used to maintain high etch uniformity, due to the need...... for the higher processing rates in FPDs, high-density plasma processing tools that can handle larger-area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 × 920 mm (fourth...... generation) to 2,200 × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry...

  3. Aeolian process of the dried-up riverbeds of the Hexi Corridor, China: a wind tunnel experiment.

    Science.gov (United States)

    Zhang, Caixia; Wang, Xunming; Dong, Zhibao; Hua, Ting

    2017-08-01

    Wind tunnel studies, which remain limited, are an important tool to understand the aeolian processes of dried-up riverbeds. The particle size, chemical composition, and the mineral contents of sediments arising from the dried river beds are poorly understood. Dried-up riverbeds cover a wide area in the Hexi Corridor, China, and comprise a complex synthesis of different land surfaces, including aeolian deposits, pavement surfaces, and Takyr crust. The results of the present wind tunnel experiment suggest that aeolian transport from the dried-up riverbeds of the Hexi Corridor ranges from 0 to 177.04 g/m(2)/min and that dry riverbeds could be one of the main sources of dust emissions in this region. As soon as the wind velocity reaches 16 m/s and assuming that there are abundant source materials available, aeolian transport intensity increases rapidly. The dried-up riverbed sediment and the associated aeolian transported material were composed mainly of fine and medium sands. However, the transported samples were coarser than the bed samples, because of the sorting effect of the aeolian processes on the sediment. The aeolian processes also led to regional elemental migration and mineral composition variations.

  4. Optimization of the Büchi B-90 spray drying process using central composite design for preparation of solid dispersions.

    Science.gov (United States)

    Gu, Bing; Linehan, Brian; Tseng, Yin-Chao

    2015-08-01

    A central composite design approach was applied to study the effect of polymer concentration, inlet temperature and air flow rate on the spray drying process of the Büchi B-90 nano spray dryer (B-90). Hypromellose acetate succinate-LF was used for the Design of Experiment (DoE) study. Statistically significant models to predict the yield, spray rate, and drying efficiency were generated from the study. The spray drying conditions were optimized according to the models to maximize the yield and efficiency of the process. The models were further validated using a poorly water-soluble investigational compound (BI064) from Boehringer Ingelheim Pharmaceuticals. The polymer/drug ratio ranged from 1/1 to 3/1w/w. The spray dried formulations were amorphous determined by differential scanning calorimetry and X-ray powder diffraction. The particle size of the spray dried formulations was 2-10 μm under polarized light microscopy. All the formulations were physically stable for at least 3h when suspended in an aqueous vehicle composed of 1% methyl cellulose. This study demonstrates that DoE is a useful tool to optimize the spray drying process, and the B-90 can be used to efficiently produce amorphous solid dispersions with a limited quantity of drug substance available during drug discovery stages.

  5. Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.

  6. Effect of tiger nut fibre addition on the quality and safety of a dry-cured pork sausage ("Chorizo") during the dry-curing process.

    Science.gov (United States)

    Sánchez-Zapata, E; Zunino, V; Pérez-Alvarez, J A; Fernández-López, J

    2013-11-01

    There is a growing interest in the revalorization of co-products from the food industry. Co-products from tiger nuts (Cyperus esculentus) milk production are a suitable fibre source. "Chorizo" is the most popular dry-cured meat product in Spain. The aim of this work was to study the effect of the tiger nut fibre addition (0, 5, and 7.5%) on the quality (composition, physicochemical, and sensorial properties) and safety (oxidation and microbial quality) of a Spanish dry-cured sausage, during the 28days of its dry-curing process. Tiger nut fibre (TNF) addition decreased fat and increased moisture content. The addition of TNF significantly increased (p<0.05) the total dietary fibre content of "Chorizo". Lightness (L*), yellowness (b*) and redness index (a*/b*) were significantly (p<0.05) affected by the fibre content. The addition of 5% and 7.5% TNF to chorizo provided rich fibre and a healthier product. Although there were slight changes in the physicochemical properties, its quality (traditional characteristics) and its safety remained.

  7. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process.

    Science.gov (United States)

    Agrawal, Anjali M; Dudhedia, Mayur S; Patel, Ashwinkumar D; Raikes, Michelle S

    2013-11-30

    The present study investigated effect of manufacturing methods such as hot melt extrusion (HME) and spray drying (SD) on physicochemical properties, manufacturability, physical stability and product performance of solid dispersion. Solid dispersions of compound X and PVP VA64 (1:2) when prepared by SD and HME process were amorphous by polarized light microscopy, powder X-ray diffractometry, and modulated differential scanning calorimetry analyses with a single glass transition temperature. Fourier transform infrared (FT-IR) and Raman spectroscopic analyses revealed similar molecular level interactions between compound X and PVP VA64 as evident by overlapping FT-IR and FT Raman spectra in SD and HME solid dispersions. The compactibility, tabletability, disintegration and dissolution performance were similar for solid dispersions prepared by both processing techniques. Differences in material properties such as surface area, morphological structure, powder densities, and flow characteristics were observed between SD and HME solid dispersion. The SD solid dispersion was physically less stable compared to HME solid dispersion under accelerated stability conditions. Findings from this study suggest that similar product performance could be obtained if the molecular properties of the solid dispersion processed by two different techniques are similar. However differences in material properties might affect the physical stability of the solid dispersions.

  8. Dry-thermophilic anaerobic digestion of simulated organic fraction of municipal solid waste: process modeling.

    Science.gov (United States)

    Fdez-Güelfo, L A; Álvarez-Gallego, C; Sales Márquez, D; Romero García, L I

    2011-01-01

    Solid retention time (SRT) is a very important operational variable in continuous and semicontinuous waste treatment processes since the organic matter removal efficiency--expressed in terms of percentage of Dissolved Organic Carbon (% DOC) or Volatile Solids (% VS) removed--and the biogas or methane production are closely related with the SRT imposed. Optimum SRT is depending on the waste characteristics and the microorganisms involved in the process and, hence, it should be determined specifically in each case. In this work a series of experiments were carried out to determine the effect of SRT, from 40 to 8 days, on the performance of the dry (30% Total Solids) thermophilic (55°C) anaerobic digestion of organic fraction of Municipal Solid Wastes (OFMSW) operating at semicontinuous regime of feeding. The experimental results show than 15days is the optimum SRT (the best between all proved) for this process. Besides, data of organic matter concentration and methane production versus SRT have been used to obtain the kinetic parameters of the kinetic model of Romero García (1991): the maximum specific growth rate of the microorganisms (μmax=0.580 days(-1)) and the fraction of substrate non-biodegradable (α=0.268).

  9. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation.

    Science.gov (United States)

    Sun, Wei; Ni, Rui; Zhang, Xin; Li, Luk Chiu; Mao, Shirui

    2015-06-01

    Spray drying experiments of an itraconazole nanosuspension were conducted to generate a dry nanocrystal powder which was subsequently formulated into a tablet formulation for direct compression. The nanosuspension was prepared by high pressure homogenization and characterized for particle-size distribution and surface morphology. A central composite statistical design approach was applied to identify the optimal drug-to-excipient ratio and spray drying temperature. It was demonstrated that the spray drying of a nanosuspension with a mannitol-to-drug mass ratio of 4.5 and at an inlet temperature of 120 °C resulted in a dry powder with the smallest increase in particle size as compared with that of the nanosuspension. X-ray diffraction results indicated that the crystalline structure of the drug was not altered during the spray-drying process. The tablet formulation was identified by determining the micromeritic properties such as flowability and compressibility of the powder mixtures composed of the spray dried nanocrystal powder and other commonly used direct compression excipients. The dissolution rate of the nanocrystal tablets was significantly enhanced and was found to be comparable to that of the marketed Sporanox®. No statistically significant difference in oral absorption between the nanocrystal tablets and Sporanox® capsules was found. In conclusion, the nanosuspension approach is feasible to improve the oral absorption of a BCS Class II drug in a tablet formulation and capable of achieving oral bioavailability equivalent to other well established oral absorption enhancement method.

  10. Exergetic analysis and evaluation of a new application of gas engine heat pumps (GEHPs) for food drying processes

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Aysegul [Department of Mechanical Engineering, Faculty of Engineering, Gediz University, Izmir (Turkey); Erbay, Zafer [Department of Food Engineering, Faculty of Engineering, Ege University, 35100 Izmir (Turkey); Hepbasli, Arif [Department of Mechanical Engineering, Faculty of Engineering, Ege University, 35100 Izmir (Turkey)

    2011-03-15

    In this study, three medicinal and aromatic plants (Foeniculum vulgare, Malva sylvestris L. and Thymus vulgaris) were dried in a pilot scale gas engine driven heat pump drier, which was designed, constructed and installed in Ege University, Izmir, Turkey. Drying experiments were performed at an air temperature of 45 C with an air velocity of 1 m/s. In this work, the performance of the drier along with its main components is evaluated using exergy analysis method. The most important component for improving the system efficiency is found to be the gas engine, followed by the exhaust air heat exchanger for the drying system. An exergy loss and flow diagram (the so-called Grassmann diagram) of the whole drying system is also presented to give quantitative information regarding the proportion of the exergy input dissipated in the various system components, while the sustainability index values for the system components are calculated to indicate how sustainability is affected by changing the exergy efficiency of a process. Gas engine, expansion valve and drying ducts account for more than 60% amount of exergy in the system. The exergetic efficiency values are in the range of 77.68-79.21% for the heat pump unit, 39.26-43.24% for the gas engine driven heat pump unit, 81.29-81.56% for the drying chamber and 48.24-51.28% for the overall drying system. (author)

  11. Dynamical Mechanisms and Variability of Dry and Wet Spells in Iberia

    Science.gov (United States)

    Liberato, Margarida L. R.; Montero, Irene; Gouveia, Célia

    2014-05-01

    Dry and wet spells in Iberia have widespread ecological and environmental negative impacts resulting in major socioeconomic damages such as crop yield losses or increasing forest fire risk [Gouveia et al. 2009; Amraoui et al. 2013] and flash flooding, urban inundations, landslides and associated human and infrastructure damages [Liberato et al. 2013]. The 20th century was characterized by a negative trend on precipitation and a positive trend on temperature in southern Europe. On the other hand recent results suggest that there are opposite tendencies in the duration of wet and dry spells over the Iberia. At the monthly and seasonal scales, the North Atlantic Oscillation (NAO), the Eastern Atlantic (EA) and the Scandinavian (SCAN) patterns are important large-scale variability modes that control the Iberian precipitation regime. The NAO modulates the westerly atmospheric flow by shifting the polar jet and the associated storm-tracks. At the sub-monthly scale, extratropical cyclones have a significant impact on Iberian climate and are one of the primary causes of extreme events occurrence over the region [Liberato et al. 2011; 2013]. In this work we investigate the connection between midlatitude cyclones and the onset and recurrent character of droughts, heavy precipitation and spell duration in Iberia. Our results confirm the links between unusual circulation patterns with these extreme events. Moreover we show how the frequency on the occurrence of extratropical cyclones on the Euro-Atlantic region is critical in explaining the tails of the precipitation distribution in Iberia. Acknowledgments: This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project QSECA (PTDC/AAG-GLO/4155/2012). References: Amraoui M., M. L. R. Liberato, T. J. Calado, C. C. DaCamara, L. P. Coelho, R. M. Trigo, C. M. Gouveia (2013) Fire activity over Mediterranean Europe based on information from Meteosat-8. Forest

  12. Dynamics of somatic cell counts and intramammary infections across the dry period.

    Science.gov (United States)

    Pantoja, J C F; Hulland, C; Ruegg, P L

    2009-07-01

    The objectives of this research were to study the relationship between somatic cell count (SCC) and intramammary infection (IMI) across the dry period and the risk of subclinical mastitis at the first dairy herd improvement (DHI) test of the subsequent lactation. A secondary objective was to determine SCC test characteristics for diagnosis of IMI at both the cow and quarter levels. A total of 218 cows from a university herd were enrolled at dry-off. Duplicate quarter milk samples were collected from all quarters at dry-off, calving and on the day of the first DHI test. Somatic cell count status across the dry period was defined based on the comparison of quarter SCC from dry-off and the post-calving sampling periods and comparison of composite SCC from DHI samples from the last test and first test of the following lactation. Of new IMI detected from post-calving milk samples (n=45), 46.7, 26.7 and 11% were caused by CNS, Streptococci and Gram-negative bacteria, respectively. Of cured IMI at post-calving (n=91), 61.5, 23.1 and 9.9% had CNS, Streptococci and Coryneforms isolated from dry-off milk samples. The most frequent microorganisms related to cured IMI were CNS (33%). Of chronically infected quarters across the dry period (n=10), only one had the same species of pathogen isolated from dry-off and post-calving samples. The sensitivity of a SCC threshold of 200,000 cells/mL for detection of subclinical IMI was 0.64, 0.69 and 0.65 for milk samples obtained at dry-off, post-calving and first DHI test, respectively. The specificity was 0.66, 0.84 and 0.93 for milk samples obtained at dry-off, post-calving and first DHI test, respectively. Quarters with SCC> or =200,000 cells/mL at both dry-off and post-calving sampling periods were 20.4 times more likely to be subclinically infected by a major pathogen (rather than being uninfected) and 5.6 times more likely to be subclinically infected by a minor pathogen (rather than being uninfected) at the first DHI test than

  13. 建昌板鸭微生物发酵动力学研究%Studies on Fermentation Dynamics of Microorganisms in Jianchang Cured-dry Duck

    Institute of Scientific and Technical Information of China (English)

    林巧

    2011-01-01

    [目的]研究建昌板鸭传统制作工艺过程中主要发酵微生物的生长变化规律.[方法]以建昌板鸭为原料,每48 h对其主要发酵微生物(细菌、酵母菌、乳酸菌和葡萄球菌)的菌体浓度进行了测定,应用7次高阶多项式方程建立了板鸭发酵过程中各微生物生长的动力学模型,并对各动力学模型函数进行了验证试验.[结果]建昌板鸭发酵微生物细菌、酵母菌、乳酸菌和葡萄球菌生长的动力学模型与试验实测数据能够较好地拟合.[结论]为建昌板鸭加工行业的规模化生产提供了参考.%[ Objective ] The aim was to study the growth change rule of main fermentation microorganisms in the traditional producing process of Jianchang cured-dry duck. [ Method] The concentrations of main fermentation microorganisms like bacteria,yeast,lactic acid bacteria and staphylococcus in the traditional producing process of Jianchang cured-dry duck were determined every 48 hours. Dynamical models of microbial growth were established by 7-second order polynomial equation,and the dynamic model function was made verifying test. [ Result] Dynamical models of microbial growth for bacteria, yeast,lactic acid bacteria and staphylococcus in the traditional producing process of Jianchang cured-dry duck could be fitted with measured data well. [ Conclusion] This research provides reference for the large-scale production of processing industry of Jianchang cured-dry duck.

  14. Dynamic Process of Money Transfer Models

    CERN Document Server

    Wang, Y; Wang, Yougui; Ding, Ning

    2005-01-01

    We have studied numerically the statistical mechanics of the dynamic phenomena, including money circulation and economic mobility, in some transfer models. The models on which our investigations were performed are the basic model proposed by A. Dragulescu and V. Yakovenko [1], the model with uniform saving rate developed by A. Chakraborti and B.K. Chakrabarti [2], and its extended model with diverse saving rate [3]. The velocity of circulation is found to be inversely related with the average holding time of money. In order to check the nature of money transferring process in these models, we demonstrated the probability distributions of holding time. In the model with uniform saving rate, the distribution obeys exponential law, which indicates money transfer here is a kind of Poisson process. But when the saving rate is set diversely, the holding time distribution follows a power law. The velocity can also be deduced from a typical individual's optimal choice. In this way, an approach for building the micro-...

