WorldWideScience

Sample records for dynamical systems study

  1. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  2. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  3. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  4. Systems-Dynamic Analysis for Neighborhood Study

    Science.gov (United States)

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  5. Dynamics of sustained use and abandonment of clean cooking systems: study protocol for community-based system dynamics modeling.

    Science.gov (United States)

    Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N

    2016-04-26

    More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected

  6. A qualitative numerical study of high dimensional dynamical systems

    Science.gov (United States)

    Albers, David James

    Since Poincare, the father of modern mathematical dynamical systems, much effort has been exerted to achieve a qualitative understanding of the physical world via a qualitative understanding of the functions we use to model the physical world. In this thesis, we construct a numerical framework suitable for a qualitative, statistical study of dynamical systems using the space of artificial neural networks. We analyze the dynamics along intervals in parameter space, separating the set of neural networks into roughly four regions: the fixed point to the first bifurcation; the route to chaos; the chaotic region; and a transition region between chaos and finite-state neural networks. The study is primarily with respect to high-dimensional dynamical systems. We make the following general conclusions as the dimension of the dynamical system is increased: the probability of the first bifurcation being of type Neimark-Sacker is greater than ninety-percent; the most probable route to chaos is via a cascade of bifurcations of high-period periodic orbits, quasi-periodic orbits, and 2-tori; there exists an interval of parameter space such that hyperbolicity is violated on a countable, Lebesgue measure 0, "increasingly dense" subset; chaos is much more likely to persist with respect to parameter perturbation in the chaotic region of parameter space as the dimension is increased; moreover, as the number of positive Lyapunov exponents is increased, the likelihood that any significant portion of these positive exponents can be perturbed away decreases with increasing dimension. The maximum Kaplan-Yorke dimension and the maximum number of positive Lyapunov exponents increases linearly with dimension. The probability of a dynamical system being chaotic increases exponentially with dimension. The results with respect to the first bifurcation and the route to chaos comment on previous results of Newhouse, Ruelle, Takens, Broer, Chenciner, and Iooss. Moreover, results regarding the high

  7. Dynamical study of a polydisperse hard-sphere system

    KAUST Repository

    Nogawa, Tomoaki; Ito, Nobuyasu; Watanabe, Hiroshi

    2010-01-01

    We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition

  8. Asymptotic study of a magneto-hydro-dynamic system

    International Nuclear Information System (INIS)

    Benameur, J.; Ibrahim, S.; Majdoub, M.

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T 3 , the proof is based on Schochet's methods, whereas in the case of the whole space R 3 , we use Strichartz's type estimates. (author)

  9. Asymptotic study of a magneto-hydro-dynamic system

    Energy Technology Data Exchange (ETDEWEB)

    Benameur, J [Institut Preparatoire aux Etudes d' Ingenieurs de Monastir (Tunisia); Ibrahim, S [Faculte des Sciences de Bizerte, Departement de Mathematiques, Bizerte (TN); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: slim.ibrahim@fsb.rnu.tn; Majdoub, M [Faculte des Sciences de Tunis, Departement de Mathematiques, Tunis (Tunisia)

    2003-01-01

    In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T{sup 3}, the proof is based on Schochet's methods, whereas in the case of the whole space R{sup 3}, we use Strichartz's type estimates. (author)

  10. System dynamics

    International Nuclear Information System (INIS)

    Kim, Do Hun; Mun, Tae Hun; Kim, Dong Hwan

    1999-02-01

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  11. A study on an assessment method for improving technical specifications using system dynamics

    International Nuclear Information System (INIS)

    Kim, Kyung Min; Jae, Moo Sung

    2005-01-01

    Limiting Conditions for Operations (LCOs) are evaluated dynamically using the tool of system dynamics. The LCOs define the Allowed Outage Times (AOTs) and the actions to be taken if the repair cannot be completed within the AOT. System dynamics has been developed to analyze the dynamic reliability of a complicated system. System dynamics using Vensim software have been applied to LCOs assessment for an example system, the auxiliary feed water system of a reference nuclear power plant. Analysis results of both full power operation and shutdown operation have been compared for a measure of core damage frequency. The framework developed in this study has been shown to be very flexible in that it can be applied to assess LCOs quantitatively under any operational context of the TS in FSAR

  12. Relevance of deterministic chaos theory to studies in functioning of dynamical systems

    Science.gov (United States)

    Glagolev, S. N.; Bukhonova, S. M.; Chikina, E. D.

    2018-03-01

    The paper considers chaotic behavior of dynamical systems typical for social and economic processes. Approaches to analysis and evaluation of system development processes are studies from the point of view of controllability and determinateness. Explanations are given for necessity to apply non-standard mathematical tools to explain states of dynamical social and economic systems on the basis of fractal theory. Features of fractal structures, such as non-regularity, self-similarity, dimensionality and fractionality are considered.

  13. Study of spatially extended dynamical systems using probabilistic cellular automata

    International Nuclear Information System (INIS)

    Vanag, Vladimir K

    1999-01-01

    Spatially extended dynamical systems are ubiquitous and include such things as insect and animal populations; complex chemical, technological, and geochemical processes; humanity itself, and much more. It is clearly desirable to have a certain universal tool with which the highly complex behaviour of nonlinear dynamical systems can be analyzed and modelled. For this purpose, cellular automata seem to be good candidates. In the present review, emphasis is placed on the possibilities that various types of probabilistic cellular automata (PCA), such as DSMC (direct simulation Monte Carlo) and LGCA (lattice-gas cellular automata), offer. The methods are primarily designed for modelling spatially extended dynamical systems with inner fluctuations accounted for. For the Willamowskii-Roessler and Oregonator models, PCA applications to the following problems are illustrated: the effect of fluctuations on the dynamics of nonlinear systems; Turing structure formation; the effect of hydrodynamic modes on the behaviour of nonlinear chemical systems (stirring effects); bifurcation changes in the dynamical regimes of complex systems with restricted geometry or low spatial dimension; and the description of chemical systems in microemulsions. (reviews of topical problems)

  14. Study of system dynamics model and control of a high-power LED lighting luminaire

    International Nuclear Information System (INIS)

    Huang, B.-J.; Hsu, P.-C.; Wu, M.-S.; Tang, C.-W.

    2007-01-01

    The purpose of the present study is to design a current control system which is robust to the system dynamics uncertainty and the disturbance of ambient temperature to assure a stable optical output property of LED. The system dynamics model of the LED lighting system was first derived. A 96 W high-power LED luminaire was designed and built in the present study. The linearly perturbed system dynamics model for the LED luminaire is derived experimentally. The dynamics model of LED lighting system is of a multiple-input-multiple-output (MIMO) system with two inputs (applied voltage and ambient temperature) and two outputs (forward current and heat conducting body temperature). A step response test method was employed to the 96 W LED luminaire to identify the system dynamics model. It is found that the current model is just a constant gain (resistance) and the disturbance model is of first order, both changing with operating conditions (voltage and ambient temperature). A feedback control system using PI algorithm was designed using the results of the system dynamics model. The control system was implemented on a PIC microprocessor. Experimental results show that the control system can stably and accurately control the LED current to a constant value at the variation of ambient temperature up to 40 o C. The control system is shown to have a robust property with respect to the plant uncertainty and the ambient temperature disturbance

  15. Fundamental study of dynamic ECT by dual detector gammacamera system

    International Nuclear Information System (INIS)

    Kakegawa, M.; Matsui, S.; Maeda, H.; Takeda, K.; Nakagawa, T.

    1982-01-01

    The improvement of image quality of reconstructed image by the simple pre-processing of projections is studied. Using the improved algorithm and dual detector gammacamera system, the possibility of dynamic ECT is studied. As shown in clinical examples, renal flow study using Tc-99m-DTPA, dynamic ECT imaging is possible with measuring time of 1 or 2 minutes. By this method cortex and medulla are separately imaged and each function can be analyzed more precisely. Using high sensitive collimator it will be possible to take ECT images every 30 sec. with little resolution loss quantitative three dimensional time activity analysis is under study

  16. Dynamics of Financial System: A System Dynamics Approach

    OpenAIRE

    Girish K. Nair; Lewlyn Lester Raj Rodrigues

    2013-01-01

    There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentione...

  17. Dynamical systems

    CERN Document Server

    Sternberg, Shlomo

    2010-01-01

    Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the

  18. NATO Advanced Study Institute on Hamiltonian Dynamical Systems and Applications

    CERN Document Server

    2008-01-01

    Physical laws are for the most part expressed in terms of differential equations, and natural classes of these are in the form of conservation laws or of problems of the calculus of variations for an action functional. These problems can generally be posed as Hamiltonian systems, whether dynamical systems on finite dimensional phase space as in classical mechanics, or partial differential equations (PDE) which are naturally of infinitely many degrees of freedom. This volume is the collected and extended notes from the lectures on Hamiltonian dynamical systems and their applications that were given at the NATO Advanced Study Institute in Montreal in 2007. Many aspects of the modern theory of the subject were covered at this event, including low dimensional problems as well as the theory of Hamiltonian systems in infinite dimensional phase space; these are described in depth in this volume. Applications are also presented to several important areas of research, including problems in classical mechanics, continu...

  19. Dynamic Tunnel Usability Study: Format Recommendations for Synthetic Vision System Primary Flight Displays

    Science.gov (United States)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.

    2006-01-01

    A usability study evaluating dynamic tunnel concepts has been completed under the Aviation Safety and Security Program, Synthetic Vision Systems Project. The usability study was conducted in the Visual Imaging Simulator for Transport Aircraft Systems (VISTAS) III simulator in the form of questionnaires and pilot-in-the-loop simulation sessions. Twelve commercial pilots participated in the study to determine their preferences via paired comparisons and subjective rankings regarding the color, line thickness and sensitivity of the dynamic tunnel. The results of the study showed that color was not significant in pilot preference paired comparisons or in pilot rankings. Line thickness was significant for both pilot preference paired comparisons and in pilot rankings. The preferred line/halo thickness combination was a line width of 3 pixels and a halo of 4 pixels. Finally, pilots were asked their preference for the current dynamic tunnel compared to a less sensitive dynamic tunnel. The current dynamic tunnel constantly gives feedback to the pilot with regard to path error while the less sensitive tunnel only changes as the path error approaches the edges of the tunnel. The tunnel sensitivity comparison results were not statistically significant.

  20. Mind map learning for advanced engineering study: case study in system dynamics

    Science.gov (United States)

    Woradechjumroen, Denchai

    2018-01-01

    System Dynamics (SD) is one of the subjects that were use in learning Automatic Control Systems in dynamic and control field. Mathematical modelling and solving skills of students for engineering systems are expecting outcomes of the course which can be further used to efficiently study control systems and mechanical vibration; however, the fundamental of the SD includes strong backgrounds in Dynamics and Differential Equations, which are appropriate to the students in governmental universities that have strong skills in Mathematics and Scientifics. For private universities, students are weak in the above subjects since they obtained high vocational certificate from Technical College or Polytechnic School, which emphasize the learning contents in practice. To enhance their learning for improving their backgrounds, this paper applies mind maps based problem based learning to relate the essential relations of mathematical and physical equations. With the advantages of mind maps, each student is assigned to design individual mind maps for self-leaning development after they attend the class and learn overall picture of each chapter from the class instructor. Four problems based mind maps learning are assigned to each student. Each assignment is evaluated via mid-term and final examinations, which are issued in terms of learning concepts and applications. In the method testing, thirty students are tested and evaluated via student learning backgrounds in the past. The result shows that well-design mind maps can improve learning performance based on outcome evaluation. Especially, mind maps can reduce time-consuming and reviewing for Mathematics and Physics in SD significantly.

  1. Vehicle systems: coupled and interactive dynamics analysis

    Science.gov (United States)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  2. A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study.

    Science.gov (United States)

    Garbolino, Emmanuel; Chery, Jean-Pierre; Guarnieri, Franck

    2016-01-01

    Seveso plants are complex sociotechnical systems, which makes it appropriate to support any risk assessment with a model of the system. However, more often than not, this step is only partially addressed, simplified, or avoided in safety reports. At the same time, investigations have shown that the complexity of industrial systems is frequently a factor in accidents, due to interactions between their technical, human, and organizational dimensions. In order to handle both this complexity and changes in the system over time, this article proposes an original and simplified qualitative risk evaluation method based on the system dynamics theory developed by Forrester in the early 1960s. The methodology supports the development of a dynamic risk assessment framework dedicated to industrial activities. It consists of 10 complementary steps grouped into two main activities: system dynamics modeling of the sociotechnical system and risk analysis. This system dynamics risk analysis is applied to a case study of a chemical plant and provides a way to assess the technological and organizational components of safety. © 2016 Society for Risk Analysis.

  3. International Conference on Dynamical Systems : Theory and Applications

    CERN Document Server

    2016-01-01

    The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.

  4. International Conference on Dynamical Systems : Theory and Applications

    CERN Document Server

    2016-01-01

    The book is the second volume of a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the international conference "Dynamical Systems: Theory and Applications," held in Lódz, Poland on December 7-10, 2015. The studies give deep insight into new perspectives in analysis, simulation, and optimization of dynamical systems, emphasizing directions for future research. Broadly outlined topics covered include: bifurcation and chaos in dynamical systems, asymptotic methods in nonlinear dynamics, dynamics in life sciences and bioengineering, original numerical methods of vibration analysis, control in dynamical systems, stability of dynamical systems, vibrations of lumped and continuous sytems, non-smooth systems, engineering systems and differential equations, mathematical approaches to dynamical systems, and mechatronics.

  5. Synchronization dynamics of two different dynamical systems

    International Nuclear Information System (INIS)

    Luo, Albert C.J.; Min Fuhong

    2011-01-01

    Highlights: → Synchronization dynamics of two distinct dynamical systems. → Synchronization, de-synchronization and instantaneous synchronization. → A controlled pendulum synchronizing with the Duffing oscillator. → Synchronization invariant set. → Synchronization parameter map. - Abstract: In this paper, synchronization dynamics of two different dynamical systems is investigated through the theory of discontinuous dynamical systems. The necessary and sufficient conditions for the synchronization, de-synchronization and instantaneous synchronization (penetration or grazing) are presented. Using such a synchronization theory, the synchronization of a controlled pendulum with the Duffing oscillator is systematically discussed as a sampled problem, and the corresponding analytical conditions for the synchronization are presented. The synchronization parameter study is carried out for a better understanding of synchronization characteristics of the controlled pendulum and the Duffing oscillator. Finally, the partial and full synchronizations of the controlled pendulum with periodic and chaotic motions are presented to illustrate the analytical conditions. The synchronization of the Duffing oscillator and pendulum are investigated in order to show the usefulness and efficiency of the methodology in this paper. The synchronization invariant domain is obtained. The technique presented in this paper should have a wide spectrum of applications in engineering. For example, this technique can be applied to the maneuvering target tracking, and the others.

  6. Fault diagnosis for dynamic power system

    International Nuclear Information System (INIS)

    Thabet, A.; Abdelkrim, M.N.; Boutayeb, M.; Didier, G.; Chniba, S.

    2011-01-01

    The fault diagnosis problem for dynamic power systems is treated, the nonlinear dynamic model based on a differential algebraic equations is transformed with reduced index to a simple dynamic model. Two nonlinear observers are used for generating the fault signals for comparison purposes, one of them being an extended Kalman estimator and the other a new extended kalman filter with moving horizon with a study of convergence based on the choice of matrix of covariance of the noises of system and measurements. The paper illustrates a simulation study applied on IEEE 3 buses test system.

  7. Dynamical study of a polydisperse hard-sphere system

    KAUST Repository

    Nogawa, Tomoaki

    2010-08-10

    We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition line, which corresponds to the critical polydispersity above which the crystal state is unstable, is on the glass transition line. This means that crystal and fluid states at the melting point becomes less distinguishable as polydispersity increases and finally they become identical state, i.e., marginal glass state, at critical polydispersity. © 2010 The American Physical Society.

  8. Dynamical Systems Conference

    CERN Document Server

    Gils, S; Hoveijn, I; Takens, F; Nonlinear Dynamical Systems and Chaos

    1996-01-01

    Symmetries in dynamical systems, "KAM theory and other perturbation theories", "Infinite dimensional systems", "Time series analysis" and "Numerical continuation and bifurcation analysis" were the main topics of the December 1995 Dynamical Systems Conference held in Groningen in honour of Johann Bernoulli. They now form the core of this work which seeks to present the state of the art in various branches of the theory of dynamical systems. A number of articles have a survey character whereas others deal with recent results in current research. It contains interesting material for all members of the dynamical systems community, ranging from geometric and analytic aspects from a mathematical point of view to applications in various sciences.

  9. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  10. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  11. Dynamics of unstable systems

    International Nuclear Information System (INIS)

    Posch, H.A.; Narnhofer, H.; Thirring, W.

    1990-01-01

    We study the dynamics of classical particles interacting with attractive Gaussian potentials. This system is thermodynamically not stable and exhibits negative specific heat. The results of the computer simulation of the dynamics are discussed in comparison with various theories. In particular, we find that the condensed phase is a stationary solution of the Vlasov equation, but the Vlasov dynamics cannot describe the collapse. 14 refs., 1 tab., 11 figs. (Authors)

  12. Complexity in Dynamical Systems

    Science.gov (United States)

    Moore, Cristopher David

    The study of chaos has shown us that deterministic systems can have a kind of unpredictability, based on a limited knowledge of their initial conditions; after a finite time, the motion appears essentially random. This observation has inspired a general interest in the subject of unpredictability, and more generally, complexity; how can we characterize how "complex" a dynamical system is?. In this thesis, we attempt to answer this question with a paradigm of complexity that comes from computer science, we extract sets of symbol sequences, or languages, from a dynamical system using standard methods of symbolic dynamics; we then ask what kinds of grammars or automata are needed a generate these languages. This places them in the Chomsky heirarchy, which in turn tells us something about how subtle and complex the dynamical system's behavior is. This gives us insight into the question of unpredictability, since these automata can also be thought of as computers attempting to predict the system. In the culmination of the thesis, we find a class of smooth, two-dimensional maps which are equivalent to the highest class in the Chomsky heirarchy, the turning machine; they are capable of universal computation. Therefore, these systems possess a kind of unpredictability qualitatively different from the usual "chaos": even if the initial conditions are known exactly, questions about the system's long-term dynamics are undecidable. No algorithm exists to answer them. Although this kind of unpredictability has been discussed in the context of distributed, many-degree-of -freedom systems (for instance, cellular automata) we believe this is the first example of such phenomena in a smooth, finite-degree-of-freedom system.

  13. System Dynamics

    Science.gov (United States)

    Morecroft, John

    System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.

  14. Interactive Dynamic-System Simulation

    CERN Document Server

    Korn, Granino A

    2010-01-01

    Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author

  15. Dynamical systems examples of complex behaviour

    CERN Document Server

    Jost, Jürgen

    2005-01-01

    Our aim is to introduce, explain, and discuss the fundamental problems, ideas, concepts, results, and methods of the theory of dynamical systems and to show how they can be used in speci?c examples. We do not intend to give a comprehensive overview of the present state of research in the theory of dynamical systems, nor a detailed historical account of its development. We try to explain the important results, often neglecting technical re?nements 1 and, usually, we do not provide proofs. One of the basic questions in studying dynamical systems, i.e. systems that evolve in time, is the construction of invariants that allow us to classify qualitative types of dynamical evolution, to distinguish between qualitatively di?erent dynamics, and to studytransitions between di?erent types. Itis also important to ?nd out when a certain dynamic behavior is stable under small perturbations, as well as to understand the various scenarios of instability. Finally, an essential aspect of a dynamic evolution is the transformat...

  16. Dynamic Voltage Stability Studies using a Modified IEEE 30-Bus System

    Directory of Open Access Journals (Sweden)

    Oluwafemi Emmanuel Oni

    2016-09-01

    Full Text Available Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC line is replaced with a high voltage direct current (HVDC line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.

  17. System dynamics with interaction discontinuity

    CERN Document Server

    Luo, Albert C J

    2015-01-01

    This book describes system dynamics with discontinuity caused by system interactions and presents the theory of flow singularity and switchability at the boundary in discontinuous dynamical systems. Based on such a theory, the authors address dynamics and motion mechanism of engineering discontinuous systems due to interaction. Stability and bifurcations of fixed points in nonlinear discrete dynamical systems are presented, and mapping dynamics are developed for analytical predictions of periodic motions in engineering discontinuous dynamical systems. Ultimately, the book provides an alternative way to discuss the periodic and chaotic behaviors in discontinuous dynamical systems.

  18. Attractors for discrete periodic dynamical systems

    Science.gov (United States)

    John E. Franke; James F. Selgrade

    2003-01-01

    A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...

  19. Dynamics of Variable Mass Systems

    Science.gov (United States)

    Eke, Fidelis O.

    1998-01-01

    This report presents the results of an investigation of the effects of mass loss on the attitude behavior of spinning bodies in flight. The principal goal is to determine whether there are circumstances under which the motion of variable mass systems can become unstable in the sense that their transverse angular velocities become unbounded. Obviously, results from a study of this kind would find immediate application in the aerospace field. The first part of this study features a complete and mathematically rigorous derivation of a set of equations that govern both the translational and rotational motions of general variable mass systems. The remainder of the study is then devoted to the application of the equations obtained to a systematic investigation of the effect of various mass loss scenarios on the dynamics of increasingly complex models of variable mass systems. It is found that mass loss can have a major impact on the dynamics of mechanical systems, including a possible change in the systems stability picture. Factors such as nozzle geometry, combustion chamber geometry, propellant's initial shape, size and relative mass, and propellant location can all have important influences on the system's dynamic behavior. The relative importance of these parameters on-system motion are quantified in a way that is useful for design purposes.

  20. Stochastic runaway of dynamical systems

    International Nuclear Information System (INIS)

    Pfirsch, D.; Graeff, P.

    1984-10-01

    One-dimensional, stochastic, dynamical systems are well studied with respect to their stability properties. Less is known for the higher dimensional case. This paper derives sufficient and necessary criteria for the asymptotic divergence of the entropy (runaway) and sufficient ones for the moments of n-dimensional, stochastic, dynamical systems. The crucial implication is the incompressibility of their flow defined by the equations of motion in configuration space. Two possible extensions to compressible flow systems are outlined. (orig.)

  1. Study on the Dynamics of Laser Gyro Strapdown Inertial Measurement Unit System Based on Transfer Matrix Method for Multibody System

    Directory of Open Access Journals (Sweden)

    Gangli Chen

    2013-01-01

    Full Text Available The dynamic test precision of the strapdown inertial measurement unit (SIMU is the basis of estimating accurate motion of various vehicles such as warships, airplanes, spacecrafts, and missiles. So, it is paid great attention in the above fields to increase the dynamic precision of SIMU by decreasing the vibration of the vehicles acting on the SIMU. In this paper, based on the transfer matrix method for multibody system (MSTMM, the multibody system dynamics model of laser gyro strapdown inertial measurement unit (LGSIMU is developed; the overall transfer equation of the system is deduced automatically. The computational results show that the frequency response function of the LGSIMU got by the proposed method and Newton-Euler method have good agreements. Further, the vibration reduction performance and the attitude error responses under harmonic and random excitations are analyzed. The proposed method provides a powerful technique for studying dynamics of LGSIMU because of using MSTMM and its following features: without the global dynamics equations of the system, high programming, low order of system matrix, and high computational speed.

  2. A Dynamic Wind Generation Model for Power Systems Studies

    OpenAIRE

    Estanqueiro, Ana

    2007-01-01

    In this paper, a wind park dynamic model is presented together with a base methodology for its application to power system studies. This detailed wind generation model addresses the wind turbine components and phenomena more relevant to characterize the power quality of a grid connected wind park, as well as the wind park response to the grid fast perturbations, e.g., low voltage ride through fault. The developed model was applied to the operating conditions of the selected sets of wind turbi...

  3. Dynamic heat transfer modeling and parametric study of thermoelectric radiant cooling and heating panel system

    International Nuclear Information System (INIS)

    Luo, Yongqiang; Zhang, Ling; Liu, Zhongbing; Wang, Yingzi; Wu, Jing; Wang, Xiliang

    2016-01-01

    Highlights: • Dynamic model of thermoelectric radiant panel system is established. • The internal parameters of thermoelectric module are dynamically calculated in simulation. • Both artificial neural networks model and system model are verified through experiment data. • Optimized system structure is obtained through parametric study. - Abstract: Radiant panel system can optimize indoor thermal comfort with lower energy consumption. The thermoelectric radiant panel (TERP) system is a new and effective prototype of radiant system using thermoelectric module (TEM) instead of conventional water pipes, as heat source. The TERP can realize more stable and easier system control as well as lower initial and operative cost. In this study, an improved system dynamic model was established by combining analytical system model and artificial neural networks (ANN) as well as the dynamic calculation functions of internal parameters of TEM. The double integral was used for the calculation of surface average temperature of TERP. The ANN model and system model were in good agreement with experiment data in both cooling and heating mode. In order to optimize the system design structure, parametric study was conducted in terms of the thickness of aluminum panel and insulation, as well as the arrangement of TEMs on the surface of radiant panel. It was found through simulation results that the optimum thickness of aluminum panel and insulation are respectively around 1–2 mm and 40–50 mm. In addition, TEMs should be uniformly installed on the surface of radiant panel and each TEM should stand at the central position of a square-shaped typical region with length around 0.387–0.548 m.

  4. Nonlinear dynamics of fractional order Duffing system

    International Nuclear Information System (INIS)

    Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian

    2015-01-01

    In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.

  5. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  6. Partial dynamical systems, fell bundles and applications

    CERN Document Server

    Exel, Ruy

    2017-01-01

    Partial dynamical systems, originally developed as a tool to study algebras of operators in Hilbert spaces, has recently become an important branch of algebra. Its most powerful results allow for understanding structural properties of algebras, both in the purely algebraic and in the C*-contexts, in terms of the dynamical properties of certain systems which are often hiding behind algebraic structures. The first indication that the study of an algebra using partial dynamical systems may be helpful is the presence of a grading. While the usual theory of graded algebras often requires gradings to be saturated, the theory of partial dynamical systems is especially well suited to treat nonsaturated graded algebras which are in fact the source of the notion of "partiality". One of the main results of the book states that every graded algebra satisfying suitable conditions may be reconstructed from a partial dynamical system via a process called the partial crossed product. Running in parallel with partial dynamica...

  7. Systems approaches to study root architecture dynamics

    Directory of Open Access Journals (Sweden)

    Candela eCuesta

    2013-12-01

    Full Text Available The plant root system is essential for providing anchorage to the soil, supplying minerals and water, and synthesizing metabolites. It is a dynamic organ modulated by external cues such as environmental signals, water and nutrients availability, salinity and others. Lateral roots are initiated from the primary root post-embryonically, after which they progress through discrete developmental stages which can be independently controlled, providing a high level of plasticity during root system formation.Within this review, main contributions are presented, from the classical forward genetic screens to the more recent high-throughput approaches, combined with computer model predictions, dissecting how lateral roots and thereby root system architecture is established and developed.

  8. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  9. Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing.

    Science.gov (United States)

    Wu, Desheng; Ning, Shuang

    2018-07-01

    Economic development, accompanying with environmental damage and energy depletion, becomes essential nowadays. There is a complicated and comprehensive interaction between economics, environment and energy. Understanding the operating mechanism of Energy-Environment-Economy model (3E) and its key factors is the inherent part in dealing with the issue. In this paper, we combine System Dynamics model and Geographic Information System to analyze the energy-environment-economy (3E) system both temporally and spatially, which explicitly explore the interaction of economics, energy, and environment and effects of the key influencing factors. Beijing is selected as a case study to verify our SD-GIS model. Alternative scenarios, e.g., current, technology, energy and environment scenarios are explored and compared. Simulation results shows that, current scenario is not sustainable; technology scenario is applicable to economic growth; environment scenario maintains a balanced path of development for long term stability. Policy-making insights are given based on our results and analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Some problems of dynamical systems on three dimensional manifolds

    International Nuclear Information System (INIS)

    Dong Zhenxie.

    1985-08-01

    It is important to study the dynamical systems on 3-dimensional manifolds, its importance is showing up in its close relation with our life. Because of the complication of topological structure of Dynamical systems on 3-dimensional manifolds, generally speaking, the search for 3-dynamical systems is not easier than 2-dynamical systems. This paper is a summary of the partial result of dynamical systems on 3-dimensional manifolds. (author)

  11. Understanding and Modeling Teams As Dynamical Systems

    Science.gov (United States)

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  12. The fractional dynamics of quantum systems

    Science.gov (United States)

    Lu, Longzhao; Yu, Xiangyang

    2018-05-01

    The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.

  13. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  14. Dynamic analysis of floating wave energy generation system with mooring system

    International Nuclear Information System (INIS)

    Choi, Gyu Seok; Sohn, Jeong Hyun

    2013-01-01

    In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load

  15. Conceptualizing the dynamics of workplace stress: a systems-based study of nursing aides

    OpenAIRE

    Jetha, Arif; Kernan, Laura; Kurowski, Alicia

    2017-01-01

    Background Workplace stress is a complex phenomenon that may often be dynamic and?evolving over time. Traditional linear modeling does not allow representation of recursive feedback loops among the implicated factors. The objective of this study was to develop a multidimensional system dynamics model (SDM) of workplace stress among nursing aides and conduct simulations to illustrate how changes in psychosocial perceptions and workplace factors might influence workplace stress over time. Metho...

  16. DYNAMICS OF FINANCIAL SYSTEM: A SYSTEM DYNAMICS APPROACH

    Directory of Open Access Journals (Sweden)

    Girish K Nair

    2013-01-01

    Full Text Available There are several ratios which define the financial health of an organization but the importance of Net cash flow, Gross income, Net income, Pending bills, Receivable bills, Debt, and Book value can never be undermined as they give the exact picture of the financial condition. While there are several approaches to study the dynamics of these variables, system dynamics based modelling and simulation is one of the modern techniques. The paper explores this method to simulate the before mentioned parameters during production capacity expansion in an electronic industry. Debt and Book value have shown a non-linear pattern of variation which is discussed. The model can be used by the financial experts as a decision support tool in arriving at conclusions in connection to the expansion plans of the organization.

  17. Truly random dynamics generated by autonomous dynamical systems

    Science.gov (United States)

    González, J. A.; Reyes, L. I.

    2001-09-01

    We investigate explicit functions that can produce truly random numbers. We use the analytical properties of the explicit functions to show that a certain class of autonomous dynamical systems can generate random dynamics. This dynamics presents fundamental differences with the known chaotic systems. We present real physical systems that can produce this kind of random time-series. Some applications are discussed.

  18. Dynamic tracking performance of indoor global positioning system: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Gang Zhao

    2015-10-01

    Full Text Available The automation level has been improved rapidly with the introduction of large-scale measurement technologies, such as indoor global positioning system, into the production process among the fields of car, ship, and aerospace due to their excellent measurement characteristics. In fact, the objects are usually in motion during the real measurement process; however, the dynamic measurement characteristics of indoor global positioning system are much limited and still in exploration. In this research, we focused on the dynamic tracking performance of indoor global positioning system and then successfully built a mathematical model based on its measurement principles. We first built single and double station system models with the consideration of measurement objects’ movement. Using MATLAB simulation, we realized the dynamic measurement characteristics of indoor global positioning system. In the real measurement process, the experimental results also support the mathematical model that we built, which proves a great success in dynamic measurement characteristics. We envision that this dynamic tracking performance of indoor global positioning system would shed light on the dynamic measurement of a motion object and therefore make contribution to the automation production.

  19. Dynamics of glassy systems

    International Nuclear Information System (INIS)

    Cugliandolo, Leticia F.

    2003-09-01

    These lecture notes can be read in two ways. The first two Sections contain a review of the phenomenology of several physical systems with slow nonequilibrium dynamics. In the Conclusions we summarize the scenario for this temporal evolution derived from the solution to some solvable models (p spin and the like) that are intimately connected to the mode coupling approach (and similar ones) to super-cooled liquids. At the end we list a number of open problems of great relevance in this context. These Sections can be read independently of the body of the paper where we present some of the basic analytic techniques used to study the out of equilibrium dynamics of classical and quantum models with and without disorder. We start the technical part by briefly discussing the role played by the environment and by introducing and comparing its representation in the equilibrium and dynamic treatment of classical and quantum systems. We next explain the role played by explicit quenched disorder in both approaches. Later on we focus on analytical techniques; we expand on the dynamic functional methods, and the diagrammatic expansions and resummations used to derive macroscopic equations from the microscopic dynamics. We show why the macroscopic dynamic equations for disordered models and those resulting from self-consistent approximations to non-disordered ones coincide. We review some generic properties of dynamic systems evolving out of equilibrium like the modifications of the fluctuation-dissipation theorem, generic scaling forms of the correlation functions, etc. Finally we solve a family of mean-field models. The connection between the dynamic treatment and the analysis of the free-energy landscape of these models is also presented. We use pedagogical examples all along these lectures to illustrate the properties and results. (author)

  20. What are System Dynamics Insights?

    OpenAIRE

    Stave, K.; Zimmermann, N. S.; Kim, H.

    2016-01-01

    This paper explores the concept of system dynamics insights. In our field, the term “insight” is generally understood to mean dynamic insight, that is, a deep understanding about the relationship between structure and behavior. We argue this is only one aspect of the range of insights possible from system dynamics activities, and describe a broader range of potential system dynamics insights. We also propose an initial framework for discussion that relates different types of system dynamics a...

  1. Simulation of noisy dynamical system by Deep Learning

    Science.gov (United States)

    Yeo, Kyongmin

    2017-11-01

    Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.

  2. DYNAMIC SYSTEM APPROACH IN PSYCHOLOGY: PROPOSITION AND APPLICATION IN THE STUDY OF EMOTION, APPRAISAL AND COGNITIVE ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Cristiano M. A. Gomes

    2013-07-01

    Full Text Available Psychological processes are difficult to be studied due to their complexity. The dynamic system approach shows itself as a good tool for psychology to deal with this complexity issue. We propose two fundamental contributions of the dynamic system approach to psychology and apply it in the study of achievement emotions, appraisal and cognitive achievement. Two hypotheses were investigated: 1 More than one correlation pattern between test achievement, appraisal and emotion will be found; 2 Test achievement, appraisal and emotion form a dynamic system which will be explained by a latent variable that is dependent on the previous state of the system. A sample of thirteen students from seventh to ninth grades performed an inductive reasoning test, appraised their achievement, and declared their emotional valences (from extreme positive to extreme negative. Each variable was measured in 20 different occasions. One correlation matrix of each individual was generated and seven qualitative profiles were identified. Then four different states of relations between the variables were identified through a hidden Markov model. The two hypotheses were not refuted. It’s concluded that the dynamic system approach brings new possibilities to the study of psychological processes.

  3. Dynamic screening and electron dynamics in low-dimensional metal systems

    International Nuclear Information System (INIS)

    Silkin, V.M.; Quijada, M.; Vergniory, M.G.; Alducin, M.; Borisov, A.G.; Diez Muino, R.; Juaristi, J.I.; Sanchez-Portal, D.; Chulkov, E.V.; Echenique, P.M.

    2007-01-01

    Recent advances in the theoretical description of dynamic screening and electron dynamics in metallic media are reviewed. The time-dependent building-up of screening in different situations is addressed. Perturbative and non-perturbative theories are used to study electron dynamics in low-dimensional systems, such as metal clusters, image states, surface states and quantum wells. Modification of the electronic lifetimes due to confinement effects is analyzed as well

  4. Feedback coupling in dynamical systems

    Science.gov (United States)

    Trimper, Steffen; Zabrocki, Knud

    2003-05-01

    Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.

  5. Spaces of Dynamical Systems

    CERN Document Server

    Pilyugin, Sergei Yu

    2012-01-01

    Dynamical systems are abundant in theoretical physics and engineering. Their understanding, with sufficient mathematical rigor, is vital to solving many problems. This work conveys the modern theory of dynamical systems in a didactically developed fashion.In addition to topological dynamics, structural stability and chaotic dynamics, also generic properties and pseudotrajectories are covered, as well as nonlinearity. The author is an experienced book writer and his work is based on years of teaching.

  6. Solar dynamic power systems for space station

    Science.gov (United States)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  7. Invitation to dynamical systems

    CERN Document Server

    Scheinerman, Edward R

    2012-01-01

    This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.

  8. Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System

    Directory of Open Access Journals (Sweden)

    Tuhina Tiwari

    2013-01-01

    Full Text Available The effect of different anions, namely, SCN−, I−, and ClO4−, on the electrical properties of starch-based polymer electrolytes has been studied. Anion size and conductivity are having an inverse trend indicating systems to be predominantly anionic conductor. Impact of anion size and multiplet forming tendency is reflected in number of charge carriers and mobility, respectively. Ion dynamics study reveals the presence of different mechanisms in different frequency ranges. Interestingly, superlinear power law (SLPL is found to be present at <5 MHz frequency, which is further confirmed by dielectric data.

