Dynamical phase coexistence: A simple solution to the "savanna problem"
Vazquez, F; Calabrese, J M; Munoz, M A; 10.1016/j.jtbi.2010.02.011
2010-01-01
We introduce the concept of 'dynamical phase coexistence' to provide a simple solution for a long-standing problem in theoretical ecology, the so-called "savanna problem". The challenge is to understand why in savanna ecosystems trees and grasses coexist in a robust way with large spatio-temporal variability. We propose a simple model, a variant of the Contact Process (CP), which includes two key extra features: varying external (environmental/rainfall) conditions and tree age. The system fluctuates locally between a woodland and a grassland phase, corresponding to the active and absorbing phases of the underlying pure contact process. This leads to a highly variable stable phase characterized by patches of the woodland and grassland phases coexisting dynamically. We show that the mean time to tree extinction under this model increases as a power-law of system size and can be of the order of 10,000,000 years in even moderately sized savannas. Finally, we demonstrate that while local interactions among trees m...
Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting
Fosado, Y. A. G.; Michieletto, D.; Marenduzzo, D.
2017-09-01
There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.
Gulminelli, F.
2004-11-01
In this work the general theory of first order phase transitions in finite systems is discussed, with a special emphasis to the conceptual problems linked to a thermodynamic description for small, short-lived systems de-exciting in the vacuum as nuclear samples coming from heavy ion collisions. After a short review of the general theory of phase transitions in the framework of information theory, we will present the different possible extensions to the field of finite systems. The concept of negative heat capacity, developed in the early seventies in the context of self-gravitating systems, will be reinterpreted in the general framework of convexity anomalies of thermostatistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. A careful study of the thermodynamic limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. In the second part of the paper we will apply the theoretical ideas developed in the first part to the possible observation of a liquid-to-gas-like phase transition in heavy ion collisions. The applicability of equilibrium concepts in a dynamical collisional process without boundary conditions will first be critically discussed. The observation of abnormally large partial energy fluctuations in carefully selected samples of collisions detected with the MULTICS-Miniball and INDRA array will then be reported as a strong evidence of a first order phase transition with negative heat capacity in the nuclear equation of state. Coexistence de phase dans les noyaux Ce papier présente une revue de la théorie générale des transitions de phase du premier ordre dans les petits systèmes, avec une attention particulière aux probl
DEFF Research Database (Denmark)
Bernardino de la Serna, Jorge; Orädd, Greger; Bagatolli, Luis
2009-01-01
The composition of pulmonary surfactant membranes and films has evolved to support a complex lateral structure, including segregation of ordered/disordered phases maintained up to physiological temperatures. In this study, we have analyzed the temperature-dependent dynamic properties of native...... surfactant membranes and membranes reconstituted from two surfactant hydrophobic fractions (i.e., all the lipids plus the hydrophobic proteins SP-B and SP-C, or only the total lipid fraction). These preparations show micrometer-sized fluid ordered/disordered phase coexistence, associated with a broad...... from the two types of surfactant hydrophobic extract. These latter results suggest that lipid dynamics are similar in the coexisting fluid phases observed by fluorescence microscopy. Additionally, it is found that surfactant proteins significantly reduce the average intramolecular lipid mobility...
Energy Technology Data Exchange (ETDEWEB)
Gulminelli, F
2003-05-01
In this work the general theory of first order phase transitions in finite systems is discussed, with a special emphasis to the conceptual problems linked to a thermodynamic description for small, short-lived systems de-exciting in the vacuum as nuclear samples coming from heavy ion collisions. After a short review of the general theory of phase transitions in the framework of information theory; we will present the different possible extensions to the field of finite systems. The concept of negative heat capacity, developed in the early seventies in the context of self-gravitating systems, will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. A careful study of the thermodynamic limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. In the second part of the paper we will apply the theoretical ideas developed in the first part to the possible observation of a liquid-to-gas-like phase transition in heavy ion collisions. The applicability of equilibrium concepts in a dynamical collisional process without boundary conditions will first be critically discussed. The observation of abnormally large partial energy fluctuations in carefully selected samples of collisions detected with the MULTICS-Miniball array will then be reported as a strong evidence of a first order phase transition with negative heat capacity in the nuclear equation of state. (author)
Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G
2016-09-14
Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.
On the two-dimensional dynamical Ising model in the phase coexistence region
Martinelli, F.
1994-09-01
We consider a Glauber dynamics reversible with respect to the two-dimensional Ising model in a finite square of side L, in the absence of an external field and at large inverse temperature β. We first consider the gap in the spectrum of the generator of the dynamics in two different cases: with plus and open boundary conditions. We prove that, when the symmetry under global spin flip is broken by the boundary conditions, the gap is much larger than the case in which the symmetry is present. For this latter we compute exactly the asymptotics of -(1/β L) log(gap) as L→∞ and show that it coincides with the surface tension along one of the coordinate axes. As a consequence we are able to study quite precisely the large deviations in time of the magnetization and to obtain an upper bound on the spin-spin time correlation in the infinite-volume plus phase. Our results establish a connection between the dynamical large deviations and those of the equilibrium Gibbs measure studied by Shlosman in the framework of the rigorous description of the Wulff shape for the Ising model. Finally we show that, in the case of open boundary conditions, it is possible to rescale the time with L in such a way that, as L→∞, the finite-dimensional distributions of the time-rescaled magnetization converge to those of a symmetric continuous-time Markov chain on the two-state space {- m *(β), m *(β)}, m *(β) being the spontaneous magnetization. Our methods rely upon a novel combination of techniques for bounding from below the gap of symmetric Markov chains on complicated graphs, developed by Jerrum and Sinclair in their Markov chain approach to hard computational problems, and the idea of introducing "block Glauber dynamics" instead of the standard single-site dynamics, in order to put in evidence more effectively the effect of the boundary conditions in the approach to equilibrium.
Mean field dynamics of the coexistence phase in generalized cyclic competitions
Mowlaei, Shahir; Roman, Ahmed; Pleimling, Michel
2014-03-01
Multispecies Lotka-Volterra models have been a rich source of inspiration in multidisciplinary areas of research due to their inherent nonlinearity which yields intriguing and complex behavior for a large class of competition schemes. Of particular interest here is a subclass of these models where competition is realized in a cyclic manner through a variety of reactions. The goal is to predict and quantify emerging two-dimensional patterns in the coexistence regime. The focus will further be on a set of models that can be analyzed without using the cumbersome machinery of slow-manifolds. This work is supported by the US National Science Foundation through grant DMR-1205309.
Thermophysical properties of coexistent phases of plutonium
Energy Technology Data Exchange (ETDEWEB)
Freibert, Franz J [Los Alamos National Laboratory; Mitchell, Jeremy N [Los Alamos National Laboratory; Saleh, Tarik A [Los Alamos National Laboratory; Schwartz, Dan S [Los Alamos National Laboratory
2009-01-01
Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutal in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature Martensitic phase transformation ({delta} {yields} {alpha}{prime}) in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.
Thermophysical properties of coexistent phases of plutonium
Energy Technology Data Exchange (ETDEWEB)
Freibert, F J; Mitchell, J N; Saleh, T A; Schwartz, D S, E-mail: freibert@lanl.gov, E-mail: jeremy@lanl.gov, E-mail: tsaleh@lanl.gov, E-mail: dschwartz@lanl.gov [Nuclear Materials Science Group, Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2010-03-15
Plutonium is the element with the greatest number of allotropic phases. Thermally induced transformations between these phases are typically characterized by thermal hysteresis and incomplete phase reversion. With Ga substitutional in the lattice, low symmetry phases are replaced by a higher symmetry phase. However, the low temperature martensitic phase transformation ({delta}{yields}{alpha}') in Ga stabilized {delta}-phase Pu is characterized by a region of thermal hysteresis which can reach 200 deg. C in extent. These regions of thermal hysteresis offer a unique opportunity to study thermodynamics in inhomogeneous systems of coexistent phases. The results of thermophysical properties measured for samples of inhomogeneous unalloyed and Ga alloyed Pu will be discussed and compared with similar measurements of their single phase constituents.
Acyl chain composition and coexisting fluid phases in lipid bilayers
Gu, Yongwen; Bradley, Miranda; Mitchell, Drake
2011-10-01
At room temperature phospholipid bilayers enriched in sphingolipids and cholesterol may form a solid phase as well as two coexisting fluid phases. These are the standard fluid phase, or the liquid-disordered phase, ld, and the liquid-ordered phase, lo, which is commonly associated with lipid rafts. Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form coexisting lo, ld and solid phases over a wide range of molar ratios. We are examining the ability of two fluorescent probes to detect these 2 phases: NBD linked to di-16:0 PE which partitions strongly into the lo phase and NBD linked to di-18:1 PE which partitions strongly into the ld phase. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the ternary phase diagram of POPC/SPM/Chol with particular focus on the functionally important lo/ld coexistence region. We report on the fluorescence lifetime and anisotropy decay dynamics of these two fluorescent probes.
Phase coexistence in a forecasting game
Curty, P; Curty, Philippe; Marsili, Matteo
2005-01-01
Individual choices are either based on personal experience or on information provided by peers. The latter case, causes individuals to conform to the majority in their neighborhood. Such herding behavior may be very efficient in aggregating disperse private information, thereby revealing the optimal choice. However if the majority relies on herding, this mechanism may dramatically fail to aggregate correctly the information, causing the majority adopting the wrong choice. We address these issues in a simple model of interacting agents who aim at giving a correct forecast of a public variable, either seeking private information or resorting to herding. As the fraction of herders increases, the model features a phase transition beyond which a state where most agents make the correct forecast coexists with one where most of them are wrong. Simple strategic considerations suggest that indeed such a system of agents self-organizes deep in the coexistence region. There, agents tend to agree much more among themselv...
Thermodynamics and phase coexistence in nonequilibrium steady states
Dickman, Ronald
2016-09-01
I review recent work focussing on whether thermodynamics can be extended to nonequilibrium steady states (NESS), in particular, the possibility of consistent definitions of temperature T and chemical potential μ for NESS. The testing-grounds are simple lattice models with stochastic dynamics. Each model includes a drive that maintains the system far from equilibrium, provoking particle and/or energy flows; for zero drive the system relaxes to equilibrium. Analysis and numerical simulation show that for spatially uniform NESS, consistent definitions of T and μ are possible via coexistence with an appropriate reservoir, if (and in general only if) a particular kind of rate (that proposed by Sasa and Tasaki) is used for exchanges of particles and energy between systems. The program fails, however, for nonuniform systems. The functions T and μ describing isolated phases cannot be used to predict the properties of coexisting phases in a single, phase-separated system.
Generic phase coexistence in the totally asymmetric kinetic Ising model
Godrèche, Claude; Luck, Jean-Marc
2017-07-01
The physical analysis of generic phase coexistence in the North-East-Center Toom model was originally given by Bennett and Grinstein. The gist of their argument relies on the dynamics of interfaces and droplets. We revisit the same question for a specific totally asymmetric kinetic Ising model on the square lattice. This nonequilibrium model possesses the remarkable property that its stationary-state measure in the absence of a magnetic field coincides with that of the usual ferromagnetic Ising model. We use both analytical arguments and numerical simulations in order to make progress in the quantitative understanding of the phenomenon of generic phase coexistence. At zero temperature a mapping onto the TASEP allows an exact determination of the time-dependent shape of the ballistic interface sweeping a large square minority droplet of up or down spins. At finite temperature, measuring the mean lifetime of such a droplet allows an accurate measurement of its shrinking velocity v, which depends on temperature T and magnetic field h. In the absence of a magnetic field, v vanishes with an exponent Δ_v≈2.5+/-0.2 as the critical temperature T c is approached. At fixed temperature in the ordered phase, v vanishes at the phase-boundary fields +/- h_b(T) which mark the limits of the coexistence region. The latter fields vanish with an exponent Δ_h≈3.2+/-0.3 as T c is approached.
Tunable two-phase coexistence in half-doped manganites
Indian Academy of Sciences (India)
P Chaddah; A Banerjee
2008-02-01
We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.
Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation
Pochon, S.; MacDonald, K. F.; Knize, R. J.; Zheludev, N. I.
2004-04-01
In gallium nanoparticles 100nm in diameter grown on the tip of an optical fiber from an atomic beam we observed equilibrium coexistence of γ, β, and liquid structural phases that can be controlled by e-beam excitation in a highly reversible and reproducible fashion. With 2keV electrons only 1pJ of excitation energy per nanoparticle is needed to exercise control, with the equilibrium phase achieved in less than a few tenths of a microsecond. The transformations between coexisting phases are accompanied by a continuous change in the nanoparticle film's reflectivity.
Fluctuations-induced coexistence in public goods dynamics
Behar, H.; Brenner, N.; Ariel, G.; Louzoun, Y.
2016-10-01
Cooperative interactions between individuals in a population and their stability properties are central to population dynamics and evolution. We introduce a generic class of nonlinear dynamical systems describing such interactions between producers and non-producers of a rapidly equilibrating common resource extracted from a finite environment. In the deterministic mean field approximation, fast-growing non-producers drive the entire population to extinction. However, the presence of arbitrarily small perturbations destabilizes this fixed point into a stochastic attractor where both phenotypes can survive. Phase space arguments and moment closure are used to characterize the attractor and show that its properties are not determined by the noise amplitude or boundary conditions, but rather it is stabilized by the stochastic nonlinear dynamics. Spatial Monte Carlo simulations with demographic fluctuations and diffusion illustrate a similar effect, supporting the validity of the two-dimensional stochastic differential equation as an approximation. The functional distribution of the noise emerges as the main factor determining the dynamical outcome. Noise resulting from diffusion between different regions, or additive noise, induce coexistence while multiplicative or local demographic noise do not alter the outcome of deterministic dynamics. The results are discussed in a general context of the effect of noise on phase space structure.
Stiffness of lipid monolayers with phase coexistence.
Caruso, Benjamín; Mangiarotti, Agustín; Wilke, Natalia
2013-08-27
The surface dilational modulus--or compressibility modulus--has been previously studied for monolayers composed of pure materials, where a jump in this modulus was related with the onset of percolation as a result of the establishment of a connected structure at the molecular level. In this work, we focused on monolayers composed of two components of low lateral miscibility. Our aim was to investigate the compressibility of mixed monolayers at pressures and compositions in the two-phase region of the phase diagram, in order to analyze the effect of the mechanical properties of each phase on the stiffness of the composite. In nine different systems with distinct molecular dipoles and charges, the stiffness of each phase and the texture at the plane of the monolayer were studied. In this way, we were able to analyze the general compressibility of two-phase lipid monolayers, regardless of the properties of their constituent parts. The results are discussed in the light of the following two hypotheses: first, the stiffness of the composite could be dominated by the stiffness of each phase as a weighted sum according to the percentage of each phase area, regardless of the distribution of the phases in the plane of the monolayer. Alternatively, the stiffness of the composite could be dominated by the mechanical properties of the continuous phase. Our results were better explained by this latter proposal, as in all the analyzed mixtures it was found that the mechanical properties of the percolating phase were the determining factors. The value of the compression modulus was closer to the value of the connected phase than to that of the dispersed phase, indicating that the bidimensional composites displayed mechanical properties that were related to the properties of each phases in a rather complex manner.
On the coexistence of the magnetic phases in chromium alloys
DEFF Research Database (Denmark)
Lebech, Bente; Mikke, K.
1969-01-01
Detailed neutron diffraction investigations have been performed on Cr-Re alloys in order to explain the several observations in Cr alloys of the coexistence of a commensurable and an oscillatory magnetic phase. It is concluded that the individual magnetic phases probably occur in separate domains....
Direct determination of liquid phase coexistence by Monte Carlo simulations
Zweistra, H.J.A.; Besseling, N.A.M.
2006-01-01
A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general idea of the method is to perform a simulation simultaneously in several unconnected boxes which can exchange particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase.
Geometric constraints on phase coexistence in vanadium dioxide single crystals
McGahan, Christina; Gamage, Sampath; Liang, Jiran; Cross, Brendan; Marvel, Robert E.; Haglund, Richard F.; Abate, Yohannes
2017-02-01
The appearance of stripe phases is a characteristic signature of strongly correlated quantum materials, and its origin in phase-changing materials has only recently been recognized as the result of the delicate balance between atomic and mesoscopic materials properties. A vanadium dioxide (VO2) single crystal is one such strongly correlated material with stripe phases. Infrared nano-imaging on low-aspect-ratio, single-crystal VO2 microbeams decorated with resonant plasmonic nanoantennas reveals a novel herringbone pattern of coexisting metallic and insulating domains intercepted and altered by ferroelastic domains, unlike previous reports on high-aspect-ratio VO2 crystals where the coexisting metal/insulator domains appear as alternating stripe phases perpendicular to the growth axis. The metallic domains nucleate below the crystal surface and grow towards the surface with increasing temperature as suggested by the near-field plasmonic response of the gold nanorod antennas.
Geometric constraints on phase coexistence in vanadium dioxide single crystals.
McGahan, Christina; Gamage, Sampath; Liang, Jiran; Cross, Brendan; Marvel, Robert E; Haglund, Richard F; Abate, Yohannes
2017-02-24
The appearance of stripe phases is a characteristic signature of strongly correlated quantum materials, and its origin in phase-changing materials has only recently been recognized as the result of the delicate balance between atomic and mesoscopic materials properties. A vanadium dioxide (VO2) single crystal is one such strongly correlated material with stripe phases. Infrared nano-imaging on low-aspect-ratio, single-crystal VO2 microbeams decorated with resonant plasmonic nanoantennas reveals a novel herringbone pattern of coexisting metallic and insulating domains intercepted and altered by ferroelastic domains, unlike previous reports on high-aspect-ratio VO2 crystals where the coexisting metal/insulator domains appear as alternating stripe phases perpendicular to the growth axis. The metallic domains nucleate below the crystal surface and grow towards the surface with increasing temperature as suggested by the near-field plasmonic response of the gold nanorod antennas.
Michalis, Vasileios K; Costandy, Joseph; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G
2015-01-28
The direct phase coexistence method is used for the determination of the three-phase coexistence line of sI methane hydrates. Molecular dynamics (MD) simulations are carried out in the isothermal-isobaric ensemble in order to determine the coexistence temperature (T3) at four different pressures, namely, 40, 100, 400, and 600 bar. Methane bubble formation that results in supersaturation of water with methane is generally avoided. The observed stochasticity of the hydrate growth and dissociation processes, which can be misleading in the determination of T3, is treated with long simulations in the range of 1000-4000 ns and a relatively large number of independent runs. Statistical averaging of 25 runs per pressure results in T3 predictions that are found to deviate systematically by approximately 3.5 K from the experimental values. This is in good agreement with the deviation of 3.15 K between the prediction of TIP4P/Ice water force field used and the experimental melting temperature of ice Ih. The current results offer the most consistent and accurate predictions from MD simulation for the determination of T3 of methane hydrates. Methane solubility values are also calculated at the predicted equilibrium conditions and are found in good agreement with continuum-scale models.
Directory of Open Access Journals (Sweden)
Xiaoyan Lu
2016-10-01
Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.