  15. Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Helmens, H.J.

    2009-01-01

    A laboratory-scale process is presented for the manufacture of starch and gluten from wheat. Main feature of this process is that whole wheat kernels are crushed dry between smooth rolls prior to wet disintegration in excess water in such way that gluten formation is prevented and fibres can be

  16. Processing and Quality Characteristics of Apple Slices under Simultaneous Infrared Dry-blanching and Dehydration with Intermittent Heating

    Science.gov (United States)

    This study investigated the effects of three processing parameters, e.g. product surface temperature, slice thickness and processing time, on blanching and dehydration characteristics of apple slices exposed to simultaneous infrared dry-blanching and dehydration (SIRDBD) with intermittent heating. A...

  17. Laboratory-scale dry/wet-milling process for the extraction of starch and gluten from wheat

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Helmens, H.J.

    2009-01-01

    A laboratory-scale process is presented for the manufacture of starch and gluten from wheat. Main feature of this process is that whole wheat kernels are crushed dry between smooth rolls prior to wet disintegration in excess water in such way that gluten formation is prevented and fibres can be remo

  18. Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration

    OpenAIRE

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Kitamura, Yutaka

    2016-01-01

    Reducing energy penalty caused by drying and oil extraction is the most critical challenge in microalgae biodiesel production. In this study, vapor recompression and heat integration are utilized to optimize the performance of wet microalgae drying and oil extraction. In the microalgae drying stage, the hot exhaust stream is recompressed and coupled with wet microalgae to recover the condensate heat. In the oil extraction stage, the exergy rate of recovered solvent is also elevated by compres...

  19. Encapsulation of lycopene using spray-drying and molecular inclusion processes

    OpenAIRE

    Itaciara Larroza Nunes; Adriana Zerlotti Mercadante

    2007-01-01

    This study aimed to obtain encapsulated lycopene in a powder form, using either spray-drying or molecular inclusion with beta -cyclodextrin ( beta -CD) followed by freeze-drying. The encapsulation efficiency using spray-drying ranged from 94 to 96%, with an average yield of 51%, with microcapsules showing superficial indentations and lack of cracks and breakages. Lycopene- beta -CD complexes were only formed at a molar ratio of 1:4, and irregular structures of different sizes that eventually ...

  20. Effects of formulation and process factors on the crystal structure of freeze-dried Myo-inositol.

    Science.gov (United States)

    Izutsu, Ken-Ichi; Yomota, Chikako; Okuda, Haruhiro; Kawanishi, Toru; Yamaki, Takuya; Ohdate, Ryohei; Yu, Zhaokun; Yonemochi, Etsuo; Terada, Katsuhide

    2014-08-01

    The objective of this study was to elucidate effects of formulation and process variables on the physical forms of freeze-dried myo-inositol. Physical properties of myo-inositol in frozen solutions, freeze-dried solids, and cooled heat-melt solids were characterized by powder X-ray diffraction (PXRD), thermal analysis (differential scanning calorimetry [DSC] and thermogravimetric), and simultaneous PXRD-DSC analysis. Cooling of heat-melt myo-inositol produced two forms of metastable anhydrate crystals that change to stable form (melting point 225 °C-228 °C) with transition exotherms at around 123 °C and 181 °C, respectively. Freeze-drying of single-solute aqueous myo-inositol solutions after rapid cooling induced crystallization of myo-inositol as metastable anhydrate (transition at 80 °C-125 °C) during secondary drying segment. Contrarily, postfreeze heat treatment (i.e., annealing) induced crystallization of myo-inositol dihydrate. Removal of the crystallization water during the secondary drying produced the stable-form myo-inositol anhydrate crystal. Shelf-ramp slow cooling of myo-inositol solutions resulted in the stable and metastable anhydrous crystal solids depending on the solute concentrations and the solution volumes. Colyophilization with phosphate buffer retained myo-inositol in the amorphous state. Crystallization in different process segments varies crystal form of freeze-dried myo-inositol solids.

  1. Moisture and drug solid-state monitoring during a continuous drying process using empirical and mass balance models

    DEFF Research Database (Denmark)

    Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth

    2014-01-01

    was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying......Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means...... of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend...

  2. Formulation and process considerations for the design of sildenafil-loaded polymeric microparticles by vibrational spray-drying

    DEFF Research Database (Denmark)

    Beck-Broichsitter, Moritz; Bohr, Adam; Aragão-Santiago, Leticia

    2016-01-01

    ), respectively. Furthermore, interactions between sildenafil and the PLGA matrix were observed for the spray-dried MPs. Optimization of spray-drying conditions allowed for a fabrication of defined MPs (size range of ∼4-8 μm) displaying a high sildenafil encapsulation efficiency (>90%) and sustained sildenafil......CONTEXT AND OBJECTIVE: The current study reports the preparation and characterization of sildenafil-loaded poly(lactide-co-glycolide) (PLGA)-based microparticles (MPs) by means of vibrational spray-drying. Emphasis was placed on relevant formulation and process parameters with influence...... properties of the prepared powders. CONCLUSION: Identification of relevant formulation and spray-drying parameters enabled the fabrication of tailored sildenafil-loaded PLGA-based MPs, which meet the needs of the individual application (e.g. controlled drug delivery to the lungs)....

  3. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba) Fruit During the Drying and Steaming Process.

    Science.gov (United States)

    Guo, Sheng; Duan, Jin-Ao; Zhang, Ying; Qian, Dawei; Tang, Yuping; Zhu, Zhenhua; Wang, Hanqing

    2015-12-12

    Chinese jujube (Ziziphus jujuba), a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.

  4. Antarctic Dry Valleys: Geological Processes in Hyperarid, Hypothermal Environments and Implications for Water on Mars

    Science.gov (United States)

    Head, J.; Dickson, J. L.; Levy, J. S.; Baker, D. M. H.; Marchant, D. R.

    2012-04-01

    The Antarctic Dry Valleys (ADV) are characterized by mean annual temperatures (MAT) well below the freezing point of water and are among the coldest and driest environments on Earth. In spite of these extreme conditions, seasonal temperatures (ST) and peak daytime temperatures (PDT) can locally exceed the melting point of water in certain settings in certain microenvironments. Three major microenvironments (upland stable zone, inland mixed zone, coastal thaw zone) are defined in the ADV on the basis of measurements of atmospheric temperatures (MAT/ST), soil moisture and relative humidity, and the concurrent availability and mobility of water; these microenvironments show variations in the abundance and character of different geomorphic features. For example, in the coldest upland stable zone melting is almost non-existent and sublimation polygons dominate; ice-wedge polygons occur in the coastal thaw zone where seasonal temperatures can exceed the melting temperature of water; sand-wedge polygons occur in the inland mixed zone. The ADV are characterized by a regional permafrost layer and a shallow ice table. In contrast to more temperate latitudes on Earth where the hydrological system and cycle are vertically integrated, the ADV hydrological system consists of a horizontally stratified hydrological cycle; the regional permafrost layer precludes vertical exchange of surface water and deep groundwater below the permafrost. Local near-surface meltwater is produced seasonally, flows across the surface to create gullies, channels and small fluvial features, and soaks into the dry upper part of the permafrost, running downslope along the top of the ice table in a perched aquifer. In this context, melting of seasonal and perennial surface and very near surface snow and ice deposits during peak seasonal and peak daytime temperatures causes a range of fluvial and liquid water-related features in the coastal thaw zone and inland mixed zone. Among the features and processes

  5. Acousto-Convective Drying of Pine Nuts

    Science.gov (United States)

    Zhilin, A. A.; Fedorov, A. V.

    2014-07-01

    An experimental investigation of the process of drying pine nut grains has been carried out by three methods: acousto-convective, thermoconvective, and thermal. A qualitative and a quantitative comparison of the dynamics of the processes of moisture extraction from the nut grains for the considered drying methods have been made. To elucidate the mechanism of moisture extraction from the pine nut grains, we carried out a separate investigation of the process of drying the nut shell and the kernel. The obtained experimental data on the acousto-convective drying of nuts are well described by the relaxation model, the data on the thermoconvective drying are well described by the bilinear law, and the data on the thermal drying are well described by the combined method consisting of three time steps characterized by different kinetic regimes of drying.

  6. Morphology of drying blood pools

    Science.gov (United States)

    Laan, Nick; Smith, Fiona; Nicloux, Celine; Brutin, David; D-Blood project Collaboration

    2016-11-01

    Often blood pools are found on crime scenes providing information concerning the events and sequence of events that took place on the scene. However, there is a lack of knowledge concerning the drying dynamics of blood pools. This study focuses on the drying process of blood pools to determine what relevant information can be obtained for the forensic application. We recorded the drying process of blood pools with a camera and measured the weight. We found that the drying process can be separated into five different: coagulation, gelation, rim desiccation, centre desiccation, and final desiccation. Moreover, we found that the weight of the blood pool diminishes similarly and in a reproducible way for blood pools created in various conditions. In addition, we verify that the size of the blood pools is directly related to its volume and the wettability of the surface. Our study clearly shows that blood pools dry in a reproducible fashion. This preliminary work highlights the difficult task that represents blood pool analysis in forensic investigations, and how internal and external parameters influence its dynamics. We conclude that understanding the drying process dynamics would be advancement in timeline reconstitution of events. ANR funded project: D-Blood Project.

  7. Effects of Processing Temperature on Color Properties of Dry-Cured Hams Made without Nitrite

    Directory of Open Access Journals (Sweden)

    Giovanni Parolari

    2016-04-01

    Full Text Available Dry cured hams were investigated for their ability to develop red color even at low temperature (3–4 °C and in the absence of added nitrites; results were compared with those obtained from nitrite-free hams made at conventional warm maturing temperatures. Colorimetric parameters (L*, a*, b*, and hue and concentration of the main pigments Zn protoporphyrin IX (ZnPP and heme were measured at three stages of preparation (six, nine, and 12 months, showing that red color was successfully formed at low temperatures, though at a slower rate and less intensively than under warm conditions. Major differences in the pattern of color development were found with the two processing temperatures. While the typical features of an enzyme-dependent mechanism, with a progressive drop in enzyme activity paralleling the synthesis of Zn protoporphyrin IX, were observed at warm temperatures, the same did not occur in cold-made hams, where the enzyme activity was almost unchanged throughout the process. These results, along with data from a descriptive sensory analysis, are supportive of a non-enzymatic mechanism leading to ZnPP (hence the red color under cold conditions, with an estimated three-month delay compared with nitrite-free hams manufactured in a warm maturing regimen.

  8. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes.

    Science.gov (United States)

    Cho, Wonkyung; Kim, Min-Soo; Jung, Min-Sook; Park, Junsung; Cha, Kwang-Ho; Kim, Jeong-Soo; Park, Hee Jun; Alhalaweh, Amjad; Velaga, Sitaram P; Hwang, Sung-Joo

    2015-01-15

    The overall aim of this study was to prepare a nasal powder formulation of salmon calcitonin (sCT) using an absorption enhancer to improve its bioavailability. In this work, powder formulations for nasal delivery of sCT were studied using various absorption enhancers and stabilizers. Powders were prepared by two different methods: conventional spray-drying (SD) and novel supercritical fluid-assisted spray-drying (SASD) to investigate the role of CO2 in the particle formation process. The prepared sCT powder formulations were characterized by several analyses; powder X-ray diffractometry (PXRD), scanning electron microscopy (SEM), and the Fourier transform infrared (FT-IR) spectroscopy method. The particle size distribution was also evaluated. In vivo absorption tests were carried out in Sprague-Dawley rat using the prepared powder formulations, and the results were compared to those of raw sCT. Quantitative analysis by high-performance liquid chromatography (HPLC) indicated that sCT was chemically stable after both the SD and SASD processes. Results of PXRD, SEM, and FT-IR did not indicate a strong interaction or defragmentation of sCT. The in vivo absorption test showed that SD- and SASD-processed sCT powders increased the bioavailability of the drug when compared to the nasal administration of raw sCT. In addition, SASD-processed sCT exhibited higher nasal absorption when compared with SD-processed sCT in all formulations due to a reduction of particle size. The results from this study illustrate that the preparation of nasal powders using the SASD process could be a promising approach to improve nasal absorption of sCT.

  9. Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest.

    Science.gov (United States)

    Maza-Villalobos, Susana; Poorter, Lourens; Martínez-Ramos, Miguel

    2013-01-01

    The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0-1 years fallow age), Early (3-5), Intermediate (8-12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process and

  10. Design of solar thermal dryers for 24-hour food drying processes

    Science.gov (United States)

    Solar drying is a method that has been adopted for many years as a food preservation method. To this date, significant advancements have been made in this field with the adoption of a multitude of solar thermal dryer designs for single-layer and multi-layer drying of fruit and vegetables e.g. cabine...

  11. 微波及辐射真空干燥过程中的干燥动力学及能量消耗%Drying Kinetics and Energy Consumption in Vacuum Drying Process with Microwave and Radiant Heating

    Institute of Scientific and Technical Information of China (English)

    M. Kamel; J.I. Lombra(n)a; C. de Elvira; R. Rodr(i)guez

    2004-01-01

    The general objective of this work is to analyze energy input in a vacuum process with the incorporation of microwave heating. Thus, necessary criteria for designing an efficient freeze-drying operation are considered through the analysis of strategies based on the combination of different intensities of radiant and microwave heating.The other aim of this research topic is to study the kinetics of drying in relation to mass transfer parameters.Five freeze-drying strategies using both heating systems were used. Consequently, energy input could be related to diffusivity coefficients, temperature and pressure profiles during dehydration of the product and analyzed in comparison to a conventional freeze-drying process.