  9. Dynamics of Open Systems with Affine Maps

    International Nuclear Information System (INIS)

    Zhang Da-Jian; Liu Chong-Long; Tong Dian-Min

    2015-01-01

    Many quantum systems of interest are initially correlated with their environments and the reduced dynamics of open systems are an interesting while challenging topic. Affine maps, as an extension of completely positive maps, are a useful tool to describe the reduced dynamics of open systems with initial correlations. However, it is unclear what kind of initial state shares an affine map. In this study, we give a sufficient condition of initial states, in which the reduced dynamics can always be described by an affine map. Our result shows that if the initial states of the combined system constitute a convex set, and if the correspondence between the initial states of the open system and those of the combined system, defined by taking the partial trace, is a bijection, then the reduced dynamics of the open system can be described by an affine map. (paper)

  10. Stability of dynamical systems

    CERN Document Server

    Liao, Xiaoxin; Yu, P 0

    2007-01-01

    The main purpose of developing stability theory is to examine dynamic responses of a system to disturbances as the time approaches infinity. It has been and still is the object of intense investigations due to its intrinsic interest and its relevance to all practical systems in engineering, finance, natural science and social science. This monograph provides some state-of-the-art expositions of major advances in fundamental stability theories and methods for dynamic systems of ODE and DDE types and in limit cycle, normal form and Hopf bifurcation control of nonlinear dynamic systems.ʺ Presents

  11. Dynamical systems with applications using Maple

    CERN Document Server

    Lynch, Stephen

    2001-01-01

    "The text treats a remarkable spectrum of topics and has a little for everyone. It can serve as an introduction to many of the topics of dynamical systems, and will help even the most jaded reader, such as this reviewer, enjoy some of the interactive aspects of studying dynamics using Maple." —UK Nonlinear News (Review of First Edition) "The book will be useful for all kinds of dynamical systems courses…. [It] shows the power of using a computer algebra program to study dynamical systems, and, by giving so many worked examples, provides ample opportunity for experiments. … [It] is well written and a pleasure to read, which is helped by its attention to historical background." —Mathematical Reviews (Review of First Edition) Since the first edition of this book was published in 2001, Maple™ has evolved from Maple V into Maple 13. Accordingly, this new edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions; two new chapters on neural n...

  12. a System Dynamics Model to Study the Importance of Infrastructure Facilities on Quality of Primary Education System in Developing Countries

    Science.gov (United States)

    Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik

    2010-06-01

    The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.

  13. System Dynamics Modelling for a Balanced Scorecard

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2008-01-01

    /methodology/approach - We use a case study model to develop time or dynamic dimensions by using a System Dynamics modelling (SDM) approach. The model includes five perspectives and a number of financial and non-financial measures. All indicators are defined and related to a coherent number of different cause...... have a major influence on other indicators and profit and may be impossible to predict without using a dynamic model. Practical implications - The model may be used as the first step in quantifying the cause-and-effect relationships of an integrated BSC model. Using the System Dynamics model provides......Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design...

  14. Cosmological dynamical systems

    CERN Document Server

    Leon, Genly

    2011-01-01

    In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...

  15. Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system

    International Nuclear Information System (INIS)

    Huang Xiaojin; Feng Yuankun

    2002-01-01

    In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being

  16. Plant dynamics studies towards design of plant protection system for PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K., E-mail: natesan@igcar.gov.in [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kasinathan, N.; Velusamy, K.; Selvaraj, P.; Chellapandi, P. [Nuclear and Safety Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Analysis of various design basis events in a fast breeder reactor towards design of plant protection system. Black-Right-Pointing-Pointer Plant dynamic modeling of a sodium cooled fast breeder reactor. Black-Right-Pointing-Pointer Selection of optimum set of plant parameters for considering best plant availability. - Abstract: Prototype fast breeder reactor (PFBR) is a 500 MWe (1250 MWt) liquid sodium cooled pool type reactor currently under construction in India. For a safe and efficient operation of the plant, it is necessary that the reactor is protected from all the transients that may occur in the plant. In order to accomplish this, adequate number of SCRAM parameters is required in the plant protection system with reliable instrumentation. For identifying the SCRAM parameters, the neutronic and thermal hydraulic responses of the plant for various possible events need to be established. Towards this, a one dimensional plant dynamics code DYANA-P has been developed with thermal hydraulic models for reactor core, hot and cold pools, intermediate heat exchangers, pipelines, steam generator, primary sodium circuits and secondary sodium circuits. The code also incorporates neutron kinetics and reactivity feedback models. By a comprehensive plant dynamics study an optimum list of SCRAM parameters and the maximum permissible response time for various instruments used for deriving them have been arrived at.

  17. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systemssystems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  18. Global monitoring of dynamic information systems a case study in the international supply chain

    NARCIS (Netherlands)

    Pruksasri, P.; Berg, J. van den; Hofman, W.J.

    2014-01-01

    Global information systems are becoming more complex and dynamic everyday: huge amounts of data and messages through those systems show dynamically changing traffic patterns. Because of this, diagnosing when sub-systems are not working properly is difficult. System failures or errors in information

  19. PREFACE: Dynamics of low-dimensional systems Dynamics of low-dimensional systems

    Science.gov (United States)

    Bernasconi, M.; Miret-Artés, S.; Toennies, J. P.

    2012-03-01

    With the development of techniques for high-resolution inelastic helium atom scattering (HAS), electron scattering (EELS) and neutron spin echo spectroscopy, it has become possible, within approximately the last thirty years, to measure the dispersion curves of surface phonons in insulators, semiconductors and metals. In recent years, the advent of new experimental techniques such as 3He spin-echo spectroscopy, scanning inelastic electron tunnel spectroscopy, inelastic x-ray scattering spectroscopy and inelastic photoemission have extended surface phonon spectroscopy to a variety of systems. These include ultra-thin metal films, adsorbates at surface and elementary processes where surface phonons play an important role. Other important directions have been actively pursued in the past decade: the dynamics of stepped surfaces and clusters grown on metal surfaces, due to their relevance in many dynamical and chemical processes at surfaces, including heterogeneous catalysis; clusters; diffusion etc. The role of surface effects in these processes has been conjectured since the early days of surface dynamics, although only now is the availability of ab initio approaches providing those conjectures with a microscopic basis. Last but not least, the investigation of non-adiabatic effects, originating for instance from the hybridization (avoided crossing) of the surface phonons branches with the quasi 1D electron-hole excitation branch, is also a challenging new direction. Furthermore, other elementary oscillations such as surface plasmons are being actively investigated. The aforementioned experimental breakthroughs have been accompanied by advances in the theoretical study of atom-surface interaction. In particular, in the past decade first principles calculations based on density functional perturbation theory have boosted the theoretical study of the dynamics of low-dimensional systems. Phonon dispersion relations of clean surfaces, the dynamics of adsorbates, and the

  20. Nonlinear dynamics non-integrable systems and chaotic dynamics

    CERN Document Server

    Borisov, Alexander

    2017-01-01

    This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.

  1. OBSERVING LYAPUNOV EXPONENTS OF INFINITE-DIMENSIONAL DYNAMICAL SYSTEMS.

    Science.gov (United States)

    Ott, William; Rivas, Mauricio A; West, James

    2015-12-01

    Can Lyapunov exponents of infinite-dimensional dynamical systems be observed by projecting the dynamics into ℝ N using a 'typical' nonlinear projection map? We answer this question affirmatively by developing embedding theorems for compact invariant sets associated with C 1 maps on Hilbert spaces. Examples of such discrete-time dynamical systems include time- T maps and Poincaré return maps generated by the solution semigroups of evolution partial differential equations. We make every effort to place hypotheses on the projected dynamics rather than on the underlying infinite-dimensional dynamical system. In so doing, we adopt an empirical approach and formulate checkable conditions under which a Lyapunov exponent computed from experimental data will be a Lyapunov exponent of the infinite-dimensional dynamical system under study (provided the nonlinear projection map producing the data is typical in the sense of prevalence).

  2. Dynamical systems and algebra associated with seperated graphs

    DEFF Research Database (Denmark)

    Lolk, Matias

    In this thesis, we study partial dynamical systems and graph algebras arising from nitely separated graphs. The thesis consists of an introduction followed by three papers, the rst of which is joint work with Pere Ara. In Article [A], we introduce convex subshifts, an abstract generalisation...... of the partial dynamical systems associated with nite separated graphs. We dene notions of a nite and innite type convex subshift and show that all such dynamical systems arise from a nite bipartite separated graph up to a suitable type of equivalence. We then study various aspects of the ideal structure...

  3. Entanglement dynamics in itinerant fermionic and bosonic systems

    Science.gov (United States)

    Pillarishetty, Durganandini

    2017-04-01

    The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.

  4. Dynamic characteristic of electromechanical coupling effects in motor-gear system

    Science.gov (United States)

    Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.

    2018-06-01

    Dynamic characteristics of an electromechanical model which combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system is analyzed in this study. The simulations reveal the effects of internal excitations or parameters like machine slotting, magnetic saturation, time-varying mesh stiffness and shaft stiffness on the system dynamics. The responses of the electromechanical system with PNM motor model are compared with those responses of the system with dynamic motor model. The electromechanical coupling due to the interactions between the motor and gear system are studied. Furthermore, the frequency analysis of the electromechanical system dynamic characteristics predicts an efficient way to detect work condition of unsymmetrical voltage sag.

  5. Crossed product algebras associated with topological dynamical systems

    NARCIS (Netherlands)

    Svensson, Pär Christian

    2009-01-01

    We study connections between topological dynamical systems and associated algebras of crossed product type. We derive equivalences between structural properties of a crossed product and dynamical properties of the associated system and furthermore derive qualitative results concerning the crossed

  6. Performance metric optimization advocates CPFR in supply chains: A system dynamics model based study

    OpenAIRE

    Balaji Janamanchi; James R. Burns

    2016-01-01

    Background: Supply Chain partners often find themselves in rather helpless positions, unable to improve their firm’s performance and profitability because their partners although willing to share production information do not fully collaborate in tackling customer order variations as they don’t seem to appreciate the benefits of such collaboration. Methods: We use a two-player (supplier-manufacturer) System Dynamics model to study the dynamics to assess the impact and usefulness of supply cha...

  7. Self-Supervised Dynamical Systems

    Science.gov (United States)

    Zak, Michail

    2003-01-01

    Some progress has been made in a continuing effort to develop mathematical models of the behaviors of multi-agent systems known in biology, economics, and sociology (e.g., systems ranging from single or a few biomolecules to many interacting higher organisms). Living systems can be characterized by nonlinear evolution of probability distributions over different possible choices of the next steps in their motions. One of the main challenges in mathematical modeling of living systems is to distinguish between random walks of purely physical origin (for instance, Brownian motions) and those of biological origin. Following a line of reasoning from prior research, it has been assumed, in the present development, that a biological random walk can be represented by a nonlinear mathematical model that represents coupled mental and motor dynamics incorporating the psychological concept of reflection or self-image. The nonlinear dynamics impart the lifelike ability to behave in ways and to exhibit patterns that depart from thermodynamic equilibrium. Reflection or self-image has traditionally been recognized as a basic element of intelligence. The nonlinear mathematical models of the present development are denoted self-supervised dynamical systems. They include (1) equations of classical dynamics, including random components caused by uncertainties in initial conditions and by Langevin forces, coupled with (2) the corresponding Liouville or Fokker-Planck equations that describe the evolutions of probability densities that represent the uncertainties. The coupling is effected by fictitious information-based forces, denoted supervising forces, composed of probability densities and functionals thereof. The equations of classical mechanics represent motor dynamics that is, dynamics in the traditional sense, signifying Newton s equations of motion. The evolution of the probability densities represents mental dynamics or self-image. Then the interaction between the physical and

  8. Computable Types for Dynamic Systems

    NARCIS (Netherlands)

    P.J. Collins (Pieter); K. Ambos-Spies; B. Loewe; W. Merkle

    2009-01-01

    textabstractIn this paper, we develop a theory of computable types suitable for the study of dynamic systems in discrete and continuous time. The theory uses type-two effectivity as the underlying computational model, but we quickly develop a type system which can be manipulated abstractly, but for

  9. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seonghan; Chang, Rakwoo [Kwangwoon University, Seoul (Korea, Republic of)

    2016-07-15

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L{sub β}' or P{sub β}') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L{sub α}). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  10. Structure, Dynamics, and Phase Behavior of DOPC/DSPC Mixture Membrane Systems: Molecular Dynamics Simulation Studies

    International Nuclear Information System (INIS)

    Kim, Seonghan; Chang, Rakwoo

    2016-01-01

    Full atomistic molecular dynamics simulations have been performed for model mixture bilayer membrane systems consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) phospholipids to understand the effects of two essential parameters such as lipid composition and temperature on the structural, dynamical, and phase behavior of mixture membrane systems. Although pure DSPC membranes are in the gel-like (L_β' or P_β') phase at 323 K, raising the temperature by only 10 K or replacing 20% of DSPC lipids by DOPC lipids can change the gel-like phase into the completely liquid-crystalline phase (L_α). This phase change is accompanied by dramatic change in both structural properties such as area per lipid, membrane thickness, deuterium order parameter, and tail angle distribution, and dynamics properties such as mobility map. We also observe that the full width at half-maximum (FWHM) data of tail angle distribution as well as area per lipid (or membrane thickness)can be used as order parameters for the membrane phase transition.

  11. Dynamics of mechanical systems with variable mass

    CERN Document Server

    Belyaev, Alexander

    2014-01-01

    The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.

  12. Polynomial f (R ) Palatini cosmology: Dynamical system approach

    Science.gov (United States)

    Szydłowski, Marek; Stachowski, Aleksander

    2018-05-01

    We investigate cosmological dynamics based on f (R ) gravity in the Palatini formulation. In this study, we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piecewise smooth dynamical system. This system is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee C0 extendibility of the metric similarly as "Milne-like" Friedmann-Lemaître-Robertson-Walker spacetimes are C0-extendible. We point out that importance of the dynamical system of the Newtonian type with nonsmooth right-hand sides in the context of Palatini cosmology. In this framework, we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.

  13. Shadowing in dynamical systems

    CERN Document Server

    Pilyugin, Sergei Yu

    1999-01-01

    This book is an introduction to the theory of shadowing of approximate trajectories in dynamical systems by exact ones. This is the first book completely devoted to the theory of shadowing. It shows the importance of shadowing theory for both the qualitative theory of dynamical systems and the theory of numerical methods. Shadowing Methods allow us to estimate differences between exact and approximate solutions on infinite time intervals and to understand the influence of error terms. The book is intended for specialists in dynamical systems, for researchers and graduate students in the theory of numerical methods.

  14. Scilab software package for the study of dynamical systems

    Science.gov (United States)

    Bordeianu, C. C.; Beşliu, C.; Jipa, Al.; Felea, D.; Grossu, I. V.

    2008-05-01

    This work presents a new software package for the study of chaotic flows and maps. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well known examples are implemented, with the capability of the users inserting their own ODE. Program summaryProgram title: Chaos Catalogue identifier: AEAP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 885 No. of bytes in distributed program, including test data, etc.: 5925 Distribution format: tar.gz Programming language: Scilab 3.1.1 Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 100 Megabytes Classification: 6.2 Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of ordinary differential equations. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincaré sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies. Restrictions: The package routines are normally able to handle ODE systems of high orders (up to order twelve and possibly higher), depending on the nature of the problem. Running time: 10 to 20 seconds for problems that do not

  15. Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications.

    Science.gov (United States)

    Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O

    2015-01-01

    This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n (2) memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

  16. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    Science.gov (United States)

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  17. Dynamics of Multibody Systems Near Lagrangian Points

    Science.gov (United States)

    Wong, Brian

    This thesis examines the dynamics of a physically connected multi-spacecraft system in the vicinity of the Lagrangian points of a Circular Restricted Three-Body System. The spacecraft system is arranged in a wheel-spoke configuration with smaller and less massive satellites connected to a central hub using truss/beams or tether connectors. The kinematics of the system is first defined, and the kinetic, gravitational potential energy and elastic potential energy of the system are derived. The Assumed Modes Method is used to discretize the continuous variables of the system, and a general set of ordinary differential equations describing the dynamics of the connectors and the central hub are obtained using the Lagrangian method. The flexible body dynamics of the tethered and truss connected systems are examined using numerical simulations. The results show that these systems experienced only small elastic deflections when they are naturally librating or rotating at moderate angular velocities, and these deflections have relatively small effect on the attitude dynamics of the systems. Based on these results, it is determined that the connectors can be modeled as rigid when only the attitude dynamics of the system is of interest. The equations of motion of rigid satellites stationed at the Lagrangian points are linearized, and the stability conditions of the satellite are obtained from the linear equations. The required conditions are shown to be similar to those of geocentric satellites. Study of the linear equations also revealed the resonant conditions of rigid Lagrangian point satellites, when a librational natural frequency of the satellite matches the frequency of its station-keeping orbit leading to large attitude motions. For tethered satellites, the linear analysis shows that the tethers are in stable equilibrium when they lie along a line joining the two primary celestial bodies of the Three-Body System. Numerical simulations are used to study the long term

  18. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System.

    Science.gov (United States)

    Bao, Yulong; Li, Yongle; Ding, Jiajie

    2016-11-10

    A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM) software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  19. A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System

    Directory of Open Access Journals (Sweden)

    Yulong Bao

    2016-11-01

    Full Text Available A suspended monorail transit system is a category of urban rail transit, which is effective in alleviating traffic pressure and injury prevention. Meanwhile, with the advantages of low cost and short construction time, suspended monorail transit systems show vast potential for future development. However, the suspended monorail has not been systematically studied in China, and there is a lack of relevant knowledge and analytical methods. To ensure the health and reliability of a suspended monorail transit system, the driving safety of vehicles and structure dynamic behaviors when vehicles are running on the bridge should be analyzed and evaluated. Based on the method of vehicle-bridge coupling vibration theory, the finite element method (FEM software ANSYS and multi-body dynamics software SIMPACK are adopted respectively to establish the finite element model for bridge and the multi-body vehicle. A co-simulation method is employed to investigate the vehicle-bridge coupling vibration for the transit system. The traffic operation factors, including train formation, track irregularity and tire stiffness, are incorporated into the models separately to analyze the bridge and vehicle responses. The results show that the coupling of dynamic effects of the suspended monorail system between vehicle and bridge are significant in the case studied, and it is strongly suggested to take necessary measures for vibration suppression. The simulation of track irregularity is a critical factor for its vibration safety, and the track irregularity of A-level road roughness negatively influences the system vibration safety.

  20. "COUPLED PROCESSES" AS DYNAMIC CAPABILITIES IN SYSTEMS INTEGRATION

    OpenAIRE

    Chagas Jr, Milton de Freitas; Leite, Dinah Eluze Sales; Jesus, Gabriel Torres de

    2017-01-01

    ABSTRACT The dynamics of innovation in complex systems industries is becoming an independent research stream. Apart from conventional uncertainties related to commerce and technology, complex-system industries must cope with systemic uncertainty. This paper's objective is to analyze evolving technological paths from one product generation to the next through two case studies in the Brazilian aerospace industry, considering systems integration as an empirical instantiation of dynamic capabilit...

  1. Management of complex dynamical systems

    Science.gov (United States)

    MacKay, R. S.

    2018-02-01

    Complex dynamical systems are systems with many interdependent components which evolve in time. One might wish to control their trajectories, but a more practical alternative is to control just their statistical behaviour. In many contexts this would be both sufficient and a more realistic goal, e.g. climate and socio-economic systems. I refer to it as ‘management’ of complex dynamical systems. In this paper, some mathematics for management of complex dynamical systems is developed in the weakly dependent regime, and questions are posed for the strongly dependent regime.

  2. Influence of different technologies on dynamic pricing in district heating systems: Comparative case studies

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Wahlroos, Mikko; Syri, Sanna

    2018-01-01

    District heating markets are often dominated by monopolies in both Denmark and Finland. The same companies, often owned by local municipalities, are usually operating both supplying plants and district heating networks, while the pricing mechanisms are rigid, often agreed upon for one year...... in advance. The mentioned ownership scheme may cause problems, when one tries to gain a third party access in order to deliver excess heat or heat from cheaper heating plants. In this paper, two case studies were carried out to simulate the district heating systems based on dynamic pricing. Case studies were...... carried out for Sønderborg, Denmark and Espoo, Finland. The results showed that dynamic pricing fosters feeding the waste heat into the grid, as dynamic pricing reduced the total primary energy consumption and CO2 emissions in both case studies. In the best scenarios, the weighted average heat price...

  3. Gas-Phase Molecular Dynamics: Theoretical Studies in Spectroscopy and Chemical Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, H.G.; Muckerman, J.T.

    2010-06-01

    The goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods.

  4. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  5. Complexified dynamical systems

    International Nuclear Information System (INIS)

    Bender, Carl M; Holm, Darryl D; Hook, Daniel W

    2007-01-01

    Many dynamical systems, such as the Lotka-Volterra predator-prey model and the Euler equations for the free rotation of a rigid body, are PT symmetric. The standard and well-known real solutions to such dynamical systems constitute an infinitessimal subclass of the full set of complex solutions. This paper examines a subset of the complex solutions that contains the real solutions, namely those having PT symmetry. The condition of PT symmetry selects out complex solutions that are periodic. (fast track communication)

  6. Nonautonomous dynamical systems

    CERN Document Server

    Kloeden, Peter E

    2011-01-01

    The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

  7. Microscopic study on dynamic barrier in fusion reactions

    International Nuclear Information System (INIS)

    Wu Xizhen; Tian Junlong; Zhao Kai; Li Zhuxia; Wang Ning

    2004-01-01

    The authors briefly review the fusion process of very heavy nuclear systems and some theoretical models. The authors propose a microscopic transport dynamic model, i.e. the Improved Quantum Molecular Dynamic model, for describing fusion reactions of heavy systems, in which the dynamical behavior of the fusion barrier in heavy fusion systems has been studied firstly. The authors find that with the incident energy decreasing the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. The authors also indicate that how the dynamical fusion barrier is correlated with the development of the configuration of fusion partners along the fusion path. Associating the single-particle potentials obtained at different stages of fusion with the Two Center Shell Model, authors can study the time evolution of the single particle states of fusion system in configuration space of single particle orbits along the fusion path. (author)

  8. Three-nucleon system dynamics studied via deuteron-proton breakup

    International Nuclear Information System (INIS)

    Kistryn, S.

    2011-01-01

    Nucleon-nucleon (NN) interaction is a basis for vast fields of fundamental nuclear physics and its application, therefore a detailed knowledge of the dynamics of few-nucleon systems has been a subject of intensive quest over several decades. Modern NN potential models can be probed quantitatively in the three-nucleon environment by comparing predictions based on rigorous solutions of the Faddeev equations with the measured observables. Proper description of the experimental data can be achieved only if the dynamical models include subtle effects of suppressed degrees of freedom, effectively introduced by means of genuine three-nucleon forces. A large set of high precision, exclusive cross-section data for the "1H(d,pp)n breakup reaction at 130 MeV, acquired in a first new-generation experiment at KVI Groningen, contributes significantly to constrain the physical assumptions underlying the theoretical interaction models. Comparison of nearly 1800 cross-section data points with the predictions using nuclear interactions generated in various ways, allowed to establish for the first time a clear evidence of importance of the three-nucleon forces in the breakup process. Moreover, the results, supplemented by a set of cross-sections from another dedicated experiment at FZ Juelich, confirmed predictions of sizable Coulomb force influences in this reaction. Following further, comparably rich and precise data sets, encompassing also polarization observables, will form a database to validate the theoretical models of few-nucleon system dynamics. (author)

  9. Modal and Dynamic Analysis of a Vehicle with Kinetic Dynamic Suspension System

    Directory of Open Access Journals (Sweden)

    Bangji Zhang

    2016-01-01

    Full Text Available A novel kinetic dynamic suspension (KDS system is presented for the cooperative control of the roll and warp motion modes of off-road vehicles. The proposed KDS system consists of two hydraulic cylinders acting on the antiroll bars. Hence, the antiroll bars are not completely replaced by the hydraulic system, but both systems are installed. In this paper, the vibration analysis in terms of natural frequencies of different motion modes in frequency domain for an off-road vehicle equipped with different configurable suspension systems is studied by using the modal analysis method. The dynamic responses of the vehicle with different configurable suspension systems are investigated under different road excitations and maneuvers. The results of the modal and dynamic analysis prove that the KDS system can reduce the roll and articulation motions of the off-road vehicle without adding extra bounce stiffness and deteriorating the ride comfort. Furthermore, the roll stiffness is increased and the warp stiffness is decreased by the KDS system, which could significantly enhance handing performance and off-road capability.

  10. System Dynamics Modeling in Entrepreneurship Research: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zali

    2014-11-01

    Full Text Available System dynamics is a strategic approach for modeling complex systems and analyzing their behavior. Dynamic behavior in entrepreneurial system can be modeled using System Dynamics Approach and dynamic hypotheses about the system`s behavior can be proposed and tested using simulation and computer aided tools. However, as the review of literature shows, studies which link system dynamics modeling with entrepreneurship are rare and fragmented. This article presents a review of studies on the subject followed by integration and discussion on main research issues that have been the focus of previous studies. The main aim of this review is to categorize the available research related to the application of system dynamics modeling in entrepreneurship to integrate research and enable recommendations for future research. The Results reveal that the previous research could be categorized under a two dimensional taxonomy composed of level of analysis and level of modeling. The Level of analysis has three categories: micro level, meso level and macro level. The Level of modeling has six hierarchical levels. This study identifies several gaps in the literature and discusses the future directions in this field.

  11. Chaos for Discrete Dynamical System

    Directory of Open Access Journals (Sweden)

    Lidong Wang

    2013-01-01

    Full Text Available We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a sequence. Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.

  12. Pod systems: an equivariant ordinary differential equation approach to dynamical systems on a spatial domain

    International Nuclear Information System (INIS)

    Elmhirst, Toby; Stewart, Ian; Doebeli, Michael

    2008-01-01

    We present a class of systems of ordinary differential equations (ODEs), which we call 'pod systems', that offers a new perspective on dynamical systems defined on a spatial domain. Such systems are typically studied as partial differential equations, but pod systems bring the analytic techniques of ODE theory to bear on the problems, and are thus able to study behaviours and bifurcations that are not easily accessible to the standard methods. In particular, pod systems are specifically designed to study spatial dynamical systems that exhibit multi-modal solutions. A pod system is essentially a linear combination of parametrized functions in which the coefficients and parameters are variables whose dynamics are specified by a system of ODEs. That is, pod systems are concerned with the dynamics of functions of the form Ψ(s, t) = y 1 (t) φ(s; x 1 (t)) + ··· + y N (t) φ(s; x N (t)), where s in R n is the spatial variable and φ: R n × R d → R. The parameters x i in R d and coefficients y i in R are dynamic variables which evolve according to some system of ODEs, x-dot i = G i (x, y) and y-dot i = H i (x, y), for i = 1, ..., N. The dynamics of Ψ in function space can then be studied through the dynamics of the x and y in finite dimensions. A vital feature of pod systems is that the ODEs that specify the dynamics of the x and y variables are not arbitrary; restrictions on G i and H i are required to guarantee that the dynamics of Ψ in function space are well defined (that is, that trajectories are unique). One important restriction is symmetry in the ODEs which arises because Ψ is invariant under permutations of the indices of the (x i , y i ) pairs. However, this is not the whole story, and the primary goal of this paper is to determine the necessary structure of the ODEs explicitly to guarantee that the dynamics of Ψ are well defined

  13. Nonlinear Dynamics, Chaotic and Complex Systems

    Science.gov (United States)

    Infeld, E.; Zelazny, R.; Galkowski, A.

    2011-04-01

    Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet

  14. On a p-adic Cubic Generalized Logistic Dynamical System

    International Nuclear Information System (INIS)

    Mukhamedov, Farrukh; Rozali, Wan Nur Fairuz Alwani Wan

    2013-01-01

    Applications of p-adic numbers mathematical physics, quantum mechanics stimulated increasing interest in the study of p-adic dynamical system. One of the interesting investigations is p-adic logistics map. In this paper, we consider a new generalization, namely we study a dynamical system of the form f a (x) = ax(1−x 2 ). The paper is devoted to the investigation of a trajectory of the given system. We investigate the generalized logistic dynamical system with respect to parameter a and we restrict ourselves for the investigation of the case |a| p < 1. We study the existence of the fixed points and their behavior. Moreover, we describe their size of attractors and Siegel discs since the structure of the orbits of the system is related to the geometry of the p-adic Siegel discs.

  15. Ergodic theory and dynamical systems

    CERN Document Server

    Coudène, Yves

    2016-01-01

    This textbook is a self-contained and easy-to-read introduction to ergodic theory and the theory of dynamical systems, with a particular emphasis on chaotic dynamics. This book contains a broad selection of topics and explores the fundamental ideas of the subject. Starting with basic notions such as ergodicity, mixing, and isomorphisms of dynamical systems, the book then focuses on several chaotic transformations with hyperbolic dynamics, before moving on to topics such as entropy, information theory, ergodic decomposition and measurable partitions. Detailed explanations are accompanied by numerous examples, including interval maps, Bernoulli shifts, toral endomorphisms, geodesic flow on negatively curved manifolds, Morse-Smale systems, rational maps on the Riemann sphere and strange attractors. Ergodic Theory and Dynamical Systems will appeal to graduate students as well as researchers looking for an introduction to the subject. While gentle on the beginning student, the book also contains a number of commen...

  16. A study on dynamically reconfigurable robotic systems, 3

    International Nuclear Information System (INIS)

    Fukuda, Toshio; Kawauchi, Yoshio; Buss, M.; Asama, Hajime.

    1990-01-01

    The dynamically reconfigurable robotic system (DRRS) is a new kind of robotic system which is able to reconfigurate itself to an optimal structure depending on the purpose and exvironment. To realize this concept, we proposed the CEBOT (cell-structured robot). Communication is needed in the CEBOT system as follows. When cells are separated, a communication master cell needs to know the other cell's function and position and determine the target cell for docking. Mobile cells should be able to coordinate with other mobile cell. When cells are docked, forming a cell structure/module, a master cell should control the bending joint cell and know which cells the construction is composed of. In this paper, we propose a communication protocol for both cases with optical sensor applicable to CEBOT. Some experimental results are shown by realizing the proposed communication method between cells. (author)

  17. Study on system dynamics of evolutionary mix-game models

    Science.gov (United States)

    Gou, Chengling; Guo, Xiaoqian; Chen, Fang

    2008-11-01

    Mix-game model is ameliorated from an agent-based MG model, which is used to simulate the real financial market. Different from MG, there are two groups of agents in Mix-game: Group 1 plays a majority game and Group 2 plays a minority game. These two groups of agents have different bounded abilities to deal with historical information and to count their own performance. In this paper, we modify Mix-game model by assigning the evolution abilities to agents: if the winning rates of agents are smaller than a threshold, they will copy the best strategies the other agent has; and agents will repeat such evolution at certain time intervals. Through simulations this paper finds: (1) the average winning rates of agents in Group 1 and the mean volatilities increase with the increases of the thresholds of Group 1; (2) the average winning rates of both groups decrease but the mean volatilities of system increase with the increase of the thresholds of Group 2; (3) the thresholds of Group 2 have greater impact on system dynamics than the thresholds of Group 1; (4) the characteristics of system dynamics under different time intervals of strategy change are similar to each other qualitatively, but they are different quantitatively; (5) As the time interval of strategy change increases from 1 to 20, the system behaves more and more stable and the performances of agents in both groups become better also.

  18. Modeling the angular motion dynamics of spacecraft with a magnetic attitude control system based on experimental studies and dynamic similarity

    Science.gov (United States)

    Kulkov, V. M.; Medvedskii, A. L.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2017-12-01

    The problem of spacecraft attitude control using electromagnetic systems interacting with the Earth's magnetic field is considered. A set of dimensionless parameters has been formed to investigate the spacecraft orientation regimes based on dynamically similar models. The results of experimental studies of small spacecraft with a magnetic attitude control system can be extrapolated to the in-orbit spacecraft motion control regimes by using the methods of the dimensional and similarity theory.

  19. Dynamical Systems for Creative Technology

    NARCIS (Netherlands)

    van Amerongen, J.

    2010-01-01

    Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical

  20. Dynamics of Large Systems of Nonlinearly Evolving Units

    Science.gov (United States)

    Lu, Zhixin

    The dynamics of large systems of many nonlinearly evolving units is a general research area that has great importance for many areas in science and technology, including biology, computation by artificial neural networks, statistical mechanics, flocking in animal groups, the dynamics of coupled neurons in the brain, and many others. While universal principles and techniques are largely lacking in this broad area of research, there is still one particular phenomenon that seems to be broadly applicable. In particular, this is the idea of emergence, by which is meant macroscopic behaviors that "emerge" from a large system of many "smaller or simpler entities such that...large entities" [i.e., macroscopic behaviors] arise which "exhibit properties the smaller/simpler entities do not exhibit." In this thesis we investigate mechanisms and manifestations of emergence in four dynamical systems consisting many nonlinearly evolving units. These four systems are as follows. (a) We first study the motion of a large ensemble of many noninteracting particles in a slowly changing Hamiltonian system that undergoes a separatrix crossing. In such systems, we find that separatrix-crossing induces a counterintuitive effect. Specifically, numerical simulation of two sets of densely sprinkled initial conditions on two energy curves appears to suggest that the two energy curves, one originally enclosing the other, seemingly interchange their positions. This, however, is topologically forbidden. We resolve this paradox by introducing a numerical simulation method we call "robust" and study its consequences. (b) We next study the collective dynamics of oscillatory pacemaker neurons in Suprachiasmatic Nucleus (SCN), which, through synchrony, govern the circadian rhythm of mammals. We start from a high-dimensional description of the many coupled oscillatory neuronal units within the SCN. This description is based on a forced Kuramoto model. We then reduce the system dimensionality by using

  1. The Dynamical Invariant of Open Quantum System

    OpenAIRE

    Wu, S. L.; Zhang, X. Y.; Yi, X. X.

    2015-01-01

    The dynamical invariant, whose expectation value is constant, is generalized to open quantum system. The evolution equation of dynamical invariant (the dynamical invariant condition) is presented for Markovian dynamics. Different with the dynamical invariant for the closed quantum system, the evolution of the dynamical invariant for the open quantum system is no longer unitary, and the eigenvalues of it are time-dependent. Since any hermitian operator fulfilling dynamical invariant condition ...

  2. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  3. Functional System Dynamics

    NARCIS (Netherlands)

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The

  4. Dynamical systems probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  5. Self-supervised dynamical systems

    International Nuclear Information System (INIS)

    Zak, Michail

    2004-01-01

    A new type of dynamical systems which capture the interactions via information flows typical for active multi-agent systems is introduced. The mathematical formalism is based upon coupling the classical dynamical system (with random components caused by uncertainties in initial conditions as well as by Langevin forces) with the corresponding Liouville or the Fokker-Planck equations describing evolution of these uncertainties in terms of probability density. The coupling is implemented by information-based supervising forces which fundamentally change the patterns of probability evolution. It is demonstrated that the probability density can approach prescribed attractors while exhibiting such patterns as shock waves, solitons and chaos in probability space. Applications of these phenomena to information-based neural nets, expectation-based cooperation, self-programmed systems, control chaos using terminal attractors as well as to games with incomplete information, are addressed. A formal similarity between the mathematical structure of the introduced dynamical systems and quantum mechanics is discussed

  6. Using LEGO Kits to Teach Higher Level Problem Solving Skills in System Dynamics: A Case Study

    Science.gov (United States)

    Wu, Yi; de Vries, Charlotte; Dunsworth, Qi

    2018-01-01

    System Dynamics is a required course offered to junior Mechanical Engineering students at Penn State Erie, the Behrend College. It addresses the intercoupling dynamics of a wide range of dynamic systems: including mechanical, electrical, fluid, hydraulic, electromechanical, and biomedical systems. This course is challenging for students due to the…

  7. Collaborate or not? : A system dynamics study on disruption recovery

    NARCIS (Netherlands)

    Zhu, Quan; Krikke, Harold; Caniels, Marjolein C. J.

    2016-01-01

    Purpose – The purpose of this paper is to investigate different combinations of collaboration strategies to deal with different types of supply chain disruptions, find the best combination, and provide targeting suggestions for investments. Design/methodology/approach – A system dynamics simulation

  8. Simulation of dynamic systems with Matlab and Simulink

    CERN Document Server

    Klee, Harold

    2011-01-01

    Mathematical ModelingDerivation of a Mathematical ModelDifference EquationsFirst Look at Discrete-Time SystemsCase Study: Population Dynamics (Single Species)Continuous-Time SystemsFirst-Order SystemsSecond-Order SystemsSimulation DiagramsHigher-Order SystemsState VariablesNonlinear SystemsCase Study: Submarine Depth Control SystemElementary Numerical IntegrationDiscrete-Time System Approximation of a Continuous-

  9. Assessing the Dynamic Behavior of Online Q&A Knowledge Markets: A System Dynamics Approach

    Science.gov (United States)

    Jafari, Mostafa; Hesamamiri, Roozbeh; Sadjadi, Jafar; Bourouni, Atieh

    2012-01-01

    Purpose: The objective of this paper is to propose a holistic dynamic model for understanding the behavior of a complex and internet-based kind of knowledge market by considering both social and economic interactions. Design/methodology/approach: A system dynamics (SD) model is formulated in this study to investigate the dynamic characteristics of…

  10. A predictability study of Lorenz's 28-variable model as a dynamical system

    Science.gov (United States)

    Krishnamurthy, V.

    1993-01-01

    The dynamics of error growth in a two-layer nonlinear quasi-geostrophic model has been studied to gain an understanding of the mathematical theory of atmospheric predictability. The growth of random errors of varying initial magnitudes has been studied, and the relation between this classical approach and the concepts of the nonlinear dynamical systems theory has been explored. The local and global growths of random errors have been expressed partly in terms of the properties of an error ellipsoid and the Liapunov exponents determined by linear error dynamics. The local growth of small errors is initially governed by several modes of the evolving error ellipsoid but soon becomes dominated by the longest axis. The average global growth of small errors is exponential with a growth rate consistent with the largest Liapunov exponent. The duration of the exponential growth phase depends on the initial magnitude of the errors. The subsequent large errors undergo a nonlinear growth with a steadily decreasing growth rate and attain saturation that defines the limit of predictability. The degree of chaos and the largest Liapunov exponent show considerable variation with change in the forcing, which implies that the time variation in the external forcing can introduce variable character to the predictability.