Coexistent physics of massive black holes in the phase transitions
Zhang, Ming
2016-01-01
The coexistent physics of de Rham-Gabada-dze-Tolley (dRGT) massive black holes and holographic massive black holes is investigated in the extended phase space where the cosmological constant is viewed as pressure. Van der Waals like phase transitions are found for both of them. Coexistent curves of reduced pressure and reduced temperature are found to be different from that of RN-AdS black holes. Coexistent curves of reduced Gibbs free energy and reduced pressure show that Gibbs free energy in the canonical ensemble decreases monotonically with the increasing pressure. The concept number density is introduced to study the coexistent physics. It is uncovered that with the increasing pressure, the number densities of small black holes (SBHs) and large black holes (LBHs) change monotonically in the contrary directions till finally reaching the same value at the critical points of the phase transitions. In other words, with the increasing pressure the number density differences between SBHs and LBHs decrease mono...
What Coexists with the Ferromagnetic Metallic Phase in Manganites?
Energy Technology Data Exchange (ETDEWEB)
Burkhardt, Mark H.; Hossain, M.A.; Sarkar, S.; Achkar, A.J.; Hawthorn, D.G.; Sutarto, R.; Chuang, 5 Y.-D.; Gonzalez, A.G.Cruz; Choi, Y.J.; Cheong, S.-W.; Durr, H.A.; Stohr, J.
2012-07-25
Colossal magnetoresistance, whereby the application of a magnetic field reduces the resistivity of a manganite by orders of magnitude, is generally believed to occur because of coexisting phases. Development of a complete theory to explain the phenomenon requires that the exact nature of these phases be known. We used resonant elastic soft x-ray scattering to examine the superlattice order that exists in La{sub 0.35}Pr{sub 0.275}Ca{sub 0.375}MnO{sub 3} above and below the Curie temperature. By measuring the resonance profile of the scattered x-rays at different values of q, we disentangle the contributions of orbital order and antiferromagnetism to the scattering signal above the Curie temperature. Below the Curie temperature, we see no signal from orbital order, and only antiferromagnetism coexists with the dominant ferromagnetic metallic phase.
Coexistence of order and chaos at critical points of first-order quantum phase transitions in nuclei
Macek, M
2011-01-01
We study the interplay between ordered and chaotic dynamics at the critical point of a generic first-order quantum phase transition in the interacting boson model of nuclei. Classical and quantum analyses reveal a distinct behavior of the coexisting phases. While the dynamics in the deformed phase is robustly regular, the spherical phase shows strongly chaotic behavior in the same energy intervals. The effect of collective rotations on the dynamics is investigated.
Effect of hyperons on phase coexistence in strange matter
Das, P; Chaudhuri, G
2016-01-01
The study of liquid gas phase transition in fragmentation of nuclei in heavy ion collisions has been extended to the strangeness sector using the statistical model for multifragmentation. Helmholtz's free energy, specific heat and few other thermodynamic observables have been analyzed in order to examine the occurence of phase transition in the strange matter. The bimodal behaviour of the largest cluster formed in fragmentation also strongly indicates coexistence of both the phases. The presence of hyperons strengthens the signals and also shifts the transition temperature to lower values.
Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans
Energy Technology Data Exchange (ETDEWEB)
Skardal, Per Sebastian, E-mail: skardals@gmail.com [Departament d' Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Restrepo, Juan G., E-mail: juanga@colorado.edu [Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309 (United States)
2014-12-15
The spatiotemporal dynamics of cardiac tissue is an active area of research for biologists, physicists, and mathematicians. Of particular interest is the study of period-doubling bifurcations and chaos due to their link with cardiac arrhythmogenesis. In this paper, we study the spatiotemporal dynamics of a recently developed model for calcium-driven alternans in a one dimensional cable of tissue. In particular, we observe in the cable coexistence of regions with chaotic and multi-periodic dynamics over wide ranges of parameters. We study these dynamics using global and local Lyapunov exponents and spatial trajectory correlations. Interestingly, near nodes—or phase reversals—low-periodic dynamics prevail, while away from the nodes, the dynamics tend to be higher-periodic and eventually chaotic. Finally, we show that similar coexisting multi-periodic and chaotic dynamics can also be observed in a detailed ionic model.
Phase coexistence in manganites: doping and structural dependence
Energy Technology Data Exchange (ETDEWEB)
Alejandro, G; Granada, M; Laura-Ccahuana, D; Tovar, M; Winkler, E; Causa, M T [Centro Atomico Bariloche, 8400 San Carlos de Bariloche, RIo Negro (Argentina); Otero-Leal, M, E-mail: galejand@cab.cnea.gov.a [Departamentos de Quimica-Fisica y Fisica Aplicada, Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain)
2010-06-30
We present a study on the phase coexistence (PC) of paramagnetic insulating (PM-I) and ferromagnetic metallic (FM-M) phases in the La{sub 1-y}(Ca{sub 1-x}Sr{sub x}){sub y}MnO{sub 3} system with 0.23 {<=} y {<=} 0.45. The study was performed by means of magnetization and electron spin resonance (ESR) measurements. At high temperatures the ESR spectrum consists of a single symmetric PM line. At T{sub C}, a FM asymmetric line is observed shifted to low fields. In a {Delta}T temperature range both lines are visible, defining a range of PC. For x = 0, we obtained {Delta}T as a function of the carrier concentration y, finding that the largest {Delta}T corresponds to y = 0.25. For this y value, the extreme compounds are orthorhombic and rhombohedral for x = 0 and 1, respectively. The rhombohedral to orthorhombic temperature transition (T{sub RO}) was determined as a function of x. We found that {Delta}T{ne}0 only if T{sub C} < T{sub RO}. The PM-I/FM-M phase coexistence was only observed in the orthorhombic phase while seems to be incompatible with the more symmetric rhombohedral phase.
Two phase coexistence for the hydrogen-helium mixture
Fantoni, Riccardo
2015-01-01
We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.
Direct determination of liquid phase coexistence by Monte Carlo simulations.
Zweistra, Henk J A; Besseling, N A M
2006-07-01
A formalism to determine coexistence points by means of Monte Carlo simulations is presented. The general idea of the method is to perform a simulation simultaneously in several unconnected boxes which can exchange particles. At equilibrium, most of the boxes will be occupied by a homogeneous phase. The compositions of these boxes yield coexisting points on the binodal. However, since the overall composition is fixed, at least one of the boxes will contain an interface. We show that this does not affect the results, provided that the interface has no net curvature. We coin the name "Helmholtz-ensemble method," because the method is related to the well-known Gibbs-ensemble method, but the volume of the boxes is constant. Since the box volumes are constant, we expect that this method will be particularly useful for lattice models. The accuracy of the Helmholtz-ensemble method is benchmarked against known coexistence curves of the three-dimensional Ising model with excellent results.
Magnetic phase coexistence in CMR manganites: ESR evidence
Energy Technology Data Exchange (ETDEWEB)
Ccahuana, D. Laura [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica and Centro Atomico Bariloche, Comision Nacional de Eenrgia Atomica. Av. Ezequiel Bustillo 9500, 8400 San Carlos de Bariloche, Rio Negro (Argentina)]. E-mail: ccahuana@cab.cnea.gov.ar; Winkler, E. [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica and Centro Atomico Bariloche, Comision Nacional de Eenrgia Atomica. Av. Ezequiel Bustillo 9500, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Prado, F. [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica and Centro Atomico Bariloche, Comision Nacional de Eenrgia Atomica. Av. Ezequiel Bustillo 9500, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Butera, A. [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica and Centro Atomico Bariloche, Comision Nacional de Eenrgia Atomica. Av. Ezequiel Bustillo 9500, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Ramos, C.A. [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica and Centro Atomico Bariloche, Comision Nacional de Eenrgia Atomica. Av. Ezequiel Bustillo 9500, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Causa, M.T. [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica and Centro Atomico Bariloche, Comision Nacional de Eenrgia Atomica. Av. Ezequiel Bustillo 9500, 8400 San Carlos de Bariloche, Rio Negro (Argentina); Tovar, M. [Instituto Balseiro, Universidad Nacional de Cuyo and Comision Nacional de Energia Atomica and Centro Atomico Bariloche, Comision Nacional de Eenrgia Atomica. Av. Ezequiel Bustillo 9500, 8400 San Carlos de Bariloche, Rio Negro (Argentina)
2004-12-31
The coexistence of magnetic phases in colossal magnetoresistant (CMR) manganites is characteristic of this family of compounds. We studied this phenomenon in a hole doped sample of La{sub 0.75}Ca{sub 0.25}MnO{sub 3} by means of magnetization measurements and electron spin resonance (ESR) technique. The magnetic transition at T{sub c}=220 K was determined as the maximum slope in the M(T) curve. Above 250 K the ESR spectrum consists of a single lorentzian line centered at g=1.99(1). The ESR resonance splits below 250 K and a second resonance, of FM character, is present with a T dependent resonance field (H{sub r}). When T decreases, H{sub r} diminishes for the FM line while the PM line remains essentially centered at a constant H{sub r}. At the same time, a continuous transference of intensity takes place, from the PM line to the FM one. We observed the coexistence of both, PM and FM lines, down to 220 K. In this extended range of coexistence (250-220 K) the magnetization shows also a peculiar behavior.
Two Coexisting Liquid Phases in Switchable Ionic Liquids
Energy Technology Data Exchange (ETDEWEB)
Yao, Juan; Lao, David; Sui, Xiao; Zhou, Yufan; Nune, Satish K.; Ma, Xiang; Troy, Tyler; Ahmed, Musahid; Zhu, Zihua; Heldebrant, David J.; Yu, Xiao-Ying
2017-08-30
In situ time-of-flight secondary ion mass spectrometry (ToF-SIMS) coupled with a vacuum compatible microfluidic reactor, System for Analysis at Liquid Vacuum Interface (SALVI), has enabled the first spatial mapping of the switchable ionic liquids (SWILs) derived from 1,8-diazabicycloundec-7-ene (DBU) and 1-hexanol. As predicted by molecular dynamic simulations, our molecular imaging results confirmed a dynamic heterogeneous molecular structure with ionic regions (high CO2 concentration) coexisting with non-ionic regions (no CO2) where stoichiometry would indicate otherwise. Chemical speciation was also found to be more complex than initially thought, with spectral principal component analysis identifying dimers that ultimately highlight a highly complex molecular structure unique to SWILs. The spatial chemical mapping enabled by ToF-SIMS and SALVI advances the understanding of how the heterogeneous molecular structure impacts the dynamic physical and thermodynamic properties or SWILs.
Phase Coexistence in Nanoscopically Thin Films Confined by Asymmetric Walls
Albano, Ezequiel V.; Binder, Kurt
2009-06-01
Thin Ising films with nearest-neighbor ferromagnetic exchange in a bulk magnetic field H are studied in a L× L× D geometry, where at the opposite walls, given by the L× L surfaces, local magnetic fields H 1, and H D act. While in previous work, the symmetric case H 1= H D (leading to "capillary condensation", when one applies the lattice gas terminology) as well as the antisymmetric case H 1=- H D (leading to "interface localization transitions") were studied, we focus here on the general `asymmetric' case. Monte Carlo simulations are carried out and analyses based on thermodynamic integration methods are used to establish the phase diagrams and study the properties of the coexisting phases. A discussion is given why for the range of thicknesses that is explored (16≤ D≤80 lattice spacings) this is the most suitable methodology. Restricting attention to cases where in the semi-infinite system a first-order wetting transition occurs, it is shown that the latter, due to confinement, is turned in a thin-film triple point. Above the triple point, narrow two-phase coexistence curves are found, which are the analog of prewetting transitions in the semi-infinite system. A comparison to related results for (symmetrical) polymer blends and (asymmetric) colloid-polymer mixtures is made.
MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Stevens, G.; Kusmartsev, F. V.; Emel'yanov, V. I.; Zheludev, N. I.
2004-08-01
We have observed reversible structural transformations, induced by optical excitation at 1.55 μm, between the β, γ and liquid phases of gallium in self-assembled gallium nanoparticles, with a narrow size distribution around 50 nm, on the tip of an optical fiber. Only a few tens of nanowatts of optical excitation per particle are required to control the transformations, which take the form of a dynamic phase coexistence and are accompanied by substantial changes in the optical properties of the nanoparticle film. The time needed to achieve phase equilibrium is in the microsecond range, and increases sharply near the transition temperatures.
Pattern formation and coexistence domains for a nonlocal population dynamics
da Cunha, J A R; Oliveira, F A
2011-01-01
In this communication we propose a most general equation to study pattern formation for one-species population and their limit domains in systems of length L. To accomplish this we include non-locality in the growth and competition terms where the integral kernels are now depend on characteristic length parameters alpha and beta. Therefore, we derived a parameter space (alpha,beta) where it is possible to analyze a coexistence curve alpha*=alpha*(\\beta) which delimits domains for the existence (or not) of pattern formation in population dynamics systems. We show that this curve has an analogy with coexistence curve in classical thermodynamics and critical phenomena physics. We have successfully compared this model with experimental data for diffusion of Escherichia coli populations.
Comparative dynamics and life histories of coexisting dragonfly populations
Energy Technology Data Exchange (ETDEWEB)
Benke, A.C.; Benke, S.S.
Several species of coexisting dragonfly larvae were studied for four consecutive years in a 1-ha old farm pond. Larval development, emergence patterns, and adult flight patterns showed that the most abundant species were univoltine and developed relatively synchronously (i.e., like a cohort). Three of the common species emerged in early spring, and the others emerged later in the summer. The common genera with the most similar microhabitat had a distinct temporal separation that may serve in reducing interspecific competition. However, coexisting congeneric species had almost identical life histories, supporting the hypothesis that ecological homologues can coexist because of ''errors of exploitation'' of the dominant species. The larval population dynamics of each dominant species (Ladona deplanata, Epitheca spp., and Celithemis fasciata) was characterized by a constant percentage numerical decline, coupled with with a dramatic biomass increase from time of hatching to final instar. Larval mortality during this period averaged 92 percent per annum, but population biomass increased at least tenfold during the same period for each species. Comparison of larval estimates with emergence data revealed that at least 80 percent of the final instars die just before leaving the water to emerge. Life history variations among species smoothed out composite density and biomass trends which averaged about 1,000 individuals/m/sup 2/ and 2 g dry wt/m/sup 2/, respectively. In general, population dynamics from year to year were quite consistent, indicating a relatively high degree of stability in terms of species composition and densities. (auth)
Institute of Scientific and Technical Information of China (English)
ZHANG Duan-Ming; ZHONG Zhi-Cheng; HAN Xiang-Yun; YAN Wen-Sheng; SUN Hong-Zhang; YANG Feng-Xia; ZHENG Ke-Yu; WEI Nian; LI Zhi-Hua
2005-01-01
In this paper, the relation between the dielectric properties and the lattice distortion in the phase coexistence region is discussed using a phase statistical distribution model, and in the rhombohedral phase region the two connection equations on the dielectric properties and the lattice distortion are established. Particularly, the relation between the dielectric properties and the lattice distortion is investigated in the phase coexistence region of PZT ceramics, and the fitting value of the volume fraction of the tetragonal phase VT to composition x in the equation is determined. Further,the fitting results are well consistent with the related experimental data. It involves more profound physical process than relation between the dielectric properties and composition x.
Inter-domain dipolar repulsion in lipid monolayers with phase coexistence
Fiori, Elena Rufeil; Banchio, Adolfo J
2015-01-01
A great variety of biologically relevant monolayers present phase coexistence characterized by domains formed by lipids in a long-range ordered phase state dispersed in a continuous, disordered phase. Because of the difference in surface densities the domains possess an excess dipolar density with respect to the surrounding liquid phase. In this work we propose an alternative method to measure the dipolar repulsion for neutral lipid monolayers. The procedure is based on the comparison of the radial distribution function, g(r), from experiments and Brownian dynamic (BD) simulations. The domains were modeled as disks with surface dipolar density, whose strength was varied to best describe the experimentally determined monolayer structure. For comparison, the point dipole approximation was also studied. As an example, we applied the method for mixed monolayers with different proportions of distearoylphosphatidylcholine (DSPC) and dimyristoylphosphatidylcholine (DMPC) and obtained the excess dipolar density, whic...
Małolepsza, Edyta; Kim, Jaegil; Keyes, Tom
2015-05-01
Metastable β ice holds small guest molecules in stable gas hydrates, so its solid-liquid equilibrium is of interest. However, aqueous crystal-liquid transitions are very difficult to simulate. A new molecular dynamics algorithm generates trajectories in a generalized NPT ensemble and equilibrates states of coexisting phases with a selectable enthalpy. With replicas spanning the range between β ice and liquid water, we find the statistical temperature from the enthalpy histograms and characterize the transition by the entropy, introducing a general computational procedure for first-order transitions.
Coexisting chaotic and multi-periodic dynamics in a model of cardiac alternans
Skardal, Per Sebastian
2014-01-01
The spatiotemporal dynamics of cardiac tissue is an active area of research for biologists, physicists, and mathematicians. Of particular interest is the study of period-doubling bifurcations and chaos due to their link with cardiac arrhythmogenesis. In this paper we study the spatiotemporal dynamics of a recently developed model for calcium-driven alternans in a one dimensional cable of tissue. In particular, we observe in the cable coexistence in of regions with chaotic and multi-periodic dynamics over wide ranges of parameters. We study these dynamics using global and local Lyapunov exponents and spatial trajectory correlations. Interestingly, near nodes -- or phase reversals -- low-periodic dynamics prevail, while away from the nodes the dynamics tend to be higher-periodic and eventually chaotic.
Quark Transport Properties in the Region of Coexistence of Both Hadronic and QGP Phases
Institute of Scientific and Technical Information of China (English)
CHEN Xiang-Jun; LI Hong; WANG Gang; ZHANG Wei-Ning; HUO Lei
2001-01-01
The physical picture of coexistence of both hadronic and QGP phases is given by Friedberg and T.D. Lee's nontopology soliton model. The transport properties of quark in color space and spin space in a system of two-phase coexistence are investigated from both quantum and classical theories.
Theoretical study on phase coexistence in ferroelectric solid solutions near the tricritical point
Energy Technology Data Exchange (ETDEWEB)
Lu, Xiaoyan, E-mail: luxy@hit.edu.cn, E-mail: dzk@psu.edu; Li, Hui [Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, School of Civil Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zheng, Limei [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Cao, Wenwu [Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001 (China); Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)
2015-04-07
Phase coexistence in ferroelectric solid solutions near the tricritical point has been theoretically analyzed by using the Landau-Devonshire theory. Results revealed that different phases having similar potential wells could coexist in a narrow composition range near the tricritical point in the classical Pb(Zr{sub 1−x}Ti{sub x})O{sub 3} system. The potential barrier between potential wells increases with the decrease of temperature. Coexisting phases or different domains of the same phase can produce adaptive strains to maintain atomic coherency at the interfaces or domain walls. Such compatibility strains have influence on the energy potential as well as the stability of relative phases, leading to the appearance of energetically unfavorable monoclinic phases. Those competing and coexisting phases also construct an easy phase transition path with small energy barrier in between, so that very small stimuli can produce large response in compositions near the morphotropic phase boundary, especially near the tricritical point.