  12. Effects of Slice Processing on Hot Air Drying Characteristics of Semi-dry Original Red Jujube%切片处理对半干红枣热风干燥特性的影响

    Institute of Scientific and Technical Information of China (English)

    韩志慧; 郭婷; 何新益; 程莉莉

    2013-01-01

      The objective of this study was to investigate the effects of slice processing on hot air drying characteristics of semi-dry red jujube. Drying characteristics of red jujube slice and origine semi-dry original red jujube under different hot air drying temperature were compared. The drying kinetics model of red jujube slice and origine semi-dry original red jujube were founded. Results showed that slice processing could decrease the drying time of semi-dry original red jujube. Page model provided better simulation of drying curves for red jujube slice at different hot drying temperature. While Henderson and Pabis model provided better simulation of drying curves for origine semi-dry original red jujube at different hot air drying temperature. The effective moisture diffusivity of red jujube was 10 times that of origine semi-dry original red jujube, among 1.77×10-5 m2/s-2.99×10-5 m2/s and 4.56×10-6 m2/s-7.20×10-6 m2/s, respectively. Slice processing has the significant effects on drying characteristics of semi-dry original red jujube dried by hot air drying.%  为探索切片处理对半干红枣热风干燥特性的影响,以半干原枣果作参照,比较了不同热风干燥温度下枣片和枣果的干燥特性,分别建立了干燥动力学模型。研究结果表明,切片处理可以缩短红枣的干燥时间;枣片的热风干燥过程符合Page方程,而枣果的热风干燥过程符合Henderson and Pabis方程。枣片的有效扩散系数是枣果有效扩散系数的的10倍左右,分别为1.77×10-5 m2/s~2.99×10-5 m2/s、4.56×10-6 m2/s~7.20×10-6 m2/s。结果表明切片处理对红枣的干燥特性有明显的影响。

  13. DEVELOPMENT OF MATHEMATICAL MODEL OF PROCESS OF BLACK CURRANT BERRIES DRYING IN VACUUMDEVICE WITH THE MICROWAVE POWER SUPPLY

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2014-01-01

    Full Text Available Summary. The mathematical model allowed to reproduce and study at qualitative level the change of berries form and the structure of the berries layer in the course of drying. The separate berry in the course of drying loses gradually its elasticity, decreases in volume, the peel gathers in folds, there appear internal emptiness. In the course of drying the berries layer decreases in thickness, contacting berries stick strongly with each other due to the coordinated folds of peel appearing, the layer is condensed due to penetration of the berries which have lost elasticity into emptiness between them. The model with high specification describes black currant drying process and therefore has a large number of the parameters available to change. Among them three most important technological parameters, influencing productivity and the drying quality are chosen: the power of microwave radiation P, thickness of the berries layer h, environmental pressure p. From output indicators of the model the most important are three functions from time: dependence of average humidity of the layer on time Wcp (t, dependence of the speed of change of average humidity on time dWcp (t/dt, dependence of the layer average temperature on time Tср (t. On the standard models classification the offered model is algorithmic, but not analytical. It means that output characteristics of model are calculated with the entrance ones, not by analytical transformations (it is impossible principally for the modeled process, but by means of spatial and temporary sampling and the corresponding calculation algorithm. Detailed research of the microwave drying process by means of the model allows to allocate the following stages: fast heating, the fast dehydration, the slowed-down dehydration, consolidation of a layer of a product, final drying, heating after dehydration.

  14. A batch modelling approach to monitor a freeze-drying process using in-line Raman spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda Cruz; De Beer, Thomas; Vervaet, Chris; Remon, Jean-Paul; Lopes, João Almeida

    2010-11-15

    Freeze-drying or lyophilisation is a batch wise industrial process used to remove water from solutions, hence stabilizing the solutes for distribution and storage. The objective of the present work was to outline a batch modelling approach to monitor a freeze-drying process in-line and in real-time using Raman spectroscopy. A 5% (w/v) D-mannitol solution was freeze-dried in this study as model. The monitoring of a freeze-drying process using Raman spectroscopy allows following the product behaviour and some process evolution aspects by detecting the changes of the solutes and solvent occurring during the process. Herewith, real-time solid-state characterization of the final product is also possible. The timely spectroscopic measurements allowed the differentiation between batches operated in normal process conditions and batches having deviations from the normal trajectory. Two strategies were employed to develop batch models: partial least squares (PLS) using the unfolded data and parallel factor analysis (PARAFAC). It was shown that both strategies were able to developed batch models using in-line Raman spectroscopy, allowing to monitor the evolution in real-time of new batches. However, the computational effort required to develop the PLS model and to evaluate new batches using this model is significant lower compared to the PARAFAC model. Moreover, PLS scores in the time mode can be computed for new batches, while using PARAFAC only the batch mode scores can be determined for new batches.

  15. An engineering and economic evaluation of quick germ-quick fiber process for dry-grind ethanol facilities: analysis.

    Science.gov (United States)

    Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R

    2010-07-01

    An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers.

  16. Development of a dynamic drying model for for a combustion grate; Framtagande av en dynamisk torkmodell foer en foerbraenningsrost

    Energy Technology Data Exchange (ETDEWEB)

    Broden, Henrik; Ramstroem, Erik [TPS Termiska Processer AB, Nykoeping (Sweden)

    2005-02-01

    Combustion of wet wood fuel at high grate loading requires good control of the burnout position to avoid unacceptably high content of unburnt fuel in the ash. To control the burn-out position, control actions on the grate feeding must be made with sufficient range and anticipation. One way to improve the understanding of the dynamic fuel bed response on changes in control system parameters is mathematical modelling. The research task has been to develop a mathematical model of a drying fuel bed on a moving grate. The model includes a simplified description of drying, pyrolysis and char combustion and also pusher/grate movement and primary air flow/distribution. The objectives of the project have been to establish the most likely mechanism for drying and ignition of a wet fuel bed on a moving grate by the use of mathematical modelling and also to create a tool for simulation of control system step responses. The target group for the project are individuals working in the area of control system development of grate fired boilers. Three different assumptions on drying and ignition front propagation in a bio fuel bed with 50 and 53 % moisture have been modelled: 1. Drying and ignition from an underlying char layer in a co-current primary air flow 2. Drying and ignition from an overlaying char layer in counter-current primary air flow 3. Drying and ignition from both an underlying and overlaying char layer The model with drying and ignition driven by an underlying char layer is the projection, which gives the fastest and time-wise the most similar course to what one normally sees in grate fired boilers. The model with drying and ignition from above is not capable of upholding a stable diffusion controlled burning char layer since too small quantities of heat is transferred into the fuel bed. The model with drying and ignition from both directions results in similar combustion rate as the first model. The similar course of combustion is due to the energy for drying

  17. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    Science.gov (United States)

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Formulation Development, Process Optimization, and In Vitro Characterization of Spray-Dried Lansoprazole Enteric Microparticles.

    Science.gov (United States)

    Vora, Chintan; Patadia, Riddhish; Mittal, Karan; Mashru, Rajashree

    2016-01-01

    This research focuses on the development of enteric microparticles of lansoprazole in a single step by employing the spray drying technique and studies the effects of variegated formulation/process variables on entrapment efficiency and in vitro gastric resistance. Preliminary trials were undertaken to optimize the type of Eudragit and its various levels. Further trials included the incorporation of plasticizer triethyl citrate and combinations of other polymers with Eudragit S 100. Finally, various process parameters were varied to investigate their effects on microparticle properties. The results revealed Eudragit S 100 as the paramount polymer giving the highest gastric resistance in comparison to Eudragit L 100-55 and L 100 due to its higher pH threshold and its polymeric backbone. Incorporation of plasticizer not only influenced entrapment efficiency, but diminished gastric resistance severely. On the contrary, polymeric combinations reduced entrapment efficiency for both sodium alginate and glyceryl behenate, but significantly influenced gastric resistance for only sodium alginate and not for glyceryl behenate. The optimized process parameters were comprised of an inlet temperature of 150°C, atomizing air pressure of 2 kg/cm(2), feed solution concentration of 6% w/w, feed solution spray rate of 3 ml/min, and aspirator volume of 90%. The SEM analysis revealed smooth and spherical shape morphologies. The DSC and PXRD study divulged the amorphous nature of the drug. Regarding stability, the product was found to be stable under 3 months of accelerated and long-term stability conditions as per ICH Q1A(R2) guidelines. Thus, the technique offers a simple means to generate polymeric enteric microparticles that are ready to formulate and can be directly filled into hard gelatin capsules.

  19. Optimization of Freeze-Drying Process Parameters for Qualitative Evaluation of Button Mushroom (Agaricus bisporus Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ayon Tarafdar

    2017-01-01

    Full Text Available Button mushroom cubes of constant cross-sectional area (0.75 cm × 1.5 cm and varying thickness (2 mm, 5 mm, and 8 mm were freeze-dried. Pressure (0.04, 0.07, and 0.10 mbar, primary drying temperature (−2°C, −5°C, and −8°C, and secondary drying temperature (25°C, 28°C, and 31°C were taken as drying parameters. The protein, ascorbic acid, and antioxidant contents were taken as quality estimates for freeze-dried mushrooms. It was observed that the secondary drying temperature affected the protein (p<0.05 and antioxidant content (p<0.01 significantly, whereas all three freeze-drying parameters affected the ascorbic acid content with higher effect due to temperature parameters (p<0.01 as compared to pressure (p<0.05. The optimized values for protein, ascorbic acid, and antioxidant content obtained using response surface methodology were 7.28±0.56 mg/g, 26.92±0.87 mg/100 g, and 8.60±0.44 mg/g, respectively, as compared to 8.43±0.21 mg/g, 28.00±0.53 mg/100 g, and 9.10±0.10 mg/g, respectively, for fresh button mushrooms. The optimum values for process variables were obtained as 0.09 mbar, 0.36 cm, and −7.53°C and 25.03°C for pressure, sample thickness, and primary and secondary drying temperatures, respectively.

  20. Modelling the dynamics of reasoning processes: reasoning by assumption

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2008-01-01

    To model the dynamics of cognitive processes, often the Dynamical Systems Theory (DST) is advocated. However, for higher cognitive processes such as reasoning and certain forms of natural language processing the techniques adopted within DST are not very adequate. This paper shows how an analysis of

  1. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    Science.gov (United States)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-12-01

    In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Sisbnd Osbnd Mg) were formed by the reaction between Sisbnd OC2H5 or Sisbnd OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  2. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process.

    Science.gov (United States)

    Evangelista, Suzana Reis; Miguel, Maria Gabriela da Cruz Pedrozo; Cordeiro, Cecília de Souza; Silva, Cristina Ferreira; Pinheiro, Ana Carla Marques; Schwan, Rosane Freitas

    2014-12-01

    The aim of this study was to evaluate the use of yeasts as starter cultures in coffee semi-dry processing. Arabica coffee was inoculated with one of the following starter cultures: Saccharomyces cerevisiae UFLA YCN727, S. cerevisiae UFLA YCN724, Candida parapsilosis UFLA YCN448 and Pichia guilliermondii UFLA YCN731. The control was not inoculated with a starter culture. Denaturing gradient gel electrophoresis (DGGE) was used to assess the microbial population, and organic acids and volatile compounds were quantified by HPLC and HS-SPME/GC, respectively. Sensory analyses were evaluated using the Temporal Dominance of Sensations (TDS). DGGE analysis showed that the inoculated yeasts were present throughout the fermentation. Other yeast species were also detected, including Debaryomyces hansenii, Cystofilobasidium ferigula and Trichosporon cavernicola. The bacterial population was diverse and was composed of the following genera: Weissella, Leuconostoc, Gluconobacter, Pseudomonas, Pantoea, Erwinia and Klebsiella. Butyric and propionic acids, were not detected in any treatment A total of 47 different volatiles compounds have been identified. The coffee inoculated with yeast had a caramel flavor that was not detected in the control, as assessed by TDS. The use of starter cultures during coffee fermentation is an interesting alternative for obtaining a beverage quality with distinctive flavor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The 4th irradiation test of dry process fuel in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. Y.; Moon, J. S.; Kang, K. H.; Jung, I. H.; Song, K. C.; Yang, M. S. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The 4th irradiation test of dry process pellet using non-instrumented rig is being performed in the HANARO research reactor. Among the three mini-elements for the 4{sup th} irradiation test, the element No.1 is dedicated to the extended irradiation of the DUPIC pellets irradiated in the 3{sup rd} irradiation test, the element No.2 and No.3 are used for the comparative analysis on the in-core behaviors of simulated DUPIC fuel and actual DUPIC fuel. For these purposes, the irradiated rig of the 3{sup rd} irradiation test was disassembled in a hot cell to select the element No.1. Also the SIMFUEL that is fabricated in the DUPIC laboratory is welded by laser in a welding chamber and the DUPIC fuel that is remotely fabricated in DFDF is welded by a laser method as done in the second and third irradiation tests. The rig was remotely assembled using a rig assembler and loaded into the OR5 hole. Since June 2002, the 4{sup th} irradiation test is being performed.

  4. Self-adaptive optimal control of dry dual clutch transmission (DCT) during starting process

    Science.gov (United States)

    Zhao, Zhiguo; He, Lu; Zheng, Zhengxing; Yang, Yunyun; Wu, Chaochun

    2016-02-01

    An optimal control based on the minimum principle is proposed to solve the problems with the starting process of the self-developed five-speed dry dual clutch transmission (DCT). For the slipping phase, the minimum principle and improved engine constant speed control are adopted to obtain the optimal clutch and engine torques and their rotating speeds, with the minimum jerk intensity and friction work as optimization indices. For the stable running phase, the engine torque is converted to the driver's level of demand. The Matlab/Simulink software platform was used to simulate the DCT vehicle in the starting stage. The simulation and related analysis were conducted for different engine speeds and intentions of the driver. The results showed that the proposed clutch starting control strategy not only reduces the level of jerk and the frictional energy loss but also follows the different starting intentions of the driver. The optimum clutch engagement principle was transformed into the clutch position principle, and a test was carried out on the test bench to validate the effectiveness of the optimum clutch position curve.

  5. Noise Reduction Properties of an Experimental Bituminous Slurry with Crumb Rubber Incorporated by the Dry Process

    Directory of Open Access Journals (Sweden)

    Moisés Bueno

    2014-08-01

    Full Text Available Nowadays, cold technology for asphalt pavement in the field of road construction is considered as an alternative solution to conventional procedures from both an economic and environmental point of view. Among these techniques, bituminous slurry surfacing is obtaining an important role due to the properties of the obtained wearing course. The functional performance of this type of surfaces is directly related to its rough texture. Nevertheless, this parameter has a significant influence on the tire/road noise generation. To reduce this undesirable effect on the sound performance, new designs of elastic bituminous slurries have been developed. Within the FENIX project, this work presents the acoustical characterization of an experimental bituminous slurry with crumb rubber from wasted automobile tires incorporated by the dry process. The obtained results show that, under controlled operational parameters, the close proximity sound levels associated to the experimental slurry are considerably lower than those emitted by a conventional slurry wearing course. However, after one year of supporting traffic loads and different weather conditions, the evaluated bituminous slurry, although it conserves the original noise reduction properties in relation to the conventional one, noticeably increases the generated sound emission. Therefore, it is required to continue improving the design of experimental surfaces in order to enhance its long-term performance.

  6. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    Science.gov (United States)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  7. Physicochemical properties and oral bioavailability of amorphous atorvastatin hemi-calcium using spray-drying and SAS process.

    Science.gov (United States)

    Kim, Jeong-Soo; Kim, Min-Soo; Park, Hee Jun; Jin, Shun-Ji; Lee, Sibeum; Hwang, Sung-Joo

    2008-07-09

    The objective of the study was to prepare amorphous atorvastatin hemi-calcium using spray-drying and supercritical antisolvent (SAS) process and evaluate its physicochemical properties and oral bioavailability. Atorvastatin hemi-calcium trihydrate was transformed to anhydrous amorphous form by spray-drying and SAS process. With the SAS process, the mean particle size and the specific surface area of amorphous atorvastatin were drastically changed to 68.7+/-15.8nm, 120.35+/-1.40m2/g and 95.7+/-12.2nm, 79.78+/-0.93m2/g from an acetone solution and a tetrahydrofuran solution, respectively and appeared to be associated with better performance in apparent solubility, dissolution and pharmacokinetic studies, compared with unprocessed crystalline atorvastatin. Oral AUC0-8h values in SD rats for crystalline and amorphous atorvastatin were as follow: 1121.4+/-212.0ngh/mL for crystalline atorvastatin, 3249.5+/-406.4ngh/mL and 3016.1+/-200.3ngh/mL for amorphous atorvastatin from an acetone solution and a tetrahydrofuran solution with SAS process, 2227.8+/-274.5 and 2099.9+/-339.2ngh/mL for amorphous atorvastatin from acetone and tetrahydrofuran with spray-drying. The AUCs of all amorphous atorvastatin significantly increased (PSAS process exhibits better bioavailability than spray-drying because of particle size reduction with narrow particle size distribution. It was concluded that physicochemical properties and bioavailability of crystalline atorvastatin could be improved by physical modification such as particle size reduction and generation of amorphous state using spray-drying and SAS process. Further, SAS process was a powerful methodology for improving the physicochemical properties and bioavailability of atorvastatin.