  11. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  12. Dynamical System Approaches to Combinatorial Optimization

    DEFF Research Database (Denmark)

    Starke, Jens

    2013-01-01

    of large times as an asymptotically stable point of the dynamics. The obtained solutions are often not globally optimal but good approximations of it. Dynamical system and neural network approaches are appropriate methods for distributed and parallel processing. Because of the parallelization......Several dynamical system approaches to combinatorial optimization problems are described and compared. These include dynamical systems derived from penalty methods; the approach of Hopfield and Tank; self-organizing maps, that is, Kohonen networks; coupled selection equations; and hybrid methods...... thereof can be used as models for many industrial problems like manufacturing planning and optimization of flexible manufacturing systems. This is illustrated for an example in distributed robotic systems....

  13. Volume Dynamics Propulsion System Modeling for Supersonics Vehicle Research

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Paxson, Daniel E.; Ma, Peter

    2010-01-01

    Under the NASA Fundamental Aeronautics Program the Supersonics Project is working to overcome the obstacles to supersonic commercial flight. The proposed vehicles are long slim body aircraft with pronounced aero-servo-elastic modes. These modes can potentially couple with propulsion system dynamics; leading to performance challenges such as aircraft ride quality and stability. Other disturbances upstream of the engine generated from atmospheric wind gusts, angle of attack, and yaw can have similar effects. In addition, for optimal propulsion system performance, normal inlet-engine operations are required to be closer to compressor stall and inlet unstart. To study these phenomena an integrated model is needed that includes both airframe structural dynamics as well as the propulsion system dynamics. This paper covers the propulsion system component volume dynamics modeling of a turbojet engine that will be used for an integrated vehicle Aero-Propulso-Servo-Elastic model and for propulsion efficiency studies.

  14. A neural network approach to the study of dynamics and structure of molecular systems

    International Nuclear Information System (INIS)

    Getino, C.; Sumpter, B.G.; Noid, D.W.

    1994-01-01

    Neural networks are used to study intramolecular energy flow in molecular systems (tetratomics to macromolecules), developing new techniques for efficient analysis of data obtained from molecular-dynamics and quantum mechanics calculations. Neural networks can map phase space points to intramolecular vibrational energies along a classical trajectory (example of complicated coordinate transformation), producing reasonably accurate values for any region of the multidimensional phase space of a tetratomic molecule. Neural network energy flow predictions are found to significantly enhance the molecular-dynamics method to longer time-scales and extensive averaging of trajectories for macromolecular systems. Pattern recognition abilities of neural networks can be used to discern phase space features. Neural networks can also expand model calculations by interpolation of costly quantum mechanical ab initio data, used to develop semiempirical potential energy functions

  15. Simulation study of coal mine safety investment based on system dynamics

    Institute of Scientific and Technical Information of China (English)

    Tong Lei; Dou Yuanyuan

    2014-01-01

    To generate dynamic planning for coal mine safety investment, this study applies system dynamics to decision-making, classifying safety investments by accident type. It validates the relationship between safety investments and accident cost, by structurally analyzing the causality between safety investments and their influence factors. Our simulation model, based on Vensim software, conducts simulation anal-ysis on a series of actual data from a coalmine in Shanxi Province. Our results indicate a lag phase in safety investments, and that increasing pre-phase safety investment reduces accident costs. We found that a 24%increase in initial safety investment could help reach the target accident costs level 14 months earlier. Our simulation test included nine kinds of variation trends of accident costs brought by different investment ratios on accident prevention. We found an optimized ratio of accident prevention invest-ments allowing a mine to reach accident cost goals 4 months earlier, without changing its total investment.

  16. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  17. Functional System Dynamics

    OpenAIRE

    Ligterink, N.E.

    2007-01-01

    Functional system dynamics is the analysis, modelling, and simulation of continuous systems usually described by partial differential equations. From the infinite degrees of freedom of such systems only a finite number of relevant variables have to be chosen for a practical model description. The proper input and output of the system are an important part of the relevant variables.

  18. Introduction to the application of dynamical systems theory in the study of the dynamics of cosmological models of dark energy

    International Nuclear Information System (INIS)

    García-Salcedo, Ricardo; Sanchez-Guzmán, Daniel; Gonzalez, Tame; Horta-Rangel, Francisco A; Quiros, Israel

    2015-01-01

    The theory of dynamical systems is a very complex subject that has produced several surprises in the recent past in connection with the theory of chaos and fractals. The application of the tools of dynamical systems in cosmological settings is less known, in spite of the number of published scientific papers on this subject. In this paper, a mostly pedagogical introduction to the cosmological application of the basic tools of dynamical systems theory is presented. It is shown that, in spite of their amazing simplicity, these tools allow us to extract essential information on the asymptotic dynamics of a wide variety of cosmological models. The power of these tools is illustrated within the context of the so-called Λ-cold dark matter (ΛCDM) and scalar field models of dark energy. This paper is suitable for teachers, undergraduate students, and postgraduate students in the disciplines of physics and mathematics. (paper)

  19. Dynamical systems on networks a tutorial

    CERN Document Server

    Porter, Mason A

    2016-01-01

    This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Appli...

  20. Adaptive Integration of Nonsmooth Dynamical Systems

    Science.gov (United States)

    2017-10-11

    2017 W911NF-12-R-0012-03: Adaptive Integration of Nonsmooth Dynamical Systems The views, opinions and/or findings contained in this report are those of...Integration of Nonsmooth Dynamical Systems Report Term: 0-Other Email: drum@gwu.edu Distribution Statement: 1-Approved for public release; distribution is...classdrake_1_1systems_1_1_integrator_base.html ; 3) a solver for dynamical systems with arbitrary unilateral and bilateral constraints (the key component of the time stepping systems )- see

  1. A new version of Scilab software package for the study of dynamical systems

    Science.gov (United States)

    Bordeianu, C. C.; Felea, D.; Beşliu, C.; Jipa, Al.; Grossu, I. V.

    2009-11-01

    This work presents a new version of a software package for the study of chaotic flows, maps and fractals [1]. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well-known examples are implemented, with the capability of the users inserting their own ODE or iterative equations. New version program summaryProgram title: Chaos v2.0 Catalogue identifier: AEAP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1275 No. of bytes in distributed program, including test data, etc.: 7135 Distribution format: tar.gz Programming language: Scilab 5.1.1. Scilab 5.1.1 should be installed before running the program. Information about the installation can be found at scilab.org/howto/install/windows" xlink:type="simple">http://wiki.scilab.org/howto/install/windows. Computer: PC-compatible running Scilab on MS Windows or Linux Operating system: Windows XP, Linux RAM: below 150 Megabytes Classification: 6.2 Catalogue identifier of previous version: AEAP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 178 (2008) 788 Does the new version supersede the previous version?: Yes Nature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE). Solution method: Numerical solving of

  2. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  3. Butschli Dynamic Droplet System

    DEFF Research Database (Denmark)

    Armstrong, R.; Hanczyc, M.

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Butschli water-in-oil droplets as a model for further investigation into the development...... reconstructed the Butschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing...... temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water...

  4. Dynamics of quasi-stable dissipative systems

    CERN Document Server

    Chueshov, Igor

    2015-01-01

    This book is  devoted to background material and recently developed mathematical methods in the study of infinite-dimensional dissipative systems. The theory of such systems is motivated by the long-term goal to establish rigorous mathematical models for turbulent and chaotic phenomena. The aim here is to offer general methods and abstract results pertaining to fundamental dynamical systems properties related to dissipative long-time behavior. The book systematically presents, develops and uses the quasi-stability method while substantially extending it by including for consideration new classes of models and PDE systems arising in Continuum Mechanics. The book can be used as a textbook in dissipative dynamics at the graduate level.   Igor Chueshov is a Professor of Mathematics at Karazin Kharkov National University in Kharkov, Ukraine.

  5. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  6. Dynamic behaviors of spin-1/2 bilayer system within Glauber-type stochastic dynamics based on the effective-field theory

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Kantar, Ersin; Keskin, Mustafa

    2014-01-01

    The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior

  7. Dynamic behaviors of spin-1/2 bilayer system within Glauber-type stochastic dynamics based on the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet; Kantar, Ersin, E-mail: ersinkantar@erciyes.edu.tr; Keskin, Mustafa

    2014-05-01

    The dynamic phase transitions (DPTs) and dynamic phase diagrams of the kinetic spin-1/2 bilayer system in the presence of a time-dependent oscillating external magnetic field are studied by using Glauber-type stochastic dynamics based on the effective-field theory with correlations for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions. The time variations of average magnetizations and the temperature dependence of the dynamic magnetizations are investigated. The dynamic phase diagrams for the amplitude of the oscillating field versus temperature were presented. The results are compared with the results of the same system within Glauber-type stochastic dynamics based on the mean-field theory. - Highlights: • The Ising bilayer system is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a re-entrant behavior.

  8. Automated design of complex dynamic systems.

    Directory of Open Access Journals (Sweden)

    Michiel Hermans

    Full Text Available Several fields of study are concerned with uniting the concept of computation with that of the design of physical systems. For example, a recent trend in robotics is to design robots in such a way that they require a minimal control effort. Another example is found in the domain of photonics, where recent efforts try to benefit directly from the complex nonlinear dynamics to achieve more efficient signal processing. The underlying goal of these and similar research efforts is to internalize a large part of the necessary computations within the physical system itself by exploiting its inherent non-linear dynamics. This, however, often requires the optimization of large numbers of system parameters, related to both the system's structure as well as its material properties. In addition, many of these parameters are subject to fabrication variability or to variations through time. In this paper we apply a machine learning algorithm to optimize physical dynamic systems. We show that such algorithms, which are normally applied on abstract computational entities, can be extended to the field of differential equations and used to optimize an associated set of parameters which determine their behavior. We show that machine learning training methodologies are highly useful in designing robust systems, and we provide a set of both simple and complex examples using models of physical dynamical systems. Interestingly, the derived optimization method is intimately related to direct collocation a method known in the field of optimal control. Our work suggests that the application domains of both machine learning and optimal control have a largely unexplored overlapping area which envelopes a novel design methodology of smart and highly complex physical systems.

  9. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  10. Dynamics of harmonically-confined systems: Some rigorous results

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhigang, E-mail: zwu@physics.queensu.ca; Zaremba, Eugene, E-mail: zaremba@sparky.phy.queensu.ca

    2014-03-15

    In this paper we consider the dynamics of harmonically-confined atomic gases. We present various general results which are independent of particle statistics, interatomic interactions and dimensionality. Of particular interest is the response of the system to external perturbations which can be either static or dynamic in nature. We prove an extended Harmonic Potential Theorem which is useful in determining the damping of the centre of mass motion when the system is prepared initially in a highly nonequilibrium state. We also study the response of the gas to a dynamic external potential whose position is made to oscillate sinusoidally in a given direction. We show in this case that either the energy absorption rate or the centre of mass dynamics can serve as a probe of the optical conductivity of the system. -- Highlights: •We derive various rigorous results on the dynamics of harmonically-confined atomic gases. •We derive an extension of the Harmonic Potential Theorem. •We demonstrate the link between the energy absorption rate in a harmonically-confined system and the optical conductivity.

  11. Stress and Systemic Inflammation: Yin-Yang Dynamics in Health and Diseases.

    Science.gov (United States)

    Yan, Qing

    2018-01-01

    Studies in psychoneuroimmunology (PNI) would provide better insights into the "whole mind-body system." Systems biology models of the complex adaptive systems (CASs), such as a conceptual framework of "Yin-Yang dynamics," may be helpful for identifying systems-based biomarkers and targets for more effective prevention and treatment. The disturbances in the Yin-Yang dynamical balance may result in stress, inflammation, and various disorders including insomnia, Alzheimer's disease, obesity, diabetes, cardiovascular diseases, skin disorders, and cancer. At the molecular and cellular levels, the imbalances in the cytokine pathways, mitochondria networks, redox systems, and various signaling pathways may contribute to systemic inflammation. In the nervous system, Yin and Yang may represent the dynamical associations between the progressive and regressive processes in aging and neurodegenerative diseases. In response to the damages to the heart, the Yin-Yang dynamical balance between proinflammatory and anti-inflammatory cytokine networks is crucial. The studies of cancer have revealed the importance of the Yin-Yang dynamics in the tumoricidal and tumorigenic activities of the immune system. Stress-induced neuroimmune imbalances are also essential in chronic skin disorders including atopic dermatitis and psoriasis. With the integrative framework, the restoration of the Yin-Yang dynamics can become the objective of dynamical systems medicine.

  12. The use of system dynamics for EROI simulation

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari

    to construct a systems dynamics model to represent a geothermal power plant and calculate the EROI3,i. The benefits of such models are their simplicity, and simulation power. The system simulated is adapted from Atlason et al. (2013) where the EROI for the Nesjavellir geothermal power plant was calculated....... The systems dynamics model essentially provides other researchers with a clear demonstration of inputs, outputs and assumptions used in the calculations. I propose, that EROI studies are supplemented with such models for clarity....... along with publications where inputs and outputs from energy systems are shown, but that is seldom or ever the case. Doing so would allow other researchers to see if energy systems or studies are actually comparable and if inputs, outputs and assumptions are the same. In this study, I demonstrate how...

  13. Attractors and basins of dynamical systems

    Directory of Open Access Journals (Sweden)

    Attila Dénes

    2011-03-01

    Full Text Available There are several programs for studying dynamical systems, but none of them is very useful for investigating basins and attractors of higher dimensional systems. Our goal in this paper is to show a new algorithm for finding even chaotic attractors and their basins for these systems. We present an implementation and examples for the use of this program.

  14. Dynamical analysis of an orbiting three-rigid-body system

    Energy Technology Data Exchange (ETDEWEB)

    Pagnozzi, Daniele, E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk; Biggs, James D., E-mail: daniele.pagnozzi@strath.ac.uk, E-mail: james.biggs@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, Scotland (United Kingdom)

    2014-12-10

    The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.

  15. Modeling workforce demand in North Dakota: a System Dynamics approach

    OpenAIRE

    Muminova, Adiba

    2015-01-01

    This study investigates the dynamics behind the workforce demand and attempts to predict the potential effects of future changes in oil prices on workforce demand in North Dakota. The study attempts to join System Dynamics and Input-Output models in order to overcome shortcomings in both of the approaches and gain a more complete understanding of the issue of workforce demand. A system dynamics simulation of workforce demand within different economic sector...

  16. Dynamic Stability Experiment of Maglev Systems,

    Science.gov (United States)

    1995-04-01

    This report summarizes the research performed on maglev vehicle dynamic stability at Argonne National Laboratory during the past few years. It also... maglev system, it is important to consider this phenomenon in the development of all maglev systems. This report presents dynamic stability experiments...on maglev systems and compares their numerical simulation with predictions calculated by a nonlinear dynamic computer code. Instabilities of an

  17. The dynamical crossover in attractive colloidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Mallamace, Domenico [Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  18. Dynamical systems

    CERN Document Server

    Birkhoff, George D

    1927-01-01

    His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o

  19. 12th International Conference of Dynamical Systems-Theory and Applications

    CERN Document Server

    Applied Non-Linear Dynamical Systems

    2014-01-01

    The book is a collection of contributions devoted to analytical, numerical and experimental techniques of dynamical systems, presented at the International Conference on Dynamical Systems: Theory and Applications, held in Łódź, Poland on December 2-5, 2013. The studies give deep insight into both the theory and applications of non-linear dynamical systems, emphasizing directions for future research. Topics covered include: constrained motion of mechanical systems and tracking control; diversities in the inverse dynamics; singularly perturbed ODEs with periodic coefficients; asymptotic solutions to the problem of vortex structure around a cylinder; investigation of the regular and chaotic dynamics; rare phenomena and chaos in power converters; non-holonomic constraints in wheeled robots; exotic bifurcations in non-smooth systems; micro-chaos; energy exchange of coupled oscillators; HIV dynamics; homogenous transformations with applications to off-shore slender structures; novel approaches to a qualitative s...

  20. System crash as dynamics of complex networks.

    Science.gov (United States)

    Yu, Yi; Xiao, Gaoxi; Zhou, Jie; Wang, Yubo; Wang, Zhen; Kurths, Jürgen; Schellnhuber, Hans Joachim

    2016-10-18

    Complex systems, from animal herds to human nations, sometimes crash drastically. Although the growth and evolution of systems have been extensively studied, our understanding of how systems crash is still limited. It remains rather puzzling why some systems, appearing to be doomed to fail, manage to survive for a long time whereas some other systems, which seem to be too big or too strong to fail, crash rapidly. In this contribution, we propose a network-based system dynamics model, where individual actions based on the local information accessible in their respective system structures may lead to the "peculiar" dynamics of system crash mentioned above. Extensive simulations are carried out on synthetic and real-life networks, which further reveal the interesting system evolution leading to the final crash. Applications and possible extensions of the proposed model are discussed.

  1. Gas-Phase Molecular Dynamics: Theoretical Studies In Spectroscopy and Chemical Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu H. G.; Muckerman, J.T.

    2012-05-29

    The main goal of this program is the development and application of computational methods for studying chemical reaction dynamics and molecular spectroscopy in the gas phase. We are interested in developing rigorous quantum dynamics algorithms for small polyatomic systems and in implementing approximate approaches for complex ones. Particular focus is on the dynamics and kinetics of chemical reactions and on the rovibrational spectra of species involved in combustion processes. This research also explores the potential energy surfaces of these systems of interest using state-of-the-art quantum chemistry methods, and extends them to understand some important properties of materials in condensed phases and interstellar medium as well as in combustion environments.

  2. Emergent Properties in Natural and Artificial Dynamical Systems

    CERN Document Server

    Aziz-Alaoui, M.A

    2006-01-01

    An important part of the science of complexity is the study of emergent properties arising through dynamical processes in various types of natural and artificial systems. This is the aim of this book, which is the outcome of a discussion meeting within the first European conference on complex systems. It presents multidisciplinary approaches for getting representations of complex systems and using different methods to extract emergent structures. This carefully edited book studies emergent features such as self organization, synchronization, opening on stability and robustness properties. Invariant techniques are presented which can express global emergent properties in dynamical and in temporal evolution systems. This book demonstrates how artificial systems such as a distributed platform can be used for simulation used to search emergent placement during simulation execution.

  3. On Rank Driven Dynamical Systems

    Science.gov (United States)

    Veerman, J. J. P.; Prieto, F. J.

    2014-08-01

    We investigate a class of models related to the Bak-Sneppen (BS) model, initially proposed to study evolution. The BS model is extremely simple and yet captures some forms of "complex behavior" such as self-organized criticality that is often observed in physical and biological systems. In this model, random fitnesses in are associated to agents located at the vertices of a graph . Their fitnesses are ranked from worst (0) to best (1). At every time-step the agent with the worst fitness and some others with a priori given rank probabilities are replaced by new agents with random fitnesses. We consider two cases: The exogenous case where the new fitnesses are taken from an a priori fixed distribution, and the endogenous case where the new fitnesses are taken from the current distribution as it evolves. We approximate the dynamics by making a simplifying independence assumption. We use Order Statistics and Dynamical Systems to define a rank-driven dynamical system that approximates the evolution of the distribution of the fitnesses in these rank-driven models, as well as in the BS model. For this simplified model we can find the limiting marginal distribution as a function of the initial conditions. Agreement with experimental results of the BS model is excellent.

  4. Dynamics of immune system vulnerabilities

    Science.gov (United States)

    Stromberg, Sean P.

    The adaptive immune system can be viewed as a complex system, which adapts, over time, to reflect the history of infections experienced by the organism. Understanding its operation requires viewing it in terms of tradeoffs under constraints and evolutionary history. It typically displays "robust, yet fragile" behavior, meaning common tasks are robust to small changes but novel threats or changes in environment can have dire consequences. In this dissertation we use mechanistic models to study several biological processes: the immune response, the homeostasis of cells in the lymphatic system, and the process that normally prevents autoreactive cells from entering the lymphatic system. Using these models we then study the effects of these processes interacting. We show that the mechanisms that regulate the numbers of cells in the immune system, in conjunction with the immune response, can act to suppress autoreactive cells from proliferating, thus showing quantitatively how pathogenic infections can suppress autoimmune disease. We also show that over long periods of time this same effect can thin the repertoire of cells that defend against novel threats, leading to an age correlated vulnerability. This vulnerability is shown to be a consequence of system dynamics, not due to degradation of immune system components with age. Finally, modeling a specific tolerance mechanism that normally prevents autoimmune disease, in conjunction with models of the immune response and homeostasis we look at the consequences of the immune system mistakenly incorporating pathogenic molecules into its tolerizing mechanisms. The signature of this dynamic matches closely that of the dengue virus system.

  5. Pressure dynamic characteristics of pressure controlled ventilation system of a lung simulator.

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  6. Incorporating Social System Dynamics into the Food-Energy-Water System Resilience-Sustainability Modeling Process

    Science.gov (United States)

    Givens, J.; Padowski, J.; Malek, K.; Guzman, C.; Boll, J.; Adam, J. C.; Witinok-Huber, R.

    2017-12-01

    In the face of climate change and multi-scalar governance objectives, achieving resilience of food-energy-water (FEW) systems requires interdisciplinary approaches. Through coordinated modeling and management efforts, we study "Innovations in the Food-Energy-Water Nexus (INFEWS)" through a case-study in the Columbia River Basin. Previous research on FEW system management and resilience includes some attention to social dynamics (e.g., economic, governance); however, more research is needed to better address social science perspectives. Decisions ultimately taken in this river basin would occur among stakeholders encompassing various institutional power structures including multiple U.S. states, tribal lands, and sovereign nations. The social science lens draws attention to the incompatibility between the engineering definition of resilience (i.e., return to equilibrium or a singular stable state) and the ecological and social system realities, more explicit in the ecological interpretation of resilience (i.e., the ability of a system to move into a different, possibly more resilient state). Social science perspectives include but are not limited to differing views on resilience as normative, system persistence versus transformation, and system boundary issues. To expand understanding of resilience and objectives for complex and dynamic systems, concepts related to inequality, heterogeneity, power, agency, trust, values, culture, history, conflict, and system feedbacks must be more tightly integrated into FEW research. We identify gaps in knowledge and data, and the value and complexity of incorporating social components and processes into systems models. We posit that socio-biophysical system resilience modeling would address important complex, dynamic social relationships, including non-linear dynamics of social interactions, to offer an improved understanding of sustainable management in FEW systems. Conceptual modeling that is presented in our study, represents

  7. Hamiltonian-Driven Adaptive Dynamic Programming for Continuous Nonlinear Dynamical Systems.

    Science.gov (United States)

    Yang, Yongliang; Wunsch, Donald; Yin, Yixin

    2017-08-01

    This paper presents a Hamiltonian-driven framework of adaptive dynamic programming (ADP) for continuous time nonlinear systems, which consists of evaluation of an admissible control, comparison between two different admissible policies with respect to the corresponding the performance function, and the performance improvement of an admissible control. It is showed that the Hamiltonian can serve as the temporal difference for continuous-time systems. In the Hamiltonian-driven ADP, the critic network is trained to output the value gradient. Then, the inner product between the critic and the system dynamics produces the value derivative. Under some conditions, the minimization of the Hamiltonian functional is equivalent to the value function approximation. An iterative algorithm starting from an arbitrary admissible control is presented for the optimal control approximation with its convergence proof. The implementation is accomplished by a neural network approximation. Two simulation studies demonstrate the effectiveness of Hamiltonian-driven ADP.

  8. Profiling the overdamped dynamics of a nonadiabatic system

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Prasun [Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009 (India); Shit, Anindita [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, Sudip, E-mail: sudip_chattopadhyay@rediffmail.com [Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Banik, Suman K., E-mail: skbanik@jcbose.ac.in [Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700009 (India)

    2015-09-08

    Graphical abstract: The theoretical analysis that is addressed here can be used to illustrate both a qualitative and a quantitative understanding of the dynamics of a particle in the presence of an external probe. - Highlights: • Interaction of systems with strong fields results in many interesting observations. • The relevant systems are characterized by an extremely high degree of control. • The theory that is addressed here is useful to investigate the transport process. • Effective to understand the trapping mechanism in a rapidly oscillating potential. • Useful to study the dynamics of particles in the presence of an external probe. - Abstract: Rapidly oscillating time-periodic potentials with a vanishing time average have been exploited to investigate the dynamics of an overdamped particle. Using the multiple scale perturbation theory, it has been shown that the dynamics can be adequately characterized by an explicitly time-independent effective potential. The resulting “effective equation of motion” can offer various avenues to handle the dynamics of the system driven by a high-frequency field. We study the effects of the field parameters on the mobility of the overdamped particle moving in the effective potential. The variation of the mobility with the field parameters is associated with the interplay of spatially periodic gradients, time periodic modulation and thermal noise in the overdamped region. Good agreement between the simulations and theoretical estimates validates our methodology that captures the constitutional features ruling the dynamics in the overdamped limit. The results observed here can also be extended to the quantum system.

  9. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  10. Modular interdependency in complex dynamical systems.

    Science.gov (United States)

    Watson, Richard A; Pollack, Jordan B

    2005-01-01

    Herbert A. Simon's characterization of modularity in dynamical systems describes subsystems as having dynamics that are approximately independent of those of other subsystems (in the short term). This fits with the general intuition that modules must, by definition, be approximately independent. In the evolution of complex systems, such modularity may enable subsystems to be modified and adapted independently of other subsystems, whereas in a nonmodular system, modifications to one part of the system may result in deleterious side effects elsewhere in the system. But this notion of modularity and its effect on evolvability is not well quantified and is rather simplistic. In particular, modularity need not imply that intermodule dependences are weak or unimportant. In dynamical systems this is acknowledged by Simon's suggestion that, in the long term, the dynamical behaviors of subsystems do interact with one another, albeit in an "aggregate" manner--but this kind of intermodule interaction is omitted in models of modularity for evolvability. In this brief discussion we seek to unify notions of modularity in dynamical systems with notions of how modularity affects evolvability. This leads to a quantifiable measure of modularity and a different understanding of its effect on evolvability.

  11. Dynamics analysis of fractional order Yu-Wang system

    Science.gov (United States)

    Bhalekar, Sachin

    2013-10-01

    Fractional order version of a dynamical system introduced by Yu and Wang (Engineering, Technology & Applied Science Research, 2, (2012) 209-215) is discussed in this article. The basic dynamical properties of the system are studied. Minimum effective dimension 0.942329 for the existence of chaos in the proposed system is obtained using the analytical result. For chaos detection, we have calculated maximum Lyapunov exponents for various values of fractional order. Feedback control method is then used to control chaos in the system. Further, the system is synchronized with itself and with fractional order financial system using active control technique. Modified Adams-Bashforth-Moulton algorithm is used for numerical simulations.

  12. Experimental study on the dynamic performance of a novel system combining natural ventilation with diffuse ceiling inlet and TABS

    DEFF Research Database (Denmark)

    Yu, Tao; Heiselberg, Per Kvols; Lei, Bo

    2016-01-01

    Highlights • Dynamic experiments are performed to study energy performance of a new HVAC system. • Designed control strategies show good utilization of natural ventilation cooling. • TABS work well with the diffuse ceiling in the dynamic measurements. • No local thermal comfort problem is found...... even in the extreme winter case. • Designed control strategies can be used in the future application of this system....

  13. Conceptualizing Teacher Identity as a Complex Dynamic System: The Inner Dynamics of Transformations during a Practicum

    Science.gov (United States)

    Henry, Alastair

    2016-01-01

    Currently, the inner dynamics of teacher identity transformations remain a "black box." Conceptualizing preservice teacher identity as a complex dynamic system, and the notion of "being someone who teaches" in dialogical terms as involving shifts between different teacher voices, the study investigates the dynamical processes…

  14. Structures in dynamics finite dimensional deterministic studies

    CERN Document Server

    Broer, HW; van Strien, SJ; Takens, F

    1991-01-01

    The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers who wish to be acquainted with the more theoretical and fundamental subjects in non-linear dynamics and is designed to link the popular literature with research papers and monographs. All of the subjects covered in this book are extensively dealt with and presented in a pedagogic

  15. “Coupled processes” as dynamic capabilities in systems integration

    Directory of Open Access Journals (Sweden)

    Milton de Freitas Chagas Jr.

    2017-05-01

    Full Text Available The dynamics of innovation in complex systems industries is becoming an independent research stream. Apart from conventional uncertainties related to commerce and technology, complex-system industries must cope with systemic uncertainty. This paper’s objective is to analyze evolving technological paths from one product generation to the next through two case studies in the Brazilian aerospace indus­try, considering systems integration as an empirical instantiation of dynamic capabilities. A proposed “coupled processes” model intertwines two organizational processes regarded as two levels of dynamic capabilities: new product and technological developments. The model addresses the role of emergent properties in shaping a firm’s technological base. Moreover, it uses a technology readiness level to unveil systems integration business tricks and as a decision-making yardstick. The “coupled processes” model is revealed as a set of dynamic capabilities presenting ambidexterity in complex systems indus­tries, a finding that may be relevant for newly industrialized economies.

  16. Constraint Embedding for Multibody System Dynamics

    Science.gov (United States)

    Jain, Abhinandan

    2009-01-01

    This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.

  17. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    Science.gov (United States)

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Studies in Chemical Dynamics

    International Nuclear Information System (INIS)

    Rabitz, Herschel; Ho, Tak-San

    2003-01-01

    This final report draws together the research carried from February, 1986 through January, 2003 concerning a series of topics in chemical dynamics. The specific areas of study include molecular collisions, chemical kinetics, data inversion to extract potential energy surfaces, and model reduction of complex kinetic systems

  19. System Dynamics Modeling of Multipurpose Reservoir Operation

    Directory of Open Access Journals (Sweden)

    Ebrahim Momeni

    2006-03-01

    Full Text Available System dynamics, a feedback – based object – oriented simulation approach, not only represents complex dynamic systemic systems in a realistic way but also allows the involvement of end users in model development to increase their confidence in modeling process. The increased speed of model development, the possibility of group model development, the effective communication of model results, and the trust developed in the model due to user participation are the main strengths of this approach. The ease of model modification in response to changes in the system and the ability to perform sensitivity analysis make this approach more attractive compared with systems analysis techniques for modeling water management systems. In this study, a system dynamics model was developed for the Zayandehrud basin in central Iran. This model contains river basin, dam reservoir, plains, irrigation systems, and groundwater. Current operation rule is conjunctive use of ground and surface water. Allocation factor for each irrigation system is computed based on the feedback from groundwater storage in its zone. Deficit water is extracted from groundwater.The results show that applying better rules can not only satisfy all demands such as Gawkhuni swamp environmental demand, but it can also  prevent groundwater level drawdown in future.

  20. The Aharonov-Anandan phase of a classical dynamical system seen mathematically as a quantum dynamical system

    OpenAIRE

    Segre, Gavriel

    2005-01-01

    It is shown that the non-adiabatic Hannay's angle of an integrable non-degenerate classical hamiltonian dynamical system may be related to the Aharonov-Anandan phase it develops when it is looked mathematically as a quantum dynamical system.

  1. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  2. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318

  3. Urban eco-efficiency and system dynamics modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hradil, P., Email: petr.hradil@vtt.fi

    2012-06-15

    Assessment of urban development is generally based on static models of economic, social or environmental impacts. More advanced dynamic models have been used mostly for prediction of population and employment changes as well as for other macro-economic issues. This feasibility study was arranged to test the potential of system dynamic modelling in assessing eco-efficiency changes during urban development. (orig.)

  4. Study of the dynamic operational characteristics of the Taiwan Power Company system - a nuclear majority system

    International Nuclear Information System (INIS)

    Yu, I.H.

    1982-01-01

    All conclusions drawn in this dissertation are based on the results of about six hundred study cases. The dynamic characteristics of the present Taiwan Power Company system are very different not only from the characteristics of any other power system in the world but also from Taipower's own history characteristics. Based on the engineers' knowledge, this dissertation takes a calculation risk approach to deal with the problems in the energy systems. Chapter I introduces the information related with the stability of the present Taipower system. Taipower operating engineers are facing the problem of committing a large amount of nuclear generation at a low base load level. The general introduction of the stability program developed for this study is described in Chapter II. In Chapter III, the processes of performing the transient stability study are explained to show how this study was performed. Critical tie flows were suggested in Chapter IV, which might help balance the nuclear generation and thermal generation at the base load level and plan the unit maintenance schedule. Several operation modes which may increase the degree of stability or minimize the number unit trippings were discussed in Chapter V. In Chapter VI, how to adjust the load shedding policy to improve the stability are discussed. The remote tripping scheme which is effective in preventing massive system blackout was studied in Chapter VII. Some broader concepts in load management are presented in Chapter VII for Taipower's management decision

  5. Nonlinear dynamics and chaos in a fractional-order financial system

    International Nuclear Information System (INIS)

    Chen Weiching

    2008-01-01

    This study examines the two most attractive characteristics, memory and chaos, in simulations of financial systems. A fractional-order financial system is proposed in this study. It is a generalization of a dynamic financial model recently reported in the literature. The fractional-order financial system displays many interesting dynamic behaviors, such as fixed points, periodic motions, and chaotic motions. It has been found that chaos exists in fractional-order financial systems with orders less than 3. In this study, the lowest order at which this system yielded chaos was 2.35. Period doubling and intermittency routes to chaos in the fractional-order financial system were found

  6. Contributions to the Study of Dynamic Absorbers, a Case Study

    Directory of Open Access Journals (Sweden)

    Monica Balcau

    2012-01-01

    Full Text Available Dynamic absorbers are used to reduce torsional vibrations. This paper studies the effect of a dynamic absorber attached to a mechanical system formed of three reduced masses which are acted on by one, two or three order x harmonics of a disruptive force.

  7. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  8. Trust dynamics in a large system implementation

    DEFF Research Database (Denmark)

    Schlichter, Bjarne Rerup; Rose, Jeremy

    2013-01-01

    outcomes, but largely ignored the dynamics of trust relations. Giddens, as part of his study of modernity, theorises trust dynamics in relation to abstract social systems, though without focusing on information systems. We use Giddens’ concepts to investigate evolving trust relationships in a longitudinal......A large information systems implementation (such as Enterprise Resource Planning systems) relies on the trust of its stakeholders to succeed. Such projects impact diverse groups of stakeholders, each with their legitimate interests and expectations. Levels of stakeholder trust can be expected...... case analysis of a large Integrated Hospital System implementation for the Faroe Islands. Trust relationships suffered a serious breakdown, but the project was able to recover and meet its goals. We develop six theoretical propositions theorising the relationship between trust and project outcomes...

  9. Dynamism in Electronic Performance Support Systems.

    Science.gov (United States)

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  10. Dynamic Parameter Identification of Hydrodynamic Bearing-Rotor System

    Directory of Open Access Journals (Sweden)

    Zhiqiang Song

    2015-01-01

    Full Text Available A new method called modal parameter genetic time domain identification was employed to study the characteristics of the bearing-rotor system. A multifrequency signal decomposition technology to identify the main components of the measured signal and reject the image mode produced by noise has been used. The first- and second-order natural frequency and damping ratios of the shaft system are identified. Furthermore, because of the deficiency of the traditional least square method, a new genetic identification method to identify the bearing dynamic characteristic parameters has been proposed. The method has been effective albeit with few testing points and operation cases. The derivation of oil-film dynamic coefficients could also provide a basis for shaft system natural vibration characteristic and vibration response analysis. Using the identified dynamic coefficients as the supporting condition, the shaft system modal characteristics were studied. The calculated first- and second-order natural frequencies match quite well those obtained from the modal parameter identification. It was proved that the modal parameter and physical parameter identification methods utilized in this paper are reasonable.

  11. q-entropy for symbolic dynamical systems

    International Nuclear Information System (INIS)

    Zhao, Yun; Pesin, Yakov

    2015-01-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems. (paper)

  12. Dynamics of vehicle-road coupled system

    CERN Document Server

    Yang, Shaopu; Li, Shaohua

    2015-01-01

    Vehicle dynamics and road dynamics are usually considered to be two largely independent subjects. In vehicle dynamics, road surface roughness is generally regarded as random excitation of the vehicle, while in road dynamics, the vehicle is generally regarded as a moving load acting on the pavement. This book suggests a new research concept to integrate the vehicle and the road system with the help of a tire model, and establishes a cross-subject research framework dubbed vehicle-pavement coupled system dynamics. In this context, the dynamics of the vehicle, road and the vehicle-road coupled system are investigated by means of theoretical analysis, numerical simulations and field tests. This book will be a valuable resource for university professors, graduate students and engineers majoring in automotive design, mechanical engineering, highway engineering and other related areas. Shaopu Yang is a professor and deputy president of Shijiazhuang Tiedao University, China; Liqun Chen is a professor at Shanghai Univ...

  13. Session 6: Dynamic Modeling and Systems Analysis

    Science.gov (United States)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  14. A theory of electron baths: One-electron system dynamics

    International Nuclear Information System (INIS)

    McDowell, H.K.