Hypercrater Bifurcations, Attractor Coexistence, and Unfolding in a 5D Model of Economic Dynamics
Directory of Open Access Journals (Sweden)
Toichiro Asada
2011-01-01
Full Text Available Complex dynamical features are explored in a discrete interregional macrodynamic model proposed by Asada et al., using numerical methods. The model is five-dimensional with four parameters. The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and coexistence of attractors, generated by high-dimensional discrete systems. In three cases of two-dimensional parameter subspaces the stability of equilibrium region is determined and its boundaries, the flip and Neimark-Hopf bifurcation curves, are identified by means of necessary coefficient criteria. In the first case closed invariant curves (CICs are found to occur through 5D-crater-type bifurcations, and for certain ranges of parameter values a stable equilibrium coexists with an unstable CIC associated with the subcritical bifurcation, as well as with an outer stable CIC. A remarkable feature of the second case is the coexistence of two attracting CICs outside the stability region. In both these cases the related hysteresis effects are illustrated by numerical simulations. In the third case a remarkable feature is the apparent unfolding of an attracting CIC before it evolves to a chaotic attractor. Examples of CICs and chaotic attractors are given in subspaces of phase space.
Free energy landscapes and volumes of coexisting phases for a colloidal dispersion
Lang, Trinh Hoa; Wang, G. F.; Lai, S. K.
2010-01-01
Treating the repulsive part of a pairwise potential by the hard-sphere form and its attractive part by the effective depletion potential form, we calculate using this model potential the colloidal domains of phase separation. Differing from the usual recipe of applying the thermodynamic conditions of equal pressure and equal chemical potential where the branches of coexisting phases are the ultimate target, we employ the free energy density minimization approach [G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004)] to crosshatch the domains of equilibrium phases, which consist of the gas, liquid, and solid homogeneous phases as well as the coexistence of these phases. This numerical procedure is attractive since it yields naturally the colloidal volume of space occupied by each of the coexisting phases. In this work, we first examine the change in structures of the fluid and solid free energy density landscapes with the effective polymer concentration. We show by explicit illustration the link between the free energy density landscapes and the development of both the metastable and stable coexisting phases. Then, attention is paid to the spatial volumes predicted at the triple point. It is found here that the volumes of spaces of the three coexisting phases at the triple point vary one dimensionally, whereas for the two coexisting phases, they are uniquely determined.
Temperature-driven volume transition in hydrogels: Phase-coexistence and interface localization
Cirillo, E. N. M.; Nardinocchi, P.; Sciarra, G.
2016-05-01
We study volume transition phenomenon in hydrogels within the framework of Flory-Rehner thermodynamic modelling; we show that starting from different models for the Flory parameter different conclusions can be achieved, in terms of admissible coexisting equilibria of the system. In particular, with explicit reference to a one-dimensional problem we establish the ranges of both temperature and traction which allow for the coexistence of a swollen and a shrunk phase. Through consideration of an augmented Flory-Rehner free-energy, which also accounts for the gradient of volume changes, we determine the position of the interface between the coexisting phases, and capture the connection profile between them.
Effect of shear stress in ferroelectric solid solutions with coexisting phases
Lu, Xiaoyan; Zhang, Hangbo; Zheng, Limei; Cao, Wenwu
2017-08-01
One common feature of ferroelectric solid solutions with large piezoelectricity is the coexistence of two or more phases. Due to the strain mismatch among coexisting phases, adaptive structures near the interfaces or domain walls develop to maintain the atomic coherency. Shear stresses commonly exist, especially when the domain size is small. The effect of shear stresses on phase morphology in Pb(Zr1-xTix)O3 solid solutions with compositions within the morphotropic phase boundary region was studied within the framework of Landau phenomenological theory. Our results show that the coexisting rhombohedral (R) and tetragonal (T) phases can be modified to form stable or metastable R-like and/or T-like monoclinic phases under shear stresses. Large stresses may also induce first order or second order phase transitions.
COEXISTING PERIODIC ORBITS IN VIBRO-IMPACTING DYNAMICAL SYSTEMS
Institute of Scientific and Technical Information of China (English)
李群宏; 陆启韶
2003-01-01
A method is presented to seek for coexisting periodic orbits which may be stable or unstable in piecewise-linear vibro-impacting systems. The conditions for coexistence of single impact periodic orbits are derived, and in particular, it is investigated in details how to assure that no other impacts will happen in an evolution period of a single impact periodic motion. Furthermore, some criteria for nonexistence of single impact periodic orbits with specific periods are also established. Finally, the stability of coexisting periodic orbits is discussed, and the corresponding computation formula is given. Examples of numerical simulation are in good agreement with the theoretic analysis.
A possible four-phase coexistence in a single-component system
Akahane, Kenji; Russo, John; Tanaka, Hajime
2016-08-01
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.
Yan, Wenfei; Hall, Stephen B.
2006-01-01
To determine how coexistence of liquid-expanded (LE) and tilted-condensed (TC) phases in phospholipid monolayers affects collapse from the air/water interface, we studied binary films containing dioleoyl phosphatidylcholine–dipalmitoyl phosphatidylcholine (DPPC) mixtures between 10 and 100% DPPC. Previously published results established that this range of compositions represents the LE–TC coexistence region at the equilibrium spreading pressure of 47 mN/m. When held at 49.5 mN/m on a captive ...
Coexistence of a General Elliptic System in Population Dynamics
DEFF Research Database (Denmark)
Pedersen, Michael
2004-01-01
This paper is concerned with a strongly-coupled elliptic system representing a competitive interaction between two species. We give a sufficient condition for the existence of positive solutions. An example is also given to show that there is a coexistence of a steady state if the cross-diffusion...
Puibasset, Joël
2005-04-01
The effect of confinement on phase behavior of simple fluids is still an area of intensive research. In between experiment and theory, molecular simulation is a powerful tool to study the effect of confinement in realistic porous materials, containing some disorder. Previous simulation works aiming at establishing the phase diagram of a confined Lennard-Jones-type fluid, concentrated on simple pore geometries (slits or cylinders). The development of the Gibbs ensemble Monte Carlo technique by Panagiotopoulos [Mol. Phys. 61, 813 (1987)], greatly favored the study of such simple geometries for two reasons. First, the technique is very efficient to calculate the phase diagram, since each run (at a given temperature) converges directly to an equilibrium between a gaslike and a liquidlike phase. Second, due to volume exchange procedure between the two phases, at least one invariant direction of space is required for applicability of this method, which is the case for slits or cylinders. Generally, the introduction of some disorder in such simple pores breaks the initial invariance in one of the space directions and prevents to work in the Gibbs ensemble. The simulation techniques for such disordered systems are numerous (grand canonical Monte Carlo, molecular dynamics, histogram reweighting, N-P-T+test method, Gibbs-Duhem integration procedure, etc.). However, the Gibbs ensemble technique, which gives directly the coexistence between phases, was never generalized to such systems. In this work, we focus on two weakly disordered pores for which a modified Gibbs ensemble Monte Carlo technique can be applied. One of the pores is geometrically undulated, whereas the second is cylindrical but presents a chemical variation which gives rise to a modulation of the wall potential. In the first case almost no change in the phase diagram is observed, whereas in the second strong modifications are reported.
Generic two-phase coexistence in the quadratic contact process
Energy Technology Data Exchange (ETDEWEB)
Guo, Xiaofang [Iowa State Univ., Ames, IA (United States)
2009-01-01
This thesis focuses on the demonstration of the existence of and analysis of phenomena related to the discontinuous non-equilibrium phase transition between an active (or reactive) state and a poisoned (or extinguished) state occurring in a stochastic lattice-gas realization of Schloegl’s second model for autocatalysis.
Coexistence of phases in asymmetric nuclear matter under strong magnetic fields
Aguirre, R
2014-01-01
The equation of state of nuclear matter is strongly affected by the presence of a magnetic field. Here we study the equilibrium configuration of asymmetric nuclear matter for a wide range of densities, isospin composition, temperatures and magnetic fields. Special attention is paid to the low density and low temperature domain, where a thermodynamical instability exists. Neglecting fluctuations of the Coulomb force, a coexistence of phases is found under such conditions, even for extreme magnetic intensities. We describe the nuclear interaction by using the non--relativistic Skyrme potential model within a Hartree--Fock approach. We found that the coexistence of phases modifies the equilibrium configuration, masking most of the manifestations of the spin polarized matter. However, the compressibility and the magnetic susceptibility show clear signals of this fact. Thermal effects are significative for both quantities, mainly out of the coexistence region.
Phase coexistence and electric-field control of toroidal order in oxide superlattices
Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.
2017-10-01
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
Phase coexistence properties of liquid mercury: a simulation study
Institute of Scientific and Technical Information of China (English)
Jean-Louis Bretonnet; Jean-Marc Bomont
2006-01-01
The thermophysical properties of expanded liquid mercury have been investigated along the liquid-vapor coexis tence curve by using Monte Carlo and Molecular Dynamic simulations. For the purpose, an empirical state dependent interatomic potential for the region of dense metallic liquid is used, while the state dependence is not necessary near the critical point. In order to test the validity of this potential, we determine the surface layering and the sound velocity, two properties very sensitive to the choice of the potential. Our results are in quite good agreement with other theoretical results and to the experimental data available in the literature.
Deylami, Mohammad N; Jovanov, Emil
2014-01-01
The overlap of transmission ranges between wireless networks as a result of mobility is referred to as dynamic coexistence. The interference caused by coexistence may significantly affect the performance of wireless body area networks (WBANs) where reliability is particularly critical for health monitoring applications. In this paper, we analytically study the effects of dynamic coexistence on the operation of IEEE 802.15.4-based health monitoring WBANs. The current IEEE 802.15.4 standard lacks mechanisms for effectively managing the coexistence of mobile WBANs. Considering the specific characteristics and requirements of health monitoring WBANs, we propose the dynamic coexistence management (DCM) mechanism to make IEEE 802.15.4-based WBANs able to detect and mitigate the harmful effects of coexistence. We assess the effectiveness of this scheme using extensive OPNET simulations. Our results indicate that DCM improves the successful transmission rates of dynamically coexisting WBANs by 20%-25% for typical medical monitoring applications.
Energy Technology Data Exchange (ETDEWEB)
Adjanor, G
2007-11-15
Investigating the stability of borosilicate glasses used in the nuclear industry with respect to phase separation requires to estimate the Gibbs free energies of the various phases appearing in the material. In simulation, using current computational resources, a direct state-sampling of a glassy system with respect to its ensemble statistics is not ergodic and the estimated ensemble averages are not reliable. Our approach consists in generating, at a given cooling rate, a series of quenches, or paths connecting states of the liquid to states of the glass, and then in taking into account the probability to generate the paths leading to the different glassy states in ensembles averages. In this way, we introduce a path ensemble formalism and calculate a Landau free energy associated to a glassy meta-basin. This method was validated by accurately mapping the free energy landscape of a 38-atom glassy cluster. We then applied this approach to the calculation of the Gibbs free energies of binary amorphous Lennard-Jones alloys, and checked the correlation between the observed tendencies to order or to phase separate and the computed Gibbs free energies. We finally computed the driving force to phase separation in a simplified three-oxide nuclear glass modeled by a Born-Mayer-Huggins potential that includes a three-body term, and we compared the estimated quantities to the available experimental data. (author)
Kofke, David A.
1993-03-01
Thermodynamic integration along a path that coincides with the saturation line is proposed as an efficient means for evaluation of phase equilibria by molecular simulation. The technique allows coexistence to be determined by just one simulation, without ever attempting or performing particle insertions. Prior knowledge of one coexistence point is required to start the procedure. Integration then advances from this state according to the Clapeyron formula—a first-order ordinary differential equation that prescribes how the pressure must change with temperature to maintain coexistence. The method is unusual in the context of thermodynamic integration in that the path is not known at the outset of the process; results from each simulation determine the course that the integration subsequently takes. Predictor-corrector methods among standard numerical techniques are shown to be particularly well suited for this type of integration. A typical integration step along the saturation line proceeds as follows: An increment in the temperature is chosen, and the saturation pressure at the new temperature is ``predicted'' from previous data (the initial coexistence datum and/or previous simulations). Simultaneous but independent NPT simulations of the coexisting phases are initiated at the said conditions. Averages taken throughout the simulations are repeatedly used to ``correct'' the estimate of the pressure to convergence. Thus strictly the pressure is not fixed during the simulation. Vapor-liquid coexistence of the van der Waals model is first used to study the numerical integration method without the complications of molecular simulation. In a second application the phase envelope of the Lennard-Jones model fluid is computed, and many variations of the technique are examined. Overall, the results are remarkably consistent and in agreement with previous simulation studies. Difficulty is encountered upon approach of the critical point, but, by artificially coupling the
Line tension between coexisting phases in monolayers and bilayers of amphiphilic molecules
Sriram, Indira; Schwartz, Daniel K.
2012-06-01
Phase coexistence is frequently observed in molecular monolayers and bilayers. The free energy per unit length of phase boundaries in these quasi-two-dimensional (2D) systems is known as line tension, and is directly analogous to surface tension in three dimensions. The existence of line tension implies the possibility of 2D capillary phenomena, a fundamentally intriguing possibility. Moreover, line tension has important implications with respect to the formation and stability of nm-scale features in thin films, ranging from lithographically-prepared molecular features in devices (e.g. sensor nanoarrays or molecular electronics) to signaling domains in biological membranes (i.e. lipid rafts). It has been proposed that such nm-scale domains may have important ramifications for budding and/or fusion in bilayer membranes. Various methods have been developed to measure line tension, including observations of domain boundary fluctuations, relaxation dynamics, nucleation rates, and others. The competition between line tension and long-range forces (e.g. electrostatic repulsion or curvature elasticity) can lead to a preferred equilibrium domain size, domain shape instabilities, or even unusual domain morphologies (e.g. stripe phases) near critical points. Since liquid crystalline mesophases are ubiquitous in 2D, it is not unusual for the line tension to be anisotropic; this can lead to non-circular domains exhibiting kinks and/or chirality. Recent efforts have been aimed at controlling line tension by the addition of line-active compounds that are analogous to surfactants potentially leading to the observation of new 2D “capillary” phenomena.
Cryogenic optical nano-imaging of phase coexistence in correlated oxides
McLeod, A. S.; van Heumen, E.; Zhang, J.; Ramirez, J. G.; Huang, Z.; Wang, S.; Saerbeck, T.; Guenon, S.; Goldflam, M.; Anderegg, L.; Kelly, P.; Mueller, A.; Liu, M. K.; Wu, W. B.; Avert, R. D.; Schuller, I. K.; Basov, D. N.
Correlated transition metal oxides exhibit a bevy of textbook electronic phases characterized by richly interacting lattice, spin, and orbital degrees of freedom. A broad array of accessible thermodynamic phases, ranging from Mott insulator to superconductor, enables abrupt transitions in physical and electronic properties under modest external stimuli, accompanied by spontaneous phase coexistence at the nano-scale. We present a novel near-field optical scanning probe capable of resolving the electronic character of such ``switched'' phases in the coexistent regime, even insulators, at 10 nm resolution and down to liquid helium temperatures. We demonstrate variable-temperature optical, structural, and magnetic imaging functionalities through studies of the insulator-metal transition in two prototypic correlated oxides under epitaxial strain. Structural and electronic attributes of the Mott transition are distinguished in a V2O3 thin film, whereas metastable electronic and magnetic phase coexistence is revealed across a 200K range in the strained manganite La0.67Ca0.33MnO3
Coexistence in streams: do source-sink dynamics allow salamanders to persist with fish predators?
Sepulveda, Adam J; Lowe, Winsor H
2011-08-01
Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence.
Finite temperature collective modes in a two phase coexistence region of asymmetric nuclear matter
Aguirre, R M
2010-01-01
The relation between collective modes and the phase transition in low density nuclear matter is examined. The dispersion relations for collective modes in a linear approach are evaluated within a Landau-Fermi liquid scheme by assuming coexisting phases in thermodynamical equilibrium. Temperature and isospin composition are taken as relevant parameters. The in-medium nuclear interaction is taken from a recently proposed density functional model. We found significative modifications in the energy spectrum, within certain range of temperatures and isospin asymmetry, due to the separation of matter into independent phases. We conclude that detailed calculations should not neglect this effect.
de la Torre, Ángeles G.; Losilla, Enrique R.; Cabeza, Aurelio; Aranda, Miguel A. G.
2005-08-01
The mineralogical composition of four commercial and NIST RM-8488 Portland clinkers have been analysed by Rietveld methodology using high-resolution synchrotron X-ray powder diffraction data. Alite phase coexistence has been observed in four patterns. White Portland clinkers show a single alite or a very small amount of a second alite with smaller volume due to higher magnesium content. Grey Portland clinkers show a much pronounced alite phase coexistence which has been related to higher magnesium contents. Details about these analyses are given. Furthermore, the full mineralogical composition (including the non-diffracting content) has been determined from the overestimation of the added standard, α-Al2O3, in the Rietveld analyses. White clinkers contain ∼15 wt.% of non-diffracting content while this fraction is much smaller in grey clinkers, ∼7 wt.%.
Energy Technology Data Exchange (ETDEWEB)
Torre, Angeles G. de la [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, 29071 Malaga (Spain); Losilla, Enrique R. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, 29071 Malaga (Spain); Cabeza, Aurelio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, 29071 Malaga (Spain); Aranda, Miguel A.G. [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Universidad de Malaga, 29071 Malaga (Spain)]. E-mail: g_aranda@uma.es
2005-08-15
The mineralogical composition of four commercial and NIST RM-8488 Portland clinkers have been analysed by Rietveld methodology using high-resolution synchrotron X-ray powder diffraction data. Alite phase coexistence has been observed in four patterns. White Portland clinkers show a single alite or a very small amount of a second alite with smaller volume due to higher magnesium content. Grey Portland clinkers show a much pronounced alite phase coexistence which has been related to higher magnesium contents. Details about these analyses are given. Furthermore, the full mineralogical composition (including the non-diffracting content) has been determined from the overestimation of the added standard, {alpha}-Al{sub 2}O{sub 3}, in the Rietveld analyses. White clinkers contain {approx}15 wt.% of non-diffracting content while this fraction is much smaller in grey clinkers, {approx}7 wt.%.
Residential dynamics: the co-existence of formal and informal systems in Khartoum, Sudan
CSIR Research Space (South Africa)
Osman, A
2010-05-01
Full Text Available This paper looks at the residential dynamics in Khartoum, Sudan. Some patterns demonstrate that formal and informal systems co-exist and are mutually supportive. There are also particular spatial manifestations that have resulted from a unique socio...