  8. Understanding Dynamic Capabilities from Its Antecedents, Processes and Outcomes

    Directory of Open Access Journals (Sweden)

    Vilmar Antônio Gonçalves Tondolo

    2014-01-01

    Full Text Available The theory of Dynamic Capabilities has been one of the references in the search for understanding of the competitive advantage of organizations. However, even with the development of studies on this topic, it is not clear how the Dynamic Capabilities develop and operate within organizations. Thus, this study aims to understand the dynamics capabilities from its antecedents, processes and outcomes. Through a literature review, it was possible to identify external and internal antecedents that make Dynamics Capabilities emerge in organizations, such as environmental dynamism and corporate entrepreneurship. In when it comes to process, it was identified that the Dynamic Capabilities are formed by a set of processes that have effect on resources and organizational capabilities. Thus, the development of resources and capabilities is the outcome of Dynamic Capabilities. Finally, unlike other studies, this work considers the DCs not as a specific capacity, but as a set of processes that enable the organization to deal with changes in the competitive environment.

  9. Modeling of Single Lignite Particle Drying Process in Flue Gas%单颗粒褐煤烟气干燥过程模型研究

    Institute of Scientific and Technical Information of China (English)

    郝正虎; 吴玉新; 吕俊复; 张守玉; 王秀军; 彭定茂

    2012-01-01

    摘要:褐煤干燥对提高褐煤品质具有重要意义。为了深入研究高温烟气干燥褐煤的物理过程,在一维球坐标系下对单个球形褐煤颗粒的干燥脱水过程建立了数值模型。模型中以褐煤颗粒内的蒸发界面为基础,将褐煤颗粒分为干区和湿区,对湿区求解传热方程,对干区求解烟气传热和传质方程,模拟褐煤干燥中的水分蒸发过程。模型采用Crank-Nicolson隐式差分方法进行离散化,模拟得到单个褐煤颗粒动态蒸发的过程。利用该模型分析不同粒径褐煤干燥过程中的烟气温度、颗粒含水量、颗粒内部温度分布等变化规律。发现颗粒最高温度不超过烟气和颗粒的最终平衡温度。褐煤颗粒粒径和初始烟气温度对褐煤的干燥过程有重要影响,较高的初始烟气温度条件下所需的干燥时间短,干燥时间近似与褐煤颗粒粒径的平方成正比。%Lignite drying is very useful for improving lignite quality. In order to deeply understand lignite drying process in high temperature flue gas, a onedimensional spherical numerical model of a single lignite particle drying process in flue gas was proposed. In this model, lignite particle was divided into dry region and wet region by an evaporation interface. In the wet region, only heat transfer was considered. In the dry region, both heat transfer and mass transfer were involved to describe water evaporation. Crank-Nicolson scheme was adopted to describe the transport equations so that dynamic evaporation process can be correctly solved in a large time step. With the proposed model, gas temperature, moisture content and temperature distribution within the particle varying with the resident time were simulated during drying process. It is found that the maximum particle temperature during drying process is lower than the particleflue gas balance temperature. Particle diameter as well as initial flue gas temperature has an

  10. Impact analysis of different chemical pre-treatments on colour of apple discs during drying process

    OpenAIRE

    D. Magdić; Lukinac, Jasmina; Jokić, Stela; Čačić-Kenjerić, F.; Bilić, M.; Velić, D.

    2009-01-01

    The main purpose of this study was to compare colour changes of chemically pre-treated dried apple discs. Changes were observed by chromameter in L*a*b* colour model by using Minolta chromameter CR-400 and by image analysis system in RGB colour model. Apple discs variety "Gold Rush" were pre-treated and dried in laboratory tray drier at drying temperature 70 °C and at airflow velocity of 1.5 ms-1. Different chemical pre-treatments were applied on apple discs (dipping in 0.5% ascorbic acid sol...

  11. Studies of dynamical processes affecting global climate

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C.; Cooper, D.; Eichinger, W. [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  12. Drying kinetics and mathematical modeling of abalone during the hot-air drying process%鲍鱼热风干燥动力学及干燥过程数学模拟

    Institute of Scientific and Technical Information of China (English)

    贾敏; 丛海花; 薛长湖; 薛勇; 孙兆敏; 李金章

    2012-01-01

    研究了鲍鱼在不同热风干燥温度下的干燥动力学特点,并构建了干燥过程的数学模型。热风干燥温度选取60、65、70、75、80℃;风速恒定为1m/s。干燥方法采取间歇干燥,分两个阶段进行。利用理论模型—扩散模型,和常见经验模型—Newton模型、Henderson and Pabis模型、Logaritmic模型、Two-terms模型、Page模型及Modified Page模型,对鲍鱼干燥过程的两个阶段分别进行描述。实验结果表明:鲍鱼热风干燥只经历降速阶段,水分扩散在鲍鱼干燥的过程中起主导作用。通过对实验数据进行统计分析,得到适合鲍鱼热风干燥的模型为Page模型(第一阶段干燥)和Two-terms模型(第二阶段干燥),模型的预测值与实际值比较吻合(Page模型r2〉0.999,s〈1%;Two-terms模型r2〉0.997,s〈2%),可以用来描述鲍鱼的热风干燥过程。%The drying dynamics characteristics and drying model of abalone were studied and constructed respectively,using a hot air dryer at five levels of drying air temperatures in the range of 60~80℃,and a fixed air flow velocity,1m/s.The drying process was intermittent,divided into two stages,during which the drying behaviors of abalone were estimated respectively by mechanistic and empirical models:the diffusion model,Newton model,Henderson and Pabis model,Logaritmic model,Two-terms model,Page model,and Modified Page model.It could be seen that the drying process of abalone only contained deceleration stage and the removal of moisture from the material was governed by diffusion phenomenon.Among the models,the Page model and the Two-terms models were found to be the most suitable(Page model:r20.999,s1%;Two-terms model:r20.997,s2%) for predicting moisture ratio of the product in the first and second stage of the drying process.

  13. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part II. Model validation and sensitivity analysis

    Science.gov (United States)

    A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...

  14. Heat and Mass Transfer Modeling of Apple Slice under Simultaneous Infrared Dry-Blanching and Dehydration Process

    Science.gov (United States)

    To develop a new simultaneous infrared dry blanching and dehydration process for producing high-quality blanched and partially dehydrated products, apple slices with three different thicknesses, 5, 9, and 13 mm, were heated using infrared for up to 10 min at 4000W/m2 IR intensity. The surface and ce...

  15. Processing and quality characteristics of apple slices under simultaneous infrared dry-blanching and dehydration with continuous heating

    Science.gov (United States)

    This study investigated the effects of various processing parameters on apple slices exposed to infrared (IR) radiation heating in a continuous heating mode for achieving simultaneous infrared dry-blanching and dehydration (SIRDBD). The investigated parameters were radiation intensity, slice thickne...

  16. Accelerated processing of dry-cured ham. Part I. Viability of the use of brine thawing/salting operation.

    Science.gov (United States)

    Barat, José M; Grau, Raúl; Ibáñez, J B; Pagán, María J; Flores, Mónica; Toldrá, Fidel; Fito, Pedro

    2006-04-01

    In a previous study, the brine thawing/salting operation using frozen hams as raw material was proposed in order to obtain accelerated processing of dry-cured hams. The time needed to reach the same NaCl concentration on a dry weight basis and the same NaCl concentration in the ham liquid phase for the deeper areas at the end of the post-salting stage were determined. The aim of this work was to study the influence of the brine thawing/salting operation on the whole dry-cured ham manufacturing process, using the traditional thawing and salting methods as control. The obtained results indicate that although a strong reduction in the thawing, salting and post-salting stages is obtained by using brine thawing/salting, the time needed in the dry-curing and maturing phases increases compared to those traditionally processed, probably due to the absence of pile salting and thus the reduction in the thickness of the ham piece as a consequence of the ham pressing. From the composition and microbiological point of view, no significant differences were observed among the hams processed by the different treatments.

  17. Analysis Variation of Drying Parameters of Corn Seeds Processed in Microwave Field. Thermal Field Analysis.

    OpenAIRE

    Darie SOPRONI; VICAS Simina; Carmen MOLNAR; ARION Mircea; HATHAZI Francisc Ioan

    2012-01-01

    The present research has the objective to analyze the drying characteristics of the corn seeds in the microwave field. During the experiment is being followed the germination of the seeds and thedistribution of temperature in the dielectric.

  18. The interconnection of wet and dry deposition and the alteration of deposition budgets due to incorporation of new process understanding in regional models

    Science.gov (United States)

    Dennis, R. L.; Bash, J. O.; Foley, K. M.; Gilliam, R.; Pinder, R. W.

    2013-12-01

    Deposition is affected by the chemical and physical processes represented in the regional models as well as source strength. The overall production and loss budget (wet and dry deposition) is dynamically connected and adjusts internally to changes in process representation. In addition, the scrubbing of pollutants from the atmosphere by precipitation is one of several processes that remove pollutants, creating a coupling with the atmospheric aqueous and gas phase chemistry that can influence wet deposition rates in a nonlinear manner. We explore through model sensitivities with the regional Community Multiscale Air Quality (CMAQ) model the influence on wet and dry deposition, and the overall continental nitrogen budget, of changes in three process representations in the model: (1) incorporation of lightning generated NO, (2) improved representation of convective precipitation, and (3) replacement of the typical unidirectional dry deposition of NH3 with a state of the science representation of NH3 bi-directional air-surface exchange. Results of the sensitivity studies will be presented. (1) Incorporation of lightning generated NO significantly reduces a negative bias in summer wet nitrate deposition, but is sensitive to the choice of convective parameterization. (2) Use of a less active trigger of convective precipitation in the WRF meteorological model to reduce summertime precipitation over prediction bias reduces the generation of NO from lightning. It also reduces the wet deposition of nitrate and increases the dry deposition of oxidized nitrogen, as well as changing (reducing) the surface level exposure to ozone. Improvements in the convective precipitation processes also result in more non-precipitating clouds leading to an increase in SO4 production through the aqueous pathway resulting in improvements in summertime SO4 ambient aerosol estimates.(3) Incorporation of state of the science ammonia bi-directional air surface exchange affects both the dry

  19. Flow dynamics of a spiral-groove dry-gas seal

    Science.gov (United States)

    Wang, Bing; Zhang, Huiqiang; Cao, Hongjun

    2013-01-01

    The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.

  20. Comparing the Use of Dynamic Response Index (DRI) and Lumbar Load as Relevant Spinal Injury Metrics

    Science.gov (United States)

    2014-01-09

    whereas injury criteria are established with physical parameters which describe the biomechanical response of the human body or its surrogate [14]. Neck ...Response Index (DRI) – Mechanical Model • Simple lumped mass parameter model (single spring-mass-damper) to simulate the biomechanical response...the paper. • Perhaps Tremblay meant to refer to Alem [6], who also refers to a factor 3.4 that was used on Mertz’s neck data in estimating 6675 N

  1. Processing method and corn cultivar affected anthocyanin concentration from dried distillers grains with solubles.

    Science.gov (United States)

    Dia, Vermont P; Wang, Zhaoqin; West, Megan; Singh, Vijay; West, Leslie; de Mejia, Elvira Gonzalez

    2015-04-01

    Anthocyanins are water-soluble pigments with health benefits and potential use as food colorants. The objectives of this work were to (1) determine optimum parameters for the extraction of anthocyanins from dried distillers grain with solubles (DDGS), (2) develop a method of anthocyanin extraction from DDGS, (3) quantify and identify the extracted anthocyanins, and (4) determine the effect of processing methods and corn cultivars on anthocyanin concentration. DDGS samples were prepared from purple (PC) and dark (DC) corn and processed using conventional enzymes (C) and granular starch hydrolyzing enzymes (GC). Three independent variables (ethanol concentration (0, 12.5, and 25%); liquid-to-solid ratio (30:1, 40:1, 50:1 mL/g); and extraction temperature (4, 22, and 40 °C)) and two dependent variables (anthocyanin concentration and a-value (redness)) were used. Results showed that dark corn DDGS gave anthocyanin concentration higher than that of purple corn. The GC process showed total anthocyanin concentration higher than that of the conventional method of DDGS production. The maximum anthocyanin concentration was obtained at 12.5% ethanol, 40:1 liquid-to-solid ratio, and 22 °C for C-PC [321.0 ± 37.3 μg cyanidin-3 glucoside (C3G) equivalent/g DDGS]. For GC-PC, 25% ethanol, 30:1 liquid-to-solid ratio, and 22 °C gave 741.4 ± 12.8 μg C3G equivalent/g DDGS. For GC-DC, 12.5% ethanol, 40:1 liquid-to-solid ratio, and 40 °C extraction gave 1573.4 ± 84.0 μg C3G equivalent/g DDGS. LC/MS-MS analysis showed that the major anthocyanins were cyanidin-3-glucoside, cyanidin-3-(6″-malonyl) glucoside, and peonidin-3-(6″malonyl) glucoside. In conclusion, anthocyanin extraction from colored corn DDGS can be optimized using 12.5% ethanol, 40:1 mL/g ratio, and 22 °C.

  2. Dynamical Properties of a Ru/MgAl2O4 Catalyst during Reduction and Dry Methane Reforming

    DEFF Research Database (Denmark)

    Kehres, Jan; Jakobsen, Jon Geest; Andreasen, Jens Wenzel;

    2012-01-01

    of the size regime attributed to scattering from Ru/RuO2-particles decreases slightly by about 0.2 nm during the reduction. Dry methane reforming experiments were performed in a temperature interval from 723 to 1023 K by applying a gas mixture of carbon dioxide and methane in molar ratio of 3:1. The catalyst......Combined in situ small- and wide-angle X-ray scattering (SAXS/WAXS) studies were performed in a new laboratory setup to investigate the dynamical properties of a ruthenium/spinel (Ru/MgAl2O4) catalyst, w(Ru) = 4 wt %, during the reduction and subsequent dry methane reforming. The Ru particles...... did not show any deactivation during the experiment of overall 32 h, indicated by stable turnover frequencies for methane. The mean Ru-particle diameter remained constant during the dry methane reforming experiments, revealing a high sintering stability of the Ru/MgAl2O4 catalyst....

  3. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.

    Science.gov (United States)

    Nathan, Viswam; Jafari, Roozbeh

    2015-10-01

    Dry electrodes are a convenient alternative to wet electrodes for electroencephalography (EEG) acquisition systems. Dry electrodes are subject to a higher amount of noise at the electrode scalp interface and these effects can be worsened due to non-ideal design or improper placement on the head. In this work, we investigate a popular dry electrode design based on a number of resistive 'finger' shaped contacts. We conduct experiments comparing designs with varying numbers of fingers using two impedance measurement methods and show that sparser arrangements of fingers are more robust to varying use cases and are more effective at penetrating through hair on the scalp. We then show that these impedance measurement metrics could be used to sort individual fingers within one electrode according to quality of electrical contact. We show that the signals from individual fingers can differ from each other significantly due to differing local effects of impedance and noise, and demonstrate through experimental results that dynamically selecting only a subset of fingers with good contact impedance can improve the overall signal-to-noise ratio of the EEG signal from that electrode.