    1992-01-01

    The second-quantized, many-electron, atomic, and molecular Hamiltonian is partitioned both by the identity or labeling of the spin orbitals and by the dynamics of the spin orbitals into a system coupled to a bath. The electron bath is treated by a molecular time scale generalized Langevin equation approach designed to include one-electron dynamics in the system dynamics. The bath is formulated as an equivalent chain of spin orbitals through the introduction of equivalent-chain annihilation and creation operators. Both the dynamics and the quantum grand canonical statistical properties of the electron bath are examined. Two versions for the statistical properties of the bath are pursued. Using a weak bath assumption, a bath statistical average is defined which allows one to achieve a reduced dynamics description of the electron system which is coupled to the electron bath. In a strong bath assumption effective Hamiltonians are obtained which reproduce the dynamics of the bath and which lead to the same results as found in the weak bath assumption. The effective (but exact) Hamiltonian is found to be a one-electron Hamiltonian. A reduced dynamics equation of motion for the system population matrix is derived and found to agree with a previous version. This equation of motion is useful for studying electron transfer in the system when coupled to an electron bath

  15. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  16. Persistent topological features of dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Maletić, Slobodan, E-mail: slobodan@hitsz.edu.cn [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen (China); Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade (Serbia); Zhao, Yi, E-mail: zhao.yi@hitsz.edu.cn [Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen (China); Rajković, Milan, E-mail: milanr@vinca.rs [Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade (Serbia)

    2016-05-15

    Inspired by an early work of Muldoon et al., Physica D 65, 1–16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.

  17. Study on the System Design of a Solar Assisted Ground Heat Pump System Using Dynamic Simulation

    Directory of Open Access Journals (Sweden)

    Min Gyung Yu

    2016-04-01

    Full Text Available Recently, the use of hybrid systems using multiple heat sources in buildings to ensure a stable energy supply and improve the system performance has gained attention. Among them, a heat pump system using both solar and ground heat was developed and various system configurations have been introduced. However, establishing a suitable design method for the solar-assisted ground heat pump (SAGHP system including a thermal storage tank is complicated and there are few quantitative studies on the detailed system configurations. Therefore, this study developed three SAGHP system design methods considering the design factors focused on the thermal storage tank. Using dynamic energy simulation code (TRNSYS 17, individual performance analysis models were developed and long-term quantitative analysis was carried out to suggest optimum design and operation methods. As a result, it was found that SYSTEM 2 which is a hybrid system with heat storage tank for only a solar system showed the highest average heat source temperature of 14.81 °C, which is about 11 °C higher than minimum temperature in SYSTEM 3. Furthermore, the best coefficient of performance (COP values of heat pump and system were 5.23 and 4.32 in SYSYEM 2, using high and stable solar heat from a thermal storage tank. Moreover, this paper considered five different geographical and climatic locations and the SAGHP system worked efficiently in having high solar radiation and cool climate zones and the system COP was 4.51 in the case of Winnipeg (Canada where the highest heating demand is required.

  18. The brain as a dynamic physical system.

    Science.gov (United States)

    McKenna, T M; McMullen, T A; Shlesinger, M F

    1994-06-01

    The brain is a dynamic system that is non-linear at multiple levels of analysis. Characterization of its non-linear dynamics is fundamental to our understanding of brain function. Identifying families of attractors in phase space analysis, an approach which has proven valuable in describing non-linear mechanical and electrical systems, can prove valuable in describing a range of behaviors and associated neural activity including sensory and motor repertoires. Additionally, transitions between attractors may serve as useful descriptors for analysing state changes in neurons and neural ensembles. Recent observations of synchronous neural activity, and the emerging capability to record the spatiotemporal dynamics of neural activity by voltage-sensitive dyes and electrode arrays, provide opportunities for observing the population dynamics of neural ensembles within a dynamic systems context. New developments in the experimental physics of complex systems, such as the control of chaotic systems, selection of attractors, attractor switching and transient states, can be a source of powerful new analytical tools and insights into the dynamics of neural systems.

  19. Individual heterogeneity generating explosive system network dynamics.

    Science.gov (United States)

    Manrique, Pedro D; Johnson, Neil F

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  20. Individual heterogeneity generating explosive system network dynamics

    Science.gov (United States)

    Manrique, Pedro D.; Johnson, Neil F.

    2018-03-01

    Individual heterogeneity is a key characteristic of many real-world systems, from organisms to humans. However, its role in determining the system's collective dynamics is not well understood. Here we study how individual heterogeneity impacts the system network dynamics by comparing linking mechanisms that favor similar or dissimilar individuals. We find that this heterogeneity-based evolution drives an unconventional form of explosive network behavior, and it dictates how a polarized population moves toward consensus. Our model shows good agreement with data from both biological and social science domains. We conclude that individual heterogeneity likely plays a key role in the collective development of real-world networks and communities, and it cannot be ignored.

  1. Features of statistical dynamics in a finite system

    International Nuclear Information System (INIS)

    Yan, Shiwei; Sakata, Fumihiko; Zhuo Yizhong

    2002-01-01

    We study features of statistical dynamics in a finite Hamilton system composed of a relevant one degree of freedom coupled to an irrelevant multidegree of freedom system through a weak interaction. Special attention is paid on how the statistical dynamics changes depending on the number of degrees of freedom in the irrelevant system. It is found that the macrolevel statistical aspects are strongly related to an appearance of the microlevel chaotic motion, and a dissipation of the relevant motion is realized passing through three distinct stages: dephasing, statistical relaxation, and equilibrium regimes. It is clarified that the dynamical description and the conventional transport approach provide us with almost the same macrolevel and microlevel mechanisms only for the system with a very large number of irrelevant degrees of freedom. It is also shown that the statistical relaxation in the finite system is an anomalous diffusion and the fluctuation effects have a finite correlation time

  2. Brand Equity Evolution: a System Dynamics Model

    Directory of Open Access Journals (Sweden)

    Edson Crescitelli

    2009-04-01

    Full Text Available One of the greatest challenges in brand management lies in monitoring brand equity over time. This paper aimsto present a simulation model able to represent this evolution. The model was drawn on brand equity concepts developed by Aaker and Joachimsthaler (2000, using the system dynamics methodology. The use ofcomputational dynamic models aims to create new sources of information able to sensitize academics and managers alike to the dynamic implications of their brand management. As a result, an easily implementable model was generated, capable of executing continuous scenario simulations by surveying casual relations among the variables that explain brand equity. Moreover, the existence of a number of system modeling tools will allow extensive application of the concepts used in this study in practical situations, both in professional and educational settings

  3. System dynamics and control with bond graph modeling

    CERN Document Server

    Kypuros, Javier

    2013-01-01

    Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...

  4. An Axiomatic Representation of System Dynamics

    CERN Document Server

    Baianu, I

    2004-01-01

    An axiomatic representation of system dynamics is introduced in terms of categories, functors, organismal supercategories, limits and colimits of diagrams. Specific examples are considered in Complex Systems Biology, such as ribosome biogenesis and Hormonal Control in human subjects. "Fuzzy" Relational Structures are also proposed for flexible representations of biological system dynamics and organization.

  5. Controlling chaos in discontinuous dynamical systems

    International Nuclear Information System (INIS)

    Danca, Marius-F.

    2004-01-01

    In this paper we consider the possibility to implement the technique of changes in the system variables to control the chaos introduced by Gueemez and Matias for continuous dynamical systems to a class of discontinuous dynamical systems. The approach is realized via differential inclusions following the Filippov theory. Three practical examples are considered

  6. Solar System Dynamics

    Science.gov (United States)

    Wisdom, Jack

    2002-01-01

    In these 18 years, the research has touched every major dynamical problem in the solar system, including: the effect of chaotic zones on the distribution of asteroids, the delivery of meteorites along chaotic pathways, the chaotic motion of Pluto, the chaotic motion of the outer planets and that of the whole solar system, the delivery of short period comets from the Kuiper belt, the tidal evolution of the Uranian arid Galilean satellites, the chaotic tumbling of Hyperion and other irregular satellites, the large chaotic variations of the obliquity of Mars, the evolution of the Earth-Moon system, and the resonant core- mantle dynamics of Earth and Venus. It has introduced new analytical and numerical tools that are in widespread use. Today, nearly every long-term integration of our solar system, its subsystems, and other solar systems uses algorithms that was invented. This research has all been primarily Supported by this sequence of PGG NASA grants. During this period published major investigations of tidal evolution of the Earth-Moon system and of the passage of the Earth and Venus through non-linear core-mantle resonances were completed. It has published a major innovation in symplectic algorithms: the symplectic corrector. A paper was completed on non-perturbative hydrostatic equilibrium.

  7. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  8. Quantum Dynamics in Biological Systems

    Science.gov (United States)

    Shim, Sangwoo

    In the first part of this dissertation, recent efforts to understand quantum mechanical effects in biological systems are discussed. Especially, long-lived quantum coherences observed during the electronic energy transfer process in the Fenna-Matthews-Olson complex at physiological condition are studied extensively using theories of open quantum systems. In addition to the usual master equation based approaches, the effect of the protein structure is investigated in atomistic detail through the combined application of quantum chemistry and molecular dynamics simulations. To evaluate the thermalized reduced density matrix, a path-integral Monte Carlo method with a novel importance sampling approach is developed for excitons coupled to an arbitrary phonon bath at a finite temperature. In the second part of the thesis, simulations of molecular systems and applications to vibrational spectra are discussed. First, the quantum dynamics of a molecule is simulated by combining semiclassical initial value representation and density funcitonal theory with analytic derivatives. A computationally-tractable approximation to the sum-of-states formalism of Raman spectra is subsequently discussed.

  9. Theoretical and experimental study on dynamic responses of piping systems with combined dampers

    International Nuclear Information System (INIS)

    Gershtein, M.; Fridman, Ya.; Perelmiter, A.

    1996-01-01

    Vibrations of pipelines transporting fluids, gases, and granular materials are excited by the air flow, internal pressure pulsation, or seismic ground motion. The susceptibility of oil and gas pipelines to seismic damage has been demonstrated in earthquakes everywhere around the world. Devices for above-ground pipelines and piping systems vibration suppression with combination of dry friction and viscous energy dissipation are developed by AVIBRA, Shear deformation of viscous-elastic material in these devices occurs prior to interfacial slip. The way to account this phenomenon is to model the damper as an elastic-viscous element in series with an ideal Coulomb dry friction element. The harmonic balance method was applied to obtain an equivalent viscous damping constant for a combined damper. Iteration process was used to predict a dynamic response of a piping system with combined dampers subjected to sinusoidal excitation. Every iteration step was based on ANSYS procedures. Time integration of systems with hysteretic friction models presents computational difficulties. Some examples of dynamic responses of piping systems were analyzed by a time integration procedure for finite-element models. Combined dry friction-viscous dissipation dampers were tested on a piping model under harmonic excitation. It was clarified that combined dampers are very effective to reduce dynamic response. The seismic response of the piping system with combined dampers was calculated using time history finite-element analysis. The excellent effectiveness of AVIBRA combined dampers for aseismic design and retrofitting of pipelines and piping systems was confirmed by the analysis

  10. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-07-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory.

  11. Information Processing Capacity of Dynamical Systems

    Science.gov (United States)

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  12. Information Decomposition in Bivariate Systems: Theory and Application to Cardiorespiratory Dynamics

    Directory of Open Access Journals (Sweden)

    Luca Faes

    2015-01-01

    Full Text Available In the framework of information dynamics, the temporal evolution of coupled systems can be studied by decomposing the predictive information about an assigned target system into amounts quantifying the information stored inside the system and the information transferred to it. While information storage and transfer are computed through the known self-entropy (SE and transfer entropy (TE, an alternative decomposition evidences the so-called cross entropy (CE and conditional SE (cSE, quantifying the cross information and internal information of the target system, respectively. This study presents a thorough evaluation of SE, TE, CE and cSE as quantities related to the causal statistical structure of coupled dynamic processes. First, we investigate the theoretical properties of these measures, providing the conditions for their existence and assessing the meaning of the information theoretic quantity that each of them reflects. Then, we present an approach for the exact computation of information dynamics based on the linear Gaussian approximation, and exploit this approach to characterize the behavior of SE, TE, CE and cSE in benchmark systems with known dynamics. Finally, we exploit these measures to study cardiorespiratory dynamics measured from healthy subjects during head-up tilt and paced breathing protocols. Our main result is that the combined evaluation of the measures of information dynamics allows to infer the causal effects associated with the observed dynamics and to interpret the alteration of these effects with changing experimental conditions.

  13. Self-organization of complex networks as a dynamical system.

    Science.gov (United States)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  14. Fuzzy Control of Cold Storage Refrigeration System with Dynamic Coupling Compensation

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2018-01-01

    Full Text Available Cold storage refrigeration systems possess the characteristics of multiple input and output and strong coupling, which brings challenges to the optimize control. To reduce the adverse effects of the coupling and improve the overall control performance of cold storage refrigeration systems, a control strategy with dynamic coupling compensation was studied. First, dynamic model of a cold storage refrigeration system was established based on the requirements of the control system. At the same time, the coupling between the components was studied. Second, to reduce the adverse effects of the coupling, a fuzzy controller with dynamic coupling compensation was designed. As for the fuzzy controller, a self-tuning fuzzy controller was served as the primary controller, and an adaptive neural network was adopted to compensate the dynamic coupling. Finally, the proposed control strategy was employed to the cold storage refrigeration system, and simulations were carried out in the condition of start-up, variable load, and variable degree of superheat, respectively. The simulation results verify the effectiveness of the fuzzy control method with dynamic coupling compensation.

  15. Dynamical system approach to phyllotaxis

    DEFF Research Database (Denmark)

    D'ovidio, Francesco; Mosekilde, Erik

    2000-01-01

    and not a dynamical system, mainly because new active elements are added at each step, and thus the dimension of the "natural" phase space is not conserved. Here a construction is presented by which a well defined dynamical system can be obtained, and a bifurcation analysis can be carried out. Stable and unstable...... of the Jacobian, and thus the eigenvalues, is given. It is likely that problems of the above type often arise in biology, and especially in morphogenesis, where growing systems are modeled....

  16. System dynamics modelling of situation awareness

    CSIR Research Space (South Africa)

    Oosthuizen, R

    2015-11-01

    Full Text Available . The feedback loops and delays in the Command and Control system also contribute to the complex dynamic behavior. This paper will build on existing situation awareness models to develop a System Dynamics model to support a qualitative investigation through...

  17. Evolutionary Design of Both Topologies and Parameters of a Hybrid Dynamical System

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2012-01-01

    This paper investigates the issue of evolutionary design of open-ended plants for hybrid dynamical systems--i.e. both their topologies and parameters. Hybrid bond graphs are used to represent dynamical systems involving both continuous and discrete system dynamics. Genetic programming, with some...... of hybrid dynamical systems that fulfill predefined design specifications. A comprehensive investigation of a case study of DC-DC converter design demonstrates the feasibility and effectiveness of the HBGGP approach. Important characteristics of the approach are also discussed, with some future research...

  18. Dynamical critical phenomena in driven-dissipative systems.

    Science.gov (United States)

    Sieberer, L M; Huber, S D; Altman, E; Diehl, S

    2013-05-10

    We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.

  19. Parameterizing Coefficients of a POD-Based Dynamical System

    Science.gov (United States)

    Kalb, Virginia L.

    2010-01-01

    A method of parameterizing the coefficients of a dynamical system based of a proper orthogonal decomposition (POD) representing the flow dynamics of a viscous fluid has been introduced. (A brief description of POD is presented in the immediately preceding article.) The present parameterization method is intended to enable construction of the dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers. The need for this or a similar method arises as follows: A procedure that includes direct numerical simulation followed by POD, followed by Galerkin projection to a dynamical system has been proven to enable representation of flow dynamics by a low-dimensional model at the Reynolds number of the simulation. However, a more difficult task is to obtain models that are valid over a range of Reynolds numbers. Extrapolation of low-dimensional models by use of straightforward Reynolds-number-based parameter continuation has proven to be inadequate for successful prediction of flows. A key part of the problem of constructing a dynamical system to accurately represent the temporal evolution of the flow dynamics over a range of Reynolds numbers is the problem of understanding and providing for the variation of the coefficients of the dynamical system with the Reynolds number. Prior methods do not enable capture of temporal dynamics over ranges of Reynolds numbers in low-dimensional models, and are not even satisfactory when large numbers of modes are used. The basic idea of the present method is to solve the problem through a suitable parameterization of the coefficients of the dynamical system. The parameterization computations involve utilization of the transfer of kinetic energy between modes as a function of Reynolds number. The thus-parameterized dynamical system accurately predicts the flow dynamics and is applicable to a range of flow problems in the dynamical regime around the Hopf bifurcation. Parameter

  20. Stochastic Thermodynamics: A Dynamical Systems Approach

    Directory of Open Access Journals (Sweden)

    Tanmay Rajpurohit

    2017-12-01

    Full Text Available In this paper, we develop an energy-based, large-scale dynamical system model driven by Markov diffusion processes to present a unified framework for statistical thermodynamics predicated on a stochastic dynamical systems formalism. Specifically, using a stochastic state space formulation, we develop a nonlinear stochastic compartmental dynamical system model characterized by energy conservation laws that is consistent with statistical thermodynamic principles. In particular, we show that the difference between the average supplied system energy and the average stored system energy for our stochastic thermodynamic model is a martingale with respect to the system filtration. In addition, we show that the average stored system energy is equal to the mean energy that can be extracted from the system and the mean energy that can be delivered to the system in order to transfer it from a zero energy level to an arbitrary nonempty subset in the state space over a finite stopping time.

  1. Distributed Coordination of Fractional Dynamical Systems with Exogenous Disturbances

    Directory of Open Access Journals (Sweden)

    Hongyong Yang

    2014-01-01

    Full Text Available Distributed coordination of fractional multiagent systems with external disturbances is studied. The state observer of fractional dynamical system is presented, and an adaptive pinning controller is designed for a little part of agents in multiagent systems without disturbances. This adaptive pinning controller with the state observer can ensure multiple agents' states reaching an expected reference tracking. Based on disturbance observers, the controllers are composited with the pinning controller and the state observer. By applying the stability theory of fractional order dynamical systems, the distributed coordination of fractional multiagent systems with external disturbances can be reached asymptotically.

  2. Dynamics of the diffusive DM-DE interaction – Dynamical system approach

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Zbigniew [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wrocław (Poland); Stachowski, Aleksander; Szydłowski, Marek, E-mail: zhab@ift.uni.wroc.pl, E-mail: aleksander.stachowski@uj.edu.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Krakow (Poland)

    2016-07-01

    We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initial conditions. We also fit the model parameters using astronomical observation: SNIa, H ( z ), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.

  3. A design method of bilateral control system with uncertain dynamics of environments

    International Nuclear Information System (INIS)

    Yamada, Kou; Iida, Noriyuki; Kudou, Naoki

    2002-01-01

    In the present paper, we examine a design method for master-slave systems of bilateral control systems. In master-slave systems, human operator works to achieve tasks via the master and the salve system. The salve system contacts the environment and works the tasks. According to past studies, when the dynamics of environment is treated as uncertainties, the number of unstable poles of the slave system is required to be equivalent to that of the slave system with the dynamics of the environment. In some cases, the number of unstable poles of the slave system with the dynamics of environment is different from that of the slave system. We propose a simple design method of bilateral control systems such that the number of unstable poles of the slave system with the dynamics of environmental is different from that of the slave system without the dynamics of the environment. (author)

  4. Use of Dynamic Technologies for Web-enabled Database Management Systems

    OpenAIRE

    Bogdanova, Galina; Todorov, Todor; Blagoev, Dimitar; Todorova, Mirena

    2007-01-01

    In this paper we consider two computer systems and the dynamic Web technologies they are using. Different contemporary dynamic web technologies are described in details and their advantages and disadvantages have been shown. Specific applications are developed, clinic and studying systems, and their programming models are described. Finally we implement these two applications in the students education process: Online studying has been tested in the Technical University – Va...

  5. Reconceptualizing Learning as a Dynamical System.

    Science.gov (United States)

    Ennis, Catherine D.

    1992-01-01

    Dynamical systems theory can increase our understanding of the constantly evolving learning process. Current research using experimental and interpretive paradigms focuses on describing the attractors and constraints stabilizing the educational process. Dynamical systems theory focuses attention on critical junctures in the learning process as…

  6. Introduction to turbulent dynamical systems in complex systems

    CERN Document Server

    Majda, Andrew J

    2016-01-01

    This volume is a research expository article on the applied mathematics of turbulent dynamical systems through the paradigm of modern applied mathematics. It involves the blending of rigorous mathematical theory, qualitative and quantitative modeling, and novel numerical procedures driven by the goal of understanding physical phenomena which are of central importance to the field. The contents cover general framework, concrete examples, and instructive qualitative models. Accessible open problems are mentioned throughout. Topics covered include: · Geophysical flows with rotation, topography, deterministic and random forcing · New statistical energy principles for general turbulent dynamical systems, with applications · Linear statistical response theory combined with information theory to cope with model errors · Reduced low order models · Recent mathematical strategies for online data assimilation of turbulent dynamical systems as well as rigorous results for finite ensemble Kalman filters The volume wi...

  7. Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification

    Science.gov (United States)

    Kim, Sang Hwa; Tahk, Min-Jea

    2018-04-01

    In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.

  8. The DYLAM approach for the dynamic reliability analysis of systems

    International Nuclear Information System (INIS)

    Cojazzi, Giacomo

    1996-01-01

    In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities

  9. Towards investigation of evolution of dynamical systems with independence of time accuracy: more classes of systems

    Science.gov (United States)

    Gurzadyan, V. G.; Kocharyan, A. A.

    2015-07-01

    The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.

  10. Dynamic Reconfiguration in Mobile Systems

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Glesner, Manfred; Zipf, Peter; Smit, L.T.; Havinga, Paul J.M.; Heysters, P.M.; Renovell, Michel; Rosien, M.A.J.

    Dynamically reconfigurable systems have the potential of realising efficient systems as well as providing adaptability to changing system requirements. Such systems are suitable for future mobile multimedia systems that have limited battery resources, must handle diverse data types, and must operate

  11. Conceptualizing the dynamics of workplace stress: a systems-based study of nursing aides.

    Science.gov (United States)

    Jetha, Arif; Kernan, Laura; Kurowski, Alicia

    2017-01-05

    Workplace stress is a complex phenomenon that may often be dynamic and evolving over time. Traditional linear modeling does not allow representation of recursive feedback loops among the implicated factors. The objective of this study was to develop a multidimensional system dynamics model (SDM) of workplace stress among nursing aides and conduct simulations to illustrate how changes in psychosocial perceptions and workplace factors might influence workplace stress over time. Eight key informants with prior experience in a large study of US nursing home workers participated in model building. Participants brainstormed the range of components related to workplace stress. Components were grouped together based on common themes and translated into feedback loops. The SDM was parameterized through key informant insight on the shape and magnitude of the relationship between model components. Model construction was also supported utilizing survey data collected as part of the larger study. All data was entered into the software program, Vensim. Simulations were conducted to examine how adaptations to model components would influence workplace stress. The SDM included perceptions of organizational conditions (e.g., job demands and job control), workplace social support (i.e., managerial and coworker social support), workplace safety, and demands outside of work (i.e. work-family conflict). Each component was part of a reinforcing feedback loop. Simulations exhibited that scenarios with increasing job control and decreasing job demands led to a decline in workplace stress. Within the context of the system, the effects of workplace social support, workplace safety, and work-family conflict were relatively minor. SDM methodology offers a unique perspective for researchers and practitioners to view workplace stress as a dynamic process. The portrayal of multiple recursive feedback loops can guide the development of policies and programs within complex organizational contexts

  12. Dynamic MR imaging of the musculoskeletal system

    International Nuclear Information System (INIS)

    Shah, A.S.; Hylton, H.; Hentz, V.R.; Schattner, P.

    1991-01-01

    This paper reports on dynamic MR imaging which is an MR technique that allows imaging of the musculoskeletal system in motion. Current methods for observing the articulation of muscles and joints are limited to acquisition of stationary images at different spatial orientations. These images are then replayed from computer memory to simulate motion. Unlike stationary acquisition, dynamic MR imaging allows the volume of interest to be subjected to motion and dynamic stress, which is important for detecting stress-induced pathology. To demonstrate the utility of dynamic MR imaging, a system for imaging a moving wrist has been developed. The system consists of apparatus capable of providing simultaneous radialulnar deviation and flexion-extension, and hardware for system control and acquisition gating. The apparatus is mounted on the patient bed and is transferable to a variety of standard clinical MR imaging systems. Images were obtained during motion, and the ability of dynamic MR imaging to accurately image the moving wrist with very little motion artifact was demonstrated

  13. Dynamical systems on 2- and 3-manifolds

    CERN Document Server

    Grines, Viacheslav Z; Pochinka, Olga V

    2016-01-01

    This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed. < The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are present...

  14. Narcissistic group dynamics of multiparty systems

    NARCIS (Netherlands)

    Schruijer, S.G.L.

    2015-01-01

    Purpose – This paper aims to introduce and illustrate the notion of narcissistic group dynamics. It is claimed that narcissism does not simply reside within individuals but can be characteristic of groups and social systems. In this case, the focus is on narcissistic dynamics in multiparty systems.

  15. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    Science.gov (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Uncertain dynamical systems: A differential game approach

    Science.gov (United States)

    Gutman, S.

    1976-01-01

    A class of dynamical systems in a conflict situation is formulated and discussed, and the formulation is applied to the study of an important class of systems in the presence of uncertainty. The uncertainty is deterministic and the only assumption is that its value belongs to a known compact set. Asymptotic stability is fully discussed with application to variable structure and model reference control systems.

  17. Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract

    Directory of Open Access Journals (Sweden)

    L. Brim

    2011-09-01

    Full Text Available In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study.

  18. Mass transfer dynamics in double degenerate binary systems

    International Nuclear Information System (INIS)

    Dan, M; Rosswog, S; Brueggen, M

    2009-01-01

    We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.

  19. Dynamics of polymers in a good solvent - a molecular dynamics study using the Connection Machine

    International Nuclear Information System (INIS)

    Shannon, S.R.; Choy, T.C.

    1996-01-01

    In recent times the use of molecular dynamics simulations has become an important tool in modelling and understanding the dynamics of interacting many-body systems. With recent advances in computing power it is now feasible to perform modelling of systems which contain a large number of interacting particles, and thus to simulate the behaviour of real systems reasonably. Our earlier discoveries of anomalous corrections to scaling behaviour of the Edward's polymer were applied to study the dynamical behaviour of two dimensional polymer systems - either a single chain immersed in a fluid, a pure polymer melt, or with any concentration of polymers in the fluid. By choosing a suitable interaction potential between the fluid particles and the monomers, we are able to study the experimentally observable time dependent structure factor of polymers in a good solvent. Simulations were performed using the Connection Machine CM5 supercomputer at the Australian National University which due to its fast multi- processor nearest neighbour communications facility, enables us to easily model large systems of at least 3000 fluid plus monomer particles. Our study is based on a finite difference solution of Newton's equations of motion i.e. the Verlet algorithm, and the results are used to test current theories of polymer dynamics, which were based primarily on the earlier models proposed by Rouse (1953) and Zimm (1956). In particular dynamical scaling predictions is scrutinised to examine the effects due to the anomalous corrections-to-scaling behaviour found in an earlier work using finite-size scaling analysis of Monte-Carlo data and now understood via a new perturbation concept

  20. Perceptions of the Effectiveness of System Dynamics-Based Interactive Learning Environments: An Empirical Study

    Science.gov (United States)

    Qudrat-Ullah, Hassan

    2010-01-01

    The use of simulations in general and of system dynamics simulation based interactive learning environments (SDILEs) in particular is well recognized as an effective way of improving users' decision making and learning in complex, dynamic tasks. However, the effectiveness of SDILEs in classrooms has rarely been evaluated. This article describes…

  1. Studies on variable swirl intake system for DI diesel engine using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Jebamani Rathnaraj David

    2008-01-01

    Full Text Available It is known that a helical port is more effective than a tangential port to attain the required swirl ratio with minimum sacrifice in the volumetric efficiency. The swirl port is designed for lesser swirl ratio to reduce emissions at higher speeds. But this condition increases the air fuel mixing time and particulate smoke emissions at lower speeds. Optimum swirl ratio is necessary according to the engine operating condition for optimum combustion and emission reduction. Hence the engine needs variable swirl to enhance the combustion in the cylinder according to its operating conditions, for example at partial load or low speed condition it requires stronger swirl, while the air quantity is more important than the swirl under very high speed or full load and maximum torque conditions. The swirl and charging quantity can easily trade off and can be controlled by the opening of the valve. Hence in this study the steady flow rig experiment is used to evaluate the swirl of a helical intake port design for different operating conditions. The variable swirl plate set up of the W06DTIE2 engine is used to experimentally study the swirl variation for different openings of the valve. The sliding of the swirl plate results in the variation of the area of inlet port entry. Therefore in this study a swirl optimized combustion system varying according to the operating conditions by a variable swirl plate mechanism is studied experimentally and compared with the computational fluid dynamics predictions. In this study the fluent computational fluid dynamics code has been used to evaluate the flow in the port-cylinder system of a DI diesel engine in a steady flow rig. The computational grid is generated directly from 3-D CAD data and in cylinder flow simulations, with inflow boundary conditions from experimental measurements, are made using the fluent computational fluid dynamics code. The results are in very good agreement with experimental results.

  2. An exploration of dynamical systems and chaos

    CERN Document Server

    Argyris, John H; Haase, Maria; Friedrich, Rudolf

    2015-01-01

    This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlar...

  3. A study on implementation of dynamic safety system in programmable logic controller for pressurized water reactor

    International Nuclear Information System (INIS)

    Kim, Ung Soo

    1997-02-01

    The dynamic safety system (DSS) is a computer based reactor protection system that has dynamic self-testing feature and fail-safe nature inherently. The inherent dynamic self-testing feature and fail-safe design provide a high level of reliability and low spurious trip rate. We can also reduce the time and human efforts to maintain the system by virtue of those features. Therefore, the application of the DSS to PWR has many advantages. The DSS has been applied only to advanced gas-cooled reactor (AGR) in the UK. In order to apply the DSS for PWR, the DSS has to be modified because there exist many differences between PWR and AGR for which the DSS was tested and installed. These differences are trip algorithms, monitored parameters, trip logics, and other conditions. In this study, the DSS algorithm is modified for PWR first. The modified DSS has several new features : 1) The modified DSS tests and processes time-dependent parameters, while the original DSS does not. 2) It has flexibility for handling several types of voting logic but the original DSS handles the only one type of voting - 2 out of 4 coincidence logic. Then, in this study, the modified DSS is implemented in programmable logic controller (PLC) using the ladder logic. Finally, the modified DSS is tested in two ways in this work : 1) The manual test is performed using direct input through the human computer interface (HCI) system. 2) The scenario based test is performed using input from the FISA-2/WS simulator. From the test results, it is shown that the modified DSS operates correctly in all conditions

  4. Using Difference Equation to Model Discrete-time Behavior in System Dynamics Modeling

    NARCIS (Netherlands)

    Hesan, R.; Ghorbani, A.; Dignum, M.V.

    2014-01-01

    In system dynamics modeling, differential equations have been used as the basic mathematical operator. Using difference equation to build system dynamics models instead of differential equation, can be insightful for studying small organizations or systems with micro behavior. In this paper we

  5. Dynamic behavior of district heating systems

    International Nuclear Information System (INIS)

    Kunz, J.

    1994-01-01

    The goal of this study is to develop a simulation model of a hot water system taking into account the time dependent phenomena which are important for the operational management of such a system. A state of the art literature review has shown that there is no such model considering all parts from the generation of the heat at the plant to its consumption in the connected buildings so far. First, an exhaustive list of all dynamic phenomena occurring in district heating systems has been drawn and analyzed. Considering this list, this thesis proposes that a model which satisfies the criteria listed above can be developed by superposing four sub-models which are a dynamic model of the heat generation plant, a steady state model of the hydraulic calculation of the distribution network, a dynamic model of the thermal behavior of the network and a dynamic model of the heat consumers. The development of the four sub-models starts from the fundamental conservation equations for fluid systems, i.e. the conservation of mass, momentum and energy. The transformations of those general equations into simple calculation formulas show and justify the hypotheses made in the modeling process. The heat generation plant model itself is a set of sub-models: the models for steam boilers, hot water boilers and heat accumulators which take account of the dynamic evolution of the water temperature by a simple form of the energy conservation equation, as well as the steady state models for circulation pumps and pressurizers. Since the velocities in the network pipes are small, a consideration of steady states is adopted. A network model allowing to calculate the hydraulic variables in every point is adopted from the graph theory. The pressures and flow rates in the network are calculated at discrete time steps and they are considered to be constant for the duration between the time steps. (author) figs., tabs., refs

  6. Dynamical properties of unconventional magnetic systems

    International Nuclear Information System (INIS)

    Helgesen, G.

    1997-05-01

    The Advanced Study Institute addressed the current experimental and theoretical knowledge of the dynamical properties of unconventional magnetic systems including low-dimensional and mesoscopic magnetism, unconventional ground state, quantum magnets and soft matter. The main approach in this Advanced Study Institute was to obtain basic understanding of co-operative phenomena, fluctuations and excitations in the wide range unconventional magnetic systems now being fabricated or envisioned. The report contains abstracts for lectures, invited seminars and posters, together with a list of the 95 participants from 24 countries with e-mail addresses

  7. Dynamic simulation of LMFBR systems

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.

    1980-01-01

    This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)

  8. Epidemic Dynamics in Open Quantum Spin Systems

    Science.gov (United States)

    Pérez-Espigares, Carlos; Marcuzzi, Matteo; Gutiérrez, Ricardo; Lesanovsky, Igor

    2017-10-01

    We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.

  9. Constraint Embedding Technique for Multibody System Dynamics

    Science.gov (United States)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  10. Dynamics of Shape Memory Alloy Systems, Phase 2

    Science.gov (United States)

    2015-12-22

    Nonlinear Dynamics and Chaos in Systems with Discontinuous Support Using a Switch Model”, DINAME 2005 - XI International Conference on Dynamic Problems in...AFRL-AFOSR-CL-TR-2016-0003 Dynamics of Shape Memory Alloy Systems , Phase 2 Marcelo Savi FUNDACAO COORDENACAO DE PROJETOS PESQUISAS E EEUDOS TECNOL...release. 2 AFOSR FINAL REPORT Grant Title: Nonlinear Dynamics of Shape Memory Alloy Systems , Phase 2 Grant #: FA9550-11-1-0284 Reporting Period

  11. Assessing the role of informal sector in WEEE management systems: A System Dynamics approach.

    Science.gov (United States)

    Ardi, Romadhani; Leisten, Rainer

    2016-11-01

    Generally being ignored by academia and regulators, the informal sector plays important roles in Waste Electrical and Electronic Equipment (WEEE) management systems, especially in developing countries. This study aims: (1) to capture and model the variety of informal operations in WEEE management systems, (2) to capture the dynamics existing within the informal sector, and (3) to assess the role of the informal sector as the key player in the WEEE management systems, influencing both its future operations and its counterpart, the formal sector. By using System Dynamics as the methodology and India as the reference system, this study is able to explain the reasons behind, on the one hand, the superiority of the informal sector in WEEE management systems and, on the other hand, the failure of the formal systems. Additionally, this study reveals the important role of the second-hand market as the determinant of the rise and fall of the informal sector in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  13. Complex systems dynamics in aging: new evidence, continuing questions.

    Science.gov (United States)

    Cohen, Alan A

    2016-02-01

    There have long been suggestions that aging is tightly linked to the complex dynamics of the physiological systems that maintain homeostasis, and in particular to dysregulation of regulatory networks of molecules. This review synthesizes recent work that is starting to provide evidence for the importance of such complex systems dynamics in aging. There is now clear evidence that physiological dysregulation--the gradual breakdown in the capacity of complex regulatory networks to maintain homeostasis--is an emergent property of these regulatory networks, and that it plays an important role in aging. It can be measured simply using small numbers of biomarkers. Additionally, there are indications of the importance during aging of emergent physiological processes, functional processes that cannot be easily understood through clear metabolic pathways, but can nonetheless be precisely quantified and studied. The overall role of such complex systems dynamics in aging remains an important open question, and to understand it future studies will need to distinguish and integrate related aspects of aging research, including multi-factorial theories of aging, systems biology, bioinformatics, network approaches, robustness, and loss of complexity.

  14. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  15. Study on the hydrogen demand in China based on system dynamics model

    International Nuclear Information System (INIS)

    Ma, Tao; Ji, Jie; Chen, Ming-qi

    2010-01-01

    Reasonable estimation of hydrogen energy and other renewable energy demand of China's medium and long-term energy is of great significance for China's medium and long-term energy plan. Therefore, based on both China's future economic development and relative economic theory and system dynamics theory, this article analyzes qualitatively the internal factors and external factors of hydrogen energy demand system, and makes the state high and low two assumptions about China's medium and long-term hydrogen demand according to the different speed of China's economic development. After the system dynamic model setting up export and operation, the output shows the data changes of the total hydrogen demand and the four kinds of hydrogen demand. According to the analysis of the output, two conclusions are concluded: The secondary industry, not the tertiary industry (mainly the transportation), should be firstly satisfied by the hydrogen R and D and support of Government policy. Change of Chinese hydrogen demand scale, on basis of its economic growth, can not be effective explained through Chinese economic growth rate, and other influencing factor and mechanism should be probed deeply. (author)

  16. A study on design of the trip computer for ECCS based on dynamic safety system

    International Nuclear Information System (INIS)

    Kim, Seog Nam

    2000-02-01

    The Emergency Core Cooling system in current nuclear power plants typically has a considerable number of complex functions and largely cumbersome operator interfaces. Functions for initiation, switch-over between various phases of operation, interlocks, monitoring, and alarming are usually performed by relay and analog comparator logic which is difficult to maintain and test. To improve problems of an analog based ECC (Emergency Core Cooling) System, the trip computer for ECCS based on Dynamic Safety System is implemented. The Dynamic Safety System (DSS) is a computer based reactor protection system that has fail-safe nature and performs a dynamic self-testing. The most important feature of the DSS is the introduction of test signal that send the system into a tripped state. The test signals are interleaved between the plant signals to produce an output which switches between a tripped and health state. The dynamic operation is a key feature of the failsafe design of the system. In this thesis, a possible implementation of the DSS using PLC is presented for a CANDU reactor. ECC System of the CANDU Reactor is selected as the reference system. The function of the DSS is implemented In PLC with the CONCEPT language. CONCEPT was developed by GROUPE SCHNEIDER as a graphic user interface programming tool for the Quantum PLC. A MMI display for ECCS based on DSS is implemented with LOOKOUT as an object driven programming tool. The Validation test has been performed by S/W Input Simulator as per Validation Test Procedure. The result of the test was checked and displayed on the MMI display. From the test results, it is shown that the DSS based ECC System operates correctly in all conditions

  17. Chaos control of Chen chaotic dynamical system

    International Nuclear Information System (INIS)

    Yassen, M.T.