Mangiarotti, Agustín; Caruso, Benjamín; Wilke, Natalia
2014-07-01
For the biophysical study of membranes, a variety of model systems have been used to measure the different parameters and to extract general principles concerning processes that may occur in cellular membranes. However, there are very few reports in which the results obtained with the different models have been compared. In this investigation, we quantitatively compared the phase coexistence in Langmuir monolayers, freestanding bilayers and supported films composed of a lipid mixture of DLPC and DPPC. Two-phase segregation was observed in most of the systems for a wide range of lipid proportions using fluorescence microscopy. The lipid composition of the coexisting phases was determined and the distribution coefficient of the fluorescent probe in each phase was quantified, in order to explore their thermodynamic properties. The comparison between systems was carried out at 30mN/m, since it is accepted that at this or higher lateral pressures, the mean molecular area in bilayers is equivalent to that observed in monolayers. Our study showed that while Langmuir monolayers and giant unilamellar vesicles had a similar phase behavior, supported films showed a different composition of the phases with the distribution coefficient of the fluorescent probe being close to unity. Our results suggest that, in supported membranes, the presence of the rigid substrate may have led to a stiffening of the liquid-expanded phase due to a loss in the degrees of freedom of the lipids as a consequence of the proximity of the solid material.
Stand dynamics and tree coexistence in an analytical structured model: the role of recruitment.
Angulo, Óscar; Bravo de la Parra, Rafael; López-Marcos, Juan C; Zavala, Miguel A
2013-09-21
Understanding the mechanisms of coexistence and niche partitioning in plant communities is a central question in ecology. Current theories of forest dynamics range between the so-called neutral theories which assume functional equivalence among coexisting species to forest simulators that explain species assemblages as the result of tradeoffs in species individual strategies at several ontogenetic stages. Progress in these questions has been hindered by the inherent difficulties of developing analytical size-structured models of stand dynamics. This precludes examination of the relative importance of each mechanism on tree coexistence. In previous simulation and analytical studies emphasis has been given to interspecific differences at the sapling stage, and less so to interspecific variation in seedling recruitment. In this study we develop a partial differential equation model of stand dynamics in which competition takes place at the recruitment stage. Species differ in their size-dependent growth rates and constant mortality rates. Recruitment is described as proportional to the basal area of conspecifics, to account for fecundity and seed supply per unit of basal area, and is corrected with a decreasing function of species specific basal area to account for competition. We first analyze conditions for population persistence in monospecific stands and second we investigate conditions of coexistence for two species. In the monospecific case we found a stationary stand structure based on an inequality between mortality rate and seed supply. In turn, intra-specific competition does not play any role on the asymptotic extinction or population persistence. In the two-species case we found that coexistence can be attained when the reciprocal negative effect on recruitment follows a given relation with respect to intraspecific competition. Specifically a tradeoff between recruitment potential (i.e. shade tolerance or predation avoidance) and fecundity or growth rate
Samanta, Sudeshna; Li, Quanjun; Cheng, Benyuan; Huang, Yanwei; Pei, Cuiying; Wang, Qinglin; Ma, Yanzhang; Wang, Lin
2017-01-01
A comprehensive understanding of the physical origins of the phase transition behaviors of transition metal oxides is still complex due to the interplay among competing interactions of comparable strengths tuning their nature. Widespread interest in such phase transitions has motivated explorations of nanocrystalline vanadium dioxide (VO2) in various forms and a long-running debate persists over the roles played by electron-electron correlation with lattice distortion. External stimuli like pressure and temperature have strong effects on the appearance, stability, and spacial distribution of the high-resistive (HR) and low-resistive (LR) phases accompanying their structural modification. Our comprehensive experiments establish the pressure-induced and thermally driven evolution of phase coexistence in VO2(A ) nanorods. Our experimental evidence supports coexisting HR and LR phases, where compression suppressed coexistence at ˜7 GPa, followed by a semiconductor-semiconductor transition at around ˜10 GPa with the absence of pressure-induced metallization. X-ray diffraction revealed lattice distortion with local microscopic strain inhomogeneity in the nanorods, without any discontinuity in the pressure-volume data. We further investigated the vibrational modes and relaxations of the samples related to their thermal expansions. We also found that the pressure-dependent hierarchy of microstructural densification contributed significantly to the resulting transport properties.
Kinetic-arrest-induced phase coexistence and metastability in (Mn,Fe ) 2(P ,Si )
Miao, X. F.; Mitsui, Y.; Dugulan, A. Iulian; Caron, L.; Thang, N. V.; Manuel, P.; Koyama, K.; Takahashi, K.; van Dijk, N. H.; Brück, E.
2016-09-01
Neutron diffraction, Mössbauer spectroscopy, magnetometry, and in-field x-ray diffraction are employed to investigate the magnetoelastic phase transition in hexagonal (Mn,Fe ) 2(P ,Si ) compounds. (Mn,Fe ) 2(P ,Si ) compounds undergo for certain compositions a second-order paramagnetic (PM) to a spin-density-wave (SDW) phase transition before further transforming into a ferromagnetic (FM) phase via a first-order phase transition. The SDW-FM transition can be kinetically arrested, causing the coexistence of FM and untransformed SDW phases at low temperatures. Our in-field x-ray diffraction and magnetic relaxation measurements clearly reveal the metastability of the untransformed SDW phase. This unusual magnetic configuration originates from the strong magnetoelastic coupling and the mixed magnetism in hexagonal (Mn,Fe ) 2(P ,Si ) compounds.
Indian Academy of Sciences (India)
S B Roy; M K Chattopadhyay; M A Manekar; K J S Sokhey; P Chaddah
2006-11-01
First order magneto-structural transition plays an important role in the functionality of various magnetic materials of current interest like manganese oxide systems showing colossal magnetoresistance, Gd5(Ge, Si)4 alloys showing giant magnetocaloric effects and magnetic shape memory alloys. The key features of this magneto-structural transition are phase-coexistence and metastability. This generality is highlighted with experimental results obtained in a particular class of materials. A generalized framework of disorder influenced first order phase transition is introduced to understand the interesting experimental results which have some bearing on the functionality of the concerned materials.
Jover, Julio; Galindo, Amparo; Jackson, George; Müller, Erich A.; Haslam, Andrew J.
2015-09-01
Using both theory and continuum simulation, we examine a system comprising a mixture of polymer chains formed from 100 hard-sphere (HS) segments and HS colloids with a diameter which is 20 times that of the polymer segments. According to Wertheim's first-order thermodynamic perturbation theory (TPT1) this athermal system is expected to phase separate into a colloid-rich and a polymer-rich phase. Using a previously developed continuous pseudo-HS potential [J. F. Jover, A. J. Haslam, A. Galindo, G. Jackson, and E. A. Muller, J. Chem. Phys. 137, 144505 (2012)], we simulate the system at a phase point indicated by the theory to be well within the two-phase binodal region. Molecular-dynamics simulations are performed from starting configurations corresponding to completely phase-separated and completely pre-mixed colloids and polymers. Clear evidence is seen of the stabilisation of two coexisting fluid phases in both cases. An analysis of the interfacial tension of the phase-separated regions is made; ultra-low tensions are observed in line with previous values determined with square-gradient theory and experiment for colloid-polymer systems. Further simulations are carried out to examine the nature of these coexisting phases, taking as input the densities and compositions calculated using TPT1 (and corresponding to the peaks in the probability distribution of the density profiles obtained in the simulations). The polymer chains are seen to be fully penetrable by other polymers. By contrast, from the point of view of the colloids, the polymers behave (on average) as almost-impenetrable spheres. It is demonstrated that, while the average interaction between the polymer molecules in the polymer-rich phase is (as expected) soft-repulsive in nature, the corresponding interaction in the colloid-rich phase is of an entirely different form, characterised by a region of effective intermolecular attraction.
Coexistence of Self-pumped Phase Conjugation and Mutual-pumped Phase Conjugation in Ce∶BaTiO3
Institute of Scientific and Technical Information of China (English)
SHE Weilong; Lee Wing-Kee
2000-01-01
Self-pumped phase conjugation(SPPC) and mutual-pumped phase conjugation (MPPC) have been found to coexist in Ce∶BaTiO3 by using two coherent beams of 514.5nm wavelength from an argon ion laser. Both phase conjugations are of the stimulated backscattering and four-wave mixing type. For 7/6 incident power ratio and 26 mW total incident power,he shortest phase conjugate mirror formation time is 10s . Phase conjugate reflectivity of one the beams can reach 70%,hich is ～20% higher than the SPPC reflectivity using only one beam. When the total incident power is increased to 40 mW and the incident power ratio remains constant,a maximum phase conjugatate reflectivity of as much as 88% is obtained.
Directory of Open Access Journals (Sweden)
Chi-Yu Weng
2017-08-01
Full Text Available The best-known mechanism that herbivory affects species coexistence of tree seedlings is negative density-dependency driven by specialist natural enemies. However, in a forest with intense herbivory by non-specialists, what causes a diversifying seedling bank if rare species do not benefit from negative density-dependency in dominant species? We hypothesize that generalist herbivores can cause unevenly distributed species-specific mortality, which mediates recruitment dynamics and therefore affects species coexistence. To answer this question, we conducted a fence-control experiment in a montane cloud forest, Taiwan, and found that herbivorous damages were mainly caused by ungulates, which are generalists. We explored ungulate herbivory effects on recruitment dynamics by censusing tree seedling dynamics for three years. We found that herbivorous damages by ungulates significantly cause seedling death, mostly at their early stage of establishment. The percentage of death caused by herbivory varied among species. In particular, nurse plants and seedling initial height help shade-tolerant species to persist under such intense herbivory. Whereas, deaths caused by other factors occurred more often in older seedlings, with a consistent low percentage among species. We then tested species coexistence maintenance by dynamic modelling under different scenarios of ungulate herbivory. Raising percentages of death by herbivory changes relative species abundances by suppressing light-demanding species and increasing shade-tolerant species. Density-dependent mortality immediately after bursts of recruitments can suppress dominance of abundant species. With ungulate herbivory, fluctuating recruitment further prevent rare species from apparent competition induced by abundant species. Such bio-processes can interact with ungulate herbivory so that long-term coexistence can be facilitated.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The relationship between composition and the electric mechanical properties for La2O3-doped lead niobium stibium zirconate titanate(La2O3-doped PNSZT) piezoelectric ceramics,in which there are tetragonal and rhombohedral coexistent phases, was studied. A series of piezoelectric ceramics with good properties was obtained, having dielectric constants(ε=1500～2500), plane electromechanical coupling factor(Kp=0.45～0.65), mechanical quality factor(Qm=500～1600). These materials are used for making ultrasonic sensor and filter, and marine acoustic launching and receiving device, and so on. It has been explored that the influence of composition on the lattice constant and phase composition of La2O3-doped PNSZT piezoelectric ceramics by XRD(X-ray diffraction). The character of dielectric constant changing of La2O3-doped PNSZT piezoelectric ceramics before polarization and after polarization was studied. The affecting mechanism about composition on the electric machine properties of phase coexistent La2O3-doped PNSZT piezoelectric ceramics was analyzed and discussed.
Analytical coexistence of s, p, s + p phases of a holographic superconductor
Momeni, Davood; Myrzakulov, Ratbay
2013-01-01
We study analytically the critical phase of a mixed system of the U(2) gauge fields with a global symmetry on the boundary using gauge/gravity as a variational calculus minimization problem. In the agreement with the numerical results, we show that there exists a minimum of the chemical potentials in which both scalar (s-wave) and vector (p-wave) condensates exist in a mixture as well as in the distinct phases s,p. This is a result on symmetry breaking to U(1) symmetry and also rotational symmetry. We obtain the condensates for both cases of the balanced and unbalanced holographic superconductors analytically. This is the first analytical study of the coexistence of two modes of the superconductivity with different order parameters. The realistic model consists of two different phases of the superfluidity in Helium.
Coexistence of Multiple Phases in Magnetized Quark Matter with Vector Repulsion
Denke, Robson Z
2015-01-01
We explore the phase structure of dense magnetized quark matter when a repulsive vector interaction, parametrized by $G_V$, is present. Our results show that for a given magnetic field intensity ($B$) one may find a value of $G_V$ for which quark matter may coexist at three different baryonic density values leading to the appearance of two triple points in the phase diagram which have not been observed before. Another novel result is that at high pressure and low temperature we observe a first order transition which presents a negative slope in the $P-T$ that is reminiscent of the solid-liquid transition line observed within the water phase diagram. These unusual patterns occur for $G_V$ and $B$ values which lie within the range presently considered in many investigations related to the study of magnetars.
Energy Technology Data Exchange (ETDEWEB)
Deviren, Şeyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr [Department of Science Education, Education Faculty, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Deviren, Bayram [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir (Turkey)
2016-03-15
The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters. - Highlights: • Dynamic magnetization properties of spin-1/2 Ising model on SSL are investigated. • Dynamic magnetization, hysteresis loop area, and correlation have been calculated. • The dynamic phase diagrams are constructed in (T/|J|, h/|J|) plane. • The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena.
Mkanya, Anele; Pellicane, Giuseppe; Pini, Davide; Caccamo, Carlo
2017-09-01
We report extensive calculations, based on the modified hypernetted chain (MHNC) theory, on the hierarchical reference theory (HRT), and on Monte Carlo simulations, of thermodynamical, structural and phase coexistence properties of symmetric binary hard-core Yukawa mixtures (HCYM) with attractive interactions at equal species concentration. The obtained results are throughout compared with those available in the literature for the same systems. It turns out that the MHNC predictions for thermodynamic and structural quantities are quite accurate in comparison with the MC data. The HRT is equally accurate for thermodynamics, and slightly less accurate for structure. Liquid-vapor (LV) and liquid-liquid (LL) consolute coexistence conditions as emerging from simulations, are also highly satisfactorily reproduced by both the MHNC and HRT for relatively long ranged potentials. When the potential range reduces, the MHNC faces problems in determining the LV binodal line; however, the LL consolute line and the critical end point (CEP) temperature and density turn out to be still satisfactorily predicted within this theory. The HRT also predicts with good accuracy the CEP position. The possibility of employing liquid state theories HCYM for the purpose of reliably determining phase equilibria in multicomponent colloidal fluids of current technological interest, is discussed.
On the determination of phase boundaries via thermodynamic integration across coexistence regions
Energy Technology Data Exchange (ETDEWEB)
Abramo, Maria Concetta, E-mail: mcabramo@unime.it; Caccamo, Carlo, E-mail: caccamo@unime.it; Costa, Dino, E-mail: dcosta@unime.it; Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it; Malescio, Gianpietro, E-mail: malescio@unime.it; Munaò, Gianmarco, E-mail: gmunao@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Contrada Papardo, I-98166 Messina (Italy); Prestipino, Santi, E-mail: sprestipino@unime.it [Dipartimento di Fisica e di Scienze della Terra, Università degli Studi di Messina, Contrada Papardo, I-98166 Messina (Italy); CNR-IPCF, Viale F. Stagno d’Alcontres 37, I-98158 Messina (Italy)
2015-06-07
Specialized Monte Carlo methods are nowadays routinely employed, in combination with thermodynamic integration (TI), to locate phase boundaries of classical many-particle systems. This is especially useful for the fluid-solid transition, where a critical point does not exist and both phases may notoriously go deeply metastable. Using the Lennard-Jones model for demonstration, we hereby investigate on the alternate possibility of tracing reasonably accurate transition lines directly by integrating the pressure equation of state computed in a canonical-ensemble simulation with local moves. The recourse to this method would become a necessity when the stable crystal structure is not known. We show that, rather counterintuitively, metastability problems can be alleviated by reducing (rather than increasing) the size of the system. In particular, the location of liquid-vapor coexistence can exactly be predicted by just TI. On the contrary, TI badly fails in the solid-liquid region, where a better assessment (to within 10% accuracy) of the coexistence pressure can be made by following the expansion, until melting, of the defective solid which has previously emerged from the decay of the metastable liquid.
Sambas, T. J. M.; Khaliq, B. F.; Waluyo, D. S. Y. S.; Putra, P. S.; Soewono, E.
2016-04-01
Seasonal migration among wild populations is commonly seen especially in the wild life region. The migration takes place during a certain season where logistical condition and the existing territory can no longer support the life of the whole population. In this case portion of the population migrate to the better place as part of their survival, and returning back to the home place when the logistical condition is improved. Here we model the dynamic of North-South annual migration of Impala population in Zimbabwe, where portion of population in the Southern part move to the North in the beginning of the dry season and portion of them return back to the South in the wet season. Here the North area has a better environmental carrying capacity than the South. Different processes take place during the year, partial migration to the south (during the month of December and January), partial migration to the north (during the month of June and July), and birth process (during the month of November and December). We construct a discrete dynamical model for simulating the annual migrating process. It is found that a stable co-existence always occurs when no hunting takes place in all season. When hunting is allowed, the co-existence could be severely affected. We obtain here a threshold condition for co-existence and show numerical simulations for different hunting scenarios.
Schmidt, Miranda L; Davis, James H
2016-04-01
Magnetically orienting bicelles are often made by combining the long chain phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the short chain phospholipid 1,2-dicaproyl-sn-glycero-3-phosphocholine (DCPC) in buffer. These bicelles orient with their bilayer normals perpendicular to the external magnetic field. We have examined the phase behaviour of DMPC/DCPC bicelles and the effects of cholesterol and the unsaturated phospholipid 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (DPoPC) as a function of temperature using static solid state (2)H nuclear magnetic resonance spectroscopy. As expected, cholesterol has an ordering effect on the long phospholipid chains and this is reflected in the phase behaviour of the bicelle mixtures. Liquid disordered-liquid ordered, fluid-fluid phase coexistence is observed in DMPC/cholesterol/DCPC bicelles with cholesterol mole fractions of 0.13 and higher. DPoPC/DMPC/cholesterol/DCPC bicelles also exhibit two fluid phase coexistence over a broad range of temperatures and compositions. Bicelles can provide a useful medium in which to study membrane bound peptides and proteins. The orientation parallel to the magnetic field is favourable for studying membrane peptides/proteins because information about the orientation of relevant molecular bonds or internuclear vectors can be obtained directly from the resulting (2)H spectra. Lanthanide ions can be used to flip the bicelles to have their bilayer normals parallel to the external magnetic field. Yb(3+) was used to flip the DPoPC/DMPC/cholesterol/DCPC bicelles while Eu(3+) was found to be ineffective at flipping bicelles containing cholesterol in the present work.
Bid, Aveek; Raychaudhuri, A. K.
2016-11-01
We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ˜30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of 1/f behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy {E}{{a}}˜ 35 meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.
Bid, Aveek; Raychaudhuri, A K
2016-11-11
We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of [Formula: see text] behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy [Formula: see text] meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.
Pakkanen, Kirsi I; Duelund, Lars; Vuento, Matti; Ipsen, John Hjort
2010-02-01
The effects of tri- and monoglycerides on phospholipid (POPC) membranes were studied using spectroscopical methods. Triolein was found to form two types of POPC-rich membranes, both with POPC or as a three-component system with monopalmitin. These two membrane types were determined as co-existing phases based on their spontaneous and stable separation and named heavy and light phase according to their sedimentation behaviour. Marked differences were seen in the physical properties of these phases, even though only minor compositional variation was detected. The light, less polar phase was found to be less ordered and more fluid and seemed to allow significantly lower amount of water penetration into the membrane-water interface than pure POPC membrane. The heavy phase, apart from their slightly altered water penetration, resembled more a pure POPC membrane. As triglycerides are present in lysosomal membranes, the present results can be seen as an implication for polarity-based water permeability barrier possibly contributing to the integrity of lysosomes.