  4. Structural Changes and Rheological Properties of Dry Abalone Meat (Haliotis diversicolor) During the Process of Water Restoration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Changes in tissue structure, rheological property and water content of dry abalone meat in the process of water restoration were studied. The weight and volume of dry abalone meat increased with water restoration. When observed under a light microscope, structural change in myofibrils was obvious and a distinct network was found. When water restoration time increased from 24h to 72h, the instantaneous modulus E0 and viscosity η1 increased, whereas the rupture strength and relaxation time (τ1) were reduced. There were no significant changes of rheological parameters (E0, η1, τ1, rupture strength) from 72 h to 96 h of water restoration. Therefore, the dry abalone meat was swollen enough at the time of 72 h. The rheological parameters were obviously influenced by the structural changes.

  5. Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri;

    2016-01-01

    Evaporation of water from a ceramic layer is a key phenomenon in the drying process for the manufacturing of water-based tape cast ceramics. In this paper we present a coupled free-flow-porous-media model on the Representative Elementary Volume (REV) scale for coupling non-isothermal multi...... in accordance with the available results from the literature. We elaborate on and discuss the characteristic drying-rate curve for a single layer ceramic, and compare it with that of a graded/layered ceramic. We, moreover, show the influence of the mean diameter of particles of the porous medium (dp) — which...... directly affects the intrinsic permeability (K) based on the well-known Ergun's equation — of each single ceramic layer on the drying behaviour of a graded/layered ceramic....

  6. Convective drying of sludge cake

    Science.gov (United States)

    Chen, Jianbo; Peng, Xiaofeng; Xue, Yuan; Lee, Duujong; Chu, Chingping

    2002-08-01

    This paper presented an experimental study on convective drying of waste water sludge collected from Beijing GaoBeiDian Sewage Treatment Plant, particularly on the correlation between the observed shrinkage dynamics of sludge cake and the drying curve. During the initial stage of drying the process resembles to that of a particulate bed, in which moisture diffuses and evaporates at the upper surface. Conventional drying theory assuming a diffusion-evaporating front interprets this period of drying. Consequently, owing to the very large shrinkage ratio of the dried cake, cracks emerges and propagates on and within the cake body, whence inducing evaporating channel that facilitates the water removal. This occurrence compensates the reduction of surface area for evaporation, whence extending the constant-rate period during the test. Afterwards, the cracks meet with each other and form isolated cake piles, while the subsequent drying occur mainly within these piles and the conventional theory fails. The transition between the drying on a plain cake layer and that on the isolated piles demonstrates the need to adopt distinct descriptions on these two regimes of drying for the sludge cake.

  7. Dry Season Evapotranspiration Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model

    Directory of Open Access Journals (Sweden)

    Kul Khand

    2017-07-01

    Full Text Available Although seasonal and temporal variations in evapotranspiration (ET in Amazonia have been studied based upon flux-tower data and coarse resolution satellite-based models, ET dynamics over human-impacted landscapes are highly uncertain in this region. In this study, we estimate ET rates from critical land cover types over highly fragmented landscapes in the southern Amazon and characterize the ET dynamics during the dry season using the METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration model. METRIC, a Landsat-based ET model, that generates spatially continuous ET estimates at a 30 m spatial resolution widely used for agricultural applications, was adapted to the southern Amazon by using the NDVI indexed reference ET fraction (ETrF approach. Compared to flux tower-based ET rates, this approach showed an improved performance on the forest ET estimation over the standard METRIC approach, with R2 = 0.73 from R2 = 0.70 and RMSE reduced from 0.77 mm/day to 0.35 mm/day. We used this approach integrated into the METRIC procedure to estimate ET rates from primary, regenerated, and degraded forests and pasture in Acre, Rondônia, and Mato Grosso, all located in the southern Amazon, during the dry season in 2009. The lowest ET rates occurred in Mato Grosso, the driest region. Acre and Rondônia, both located in the southwestern Amazon, had similar ET rates for all land cover types. Dry season ET rates between primary forest and regenerated forest were similar (p > 0.05 in all sites, ranging between 2.5 and 3.4 mm/day for both forest cover types in the three sites. ET rates from degraded forest in Mato Grosso were significantly lower (p < 0.05 compared to the other forest cover types, with a value of 2.03 mm/day on average. Pasture showed the lowest ET rates during the dry season at all study sites, with the dry season average ET varying from 1.7 mm/day in Mato Grosso to 2.8 mm/day in Acre.

  8. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  9. Value-added processing of peanut skins: antioxidant capacity, total phenolics, and procyanidin content of spray-dried extracts.

    Science.gov (United States)

    Constanza, Karen E; White, Brittany L; Davis, Jack P; Sanders, Timothy H; Dean, Lisa L

    2012-10-31

    To explore a potential use for peanut skins as a functional food ingredient, milled skins were extracted with 70% ethanol and filtered to remove insoluble material; the soluble extract was spray-dried with or without the addition of maltodextrin. Peanut skin extracts had high levels of procyanidin oligomers (DP2-DP4) but low levels of monomeric flavan-3-ols and polymers. The addition of maltodextrin during spray-drying resulted in the formation of unknown polymeric compounds. Spray-drying also increased the proportion of flavan-3-ols and DP2 procyanidins in the extracts while decreasing larger procyanidins. Spray-dried powders had higher antioxidant capacity and total phenolics and increased solubility compared to milled skins. These data suggest that spray-dried peanut skin extracts may be a good source of natural antioxidants. Additionally, the insoluble material produced during the process may have increased value for use in animal feed due to enrichment of protein and removal of phenolic compounds during extraction.

  10. The dynamics of local processes towards environmentally sustainable transport

    DEFF Research Database (Denmark)

    Hansen, Carsten Jahn

    1999-01-01

    The paper explores and discusses the dynamics of local leading towards the creation of an environmentally sustainable transport system. processes......The paper explores and discusses the dynamics of local leading towards the creation of an environmentally sustainable transport system. processes...

  11. Using dry spell dynamics of land surface temperature to evaluate large-scale model representation of soil moisture control on evapotranspiration

    Science.gov (United States)

    Taylor, Christopher M.; Harris, Philip P.; Gallego-Elvira, Belen; Folwell, Sonja S.

    2017-04-01

    The soil moisture control on the partition of land surface fluxes between sensible and latent heat is a key aspect of land surface models used within numerical weather prediction and climate models. As soils dry out, evapotranspiration (ET) decreases, and the excess energy is used to warm the atmosphere. Poor simulations of this dynamic process can affect predictions of mean, and in particular, extreme air temperatures, and can introduce substantial biases into projections of climate change at regional scales. The lack of reliable observations of fluxes and root zone soil moisture at spatial scales that atmospheric models use (typically from 1 to several hundred kilometres), coupled with spatial variability in vegetation and soil properties, makes it difficult to evaluate the flux partitioning at the model grid box scale. To overcome this problem, we have developed techniques to use Land Surface Temperature (LST) to evaluate models. As soils dry out, LST rises, so it can be used under certain circumstances as a proxy for the partition between sensible and latent heat. Moreover, long time series of reliable LST observations under clear skies are available globally at resolutions of the order of 1km. Models can exhibit large biases in seasonal mean LST for various reasons, including poor description of aerodynamic coupling, uncertainties in vegetation mapping, and errors in down-welling radiation. Rather than compare long-term average LST values with models, we focus on the dynamics of LST during dry spells, when negligible rain falls, and the soil moisture store is drying out. The rate of warming of the land surface, or, more precisely, its warming rate relative to the atmosphere, emphasises the impact of changes in soil moisture control on the surface energy balance. Here we show the application of this approach to model evaluation, with examples at continental and global scales. We can compare the behaviour of both fully-coupled land-atmosphere models, and land

  12. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections.

    Science.gov (United States)

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2016-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions.

  13. Study of drying process on starch structural properties and their effect on semolina pasta sensory quality.

    Science.gov (United States)

    Padalino, Lucia; Caliandro, Rocco; Chita, Giuseppe; Conte, Amalia; Del Nobile, Matteo Alessandro

    2016-11-20

    The influence of drying temperature on the starch crystallites and its impact on durum wheat pasta sensory properties is addressed in this work. In particular, spaghetti were produced by means of a pilot plant using 5 different drying temperature profiles. The sensory properties, as well as the cooking quality of pasta were assessed. X-ray powder diffraction was used for investigating changes in the crystallinity content of the samples. Starch crystallinity, size and density of the starch crystallites were determined from the analysis of the diffraction profiles. As expected, spaghetti sensory properties improved as the drying temperatures increased. In particular, attributes as resistance to break for uncooked samples and firmness, elasticity, bulkiness and stickiness for cooked samples, all benefit from drying temperature increase. The spaghetti cooking quality was also positively affected by the drying temperature increase. Diffraction analysis suggested that the improvement of sensory properties and cooking quality of pasta were directly related to the increase in density of both physical crosslink of starch granules and chemical crosslink of protein matrix.

  14. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    Science.gov (United States)

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time.

  15. Impact of the freeze-drying process on product appearance, residual moisture content, viability, and batch uniformity of freeze-dried bacterial cultures safeguarded at culture collections.

    Science.gov (United States)

    Peiren, Jindrich; Hellemans, Ann; De Vos, Paul

    2016-07-01

    In this study, causes of collapsed bacterial cultures in glass ampoules observed after freeze-drying were investigated as well as the influence of collapse on residual moisture content (RMC) and viability. Also, the effect of heat radiation and post freeze-drying treatments on the RMC was studied. Cake morphologies of 21 bacterial strains obtained after freeze-drying with one standard protocol could be classified visually into four major types: no collapse, porous, partial collapse, and collapse. The more pronounced the collapse, the higher residual moisture content of the freeze-dried product, ranging from 1.53 % for non-collapsed products to 3.62 % for collapsed products. The most important cause of collapse was the mass of the inserted cotton plug in the ampoule. Default cotton plugs with a mass between 21 and 30 mg inside the ampoule did not affect the viability of freeze-dried Aliivibrio fischeri LMG 4414(T) compared to ampoules without cotton plugs. Cotton plugs with a mass higher than 65 mg inside the ampoule induced a full collapsed product with rubbery look (melt-back) and decreasing viability during storage. Heat radiation effects in the freeze-drying chamber and post freeze-drying treatments such as exposure time to air after freeze-drying and manifold drying time prior to heat sealing of ampoules influenced the RMC of freeze-dried products. To produce uniform batches of freeze-dried bacterial strains with intact cake structures and highest viabilities, inserted cotton plugs should not exceed 21 mg per ampoule. Furthermore, heat radiation effects should be calculated in the design of the primary drying phase and manifold drying time before heat sealing should be determined as a function of exposure time to air.

  16. Changes in mineral concentrations and phosphorus profile during dry-grind processing of corn into ethanol.

    Science.gov (United States)

    Liu, KeShun; Han, Jianchun

    2011-02-01

    For determining variation in mineral composition and phosphorus (P) profile among streams of dry-grind ethanol production, samples of ground corn, intermediate streams, and distillers dried grains with solubles (DDGS) were obtained from three commercial plants. Most attributes (dry matter concentrations) increased significantly from corn to cooked slurry but fermentation caused most significant increase in all attributes. During centrifugation, more minerals went into thin stillage than wet grains, making minerals most concentrated in the former. Mineral increase in DDGS over corn was about 3 fold, except for Na, S, Ca, and Fe. The first three had much higher fold of increase, presumably due to exogenous addition. During fermentation, phytate P and inorganic P had 2.54 and 10.37 fold of increase over corn, respectively, while relative to total P, % phytate P decreased and % inorganic P increased significantly. These observations suggest that phytate underwent some degradation, presumably due to activity of yeast phytase.

  17. Modeling Academic Education Processes by Dynamic Storyboarding

    Science.gov (United States)

    Sakurai, Yoshitaka; Dohi, Shinichi; Tsuruta, Setsuo; Knauf, Rainer

    2009-01-01

    In high-level education such as university studies, there is a flexible but complicated system of subject offerings and registration rules such as prerequisite subjects. Those offerings, connected with registration rules, should be matched to the students' learning needs and desires, which change dynamically. Students need assistance in such a…

  18. Dynamic Conditional Correlations for Asymmetric Processes

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (WDCC) model and the Matrix-Exponential Conditional Correlation (MECC) model. The paper applies the WDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models.

  19. Dynamic Conditional Correlations for Asymmetric Processes

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (WDCC) model and the Matrix-Exponential Conditional Correlation (MECC) model. The paper applies the WDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models.

  20. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  1. Rewetting of semi-dried ink patterns by vapour annealing for developing a reflow process in reverse offset printing

    Science.gov (United States)

    Kusaka, Yasuyuki; Sugihara, Kazuyoshi; Koutake, Masayoshi; Ushijima, Hirobumi

    2017-01-01

    A process for reflowing patterned materials for reverse offset printing was developed, with the aim of mitigating the step-coverage problem in multilayered devices. The proposed reflow process involves a single step of vapour annealing at moderate temperatures ranging from 60 to 70 °C. This step successfully changes the height profile of semi-dried ink patterns formed on a silicone blanket, from an initially rectangular shape to a rounded shape. A systematic investigation on the effects of various vapour species and vapour temperatures on the reflow process revealed that the miscibility between the vapour and the ink, and a low boiling point of the respective solvent (high vapour pressure) are the prerequisites for successful reflows of semi-dried ink layers patterned on a silicone blanket. The results suggested that the rewetting of previously semi-dried patterns is the main mechanism in the reflow process, which led to a change in the height profile. Furthermore, the reflowed patterns demonstrated almost identical peak-height thicknesses, irrespective of the width of the patterns. This is a unique property that is unattainable by other printing methods, including gravure offset printing and microcontact printing, wherein printed patterns have rounded shapes without a reflow process, but their thickness inevitably depends on the pattern sizes.

  2. The socially-dynamic entrepreneurial process

    DEFF Research Database (Denmark)

    Bjerregaard, Toke; Lauring, Jakob

    2012-01-01

    or cognitive schemes as the independent variable behind entrepreneurial activity. Elaborating on the socially-dynamic perspectives of anthropological theories, this article presents a coherent theoretical framework for entrepreneurship research embracing the social dimensions as well as individual factors......Large shares of the entrepreneurship research are informed by two central lines of thought. One focuses on the role of formal and informal social networks for mobilising resources and obtaining information about new markets and opportunities. The other conceives of individual personality traits...