    2003-01-01

    This paper is devoted to study the problem of controlling chaos in Chen chaotic dynamical system. Two different methods of control, feedback and nonfeedback methods are used to suppress chaos to unstable equilibria or unstable periodic orbits (UPO). The Lyapunov direct method and Routh-Hurwitz criteria are used to study the conditions of the asymptotic stability of the steady states of the controlled system. Numerical simulations are presented to show these results

  18. Controlling Complex Systems and Developing Dynamic Technology

    Science.gov (United States)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  19. Dynamical tunneling in systems with a mixed phase space

    International Nuclear Information System (INIS)

    Loeck, Steffen

    2010-01-01

    Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)

  20. Dynamical tunneling in systems with a mixed phase space

    Energy Technology Data Exchange (ETDEWEB)

    Loeck, Steffen

    2010-04-22

    Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)

  1. Dynamic memory management for embedded systems

    CERN Document Server

    Atienza Alonso, David; Poucet, Christophe; Peón-Quirós, Miguel; Bartzas, Alexandros; Catthoor, Francky; Soudris, Dimitrios

    2015-01-01

    This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems.  The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application.  The design methodology described in this book is based on propagating constraints among de...

  2. Nonautonomous dynamical systems in the life sciences

    CERN Document Server

    Pötzsche, Christian

    2013-01-01

    Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.

  3. LOCAL ENTROPY FUNCTION OF DYNAMICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    İsmail TOK

    2013-05-01

    Full Text Available In this work, we first,define the entropy function of the topological dynamical system and investigate basic properties of this function without going into details. Let (X,A,T be a probability measure space and consider P = { pl5p2,...,pn} a finite measurable partition of all sub-sets of topological dynamical system (X,T.Then,the quantity H (P = ^ zpt is called the i=1 entropy function of finite measurable partition P.Where f-1 log t if 0 0.If diam(P < s,then the quantity L^ (T = h^ (T - h^ (T,P is called a local entropy function of topological dynamical system (X,T . In conclusion, Let (X,T and (Y,S be two topological dynamical system. If TxS is a transformation defined on the product space (XxY,TxS with (TxS(x , y = (Tx,Sy for all (x,y X x Y.Then L ^^ (TxS = L^d(T + L (S .and, we prove some fundamental properties of this function.

  4. An Exploration of the System Dynamics Field : A Model-Based Policy Analysis

    NARCIS (Netherlands)

    Rose, A.C.

    2014-01-01

    This report presents a first look study at the field of System Dynamics. The objective of the study is to perform a model-based policy analysis in order to investigate the future advancement of the System Dynamics field. The aim of this investigation is to determine what this advancement should look

  5. Modeling the Dynamic Digestive System Microbiome†

    OpenAIRE

    Estes, Anne M.

    2015-01-01

    “Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1) niche availability and habitat space and 2) a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determi...

  6. Optimal reduction of flexible dynamic system

    International Nuclear Information System (INIS)

    Jankovic, J.

    1994-01-01

    Dynamic system reduction is basic procedure in various problems of active control synthesis of flexible structures. In this paper is presented direct method for system reduction by explicit extraction of modes included in reduced model form. Criterion for optimal system discrete approximation in synthesis reduced dynamic model is also presented. Subjected method of system decomposition is discussed in relation to the Schur method of solving matrix algebraic Riccati equation as condition for system reduction. By using exposed method procedure of flexible system reduction in addition with corresponding example is presented. Shown procedure is powerful in problems of active control synthesis of flexible system vibrations

  7. Dynamic analysis of Boushehr Nuclear Power Plant in connected to grid system

    International Nuclear Information System (INIS)

    Karimi Fard, A.

    1999-01-01

    Models of generating with the pressurized water reactor (PWR) have been developed for simulating. the plant dynamics under system disturbances. These models include power plant, energy sources, turbine, transmission system and control system such as Avr and govern and other local control devices. Simulink toolbox of Matlab software is used for simulations. The study is mainly based on the Bushehr Nuclear Power Plants (BNPP) parameters. Assuming that BNPP is connected to infinite bus with double tie line. Four cases are studied to examine the internal dynamic behavior of BNPP. First and second cases are used to load following studies in nuclear power plant. Another cases are used to study the dynamic behavior after short circuit fault and line outages in transmission systems. The results discussed in the thesis

  8. Scenario development, qualitative causal analysis and system dynamics

    Directory of Open Access Journals (Sweden)

    Michael H. Ruge

    2009-02-01

    Full Text Available The aim of this article is to demonstrate that technology assessments can be supported by methods such as scenario modeling and qualitative causal analysis. At Siemens, these techniques are used to develop preliminary purely qualitative models. These or parts of these comprehensive models may be extended to system dynamics models. While it is currently not possible to automatically generate a system dynamics models (or vice versa, obtain a qualitative simulation model from a system dynamics model, the two thechniques scenario development and qualitative causal analysis provide valuable indications on how to proceed towards a system dynamics model. For the qualitative analysis phase, the Siemens – proprietary prototype Computer – Aided Technology Assessment Software (CATS supportes complete cycle and submodel analysis. Keywords: Health care, telecommucations, qualitative model, sensitivity analysis, system dynamics.

  9. FIR signature verification system characterizing dynamics of handwriting features

    Science.gov (United States)

    Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu

    2013-12-01

    This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.

  10. Stability in dynamical systems I

    International Nuclear Information System (INIS)

    Courant, E.D.; Ruth, R.D.; Weng, W.T.

    1984-08-01

    We have reviewed some of the basic techniques which can be used to analyze stability in nonlinear dynamical systems, particularly in circular particle accelerators. We have concentrated on one-dimensional systems in the examples in order to simply illustrate the general techniques. We began with a review of Hamiltonian dynamics and canonical transformations. We then reviewed linear equations with periodic coefficients using the basic techniques from accelerator theory. To handle nonlinear terms we developed a canonical perturbation theory. From this we calculated invariants and the amplitude dependence of the frequency. This led us to resonances. We studied the cubic resonance in detail by using a rotating coordinate system in phase space. We then considered a general isolated nonlinear resonance. In this case we calculated the width of the resonance and estimated the spacing of resonances in order to use the Chirikov criterion to restrict the validity of the analysis. Finally the resonance equation was reduced to the pendulum equation, and we examined the motion on a separatrix. This brought us to the beginnings of stochastic behavior in the neighborhood of the separatrix. It is this complex behavior in the neighborhood of the separatrix which causes the perturbation theory used here to diverge in many cases. In spite of this the methods developed here have been and are used quite successfully to study nonlinear effects in nearly integrable systems. When used with caution and in conjunction with numerical work they give tremendous insight into the nature of the phase space structure and the stability of nonlinear differential equations. 14 references

  11. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    International Nuclear Information System (INIS)

    Kim, Min Soo; Sohn, Jeong Hyun; Kim, Jung Hee; Sung, Yong Jun

    2016-01-01

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system

  12. Efficiency Analysis of a Wave Power Generation System by Using Multibody Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Sohn, Jeong Hyun [Pukyong National Univ., Busan (Korea, Republic of); Kim, Jung Hee; Sung, Yong Jun [INGINE Inc., Seoul (Korea, Republic of)

    2016-06-15

    The energy absorption efficiency of a wave power generation system is calculated as the ratio of the wave power to the power of the system. Because absorption efficiency depends on the dynamic behavior of the wave power generation system, a dynamic analysis of the wave power generation system is required to estimate the energy absorption efficiency of the system. In this study, a dynamic analysis of the wave power generation system under wave loads is performed to estimate the energy absorption efficiency. RecurDyn is employed to carry out the dynamic analysis of the system, and the Morison equation is used for the wave load model. According to the results, the lower the wave height and the shorter the period, the higher is the absorption efficiency of the system.

  13. Dynamics and control of technical systems

    CERN Document Server

    Balthazar, José M; Kaczmarczyk, Stefan

    2014-01-01

    The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: ""Vibration Problems in Vertical Transportation Systems"", ""Nonlinear Dynamics, Chaos and Control of Elastic Structures"" and ""New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control"". The discussion of real problems in aerospace and how these problems can be unde

  14. Dynamics of Information Systems

    CERN Document Server

    Hirsch, Michael J; Murphey, Robert

    2010-01-01

    Our understanding of information and information dynamics has outgrown classical information theory. This book presents the research explaining the importance of information in the evolution of a distributed or networked system. It presents techniques for measuring the value or significance of information within the context of a system

  15. The dynamics of surge in compression systems

    Indian Academy of Sciences (India)

    is of interest to study compression-system surge to understand its dynamics in order ... Internal problems like compressor going into rotating stall, resulting in loss of ... of water column, was used for mass-flow measurement at the impeller entry.

  16. Dynamics in two-elevator traffic system with real-time information

    Energy Technology Data Exchange (ETDEWEB)

    Nagatani, Takashi, E-mail: wadokeioru@yahoo.co.jp

    2013-12-17

    We study the dynamics of traffic system with two elevators using a elevator choice scenario. The two-elevator traffic system with real-time information is similar to the two-route vehicular traffic system. The dynamics of two-elevator traffic system is described by the two-dimensional nonlinear map. An elevator runs a neck-and-neck race with another elevator. The motion of two elevators displays such a complex behavior as quasi-periodic one. The return map of two-dimensional map shows a piecewise map.

  17. A preliminary study on the application of system dynamics methodology to organizational safety in nuclear power plants: Learning from past models

    Energy Technology Data Exchange (ETDEWEB)

    Do, Giang [Sol Bridge International School of Business, Daejeon (Korea, Republic of); Kim, Sakil; Lee, Yong Hee; Lee, Yong Hee [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Besides technical design, organizational and human factor are of increasing interest in literature on nuclear safety. Among the methodologies employed to study these factors, System Dynamics (SD) is considered to be suitable for addressing the complexity and dynamicity of the organizational system in nuclear power plants (NPPs). In the following sections, the method will be described and its several prior applications to studying organizational safety will be introduced. An SD model with emphasis on the role of organizational learning in organizational safety will be presented.

  18. Network Physiology: How Organ Systems Dynamically Interact

    Science.gov (United States)

    Bartsch, Ronny P.; Liu, Kang K. L.; Bashan, Amir; Ivanov, Plamen Ch.

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems. PMID:26555073

  19. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  20. Dynamic Systems Theory and Team Sport Coaching

    Science.gov (United States)

    Gréhaigne, Jean-Francis; Godbout, Paul

    2014-01-01

    This article examines the theory of dynamic systems and its use in the domains of the study and coaching of team sports. The two teams involved in a match are looked at as two interacting systems in movement, where opposition is paramount. A key element for the observation of game play is the notion of configuration of play and its ever-changing…

  1. System dynamics in hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Stuksrud, Dag Birger

    1998-12-31

    The main purpose of this thesis on system dynamics in hydropower plants was to establish new models of a hydropower system where the turbine/conduits and the electricity supply and generation are connected together as one unit such that possible interactions between the two power regimes can be studied. In order to describe the system dynamics as well as possible, a previously developed analytic model of high-head Francis turbines is improved. The model includes the acceleration resistance in the turbine runner and the draft tube. Expressions for the loss coefficients in the model are derived in order to obtain a purely analytic model. The necessity of taking the hydraulic inertia into account is shown by means of simulations. Unstable behaviour and a higher transient turbine speed than expected may occur for turbines with steep characteristics or large draft tubes. The turbine model was verified previously with respect to a high-head Francis turbine; the thesis performs an experimental verification on a low-head Francis turbine and compares the measurements with simulations from the improved turbine model. It is found that the dynamic turbine model is, after adjustment, capable of describing low-head machines as well with satisfying results. The thesis applies a method called the ``Limited zero-pole method`` to obtain new rational approximations of the elastic behaviour in the conduits with frictional damping included. These approximations are used to provide an accurate state space formulation of a hydropower plant. Simulations performed with the new computer programs show that hydraulic transients such as water-hammer and mass oscillations are reflected in the electric grid. Unstable governing performance in the electric and hydraulic parts also interact. This emphasizes the need for analysing the whole power system as a unit. 63 refs., 149 figs., 4 tabs.

  2. Comparing dynamical systems concepts and techniques for biomechanical analysis

    Institute of Scientific and Technical Information of China (English)

    Richard E.A. van Emmerik; Scott W. Ducharme; Avelino C. Amado; Joseph Hamill

    2016-01-01

    Traditional biomechanical analyses of human movement are generally derived from linear mathematics. While these methods can be useful in many situations, they do not describe behaviors in human systems that are predominately nonlinear. For this reason, nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature. These analysis techniques have provided new insights into how systems (1) maintain pattern stability, (2) transition into new states, and (3) are governed by short-and long-term (fractal) correlational processes at different spatio-temporal scales. These different aspects of system dynamics are typically investigated using concepts related to variability, stability, complexity, and adaptability. The purpose of this paper is to compare and contrast these different concepts and demonstrate that, although related, these terms represent fundamentally different aspects of system dynamics. In particular, we argue that variability should not uniformly be equated with stability or complexity of movement. In addition, current dynamic stability measures based on nonlinear analysis methods (such as the finite maximal Lyapunov exponent) can reveal local instabilities in movement dynamics, but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored. Finally, systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.

  3. Comparing dynamical systems concepts and techniques for biomechanical analysis

    Directory of Open Access Journals (Sweden)

    Richard E.A. van Emmerik

    2016-03-01

    Full Text Available Traditional biomechanical analyses of human movement are generally derived from linear mathematics. While these methods can be useful in many situations, they do not describe behaviors in human systems that are predominately nonlinear. For this reason, nonlinear analysis methods based on a dynamical systems approach have become more prevalent in recent literature. These analysis techniques have provided new insights into how systems (1 maintain pattern stability, (2 transition into new states, and (3 are governed by short- and long-term (fractal correlational processes at different spatio-temporal scales. These different aspects of system dynamics are typically investigated using concepts related to variability, stability, complexity, and adaptability. The purpose of this paper is to compare and contrast these different concepts and demonstrate that, although related, these terms represent fundamentally different aspects of system dynamics. In particular, we argue that variability should not uniformly be equated with stability or complexity of movement. In addition, current dynamic stability measures based on nonlinear analysis methods (such as the finite maximal Lyapunov exponent can reveal local instabilities in movement dynamics, but the degree to which these local instabilities relate to global postural and gait stability and the ability to resist external perturbations remains to be explored. Finally, systematic studies are needed to relate observed reductions in complexity with aging and disease to the adaptive capabilities of the movement system and how complexity changes as a function of different task constraints.

  4. Blind spots of dynamic capabilities: A systems theoretic perspective

    Directory of Open Access Journals (Sweden)

    Robert Burisch

    2016-05-01

    Full Text Available Dynamic capabilities remain one of the most popular, but also one of the most controversial topics in current knowledge and innovation research. This study exposes strengths and weaknesses of existing conceptualizations of dynamic capabilities by using a systems theoretic lens. Systems theory suggests that organizations operate in environments they cannot fully understand. Thus, organizational action patterns inevitably involve simplification, selectivity and uncertainty leading to inherent blind spots in every kind of strategic action. As the resulting insight, fully flexible organizational capabilities might not be achievable and continuous adaptation to every kind of environmental change cannot be possible from a systems theoretic perspective. Accordingly, this work discusses empirical difficulties that derive from the preceding argumentation and outlines a corresponding re-conceptualization of the dynamic capabilities concept.

  5. Reexamining Demotivators and Motivators: A Longitudinal Study of Japanese Freshmen's Dynamic System in an EFL Context

    Science.gov (United States)

    Kikuchi, Keita

    2017-01-01

    Twenty Japanese university freshmen majoring in International Studies (N = 4) and Nursing (N = 16) participated in a 10-month project examining changes in their motivation. Using monthly focus group interviews and a 35-item questionnaire, the dynamic systems of various types of learners of English over two semesters were explored. Trajectories of…

  6. Lectures on chaotic dynamical systems

    CERN Document Server

    Afraimovich, Valentin

    2002-01-01

    This book is devoted to chaotic nonlinear dynamics. It presents a consistent, up-to-date introduction to the field of strange attractors, hyperbolic repellers, and nonlocal bifurcations. The authors keep the highest possible level of "physical" intuition while staying mathematically rigorous. In addition, they explain a variety of important nonstandard algorithms and problems involving the computation of chaotic dynamics. The book will help readers who are not familiar with nonlinear dynamics to understand and appreciate sophisticated modern dynamical systems and chaos. Intended for courses in either mathematics, physics, or engineering, prerequisites are calculus, differential equations, and functional analysis.

  7. An analytical Study on Dynamics of Public Procurement System and Bidding-Strategy in Local Contractor's Management

    Science.gov (United States)

    Ninomiya, Hitoshi; Nanerikawa, Susumu

    Public procurement system such as Overall-Evaluation dynamically has been changed on local public works in Japan. However some characteristics of Bidding-Strategy and procurement system have not enough clarified. This paper attempt to analysis for a syatem dynamics and mechanisum of Overall-Evaluation by developing new simulation model focused on Bidding-Strategy, to propose some improvement scenario.

  8. Using system dynamics simulation for assessment of hydropower system safety

    Science.gov (United States)

    King, L. M.; Simonovic, S. P.; Hartford, D. N. D.

    2017-08-01

    Hydropower infrastructure systems are complex, high consequence structures which must be operated safely to avoid catastrophic impacts to human life, the environment, and the economy. Dam safety practitioners must have an in-depth understanding of how these systems function under various operating conditions in order to ensure the appropriate measures are taken to reduce system vulnerability. Simulation of system operating conditions allows modelers to investigate system performance from the beginning of an undesirable event to full system recovery. System dynamics simulation facilitates the modeling of dynamic interactions among complex arrangements of system components, providing outputs of system performance that can be used to quantify safety. This paper presents the framework for a modeling approach that can be used to simulate a range of potential operating conditions for a hydropower infrastructure system. Details of the generic hydropower infrastructure system simulation model are provided. A case study is used to evaluate system outcomes in response to a particular earthquake scenario, with two system safety performance measures shown. Results indicate that the simulation model is able to estimate potential measures of system safety which relate to flow conveyance and flow retention. A comparison of operational and upgrade strategies is shown to demonstrate the utility of the model for comparing various operational response strategies, capital upgrade alternatives, and maintenance regimes. Results show that seismic upgrades to the spillway gates provide the largest improvement in system performance for the system and scenario of interest.

  9. Quantum algorithm for simulating the dynamics of an open quantum system

    International Nuclear Information System (INIS)

    Wang Hefeng; Ashhab, S.; Nori, Franco

    2011-01-01

    In the study of open quantum systems, one typically obtains the decoherence dynamics by solving a master equation. The master equation is derived using knowledge of some basic properties of the system, the environment, and their interaction: One basically needs to know the operators through which the system couples to the environment and the spectral density of the environment. For a large system, it could become prohibitively difficult to even write down the appropriate master equation, let alone solve it on a classical computer. In this paper, we present a quantum algorithm for simulating the dynamics of an open quantum system. On a quantum computer, the environment can be simulated using ancilla qubits with properly chosen single-qubit frequencies and with properly designed coupling to the system qubits. The parameters used in the simulation are easily derived from the parameters of the system + environment Hamiltonian. The algorithm is designed to simulate Markovian dynamics, but it can also be used to simulate non-Markovian dynamics provided that this dynamics can be obtained by embedding the system of interest into a larger system that obeys Markovian dynamics. We estimate the resource requirements for the algorithm. In particular, we show that for sufficiently slow decoherence a single ancilla qubit could be sufficient to represent the entire environment, in principle.

  10. The dynamics of the pain system is intact in patients with knee osteoarthritis: An exploratory experimental study.

    Science.gov (United States)

    Jørgensen, Tanja Schjødt; Henriksen, Marius; Rosager, Sara; Klokker, Louise; Ellegaard, Karen; Danneskiold-Samsøe, Bente; Bliddal, Henning; Graven-Nielsen, Thomas

    2017-12-29

    Background and aims Despite the high prevalence of knee osteoarthritis (OA) it remains one of the most frequent knee disorders without a cure. Pain and disability are prominent clinical features of knee OA. Knee OA pain is typically localized but can also be referred to the thigh or lower leg. Widespread hyperalgesia has been found in knee OA patients. In addition, patients with hyperalgesia in the OA knee joint show increased pain summation scores upon repetitive stimulation of the OA knee suggesting the involvement of facilitated central mechanisms in knee OA. The dynamics of the pain system (i.e., the adaptive responses to pain) has been widely studied, but mainly from experiments on healthy subjects, whereas less is known about the dynamics of the pain system in chronic pain patients, where the pain system has been activated for a long time. The aim of this study was to assess the dynamics of the nociceptive system quantitatively in knee osteoarthritis (OA) patients before and after induction of experimental knee pain. Methods Ten knee osteoarthritis (OA) patients participated in this randomized crossover trial. Each subject was tested on two days separated by 1 week. The most affected knee was exposed to experimental pain or control, in a randomized sequence, by injection of hypertonic saline into the infrapatellar fat pad and a control injection of isotonic saline. Pain areas were assessed by drawings on anatomical maps. Pressure pain thresholds (PPT) at the knee, thigh, lower leg, and arm were assessed before, during, and after the experimental pain and control conditions. Likewise, temporal summation of pressure pain on the knee, thigh and lower leg muscles was assessed. Results Experimental knee pain decreased the PPTs at the knee (P system in individuals with knee OA can be affected even after many years of nociceptive input. This study indicates that the adaptability in the pain system is intact in patients with knee OA, which opens for opportunities to

  11. Mapping how local perturbations influence systems-level brain dynamics.

    Science.gov (United States)

    Gollo, Leonardo L; Roberts, James A; Cocchi, Luca

    2017-10-15

    The human brain exhibits a distinct spatiotemporal organization that supports brain function and can be manipulated via local brain stimulation. Such perturbations to local cortical dynamics are globally integrated by distinct neural systems. However, it remains unclear how local changes in neural activity affect large-scale system dynamics. Here, we briefly review empirical and computational studies addressing how localized perturbations affect brain activity. We then systematically analyze a model of large-scale brain dynamics, assessing how localized changes in brain activity at the different sites affect whole-brain dynamics. We find that local stimulation induces changes in brain activity that can be summarized by relatively smooth tuning curves, which relate a region's effectiveness as a stimulation site to its position within the cortical hierarchy. Our results also support the notion that brain hubs, operating in a slower regime, are more resilient to focal perturbations and critically contribute to maintain stability in global brain dynamics. In contrast, perturbations of peripheral regions, characterized by faster activity, have greater impact on functional connectivity. As a parallel with this region-level result, we also find that peripheral systems such as the visual and sensorimotor networks were more affected by local perturbations than high-level systems such as the cingulo-opercular network. Our findings highlight the importance of a periphery-to-core hierarchy to determine the effect of local stimulation on the brain network. This study also provides novel resources to orient empirical work aiming at manipulating functional connectivity using non-invasive brain stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. On the Theory of Nonlinear Dynamics and its Applications in Vehicle Systems Dynamics

    DEFF Research Database (Denmark)

    True, Hans

    1999-01-01

    We present a brief outline of nonlinear dynamics and its applications to vehicle systems dynamics problems. The concept of a phase space is introduced in order to illustrate the dynamics of nonlinear systems in a way that is easy to perceive. Various equilibrium states are defined...... of nonlinear dynamics in vehicle simulations is discussed, and it is argued that it is necessary to know the equilibrium states of the full nonlinear system before the simulation calculations are performed......., and the important case of multiple equilibrium states and their dependence on a parameter is discussed. It is argued that the analysis of nonlinear dynamic problems always should start with an analysis of the equilibrium states of the full nonlinear problem whereby great care must be taken in the choice...

  13. Dynamic Systems Modeling in Educational System Design & Policy

    Science.gov (United States)

    Groff, Jennifer Sterling

    2013-01-01

    Over the last several hundred years, local and national educational systems have evolved from relatively simple systems to incredibly complex, interdependent, policy-laden structures, to which many question their value, effectiveness, and direction they are headed. System Dynamics is a field of analysis used to guide policy and system design in…

  14. Logical entropy of quantum dynamical systems

    Directory of Open Access Journals (Sweden)

    Ebrahimzadeh Abolfazl

    2016-01-01

    Full Text Available This paper introduces the concepts of logical entropy and conditional logical entropy of hnite partitions on a quantum logic. Some of their ergodic properties are presented. Also logical entropy of a quantum dynamical system is dehned and ergodic properties of dynamical systems on a quantum logic are investigated. Finally, the version of Kolmogorov-Sinai theorem is proved.

  15. Dynamical entropy for infinite quantum systems

    International Nuclear Information System (INIS)

    Hudetz, T.

    1990-01-01

    We review the recent physical application of the so-called Connes-Narnhofer-Thirring entropy, which is the successful quantum mechanical generalization of the classical Kolmogorov-Sinai entropy and, by its very conception, is a dynamical entropy for infinite quantum systems. We thus comparingly review also the physical applications of the classical dynamical entropy for infinite classical systems. 41 refs. (Author)

  16. Identification of Complex Dynamical Systems with Neural Networks (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  17. Identification of Complex Dynamical Systems with Neural Networks (1/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The identification and analysis of high dimensional nonlinear systems is obviously a challenging task. Neural networks have been proven to be universal approximators but this still leaves the identification task a hard one. To do it efficiently, we have to violate some of the rules of classical regression theory. Furthermore we should focus on the interpretation of the resulting model to overcome its black box character. First, we will discuss function approximation with 3 layer feedforward neural networks up to new developments in deep neural networks and deep learning. These nets are not only of interest in connection with image analysis but are a center point of the current artificial intelligence developments. Second, we will focus on the analysis of complex dynamical system in the form of state space models realized as recurrent neural networks. After the introduction of small open dynamical systems we will study dynamical systems on manifolds. Here manifold and dynamics have to be identified in parall...

  18. Information Dynamics of a Nonlinear Stochastic Nanopore System

    Directory of Open Access Journals (Sweden)

    Claire Gilpin

    2018-03-01

    Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.

  19. Coupled dynamic systems and Le Chatelier's principle in noise control

    Science.gov (United States)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0dynamic system would result from the coupling. It is argued that the change in the disposition of the stored energies as just described may not be the only change. The coupling may influence the external input power into the master dynamic system which may interfere with the expected noise control. Indeed, the coupling may influence the external input power such that the expected beneficial noise control may not materialize. Examples of these kinds of noise control reversals are cited.

  20. First Principles Molecular Dynamics Study of Catalysis for Polyolefins: the Ziegler-Natta Heterogeneous System.

    Directory of Open Access Journals (Sweden)

    Michele Parrinello

    2002-04-01

    Full Text Available Abstract: We review part of our recent ab initio molecular dynamics study on the Ti-based Ziegler-Natta supported heterogeneous catalysis of α-olefins. The results for the insertion of ethylene in the metal-carbon bond are discussed as a fundamental textbook example of polymerization processes. Comparison with the few experimental data available has shown that simulation can reproduce activation barriers and the overall energetics of the reaction with sufficient accuracy. This puts these quantum dynamical simulations in a new perspective as a virtual laboratory where the microscopic picture of the catalysis, which represents an important issue that still escapes experimental probes, can be observed and understood. These results are then discussed in comparison with a V-based catalyst in order to figure out analogies and differences with respect to the industrially more successful Tibased systems.

  1. Sequencing dynamic storage systems with multiple lifts and shuttles

    NARCIS (Netherlands)

    Carlo, Hector J.; Vis, Iris F. A.

    2012-01-01

    New types of Automated Storage and Retrieval Systems (AS/RS) able to achieve high throughput are continuously being developed and require new control polices to take full advantage of the developed system. In this paper, a dynamic storage system has been studied as developed by Vanderlande

  2. Dynamical real numbers and living systems

    International Nuclear Information System (INIS)

    Datta, Dhurjati Prasad

    2004-01-01

    Recently uncovered second derivative discontinuous solutions of the simplest linear ordinary differential equation define not only an nonstandard extension of the framework of the ordinary calculus, but also provide a dynamical representation of the ordinary real number system. Every real number can be visualized as a living cell-like structure, endowed with a definite evolutionary arrow. We discuss the relevance of this extended calculus in the study of living systems. We also present an intelligent version of the Newton's first law of motion

  3. Dynamics of interface in three-dimensional anisotropic bistable reaction-diffusion system

    International Nuclear Information System (INIS)

    He Zhizhu; Liu, Jing

    2010-01-01

    This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.

  4. Optimized controllers for enhancing dynamic performance of PV interface system

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Attia

    2018-05-01

    Full Text Available The dynamic performance of PV interface system can be improved by optimizing the gains of the Proportional–Integral (PI controller. In this work, gravitational search algorithm and harmony search algorithm are utilized to optimal tuning of PI controller gains. Performance comparison between the PV system with optimized PI gains utilizing different techniques are carried out. Finally, the dynamic behavior of the system is studied under hypothetical sudden variations in irradiance. The examination of the proposed techniques for optimal tuning of PI gains is conducted using MATLAB/SIMULINK software package. The main contribution of this work is investigating the dynamic performance of PV interfacing system with application of gravitational search algorithm and harmony search algorithm for optimal PI parameters tuning. Keywords: Photovoltaic power systems, Gravitational search algorithm, Harmony search algorithm, Genetic algorithm, Artificial intelligence

  5. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    Science.gov (United States)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  6. Combinations of complex dynamical systems

    CERN Document Server

    Pilgrim, Kevin M

    2003-01-01

    This work is a research-level monograph whose goal is to develop a general combination, decomposition, and structure theory for branched coverings of the two-sphere to itself, regarded as the combinatorial and topological objects which arise in the classification of certain holomorphic dynamical systems on the Riemann sphere. It is intended for researchers interested in the classification of those complex one-dimensional dynamical systems which are in some loose sense tame. The program is motivated by the dictionary between the theories of iterated rational maps and Kleinian groups.

  7. Substitution dynamical systems spectral analysis

    CERN Document Server

    Queffélec, Martine

    2010-01-01

    This volume mainly deals with the dynamics of finitely valued sequences, and more specifically, of sequences generated by substitutions and automata. Those sequences demonstrate fairly simple combinatorical and arithmetical properties and naturally appear in various domains. As the title suggests, the aim of the initial version of this book was the spectral study of the associated dynamical systems: the first chapters consisted in a detailed introduction to the mathematical notions involved, and the description of the spectral invariants followed in the closing chapters. This approach, combined with new material added to the new edition, results in a nearly self-contained book on the subject. New tools - which have also proven helpful in other contexts - had to be developed for this study. Moreover, its findings can be concretely applied, the method providing an algorithm to exhibit the spectral measures and the spectral multiplicity, as is demonstrated in several examples. Beyond this advanced analysis, many...

  8. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    Science.gov (United States)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  9. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    Science.gov (United States)

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  10. Renormalization group method in the theory of dynamical systems

    International Nuclear Information System (INIS)

    Sinai, Y.G.; Khanin, K.M.

    1988-01-01

    One of the most important events in the theory of dynamical systems for the last decade has become a wide penetration of ideas and renormalization group methods (RG) into this traditional field of mathematical physics. RG-method has been one of the main tools in statistical physics and it has proved to be rather effective while solving problems of the theory of dynamical systems referring to new types of bifurcations (see further). As in statistical mechanics the application of the RG-method is of great interest in the neighborhood of the critical point concerning the order-chaos transition. First the RG-method was applied in the pioneering papers dedicated to the appearance of a stochastical regime as a result of infinite sequences of period doubling bifurcations. At present this stochasticity mechanism is the most studied one and many papers deal with it. The study of the so-called intermittency phenomenon was the next example of application of the RG-method, i.e. the study of such a situation where the domains of the stochastical and regular behavior do alternate along a trajectory of the dynamical system

  11. Backtracing neutron analysis in the fusion-fission dynamics study

    International Nuclear Information System (INIS)

    Brennand, E. de Goes; Hanappe, F.; Stuttge, L.

    2001-01-01

    A new method for the analysis of multi parametric experimental data is used in the study of the dynamics of the fission process for the compound system 126 Ba. We apply this method to obtain the correlation between thermal energy related to the neutron total multiplicity and the correlation between pre-scission neutron and pos-scission neutron multiplicities. The results obtained are interpreted into the framework of a dynamical model. From this interpretation we have access to the following information: the friction intensity which drives the dynamical evolution of the system; the initial deformation of the compound system; the barrier evolution with temperature and angular momentum, and fission times. (author)

  12. Structures and dynamics in a two-dimensional dipolar dust particle system

    Science.gov (United States)

    Hou, X. N.; Liu, Y. H.; Kravchenko, O. V.; Lapushkina, T. A.; Azarova, O. A.; Chen, Z. Y.; Huang, F.

    2018-05-01

    The effects of electric dipole moment, the number of dipolar particles, and system temperature on the structures and dynamics of a dipolar dust particle system are studied by molecular dynamics simulations. The results show that the larger electric dipole moment is favorable for the formation of a long-chain structure, the larger number of dipolar dust particles promotes the formation of the multi-chain structure, and the higher system temperature can cause higher rotation frequency. The trajectories, mean square displacement (MSD), and the corresponding spectrum functions of the MSDs are also calculated to illustrate the dynamics of the dipolar dust particle system, which is also closely related to the growth of dust particles. Some simulations are qualitatively in agreement with our experiments and can provide a guide for the study on dust growth, especially on the large-sized particles.

  13. Maintenance grouping strategy for multi-component systems with dynamic contexts

    International Nuclear Information System (INIS)

    Vu, Hai Canh; Do, Phuc; Barros, Anne; Bérenguer, Christophe

    2014-01-01

    This paper presents a dynamic maintenance grouping strategy for multi-component systems with both “positive” and “negative” economic dependencies. Positive dependencies are commonly due to setup cost whereas negative dependencies are related to shutdown cost. Actually, grouping maintenance activities can save part of the setup cost, but can also in the same time increase the shutdown cost. Until now, both types of dependencies have been jointly taken into account only for simple system structures as pure series. The first aim of this paper is to investigate the case of systems with any combination of basic structures (series, parallel or k-out-of n structures). A cost model and a heuristic optimization scheme are proposed since the optimization of maintenance grouping strategy for such multi-component systems leads to a NP-complete problem. Then the second objective is to propose a finite horizon (dynamic) model in order to optimize online the maintenance strategy in the presence of dynamic contexts (change of the environment, the working condition, the production process, etc). A numerical example of a 16-component system is finally introduced to illustrate the use and the advantages of the proposed approach in the maintenance optimization framework. - Highlights: • A dynamic grouping maintenance strategy for complex structure systems is proposed. • Impacts of the system structure on grouping maintenance are investigated. • A grouping approach based on the rolling horizon and GA algorithm is proposed. • Different dynamic contexts and their impacts on grouping maintenance are studied. • The proposed approach can help to update the maintenance planning in dynamic contexts

  14. Pattern dynamics of the reaction-diffusion immune system.

    Science.gov (United States)

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  15. Modelling temperature dynamics of a district heating system in Naestved, Denmark-A case study

    International Nuclear Information System (INIS)

    Gabrielaitiene, Irina; Bohm, Benny; Sunden, Bengt

    2007-01-01

    Modelling the temperature dynamics of a district heating system is typically validated for a single pipe or a system with limited information about dynamic consumer behaviour. In the present work, time dependent consumer data from the Naestved district heating system was used to investigate the ability of modelling tools to represent the temperature profile distortion throughout an entire heating system network. The Naestved district heating subsystem was modelled by two approaches (the node method developed at the Technical University of Denmark and the software TERMIS), and these modelling results were compared with measured data. The results indicate that the discrepancies between the predicted and measured temperatures are pronounced for consumers located in pipelines at distant pipelines containing numerous bends and fittings. Additionally, it was found that representing the consumer behaviour on an annual average basis introduced a deviation between the predicted and the measured return temperatures at the heat source

  16. Integrability and chaos in quantum systems (as viewed from geometry and dynamical symmetry)

    International Nuclear Information System (INIS)

    Zhang, Wei-Min.