Monte Carlo molecular simulation of phase-coexistence for oil production and processing
Li, Jun
2011-01-01
The Gibbs-NVT ensemble Monte Carlo method is used to simulate the liquid-vapor coexistence diagram and the simulation results of methane agree well with the experimental data in a wide range of temperatures. For systems with two components, the Gibbs-NPT ensemble Monte Carlo method is employed in the simulation while the mole fraction of each component in each phase is modeled as a Leonard-Jones fluid. As the results of Monte Carlo simulations usually contain huge statistical error, the blocking method is used to estimate the variance of the simulation results. Additionally, in order to improve the simulation efficiency, the step sizes of different trial moves is adjusted automatically so that their acceptance probabilities can approach to the preset values.
Dynamic Bandwidth Allocation Algorithm with Fairness in 1G/10G Coexistence EPON System
Tanaka, Masaki; Takemoto, Michiya; Takahashi, Akira; Shimokasa, Kiyoshi
Gigabit Ethernet Passive Optical Networks (GE-PON) systems have been deployed widely as a broadband access solution for the optical access network, the so-called FTTx networks. 10 Gigabit EPON (10G-EPON) is about to be standardizing by a task force (802.3av). To provide the next FTTx solution with 10G-EPON systems, one of the key technologies is how to migrate from 1G-based to 10G-based. In this paper, we present Dynamic Bandwidth Allocation (DBA) algorithm which considered a fair policy for 1G/10G coexistence EPON system to achieve a smooth migration.
Hramov, Alexander E; Koronovskii, Alexey A; Moskalenko, Olga I; Zhuravlev, Maksim O; Jaimes-Reategui, Rider; Pisarchik, Alexander N
2016-05-01
We propose a method for the detection and localization of different types of coexisting oscillatory regimes that alternate with each other leading to multistate intermittency. Our approach is based on consideration of wavelet spectrum energies. The proposed technique is tested in an erbium-doped fiber laser with four coexisting periodic orbits, where external noise induces intermittent switches between the coexisting states. Statistical characteristics of multistate intermittency, such as the mean duration of the phases for every oscillation type, are examined with the help of the developed method. We demonstrate strong advantages of the proposed technique over previously used amplitude methods.
Interfacial tension between a complex coacervate phase and its coexisting aqueous phase
Spruijt, E.; Sprakel, J.H.B.; Cohen Stuart, M.A.; Gucht, van der J.
2010-01-01
Complex coacervation is the associative phase separation in a solution of positively and negatively charged macroions. Despite the widespread use of coacervation in e.g. micellar assemblies (complex coacervate core micelles), drug carriers and thin films, there is virtually no experimental data on t
Manifestation of coexistence of the long-periodic phase with the incommensurate phase
Sveleba, S; Polovinko, [No Value; Zhmurko, [No Value; Pankivskyi, Y
1999-01-01
Electric and optical properties of the commensurate ferroelectric long-periodic phase in [N(CH(3))(4)](2)ZnCl(4) and [N(CH(3))(4)](2)CoCl(4) crystals are investigated to explain mechanism of the hysteresis double loops appearance.
Dynamics of graphene nanoribbon with carbon nanotubes coexisting with [Bmim][Cl] molecules
Li, Yunfang
2015-09-01
Molecular dynamics simulations have been performed to investigate the dynamics of graphene nanoribbon (GNR) on single-walled carbon nanotubes (SWNTs) coexisting with 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]). The results indicate that in the wrapping and encapsulating processes when GNR interacts with SWNT, [Bmim][Cl] has an extremely different dynamics, showing an interesting dependence on tube size. Two GNRs can easily bring the [Bmim][Cl] into the hollow area of the formed double helix in the SWNT. The sequence of the interaction between these substances is E GNR-SWNT > E GNR-[Bmim][Cl] > E [Bmim][Cl]-SWNT. A high temperature will hinder the wrapping dynamics behavior of the GNR and even militate against the insertion dynamics of [Bmim][Cl]. The [Bmim][Cl] has nearly no effect on the dynamics of GNR on SWNT. Furthermore, the GNR can transport [Bmim][Cl] in the SWNT by expelling them. The proposed discoveries eventually provide a powerful way to fabricate nanoscale materials and devices and eventually tune their properties.
Dynamics of microbial growth and coexistence on variably saturated rough surfaces.
Long, Tao; Or, Dani
2009-08-01
The high degree of microbial diversity found in soils is attributed to the highly heterogeneous pore space and the dynamic aqueous microenvironments. Previous studies have shown that spatial and temporal variations in aqueous diffusion pathways play an important role in shaping microbial habitats and biological activity in unsaturated porous media. A new modeling framework was developed for the quantitative description of diffusion-dominated microbial interactions focusing on competitive growth of two microbial species inhabiting partially saturated rough surfaces. Surface heterogeneity was represented by patches with different porosities and water retention properties, yielding heterogeneous distribution of water contents that varies with changes in relative humidity or soil matric potential. Nutrient diffusion and microbial growth on the variably hydrated and heterogeneous surface was modeled using a hybrid method that combines a reaction diffusion method for nutrient field with individual based model for microbial growth and expansion. The model elucidated the effects of hydration dynamics and heterogeneity on nutrient fluxes and mobility affecting microbial population growth, expansion, and coexistence at the microscale. In contrast with single species dominance under wet conditions, results demonstrated prolonged coexistence of two competing species under drier conditions where nutrient diffusion and microbial movement were both limited. The uneven distribution of resources and diffusion pathways in heterogeneous surfaces highlighted the importance of position in the landscape for survival that may compensate for competitive disadvantages conferred by physiological traits. Increased motility was beneficial for expansion and survival. Temporal variations in hydration conditions resulted in fluctuations in microbial growth rate and population size. Population growth dynamics of the dominant species under wet-dry cycles were similar to growth under average value
Can we approach the gas-liquid critical point using slab simulations of two coexisting phases?
Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J
2016-09-28
In this paper, we demonstrate that it is possible to approach the gas-liquid critical point of the Lennard-Jones fluid by performing simulations in a slab geometry using a cut-off potential. In the slab simulation geometry, it is essential to apply an accurate tail correction to the potential energy, applied during the course of the simulation, to study the properties of states close to the critical point. Using the Janeček slab-based method developed for two-phase Monte Carlo simulations [J. Janec̆ek, J. Chem. Phys. 131, 6264 (2006)], the coexisting densities and surface tension in the critical region are reported as a function of the cutoff distance in the intermolecular potential. The results obtained using slab simulations are compared with those obtained using grand canonical Monte Carlo simulations of isotropic systems and the finite-size scaling techniques. There is a good agreement between these two approaches. The two-phase simulations can be used in approaching the critical point for temperatures up to 0.97 TC(∗) (T(∗) = 1.26). The critical-point exponents describing the dependence of the density, surface tension, and interfacial thickness on the temperature are calculated near the critical point.
Can we approach the gas-liquid critical point using slab simulations of two coexisting phases?
Goujon, Florent; Ghoufi, Aziz; Malfreyt, Patrice; Tildesley, Dominic J.
2016-09-01
In this paper, we demonstrate that it is possible to approach the gas-liquid critical point of the Lennard-Jones fluid by performing simulations in a slab geometry using a cut-off potential. In the slab simulation geometry, it is essential to apply an accurate tail correction to the potential energy, applied during the course of the simulation, to study the properties of states close to the critical point. Using the Janeček slab-based method developed for two-phase Monte Carlo simulations [J. Janec̆ek, J. Chem. Phys. 131, 6264 (2006)], the coexisting densities and surface tension in the critical region are reported as a function of the cutoff distance in the intermolecular potential. The results obtained using slab simulations are compared with those obtained using grand canonical Monte Carlo simulations of isotropic systems and the finite-size scaling techniques. There is a good agreement between these two approaches. The two-phase simulations can be used in approaching the critical point for temperatures up to 0.97 TC ∗ (T∗ = 1.26). The critical-point exponents describing the dependence of the density, surface tension, and interfacial thickness on the temperature are calculated near the critical point.
Study of coexisting phases in Bi doped La0.67Sr0.33MnO3
Kambhala, Nagaiah
2015-12-28
We report the remarkable phase separation behaviour in La0.67Sr0.33MnO3 doped with Bi3+ ion at La site. The temperature dependent resistivity and magnetization of La0.67−xBixSr0.33MnO3 (x>0) show the presence of phase separation of ferromagnetic metallic and charge ordered antiferromagnetic insulating phases. Markedly, the field dependant magnetization studies of La0.67−xBixSr0.33MnO3 (x=0.3) show the metamagnetic nature of ferromagnetic metallic state implying the competition of coexisting ferromagnetic metallic and charge ordered antiferromagnetic phases. The electron spin resonance and exchange bias studies of La0.67−xBixSr0.33MnO3 (x=0.4 and 0.5) substantiate the coexistence of ferromagnetic clusters in antiferromagnetic matrix.
Energy Technology Data Exchange (ETDEWEB)
Weston, R.E. Jr.; Sears, T.J.; Preses, J.M. [Brookhaven National Laboratory, Upton, NY (United States)
1993-12-01
Research in this program is directed towards the spectroscopy of small free radicals and reactive molecules and the state-to-state dynamics of gas phase collision, energy transfer, and photodissociation phenomena. Work on several systems is summarized here.
Coexistence of probe conformations in lipid phases-a polarized fluorescence microspectroscopy study.
Urbančič, Iztok; Ljubetič, Ajasja; Arsov, Zoran; Strancar, Janez
2013-08-20
Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes' behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to characterize conformations of two alkyl chain-labeled 7-nitro-2-1,3-benzoxadiazol-4-yl phospholipids in three model membranes, representing the three main lipid phases. The combination of polarized and spectral detection revealed two main probe conformations with their preferential fluorophore dipole orientations roughly parallel and perpendicular to membrane normal. Their peak positions were separated by 2-6 nm because of different local polarities and depended on lipid environment. The relative populations of conformations, estimated by a numerical model, indicated a specific sensitivity of the two probes to molecular packing with cholesterol. The coexistence of probe conformations could be further exploited to investigate membrane organization below microscopy spatial resolution, such as lipid rafts. With the addition of polarized excitation or detection to any environment-sensitive fluorescence imaging technique, the conformational analysis can be directly applied to explore local membrane complexity.
Escobedo, Fernando A
2014-03-07
In this work, a variant of the Gibbs-Duhem integration (GDI) method is proposed to trace phase coexistence lines that combines some of the advantages of the original GDI methods such as robustness in handling large system sizes, with the ability of histogram-based methods (but without using histograms) to estimate free-energies and hence avoid the need of on-the-fly corrector schemes. This is done by fitting to an appropriate polynomial function not the coexistence curve itself (as in GDI schemes) but the underlying free-energy function of each phase. The availability of a free-energy model allows the post-processing of the simulated data to obtain improved estimates of the coexistence line. The proposed method is used to elucidate the phase behavior for two non-trivial hard-core mixtures: a binary blend of spheres and cubes and a system of size-polydisperse cubes. The relative size of the spheres and cubes in the first mixture is chosen such that the resulting eutectic pressure-composition phase diagram is nearly symmetric in that the maximum solubility of cubes in the sphere-rich solid (∼20%) is comparable to the maximum solubility of spheres in the cube-rich solid. In the polydisperse cube system, the solid-liquid coexistence line is mapped out for an imposed Gaussian activity distribution, which produces near-Gaussian particle-size distributions in each phase. A terminal polydispersity of 11.3% is found, beyond which the cubic solid phase would not be stable, and near which significant size fractionation between the solid and isotropic phases is predicted.
Complex phase dynamics in coupled bursters
DEFF Research Database (Denmark)
Postnov, D E; Sosnovtseva, Olga; Malova, S Y
2003-01-01
The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically arises when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components. Alternatively, phase multistability can be caused...... the number of spikes per train and the proximity of a neighboring equilibrium point can influence the formation of coexisting regimes....
Energy Technology Data Exchange (ETDEWEB)
Negi, D. S., E-mail: devendranegi@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in; Loukya, B.; Datta, R., E-mail: devendranegi@jncasr.ac.in, E-mail: ranjan@jncasr.ac.in [International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India)
2015-12-07
We report on the observation of Co vacancy (V{sub Co}) induced charge ordering and ferromagnetism in CoO epitaxial thin film. The ordering is associated with the coexistence of commensurate, incommensurate, and discommensurate electronic phases. Density functional theory calculation indicates the origin of ordering in Co atoms undergoing high spin to low spin transition immediately surrounding the V{sub Co(16.6 at. %)}. Electron magnetic chiral dichroism experiment confirms the ferromagnetic signal at uncompensated Co spins. Such a native defects induced coexistence of different electronic phases at room temperature in a simple compound CoO is unique and adds to the richness of the field with the possibility of practical device application.
Directory of Open Access Journals (Sweden)
Brajendra K Singh
Full Text Available Simple models of insect populations with non-overlapping generations have been instrumental in understanding the mechanisms behind population cycles, including wild (chaotic fluctuations. The presence of deterministic chaos in natural populations, however, has never been unequivocally accepted. Recently, it has been proposed that the application of chaos control theory can be useful in unravelling the complexity observed in real population data. This approach is based on structural perturbations to simple population models (population skeletons. The mechanism behind such perturbations to control chaotic dynamics thus far is model dependent and constant (in size and direction through time. In addition, the outcome of such structurally perturbed models is [almost] always equilibrium type, which fails to commensurate with the patterns observed in population data.We present a proportional feedback mechanism that is independent of model formulation and capable of perturbing population skeletons in an evolutionary way, as opposed to requiring constant feedbacks. We observe the same repertoire of patterns, from equilibrium states to non-chaotic aperiodic oscillations to chaotic behaviour, across different population models, in agreement with observations in real population data. Model outputs also indicate the existence of multiple attractors in some parameter regimes and this coexistence is found to depend on initial population densities or the duration of transient dynamics. Our results suggest that such a feedback mechanism may enable a better understanding of the regulatory processes in natural populations.
Regular and chaotic classical dynamics in the U(5)-SU(3) quantum phase transition of the IBM
Macek, M
2012-01-01
We study the classical dynamics in a generic first-order quantum phase transition between the U(5) and SU(3) limits of the interacting boson model. The dynamics is chaotic, of H\\'enon-Heiles type, in the spherical phase and is regular, yet sensitive to local degeneracies, in the deformed phase. Both types of dynamics persist in the coexistence region resulting in a divided phase space.
N3 and O2 Protonated Conformers of the Cytosine Mononucleotides Coexist in the Gas Phase
Wu, R. R.; Hamlow, L. A.; He, C. C.; Nei, Y.-w.; Berden, G.; Oomens, J.; Rodgers, M. T.
2017-08-01
The gas-phase conformations of the protonated forms of the DNA and RNA cytosine mononucleotides, [pdCyd+H]+ and [pCyd+H]+, are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy over the IR fingerprint and hydrogen-stretching regions complemented by electronic structure calculations. The low-energy conformations of [pdCyd+H]+ and [pCyd+H]+ and their relative stabilities are computed at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) and MP2(full)/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) levels of theory. Comparisons of the measured IRMPD action spectra and B3LYP/6-311+G(d,p) linear IR spectra computed for the low-energy conformers allow the conformers present in the experiments to be determined. Similar to that found in previous IRMPD action spectroscopy studies of the protonated forms of the cytosine nucleosides, [dCyd+H]+ and [Cyd+H]+, both N3 and O2 protonated cytosine mononucleotides exhibiting an anti orientation of cytosine are found to coexist in the experimental population. The 2'-hydroxyl substituent does not significantly influence the most stable conformations of [pCyd+H]+ versus those of [pdCyd+H]+, as the IRMPD spectral profiles of [pdCyd+H]+ and [pCyd+H]+ are similar. However, the presence of the 2'-hydroxyl substituent does influence the relative intensities of the measured IRMPD bands. Comparisons to IRMPD spectroscopy studies of the deprotonated forms of the cytosine mononucleotides, [pdCyd-H]- and [pCyd-H]-, provide insight into the effects of protonation versus deprotonation on the conformational features of the nucleobase and sugar moieties. Likewise, comparisons to results of IRMPD spectroscopy studies of the protonated cytosine nucleosides provide insight into the influence of the phosphate moiety on structure. Comparison with previous ion mobility results shows the superiority of IRMPD spectroscopy for distinguishing various protonation sites.
Mester, Zoltan; Lynd, Nathaniel; Fredrickson, Glenn
2013-03-01
Melts of block copolymer blends can exhibit coexistence between compositionally and morphologically distinct phases. We derived a unit-cell approach for a field theoretic Gibbs ensemble formalism to rapidly map out such coexistence regions. We also developed a canonical ensemble model for the reversible reaction of supramolecular polymers and integrated it into the Gibbs ensemble scheme. This creates a faster method for generating phase diagrams in complex supramolecular systems than the usual grand canonical ensemble method and allows us to specify the system in experimentally accessible volume fractions rather than chemical potentials. The integrated approach is used to calculate phase diagrams for AB diblock copolymers reversibly reacting with B homopolymers to form a new diblocks we term ``ABB.'' For our case, we use a diblock that is sixty percent A monomer and a homopolymer that is the same length as the diblock. In the limits of infinite reaction favorability (large equilibrium constant), the system approaches cases of an ABB diblock-B homopolymer blend when the AB diblock is the limiting reactant and AB diblock-ABB diblock blend when the homopolymer is the limiting reactant. As reaction favorability is decreased, the phase boundaries shift towards higher homopolymer compositions so that sufficient reaction can take place to produce the ABB diblock that has a deciding role stabilizing the observed phases.
Shinen, Jennifer L; Navarrete, Sergio A
2014-03-01
Reconciling how niche and neutral processes may be important in species coexistence has revealed two important weaknesses in our collective understanding of species diversity: few empirical studies have determined whether species are truly coexisting, and fewer still have properly evaluated whether coexistence is achieved through niche differentiation or ecological equivalence. Here, we ask whether two common barnacles, Jehlius cirratus and Notochthamalus scabrosus, coexist locally and whether the slight but persistent differences in their distribution provide sufficient fitness trade-offs to overcome differences in competition. Both species recovered after experimental reduction; that is, they coexist, with no indication of hierarchical exclusion. No fitness inequalities affected species performance or interference effects on vital rates at any shore level, indicating no trade-offs in intra-interspecific effects across the ecological gradient. Additionally, no relationship was found between per capita population growth rates of either species with its own relative abundance; that is, neither species has a demographic advantage when rare. Instead, a lottery for space during settlement largely determines species' distributions, evidenced by the positive correlation across sites and tidal elevations between the relative abundances of adults and the recruits of the prior season. We conclude that Jehlius and Notochthamalus coexist neutrally, or nearly so, but discuss whether small, nonsignificant, and probably ephemeral fitness differences, which are inconsistent across the tidal gradient, could provide enough niche differentiation to promote coexistence.