  3. Transient dynamics for sequence processing neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Masaki [Faculty of Science, Yamaguchi University, Yamaguchi (Japan)]. E-mail: kawamura@sci.yamaguchi-u.ac.jp; Okada, Masato [RIKEN BSI, Hirosawa, Wako-shi (Japan)

    2002-01-18

    An exact solution of the transient dynamics for a sequential associative memory model is discussed through both the path-integral method and the statistical neurodynamics. Although the path-integral method has the ability to give an exact solution of the transient dynamics, only stationary properties have been discussed for the sequential associative memory. We have succeeded in deriving an exact macroscopic description of the transient dynamics by analysing the correlation of crosstalk noise. Surprisingly, the order parameter equations of this exact solution are completely equivalent to those of the statistical neurodynamics, which is an approximation theory that assumes crosstalk noise to obey the Gaussian distribution. In order to examine our theoretical findings, we numerically obtain cumulants of the crosstalk noise. We verify that the third- and fourth-order cumulants are equal to zero, and that the crosstalk noise is normally distributed even in the non-retrieval case. We show that the results obtained by our theory agree with those obtained by computer simulations. We have also found that the macroscopic unstable state completely coincides with the separatrix. (author)

  4. Accelerating glassy dynamics using graphics processing units

    CERN Document Server

    Colberg, Peter H

    2009-01-01

    Modern graphics hardware offers peak performances close to 1 Tflop/s, and NVIDIA's CUDA provides a flexible and convenient programming interface to exploit these immense computing resources. We demonstrate the ability of GPUs to perform high-precision molecular dynamics simulations for nearly a million particles running stably over many days. Particular emphasis is put on the numerical long-time stability in terms of energy and momentum conservation. Floating point precision is a crucial issue here, and sufficient precision is maintained by double-single emulation of the floating point arithmetic. As a demanding test case, we have reproduced the slow dynamics of a binary Lennard-Jones mixture close to the glass transition. The improved numerical accuracy permits us to follow the relaxation dynamics of a large system over 4 non-trivial decades in time. Further, our data provide evidence for a negative power-law decay of the velocity autocorrelation function with exponent 5/2 in the close vicinity of the transi...

  5. Predictive modeling of infrared radiative heating in tomato dry-peeling process: Part I. Model development

    Science.gov (United States)

    Infrared (IR) dry-peeling has emerged as an effective non-chemical alternative to conventional lye and steam methods of peeling tomatoes. Successful peel separation induced by IR radiation requires the delivery of a sufficient amount of thermal energy onto tomato surface in a very short duration. Th...

  6. Experimental Research of Moisture Evaporation Process from Biomass in a Drying Chamber

    Directory of Open Access Journals (Sweden)

    Bulba E.E.

    2015-01-01

    Full Text Available Presented mass evaporation rate hardwood (birch, aspen, maple, poplar derived from experimental studies. The dependence of temperature on evaporation mass rate and calculated the accommodation coefficient for the respective temperature ranges are obtained. Analyzed the temperature of drying conditions relevant species hardwood.

  7. Process for dry chemisorption in filter separators. Verfahren fuer die trockene Chemisorption in Filterabscheidern

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.; Gresch, H.; Igelbuescher, H.

    1987-05-07

    In order to minimize permeability in the filtration of pollutants from waste gas by dry chemisorption, only 1-2% of the total filter surface is used in filtration at any time, and before reuse this portion of the filter is preferably treated with fresh chemisorbent.

  8. Spray drying thermoplastic starch formulations : Need for processing aids and plasticizers?

    NARCIS (Netherlands)

    Niazi, Muhammad Bilal Khan; Zijlstra, Mark; Broekhuis, Antonius A.

    2013-01-01

    Retrogradation of amorphous thermoplastic starch (TPS) films obtained by compression moulding of spray dried amorphous powder was investigated. The aim of the work was to study the influence of malto-oligosaccharide molecular weight, i.e. dextrose equivalents (DEs), on the performance of the powders

  9. Twin screw extrusion processing of feed blends containing distillers dried grains with solubles

    Science.gov (United States)

    Extrusion trials were conducted with varying levels of distillers dried grains with solubles (DDGS) along with soy flour, corn flour, fish meal, vitamin mix, mineral mix and net protein content adjusted to 28% using a Wenger TX-52 twin screw extruder. The properties of extrudates obtained with exper...

  10. Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars

    Science.gov (United States)

    Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.

    2010-01-01

    The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.

  11. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    Science.gov (United States)

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2016-06-09

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production.

  12. Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation.

    Science.gov (United States)

    Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo

    2015-02-01

    This study aimed to investigate the feasibility of substitute natural gas (SNG) generation using biogas from anaerobic digestion and hydrogen from renewable energy systems. Using thermodynamic equilibrium analysis, kinetic reactor modeling and transient simulation, an integrated approach for the operation of a biogas-based Sabatier process was put forward, which was then verified using a lab scale heterogenous methanation reactor. The process simulation using a kinetic reactor model demonstrated the feasibility of the production of SNG at gas grid standards using a single reactor setup. The Wobbe index, CO2 content and calorific value were found to be controllable by the H2/CO2 ratio fed the methanation reactor. An optimal H2/CO2 ratio of 3.45-3.7 was seen to result in a product gas with high calorific value and Wobbe index. The dynamic reactor simulation verified that the process start-up was feasible within several minutes to facilitate surplus electricity use from renewable energy systems.

  13. The Mechanism of Carotenoid Degradation in Flue-Cured Tobacco and Changes in the Related Enzyme Activities at the Leaf-Drying Stage During the Bulk Curing Process

    Institute of Scientific and Technical Information of China (English)

    SONG Zhao-peng; LI Tong-shuai; ZHANG Yong-gang; CAO Hui-jing; GONG Chang-rong; ZHANG Wei-jian

    2010-01-01

    The mechanism of carotenoid degradation and the changes in the activities of related enzymes in flue-cured tobacco at the leaf-drying stage during the bulk-curing process were studied in order to provide theoretical basis for optimization of curing technology.The effect of different rising speeds of temperature on the carotenoid degradation and the related enzymes activities at the color-fixing stage during the bulk curing process was studied by using the electric-heated fluecuring barn designed by Henan Agricultural University,China,based on curing technology with yellowing at low temperature and moderate humidity and leaf drying at moderate humidity.The results showed that the carotenoid degradation components(β-carotene,lutein,neoxanthin,and violaxthin)decreased gradually at the color-fixing stage during the bulk curing process.The carotenoid degradation components viz.,β-carotene,lutein,neoxanthin,and violaxthin at the slow heating curing(T1)were relatively higher than the rapid heating curing(T2)accounting for 10,2,32 and 32%respectively,but there were no differences among treatments(P>0.05).The effect of different conditions of curing on the activities of enzymes related to carotenoids degradation were significant.The lipoxygenase,phenylalanine ammonialyase,peroxidase,and polyphenol oxidase enzymes had a bidirectional effect on the quality of tobacco leaves and it was beneficial to form more premise matter of aroma based on the higher enzyme activities at the early leaf-drying stage.The slow heating could regulate the change in various enzymes' activities reasonably,making cell redox reaction to reach the dynamic balance and make the degradation of carotenoids adequately.Meanwhile,it could avoid the occurrence of browning reaction and provide foundation for improving the quality of tobacco and optimization of technology for bulk curing and further enhancing aroma.

  14. Dynamic effects of wet-dry cycles and crust formation on the saturated hydraulic conductivity of surface soils in the constructed Hühnerwasser ("Chicken Creek") catchment

    Science.gov (United States)

    Hinz, Christoph; Schümberg, Sabine; Kubitz, Anita; Frank, Franzi; Cheng, Zhang; Nanu Frechen, Tobias; Pohle, Ina

    2016-04-01

    showed that the removal of the crust lead generally to a decrease in hydraulic conductivity. The process of crust removal represented a severe disturbance of the surface soil which to our understanding causes particle mobilisation and subsequent pore clogging. The first hypothesis could neither be rejected nor accepted. The second set of experiments showed that the hydraulic conductivity significantly dropped in particular after the first drying event.. This was observed for both undisturbed and repacked samples. The following drying cycles further decreased the hydraulic conductivity in the repacked samples. The decrease in hydraulic conductivity was positively correlated to turbidity values in the effluent of the samples, indicating particle mobilisation in all samples. The results imply that hydraulic properties in such substrates undergo rapid changes that depend on the temporal dynamics of atmospheric drivers, precipitation and evaporative demand, controlling the degree of wetness and the rate and degree of drying during the very early stage after placement. Associated with the dynamics of the atmospheric drivers are the biological changes due to the formation of biological soil crusts and the establishment of vegetation, both of them contributing to the stabilisation of hydraulic properties.

  15. Cooperativity and Dynamics Increase the Performance of NiFe Dry Reforming Catalysts.

    Science.gov (United States)

    Kim, Sung Min; Abdala, Paula Macarena; Margossian, Tigran; Hosseini, Davood; Foppa, Lucas; Armutlulu, Andac; van Beek, Wouter; Comas-Vives, Aleix; Copéret, Christophe; Müller, Christoph

    2017-02-08

    The dry reforming of methane (DRM), i.e., the reaction of methane and CO2 to form a synthesis gas, converts two major greenhouse gases into a useful chemical feedstock. In this work, we probe the effect and role of Fe in bimetallic NiFe dry reforming catalysts. To this end, monometallic Ni, Fe, and bimetallic Ni-Fe catalysts supported on a MgxAlyOz matrix derived via a hydrotalcite-like precursor were synthesized. Importantly, the textural features of the catalysts, i.e., the specific surface area (172-178 m(2)/gcat), pore volume (0.51-0.66 cm(3)/gcat), and particle size (5.4-5.8 nm) were kept constant. Bimetallic, Ni4Fe1 with Ni/(Ni + Fe) = 0.8, showed the highest activity and stability, whereas rapid deactivation and a low catalytic activity were observed for monometallic Ni and Fe catalysts, respectively. XRD, Raman, TPO, and TEM analysis confirmed that the deactivation of monometallic Ni catalysts was in large due to the formation of graphitic carbon. The promoting effect of Fe in bimetallic Ni-Fe was elucidated by combining operando XRD and XAS analyses and energy-dispersive X-ray spectroscopy complemented with density functional theory calculations. Under dry reforming conditions, Fe is oxidized partially to FeO leading to a partial dealloying and formation of a Ni-richer NiFe alloy. Fe migrates leading to the formation of FeO preferentially at the surface. Experiments in an inert helium atmosphere confirm that FeO reacts via a redox mechanism with carbon deposits forming CO, whereby the reduced Fe restores the original Ni-Fe alloy. Owing to the high activity of the material and the absence of any XRD signature of FeO, it is very likely that FeO is formed as small domains of a few atom layer thickness covering a fraction of the surface of the Ni-rich particles, ensuring a close proximity of the carbon removal (FeO) and methane activation (Ni) sites.

  16. A double stage dry-wet-fermentation process for a fast and safe digestion of different kinds of organic material

    Energy Technology Data Exchange (ETDEWEB)

    Busch, G.; Sieber, M.; Buschmann, J.; Burkhardat, M.

    2009-07-01

    The fermentation of organic material is a four-step-process. It is admissible to merge the first two steps (hydrolysis and acidification) to hydrolysis in general and the last two steps (aceto genesis and methano genesis) to methano genesis. The Brandenburg University of Technology in Cottbus has devised a double stage dry-wet-fermentation process for fast and safe anaerobic degradation. Using these processes, it is possible to decompose different kinds of organic material like renewable material (e. g. maize silage), waste (e. g. household-waste) and industrial material (e. g. glycerine). (Author)

  17. Volatile compounds of dry-cured Iberian ham as affected by the length of the curing process.

    Science.gov (United States)

    Ruiz, J; Ventanas, J; Cava, R; Andrés, A; García, C

    1999-05-01

    Volatile compounds from 10 dry-cured Iberian hams ripened for two different processing times, a prolonged traditional one (600 days) and a shortened process (420 days), were analysed by purge and trap coupled to gas chromatography-mass spectroscopy. Eighty-three compounds were identified which agreed with the major classes found in other ham types. The amount of methyl branched alkanes was much higher than in other dry-cured ham types, probably due to the feeding regime. The percentages of 2- and 3-methylbutanal were higher (p<0.0001 and p<0.0003, respectively) in the longer aged hams, whereas the amounts of some compounds from lipid oxidation decreased from 420 to 600 days aging. In agreement with these observations, 600-day hams had higher scores for those odour and flavour traits usually considered to be positive attributes and lower scores for rancidity. A positive and significant correlation between 2-methyl butanal and cured flavour was found.

  18. Determination of sulfur and nitrogen compounds during the processing of dry fermented sausages and their relation to amino acid generation.

    Science.gov (United States)

    Corral, Sara; Leitner, Erich; Siegmund, Barbara; Flores, Mónica

    2016-01-01

    The identification of odor-active sulfur and nitrogen compounds formed during the processing of dry fermented sausages was the objective of this study. In order to elucidate their possible origin, free amino acids (FAAs) were also determined. The volatile compounds present in the dry sausages were extracted using solvent assisted flavor evaporation (SAFE) and monitored by one and two-dimensional gas chromatography with different detectors: mass spectrometry (MS), nitrogen phosphorous (NPD), flame photometric (FPD) detectors, as well as gas chromatography-olfactometry. A total of seventeen sulfur and nitrogen compounds were identified and quantified. Among them, 2-acetyl-1-pyrroline was the most potent odor active compound, followed by methional, ethylpyrazine and 2,3-dihydrothiophene characterized by toasted, cooked potato, and nutty notes. The degradation of FAAs, generated during processing, was related to the production of aroma compounds, such as methionine forming methional and benzothiazole while ornithine was the precursor compound for 2-acetyl-1-pyrroline and glycine for ethylpyrazine.

  19. Quantum Dynamics as a Stochastic Process

    CERN Document Server

    Figueiredo, J M A

    2002-01-01

    We study the classical motion of a particle subject to a stochastic force. We then present a perturbative schema for the associated Fokker-Planck equation where, in the limit of a vanishingly small noise source, a consistent dynamical model is obtained. The resulting theory is similar to Quantum Mechanics, having the same field equations for probability measures, the same operator structure and symmetric ordering of operators. The model is valid for general electromagnetic interaction as well as many body systems with mutual interactions of general nature.

  20. Dynamic Conditional Correlations for Asymmetric Processes

    OpenAIRE

    Asai, Manabu; McAleer, Michael

    2011-01-01

    The paper develops two Dynamic Conditional Correlation (DCC) models, namely the Wishart DCC (wDCC) model. The paper applies the wDCC approach to the exponential GARCH (EGARCH) and GJR models to propose asymmetric DCC models. We use the standardized multivariate t-distribution to accommodate heavy-tailed errors. The paper presents an empirical example using the trivariate data of the Nikkei 225, Hang Seng and Straits Times Indices for estimating and forecasting the wDCC-EGARCH and wDCC-GJR mod...

  1. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J.B.; Cummings, D.L. (Oregon State Univ., Corvallis (United States)); Sanford, R.L. Jr. (Univ. of Denver, CO (United States)); Salcedo, I.H.; Sampaio, E.V.S.B. (Universidade Federal do Pernambuco, Recife (Brazil))

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ([open quotes]Caatinga[close quotes]) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was [approx]74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (

  2. Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models

    Science.gov (United States)

    Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto

    2017-09-01

    The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity (D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature (T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates (T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates (T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.