    1989-01-01

    It is known that the development and deep understanding of modern interaction theory and classical mechanics are made through geometry and symmetry. Yet, quantum mechanics which was regarded to be the microscopic theory of classical mechanics and achieved the crowning success in interpreting the entire microscopic world was developed purely from algebraic methods. In this thesis, the author will study the geometry and dynamical symmetry in quantum systems, from which the question of integrability and chaos are explicitly addressed. First of all, the quantum dynamical degrees of freedom and quantum integrability are precisely defined and the inherent geometrical structure of quantum systems is explored from the fundamental structure of quantum theory. Such a geometrical structure can provide a framework to simultaneously build quantum and classical mechanics. The quantum-classical correspondence is then explicitly deduced. The dynamics of quantum system before it reaches the classical limit is formulated. Thus, the classical chaos is proven to be a special limiting phenomena of quantum systems and the dynamics before the system reaches its classical chaos is explored. The latter is the first step to seek the quantum manifestation of chaos. The relationship between integrability and dynamical symmetry are studied and some universal properties are discovered: a dynamical system (both quantum and classical) in integrable if it possesses a dynamical symmetry. Chaos will occur if the system undergoes a dynamical symmetry breaking and is accompanied by a structural phase transition. Thus, the concept of dynamical symmetry can be used to predict the general behaviors of a system. The theoretical underpinnings developed in this thesis are verified by many basic quantum mechanical examples

  17. On non-stationarity of dynamic systems

    DEFF Research Database (Denmark)

    Høskuldsson, Agnar

    2004-01-01

    . Covariance structure of dynamic systems tends to vary over time. Here some procedures to find stable solutions to linear dynamic systems with low rank are presented. Subsets of variables and samples to be included in a model are considered. The procedures are based on the H-principle of mathematical...... that are based on exact solutions. With in few seconds the algorithms can provide with solutions of models having hundreds or thousands of variables. The procedure is described mathematically and demonstrated for a dynamic industrial case. It is shown how the algorithms can provide solutions involving NIR data...... for process control. The method is simple to apply and the motivation of the procedure is obvious for industrial applications. It can be used, e.g., when modelling on-line systems....

  18. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  19. Transcribing the balanced scorecard into system dynamics

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2013-01-01

    The purpose of this paper is to show how a System Dynamics Modelling approach can be integrated into the Balanced Scorecard (BSC) for a case company with special focus on the handling of causality in a dynamic perspective. The BSC model includes five perspectives and a number of financial and non...... the cause-and-effect relationships of an integrated BSC model. Including dynamic aspects of BSCs into the discussion is only in its infancy, so the aim of our work is also to contribute to both scholars’ and practitioners’ general understanding of how such delayed dynamic effects propagate through system...

  20. Order in cold ionic systems: Dynamic effects

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1988-01-01

    The present state and recent developments in Molecular Dynamics calculations modeling cooled heavy-ion beams are summarized. First, a frame of reference is established, summarizing what has happened in the past; then the properties of model systems of cold ions studied in Molecular Dynamics calculations are reviewed, with static boundary conditions with which an ordered state is revealed; finally, more recent results on such modelling, adding the complications in the (time-dependent) boundary conditions that begin to approach real storage rings (ion traps) are reported. 14 refs., 19 figs., 2 tabs

  1. SIAM conference on applications of dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    A conference (Oct.15--19, 1992, Snowbird, Utah; sponsored by SIAM (Society for Industrial and Applied Mathematics) Activity Group on Dynamical Systems) was held that highlighted recent developments in applied dynamical systems. The main lectures and minisymposia covered theory about chaotic motion, applications in high energy physics and heart fibrillations, turbulent motion, Henon map and attractor, integrable problems in classical physics, pattern formation in chemical reactions, etc. The conference fostered an exchange between mathematicians working on theoretical issues of modern dynamical systems and applied scientists. This two-part document contains abstracts, conference program, and an author index.

  2. A dynamic model of a photovoltaic vapour compression system

    International Nuclear Information System (INIS)

    Renno, C.

    2009-01-01

    A dynamic simulation of a photovoltaic vapour compression system is presented in this paper. In particular, there are several options to convert solar energy into refrigeration effect such as the absorption cycle, the thermo-mechanical refrigeration systems, the regenerative desiccant process or the steam jet system. This effect can also be produced by a conventional vapor compression cycle in which the compressor is driven by an electric motor supplied by means of photovoltaic cells. It is also possible to produce the cooling effect adopting the thermoelectric refrigeration, with electricity supplied by means of photovoltaic cells. Absorption and solar mechanical systems are necessarily larger and require extensive plumbing and electrical connections. The dynamic model allows to obtain some characteristic temperatures of the photovoltaic system and the energy consumptions with and without load perturbations. This model results a useful tool to study the dynamic working, for example, of photovoltaic refrigerators used in rural areas and remote islands, for their simple structure and low costs, to preserve foodstuffs, vaccines and other life saving medicines. (author)

  3. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    Science.gov (United States)

    Feng, Huirong; Lim, C. W.; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony. PMID:25254225

  4. Sustainable deforestation evaluation model and system dynamics analysis.

    Science.gov (United States)

    Feng, Huirong; Lim, C W; Chen, Liqun; Zhou, Xinnian; Zhou, Chengjun; Lin, Yi

    2014-01-01

    The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  5. Sustainable Deforestation Evaluation Model and System Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Huirong Feng

    2014-01-01

    Full Text Available The current study used the improved fuzzy analytic hierarchy process to construct a sustainable deforestation development evaluation system and evaluation model, which has refined a diversified system to evaluate the theory of sustainable deforestation development. Leveraging the visual image of the system dynamics causal and power flow diagram, we illustrated here that sustainable forestry development is a complex system that encompasses the interaction and dynamic development of ecology, economy, and society and has reflected the time dynamic effect of sustainable forestry development from the three combined effects. We compared experimental programs to prove the direct and indirect impacts of the ecological, economic, and social effects of the corresponding deforest techniques and fully reflected the importance of developing scientific and rational ecological harvesting and transportation technologies. Experimental and theoretical results illustrated that light cableway skidding is an ecoskidding method that is beneficial for the sustainable development of resources, the environment, the economy, and society and forecasted the broad potential applications of light cableway skidding in timber production technology. Furthermore, we discussed the sustainable development countermeasures of forest ecosystems from the aspects of causality, interaction, and harmony.

  6. The analysis on dynamic range of industrial CT system

    International Nuclear Information System (INIS)

    Wang Huiqian; Wang Jue; Tan Hui

    2011-01-01

    Concerning the limitations of the definition of the dynamic range of industrial computed tomography (ICT) system, it researches the definition, measuring method and influencing factors of the dynamic range of industrial computed tomography (ICT) system from the concept of quantization and system. First, the character of the input-output curve was analyzed, and the method of obtaining the dynamic range of industrial computed tomography (ICT) system was proposed. Then, an experiment model was designed to gain dynamic range, based on 6 MeV high-energy industrial computed tomography (ICT) system. The results show that the larger the photosurface is, the smaller the dynamic range is, when the other parameters are unchanged. (authors)

  7. Dynamical system approach to running Λ cosmological models

    International Nuclear Information System (INIS)

    Stachowski, Aleksander; Szydlowski, Marek

    2016-01-01

    We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g"α"β∇_α∇_βφ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)

  8. Understanding the Earth Systems: Expressions of Dynamic and Cyclic Thinking among University Students

    Science.gov (United States)

    Batzri, Or; Ben Zvi Assaraf, Orit; Cohen, Carmit; Orion, Nir

    2015-01-01

    In this two-part study, we examine undergraduate university students' expression of two important system thinking characteristics--dynamic thinking and cyclic thinking--focusing particularly on students of geology. The study was conducted using an Earth systems questionnaire designed to elicit and reflect either dynamic or cyclic thinking. The…

  9. Design of a dynamic transcranial magnetic stimulation coil system.

    Science.gov (United States)

    Ge, Sheng; Jiang, Ruoli; Wang, Ruimin; Chen, Ji

    2014-08-01

    To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.

  10. Improving homogeneity by dynamic speed limit systems.

    NARCIS (Netherlands)

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  11. Incorporating Dynamical Systems into the Traditional Curriculum.

    Science.gov (United States)

    Natov, Jonathan

    2001-01-01

    Presents a brief overview of dynamical systems. Gives examples from dynamical systems and where they fit into the current curriculum. Points out that these examples are accessible to undergraduate freshmen and sophomore students, add continuity to the standard curriculum, and are worth including in classes. (MM)

  12. Stability of power systems coupled with market dynamics

    Science.gov (United States)

    Meng, Jianping

    This Ph.D. thesis presented here spans two relatively independent topics. The first part, Chapter 2 is self-contained, and is dedicated to studies of new algorithms for power system state estimation. The second part, encompassing the remaining chapters, is dedicated to stability analysis of power system coupled with market dynamics. The first part of this thesis presents improved Newton's methods employing efficient vectorized calculations of higher order derivatives in power system state estimation problems. The improved algorithms are proposed based on an exact Newton's method using the second order terms. By efficiently computing an exact gain matrix, combined with a special optimal multiplier method, the new algorithms show more reliable convergence compared with the existing methods of normal equations, orthogonal decomposition, and Hachtel's sparse tableau. Our methods are able to handle ill-conditioned problems, yet show minimal penalty in computational cost for well-conditioned cases. These claims are illustrated through the standard IEEE 118 and 300 bus test examples. The second part of the thesis focuses on stability analysis of market/power systems. The work presented is motivated by an emerging problem. As the frequency of market based dispatch updates increases, there will inevitably be interaction between the dynamics of markets determining the generator dispatch commands, and the physical response of generators and network interconnections, necessitating the development of stability analysis for such coupled systems. We begin with numeric tests using different market models, with detailed machine/exciter/turbine/governor dynamics, in the New England 39 bus test system. A progression of modeling refinements are introduced, including such non-ideal effects as time delays. Electricity market parameter identification algorithms are also studied based on real time data from the PJM electricity market. Finally our power market model is augmented by optimal

  13. Micro-Level Affect Dynamics in Psychopathology Viewed From Complex Dynamical System Theory

    NARCIS (Netherlands)

    Wichers, M.; Wigman, J. T. W.; Myin-Germeys, I.

    2015-01-01

    This article discusses the role of moment-to-moment affect dynamics in mental disorder and aims to integrate recent literature on this topic in the context of complex dynamical system theory. First, we will review the relevance of temporal and contextual aspects of affect dynamics in relation to

  14. Variable threshold algorithm for division of labor analyzed as a dynamical system.

    Science.gov (United States)

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Navarro, Iñaki; Caamaño-Martín, Estefanía; Monasterio-Huelin, Félix; Gutiérrez, Álvaro

    2014-12-01

    Division of labor is a widely studied aspect of colony behavior of social insects. Division of labor models indicate how individuals distribute themselves in order to perform different tasks simultaneously. However, models that study division of labor from a dynamical system point of view cannot be found in the literature. In this paper, we define a division of labor model as a discrete-time dynamical system, in order to study the equilibrium points and their properties related to convergence and stability. By making use of this analytical model, an adaptive algorithm based on division of labor can be designed to satisfy dynamic criteria. In this way, we have designed and tested an algorithm that varies the response thresholds in order to modify the dynamic behavior of the system. This behavior modification allows the system to adapt to specific environmental and collective situations, making the algorithm a good candidate for distributed control applications. The variable threshold algorithm is based on specialization mechanisms. It is able to achieve an asymptotically stable behavior of the system in different environments and independently of the number of individuals. The algorithm has been successfully tested under several initial conditions and number of individuals.

  15. Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System

    Directory of Open Access Journals (Sweden)

    Zhenhua Hu

    2013-01-01

    Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.

  16. Sustainable infrastructure system modeling under uncertainties and dynamics

    Science.gov (United States)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the

  17. Review of various dynamic modeling methods and development of an intuitive modeling method for dynamic systems

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2008-01-01

    Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing Reliability Graph with General Gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables

  18. The captains of energy systems dynamics from an energy perspective

    CERN Document Server

    Prantil, Vincent C

    2015-01-01

    In teaching an introduction to transport or systems dynamics modeling at the undergraduate level, it is possible to lose pedagogical traction in a sea of abstract mathematics. What the mathematical modeling of time-dependent system behavior offers is a venue in which students can be taught that physical analogies exist between what they likely perceive as distinct areas of study in the physical sciences. We introduce a storyline whose characters are superheroes that store and dissipate energy in dynamic systems. Introducing students to the overarching conservation laws helps develop the analog

  19. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  20. Abstraction of continuous dynamical systems utilizing lyapunov functions

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2010-01-01

    This paper considers the development of a method for abstracting continuous dynamical systems by timed automata. The method is based on partitioning the state space of dynamical systems with invariant sets, which form cells representing locations of the timed automata. To enable verification...... of the dynamical system based on the abstraction, conditions for obtaining sound, complete, and refinable abstractions are set up. It is proposed to partition the state space utilizing sub-level sets of Lyapunov functions, since they are positive invariant sets. The existence of sound abstractions for Morse......-Smale systems and complete and refinable abstractions for linear systems are shown....

  1. Controlling chaos in dynamical systems described by maps

    International Nuclear Information System (INIS)

    Crispin, Y.; Marduel, C.

    1994-01-01

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps

  2. Dynamics and control of hybrid mechanical systems

    NARCIS (Netherlands)

    Leonov, G.A.; Nijmeijer, H.; Pogromski, A.Y.; Fradkov, A.L.

    2010-01-01

    The papers in this edited volume aim to provide a better understanding of the dynamics and control of a large class of hybrid dynamical systems that are described by different models in different state space domains. They not only cover important aspects and tools for hybrid systems analysis and

  3. The Behavior of Procurement Process as Described by Using System Dynamics Methodology

    OpenAIRE

    Mohd Yusoff, Mohd Izhan

    2018-01-01

    System dynamics methodology has been used in many fields of study which include supply chain, project management and performance, and procurement process. The said methodology enables the researchers to identify and study the impact of the variables or factors on the outcome of the model they developed. In this paper, we showed the use of system dynamics methodology in studying the behavior of procurement process that is totally different from those mentioned in previous studies. By using a t...

  4. Evolution of perturbed dynamical systems: analytical computation with time independent accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Gurzadyan, A.V. [Russian-Armenian (Slavonic) University, Department of Mathematics and Mathematical Modelling, Yerevan (Armenia); Kocharyan, A.A. [Monash University, School of Physics and Astronomy, Clayton (Australia)

    2016-12-15

    An analytical method for investigation of the evolution of dynamical systems with independent on time accuracy is developed for perturbed Hamiltonian systems. The error-free estimation using of computer algebra enables the application of the method to complex multi-dimensional Hamiltonian and dissipative systems. It also opens principal opportunities for the qualitative study of chaotic trajectories. The performance of the method is demonstrated on perturbed two-oscillator systems. It can be applied to various non-linear physical and astrophysical systems, e.g. to long-term planetary dynamics. (orig.)

  5. Geometric methods for discrete dynamical systems

    CERN Document Server

    Easton, Robert W

    1998-01-01

    This book looks at dynamics as an iteration process where the output of a function is fed back as an input to determine the evolution of an initial state over time. The theory examines errors which arise from round-off in numerical simulations, from the inexactness of mathematical models used to describe physical processes, and from the effects of external controls. The author provides an introduction accessible to beginning graduate students and emphasizing geometric aspects of the theory. Conley''s ideas about rough orbits and chain-recurrence play a central role in the treatment. The book will be a useful reference for mathematicians, scientists, and engineers studying this field, and an ideal text for graduate courses in dynamical systems.

  6. The application of nonlinear dynamics in the study of ferroelectric materials

    International Nuclear Information System (INIS)

    Blochwitz, S.; Habel, R.; Diestelhorst, M.; Beige, H.

    1996-01-01

    It is well known that the structural phase transitions in ferroelectric materials are connected with strong nonlinear properties. So we can expect all features of nonlinear dynamical systems such as period-doubling cascades and chaos in a dynamical system that contains ferroelectric materials. Therefore we can apply nonlinear dynamics to these ferroelectric materials and we are doing it in two directions: (i) We study the structural phase transitions by analyzing the large signal behaviour with means of nonlinear dynamics. (ii) We control the chaotic behaviour of the system with the method proposed by Ott, Grebogi and Yorke. (authors)

  7. Experimental and numerical study of the MYRRHA control rod system dynamics

    International Nuclear Information System (INIS)

    Kennedy, G.; Lamberts, D.; Van Tichelen, K.; Profir, M.; Moreau, V.

    2017-01-01

    This paper presents an experimental and numerical investigation of the buoyancy driven MYRRHA control rod (CR) insertion during an emergency SCRAM. The study aimed to support the MYRRHA reactor design and characterise the hydrodynamic behaviour of the CR system while demonstrating the proof-of-principle. A full-scale mock-up test section of the MYRRHA CR was constructed to test the hydrodynamics in Lead Bismuth Eutectic over a wide range of operating conditions, to provide experimental data for the qualification of the CR system. A numerical CFD model of the CR test section was also setup in STAR-CCM+. The simulations make use of the recently developed overset mesh method to simulate the dynamic two-way coupling between the moving CR bundle and the fluid domain. The numerical methodology and post-test simulation results are validated against the experimental results. The steady state hydraulic results and the transient insertion results from both the experimental and numerical efforts are presented. The influence of the global process conditions on the CR insertion time are presented as well. This investigation successfully demonstrates the CR insertion proof-of-principle during a SCRAM. (author)

  8. Dynamical Systems Approach to Endothelial Heterogeneity

    Science.gov (United States)

    Regan, Erzsébet Ravasz; Aird, William C.

    2012-01-01

    Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222

  9. Colloquium: Non-Markovian dynamics in open quantum systems

    Science.gov (United States)

    Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano

    2016-04-01

    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of

  10. Synchronization in Complex Networks of Nonlinear Dynamical Systems

    CERN Document Server

    Wu, Chai Wah

    2007-01-01

    This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide

  11. Collective Dynamics of Nonlinear and Disordered Systems

    CERN Document Server

    Radons, G; Just, W

    2005-01-01

    Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.

  12. System dynamics an introduction for mechanical engineers

    CERN Document Server

    Seeler, Karl A

    2014-01-01

    This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control.  The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software.  Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations

  13. Dynamic Stability of Maglev Systems,

    Science.gov (United States)

    1992-04-01

    AD-A259 178 ANL-92/21 Materials and Components Dynamic Stability of Technology Division Materials and Components Maglev Systems Technology Division...of Maglev Systems Y. Cai, S. S. Chen, and T. M. Mulcahy Materials and Components Technology Division D. M. Rote Center for Transportation Research...of Maglev System with L-Shaped Guideway ......................................... 6 3 Stability of M aglev System s

  14. Microscopic dynamics of binary mixtures and quasi-colloidal systems

    International Nuclear Information System (INIS)

    Smorenburg, H.E.

    1996-01-01

    In the study on the title subject two questions are addressed. One is whether the microscopic dynamics of binary mixtures and quasi-colloidal systems can be understood theoretically with kinetic theories for equivalent hard sphere mixtures. The other question that arises is whether the similarity in the dynamics of dense simple fluids and concentrated colloidal suspensions also holds for binary mixtures and quasi-colloidal systems. To answer these questions, we have investigated a number of binary gas mixtures and quasi-colloidal system with different diameter ratios and concentrations. We obtain the experimental dynamic structure factors S expt (κ,ω) of the samples from inelastic neutron scattering. We compare S expt (κ,ω) with the dynamic structure S HS (κ,ω) of an equivalent hard sphere fluid, that we calculate with the Enskog theory. In chapter 2, 3 and 4 we study dense He-Ar gas mixtures (diameter ratio R=1.4, and mass ratio M=10) at low and high Ar concentrations. Experiment and kinetic theory are in good agreement. In chapter 5 we study dilute quasi-colloidal suspensions of fullerene C60 molecules dissolved in liquid CS2. The diameter ratio R=2.2 is larger than in previous experiments while the mass ratio M=9.5 is more or less the same. We obtain the self diffusion coefficient D S of one C60 molecule in CS2 and find D s ≤D SE ≤D E , with D E obtained from kinetic theory and D SE from the Stokes-Einstein description. It appears that both descriptions are relevant but not so accurate. In chapter 6 we study three dense mixtures of neopentane in 40 Ar (diameter ratio R=1.7, mass ratio M=2) at low and high neopentane concentrations. At low concentration, we find a diffusion coefficient of neopentane in Ar, which is in good agreement with kinetic theory and in moderate agreement with the Stokes-Einstein description. At high concentration the collective translational dynamics of neopentane shows a similar behaviour as in dense colloids and simple fluids

  15. Path integral methods for the dynamics of stochastic and disordered systems

    International Nuclear Information System (INIS)

    Hertz, John A; Roudi, Yasser; Sollich, Peter

    2017-01-01

    We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin–Siggia–Rose/Janssen–De Dominicis–Peliti path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey of the perturbative, i.e. diagrammatic, approach to dynamics and how this formalism can be used for studying soft spin models. We review the supersymmetric formulation of the Langevin dynamics of these models and discuss the physical implications of the supersymmetry. We also describe the key steps involved in studying the disorder-averaged dynamics. Finally, we discuss the path integral approach for the case of hard Ising spins and review some recent developments in the dynamics of such kinetic Ising models. (topical review)

  16. Mathematical Modeling and Dimension Reduction in Dynamical Systems

    DEFF Research Database (Denmark)

    Elmegård, Michael

    . These systems are generically nonlinear and the studies of them often become enormously complex. The framework in which such systems are best understood is via the theory of dynamical systems, where the critical behavior is systematically analyzed by performing bifurcation theory. In that context the current...... thesis is attacking two problems. The first is concerned with the mathematical modelling and analysis of an experiment of a vibro-impacting beam. This type of dynamical system has received much attention in the recent years and they occur frequently in mechanical applications, where they induce noise...... the existence of isolas of subharmonic orbits. These were then verified in the practical experiment in the lab. The second problem that is addressed in the current thesis is a problem that has developed as a consequence of the increasing power of computers which has created the demand for analysis of ever more...

  17. Experimental Modeling of Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten Haack

    2006-01-01

    An engineering course, Simulation and Experimental Modeling, has been developed that is based on a method for direct estimation of physical parameters in dynamic systems. Compared with classical system identification, the method appears to be easier to understand, apply, and combine with physical...

  18. Dynamics of movie competition and popularity spreading in recommender systems.

    Science.gov (United States)

    Yeung, C H; Cimini, G; Jin, C-H

    2011-01-01

    We introduce a simple model to study movie competition in recommender systems. Movies of heterogeneous quality compete against each other through viewers' reviews and generate interesting dynamics at the box office. By assuming mean-field interactions between the competing movies, we show that the runaway effect of popularity spreading is triggered by defeating the average review score, leading to box-office hits: Popularity rises and peaks before fade-out. The average review score thus characterizes the critical movie quality necessary for transition from box-office bombs to blockbusters. The major factors affecting the critical review score are examined. By iterating the mean-field dynamical equations, we obtain qualitative agreements with simulations and real systems in the dynamical box-office forms, revealing the significant role of competition in understanding box-office dynamics.

  19. Dynamics of movie competition and popularity spreading in recommender systems

    Science.gov (United States)

    Yeung, C. H.; Cimini, G.; Jin, C.-H.

    2011-01-01

    We introduce a simple model to study movie competition in recommender systems. Movies of heterogeneous quality compete against each other through viewers’ reviews and generate interesting dynamics at the box office. By assuming mean-field interactions between the competing movies, we show that the runaway effect of popularity spreading is triggered by defeating the average review score, leading to box-office hits: Popularity rises and peaks before fade-out. The average review score thus characterizes the critical movie quality necessary for transition from box-office bombs to blockbusters. The major factors affecting the critical review score are examined. By iterating the mean-field dynamical equations, we obtain qualitative agreements with simulations and real systems in the dynamical box-office forms, revealing the significant role of competition in understanding box-office dynamics.

  20. Parameter and Structure Inference for Nonlinear Dynamical Systems

    Science.gov (United States)

    Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark

    2006-01-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.

  1. Analysis of Dynamic Stiffness of Bridge Cap-Pile System

    Directory of Open Access Journals (Sweden)

    Jinhui Chu

    2018-01-01

    Full Text Available In order to investigate the applicability of dynamic stiffness for bridge cap-pile system, a laboratory test was performed. A numerical model was also built for this type of system. The impact load was applied on the cap top and the dynamic stiffness was analysed. Then, the effect of the effective friction area between pile and soil was also considered. Finally, the dynamic stiffness relationship between the single pile and the cap-pile system was also compared. The results show that the dynamic stiffness is a sensitive index and can well reflect the static characteristics of the pile at the elastic stage. There is a significant positive correlation between the vertical dynamic stiffness index and bearing capacity of the cap-pile system in the similar formation environment. For the cap-pile system with four piles, the dynamic stiffness is about four times as large as the single pile between 10 and 20 Hz.

  2. Coherent structures and dynamical systems

    Science.gov (United States)

    Jimenez, Javier

    1987-01-01

    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.

  3. Household Food Security Policy Analysis A System Dynamics Perspective

    Directory of Open Access Journals (Sweden)

    Isdore Paterson Guma

    2015-08-01

    Full Text Available Household food security FS is complex and requires multiple stakeholder intervention. Systemic approach aids stakeholders to understand the mechanisms and feedback between complexities in food security providing effective decision making as global resource consumption continues to grow. The study investigated food security challenges and a system dynamics model was developed for evaluating policies and intervention strategies for better livelihood at household level. Dynamic synthesis methodology questionnaires and interview guide were used to unearth food security challenges faced by households. A causal loop diagram was drawn. The model demonstrates a balance between food stock seeds preserved seeds for sale and consumption from crop harvest throughout the food cycles. This research makes contribution to the literature by evaluating dynamic synthesis methodology and FS policy discussions from a feedback point of view.

  4. Applications of system dynamics modelling to support health policy.

    Science.gov (United States)

    Atkinson, Jo-An M; Wells, Robert; Page, Andrew; Dominello, Amanda; Haines, Mary; Wilson, Andrew

    2015-07-09

    The value of systems science modelling methods in the health sector is increasingly being recognised. Of particular promise is the potential of these methods to improve operational aspects of healthcare capacity and delivery, analyse policy options for health system reform and guide investments to address complex public health problems. Because it lends itself to a participatory approach, system dynamics modelling has been a particularly appealing method that aims to align stakeholder understanding of the underlying causes of a problem and achieve consensus for action. The aim of this review is to determine the effectiveness of system dynamics modelling for health policy, and explore the range and nature of its application. A systematic search was conducted to identify articles published up to April 2015 from the PubMed, Web of Knowledge, Embase, ScienceDirect and Google Scholar databases. The grey literature was also searched. Papers eligible for inclusion were those that described applications of system dynamics modelling to support health policy at any level of government. Six papers were identified, comprising eight case studies of the application of system dynamics modelling to support health policy. No analytic studies were found that examined the effectiveness of this type of modelling. Only three examples engaged multidisciplinary stakeholders in collective model building. Stakeholder participation in model building reportedly facilitated development of a common 'mental map' of the health problem, resulting in consensus about optimal policy strategy and garnering support for collaborative action. The paucity of relevant papers indicates that, although the volume of descriptive literature advocating the value of system dynamics modelling is considerable, its practical application to inform health policy making is yet to be routinely applied and rigorously evaluated. Advances in software are allowing the participatory model building approach to be extended to

  5. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  6. Statistical inference for noisy nonlinear ecological dynamic systems.

    Science.gov (United States)

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  7. System Dynamics Modeling for the Resilience in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Florah, Kamanj; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This paper aims to model and evaluate emergency operation system (EOS) resilience using the System Dynamics. System Dynamics is the study of causal interactions between elements of a complex system. This paper identifies the EOS resilience attributes and their interactions by constructing a causal loop diagram. Then, the interactions are quantified based on literature review and simulated to analyze resilience dynamics. This paper describes the use of system dynamics to improve understanding of the resilience dynamics of complex systems such as emergency operation systems. This paper takes into account two aspects; the strength of resilience attributes interactions and the quantification of dynamic behaviour of resilience over time. This model can be applied to review NPP safety in terms of the resilience level and organization. Simulation results can give managers insights to support their decisions in safety management. A nuclear power plant (NPP) is classified as a safety critical organization whose safety objective is to control hazards that can cause significant harm to the environment, public, or personnel. There has been a significant improvement of safety designs as well as risk analysis tools and methods applied in nuclear power plants over the last decade. Conventional safety analysis methods such as PSA have several limitations they primarily focus on technical dimension, the analysis are linear and sequential, they are dominated by static models, they do not take a systemic view into account, and they focus primarily on why accidents happen and not how success is achieved. Hence new approaches to risk analysis for NPPs are needed to complement the conventional approaches. Resilience is the intrinsic ability of a system to adjust to its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. An EOS in a NPP refers to a system consisting of personnel

  8. System Dynamics Modeling for the Resilience in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Florah, Kamanj; Kim, Jonghyun

    2013-01-01

    This paper aims to model and evaluate emergency operation system (EOS) resilience using the System Dynamics. System Dynamics is the study of causal interactions between elements of a complex system. This paper identifies the EOS resilience attributes and their interactions by constructing a causal loop diagram. Then, the interactions are quantified based on literature review and simulated to analyze resilience dynamics. This paper describes the use of system dynamics to improve understanding of the resilience dynamics of complex systems such as emergency operation systems. This paper takes into account two aspects; the strength of resilience attributes interactions and the quantification of dynamic behaviour of resilience over time. This model can be applied to review NPP safety in terms of the resilience level and organization. Simulation results can give managers insights to support their decisions in safety management. A nuclear power plant (NPP) is classified as a safety critical organization whose safety objective is to control hazards that can cause significant harm to the environment, public, or personnel. There has been a significant improvement of safety designs as well as risk analysis tools and methods applied in nuclear power plants over the last decade. Conventional safety analysis methods such as PSA have several limitations they primarily focus on technical dimension, the analysis are linear and sequential, they are dominated by static models, they do not take a systemic view into account, and they focus primarily on why accidents happen and not how success is achieved. Hence new approaches to risk analysis for NPPs are needed to complement the conventional approaches. Resilience is the intrinsic ability of a system to adjust to its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. An EOS in a NPP refers to a system consisting of personnel

  9. Range use and dynamics in the agropastoral system of ...

    African Journals Online (AJOL)

    Occurrence of equilibrium and non equilibrium system dynamics in semiarid environments present serious management challenges. In these areas, resource management strategies are increasingly based on equilibrium rather than non equilibrium dynamics that assume simple system dynamics and strong coupling of ...

  10. The combination of system dynamics and game theory in analyzing oligopoly markets

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi

    2016-04-01

    Full Text Available In this paper, we present a hybrid method of game theory and dynamic systems to study the behavior of firms in an oligopoly market. The aim of this study is to build a model for an oligopoly game on the basis of feedback loops and system dynamics approach and to solve the resulted problems under some special conditions where traditional game theory methods are unable to handle. The method includes a combination of qualitative methods including interviews with industry experts to prepare the model and quantitative methods of system dynamics, simulation methodologies and game theory. The results indicate that competitive behavior and the important parameters such as volume of demand, interest rates and price fluctuation will be stabilized after a transition period.

  11. Academic entrepreneurship in a medical university: A system dynamics approach

    Directory of Open Access Journals (Sweden)

    Tofighi Sharam

    2017-01-01

    Full Text Available Academic entrepreneurship is a dynamic field which is growing after the second academic revolution that added entrepreneurial mission as the Third Mission of universities. In this sense, dynamics of this phenomenon is a suitable field of study and provides fruitful insights for both theory and practice. Thus, in this research, system dynamics approach is used to scrutinize academic entrepreneurship. The main question of this research is 'how academic entrepreneurship might evolve in a medical university of a developing country?' Therefore, Cross Impact Analysis method is used to examine the system behavior. In this study, the main attributes are adapted from a recent study by Salamzadeh et al. (2013a. Then, some policy variables are proposed and their effects on the model were shown. Findings show that although entrepreneurial ecosystem is growing in the country, still there are problems to be taken into account in order to improve the entrepreneurship in university.

  12. ŽAMPA’S SYSTEMS THEORY: A COMPREHENSIVE THEORY OF MEASUREMENT IN DYNAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Renata Rychtáriková

    2018-04-01

    Full Text Available The article outlines in memoriam Prof. Pavel Žampa’s concepts of system theory which enable us to devise a measurement in dynamic systems independently of the particular system behaviour. From the point of view of Žampa’s theory, terms like system time, system attributes, system link, system element, input, output, sub-systems, and state variables are defined. In Conclusions, Žampa’s theory is discussed together with another mathematical approaches of qualitative dynamics known since the 19th century. In Appendices, we present applications of Žampa’s technical approach to measurement of complex dynamical (chemical and biological systems at the Institute of Complex Systems, University of South Bohemia in České Budějovice.

  13. System Dynamics and Serious Games

    OpenAIRE

    Van Daalen, C.; Schaffernicht, M.; Mayer, I.

    2014-01-01

    This paper deals with the relationship between serious games and system dynamics. Games have been used in SD since the beginning. However, the field of serious gaming also has its own development. The purpose of this contribution is to provide a broad overview of the combination of serious gaming and SD and discuss the state of the art and promise. We first define serious game, simulation and case study and then point out how SD overlaps with them. Then we move on to define the basic componen...

  14. Dynamic evolution characteristics of a fractional order hydropower station system

    Science.gov (United States)

    Gao, Xiang; Chen, Diyi; Yan, Donglin; Xu, Beibei; Wang, Xiangyu

    2018-01-01

    This paper investigates the dynamic evolution characteristics of the hydropower station by introducing the fractional order damping forces. A careful analysis of the dynamic characteristics of the generator shaft system is carried out under different values of fractional order. It turns out the vibration state of the axis coordinates has a certain evolution law with the increase of the fractional order. Significantly, the obtained law exists in the horizontal evolution and vertical evolution of the dynamical behaviors. Meanwhile, some interesting dynamical phenomena were found in this process. The outcomes of this study enrich the nonlinear dynamic theory from the engineering practice of hydropower stations.

  15. Do dynamical systems follow Benford's law?

    International Nuclear Information System (INIS)

    Tolle, Charles R.; Budzien, Joanne L.; LaViolette, Randall A.

    2000-01-01

    Data compiled from a variety of sources follow Benford's law, which gives a monotonically decreasing distribution of the first digit (1 through 9). We examine the frequency of the first digit of the coordinates of the trajectories generated by some common dynamical systems. One-dimensional cellular automata fulfill the expectation that the frequency of the first digit is uniform. The molecular dynamics of fluids, on the other hand, provides trajectories that follow Benford's law. Finally, three chaotic systems are considered: Lorenz, Henon, and Roessler. The Lorenz system generates trajectories that follow Benford's law. The Henon system generates trajectories that resemble neither the uniform distribution nor Benford's law. Finally, the Roessler system generates trajectories that follow the uniform distribution for some parameters choices, and Benford's law for others. (c) 2000 American Institute of Physics

  16. Supervised Learning for Dynamical System Learning.

    Science.gov (United States)

    Hefny, Ahmed; Downey, Carlton; Gordon, Geoffrey J

    2015-01-01

    Recently there has been substantial interest in spectral methods for learning dynamical systems. These methods are popular since they often offer a good tradeoff between computational and statistical efficiency. Unfortunately, they can be difficult to use and extend in practice: e.g., they can make it difficult to incorporate prior information such as sparsity or structure. To address this problem, we present a new view of dynamical system learning: we show how to learn dynamical systems by solving a sequence of ordinary supervised learning problems, thereby allowing users to incorporate prior knowledge via standard techniques such as L 1 regularization. Many existing spectral methods are special cases of this new framework, using linear regression as the supervised learner. We demonstrate the effectiveness of our framework by showing examples where nonlinear regression or lasso let us learn better state representations than plain linear regression does; the correctness of these instances follows directly from our general analysis.

  17. Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System

    Science.gov (United States)

    He, Qing; Li, Hong

    Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.

  18. Lectures on fractal geometry and dynamical systems

    CERN Document Server

    Pesin, Yakov

    2009-01-01

    Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular "chaotic" motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory--Cantor sets, Hausdorff dimension, box dimension--using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples o...

  19. Chaotic Behavior in a Switched Dynamical System

    Directory of Open Access Journals (Sweden)

    Fatima El Guezar

    2008-01-01

    Full Text Available We present a numerical study of an example of piecewise linear systems that constitute a class of hybrid systems. Precisely, we study the chaotic dynamics of the voltage-mode controlled buck converter circuit in an open loop. By considering the voltage input as a bifurcation parameter, we observe that the obtained simulations show that the buck converter is prone to have subharmonic behavior and chaos. We also present the corresponding bifurcation diagram. Our modeling techniques are based on the new French native modeler and simulator for hybrid systems called Scicos (Scilab connected object simulator which is a Scilab (scientific laboratory package. The followed approach takes into account the hybrid nature of the circuit.

  20. Dynamical habitability of planetary systems.

    Science.gov (United States)

    Dvorak, Rudolf; Pilat-Lohinger, Elke; Bois, Eric; Schwarz, Richard; Funk, Barbara; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Lammer, Helmut; Léger, Alain; Liseau, René; Lunine, Jonathan; Paresce, Francesco; Penny, Alan; Quirrenbach, Andreas; Röttgering, Huub; Selsis, Frank; Schneider, Jean; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The problem of the stability of planetary systems, a question that concerns only multiplanetary systems that host at least two planets, is discussed. The problem of mean motion resonances is addressed prior to discussion of the dynamical structure of the more than 350 known planets. The difference with regard to our own Solar System with eight planets on low eccentricity is evident in that 60% of the known extrasolar planets have orbits with eccentricity e > 0.2. We theoretically highlight the studies concerning possible terrestrial planets in systems with a Jupiter-like planet. We emphasize that an orbit of a particular nature only will keep a planet within the habitable zone around a host star with respect to the semimajor axis and its eccentricity. In addition, some results are given for individual systems (e.g., Gl777A) with regard to the stability of orbits within habitable zones. We also review what is known about the orbits of planets in double-star systems around only one component (e.g., gamma Cephei) and around both stars (e.g., eclipsing binaries).

  1. System Dynamics Modeling for Supply Chain Information Sharing

    Science.gov (United States)

    Feng, Yang

    In this paper, we try to use the method of system dynamics to model supply chain information sharing. Firstly, we determine the model boundaries, establish system dynamics model of supply chain before information sharing, analyze the model's simulation results under different changed parameters and suggest improvement proposal. Then, we establish system dynamics model of supply chain information sharing and make comparison and analysis on the two model's simulation results, to show the importance of information sharing in supply chain management. We wish that all these simulations would provide scientific supports for enterprise decision-making.