Energy Technology Data Exchange (ETDEWEB)
Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Universitat Autònoma de Barcelona, Departament de Matemàtiques (Spain); Valls, Claudia, E-mail: cvalls@math.ist.utl.pt [Universidade de Lisboa, Departamento de Matemática, Instituto Superior Técnico (Portugal)
2017-06-15
For a dynamical system described by a set of autonomous differential equations, an attractor can be either a point, or a periodic orbit, or even a strange attractor. Recently a new chaotic system with only one parameter has been presented where besides a point attractor and a chaotic attractor, it also has a coexisting attractor limit cycle which makes evident the complexity of such a system. We study using analytic tools the dynamics of such system. We describe its global dynamics near the infinity, and prove that it has no Darboux first integrals.
Shock dynamics of phase diagrams
Moro, Antonio
2014-01-01
A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gas-liquid phase transition. Nevertheless, below the critical temperature, theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts.
Wang, Wei; Wang, Xiangyuan; Lv, Yanping; Wang, Shufeng; Wang, Kai; Shi, Yantao; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang
2016-01-01
Using transient fluorescent spectra at time-zero, we develop a density-resolved fluorescent spectroscopic method for investigating photoproducts in CH3NH3PbI3 perovskite and related photophysics. The density dependent dynamical co-existence of excitons and free carriers over a wide density range is experimentally observed for the first time. The exciton binding energy (EB) and the effective mass of electron-hole pair can be estimated based on such co-existence. No ionic polarization is found contributing to photophysical behavior. It also solves the conflict between the large experimentally measured EB and the small predicted values. The spectroscopic method also helps to detect the true free carrier density under continuous illumination without the interference of ionic conductivity. Our methods and results profoundly enrich the study and understanding of the photophysics in perovskite materials for photovoltaic applications.
Dynamics of nitrogen nutrition of coexisting dominant trees in mixed broad-leaved/Korean pine forest
Institute of Scientific and Technical Information of China (English)
Li Yuwen
1999-01-01
Chemical analysis of ammonium, nitrate and total nitrogen in tree leaves and roots and an in-vivo bioassay for nitrate reductase activity (NRA) were used to monitor the seasonal variations in nitrogen assimilation among four coexisting dominant tree species, including Pinus koraiensis, Ti/ia amurensis, Fraxinus mandshurica and Acer mono, in a virgin mixed broad-leaved/Korean pine (Pinus koraiensis) forest. The soil study included individual horizons of L+F (0-5 cm), Ah (5-11 cm) and Aw (11-25 cm). All four species had nitrate and ammonium in their roots and leaves, and also NRA in leaves. This indicated that these coexisting species were adapted to ammonium + nitrate nutrition. A negative correlation existed between nitrate use and ammonium use. Ammonium concentration was higher than that of nitrate in tree leaves and roots, and also in soils, which indicated climax woody species had a relative preference for ammonium nutrition. There was a positive relationship between tree nitrogen nutrition use and soil nitrogen nutrient supply. Utilization of ammonium and nitrate as well as the seasonal patterns differed significantly between the species. Peaks of ammonium, nitrate, NRA and total nitrogen in one species were therefore not necessarily synchronous with peaks in other species, and which indicated a species-specific seasonal use of nitrogen. The species-specific temporal differentiation in nitrogen use might reduce the competition between co-existing species and may be an important mechanism promoting stability of virgin mixed broad-leaved∥Korean pine forest.
Low-density homogeneous symmetric nuclear matter: Disclosing dinucleons in coexisting phases
Energy Technology Data Exchange (ETDEWEB)
Arellano, Hugo F. [University of Chile, Department of Physics, Santiago (Chile); DAM, CEA, Arpajon (France); Delaroche, Jean-Paul [DAM, CEA, Arpajon (France)
2015-01-01
The effect of in-medium dinucleon bound states on self-consistent single-particle fields in Brueckner, Bethe and Goldstone theory is investigated in symmetric nuclear matter at zero temperature. To this end, dinucleon bound state occurences in the {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels are explicitly accounted for -within the continuous choice for the auxiliary fields- while imposing self-consistency in Brueckner-Hartree-Fock approximation calculations. Searches are carried out at Fermi momenta in the range 0 < k{sub F} ≤ 1.75 fm{sup -1}, using the Argonne v{sub 18} bare nucleon-nucleon potential without resorting to the effective-mass approximation. As a result, two distinct solutions meeting the self-consistency requirement are found with overlapping domains in the interval 0.130 fm{sup -1} ≤ k{sub F} ≤ 0.285 fm{sup -1}, corresponding to mass densities between 10{sup 11.4} and 10{sup 12.4} g cm{sup -3}. Effective masses as high as three times the nucleon mass are found in the coexistence domain. The emergence of superfluidity in relationship with BCS pairing gap solutions is discussed. (orig.)
Wei, Shao-Wen
2014-01-01
In this paper, we first review the equal area laws and Clapeyron equations in the extended phase space of the charged AdS black holes. With different fixed parameters, the Maxwell's equal area law not only hold in $P-V$ (pressure-thermodynamic volume) oscillatory line, but also in $Q-\\Phi$ (charge-electric potential) and $T-S$ (temperature-entropy) oscillatory lines. The classical Clapeyron equation also obtains its generalizations that two extra equations are found. Moreover, we present the fitting formula of the coexistence curve that the small and large charged black holes coexist. The result shows that the fitting formula is charge independent in the reduced parameter space for any dimension of spacetime. Using such analytic expression of the coexistence curve, we find that the Clapeyron equations are highly consistent with the calculated values. The fitting formula is useful for further study on the thermodynamic property of the system varying along the coexistence curve.
DEFF Research Database (Denmark)
Gilhøj, Henriette; Jeppesen, Claus; Mouritsen, Ole G.
1995-01-01
The effects of mobile vacancies on the dynamics of ordering processes and phase separation in multicomponent systems are studied via Monte Carlo simulations of a two-dimensional seven-state ferromagnetic Potts model with varying degrees of site dilution. The model displays phase equilibria...... corresponding to a dilute Potts-disordered (fluid) phase and a dilute Potts-ordered phase (solid), as well as a broad region of coexistence between the fluid and the solid phase. Temperature quenches into the dilute Potts-ordered phase as well as into the phase-separated region are considered under...... the condition of conserved vacancy density and nonconserved Potts order. The dynamics of ordering and phase separation is found to follow algebraic growth laws with exponent values that depend on the phase to which the quench is performed. Strong transient effects are observed in the dilute Potts-ordered phase...
Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2014-03-01
We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.
Energy Technology Data Exchange (ETDEWEB)
Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath; Jiang, Zhang; Schleputz, Christian M.; Karapetrova, Evguenia; Lurio, L. B.; Sinha, Sunil K.
2015-11-30
X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces surprisingly long range effect.
Val'kov, V. V.; Zlotnikov, A. O.
2016-12-01
On the basis of the periodic Anderson model, the microscopic Ginzburg-Landau equations for heavy-fermion superconductors in the coexistence phase of superconductivity and antiferromagnetism have been derived. The obtained expressions are valid in the vicinity of quantum critical point of heavy-fermion superconductors when the onset temperatures of antiferromagnetism and superconductivity are sufficiently close to each other. It is shown that the formation of antiferromagnetic ordering causes a decrease of the critical temperature of superconducting transition and order parameter in the phase of coexisting superconductivity and antiferromagnetism.
Phase coexistence and Mott metal-insulator transition in the doped Hubbard-Holstein model
Moradi Kurdestany, Jamshid; Satpathy, Sashi
2015-03-01
Motivated by recent progress in the understanding of the Mott insulators away from half filling [?], often observed in the oxide materials, we study the role of the electron-lattice interaction vis-à-vis the electron correlations by studying the one-band Hubbard-Holstein model using the Gutzwiller variational method. Our theory predicts phase separation for sufficiently strong electron-lattice interaction, which however is frustrated in the solid due to the long-range Coulomb interaction of the dopant atoms, resulting in puddles of metallic phases embedded in the insulating matrix. Metallic state occurs when the volume fraction of the metallic phase exceeds the percolation threshold, as the dopant concentration is increased. Connection is made with the experimentally observed metal-insulator transition in the complex oxides.
Gallium transformation under femtosecond laser excitation: Phase coexistence and incomplete melting
Uteza, O P; Rode, A V; Samoc, M; Luther-Davies, B
2003-01-01
The reversible phase transition induced by femtosecond laser excitation of Gallium has been studied by measuring the dielectric function at 775 nm with ~ 200 fs temporal resolution. The real and imaginary parts of the transient dielectric function were calculated from absolute reflectivity of Gallium layer measured at two different angles of incidence, using Fresnel formulas. The time-dependent electron-phonon effective collision frequency, the heat conduction coefficient and the volume fraction of a new phase were restored directly from the experimental data, and the time and space dependent electron and lattice temperatures in the layer undergoing phase transition were reconstructed without ad hoc assumptions. We converted the temporal dependence of the electron-phonon collision rate into the temperature dependence, and demonstrated, for the first time, that the electron-phonon collision rate has a non-linear character. This temperature dependence converges into the known equilibrium function during the coo...
Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.
Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin
2016-09-01
With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out.
Patel, Sonal; Wilding, W Vincent; Rowley, Richard L
2011-01-14
Molecular dynamics simulations were performed to determine two-phase configurations of model propane molecules below the critical point and in the near-critical, two-phase region. A postprocessor that uses a Monte Carlo method for determination of volumes attributable to each molecule was used to obtain density histograms of the particles from which the bulk coexisting equilibrium vapor and liquid densities were determined. This method of analyzing coexisting densities in a two-phase simulation is straightforward and can be easily implemented for complex, multisite models. Various degrees of internal flexibility in the propane models have little effect on the coexisting densities at temperatures 40 K or more below the critical point, but internal flexibility (angle bending and bond vibrations) does affect the saturated liquid densities in the near-critical region, changing the critical temperature by approximately 20 K. Shorter cutoffs were also found to affect the phase dome and the location of the critical point.
Herrera-Aguilar, José L; Larralde, Hernán; Aldana, Maximino
2012-01-01
We study the properties of the dynamical phase transition occurring in neural network models in which a competition between associative memory and sequential pattern recognition exists. This competition occurs through a weighted mixture of the symmetric and asymmetric parts of the synaptic matrix. Through a generating functional formalism, we determine the structure of the parameter space at non-zero temperature and near saturation (i.e., when the number of stored patterns scales with the size of the network), identifying the regions of high and weak pattern correlations, the spin-glass solutions, and the order-disorder transition between these regions. This analysis reveals that, when associative memory is dominant, smooth transitions appear between high correlated regions and spurious states. In contrast when sequential pattern recognition is stronger than associative memory, the transitions are always discontinuous. Additionally, when the symmetric and asymmetric parts of the synaptic matrix are defined in terms of the same set of patterns, there is a discontinuous transition between associative memory and sequential pattern recognition. In contrast, when the symmetric and asymmetric parts of the synaptic matrix are defined in terms of independent sets of patterns, the network is able to perform both associative memory and sequential pattern recognition for a wide range of parameter values.
Directory of Open Access Journals (Sweden)
José L Herrera-Aguilar
Full Text Available We study the properties of the dynamical phase transition occurring in neural network models in which a competition between associative memory and sequential pattern recognition exists. This competition occurs through a weighted mixture of the symmetric and asymmetric parts of the synaptic matrix. Through a generating functional formalism, we determine the structure of the parameter space at non-zero temperature and near saturation (i.e., when the number of stored patterns scales with the size of the network, identifying the regions of high and weak pattern correlations, the spin-glass solutions, and the order-disorder transition between these regions. This analysis reveals that, when associative memory is dominant, smooth transitions appear between high correlated regions and spurious states. In contrast when sequential pattern recognition is stronger than associative memory, the transitions are always discontinuous. Additionally, when the symmetric and asymmetric parts of the synaptic matrix are defined in terms of the same set of patterns, there is a discontinuous transition between associative memory and sequential pattern recognition. In contrast, when the symmetric and asymmetric parts of the synaptic matrix are defined in terms of independent sets of patterns, the network is able to perform both associative memory and sequential pattern recognition for a wide range of parameter values.
Vergara, Daniela; Jokela, Jukka; Lively, Curtis M
2014-08-01
The persistence of sexual reproduction is a classic problem in evolutionary biology. The problem stems from the fact that, all else equal, asexual lineages should rapidly replace coexisting sexual individuals due to the cost of producing males in sexual populations. One possible countervailing advantage to sexual reproduction is that, on average, outcrossed offspring are more resistant than common clones to coevolving parasites, as predicted under the Red Queen hypothesis. In this study, we evaluated the prevalence of infection by a sterilizing trematode (Microphallus sp.) in a natural population of freshwater snails that was composed of both sexual and asexual individuals (Potamopyrgus antipodarum). More specifically, we compared the frequency of infection in sexual and asexual individuals over a 5-year period at four sites at a natural glacial lake (Lake Alexandrina, South Island, New Zealand). We found that at most sites and over most years, the sexual population was less infected than the coexisting asexual population. Moreover, the frequency of uninfected sexual females was periodically greater than two times the frequency of uninfected asexual females. These results give clear support for a fluctuating parasite-mediated advantage to sexual reproduction in a natural population.
Relationship between the liquid-liquid phase transition and dynamic behaviour in the Jagla model
Energy Technology Data Exchange (ETDEWEB)
Xu, Limei [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); Ehrenberg, Isaac [Department of Physics, Yeshiva University, 500 West 185th Street, New York, NY 10033 (United States); Buldyrev, Sergey V [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); Stanley, H Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States)
2006-09-13
Using molecular dynamics simulations, we study a spherically symmetric 'two-scale' Jagla potential with both repulsive and attractive ramps. This potential displays a liquid-liquid phase transition with a positively sloped coexistence line ending at a critical point well above the equilibrium melting line. We study the dynamic behaviour in the vicinity of this liquid-liquid critical point. Below the critical point, we find that the dynamics in the more ordered high density liquid (HDL) are much slower then the dynamics in the less ordered low density liquid (LDL). Moreover, the behaviour of the diffusion constant and relaxation time in the HDL phase follows approximately an Arrhenius law, while in the LDL phase the slope of the Arrhenius fit increases upon cooling. Above the critical pressure, as we cool the system at constant pressure, the behaviour of the dynamics smoothly changes with temperature. It resembles the behaviour of the LDL at high temperatures and resembles the behaviour of the HDL at low temperatures. This dynamic crossover happens in the vicinity of the Widom line (the extension of the coexistence line into the one-phase region) which also has a positive slope. Our work suggests a possible general relation between a liquid-liquid phase transition and the change in dynamics.
Local coexistence of VO2 phases revealed by deep data analysis
Strelcov, Evgheni; Ievlev, Anton; Belianinov, Alex; Tselev, Alexander; Kolmakov, Andrei; Kalinin, Sergei V.
2016-07-01
We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer from information misinterpretation due to low resolving power.
A probabilistic phase-insensitive optical squeezer in peaceful coexistence with causality
Gagatsos, C N; Cerf, N J
2012-01-01
A non trace-preserving map describing a probabilistic but heralded noiseless linear amplifier has recently been proposed and experimentally demonstrated. Here, we exhibit another remarkable feature of this peculiar transformation, namely its ability to serve as a universal single-mode squeezer regardless of the quadrature that is initially squeezed. Hence, it acts as an heralded phase-insensitive optical squeezer, conserving the signal-to-noise ratio just as a phase-sensitive optical amplifier but for all quadratures at the same time, which may offer new perspectives in quantum optical communications. Although this ability to squeeze all quadratures seemingly opens a way to instantaneous signaling by circumventing the quantum no-cloning theorem, we explain the subtle mechanism by which the probability for such a causality violation vanishes, even on an heralded basis.
Ritter, C.; Ivanov, S. A.; Bazuev, G. V.; Fauth, F.
2016-02-01
The thermal evolution of structural and magnetic details of the orthovanadate TmV O3 , studied in detail by neutron and synchrotron powder diffraction, is reported. Crystallizing in space group Pnma at room temperature, TmV O3 undergoes a first structural phase transition to P 21/a at TOO=180 K , where a G -type orbital ordered state develops. At TS=75 K , a change back to Pnma occurs, and the establishment of C -type orbital order takes place. The V3 + ions order antiferromagnetically with a magnetic propagation vector k =0 below TN 1=105 K , while the T m3 + sublattice orders at TN 2=20 K following the same propagation vector. Between TN 1 and TS, a coexistence of G -type (P 21/a ) and C -type (Pnma) orbital ordered states exists. The P 21/a phase is magnetically separated into two fractions, which adopt a CxCy0 and Gx00 coupling, respectively, while the Pnma volume fraction follows a 0 Gy0 magnetic structure. At TN 2, the appearance of the Tm sublattice magnetization (0 Cy0 ) leads to a spin flop transition of the V sublattice from 0 Gy0 to Gx00 . The results are presented and analyzed in the general context of the series of R V O3 compounds, and they are used to discuss recent magnetization results.
Braverman, E; Kamrujjaman, Md; Korobenko, L
2015-06-01
We study the interaction between different types of dispersal, intrinsic growth rates and carrying capacities of two competing species in a heterogeneous environment: one of them is subject to a regular diffusion while the other moves in the direction of most per capita available resources. If spatially heterogeneous carrying capacities coincide, and intrinsic growth rates are proportional then competitive exclusion of a regularly diffusing population is inevitable. However, the situation may change if intrinsic growth rates for the two populations have different spatial forms. We also consider the case when carrying capacities are different. If the carrying capacity of a regularly diffusing population is higher than for the other species, the two populations may coexist; as the difference between the two carrying capacities grows, competitive exclusion of the species with a lower carrying capacity occurs.
Li, Jun
2013-09-01
We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO2 and N2 agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptance rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available. © 2013 Elsevier Inc.
Dynamical tunneling in systems with a mixed phase space
Energy Technology Data Exchange (ETDEWEB)
Loeck, Steffen
2010-04-22
Tunneling is one of the most prominent features of quantum mechanics. While the tunneling process in one-dimensional integrable systems is well understood, its quantitative prediction for systems with a mixed phase space is a long-standing open challenge. In such systems regions of regular and chaotic dynamics coexist in phase space, which are classically separated but quantum mechanically coupled by the process of dynamical tunneling. We derive a prediction of dynamical tunneling rates which describe the decay of states localized inside the regular region towards the so-called chaotic sea. This approach uses a fictitious integrable system which mimics the dynamics inside the regular domain and extends it into the chaotic region. Excellent agreement with numerical data is found for kicked systems, billiards, and optical microcavities, if nonlinear resonances are negligible. Semiclassically, however, such nonlinear resonance chains dominate the tunneling process. Hence, we combine our approach with an improved resonance-assisted tunneling theory and derive a unified prediction which is valid from the quantum to the semiclassical regime. We obtain results which show a drastically improved accuracy of several orders of magnitude compared to previous studies. (orig.)