  3. Effect of Ripeness and Drying Process on Sugar and Ethanol Production from Giant Reed (Arundo donax L.

    Directory of Open Access Journals (Sweden)

    Egidio Viola

    2015-04-01

    Full Text Available The work highlighted the influence of the water content within the starting biomass, drying procedure and ripeness on the enzymatic digestibility of the giant reed, one of the most suitable nonfood crops for bioenergy and bio-compound production. Fresh green reed was treated as received, while oven-dried green and ripe reed were humidified before the steam explosion pretreatment that was carried out at 210 ℃ for 10 minutes. The exploded biomasses were extracted with water to remove the soluble hemicellulose and potential inhibitors; the insoluble residue was submitted to enzymatic hydrolysis and alcoholic fermentation. The process was evaluated in terms of sugars recovery and ethanol yield. After the sequence of pretreatment, enzymatic hydrolysis and fermentation by Saccharomyces cerevisiae 132 g; 103 g; 162 g of ethanol; and 77 g; 63 g; 92 g of pentosanes were respectively obtained from 1 kgDM of fresh green reed; dried green reed or ripe reed. The ripe reed contains more carbohydrates than the green reed and the resulting sugar and ethanol production was higher, in spite of lower saccharification yield. While drying the fresh biomass is good practice for biomass preservation, it negatively affects the recovery of free sugars and the ethanol production, because of fiber hornification which hinders enzyme access in the hydrolysis step.

  4. Contents Changes of Triterpenic Acids, Nucleosides, Nucleobases, and Saccharides in Jujube (Ziziphus jujuba Fruit During the Drying and Steaming Process

    Directory of Open Access Journals (Sweden)

    Sheng Guo

    2015-12-01

    Full Text Available Chinese jujube (Ziziphus jujuba, a medicinal and edible plant, is widely consumed in Asian countries owing to the remarkable health activities of its fruits. To facilitate selection of the suitable processing method for jujube fruits, in this study their contents of triterpenic acids, nucleosides, nucleobases and saccharides after drying and steaming treatment were determined using ultra-high performance liquid chromatography and high performance liquid chromatography coupled with evaporative light scattering detector methods. The results showed that except for sucrose, the content levels of most analytes were increasing in the jujube fruits during drying treatment at 45 °C. The levels of cyclic nucleotides such as adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate, were significantly decreased after the fruits were steamed. Therefore, owing to the bioactivities of these components for human health, the dried fruits would be the better choice as medicinal material or functional food, and dried jujube fruit should not be further steamed.

  5. COMPARATIVE ANALYSIS OF SOLID INK DENSITY, PRINT CONTRAST AND PRINT GLOSS OF METALIZED BOARD PRINTED WITH SHEET FED OFFSET PRINTING PROCESS AND DRY TONER BASED DIGITAL PRINTING PROCESS

    OpenAIRE

    Aman Bhardwaj*, Vandana

    2016-01-01

    Metalized boards are frequently used in the packaging industry. In our study, we compare the Print properties of metalized board printed with the primer coat on sheet fed offset and dry toner based digital printing process. Metalized boards are give good print properties when printed with digital printing process for short run jobs. Comparatively high contrast is found in less solid ink density in digital printing.  

  6. Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea

    Science.gov (United States)

    2015-09-30

    NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea Ramsey R. Harcourt Applied Physics Laboratory University of...Sullivan of NCAR. Although its physical model is substantially similar to the LES used in prior research (e.g. Harcourt, 2008) the NCAR LES code...convective boundary layer statistics and structures generated by large-eddy simulation. Journal of the Atmospheric Sciences, 68, 2395-2415.

  7. Regional Simulation of Soil Organic Carbon Dynamics for Dry Farmland in East China by Coupling a 1:500 000 Soil Database with the Century Model

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-Hang; SHI Xue-Zheng; ZHAO Yong-Cun; D.C.WEINDORF; YU Dong-Sheng; XU Sheng-Xiang; TAN Man-Zhi; SUN Wei-Xia

    2011-01-01

    Changes in soil organic carbon (SOC) in agricultural soils influence soil quality and greenhouse gas concentrations in the atmosphere. Dry farmland covers more than 70% of the whole cropland area in China and plays an important role in mitigating carbon dioxide (CO2) emissions. In this study, 4 109 dry farmland soil polygons were extracted using spatial overlay analysis of the soil layer (1:500 000) and the land use layer (1:500 000) to support Century model simulations of SOC dynamics for dry farmland in Anhui Province, East China from 1980 to 2008. Considering two field-validation sites,the Century model performed relatively well in modeling SOC dynamics for dry farmland in the province. The simulated results showed that the area-weighted mean soil organic carbon density (SOCD) of dry farmland increased from 18.77 Mg C ha-1 in 1980 to 23.99 Mg C ha-1 in 2008 with an average sequestration rate of 0.18 Mg C ha-1 year-1. Approximately 94.9% of the total dry farmland area sequestered carbon while 5.1% had carbon lost. Over the past 29 years, the net SOC gain in dry farmland soils of the province was 19.37 Tg, with an average sequestration rate of 0.67 Tg C year-1 Augmentation of SOC was primarily due to increased consumption of nitrogen fertilizer and farmyard manure. Moreover,SOC dynamics were highly differentiated among dry farmland soil groups. The integration of the Century model with a fine-scale soil database approach could be conveniently utilized as a tool for the accurate simulation of SOC dynamics at the regional scale.

  8. Institutional dynamics and the negotiation process

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Worm, Verner

    2004-01-01

    The paper develops the argument for analyzing negotiations from an institutional perspective. A major theme of the argument being advanced in the paper is that the institutional perspective provides a more comprehensive understanding of the negotiation process in its entirety. The negotiation...... process can be broken down into three distinct components, namely (a) the pre negotiation phase; (b) the negotiating phase; and (c) the post negotiation evaluation. Each of these phases is critically influenced by a specific component or components of the institutional environment. Scott's distinction...... and their implications for negotiating processes in these countries. Choosing India and China to illustrate the utility of this framework is justified by the fact that India and China are both in the process of transforming their economies and although confronted with similar challenges they have dealt with them in very...

  9. Drying Characteristics and Product Quality of Cowpeas in the Convective Tunnel Drying Process%长豇豆隧道式热风干燥特性及品质变化

    Institute of Scientific and Technical Information of China (English)

    师建芳; 吴辉煌; 刘清; 吴中华

    2013-01-01

    应用自制隧道式干燥实验台对95,℃漂烫2,min 后的长豇豆进行热风干燥实验,分析了在不同热风温度、热风速度、料层厚度条件下豇豆的干燥特性及干产品品质.结果表明:长豇豆干燥过程中干燥第1阶段表现明显,热风温度对干燥速率及品质的影响最大;经漂烫后的长豇豆在热风温度60,℃、热风速度0.3,m/s、料层厚度6,mm条件下干燥时所得产品Vc含量最高.研究结果可为长豇豆隧道式热风干燥生产实践提供参考依据.%Convective air drying of fresh cowpeas was done in a lab-scale tunnel dryer,and parametric studies were con-ducted to understand the effect of drying air temperature,velocity and material layer thickness on the drying characteristics of cowpeas and the quality of the dried product. Experimental results show that the first stage drying dominates the cowpea drying process and the drying air temperature has an important effect on the drying rate and product quality. The optimized drying conditions with the highest content of Vc were obtained for the fresh cowpeas:the drying temperature was 60,℃,air velocity was 0.3,m/s and the material layer thickness was 6,mm. The study can provide some useful technical data for the tunnel drying of cowpeas.

  10. Dry Eye

    Science.gov (United States)

    ... Eye > Facts About Dry Eye Facts About Dry Eye This information was developed by the National Eye ... the best person to answer specific questions. Dry Eye Defined What is dry eye? Dry eye occurs ...

  11. Dynamics in the dry bulk market : Economic activity, trade flows, and safety in shipping

    NARCIS (Netherlands)

    C. Heij (Christiaan); S. Knapp (Sabine)

    2012-01-01

    textabstractRecent dynamics in iron ore markets are driven by rapid changes in economic activities that affect commodity markets, trade flows, and shipping activities. Time series models for the relation between these variables in Southeast Asia and the Australasian region are supplemented with

  12. Dynamics in the dry bulk market : Economic activity, trade flows, and safety in shipping

    NARCIS (Netherlands)

    C. Heij (Christiaan); S. Knapp (Sabine)

    2012-01-01

    textabstractRecent dynamics in iron ore markets are driven by rapid changes in economic activities that affect commodity markets, trade flows, and shipping activities. Time series models for the relation between these variables in Southeast Asia and the Australasian region are supplemented with mode

  13. Formulation and dissolution kinetics study of hydrophilic matrix tablets with tramadol hydrochloride and different co-processed dry binders.

    Science.gov (United States)

    Komersová, Alena; Lochař, Václav; Myslíková, Kateřina; Mužíková, Jitka; Bartoš, Martin

    2016-12-01

    The aim of this study is to present the possibility of using of co-processed dry binders for formulation of matrix tablets with drug controlled release. Hydrophilic matrix tablets with tramadol hydrochloride, hypromellose and different co-processed dry binders were prepared by direct compression method. Hypromelloses Methocel™ K4M Premium CR or Methocel™ K100M Premium CR were used as controlled release agents and Prosolv® SMCC 90 or Disintequik™ MCC 25 were used as co-processed dry binders. Homogeneity of the tablets was evaluated using scanning electron microscopy and energy dispersive X-ray microanalysis. The release of tramadol hydrochloride from prepared formulations was studied by dissolution test method. The dissolution profiles obtained were evaluated by non-linear regression analysis, release rate constants and other kinetic parameters were determined. It was found that matrix tablets based on Prosolv® SMCC 90 and Methocel™ Premium CR cannot control the tramadol release effectively for >12h and tablets containing Disintequik™ MCC 25 and Methocel™ Premium CR >8h. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Understanding Dynamic Capabilities from Its Antecedents, Processes and Outcomes

    OpenAIRE

    2014-01-01

    The theory of Dynamic Capabilities has been one of the references in the search for understanding of the competitive advantage of organizations. However, even with the development of studies on this topic, it is not clear how the Dynamic Capabilities develop and operate within organizations. Thus, this study aims to understand the dynamics capabilities from its antecedents, processes and outcomes. Through a literature review, it was possible to identify external and internal antecedents that ...

  15. An in silico model of retinal cholesterol dynamics (RCD model): insights into the pathophysiology of dry AMD[S

    Science.gov (United States)

    Zekavat, Seyedeh Maryam; Lu, James; Maugeais, Cyrille; Mazer, Norman A.

    2017-01-01

    We developed an in silico mathematical model of retinal cholesterol (Ch) dynamics (RCD) to quantify the physiological rate of Ch turnover in the rod outer segment (ROS), the lipoprotein transport mechanisms by which Ch enters and leaves the outer retina, and the rates of drusen growth and macrophage-mediated clearance in dry age-related macular degeneration. Based on existing experimental data and mechanistic hypotheses, we estimated the Ch turnover rate in the ROS to be 1–6 pg/mm2/min, dependent on the rate of Ch recycling in the outer retina, and found comparable rates for LDL receptor-mediated endocytosis of Ch by the retinal pigment epithelium (RPE), ABCA1-mediated Ch transport from the RPE to the outer retina, ABCA1-mediated Ch efflux from the RPE to the choroid, and the secretion of 70 nm ApoB-Ch particles from the RPE. The drusen growth rate is predicted to increase from 0.7 to 4.2 μm/year in proportion to the flux of ApoB-Ch particles. The rapid regression of drusen may be explained by macrophage-mediated clearance if the macrophage density reaches ∼3,500 cells/mm2. The RCD model quantifies retinal Ch dynamics and suggests that retinal Ch turnover and recycling, ApoB-Ch particle efflux, and macrophage-mediated clearance may explain the dynamics of drusen growth and regression. PMID:28442497

  16. An in silico model of retinal cholesterol dynamics (RCD model): insights into the pathophysiology of dry AMD.

    Science.gov (United States)

    Zekavat, Seyedeh Maryam; Lu, James; Maugeais, Cyrille; Mazer, Norman A

    2017-07-01

    We developed an in silico mathematical model of retinal cholesterol (Ch) dynamics (RCD) to quantify the physiological rate of Ch turnover in the rod outer segment (ROS), the lipoprotein transport mechanisms by which Ch enters and leaves the outer retina, and the rates of drusen growth and macrophage-mediated clearance in dry age-related macular degeneration. Based on existing experimental data and mechanistic hypotheses, we estimated the Ch turnover rate in the ROS to be 1-6 pg/mm(2)/min, dependent on the rate of Ch recycling in the outer retina, and found comparable rates for LDL receptor-mediated endocytosis of Ch by the retinal pigment epithelium (RPE), ABCA1-mediated Ch transport from the RPE to the outer retina, ABCA1-mediated Ch efflux from the RPE to the choroid, and the secretion of 70 nm ApoB-Ch particles from the RPE. The drusen growth rate is predicted to increase from 0.7 to 4.2 μm/year in proportion to the flux of ApoB-Ch particles. The rapid regression of drusen may be explained by macrophage-mediated clearance if the macrophage density reaches ∼3,500 cells/mm(2) The RCD model quantifies retinal Ch dynamics and suggests that retinal Ch turnover and recycling, ApoB-Ch particle efflux, and macrophage-mediated clearance may explain the dynamics of drusen growth and regression. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models.

  18. Landscape dynamics assessment of dry climatic zones on the Baikal-Gobi transect from NDVI time series and field investigations data

    Science.gov (United States)

    Sayapina, D. O.; Zharnikova, M. A.; Tsydypov, B. Z.; Sodnomov, B. V.; Garmaev, E. Zh

    2016-11-01

    Starting in the eighties of the 20th century, the scientists of the Baikal Institute of Nature Management (BINM SB RAS) have been conducting field observations of the Transbaikalia geosystems transformation due to the change of climate and nature management. An utmost importance is placed on the study of a negative response of the land geosystems. This is shown through their deterioration, degradation, and desertification in particular. Through the years of research (1985-2015) in dry areas of the north of Central Asia, the scientists of the BINM SB RAS established a network of key sites for contact monitoring of the status and dynamics of the geosystems and the negative natural-anthropogenic processes along the Baikal-Gobi meridional transect (51-44° N, 105-107° E). The monitoring of the status and dynamics of the vegetation cover of some key sites is conducted by processing and analysis of multitemporal and multispectral Landsat and MODIS Terra imagery. An automatic analysis of the time variation of NDVI and a comparison with the progress of the index in the previous seasons are performed. The landscape indication of the key sites is made on the basis of satellite imagery and complete geobotanical descriptions. Landscape profiles and facies maps with natural boundaries are created.

  19. Dynamic Noise and its Role in Understanding Epidemiological Processes

    Science.gov (United States)

    Stollenwerk, Nico; Aguiar, Maíra

    2010-09-01

    We investigate the role of dynamic noise in understanding epidemiological systems, such as influenza or dengue fever by deriving stochastic ordinary differential equations from markov processes for discrete populations. This approach allows for an easy analysis of dynamical noise transitions between co-existing attractors.