  2. A Reconfigurable Logic Cell Based on a Simple Dynamical System

    Directory of Open Access Journals (Sweden)

    Lixiang Li

    2013-01-01

    Full Text Available This paper introduces a new scheme to achieve a dynamic logic gate which can be adjusted flexibly to obtain different logic functions by adjusting specific parameters of a dynamical system. Based on graphical tools and the threshold mechanism, the distribution of different logic gates is studied, and a transformation method between different logics is given. Analyzing the performance of the dynamical system in the presence of noise, we discover that it is resistant to system noise. Moreover, we find some part of the system can be considered as a leaky integrator which has been already widely applied in engineering. Finally, we provide a proof-of-principle hardware implementation of the proposed scheme to illustrate its effectiveness. With the proposed scheme in hand, it is convenient to build the flexible, robust, and general purpose computing devices such as various network coding routers, communication encoders or decoders, and reconfigurable computer chips.

  3. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    Science.gov (United States)

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  4. Free volume and relaxation dynamics of polymeric systems

    International Nuclear Information System (INIS)

    Bartos, J.; Kristiak, J.

    1999-01-01

    In this contribution use of positron annihilation spectroscopy (PALS) for the study of free volume and relaxation dynamics of some polymeric systems (1,4-polybutadiene, cis-1,4-polyisoprene, polyisobutylene, trans-1,4-polychloropropene, atactic polypropylene and 1,2-polybutadiene) is discussed

  5. Nonlinear Dynamic in an Ecological System with Impulsive Effect and Optimal Foraging

    Directory of Open Access Journals (Sweden)

    Min Zhao

    2014-01-01

    Full Text Available The population dynamics of a three-species ecological system with impulsive effect are investigated. Using the theories of impulsive equations and small-amplitude perturbation scales, the conditions for the system to be permanent when the number of predators released is less than some critical value can be obtained. Furthermore, because the predator in the system follows the predictions of optimal foraging theory, it follows that optimal foraging promotes species coexistence. In particular, the less beneficial prey can support the predator alone when the more beneficial prey goes extinct. Moreover, the influences of the impulsive effect and optimal foraging on inherent oscillations are studied using simulation, which reveals rich dynamic behaviors such as period-halving bifurcations, a chaotic band, a periodic window, and chaotic crises. In addition, the largest Lyapunov exponent and the power spectra of the strange attractor, which can help analyze the chaotic dynamic behavior of the model, are investigated. This information will be useful for studying the dynamic complexity of ecosystems.

  6. Diversity and non-integer differentiation for system dynamics

    CERN Document Server

    Oustaloup, Alain

    2014-01-01

    Based on a structured approach to diversity, notably inspired by various forms of diversity of natural origins, Diversity and Non-integer Derivation Applied to System Dynamics provides a study framework to the introduction of the non-integer derivative as a modeling tool. Modeling tools that highlight unsuspected dynamical performances (notably damping performances) in an ""integer"" approach of mechanics and automation are also included. Written to enable a two-tier reading, this is an essential resource for scientists, researchers, and industrial engineers interested in this subject area. Ta

  7. Geometry and dynamics of integrable systems

    CERN Document Server

    Matveev, Vladimir

    2016-01-01

    Based on lectures given at an advanced course on integrable systems at the Centre de Recerca Matemàtica in Barcelona, these lecture notes address three major aspects of integrable systems: obstructions to integrability from differential Galois theory; the description of singularities of integrable systems on the basis of their relation to bi-Hamiltonian systems; and the generalization of integrable systems to the non-Hamiltonian settings. All three sections were written by top experts in their respective fields. Native to actual problem-solving challenges in mechanics, the topic of integrable systems is currently at the crossroads of several disciplines in pure and applied mathematics, and also has important interactions with physics. The study of integrable systems also actively employs methods from differential geometry. Moreover, it is extremely important in symplectic geometry and Hamiltonian dynamics, and has strong correlations with mathematical physics, Lie theory and algebraic geometry (including mir...

  8. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  9. The dynamics of general developmental mechanisms : From Piaget and Vygotsky to dynamic systems models

    NARCIS (Netherlands)

    van Geert, P

    Dynamic systems theory conceives of development as a self-organizational process. Both complexity and order emerge as a product of elementary principles of interaction between components involved in the developmental process. This article presents a dynamic systems model based on a general dual

  10. The application of system dynamics modelling to environmental health decision-making and policy - a scoping review.

    Science.gov (United States)

    Currie, Danielle J; Smith, Carl; Jagals, Paul

    2018-03-27

    Policy and decision-making processes are routinely challenged by the complex and dynamic nature of environmental health problems. System dynamics modelling has demonstrated considerable value across a number of different fields to help decision-makers understand and predict the dynamic behaviour of complex systems in support the development of effective policy actions. In this scoping review we investigate if, and in what contexts, system dynamics modelling is being used to inform policy or decision-making processes related to environmental health. Four electronic databases and the grey literature were systematically searched to identify studies that intersect the areas environmental health, system dynamics modelling, and decision-making. Studies identified in the initial screening were further screened for their contextual, methodological and application-related relevancy. Studies deemed 'relevant' or 'highly relevant' according to all three criteria were included in this review. Key themes related to the rationale, impact and limitation of using system dynamics in the context of environmental health decision-making and policy were analysed. We identified a limited number of relevant studies (n = 15), two-thirds of which were conducted between 2011 and 2016. The majority of applications occurred in non-health related sectors (n = 9) including transportation, public utilities, water, housing, food, agriculture, and urban and regional planning. Applications were primarily targeted at micro-level (local, community or grassroots) decision-making processes (n = 9), with macro-level (national or international) decision-making to a lesser degree. There was significant heterogeneity in the stated rationales for using system dynamics and the intended impact of the system dynamics model on decision-making processes. A series of user-related, technical and application-related limitations and challenges were identified. None of the reported limitations or challenges

  11. Delay-Induced Consensus and Quasi-Consensus in Multi-Agent Dynamical Systems

    NARCIS (Netherlands)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming; Ren, Wei

    2013-01-01

    This paper studies consensus and quasi-consensus in multi-agent dynamical systems. A linear consensus protocol in the second-order dynamics is designed where both the current and delayed position information is utilized. Time delay, in a common perspective, can induce periodic oscillations or even

  12. Study of beam dynamics at cooler synchrotron TARN-II

    International Nuclear Information System (INIS)

    Watanabe, S.; Katayama, T.; Watanabe, T.; Yoshizawa, M.; Tomizawa, M.; Chida, K.; Arakaki, Y.; Noda, K.; Kanazawa, M.

    1992-08-01

    Several kinds of beam diagnostic instruments, have been developed at cooler-synchrotron TARN-II. These are intended to study beam dynamics at low beam current of several microamperes and then have high sensitivity of good S/N ratio. In addition, the acceleration system, especially low level RF system, has been improved to attain the maximum beam energy. With the successful performance of these instrumentations, the study of beam dynamics are presently being carried out. For example, the synchrotron acceleration of the light ions was achieved up to 220 MeV/u without any beam loss. (author)

  13. Bifurcation Control of Chaotic Dynamical Systems

    National Research Council Canada - National Science Library

    Wang, Hua O; Abed, Eyad H

    1992-01-01

    A nonlinear system which exhibits bifurcations, transient chaos, and fully developed chaos is considered, with the goal of illustrating the role of two ideas in the control of chaotic dynamical systems...

  14. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  15. Detecting and Interpreting the Dynamical Evolution of Transiting Multiplanet Systems

    Science.gov (United States)

    Mills, Sean Martin

    The dynamical interactions of our Solar System have been studied in depth since Isaac Newton recognized that the planets may not be stable to each other's gravitational perturbations. Recently, the discovery of exoplanet systems, including approximately a thousand planet candidates in systems of more than two bodies, has opened an extremely vast and diverse laboratory for planetary dynamics. In this dissertation, I describe techniques for measuring the dynamical, post-Keplerian interactions of planetary systems. Such signals often require numerical N-body analysis and photodynamic techniques combined with Bayesian statistics to correctly determine the properties of the planetary systems causing them. By simultaneously fitting the entire lightcurve data set at once, I am able to extract low signal-to-noise effects such as the resonance dynamics of a very faint system (Kepler-223), the slow orbital precession of a giant planet system (Kepler-108), and transit timing variations among very small and low mass planets (Kepler-444). I use these analyses to gain physical insight into the system's history, such as Kepler-108's potentially chaotic, violent past. Kepler-223's present structure indicates a migration origin for at least some close-in, sub-Neptune planets, which I explore in terms of tidal dissipation, smooth and stochastic migration, and secular evolution. I also analyze circumbinary systems including the newly discovered KIC 10753734. Taken together, these results provide insight into planetary formation in a broad array of environments for planet from compact sub-Neptune systems to Jupiters and circumbinary planets.

  16. Soliton dynamics in periodic system with different nonlinear media

    International Nuclear Information System (INIS)

    Zabolotskij, A.A.

    2001-01-01

    To analyze pulse dynamics in the optical system consisting of periodic sequence of nonlinear media one uses a composition model covering a model of resonance interaction of light ultrashort pulse with energy transition of medium with regard to pumping of the upper level and quasi-integrable model describing propagation of light field in another medium with cubic nonlinearity and dispersion. One additionally takes account of losses and other types of interaction in the from of perturbation members. On the basis of the method of scattering back problem and perturbation theory one developed a simple method to study peculiarities of soliton evolution in such periodic system. Due to its application one managed to describe different modes of soliton evolution in such a system including chaotic dynamics [ru

  17. Intrinsic information carriers in combinatorial dynamical systems

    Science.gov (United States)

    Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter

    2010-09-01

    Many proteins are composed of structural and chemical features—"sites" for short—characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations—unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are

  18. Intrinsic information carriers in combinatorial dynamical systems.

    Science.gov (United States)

    Harmer, Russ; Danos, Vincent; Feret, Jérôme; Krivine, Jean; Fontana, Walter

    2010-09-01

    Many proteins are composed of structural and chemical features--"sites" for short--characterized by definite interaction capabilities, such as noncovalent binding or covalent modification of other proteins. This modularity allows for varying degrees of independence, as the behavior of a site might be controlled by the state of some but not all sites of the ambient protein. Independence quickly generates a startling combinatorial complexity that shapes most biological networks, such as mammalian signaling systems, and effectively prevents their study in terms of kinetic equations-unless the complexity is radically trimmed. Yet, if combinatorial complexity is key to the system's behavior, eliminating it will prevent, not facilitate, understanding. A more adequate representation of a combinatorial system is provided by a graph-based framework of rewrite rules where each rule specifies only the information that an interaction mechanism depends on. Unlike reactions, which deal with molecular species, rules deal with patterns, i.e., multisets of molecular species. Although the stochastic dynamics induced by a collection of rules on a mixture of molecules can be simulated, it appears useful to capture the system's average or deterministic behavior by means of differential equations. However, expansion of the rules into kinetic equations at the level of molecular species is not only impractical, but conceptually indefensible. If rules describe bona fide patterns of interaction, molecular species are unlikely to constitute appropriate units of dynamics. Rather, we must seek aggregate variables reflective of the causal structure laid down by the rules. We call these variables "fragments" and the process of identifying them "fragmentation." Ideally, fragments are aspects of the system's microscopic population that the set of rules can actually distinguish on average; in practice, it may only be feasible to identify an approximation to this. Most importantly, fragments are

  19. Emulation tool of dynamic systems via internet

    Directory of Open Access Journals (Sweden)

    Daniel Ruiz Olaya

    2015-11-01

    Full Text Available The experimentation laboratories for the studies of control system courses can become expensive, either in its acquisition, operation or maintenance. An alternative resource have been the remote laboratories. However, not always is possible to get complex systems. A solution to this matter are the remote emulation laboratories. In this paper describes the development of a Web application for the emulation of dynamic systems using a free-distribution software tool of rapid control prototyping based on Linux/RTAI. This application is focused especially for the experimentation with dynamic systems that are not available easily in a laboratory where the model have been configured by the user. The design of the front-end and the back-end are presented. The latency times of the real-time operating system and the ability of the system to reproduce similar signals to a real system from an emulated model were verified. An example, to test the functionality of the application the model of an evaporator was used. One of the advantages of the application is the work methodology which is based on the development of blocks in Scicos. This allows the user to reuse those parameters and the code that was implemented to build a block on the Scicos toolbox with the Linux/RTAI/ScicosLab environment. Moreover, only a web-browser and the Java Virtual Machine are required.

  20. System Dynamic Modelling for a Balanced Scorecard: A Case Study

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    Purpose - The purpose of this research is to make an analytical model of the BSC foundation by using a dynamic simulation approach for a 'hypothetical case' model, based on only part of an actual case study of BSC. Design/methodology/approach - The model includes five perspectives and a number...

  1. An application of the ESD framework to the probabilistic risk assessment of dynamic systems

    International Nuclear Information System (INIS)

    Swaminathan, S.; Smidts, Carol

    2000-01-01

    Dynamic reliability is the probabilistic study of man-machine-software systems affected by an underlying physical process. The theory of probabilistic dynamics established that dynamic reliability methodologies are essentially semi-Markovian frameworks and can be expressed by an extension of the Chapman-Kolmogorov equation. The mathematical complexity associated with the assessment of dynamic systems' behaviour can be rather overwhelming for real life size systems. This is due to the fact that dynamic methodologies emphasize a component based representation rather than the sequence based representation used in the traditional Event Tree/Fault Tree framework or in the original Event Sequence Diagram (ESD) Framework. An extension of the ESD framework was proposed that facilitates capture of dynamic situations. The modeling framework is composed of events, gates, conditions, competitions and constraints which express many of the dynamic situations encountered in the evolution of accidents. The following paper illustrates an application of this extended ESD framework on a complex dynamic application. The problem at hand is an extension of a problem extensively studied in the validation of dynamic reliability algorithms, a simplified model of the fast reactor Europa. A discussion on how ESDs can help in guiding dynamic reliability simulations as well as aggregating and binning the numerous scenarios generated by dynamic reliability algorithms is provided.(author)

  2. Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.

    Science.gov (United States)

    Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao

    2017-01-04

    The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.

  3. Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads

    Science.gov (United States)

    Lu, Zheng; Lu, Xilin; Lu, Wensheng; Masri, Sami F.

    2012-04-01

    This paper presents a systematic experimental investigation of the effects of buffered particle dampers attached to a multi-degree-of-freedom (mdof) system under different dynamic loads (free vibration, random excitation as well as real onsite earthquake excitations), and analytical/computational study of such a system. A series of shaking table tests of a three-storey steel frame with the buffered particle damper system are carried out to evaluate the performance and to verify the analysis method. It is shown that buffered particle dampers have good performance in reducing the response of structures under dynamic loads, especially under random excitation case. It can effectively control the fundamental mode of the mdof primary system; however, the control effect for higher modes is variable. It is also shown that, for a specific container geometry, a certain mass ratio leads to more efficient momentum transfer from the primary system to the particles with a better vibration attenuation effect, and that buffered particle dampers have better control effect than the conventional rigid ones. An analytical solution based on the discrete element method is also presented. Comparison between the experimental and computational results shows that reasonably accurate estimates of the response of a primary system can be obtained. Properly designed buffered particle dampers can effectively reduce the response of lightly damped mdof primary system with a small weight penalty, under different dynamic loads.

  4. Dynamic reasoning in a knowledge-based system

    Science.gov (United States)

    Rao, Anand S.; Foo, Norman Y.

    1988-01-01

    Any space based system, whether it is a robot arm assembling parts in space or an onboard system monitoring the space station, has to react to changes which cannot be foreseen. As a result, apart from having domain-specific knowledge as in current expert systems, a space based AI system should also have general principles of change. This paper presents a modal logic which can not only represent change but also reason with it. Three primitive operations, expansion, contraction and revision are introduced and axioms which specify how the knowledge base should change when the external world changes are also specified. Accordingly the notion of dynamic reasoning is introduced, which unlike the existing forms of reasoning, provide general principles of change. Dynamic reasoning is based on two main principles, namely minimize change and maximize coherence. A possible-world semantics which incorporates the above two principles is also discussed. The paper concludes by discussing how the dynamic reasoning system can be used to specify actions and hence form an integral part of an autonomous reasoning and planning system.

  5. Advances in analysis and control of timedelayed dynamical systems

    CERN Document Server

    Sun, Jianqiao

    2013-01-01

    Analysis and control of timedelayed systems have been applied in a wide range of applications, ranging from mechanical, control, economic, to biological systems. Over the years, there has been a steady stream of interest in timedelayed dynamic systems, this book takes a snap shot of recent research from the world leading experts in analysis and control of dynamic systems with time delay to provide a bird's eye view of its development. The topics covered in this book include solution methods, stability analysis and control of periodic dynamic systems with time delay, bifurcations, stochastic dy

  6. Molecular dynamics coupled with a virtual system for effective conformational sampling.

    Science.gov (United States)

    Hayami, Tomonori; Kasahara, Kota; Nakamura, Haruki; Higo, Junichi

    2018-07-15

    An enhanced conformational sampling method is proposed: virtual-system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free-energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    International Nuclear Information System (INIS)

    Hu, Yu; Morales, Juan M.; Pineda, Salvador; Sánchez, María Jesús; Solana, Pablo

    2015-01-01

    Highlights: • Optimal decision-making model for isolated hybrid wind–diesel power system is proposed. • Wind power uncertainty and conditional operating cost are considered. • Battery wear cost of the energy storage system is included in the model. • The results are compared with deterministic dispatch strategies. - Abstract: An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi-stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. A numerical case study is analyzed and it is demonstrated that the proposed stochastic dynamic optimization model significantly outperforms the traditional deterministic dispatch strategies

  8. Dynamics of Nonlinear Time-Delay Systems

    CERN Document Server

    Lakshmanan, Muthusamy

    2010-01-01

    Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...

  9. Study on Dynamic Behaviour of Wishbone Suspension System

    International Nuclear Information System (INIS)

    Kamal, M; Rahman, M M

    2012-01-01

    This paper presents the characteristic model of the wishbone suspension system using the quarter car model approach. Suspension system in an automobile provides vehicle control and passenger comfort by providing isolation from road disturbances. This makes it essential that the detailed behavior of suspension should be known to optimize the performance. A kinetic study is performed using multi body system (MBS) analysis. The dirt road profile is considered as an applied loading. The spring constant, damping coefficient and sprung mass are studied on the performance of the suspension system. It can be observed that the spring constant is inversely related with time required to return to initial position and the amount of deformations. The damping ratio affects the suppression of spring oscillations, beyond a certain limit damping ration has the negligible effect. Sprung mass effected the equilibrium position of the suspension system with a small effect on its oscillation behavior. It is shown that the spring constant, damping ratio and sprung mass are significant parameters to design the suspension system. This study is essential for complete understanding of working of the suspension system and a future study with real geometries.

  10. A Dynamic Systems Approach to Internationalization of Higher Education

    Science.gov (United States)

    Zhou, Jiangyuan

    2016-01-01

    Research shows that internationalization of higher education is a process rather than an end product. This paper applies the Dynamic Systems Theory to examine the nature and development of internationalization of higher education, and proposes that internationalization of higher education is a dynamic system. A dynamic framework of…

  11. Applications of Dynamic Systems Theory to Cognition and Development: New Frontiers.

    Science.gov (United States)

    Perone, S; Simmering, V R

    2017-01-01

    A central goal in developmental science is to explain the emergence of new behavioral forms. Researchers consider potential sources of behavioral change depending partly on their theoretical perspective. This chapter reviews one perspective, dynamic systems theory, which emphasizes the interactions among multiple components to drive behavior and developmental change. To illustrate the central concepts of dynamic systems theory, we describe empirical and computational studies from a range of domains, including motor development, the Piagetian A-not-B task, infant visual recognition, visual working memory capacity, and language learning. We conclude by advocating for a broader application of dynamic systems approaches to understanding cognitive and behavioral development, laying out the remaining barriers we see and suggested ways to overcome them. © 2017 Elsevier Inc. All rights reserved.

  12. The Glauber dynamics for a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-06-15

    We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.

  13. The Glauber dynamics for a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Kantar, Ersin

    2009-01-01

    We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.

  14. Control Theory Concepts Applied to Retail Supply Chain: A System Dynamics Modeling Environment Study

    Directory of Open Access Journals (Sweden)

    Balaji Janamanchi

    2013-01-01

    Full Text Available Control theory concepts have been long used to successfully manage and optimize complex systems. Using system dynamics (SD modeling methodology, which is continuous deterministic simulation modeling methodology, we apply control theory concepts to develop a suitable performance functional (or objective function that optimizes the performance of a retail supply chain. The focus is to develop insights for inventory management to prevent stock-outs and unfilled orders and to fill customer orders at the lowest possible cost to supply chain partners under different scenarios, in a two-player supplier-retailer supply chain. Moderate levels of inventory, defining appropriate performance functional, appear to be crucial in choosing the right policies for managing retail supply chain systems. The study also demonstrated how multiple objectives can be combined in a single performance functional (or objective function by carefully assigning suitable weights to the components of objectives based on their priority and the existence of possible trade off opportunities.

  15. Dynamic study of DSA by video-densitometry

    International Nuclear Information System (INIS)

    Imamura, Keiko; Tsukamoto, Hiroshi; Ashida, Hiroshi; Ishikawa, Tohru; Fujii, Masamichi; Uji, Teruyuki

    1985-01-01

    A system was developed for the dynamic study of DSA by video-densitometric technique. As subtraction images are stored to VTR in our DSA examinations, a frame counter was designed to select images on VTR at an arbitrary interval. ROI setting and video-densitometry were performed using a TV image processor and its host computer. Images were sampled at the rate of 3 frames per second, and clear time-density curves were obtained from brain DSA examinations. Although it takes about 30 minutes to analyse one examination, it is also possible to analyse previous data stored on VTR. For DSA systems having no additional digital storage unit, this method will be helpful. Reduction in image quality through VTR storage had no problem in video-densitometry. Phantom studies have been made concerning the temporal variation of the image brightness during the 20 second-exposure and also the effect of the subjects thickness on the contrast. Filtering for low-grade averaging is preferable for dynamic studies. (author)

  16. Non-smooth dynamical systems

    CERN Document Server

    2000-01-01

    The book provides a self-contained introduction to the mathematical theory of non-smooth dynamical problems, as they frequently arise from mechanical systems with friction and/or impacts. It is aimed at applied mathematicians, engineers, and applied scientists in general who wish to learn the subject.

  17. Path integral methods for the dynamics of stochastic and disordered systems

    DEFF Research Database (Denmark)

    Hertz, John A.; Roudi, Yasser; Sollich, Peter

    2017-01-01

    We review some of the techniques used to study the dynamics of disordered systems subject to both quenched and fast (thermal) noise. Starting from the Martin–Siggia–Rose/Janssen–De Dominicis–Peliti path integral formalism for a single variable stochastic dynamics, we provide a pedagogical survey...

  18. Dynamic Control Based Photovoltaic Illuminating System

    Directory of Open Access Journals (Sweden)

    Zhang Chengkai

    2016-01-01

    Full Text Available Smart LED illumination system can use the power from whether the photovoltaic cell or the power grid automatically based on the SOC (State Of Charge of the photovoltaic cell. This paper proposes a feedback control of the photovoltaic cells and a dynamic control strategy for the Energy system. The dynamic control strategy is used to determine the switching state of the photovoltaic cell based on the illumination load in the past one hour and the battery capacity. These controls are manifested by experimental prototype that the control scheme is correct and effective.

  19. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    Science.gov (United States)

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  20. AMS Weather Studies and AMS Ocean Studies: Dynamic, College-Level Geoscience Courses Emphasizing Current Earth System Data

    Science.gov (United States)

    Brey, J. A.; Geer, I. W.; Moran, J. M.; Weinbeck, R. S.; Mills, E. W.; Blair, B. A.; Hopkins, E. J.; Kiley, T. P.; Ruwe, E. E.

    2008-12-01

    AMS Weather Studies and AMS Ocean Studies are introductory college-level courses developed by the American Meteorological Society, with NSF and NOAA support, for local offering at undergraduate institutions nationwide. The courses place students in a dynamic and highly motivational educational environment where they investigate the atmosphere and world ocean using real-world and real-time environmental data. Over 360 colleges throughout the United States have offered these courses in course environments ranging from traditional lecture/laboratory to completely online. AMS Diversity Projects aim to increase undergraduate student access to the geosciences through implementation of the courses at minority-serving institutions and training programs for MSI faculty. The AMS Weather Studies and AMS Ocean Studies course packages consist of a hard-cover, 15-chapter textbook, Investigations Manual with 30 lab-style activities, and course website containing weekly current weather and ocean investigations. Course instructors receive access to a faculty website and CD containing answer keys and course management system-compatible files, which allow full integration to a college's e-learning environment. The unique aspect of the courses is the focus on current Earth system data through weekly Current Weather Studies and Current Ocean Studies investigations written in real time and posted to the course website, as well as weekly news files and a daily weather summary for AMS Weather Studies. Students therefore study meteorology or oceanography as it happens, which creates a dynamic learning environment where student relate their experiences and observations to the course, and actively discuss the science with their instructor and classmates. With NSF support, AMS has held expenses-paid course implementation workshops for minority-serving institution faculty planning to offer AMS Weather Studies or AMS Ocean Studies. From May 2002-2007, AMS conducted week-long weather workshops

  1. Dynamic vibrations in wind energy systems: Application to vertical axis wind turbine

    Science.gov (United States)

    Mabrouk, Imen Bel; El Hami, Abdelkhalak; Walha, Lassâad; Zghal, Bacem; Haddar, Mohamed

    2017-02-01

    Dynamic analysis of Darrieus turbine bevel spur gear subjected to transient aerodynamic loads is carried out in the present study. The aerodynamic torque is obtained by solving the two dimensional unsteady incompressible Navies Stocks equation with the k-ω shear stress transport turbulence model. The results are presented for several values of tip speed ratio. The two-dimensional Computational Fluid Dynamics model is validated with experimental results. The optimum tip speed ratio is achieved, giving the best overall performance. In this study, we developed a lamped mass dynamic model with 14 degrees of freedom. This model is excited by external and internal issues sources. The main factors of these excitations are the periodic fluctuations of the gear meshes' stiffness and the unsteady aerodynamic torque oscillations. The vibration responses are obtained in time and frequency domains. The originality of our work is the correlation between the complexity of the aerodynamic phenomenon and the non-stationary dynamics vibration of the mechanical gearing system. The effect of the rotational speed on the dynamic behavior of the Darrieus turbine is also discussed. The present study shows that the variation of rotor rotational speed directly affects the torque production. However, there is a small change in the dynamic vibration of the studied gearing system.

  2. Influence of changes in initial conditions for the simulation of dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Kotyrba, Martin [Department of Informatics and Computers, University of Ostrava, 30 dubna 22, Ostrava (Czech Republic)

    2015-03-10

    Chaos theory is a field of study in mathematics, with applications in several disciplines including meteorology, sociology, physics, engineering, economics, biology, and philosophy. Chaos theory studies the behavior of dynamical systems that are highly sensitive to initial conditions—a paradigm popularly referred to as the butterfly effect. Small differences in initial conditions field widely diverging outcomes for such dynamical systems, rendering long-term prediction impossible in general. This happens even though these systems are deterministic, meaning that their future behavior is fully determined by their initial conditions, with no random elements involved. In this paperinfluence of changes in initial conditions will be presented for the simulation of Lorenz system.

  3. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  4. Emergence in Dynamical Systems

    Directory of Open Access Journals (Sweden)

    John Collier

    2013-12-01

    Full Text Available Emergence is a term used in many contexts in current science; it has become fashionable. It has a traditional usage in philosophy that started in 1875 and was expanded by J. S. Mill (earlier, under a different term and C. D. Broad. It is this form of emergence that I am concerned with here. I distinguish it from uses like ‘computational emergence,’ which can be reduced to combinations of program steps, or its application to merely surprising new features that appear in complex combinations of parts. I will be concerned specifically with ontological emergence that has the logical properties required by Mill and Broad (though there might be some quibbling about the details of their views. I restrict myself to dynamical systems that are embodied in processes. Everything that we can interact with through sensation or action is either dynamical or can be understood in dynamical terms, so this covers all comprehensible forms of emergence in the strong (nonreducible sense I use. I will give general dynamical conditions that underlie the logical conditions traditionally assigned to emergence in nature.The advantage of this is that, though we cannot test logical conditions directly, we can test dynamical conditions. This gives us an empirical and realistic form of emergence, contrary those who say it is a matter of perspective.

  5. Production of entropy on simplified dynamics in spin glass systems

    CERN Document Server

    Saakyan, D B

    2001-01-01

    In models of spin glasses one eliminates condition of extreme based on one of the order parameters. On the basis of the available expression for static sum one derived the effective hamiltonian for parameter and the appropriate energy. Relaxation of the system is studied as energy exchange between the degree of freedom related to the order slow parameter and with the rest of the system. At that level one may indicate point of glass capture within phase space on the basis of the static solutions. One studies p-spin model without magnetic field in case of replica symmetry violation. One studies dynamics of p-spin glass in magnetic field in replica-symmetrical phase. One studied model of spins with quadratic interaction when dynamic constants had temperature differing from temperature of space

  6. Brayton dynamic isotope power systems update

    International Nuclear Information System (INIS)

    Davis, K.A.; Pietsch, A.; Casagrande, R.D.

    1986-01-01

    Brayton dynamic power systems are uniquely suited for space applications. They are compact and highly efficient, offer inherent reliability due to only one moving part, and utilize a single phase and inert working fluid. Additional features include gas bearings, constant speed, and operation at essentially constant temperature. The design, utilizing an inert gas working fluid and gas bearing, is unaffected by zero gravity and can be easily started and restarted in space at low temperatures. This paper describes the salient features of the BIPS as a Dynamic Isotope Power System (DIPS), summarizes the development work to date, establishes the maturity of the design, provides an update on materials technology, and reviews systems integration considerations

  7. Controllable Subspaces of Open Quantum Dynamical Systems

    International Nuclear Information System (INIS)

    Zhang Ming; Gong Erling; Xie Hongwei; Hu Dewen; Dai Hongyi

    2008-01-01

    This paper discusses the concept of controllable subspace for open quantum dynamical systems. It is constructively demonstrated that combining structural features of decoherence-free subspaces with the ability to perform open-loop coherent control on open quantum systems will allow decoherence-free subspaces to be controllable. This is in contrast to the observation that open quantum dynamical systems are not open-loop controllable. To a certain extent, this paper gives an alternative control theoretical interpretation on why decoherence-free subspaces can be useful for quantum computation.

  8. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast.

    Science.gov (United States)

    Liu, James T; Hsu, Ray T; Yang, Rick J; Wang, Ya Ping; Wu, Hui; Du, Xiaoqin; Li, Anchun; Chien, Steven C; Lee, Jay; Yang, Shouye; Zhu, Jianrong; Su, Chih-Chieh; Chang, Yi; Huh, Chih-An

    2018-03-09

    Globally mud areas on continental shelves are conduits for the dispersal of fluvial-sourced sediment. We address fundamental issues in sediment dynamics focusing on how mud is retained on the seabed on shallow inner shelves and what are the sources of mud. Through a process-based comprehensive study that integrates dynamics, provenance, and sedimentology, here we show that the key mechanism to keep mud on the seabed is the water-column stratification that forms a dynamic barrier in the vertical that restricts the upward mixing of suspended sediment. We studied the 1000 km-long mud belt that extends from the mouth of the Changjiang (Yangtze) River along the coast of Zhejiang and Fujian Provinces of China and ends on the west coast of Taiwan. This mud belt system is dynamically attached to the fluvial sources, of which the Changjiang River is the primary source. Winter is the constructive phase when active deposition takes place of fine-grained sediment carried mainly by the Changjiang plume driven by Zhe-Min Coastal Currents southwestward along the coast.

  9. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  10. 16 CFR 1203.16 - Dynamic strength of retention system test.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dynamic strength of retention system test.... (2) The retention system strength test equipment shall consist of a dynamic impact apparatus that... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus...

  11. Evaluating system behavior through Dynamic Master Logic Diagram (DMLD) modeling

    International Nuclear Information System (INIS)

    Hu, Y.-S.; Modarres, Mohammad

    1999-01-01

    In this paper, the Dynamic Master Logic Diagram (DMLD) is introduced for representing full-scale time-dependent behavior and uncertain behavior of complex physical systems. Conceptually, the DMLD allows one to decompose a complex system hierarchically to model and to represent: (1) partial success/failure of the system, (2) full-scale logical, physical and fuzzy connectivity relations, (3) probabilistic, resolutional or linguistic uncertainty, (4) multiple-state system dynamics, and (5) floating threshold and transition effects. To demonstrate the technique, examples of using DMLD to model, to diagnose and to control dynamic behavior of a system are presented. A DMLD-based expert system building tool, called Dynamic Reliability Expert System (DREXs), is introduced to automate the DMLD modeling process

  12. Chaos of discrete dynamical systems in complete metric spaces

    International Nuclear Information System (INIS)

    Shi Yuming; Chen Guanrong

    2004-01-01

    This paper is concerned with chaos of discrete dynamical systems in complete metric spaces. Discrete dynamical systems governed by continuous maps in general complete metric spaces are first discussed, and two criteria of chaos are then established. As a special case, two corresponding criteria of chaos for discrete dynamical systems in compact subsets of metric spaces are obtained. These results have extended and improved the existing relevant results of chaos in finite-dimensional Euclidean spaces

  13. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    International Nuclear Information System (INIS)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In

    2016-01-01

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II

  14. Dynamic simulation of a circulating fluidized bed boiler system part I: Description of the dynamic system and transient behavior of sub-models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Il; Choi, Sang Min; Yang, Jong In [Dept. of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    Dynamic performance simulation of a CFB boiler in a commercial-scale power plant is reported. The boiler system was modeled by a finite number of heat exchanger units, which are sub-grouped into the gas-solid circulation loop, the water-steam circulation loop, and the inter-connected heat exchangers blocks of the boiler. This dynamic model is an extension from the previously reported performance simulation model, which was designed to simulate static performance of the same power plant, where heat and mass for each of the heat exchanger units were balanced for the inter-connected heat exchanger network among the fuel combustion system and the water-steam system. Dynamic performance simulation was achieved by calculating the incremental difference from the previous time step, and progressing for the next time step. Additional discretization of the heat exchanger blocks was necessary to accommodate the dynamic response of the water evaporation and natural circulation as well as the transient response of the metal temperature of the heat exchanger elements. Presentation of the simulation modeling is organized into two parts; system configuration of the model plant and the general approach of the simulation are presented along with the transient behavior of the sub-models in Part I. Dynamic sub-models were integrated in terms of the mass flow and the heat transfer for simulating the CFB boiler system. Dynamic simulation for the open loop response was performed to check the integrated system of the water-steam loop and the solid-gas loop of the total boiler system. Simulation of the total boiler system which includes the closed-loop control system blocks is presented in the following Part II.

  15. Dynamic lighting system for the learning environment: performance of elementary students.

    Science.gov (United States)

    Choi, Kyungah; Suk, Hyeon-Jeong

    2016-05-16

    This study aims to investigate the effects of lighting color temperatures on elementary students' performance, and thereby propose a dynamic lighting system for a smart learning environment. Three empirical studies were conducted: First, physiological responses were measured as a potential mediator of performance. Second, cognitive and behavioral responses were observed during academic and recess activities. Lastly, the experiment was carried out in a real-life setting with prolonged exposure. With a comprehensive analysis of the three studies, three lighting presets-3500 K, 5000 K, and 6500 K-are suggested for easy, standard, and intensive activity, respectively. The study is expected to act as a good stepping stone for developing dynamic lighting systems to support students' performance in learning environments.

  16. Flat Top Barge 300 feet Using Portable Dynamic Positioning System

    Directory of Open Access Journals (Sweden)

    Agoes Santoso

    2017-03-01

    Full Text Available Portable Dynamic Positioning System has not commonly applied to the ship, especially on barge. Besides for Dynamic Positioning function, the system can be used as ship's main propulsion. By using this system, the ship able to not using anchors because the functions can be performed by the Portable Dynamic System. Therefore, research about the application of Portable Dynamic Positioning System on the ship is conducted. This research aims to design a Flat Top Barge 300feet ship, to determine the specifications of Portable Dynamic Positioning System which is used, and to find out the ship stability which is designed on the empty payload condition and maximum payload. This research designed the ships with main dimensions LWL 90.1 meters, 25 meters wide, 5.5 meters high and 4.2 meters draught. To generate the ship with a maximum speed of 8 knots, it takes four thruster supplied with power 225 kW each, so that the total generated power is 1100 kW. This study analyzes three conditions of the ship stability, there are the condition of full payload, empty payload, and maximum payload. Each payload conditions will be analyzed regarding the large payload and draught water produced. The first is full payload conditions resulting payload in the amount of 5650 ton with a draught on the LCF at 4,181 meters. The second is the large empty payload condition displacement is 2809 ton and water draught on the LCF at 1,591. And the last is maximum payload conditions, resulting payload in the amount of 7450 ton with a draught on the LCF at 4,994 meters.