Tracking three-phase coexistences in binary mixtures of hard plates and spheres
Aliabadi, Roohollah; Moradi, Mahmood; Varga, Szabolcs
2016-02-01
The stability of demixing phase transition in binary mixtures of hard plates (with thickness L and diameter D) and hard spheres (with diameter σ) is studied by means of Parsons-Lee theory. The isotropic-isotropic demixing, which is found in mixtures of large spheres and small plates, is very likely to be pre-empted by crystallization. In contrast, the nematic-nematic demixing, which is obtained in mixtures of large plates and small spheres, can be stabilized at low diameter ratios (σ/D) and aspect ratios (L/D). At intermediate values of σ/D, where the sizes of the components are similar, neither the isotropic-isotropic nor the nematic-nematic demixing can be stabilized, but a very strong fractionation takes place between a plate rich nematic and a sphere rich isotropic phases. Our results show that the excluded volume interactions are capable alone to explain the experimental observation of the nematic-nematic demixing, but they fail in the description of isotropic-isotropic one [M. Chen et al., Soft Matter 11, 5775 (2015)].
Structural and dynamical transformations between neighboring dense microemulsion phases
Kotlarchyk, M.; Sheu, E. Y.; Capel, M.
1992-07-01
A small-angle x-ray scattering (SAXS) study of dense AOT-water-decane microemulsions [AOT denotes sodium bis(2-ethylhexyl) sulfosuccinate] was undertaken in order to delineate clearly the phase behavior and corresponding structural transitions for AOT-plus-water volume fractions ranging from φ=0.60 to 0.95. Spectra were collected for temperatures between T=3 and 65 °C. The resulting T-vs-φ phase diagram indicates three distinct structural domains when the water-to-AOT molar ratio is fixed at W=40.8, namely, the previously investigated L2 droplet phase, a high-temperature Lα lamellar phase, and a low-temperature L3 phase consisting of randomly connected lamellar sheets. A significantly wide coexistence region accompanies the droplet-to-lamellar phase transition, which is demonstrated to be first order. For W between 15 and 40, an analysis of the lamellar structure using a one-dimensional paracrystal model produces a Hosemann g factor indicative of an approximately constant variation in the lamellar spacing of about 8%. The SAXS study was supplemented by dielectric-relaxation, shear-viscosity, and quasielastic light-scattering measurements in order to substantiate the observed phase transitions and further our understanding of the structural and dynamical properties of the L3 phase. It was found that the L3 phase exhibits Newtonian behavior up to a shear rate of 790 s-1, in contradiction to previous theoretical considerations. The phase exhibits two distinct relaxation modes. A relaxation time of ~1 ms characterizes the Brownian motion of a single lamellar sheet, while the motion of the entire interconnected sheet assembly has a relaxation time on the order of 1 s.
Coexistence of electron-glass phase and persistent photoconductivity in GeSbTe compounds
Ovadyahu, Z.
2015-03-01
It is demonstrated that persistent photoconductivity (PPC), well studied in lightly-doped semiconductors, is observable in GeSbTe compounds using infrared excitation at cryogenic temperatures. The low levels of energy flux necessary to induce an appreciable effect seems surprising given the high carrier concentration n of these ternary alloys (n >1020cm-3 ). On the other hand, their high density of carriers makes GeSbTe films favorable candidates for exhibiting intrinsic electron-glass effects with long relaxation times. These are indeed observed in GeSbTe thin films that are Anderson-localized. In particular, a memory dip is observed in samples with sheet resistances larger than ≈105Ω at T ≈4 K with similar characteristics as in other systems that exhibit intrinsic electron-glass effects. Persistent photoconductivity, however, is observable in GeSbTe films even for sheet resistances of the order of 103Ω , well below the range of disorder required for observing electron-glass effects. These two nonequilibrium phenomena, PPC and electron glass, are shown to be of different nature in terms of other aspects as well. In particular, their relaxation dynamics is qualitatively different; the excess conductance Δ G associated with PPC decays with time as a stretched exponential whereas a logarithmic relaxation law characterizes Δ G (t ) of all electron glasses studied to date. Surprisingly, the magnitude of the memory dip is enhanced when the system is in the PPC state. This counter-intuitive result may be related to the compositional disorder in these materials extending over mesoscopic scales. Evidence in support of this scenario is presented and discussed.
Structural and Magnetic Phase Coexistence in Oxygen Deficient Perovskites (Sr,Ca)FeO 2 . 5 + δ
Carlo, J. P.; Evans, M. E.; Anczarski, J. A.; Ock, J.; Boyd, K.; Pollichemi, J. R.; Leahy, I. A.; Vogel, W.; Viescas, A. J.; Papaefthymiou, G. C.
A variety of compounds crystallize into perovskite and similar structures, making them versatile laboratories for many phenomena and applications, including multiferroicity, superconductivity, and photovoltaics. Oxygen-deficient perovskites ABOx have attracted interest for use in fuel cells and related applications due to high oxygen mobility and the possibility of charge disproportionation. Vast chemical flexibility is obtained through reductions in lattice symmetry and rotation/distortion of the BO6 octahedra, as well as ordering of oxygen vacancies. We have synthesized and studied the structural and magnetic properties of oxygen-deficient perovskites (Sr,Ca)FeO2 . 5 + δ using x-ray diffraction and Mossbauer spectroscopy. While the ideal perovskite has δ = 0.5, this requires Fe4+, and hence strongly oxidizing environments. When grown in air, Fe3+ is favored, yielding δ ~ 0. SrFeO2 . 5 + δ exhibits cubic symmetry and paramagnetism at 300K, but CaFeO2 . 5 + δ crystallizes into the orthorhombic brownmillerite structure, and is magnetically ordered at 300K. In the doped intermediaries we find coexistence of cubic/paramagnetic and orthorhombic/magnetic phases over a wide range of Ca content. Financial support from the Villanova Undergraduate Research Fellowship program and the Research Corporation for Science Advancement.
Exploring the dynamics of phase separation in colloid-polymer mixtures with long range attraction.
Sabin, Juan; Bailey, Arthur E; Frisken, Barbara J
2016-06-28
We have studied the kinetics of phase separation and gel formation in a low-dispersity colloid - non-adsorbing polymer system with long range attraction using small-angle light scattering. This system exhibits two-phase and three-phase coexistence of gas, liquid and crystal phases when the strength of attraction is between 2 and 4kBT and gel phases when the strength of attraction is increased. For those samples that undergo macroscopic phase separation, whether to gas-crystal, gas-liquid or gas-liquid-crystal coexistence, we observe dynamic scaling of the structure factor and growth of a characteristic length scale that behaves as expected for phase separation in fluids. In samples that gel, the power law associated with the growth of the dominant length scale is not equal to 1/3, but appears to depend mainly on the strength of attraction, decreasing from 1/3 for samples near the coexistence region to 1/27 at 8kBT, over a wide range of colloid and polymer concentrations.
An, Junyeong; Moon, Hyunsoo; Chang, In Seop
2010-09-15
Our challenge in this study was to harvest electricity from organics coexisting in two different phases (water and sediment) in an organics-contaminated benthic environment and to obtain increased current using a multiphase electrode microbial fuel cell (multiphase MFC). The multiphase MFC consisted of a floating electrode (FE), a midelectrode (ME), and a sediment electrode (SE) with no other components. The SE was embedded in sediment; the FE and ME were then overlaid in the water surface layer and in the middle of the water column of an aquarium, respectively. During continuous supply of organics at a COD loading rate of 94 mg of COD L(-1) day(-1) and after the cessation of organics being supplied at COD loading rates of 330 and 188 mg of COD L(-1) day(-1), the multiphase MFC showed the highest current production, as compared to the control MFCs [a floating-type MFC (FT-MFC) and two types of sediment MFCs (SMFC-A and SMFC-B)]. The total charges (in coulombs) of the multiphase MFC integrated from the currents, obtained under the three operating conditions mentioned above, were comparable to the sums of charges for the FT-MFC and SMFC. As a result, this study found that the multiphase MFC can (1) utilize organics in the sediment similarly to SMFCs, (2) use organics in the water phase similarly to FT-MFCs, and (3) obtain increased current analogous to the sum of an SMFC and a FT-MFC. Thus, it is thought that the multiphase MFC developed in this work could be suitable for use in water bodies being continuously or frequently contaminated with organic waste.
Edison, John R.; Dasgupta, Tonnishtha; Dijkstra, Marjolein
2016-08-01
We study the phase behaviour of a binary mixture of colloidal hard spheres and freely jointed chains of beads using Monte Carlo simulations. Recently Panagiotopoulos and co-workers predicted [Nat. Commun. 5, 4472 (2014)] that the hexagonal close packed (HCP) structure of hard spheres can be stabilized in such a mixture due to the interplay between polymer and the void structure in the crystal phase. Their predictions were based on estimates of the free-energy penalty for adding a single hard polymer chain in the HCP and the competing face centered cubic (FCC) phase. Here we calculate the phase diagram using free-energy calculations of the full binary mixture and find a broad fluid-solid coexistence region and a metastable gas-liquid coexistence region. For the colloid-monomer size ratio considered in this work, we find that the HCP phase is only stable in a small window at relatively high polymer reservoir packing fractions, where the coexisting HCP phase is nearly close packed. Additionally we investigate the structure and dynamic behaviour of these mixtures.
Analysis of Deformation in Inconel 718 When the Stress Anomaly and Dynamic Strain Aging Coexist
Follansbee, Paul S.
2016-09-01
Deformation in Inconel 718 in the presence of combined effects of the stress anomaly and dynamic strain aging is analyzed according to an internal state variable model formulation. The analysis relies on the availability of experimental data in regimes of behavior where both the stress anomaly and dynamic strain aging are absent. A model that introduces two internal state variables—one characterizing interactions of dislocations with solute atoms and one characterizing interaction of dislocations with precipitates—is shown to adequately describe the temperature and strain-rate dependence of the yield stress in several superalloy systems. Strain hardening is then added with a third internal state variable to enable description of the full stress-strain curve. These equations are extrapolated into regimes where the stress anomaly and dynamic strain aging are present to identify signatures of their effects and to compare to similar analyses in a variety of metal systems. Dynamic strain aging in Inconel 718 follows similar trends to those observed previously. The magnitude of the stress anomaly tracks measurements of stress vs test temperature in pure Ni3Al. Several trends in the strain-rate sensitivity of elevated temperature deformation in superalloys are identified based on limited availability of measurements over a wide range of strain rates or tests using strain-rate changes.
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...
Dynamical quantum phase transitions (Review Article)
Zvyagin, A. A.
2016-11-01
During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many body systems out of equilibrium often manifest behavior, different from the one predicted by standard statistical mechanics and thermodynamics in equilibrium. Since the dynamics of a many-body quantum system typically involve many excited eigenstates, with a non-thermal distribution, the time evolution of such a system provides an unique way for investigation of non-equilibrium quantum statistical mechanics. Last decade such new subjects like quantum quenches, thermalization, pre-thermalization, equilibration, generalized Gibbs ensemble, etc. are among the most attractive topics of investigation in modern quantum physics. One of the most interesting themes in the study of dynamics of quantum many-body systems out of equilibrium is connected with the recently proposed important concept of dynamical quantum phase transitions. During the last few years a great progress has been achieved in studying of those singularities in the time dependence of characteristics of quantum mechanical systems, in particular, in understanding how the quantum critical points of equilibrium thermodynamics affect their dynamical properties. Dynamical quantum phase transitions reveal universality, scaling, connection to the topology, and many other interesting features. Here we review the recent achievements of this quickly developing part of low-temperature quantum physics. The study of dynamical quantum phase transitions is especially important in context of their connection to the problem of the modern theory of quantum information, where namely non-equilibrium dynamics of many-body quantum system plays the major role.
Co-existence of periodic bursts and death of cycles in a population dynamics system
Iyengar, Sudharsana V.; Balakrishnan, Janaki; Kurths, Jürgen
2016-09-01
We study the dynamics of a discrete-time tritrophic model which mimics the observed periodicity in the population cycles of the larch budmoth insect which causes widespread defoliation of larch forests at high altitudes periodically. Our model employs q-deformation of numbers to model the system comprising the budmoth, one or more parasitoid species, and larch trees. Incorporating climate parameters, we introduce additional parasitoid species and show that their introduction increases the periodicity of the budmoth cycles as observed experimentally. The presence of these additional species also produces other interesting dynamical effects such as periodic bursting and oscillation quenching via oscillation death, amplitude death, and partial oscillation death which are also seen in nature. We suggest that introducing additional parasitoid species provides an alternative explanation for the collapse of the nine year budmoth outbreak cycles observed in the Swiss Alps after 1981. A detailed exploration of the parameter space of the system is performed with movies of bifurcation diagrams which enable variation of two parameters at a time. Limit cycles emerge through a Neimark-Sacker bifurcation with respect to all parameters in all the five and higher dimensional models we have studied.
Phase Transformation Dynamics in Porous Battery Electrodes
Ferguson, Todd R
2014-01-01
Porous electrodes composed of multiphase active materials are widely used in Li-ion batteries, but their dynamics are poorly understood. Two-phase models are largely empirical, and no models exist for three or more phases. Using a modified porous electrode theory based on non-equilibrium thermodynamics, we show that experimental phase behavior can be accurately predicted from free energy models, without artificially placing phase boundaries or fitting the open circuit voltage. First, we simulate lithium intercalation in porous iron phosphate, a popular two-phase cathode, and show that the zero-current voltage gap, sloping voltage plateau and under-estimated exchange currents all result from size-dependent nucleation and mosaic instability. Next, we simulate porous graphite, the standard anode with three stable phases, and reproduce experimentally observed fronts of color-changing phase transformations. These results provide a framework for physics-based design and control for electrochemical systems with comp...
Energy Technology Data Exchange (ETDEWEB)
Guiot, B
2002-12-01
The INDRA multidetector allowed us to study the Ni+Ni collisions at 32A MeV and the Ni+Au collisions at 52,4 MeV. Central collisions leading to 'quasi-fused' systems were isolated using multidimensional analysis techniques: the Discriminant Analysis and the Principal Component Analysis. Comparison with a statistical model shows that the selected events are compatible with thermodynamical equilibrium. The average thermal excitation energy is 5A MeV for both systems. Calculations of heat capacities show that the deexcitation of the hot sources are akin to a liquid-gas phase transition of nuclear matter. Indeed heat capacities exhibit a negative branch as expected for a phase transition of a finite system. The dynamics of this phase transition has been investigated by applying the charge correlation method. An enhanced production of events with equal-sized fragments has been evidenced for Ni+Au at 52A MeV. No signal was found for Ni+Ni at 32A MeV. Finally this method was improved by taking into account the total charge conservation. The signal is seen more clearly for Ni+Au at 52A MeV, but is ambiguous for Ni+Ni at 32A MeV. The path followed in the state diagram, or the involved time scales, seem to be different for these systems. (authors)
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
According to investigation on two species of melitaeine butterflies in Yanjiaping Village, Chicheng County, Hebei Province, China, between 1998-2002, together with the use of 1:10000 contour map of the local area, some conclusions are shown by the SPSS and GIS analysis of data obained from GPS: (1) The two species of melitaeine butterflies have different metapopulation structures. M. phoebe is a source-sink metapopulation, while E. aurinia is a classical metapopulation, supporting the analytic result from our former genetic research. (2) The two species of melitaeine butterflies exhibit different trends of population dynamics. M. phoebe source-sink metapopulation is very unsteady, and is always small, thus has a tendency to go extinct gradually. But E. aurinia classical metapopulation is stable, and has maintained a larger population size. Therefore, it stands a better chance of long-term survival. (3) The two species of melitaeine butterflies are significantly related in both patch occupancy and local population size. (4) The effect of isolation is significant on the metapopulations of these two species of melitaeine butterflies, consistent with the classical theories, whereas the effect of patch area is not significant on the metapopulations of these two species of melitaeine butterflies, which is inconsistent with the classical theories. Therefore, other factors, such as habitat quality, should be considered for their influences on metapopulations.
Exceptional Points and Dynamical Phase Transitions
Directory of Open Access Journals (Sweden)
I. Rotter
2010-01-01
Full Text Available In the framework of non-Hermitian quantum physics, the relation between exceptional points,dynamical phase transitions and the counter intuitive behavior of quantum systems at high level density is considered. The theoretical results obtained for open quantum systems and proven experimentally some years ago on a microwave cavity, may explain environmentally induce deffects (including dynamical phase transitions, which have been observed in various experimental studies. They also agree(qualitatively with the experimental results reported recently in PT symmetric optical lattices.
Energy Technology Data Exchange (ETDEWEB)
Gupta, Sachin, E-mail: gsachin55@gmail.com, E-mail: suresh@phy.iitb.ac.in; Suresh, K. G., E-mail: gsachin55@gmail.com, E-mail: suresh@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400076 (India); Das, A. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Nigam, A. K. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Hoser, A. [Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, 14-109 Berlin (Germany)
2015-06-01
Polycrystalline NdCuSi is found to show co-existence of antiferromagnetic (AFM) and ferromagnetic (FM) phases at low temperatures, as revealed by neutron diffraction data. The coexistence is attributed to the competing exchange interactions and crystal field effect. The compound shows a large, low-field magnetoresistance (MR) of ∼ − 32% at 20 kOe below T{sub N} (3.1 K), which becomes ∼ − 36% at 50 kOe. The MR value at 50 kOe is found to be the highest among the RTX compounds. Magnetocaloric effect (MCE) is also found to show a large value of ∼11 J/kg K close to T{sub N}. Resistivity data show the presence of spin fluctuations, which get suppressed by the applied field. Large MR and MCE in this compound arise due to the coexistence of the two phases. The field dependencies of MR and MCE show quadratic behavior, confirming the presence of spin fluctuations.
Directory of Open Access Journals (Sweden)
Sachin Gupta
2015-06-01
Full Text Available Polycrystalline NdCuSi is found to show co-existence of antiferromagnetic (AFM and ferromagnetic (FM phases at low temperatures, as revealed by neutron diffraction data. The coexistence is attributed to the competing exchange interactions and crystal field effect. The compound shows a large, low-field magnetoresistance (MR of ∼ − 32% at 20 kOe below TN (3.1 K, which becomes ∼ − 36% at 50 kOe. The MR value at 50 kOe is found to be the highest among the RTX compounds. Magnetocaloric effect (MCE is also found to show a large value of ∼11 J/kg K close to TN. Resistivity data show the presence of spin fluctuations, which get suppressed by the applied field. Large MR and MCE in this compound arise due to the coexistence of the two phases. The field dependencies of MR and MCE show quadratic behavior, confirming the presence of spin fluctuations.