  20. Developmental Dynamics of Emotion and Cognition Processes in Preschoolers

    Science.gov (United States)

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.; Weaver, Jennifer Miner

    2013-01-01

    Dynamic relations during the preschool years across processes of control and understanding in the domains of emotion and cognition were examined. Participants were 263 children (42% non-White) and their mothers who were seen first when the children were 3 years old and again when they were 4. Results indicated dynamic dependence among the…

  1. Developmental Dynamics of Emotion and Cognition Processes in Preschoolers

    Science.gov (United States)

    Blankson, A. Nayena; O'Brien, Marion; Leerkes, Esther M.; Marcovitch, Stuart; Calkins, Susan D.; Weaver, Jennifer Miner

    2013-01-01

    Dynamic relations during the preschool years across processes of control and understanding in the domains of emotion and cognition were examined. Participants were 263 children (42% non-White) and their mothers who were seen first when the children were 3 years old and again when they were 4. Results indicated dynamic dependence among the…

  2. Dry cured ham quality as related to lipid quality of raw material and lipid changes during processing: a review.

    Directory of Open Access Journals (Sweden)

    Gilles, Gandemer

    2009-07-01

    Full Text Available Lipids play a key role in sensory traits of dry cured hams. Both the quantity and the composition of lipids in raw material affect dry-cured hams quality. The lipid characteristics strongly depend on rearing systems developed in different area in Europe. During processing, lipids undergo lipolysis and oxidation. Phospholipids are the main substrates of both lipolysis and oxidation. Lipolysis forms free fatty acids rich in polyunsaturated fatty acids all along the process. Lipids are also subjected to oxidation which forms many volatile compounds. These volatiles affect in the aroma of dry-cured hams and are associated with aroma notes such as rancid, aged meat or dry-cured. According to the genotype and the rearing conditions of pigs and the parameters of processing, dry-cured hams have specific sensory profiles. This paper reviews the present knowledge on lipids and dry-cured ham quality.Los lípidos desempeñan un papel fundamental en las características sensoriales de los jamones curados. Tanto la cantidad como la composición de los lípidos de las materias primas afectan a la calidad de los jamones. Las características de los lípidos dependen en gran medida de los sistemas de crianza desarrollados en las diferentes zonas de Europa. Durante el proceso, los lípidos sufren reacciones como la lipolisis y la oxidación. La lipolisis genera ácidos grasos libres a lo largo de todo el proceso, siendo los más abundantes los ácidos grasos poliinsaturados. Los lípidos también están sujetos a la oxidación, la cual genera muchos compuestos volátiles. Estos volátiles afectan al aroma de los jamones curados asociándose a notas tales como la rancidez, carne vieja o curado. De acuerdo con el genotipo y las condiciones de crianza de los cerdos y los parámetros del proceso, los jamones curados tienen un perfil sensorial específico. En este artículo se examinan los conocimientos actuales sobre los lípidos y la calidad del jamón curado.

  3. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes....... In 2005, FI and PRD2 were investigated, where FI plants received 100% of evaporative demands, while PRD2 plants received 70% water of FI at each irrigation event after tuber initiation. In 2006, besides FI and PRD2 treatments, DI and PRDI receiving 70% water of FI during the whole season were also studied....... Crop N uptake and residual NH (4)-N and NO3-N to a depth of 0-50 cm, at 10 cm intervals were analyzed. For both years, the PRD2 treatment resulted in 30% water saving and maintained yield as compared with the FI treatment, while when investigated in 2006 only, DI and PRDI treatments resulted...

  4. Analysis of vegetation dynamics and phytodiversity from three dry deciduous forests of Doon Valley, Western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Gautam Mandal

    2014-09-01

    Full Text Available The present study aimed to analyze the vegetation dynamics and plant diversity from the dry deciduous forests of Doon Valley. Species richness, regeneration, and change in community composition of these forests were studied and change was noticed with Shorea robusta as the main dominant species, and Mallotus philippensis, Syzygium cumini, and Ehretia laevis as codominant tree species in all communities. The highest species richness and diversity rates were found to be increased with the decrease in tree density and basal area. The high Importance Value Index recorded in Thano (>150 indicates that the S. robusta forest is progressing toward the culmination stage, whereas the lower IVI values (100 and 150 in the other two sites (Selaqui – Jhajra and Asarori signify the heavy disturbance of these sites and further establishment of alien invasive species such as Cassia tora, Cassia occidentalis, Lantana camara, Urena lobata, Ipomoea carnea, Sida acuta, and Solanum torvum.

  5. Interfacial fluid dynamics and transport processes

    CERN Document Server

    Schwabe, Dietrich

    2003-01-01

    The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by the many demands for applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

  6. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction.

    Science.gov (United States)

    Rajha, Hiba N; Ziegler, Walter; Louka, Nicolas; Hobaika, Zeina; Vorobiev, Eugene; Boechzelt, Herbert G; Maroun, Richard G

    2014-01-01

    In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE) of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY) for wet (16.2 g GAE/100 g DM) and dry (7.28 g GAE/100 g DM) grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12%) than the wet extract (39.8%). The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications.

  7. Effect of the Drying Process on the Intensification of Phenolic Compounds Recovery from Grape Pomace Using Accelerated Solvent Extraction

    Directory of Open Access Journals (Sweden)

    Hiba N. Rajha

    2014-10-01

    Full Text Available In light of their environmental and economic interests, food byproducts have been increasingly exploited and valorized for their richness in dietary fibers and antioxidants. Phenolic compounds are antioxidant bioactive molecules highly present in grape byproducts. Herein, the accelerated solvent extraction (ASE of phenolic compounds from wet and dried grape pomace, at 45 °C, was conducted and the highest phenolic compounds yield (PCY for wet (16.2 g GAE/100 g DM and dry (7.28 g GAE/100 g DM grape pomace extracts were obtained with 70% ethanol/water solvent at 140 °C. The PCY obtained from wet pomace was up to two times better compared to the dry byproduct and up to 15 times better compared to the same food matrices treated with conventional methods. With regard to Resveratrol, the corresponding dry pomace extract had a better free radical scavenging activity (49.12% than the wet extract (39.8%. The drying pretreatment process seems to ameliorate the antiradical activity, especially when the extraction by ASE is performed at temperatures above 100 °C. HPLC-DAD analysis showed that the diversity of the flavonoid and the non-flavonoid compounds found in the extracts was seriously affected by the extraction temperature and the pretreatment of the raw material. This diversity seems to play a key role in the scavenging activity demonstrated by the extracts. Our results emphasize on ASE usage as a promising method for the preparation of highly concentrated and bioactive phenolic extracts that could be used in several industrial applications.

  8. Conformational dynamics of dry lamellar crystals of sugar based lipids: an atomistic simulation study.

    Directory of Open Access Journals (Sweden)

    Vijayan ManickamAchari

    Full Text Available The rational design of a glycolipid application (e.g. drug delivery with a tailored property depends on the detailed understanding of its structure and dynamics. Because of the complexity of sugar stereochemistry, we have undertaken a simulation study on the conformational dynamics of a set of synthetic glycosides with different sugar groups and chain design, namely dodecyl β-maltoside, dodecyl β-cellobioside, dodecyl β-isomaltoside and a C12C10 branched β-maltoside under anhydrous conditions. We examined the chain structure in detail, including the chain packing, gauche/trans conformations and chain tilting. In addition, we also investigated the rotational dynamics of the headgroup and alkyl chains. Monoalkylated glycosides possess a small amount of gauche conformers (∼20% in the hydrophobic region of the lamellar crystal (LC phase. In contrast, the branched chain glycolipid in the fluid Lα phase has a high gauche population of up to ∼40%. Rotational diffusion analysis reveals that the carbons closest to the headgroup have the highest correlation times. Furthermore, its value depends on sugar type, where the rotational dynamics of an isomaltose was found to be 11-15% and more restrained near the sugar, possibly due to the chain disorder and partial inter-digitation compared to the other monoalkylated lipids. Intriguingly, the present simulation demonstrates the chain from the branched glycolipid bilayer has the ability to enter into the hydrophilic region. This interesting feature of the anhydrous glycolipid bilayer simulation appears to arise from a combination of lipid crowding and the amphoteric nature of the sugar headgroups.

  9. Academic writing development: a complex, dynamic process

    NARCIS (Netherlands)

    Penris, Wouter; Verspoor, Marjolijn; Pfenniger, Simone; Navracsics, Judit

    2017-01-01

    Traditionally we look at learning outcomes by examining single outcomes. A new and future direction is to look at the actual process of development. Imagine an advanced, 17-year-old student of English (L2) who has just finished secondary school in the Netherlands and wants to become an English

  10. Dynamic Process Simulation for Analysis and Design.

    Science.gov (United States)

    Nuttall, Herbert E., Jr.; Himmelblau, David M.

    A computer program for the simulation of complex continuous process in real-time in an interactive mode is described. The program is user oriented, flexible, and provides both numerical and graphic output. The program has been used in classroom teaching and computer aided design. Typical input and output are illustrated for a sample problem to…

  11. Academic writing development: a complex, dynamic process

    NARCIS (Netherlands)

    Penris, Wouter; Verspoor, Marjolijn; Pfenniger, Simone; Navracsics, Judit

    2017-01-01

    Traditionally we look at learning outcomes by examining single outcomes. A new and future direction is to look at the actual process of development. Imagine an advanced, 17-year-old student of English (L2) who has just finished secondary school in the Netherlands and wants to become an English teach

  12. Annotations: Dynamic Semantics in Stream Processing

    NARCIS (Netherlands)

    Amiguet, Juan; Wombacher, Andreas; Klifman, Tim E.

    2010-01-01

    In the field of e-science stream data processing is common place facilitating sensor networks, in particular for prediction and supporting decision making. However, sensor data may be erroneous, like e.g. due to measurement errors (outliers) or changes of the environment. While it can be foreseen th

  13. Short-term dynamics of culturable bacteria in a soil amended with biotransformed dry olive residue.

    Science.gov (United States)

    Siles, J A; Pascual, J; González-Menéndez, V; Sampedro, I; García-Romera, I; Bills, G F

    2014-03-01

    Dry olive residue (DOR) transformation by wood decomposing basidiomycetes (e.g. Coriolopsis floccosa) is a possible strategy for eliminating the liabilities related to the use of olive oil industry waste as an organic soil amendment. The effects of organic fertilization with DOR on the culturable soil microbiota are largely unknown. Therefore, the objectives of this study were to measure the short-term effects of DOR and C. floccosa-transformed DOR on the culturable bacterial soil community, while at the same time documenting the bacterial diversity of an agronomic soil in the southeastern Iberian Peninsula. The control soil was compared with the same soil treated with DOR and with C. floccosa-transformed DOR for 0, 30 and 60 days. Impact was measured from total viable cells and CFU counts, as well as the isolation and characterization of 900 strains by fatty acid methyl ester profiles and 16S rRNA partial sequencing. The bacterial diversity was distributed between Actinobacteria, Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, Bacilli, Sphingobacteria and Cytophagia. Analysis of the treatments and controls demonstrated that soil amendment with untransformed DOR produced important changes in bacterial density and diversity. However, when C. floccosa-transformed DOR was applied, bacterial proliferation was observed but bacterial diversity was less affected, and the distribution of microorganisms was more similar to the unamended soil.

  14. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf

    2017-08-07

    Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.

  15. Optical 3D shape measurement for dynamic process

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    3D shape dynamic measurement is essential to the study of machine vision, hydromechanics, high-speed rotation, deformation of material, stress analysis, deformation in impact, explosion process and biomedicine. in recent years. In this paper,the results of our research, including the theoretical analysis, some feasible methods and relevant verifying experiment results, are compendiously reported. At present, these results have been used in our assembling instruments for 3D shape measurement of dynamic process.

  16. Biogenic amine producing capability of bacterial populations isolated during processing of different types of dry fermented sausages

    Directory of Open Access Journals (Sweden)

    M. Vincenzini

    2010-04-01

    Full Text Available In order to assess the distribution of the biogenic amine (BA producing capability within the bacterial populations occurring during production of dry fermented sausages, four different types of sausage processing, three with the use of starter cultures and one without, were investigated. All the main bacterial populations involved in the sausage processing showed a diffuse and strain dependent capability to produce BAs. However, quantitative determination of individual BAs produced by the bacterial isolates suggests an important role of enterococci in the accumulation of tyramine, the most abundant biogenic amine found in all investigated sausages.

  17. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.

    Science.gov (United States)

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang

    2004-12-15

    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).

  18. Extending Newtonian Dynamics to Include Stochastic Processes

    Science.gov (United States)

    Zak, Michail

    2009-01-01

    A paper presents further results of continuing research reported in several previous NASA Tech Briefs articles, the two most recent being Stochastic Representations of Chaos Using Terminal Attractors (NPO-41519), [Vol. 30, No. 5 (May 2006), page 57] and Physical Principle for Generation of Randomness (NPO-43822) [Vol. 33, No. 5 (May 2009), page 56]. This research focuses upon a mathematical formalism for describing post-instability motions of a dynamical system characterized by exponential divergences of trajectories leading to chaos (including turbulence as a form of chaos). The formalism involves fictitious control forces that couple the equations of motion of the system with a Liouville equation that describes the evolution of the probability density of errors in initial conditions. These stabilizing forces create a powerful terminal attractor in probability space that corresponds to occurrence of a target trajectory with probability one. The effect in configuration space (ordinary three-dimensional space as commonly perceived) is to suppress exponential divergences of neighboring trajectories without affecting the target trajectory. As a result, the post-instability motion is represented by a set of functions describing the evolution of such statistical quantities as expectations and higher moments, and this representation is stable.

  19. Dynamical processes in heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.; Remington, B.A.

    1988-07-25

    In this report I review the physical assumptions of the Boltzmann Master Equation (BME). Comparisons of the model with experimental neutron spectra gated on evaporation residues for a range of incident projectile energies and masses are presented; next, I compare n spectra gated on projectile-like fragments, followed by comparisons with ungated, inclusive proton spectra. I will then consider secondary effects from the nucleon-nucleon processes involved in the heavy ion relaxation processes, specifically the high energy ..gamma..-rays which have been observed at energies up to 140 MeV in collisions of heavy ions of 20/endash/84 MeV/..mu... Another secondary effect, subthreshold pion production, was covered in the XVII School and will not be repeated. 39 refs., 16 figs.

  20. Biogas Production from Distilled Grain Waste by Thermophilic Dry Anaerobic Digestion: Pretreatment of Feedstock and Dynamics of Microbial Community.

    Science.gov (United States)

    Wang, Ting-Ting; Sun, Zhao-Yong; Huang, Yu-Lian; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-08-24

    Distilled grain waste (DGW) eluted from the Chinese liquor making process poses potential serious environmental problems. The objective of this study is to evaluate the feasibility of converting DGW to biogas by thermophilic dry anaerobic digestion. To improve biogas production, the effects of dilute H2SO4 and thermal pretreatment on DGW were evaluated by biochemical methane potential (BMP) tests. The results indicate that 90 °C thermal pretreatment provided the highest methane production at 212.7 mL/g-VTSadd. The long-term thermophilic dry anaerobic digestion process was conducted in a 5-L separable flask for more than 3 years at a volatile total solid (VTS) loading rate of 1 g/kg-sludge/d, using synthetic waste, untreated and 90 °C thermal pretreated DGW as the feedstock, respectively. A higher methane production, 451.6 mL/g-VTSadd, was obtained when synthetic waste was used; the methane production decreased to 139.4 mL/g-VTSadd when the untreated DGW was used. The 90 °C thermal pretreated DGW increased the methane production to 190.5 mL/g-VTSadd, showing an increase of 36.7% in methane production compared with that using untreated DGW. The microbial community structure analysis indicates that the microbial community in the thermophilic dry anaerobic digestion system maintained a similar structure when untreated or pretreated DGW was used, whereas the structure differed significantly when synthetic waste was used as the feedstock.