  17. Dynamic rock tests using split Hopkinson (Kolsky bar system – A review

    Directory of Open Access Journals (Sweden)

    Kaiwen Xia

    2015-02-01

    Full Text Available Dynamic properties of rocks are important in a variety of rock mechanics and rock engineering problems. Due to the transient nature of the loading, dynamic tests of rock materials are very different from and much more challenging than their static counterparts. Dynamic tests are usually conducted using the split Hopkinson bar or Kolsky bar systems, which include both split Hopkinson pressure bar (SHPB and split Hopkinson tension bar (SHTB systems. Significant progress has been made on the quantification of various rock dynamic properties, owing to the advances in the experimental techniques of SHPB system. This review aims to fully describe and critically assess the detailed procedures and principles of techniques for dynamic rock tests using split Hopkinson bars. The history and principles of SHPB are outlined, followed by the key loading techniques that are useful for dynamic rock tests with SHPB (i.e. pulse shaping, momentum-trap and multi-axial loading techniques. Various measurement techniques for rock tests in SHPB (i.e. X-ray micro computed tomography (CT, laser gap gauge (LGG, digital image correlation (DIC, Moiré method, caustics method, photoelastic coating method, dynamic infrared thermography are then discussed. As the main objective of the review, various dynamic measurement techniques for rocks using SHPB are described, including dynamic rock strength measurements (i.e. dynamic compression, tension, bending and shear tests, dynamic fracture measurements (i.e. dynamic imitation and propagation fracture toughness, dynamic fracture energy and fracture velocity, and dynamic techniques for studying the influences of temperature and pore water.

  18. Multiparameter Stochastic Dynamics of Ecological Tourism System with Continuous Visitor Education Interventions

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-01-01

    Full Text Available Management of ecological tourism in protected areas faces many challenges, with visitation-related resource degradations and cultural impacts being two of them. To address those issues, several strategies including regulations, site managements, and visitor education programs have been commonly used in China and other countries. This paper presents a multiparameter stochastic differential equation model of an Ecological Tourism System to study how the populations of stakeholders vary in a finite time. The solution of Ordinary Differential Equation of Ecological Tourism System reveals that the system collapses when there is a lack of visitor educational intervention. Hence, the Stochastic Dynamic of Ecological Tourism System is introduced to suppress the explosion of the system. But the simulation results of the Stochastic Dynamic of Ecological Tourism System show that the system is still unstable and chaos in some small time interval. The Multiparameters Stochastic Dynamics of Ecological Tourism System is proposed to improve the performance in this paper. The Multiparameters Stochastic Dynamics of Ecological Tourism System not only suppresses the explosion of the system in a finite time, but also keeps the populations of stakeholders in an acceptable level. In conclusion, the Ecological Tourism System develops steadily and sustainably when land managers employ effective visitor education intervention programs to deal with recreation impacts.

  19. Applying System Dynamics Approach to the Fast Fashion Supply Chain: Case Study of an SME in Indonesia

    Directory of Open Access Journals (Sweden)

    Mariany W Lidia

    2012-09-01

    Full Text Available The fashion industry is the biggest contributor among the 14 creative industries in Indonesia. Nowadays many apparel companies are shifting toward the vertical integration. Since speed is everything to be successful in the apparel industry, fast fashion retailers must quickly respond to the market demand. This papers aims to develop a model of the supply chain of a small and medium scale enterprise (SME of an apparel company in Indonesia and to propose a decision support system using System Dynamics (SD and helps the management to identify the best business strategy. Simulated scenarios can help the management to identify the most appropriate policy to be applied in the future. Case study method was used in this research where data were collected from a typical fast fashion firm in Indonesia that produces its own wares ranging from raw materials to be ready-to-wear clothes, has three stores, a warehouse and is running online sales system. We analyses the result of many simulations in a fashion company from an operational point of view and from them we derive suggestions about the future business strategy in a small and medium fashion company in Indonesia. Keywords: system dynamics, fast fashion, supply chain management, SME, Indonesia

  20. Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015

    Science.gov (United States)

    Ozturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A.

    2018-04-01

    The global magnetosphere-ionosphere-thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large-scale dynamic processes in the magnetosphere-ionosphere-thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of -222 nT. The Wind spacecraft recorded a 10-nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high-resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere-thermosphere model to investigate the ionosphere-thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field-aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field-aligned currents experienced the most significant heating with 1000-K ion temperature increase and 20-K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.

  1. Parametric dynamic analysis of a superconducting bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Cansiz, A; Hasar, U C; Cam, B Ates [Electrical and Electronics Engineering Department, Ataturk University, Erzurum (Turkey); Gundogdu, Oe, E-mail: acansiz@atauni.edu.t [Mechanical Engineering Department, Ataturk University, Erzurum (Turkey)

    2009-03-01

    The dynamics of a disk-shaped permanent-magnet rotor levitated over a high-temperature superconductor is studied. The interaction between the rotor magnet and the superconductor is modelled by assuming the magnet to be a magnetic dipole and the superconductor as a diamagnetic material. In the magneto-mechanical analysis of the superconductor part, the frozen image concept is combined with the diamagnetic image and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potential. From the dynamical analysis, the equations of motion of the permanent magnet are stated as a function of lateral, vertical and tilt directions. The vibration behaviour of the permanent magnet is analyzed with a numerical calculation obtained by the non-dimensionalized differential equations for small initial impulses.

  2. Parametric dynamic analysis of a superconducting bearing system

    International Nuclear Information System (INIS)

    Cansiz, A; Hasar, U C; Cam, B Ates; Gundogdu, Oe

    2009-01-01

    The dynamics of a disk-shaped permanent-magnet rotor levitated over a high-temperature superconductor is studied. The interaction between the rotor magnet and the superconductor is modelled by assuming the magnet to be a magnetic dipole and the superconductor as a diamagnetic material. In the magneto-mechanical analysis of the superconductor part, the frozen image concept is combined with the diamagnetic image and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potential. From the dynamical analysis, the equations of motion of the permanent magnet are stated as a function of lateral, vertical and tilt directions. The vibration behaviour of the permanent magnet is analyzed with a numerical calculation obtained by the non-dimensionalized differential equations for small initial impulses.

  3. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  4. Dynamic Ocean Track System Plus -

    Data.gov (United States)

    Department of Transportation — Dynamic Ocean Track System Plus (DOTS Plus) is a planning tool implemented at the ZOA, ZAN, and ZNY ARTCCs. It is utilized by Traffic Management Unit (TMU) personnel...

  5. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  6. Constraint elimination in dynamical systems

    Science.gov (United States)

    Singh, R. P.; Likins, P. W.

    1989-01-01

    Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.

  7. Torsional vibration of crankshaft in an engine propeller nonlinear dynamical system

    Science.gov (United States)

    Zhang, X.; Yu, S. D.

    2009-01-01

    Theoretical and experimental studies on torsional vibration of an aircraft engine-propeller system are presented in this paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element method. The nonlinear autonomous equations of motion for the engine-propeller dynamical system are established using the augmented Lagrange equations, and solved using the Runge-Kutta method after a degrees of freedom reduction scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.

  8. Aggregated Wind Park Models for Analysing Power System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Poeller, Markus; Achilles, Sebastian [DIgSILENT GmbH, Gomaringen (Germany)

    2003-11-01

    The increasing amount of wind power generation in European power systems requires stability analysis considering interaction between wind-farms and transmission systems. Dynamics introduced by dispersed wind generators at the distribution level can usually be neglected. However, large on- and offshore wind farms have a considerable influence to power system dynamics and must definitely be considered for analyzing power system dynamics. Compared to conventional power stations, wind power plants consist of a large number of generators of small size. Therefore, representing every wind generator individually increases the calculation time of dynamic simulations considerably. Therefore, model aggregation techniques should be applied for reducing calculation times. This paper presents aggregated models for wind parks consisting of fixed or variable speed wind generators.

  9. Forest fire management to avoid unintended consequences: a case study of Portugal using system dynamics.

    Science.gov (United States)

    Collins, Ross D; de Neufville, Richard; Claro, João; Oliveira, Tiago; Pacheco, Abílio P

    2013-11-30

    Forest fires are a serious management challenge in many regions, complicating the appropriate allocation to suppression and prevention efforts. Using a System Dynamics (SD) model, this paper explores how interactions between physical and political systems in forest fire management impact the effectiveness of different allocations. A core issue is that apparently sound management can have unintended consequences. An instinctive management response to periods of worsening fire severity is to increase fire suppression capacity, an approach with immediate appeal as it directly treats the symptom of devastating fires and appeases the public. However, the SD analysis indicates that a policy emphasizing suppression can degrade the long-run effectiveness of forest fire management. By crowding out efforts to preventative fuel removal, it exacerbates fuel loads and leads to greater fires, which further balloon suppression budgets. The business management literature refers to this problem as the firefighting trap, wherein focus on fixing problems diverts attention from preventing them, and thus leads to inferior outcomes. The paper illustrates these phenomena through a case study of Portugal, showing that a balanced approach to suppression and prevention efforts can mitigate the self-reinforcing consequences of this trap, and better manage long-term fire damages. These insights can help policymakers and fire managers better appreciate the interconnected systems in which their authorities reside and the dynamics that may undermine seemingly rational management decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Holographic control of information and dynamical topology change for composite open quantum systems

    Science.gov (United States)

    Aref'eva, I. Ya.; Volovich, I. V.; Inozemcev, O. V.

    2017-12-01

    We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.

  11. Autonomous learning by simple dynamical systems with delayed feedback.

    Science.gov (United States)

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  12. Floquet-Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    Science.gov (United States)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-04-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.

  13. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  14. NATO Advanced Study Institute on International Summer School on Chaotic Dynamics and Transport in Classical and Quantum Systems

    CERN Document Server

    Collet, P; Métens, S; Neishtadt, A; Zaslavsky, G; Chaotic Dynamics and Transport in Classical and Quantum Systems

    2005-01-01

    This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in Cargèse (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely expla...

  15. A review of dynamic characteristics of magnetically levitated vehicle systems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Y.; Chen, S.S.

    1995-11-01

    The dynamic response of magnetically levitated (maglev) ground transportation systems has important consequences for safety and ride quality, guideway design, and system costs. Ride quality is determined by vehicle response and by environmental factors such as humidity and noise. The dynamic response of the vehicles is the key element in determining ride quality, while vehicle stability is an important safety-related element. To design a guideway that provides acceptable ride quality in the stable region, vehicle dynamics must be understood. Furthermore, the trade-off between guideway smoothness and levitation and control systems must be considered if maglev systems are to be economically feasible. The link between the guideway and the other maglev components is vehicle dynamics. For a commercial maglev system, vehicle dynamics must be analyzed and tested in detail. This report, which reviews various aspects of the dynamic characteristics, experiments and analysis, and design guidelines for maglev systems, discusses vehicle stability, motion dependent magnetic force components, guideway characteristics, vehicle/ guideway interaction, ride quality, suspension control laws, aerodynamic loads and other excitations, and research needs.

  16. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  17. Dynamical systems and linear algebra

    OpenAIRE

    Colonius, Fritz (Prof.)

    2007-01-01

    Dynamical systems and linear algebra / F. Colonius, W. Kliemann. - In: Handbook of linear algebra / ed. by Leslie Hogben. - Boca Raton : Chapman & Hall/CRC, 2007. - S. 56,1-56,22. - (Discrete mathematics and its applications)

  18. Understanding the decline and resilience loss of a long-lived social-ecological system: insights from system dynamics

    Directory of Open Access Journals (Sweden)

    Alicia Tenza

    2017-06-01

    Full Text Available Collapse of social-ecological systems (SESs is a common process in human history. Depletion of natural resources, scarcity of human capital, or both, is/are common pathways toward collapse. We use the system dynamics approach to better understand specific problems of small-scale, long-lived SESs. We present a qualitative (or conceptual model using the conceptualization process of the system dynamics approach to study the dynamics of an oasis in Mexico that has witnessed a dramatic transition to decline in recent decades. We used indepth interviews, participant observation, expert opinions, and official statistical data sets to define the boundaries, and structure in a causal loop diagram of our studied system. We described historical trends and showed the reference mode for the main system variables (observed data, and analyzed the expected system behavior according to the system structure. We identified the main drivers that changed the system structure, as well as structural changes, and the effects of these changes on the dynamics, resilience, and vulnerability of this SES. We found that the tendency of this SES toward collapse was triggered by exogenous factors (growth of modern agriculture in nearby valleys, and socio-political relocation, and was maintained by an endogenous structure. These structural changes weakened the resilience of this SES. One of these changes resulted in a long-term maladaptation of the SES, which increased its vulnerability to frequent system disturbances (hurricanes and droughts. The conceptual model developed provides an in-depth qualitative description of the system, with an important amount of qualitative and quantitative information, to establish the structural hypothesis of the observed behavior. Using this qualitative model, the next research steps are to develop a quantitative model to test the qualitative theories, and to explore future scenarios of system resilience for decision-making processes to

  19. Dynamic classification system in large-scale supervision of energy efficiency in buildings

    International Nuclear Information System (INIS)

    Kiluk, S.

    2014-01-01

    Highlights: • Rough set approximation of classification improves energy efficiency prediction. • Dynamic features of diagnostic classification allow for its precise prediction. • Indiscernibility in large population enhances identification of process features. • Diagnostic information can be refined by dynamic references to local neighbourhood. • We introduce data exploration validation based on system dynamics and uncertainty. - Abstract: Data mining and knowledge discovery applied to the billing data provide the diagnostic instruments for the evaluation of energy use in buildings connected to a district heating network. To ensure the validity of an algorithm-based classification system, the dynamic properties of a sequence of partitions for consecutive detected events were investigated. The information regarding the dynamic properties of the classification system refers to the similarities between the supervised objects and migrations that originate from the changes in the building energy use and loss similarity to their neighbourhood and thus represents the refinement of knowledge. In this study, we demonstrate that algorithm-based diagnostic knowledge has dynamic properties that can be exploited with a rough set predictor to evaluate whether the implementation of classification for supervision of energy use aligns with the dynamics of changes of district heating-supplied building properties. Moreover, we demonstrate the refinement of the current knowledge with the previous findings and we present the creation of predictive diagnostic systems based on knowledge dynamics with a satisfactory level of classification errors, even for non-stationary data

  20. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    Science.gov (United States)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  1. An optimal dynamic interval preventive maintenance scheduling for series systems

    International Nuclear Information System (INIS)

    Gao, Yicong; Feng, Yixiong; Zhang, Zixian; Tan, Jianrong

    2015-01-01

    This paper studies preventive maintenance (PM) with dynamic interval for a multi-component system. Instead of equal interval, the time of PM period in the proposed dynamic interval model is not a fixed constant, which varies from interval-down to interval-up. It is helpful to reduce the outage loss on frequent repair parts and avoid lack of maintenance of the equipment by controlling the equipment maintenance frequency, when compared to a periodic PM scheme. According to the definition of dynamic interval, the reliability of system is analyzed from the failure mechanisms of its components and the different effects of non-periodic PM actions on the reliability of the components. Following the proposed model of reliability, a novel framework for solving the non-periodical PM schedule with dynamic interval based on the multi-objective genetic algorithm is proposed. The framework denotes the strategies include updating strategy, deleting strategy, inserting strategy and moving strategy, which is set to correct the invalid population individuals of the algorithm. The values of the dynamic interval and the selections of PM action for the components on every PM stage are determined by achieving a certain level of system availability with the minimum total PM-related cost. Finally, a typical rotary table system of NC machine tool is used as an example to describe the proposed method. - Highlights: • A non-periodic preventive maintenance scheduling model is proposed. • A framework for solving the non-periodical PM schedule problem is developed. • The interval of non-periodic PM is flexible and schedule can be better adjusted. • Dynamic interval leads to more efficient solutions than fixed interval does

  2. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  3. Bifurcation methods of dynamical systems for handling nonlinear ...

    Indian Academy of Sciences (India)

    physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.

  4. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  5. Fuel cell systems and traditional technologies. Part II: Experimental study on dynamic behavior of PEMFC in stationary power generation

    International Nuclear Information System (INIS)

    Venturelli, Lucia; Santangelo, Paolo E.; Tartarini, Paolo

    2009-01-01

    The present work is focused on electric generation for stationary applications. The dynamic behavior of a PEMFC-based system has been investigated at both constant and variable load conditions from an experimental point of view. An analysis of efficiency as a function of time has been proposed to summarize the dynamic performance; moreover, current intensity and voltage have been considered as main parameters of interest from the electric point of view. In addition, other energetic and thermodynamic parameters have been studied in this work. The experimental campaign has been carried out over four test typologies: constant load; increasing and decreasing load; random load. These tests have been planned to challenge the system with a variety of load-based cycles, in the frame of a thorough simulation of real-load conditions.

  6. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Adaptive, dynamic, and resilient systems

    CERN Document Server

    Suri, Niranjan

    2015-01-01

    As the complexity of today's networked computer systems grows, they become increasingly difficult to understand, predict, and control. Addressing these challenges requires new approaches to building these systems. Adaptive, Dynamic, and Resilient Systems supplies readers with various perspectives of the critical infrastructure that systems of networked computers rely on. It introduces the key issues, describes their interrelationships, and presents new research in support of these areas.The book presents the insights of a different group of international experts in each chapter. Reporting on r

  8. Topological theory of dynamical systems recent advances

    CERN Document Server

    Aoki, N

    1994-01-01

    This monograph aims to provide an advanced account of some aspects of dynamical systems in the framework of general topology, and is intended for use by interested graduate students and working mathematicians. Although some of the topics discussed are relatively new, others are not: this book is not a collection of research papers, but a textbook to present recent developments of the theory that could be the foundations for future developments. This book contains a new theory developed by the authors to deal with problems occurring in diffentiable dynamics that are within the scope of general topology. To follow it, the book provides an adequate foundation for topological theory of dynamical systems, and contains tools which are sufficiently powerful throughout the book. Graduate students (and some undergraduates) with sufficient knowledge of basic general topology, basic topological dynamics, and basic algebraic topology will find little difficulty in reading this book.

  9. Neural Computations in a Dynamical System with Multiple Time Scales

    Directory of Open Access Journals (Sweden)

    Yuanyuan Mi

    2016-09-01

    Full Text Available Neural systems display rich short-term dynamics at various levels, e.g., spike-frequencyadaptation (SFA at single neurons, and short-term facilitation (STF and depression (STDat neuronal synapses. These dynamical features typically covers a broad range of time scalesand exhibit large diversity in different brain regions. It remains unclear what the computationalbenefit for the brain to have such variability in short-term dynamics is. In this study, we proposethat the brain can exploit such dynamical features to implement multiple seemingly contradictorycomputations in a single neural circuit. To demonstrate this idea, we use continuous attractorneural network (CANN as a working model and include STF, SFA and STD with increasing timeconstants in their dynamics. Three computational tasks are considered, which are persistent activity,adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, andhence cannot be implemented by a single dynamical feature or any combination with similar timeconstants. However, with properly coordinated STF, SFA and STD, we show that the network isable to implement the three computational tasks concurrently. We hope this study will shed lighton the understanding of how the brain orchestrates its rich dynamics at various levels to realizediverse cognitive functions.

  10. Prediction of dynamic expected time to system failure

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)

    1998-12-31

    The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)

  11. Prediction of dynamic expected time to system failure

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Lee, Chong Chul [Korea Nuclear Fuel Co., Ltd., Taejon (Korea, Republic of)

    1997-12-31

    The mean time to failure (MTTF) expressing the mean value of the system life is a measure of system effectiveness. To estimate the remaining life of component and/or system, the dynamic mean time to failure concept is suggested. It is the time-dependent property depending on the status of components. The Kalman filter is used to estimate the reliability of components using the on-line information (directly measured sensor output or device-specific diagnostics in the intelligent sensor) in form of the numerical value (state factor). This factor considers the persistency of the fault condition and confidence level in measurement. If there is a complex system with many components, each calculated reliability`s of components are combined, which results in the dynamic MTTF of system. The illustrative examples are discussed. The results show that the dynamic MTTF can well express the component and system failure behaviour whether any kinds of failure are occurred or not. 9 refs., 6 figs. (Author)

  12. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    KAUST Repository

    Huang, B.J.; Hsu, P.C.; Wu, M.S.; Ho, P.Y.

    2010-01-01

    . This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first

  13. An Integrated Dynamic Weighing System Based on SCADA

    Directory of Open Access Journals (Sweden)

    Piotr Bazydło

    2015-01-01

    Full Text Available A prototyped dynamic weighing system has been presented which integrates together three advanced software environments: MATLAB, LabVIEW and iFIX SCADA. They were used for advanced signal processing, data acquisition, as well as visualization and process control. Dynamic weighing is a constantly developing field of metrology. Because of the highly complicated structure of any electronic weighing module, it is vulnerable to many sources of environmental disturbances. For this reason, there is a lot of research concerned with weighing signal processing, mechanical matters and functionality of the system. In the paper, some issues connected with dynamic weighing have been presented, and the necessity of implementing signal processing methods has been discussed. Implementation of this feature is impossible in the majority of SCADA systems. The integration of the three environments mentioned above is an attempt to create an industrial system with capabilities to deal with major dynamic weighing problems. It is innovative because it connects the industrial SCADA, laboratory/industrial product LabVIEW and MATLAB. In addition, the algorithms responsible for process control and data exchange are presented. The paper includes a description of the capabilities, performance tests, as well as benefits and drawbacks, of the system. The outcome of the research is a prototyped system and evaluation of its usefulness. (original abstract

  14. Application of Hybrid Dynamical Theory to the Cardiovascular System

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2014-10-14

    In hybrid dynamical systems, the state evolves in continuous time as well as in discrete modes activated by internal conditions or by external events. In the recent years, hybrid systems modeling has been used to represent the dynamics of biological systems. In such systems, discrete behaviors might originate from unexpected changes in normal performance, e.g., a transition from a healthy to an abnormal condition. Simplifications, model assumptions, and/or modeled (and ignored) nonlinearities can be represented by sudden changes in the state. Modeling cardiovascular system (CVS), one of the most fascinating but most complex human physiological systems, with a hybrid approach, is the focus of this chapter. The hybrid property appears naturally in the CVS thanks to the presence of valves which, depending on their state (closed or open), divide the cardiac cycle into four phases. This chapter shows how hybrid models can be used for modeling the CVS. In addition, it describes a preliminary study on the detection of some cardiac anomalies based on the hybrid model and using the standard observer-based approach.

  15. Deterministic constant-temperature dynamics for dissipative quantum systems

    International Nuclear Information System (INIS)

    Sergi, Alessandro

    2007-01-01

    A novel method is introduced in order to treat the dissipative dynamics of quantum systems interacting with a bath of classical degrees of freedom. The method is based upon an extension of the Nose-Hoover chain (constant temperature) dynamics to quantum-classical systems. Both adiabatic and nonadiabatic numerical calculations on the relaxation dynamics of the spin-boson model show that the quantum-classical Nose-Hoover chain dynamics represents the thermal noise of the bath in an accurate and simple way. Numerical comparisons, both with the constant-energy calculation and with the quantum-classical Brownian motion treatment of the bath, show that the quantum-classical Nose-Hoover chain dynamics can be used to introduce dissipation in the evolution of a quantum subsystem even with just one degree of freedom for the bath. The algorithm can be computationally advantageous in modelling, within computer simulation, the dynamics of a quantum subsystem interacting with complex molecular environments. (fast track communication)

  16. Complete Abstractions of Dynamical Systems by Timed Automata

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2013-01-01

    This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...... to approximate the dynamical system, in a subset of admissible subdivisioning functions....

  17. Nonlinear Dynamic Analysis and Optimization of Closed-Form Planetary Gear System

    Directory of Open Access Journals (Sweden)

    Qilin Huang

    2013-01-01

    Full Text Available A nonlinear purely rotational dynamic model of a multistage closed-form planetary gear set formed by two simple planetary stages is proposed in this study. The model includes time-varying mesh stiffness, excitation fluctuation and gear backlash nonlinearities. The nonlinear differential equations of motion are solved numerically using variable step-size Runge-Kutta. In order to obtain function expression of optimization objective, the nonlinear differential equations of motion are solved analytically using harmonic balance method (HBM. Based on the analytical solution of dynamic equations, the optimization mathematical model which aims at minimizing the vibration displacement of the low-speed carrier and the total mass of the gear transmission system is established. The optimization toolbox in MATLAB program is adopted to obtain the optimal solution. A case is studied to demonstrate the effectiveness of the dynamic model and the optimization method. The results show that the dynamic properties of the closed-form planetary gear transmission system have been improved and the total mass of the gear set has been decreased significantly.

  18. Cosmic infinity: A dynamical system approach

    OpenAIRE

    Bouhmadi-López, Mariam; Marto, João; Morais, João; Silva, César M.

    2016-01-01

    Dynamical system techniques are extremely useful to study cosmology. It turns out that in most of the cases, we deal with finite isolated fixed points corresponding to a given cosmological epoch. However, it is equally important to analyse the asymptotic behaviour of the universe. On this paper, we show how this can be carried out for 3-forms model. In fact, we show that there are fixed points at infinity mainly by introducing appropriate compactifications and defining a new time variable tha...

  19. Engineering system dynamics a unified graph-centered approach

    CERN Document Server

    Brown, Forbes T

    2006-01-01

    For today's students, learning to model the dynamics of complex systems is increasingly important across nearly all engineering disciplines. First published in 2001, Forbes T. Brown's Engineering System Dynamics: A Unified Graph-Centered Approach introduced students to a unique and highly successful approach to modeling system dynamics using bond graphs. Updated with nearly one-third new material, this second edition expands this approach to an even broader range of topics. What's New in the Second Edition? In addition to new material, this edition was restructured to build students' competence in traditional linear mathematical methods before they have gone too far into the modeling that still plays a pivotal role. New topics include magnetic circuits and motors including simulation with magnetic hysteresis; extensive new material on the modeling, analysis, and simulation of distributed-parameter systems; kinetic energy in thermodynamic systems; and Lagrangian and Hamiltonian methods. MATLAB(R) figures promi...

  20. An Integrative Dynamical Systems Perspective on Emotions

    NARCIS (Netherlands)

    Treur, J.

    2013-01-01

    Within cognitive, affective and social neuroscience more and more mechanisms are found that suggest how emotions relate in a bidirectional manner to many other mental processes and behaviour. Based on this, in this paper a neurologically inspired dynamical systems approach on the dynamics and

  1. The three-body problem and the equations of dynamics Poincaré’s foundational work on dynamical systems theory

    CERN Document Server

    Poincaré, Henri

    2017-01-01

    Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating. .

  2. Two dissimilar approaches to dynamical systems on hyper MV -algebras and their information entropy

    Science.gov (United States)

    Mehrpooya, Adel; Ebrahimi, Mohammad; Davvaz, Bijan

    2017-09-01

    Measuring the flow of information that is related to the evolution of a system which is modeled by applying a mathematical structure is of capital significance for science and usually for mathematics itself. Regarding this fact, a major issue in concern with hyperstructures is their dynamics and the complexity of the varied possible dynamics that exist over them. Notably, the dynamics and uncertainty of hyper MV -algebras which are hyperstructures and extensions of a central tool in infinite-valued Lukasiewicz propositional calculus that models many valued logics are of primary concern. Tackling this problem, in this paper we focus on the subject of dynamical systems on hyper MV -algebras and their entropy. In this respect, we adopt two varied approaches. One is the set-based approach in which hyper MV -algebra dynamical systems are developed by employing set functions and set partitions. By the other method that is based on points and point partitions, we establish the concept of hyper injective dynamical systems on hyper MV -algebras. Next, we study the notion of entropy for both kinds of systems. Furthermore, we consider essential ergodic characteristics of those systems and their entropy. In particular, we introduce the concept of isomorphic hyper injective and hyper MV -algebra dynamical systems, and we demonstrate that isomorphic systems have the same entropy. We present a couple of theorems in order to help calculate entropy. In particular, we prove a contemporary version of addition and Kolmogorov-Sinai Theorems. Furthermore, we provide a comparison between the indispensable properties of hyper injective and semi-independent dynamical systems. Specifically, we present and prove theorems that draw comparisons between the entropies of such systems. Lastly, we discuss some possible relationships between the theories of hyper MV -algebra and MV -algebra dynamical systems.

  3. The optimal filtering of a class of dynamic multiscale systems

    Institute of Scientific and Technical Information of China (English)

    PAN Quan; ZHANG Lei; CUI Peiling; ZHANG Hongcai

    2004-01-01

    This paper discusses the optimal filtering of a class of dynamic multiscale systems (DMS), which are observed independently by several sensors distributed at different resolution spaces. The system is subject to known dynamic system model. The resolution and sampling frequencies of the sensors are supposed to decrease by a factor of two. By using the Haar wavelet transform to link the state nodes at each of the scales within a time block, a discrete-time model of this class of multiscale systems is given, and the conditions for applying Kalman filtering are proven. Based on the linear time-invariant system, the controllability and observability of the system and the stability of the Kalman filtering is studied, and a theorem is given. It is proved that the Kalman filter is stable if only the system is controllable and observable at the finest scale. Finally, a constant-velocity process is used to obtain insight into the efficiencies offered by our model and algorithm.

  4. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    International Nuclear Information System (INIS)

    Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji

    2016-01-01

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.

  5. Floquet–Magnus theory and generic transient dynamics in periodically driven many-body quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Mori, Takashi [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Saito, Keiji [Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)

    2016-04-15

    This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.

  6. Design tools for complex dynamic security systems.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III (.; ); Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  7. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Wang, Feifei

    2015-01-01

    Graphical abstract: Nonlinear dynamic transfer coefficients are introduced to the hydro-turbine governing system. In the process of load reject ion transient, the nonlinear dynamical behaviors of the system are studied in detail. - Highlights: • A novel mathematical model of a hydro-turbine governing system is established. • The process of load rejection transient is considered. • Nonlinear dynamic transfer coefficients are introduced to the system. • The bifurcation diagram with the variable t has better engineering significance. • The nonlinear dynamical behaviors of the system are studied in detail. - Abstract: This article pays attention to the mathematical modeling of a hydro-turbine governing system in the process of load rejection transient. As a pioneer work, the nonlinear dynamic transfer coefficients are introduced in a penstock system. Considering a generator system, a turbine system and a governor system, we present a novel nonlinear dynamical model of a hydro-turbine governing system. Fortunately, for the unchanged of PID parameters, we acquire the stable regions of the governing system in the process of load rejection transient by numerical simulations. Moreover, the nonlinear dynamic behaviors of the governing system are illustrated by bifurcation diagrams, Poincare maps, time waveforms and phase orbits. More importantly, these methods and analytic results will present theoretical groundwork for allowing a hydropower station in the process of load rejection transient

  8. Application of dynamical system methods to galactic dynamics : from warps to double bars

    OpenAIRE

    Sánchez Martín, Patricia

    2015-01-01

    Most galaxies have a warped shape when they are seen from an edge-on point of view. In this work we apply dynamical system methods to find an explanation of this phenomenon that agrees with its abundance among galaxies, its persistence in time and the angular size of observed warps. Starting from a simple, but realistic, 3D galaxy model formed by a bar and a flat disc, we study the effect produced by a small misalignment between the angular momentum of the system and its angular velocity. ...

  9. A Comprehensive Method for Comparing Mental Models of Dynamic Systems

    OpenAIRE

    Schaffernicht, Martin; Grösser, Stefan N.

    2011-01-01

    Mental models are the basis on which managers make decisions even though external decision support systems may provide help. Research has demonstrated that more comprehensive and dynamic mental models seem to be at the foundation for improved policies and decisions. Eliciting and comparing such models can systematically explicate key variables and their main underlying structures. In addition, superior dynamic mental models can be identified. This paper reviews existing studies which measure ...

  10. Observer-Based Fault Estimation and Accomodation for Dynamic Systems

    CERN Document Server

    Zhang, Ke; Shi, Peng

    2013-01-01

    Due to the increasing security and reliability demand of actual industrial process control systems, the study on fault diagnosis and fault tolerant control of dynamic systems has received considerable attention. Fault accommodation (FA) is one of effective methods that can be used to enhance system stability and reliability, so it has been widely and in-depth investigated and become a hot topic in recent years. Fault detection is used to monitor whether a fault occurs, which is the first step in FA. On the basis of fault detection, fault estimation (FE) is utilized to determine online the magnitude of the fault, which is a very important step because the additional controller is designed using the fault estimate. Compared with fault detection, the design difficulties of FE would increase a lot, so research on FE and accommodation is very challenging. Although there have been advancements reported on FE and accommodation for dynamic systems, the common methods at the present stage have design difficulties, whi...

  11. High dynamic range coding imaging system

    Science.gov (United States)

    Wu, Renfan; Huang, Yifan; Hou, Guangqi

    2014-10-01

    We present a high dynamic range (HDR) imaging system design scheme based on coded aperture technique. This scheme can help us obtain HDR images which have extended depth of field. We adopt Sparse coding algorithm to design coded patterns. Then we utilize the sensor unit to acquire coded images under different exposure settings. With the guide of the multiple exposure parameters, a series of low dynamic range (LDR) coded images are reconstructed. We use some existing algorithms to fuse and display a HDR image by those LDR images. We build an optical simulation model and get some simulation images to verify the novel system.

  12. Dynamic Modeling and Simulation on a Hybrid Power System for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Hong-Wen He

    2010-11-01

    Full Text Available Hybrid power systems, formed by combining high-energy-density batteries and high-power-density ultracapacitors in appropriate ways, provide high-performance and high-efficiency power systems for electric vehicle applications. This paper first establishes dynamic models for the ultracapacitor, the battery and a passive hybrid power system, and then based on the dynamic models a comparative simulation between a battery only power system and the proposed hybrid power system was done under the UDDS (Urban Dynamometer Driving Schedule. The simulation results showed that the hybrid power system could greatly optimize and improve the efficiency of the batteries and their dynamic current was also decreased due to the participation of the ultracapacitors, which would have a good influence on batteries’ cycle life. Finally, the parameter matching for the passive hybrid power system was studied by simulation and comparisons.

  13. Water quality dynamics in the Boro-Thamalakane-Boteti river system ...

    African Journals Online (AJOL)

    The quality of water in aquatic systems is subject to temporal and spatial variations due to varying effects of natural and anthropogenic factors. This study assessed the dynamics of water quality in the Boro-Thamalakane-Boteti river system along an upstream–downstream gradient above and below Maun during February, ...

  14. Dynamic decoupling of secondary systems

    International Nuclear Information System (INIS)

    Gupta, A.K.; Tembulkar, J.M.

    1984-01-01

    The dynamic analysis of primary systems must often be performed decoupled from the secondary system. In doing so, one should assure that the decoupling does not significantly affect the frequencies and the response of the primary systems. The practice consists of heuristic algorithms intended to limit changes in the frequencies. The change in response is not considered. In this paper, changes in both the frequencies and the response are considered. Rational, but simple algorithms are derived to make accurate predictions. Material up to MDOF primary-SDOF secondary system is presented in this paper. MDOF-MDOF systems are treated in a companion paper. (orig.)

  15. On dynamical systems approaches and methods in f ( R ) cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Artur [Center for Mathematical Analysis, Geometry and Dynamical Systems, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carloni, Sante [Centro Multidisciplinar de Astrofisica – CENTRA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Uggla, Claes, E-mail: aalho@math.ist.utl.pt, E-mail: sante.carloni@tecnico.ulisboa.pt, E-mail: claes.uggla@kau.se [Department of Physics, Karlstad University, S-65188 Karlstad (Sweden)

    2016-08-01

    We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f ( R )-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f ( R ) = R + α R {sup 2}, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniques involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f ( R ) cosmology and discuss their advantages and disadvantages.

  16. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction

    Directory of Open Access Journals (Sweden)

    Geoff Boeing

    2016-11-01

    Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.

  17. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  18. Development of a system dynamics model based on Six Sigma methodology

    Directory of Open Access Journals (Sweden)

    José Jovani Cardiel Ortega

    2017-01-01

    Full Text Available A dynamic model to analyze the complexity associated with the manufacturing systems and to improve the performance of the process through the Six Sigma philosophy is proposed. The research focuses on the implementation of the system dynamics tool to comply with each of the phases of the DMAIC methodology. In the first phase, define, the problem is articulated, collecting data, selecting the variables, and representing them in a mental map that helps build the dynamic hypothesis. In the second phase, measure, model is formulated, equations are developed, and Forrester diagram is developed to carry out the simulation. In the third phase, analyze, the simulation results are studied. For the fourth phase, improving, the model is validated through a sensitivity analysis. Finally, in control phase, operation policies are proposed. This paper presents the development of a dynamic model of the system of knitted textile production knitted developed; the implementation was done in a textile company in southern Guanajuato. The results show an improvement in the process performance by increasing the level of sigma allowing the validation of the proposed approach.

  19. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic

  20. Unavailability Analysis of Dynamic Systems of which the Configuration Changes with Time

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2011-01-01

    A dynamic system has a state at any given time which can be represented by a point in an appropriate state space and it is much more difficult to estimate the reliability or availability than a static system. As the classic fault tree cannot be used to model the time requirements, dynamic fault tree methods have been developed for the analysis of dynamic systems. They are time-dependent fault trees, so they can capture the dynamic behaviors of the system failure mechanisms. There exist two types of dynamic fault trees to analyze various dynamic properties of the system failure mechanisms. One dynamic fault tree handles failure mechanisms composed of sequence-dependent events using dynamic gates and the other one handles failure mechanisms of which the system configuration changes with time using house event matrix. In this paper, the second dynamic failure mechanism is assessed using a reliability graph with general gates (RGGG) which is an extended reliability graph model and allows more intuitive modeling of target systems compared to the fault tree. In order for the RGGG method to analyze such dynamic failure mechanism, a novel concept of reliability matrix for the RGGG is introduced and Bayesian Networks are used to quantify the modeled RGGG. The proposed method provides much easier way to model dynamic systems and understand the actual structure of the system compared to the dynamic fault tree with house events