压电材料中相共存态与其性能的关系%Relationship between Phase Coexistence and Properties in Piezoelectric M aterials
Institute of Scientific and Technical Information of China (English)
姚永刚; 周超; 薛德祯; 杨耀东; 任晓兵
2014-01-01
Due to the toxicity of Pb, researchers are searching for high performance Pb free pi-ezoelectrics to substitute for the Pb based ones, and the mechanism for developing high perform-ance piezoelectrics are essentially needed.In this paper, we used a 6th order Landau-Devon-shire model to calculate the free energy for different phase coexistence situations ( single phase, two phases, three phases and four phases) .Results showed that different phase coexistence sta-tuses corresponded to different energy barriers for polarization rotation and extension: coexisted with more ferroelectric phases, the polarization rotation barrier will be lower, and coexisted with paraelectric phases, the polarization extension barrier will be extremely reduced, and different energy barriers result in different enhancement abilities for materials′piezoelectricity and permit-tivity.Experimental proofs were also provided to verify this finding .Our study clarifies the rela-tionship between phase coexistence states with its properties performance , and re-interprets po-larization rotation and extension mechanism ( a free energy view) into a simple phase coexistence scenario ( a material structure view) , which may offer a fast way to find and engineer high performance piezoelectrics .%由于铅元素有毒，研究人员正努力寻找高性能无铅压电材料以便取代含铅压电材料，因此如何开发高性能压电材料的机制就变得极为重要。此文利用6阶朗道-德文希尔模型计算了不同相共存态的自由能表达（包括单相，两相，三相以及四相共存）。通过计算结果发现，不同的相共存态对应不同的自发极化伸缩或者偏转的能垒：铁电相共存越多，则极化偏转能垒越低，而与顺电相共存，则可以极大地降低极化伸缩能垒，不同的能垒也导致了对材料压电介电性能不同的增强能力。同时，不同相共存点的实验结果也证明了这一发现。研究澄清了
Directory of Open Access Journals (Sweden)
*H. Tahir
2012-06-01
Full Text Available This paper describes graduate chemistry practical related to mutual solubility of liquids and phase coexistence. The diversity of the phase transition shows that heating produces mixing and separation. The practical consists of short experiment on the general theme of miscibility of aqueous and organic phases by varying the temperature. The phases were selected as phenol - water and nicotine- water system. The experiment was preceded by the interaction of equal quantities of phenol-water and nicotine-water at room temperature and higher temperature about 80°C. There was a change in miscibility of phases at higher temperature. At about 80°C the phenol-water mixture becomes monophasic while it is heterogeneous at room temperature. The water – phenol phase show limited miscibility below 70 °C. While the nicotine -water phases become heterogenous at higher temperature and at room temperature they were monophasic. The temperature at which these phases were merges is known as clearing temperature or cloud temperature. It lies on the liquid-liquid coexistence line. The experiment required careful observations by students at various temperatures ranges from 20oC to 100oC at the step of 20 0C and followed by result and discussions. Analysis of the data predicted that students were enjoying by working out the practical and it would be bestowing tremendously beneficial learning experience. The aim of this study was to explore the concept of the phenomenon of phase changes by varying the temperatures and can interpret macroscopic and microscopic properties of the system by relating to the thermodynamic properties. These experiments were beneficial for the isolation and separation of toxic compounds like nicotine and phenol from the waste stream. It is effective and low cost method to save the environment and ecosystem.
Dynamic Phase Compensation of wind turbines
DEFF Research Database (Denmark)
Soerensen, P.; Skaarup, J.; Iov, Florin
2004-01-01
This paper describes a dynamic phase compensation unit for a wind turbine with directly connected induction generators. The compensation unit is based on thyristor switched capacitors, where conventional wind turbine compensations use mechanical contactors to switch the capacitors. The unit modul...
Quantum phase transitions with dynamical flavors
Bea, Yago; Ramallo, Alfonso V
2016-01-01
We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.
Quantum phase transitions with dynamical flavors
Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.
2016-07-01
We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.
Dynamics of Gravity in a Higgs Phase
Arkani-Hamed, N; Luty, M A; Mukohyama, S; Wiseman, T; Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus A.; Mukohyama, Shinji; Wiseman, Toby
2007-01-01
We investigate the universal low-energy dynamics of the simplest Higgs phase for gravity, `ghost condensation.' We show that the nonlinear dynamics of the `ghostone' field dominate for all interesting gravitational sources. Away from caustic singularities, the dynamics is equivalent to the irrotational flow of a perfect fluid with equation of state p \\propto \\rho^2, where the fluid particles can have negative mass. We argue that this theory is free from catastrophic instabilities due to growing modes, even though the null energy condition is violated. Numerical simulations show that solutions generally have singularities in which negative energy regions shrink to zero size. We exhibit partial UV completions of the theory in which these singularities are smoothly resolved, so this does not signal any inconsistency in the effective theory. We also consider the bounds on the symmetry breaking scale M in this theory. We argue that the nonlinear dynamics cuts off the Jeans instability of the linear theory, and all...
Dynamics of the chiral phase transition
van Hees, H; Meistrenko, A; Greiner, C
2013-01-01
The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Contemporary research of dynamically induced phase transitions
Hull, L. M.
2017-01-01
Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions.
Energy Technology Data Exchange (ETDEWEB)
Musiał, A. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań 60-179 (Poland); Nanobiomedical Centre, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614 (Poland); Śniadecki, Z., E-mail: sniadecki@ifmpan.poznan.pl [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań 60-179 (Poland); Marcin, J.; Kováč, J.; Škorvánek, I. [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01 (Slovakia); Idzikowski, B. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznań 60-179 (Poland)
2016-04-25
Evolution of crystalline structure caused by heat treatment and its influence on magnetic properties of two melt-spun Hf{sub 2}Co{sub 11}B alloys in fully amorphous and partially crystalline states have been investigated. The as-cast ribbons were annealed in order to improve the hard magnetic properties by inducing the formation of nanocrystalline phases with high anisotropy. The X-ray diffraction and magnetic measurements confirmed the coexistence of two Hf{sub 2}Co{sub 11} phases, crystallizing in different structures, with the rhombohedral one showing hard magnetic properties. Annealing of fully amorphous alloy resulted in the lower coercive field in comparison to that of annealed partially crystalline ribbon. From the point of view of exchange coupling between magnetic phases and magnetic hardening, the optimum annealing temperature and time were determined to be 570 °C and 60 min, for partially crystalline sample. Annealing at 650 °C for 1 h leads to excess of the HfCo{sub 3}B{sub 2} phase above the critical value and results in a decrease in the coercive field. Isothermal annealing increases the magnetocrystalline anisotropy constant K{sub 1} from 7.52 for the as-quenched sample to 12.11 Merg/cm{sup 3} for the partially crystalline ribbon. The existence of quenched-in nanocrystals resulted in higher coercive fields, up to 3.23 kOe, after annealing. - Highlights: • Hf{sub 2}Co{sub 11}B rapidly quenched in two states: (i) amorphous, (ii) partially crystalline. • formation of nanocrystalline phases with high magnetic anisotropy. • high magnetocrystalline anisotropy constant K{sub 1} > 10 Merg/cm{sup 3} • coexistence of two Hf{sub 2}Co{sub 11} phases: (i) rhombohedral and (ii) orthorhombic.
Competing dynamic phases of active polymer networks
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Predicting out-of-Equilibrium Phase Behavior in the Dynamic Self-Assembly of Colloidal Crystals
Swan, James; Sherman, Zachary
Crystals self-assembled from colloidal particles are useful in an array of well demonstrated applications. During fabrication however, gelation and glassification often leave these materials arrested in defective or disordered metastable states. We show how time-dependent, pulsed interparticle interactions can avoid kinetic barriers and yield well-ordered crystalline domains for a suspension of hard, spherical colloidal particles interacting through short-range attractions. This dynamic self-assembly process is analogous to the flashing Brownian rachet. Although this is an inherently unsteady, out-of-equilibrium process, we can predict its outcome using appropriate time averages of equilibrium equations of state. The predicted phase behavior is tested and validated by examining the fluid/crystal coexistence of such dynamically self-assembling dispersions in Brownian dynamics simulations of sedimentation equilibrium and homogeneous nucleation. We also show that our dynamic self-assembly scheme offers control and tunability over the crystal growth kinetics and can even stabilize nonequilibrium structures.
Li, Lina; Chesson, Peter
2016-08-01
Hutchinson's famous hypothesis for the "paradox of the plankton" has been widely accepted, but critical aspects have remained unchallenged. Hutchinson argued that environmental fluctuations would promote coexistence when the timescale for environmental change is comparable to the timescale for competitive exclusion. Using a consumer-resource model, we do find that timescales of processes are important. However, it is not the time to exclusion that must be compared with the time for environmental change but the time for resource depletion. Fast resource depletion, when resource consumption is favored for different species at different times, strongly promotes coexistence. The time for exclusion is independent of the rate of resource depletion. Therefore, the widely believed predictions of Hutchinson are misleading. Fast resource depletion, as determined by environmental conditions, ensures strong coupling of environmental processes and competition, which leads to enhancement over time of intraspecific competition relative to interspecific competition as environmental shifts favor different species at different times. This critical coupling is measured by the covariance between environment and competition. Changes in this quantity as densities change determine the stability of coexistence and provide the key to rigorous analysis, both theoretically and empirically, of coexistence in a variable environment. These ideas apply broadly to diversity maintenance in variable environments whether the issue is species diversity or genetic diversity and competition or apparent competition.
Dynamical phase transitions in quantum mechanics
Directory of Open Access Journals (Sweden)
Rotter Ingrid
2012-02-01
Full Text Available The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points, the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model and those of highly excited nuclear states (described by random ensembles differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Directory of Open Access Journals (Sweden)
YouHua Chen
2014-03-01
Full Text Available In the present report, the coexistence and persistence time patterns of Prisoners' Dilemma game players were explored in 2D spatial grid systems by considering the impacts of the mortality-colonization temporal dynamic specifically. Our results showed that the waiting time for triggering a colonization event could remarkably influence and change the extinction patterns of both cooperators and defectors. Interestingly, a relatively high frequency of stochastic colonization events could promote the persistence of defectors but not cooperators. In contrast, a low frequency of stochastic- or constant-time colonization events could facilitate the persistence of cooperators but not defectors. However, a long waiting time would be detrimental to the survival of both game players and drives them to go extinction in faster rates. At last, it was found that colonization strength played a relatively weak role on influencing the coexistence scenarios of both game players, but should be kept small if the coexistence of game players is needed to maintain. In conclusion, our study provides evidence showing that the temporal trade-off of mortality and colonization activities would influence the evolution of PD game and the persistence of cooperators and defectors.
Dynamics of gravity in a Higgs phase
Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus A.; Mukohyama, Shinji; Wiseman, Toby
2007-01-01
We investigate the universal low-energy dynamics of the simplest Higgs phase for gravity, `ghost condensation.' We show that the nonlinear dynamics of the `ghostone' field dominate for all interesting gravitational sources. Away from caustic singularities, the dynamics is equivalent to the irrotational flow of a perfect fluid with equation of state pproptoρ2, where the fluid particles can have negative mass. We argue that this theory is free from catastrophic instabilities due to growing modes, even though the null energy condition is violated. Numerical simulations show that solutions generally have singularities in which negative energy regions shrink to zero size. We exhibit partial UV completions of the theory in which these singularities are smoothly resolved, so this does not signal any inconsistency in the effective theory. We also consider the bounds on the symmetry breaking scale M in this theory. We argue that the nonlinear dynamics cuts off the Jeans instability of the linear theory, and allows M lesssim 100 GeV.
Shebzukhova, M. A.; Shebzukhov, A. A.
2017-07-01
New relationships have been obtained in an integral form for binary systems in the case when one of the phases is dispersed (to nanometer sizes) inside another phase (matrix) in the framework of the thermodynamics of phase equilibrium, including surface phenomena. These relationships are used to construct a size-dependent phase diagram in the binary Mo-Ru system containing solid nanoparticles with bcc and hcp structures and a liquid phase in equilibrium conditions. The calculations are performed with the successive inclusion of the size dependences of the characteristics of pure components and the parameter of the interparticle interaction in the phases. The calculated results agree with the experimental data in the microscopic case.
Dynamics of two populations of phase oscillators with different frequency distributions
Terada, Yu
2014-01-01
A large variety of rhythms have been observed in nature. These rhythms can be often regarded to interact with each other, such as electroencephalogram (EEG) in the brain. To investigate the dynamical properties of such systems, in this paper, we consider two populations of phase oscillators with different frequency distributions, particularly under the condition that the average frequency of fast oscillators is almost equal to the integral multiple of that of slow oscillators. What is the most important point is that we have to use the specific type of the coupling function derived from the phase reduction theory. Under some additional assumption, moreover, we can reduce the system consisting of two populations of coupled phase oscillators to a low-dimensional system in the continuum limit. As a result, we find chimera states in which clustering and incoherent states coexist. We also confirm that the behaviors of the derived low-dimensional model fairly agree with that of the original one.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
According to the mass action law and the coexistence theory of metallic melts, the mass action concentrations of Cu-Mg, Bi-Tl and Ni-Al melts involving compound formation have been calculated. The calculated results show that, except the ultimate case of pure element, when two elements are present in the melts, all structural units (atoms and molecules) without exception will be present in the melts, i.e., their concentrations may change from great to small, but they will not vanish into nothing, and only under such conditions, the calculated results both agree with practice and obey the law of mass action. In view of that over considerable wide composition range, the activities of both elements of the three solid binary alloys mentioned above have been measured, this seems in contradiction with the present relevant phase diagrams, in which the structural units are determined by composition range, so the latter needs further investigation and consideration.
Phase transitions and their co-existence in TlGaSe2–TlCrS2(Se2) systems
Indian Academy of Sciences (India)
R G Veliyev; Mir Hasan Yu Seyidov; E M Kerimova; R Z Sadykhov; Yu G Asadov; F M Seyidov; N Z Gasanov
2013-08-01
Investigation of dielectric properties of layered compound, TlGaSe2, showed that it is a ferroelectric (c = 105.5 K) with an intermediate incommensurate phase (i = 114.5 K). Our magnetic studies of layered compounds, TlCrS2 and TlCrSe2, for the first time revealed that the magnetic phase transition in these compounds are quasi two-dimensional ferromagnetic in nature and magnetic characteristics are c = 90 K, $T^{p}_{C}$ = 115 K, eff = 3.26 B and c = 105 K, $T^{p}_{C}$ = 120 K, eff = 3.05 B, respectively. Using the method of DTA, areas of homogeneous and heterogeneous coexistence of ferroelectric and ferromagnetic phase transitions in the systems, TlGaSe2–TlCrS2 and TlGaSe2–TlCrSe2, were identified. The low-dimensional solid solutions and eutectic alloys in these systems can be used as basic materials for plenty of functional recorders.
Michael, Fredrick
2010-01-01
Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones ...
Coexistence of chaotic and non-chaotic states in the two-dimensional Gauss-Navier-Stokes dynamics
Giberti, C.; Rondoni, L.; Vernia, C.
2004-01-01
Recently, Gallavotti proposed an Equivalence Conjecture in hydrodynamics, which states that forced-damped fluids can be equally well represented by means of the Navier-Stokes equations (NS) and by means of time reversible modifications of NS called Gauss-Navier-Stokes equations (GNS). This Equivalence Conjecture received numerical support in several recent papers concerning two-dimensional fluid mechanics. The corresponding results rely on the fact that the NS and GNS systems only have one attracting set. Performing similar two-dimensional simulations, we find that there are conditions to be met by the GNS system for this to be the case. In particular, increasing the Reynolds number, while keeping fixed the number of Fourier modes, leads to the coexistence of different attractors. This makes difficult a test of the Equivalence Conjecture, but constitutes a spurious effect due to the insufficient spectral resolution. With sufficiently fine spectral resolution, the steady states are unique and the Equivalence Conjecture can be conveniently established.
Energy Technology Data Exchange (ETDEWEB)
Barilo, S.N. [Institute of Solid State and Semiconductors Physics, Minsk 220072 (Belarus). E-mail: bars at ifttp.bas-net.by; Shiryaev, S.V.; Soldatov, A.G.; Smirnova, T.V.; Gatalskaya, V.I. [Institute of Solid State and Semiconductors Physics, Minsk 220072 (Belarus); Reichardt, W. [Foschungszentrum Karlsruhe, INFP, 3640-76021, Karlsruhe (Germany); Braden, M. [Laboratoire Leon Brillouin, CE-Saclay, CEA, Cedex 91191, Gif sur Yvette (France); Szymczak, H.; Szymczak, R.; Baran, M. [Institute of Physics, PL02-668, Warsaw (Poland)
2000-08-01
We report on the seeded growth of large (up to 2 cm{sup 3}) single crystals of the cubic and orthorhombic phases of Ba{sub 1-x}K{sub x}BiO{sub 3}. The shape of the crystals varies with potassium content from a cube to a cube-octahedron shape at x{approx}0.2. The flux saturated by Bi{sub 2}O{sub 3} alone with an anode potential of +740 mV were selected to grow cubic Ba{sub 1-x}K{sub x}BiO{sub 3} crystals with x 0.67, T{sub c}{approx}4.5 K. We found that a new cubic phase (x = 0.51, a = 4.266 A) of crystals could be grown under +970 mV potential and reduced Bi{sub 2}O{sub 3} content in the flux. The crystals grown at {approx}250 deg. C acquired a cube-octahedron shape. In turn, crystals of the tetragonal Ba{sub 1.7}K{sub 1.3}Bi{sub 2}O{sub 7} phase (a = 4.25 A, c = 21.91 A) up to several mm{sup 3} in size were grown at the same temperature but lower potential and higher Bi{sub 2O}3 concentration in the flux. Surprisingly the crystals exhibited a weak superconductor-like magnetization. (author)
Directory of Open Access Journals (Sweden)
A. M. Lopes
2014-12-01
Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.
DEFF Research Database (Denmark)
Bernardino de la Serna, Jorge; Perez-Gil, Jesus; Simonsen, Adam C
2004-01-01
Pulmonary surfactant, the lipid-protein material that stabilizes the respiratory surface of the lungs, contains approximately equimolar amounts of saturated and unsaturated phospholipid species and significant proportions of cholesterol. Such lipid composition suggests that the membranes taking...... part in the surfactant structures could be organized heterogeneously in the form of inplane domains, originating from particular distributions of specific proteins and lipids. Here we report novel results concerning the lateral organization of bilayer membranes made of native pulmonary surfactant where...... of this material is naturally designed to be at the "edge" of a lateral structure transition under physiological conditions, likely providing particular structural and dynamic properties for its mechanical function. The observed lateral structure in native pulmonary surfactant membranes is dramatically affected...
Dynamic molecular structure and phase diagram of DPPC-cholesterol binary mixtures: a 2D-ELDOR study.
Chiang, Yun-Wei; Costa-Filho, Antonio J; Freed, Jack H
2007-09-27
This paper is an application of 2D electron-electron double resonance (2D-ELDOR) with the "full Sc- method" to study model membranes. We obtain and confirm the phase diagram of 1,2-dipalmitoyl-sn-glycerophosphatidylcholine (DPPC)-cholesterol binary mixtures versus temperature and provide quantitative descriptions for its dynamic molecular structure using 2D-ELDOR at the Ku band. The spectra from the end-chain 16-PC spin label in multilamellar phospholipid vesicles are obtained for cholesterol molar concentrations ranging from 0 to 50% and from 25 to 60 degrees C. This phase diagram consists of liquid-ordered, liquid-disordered, and gel phases and phase coexistence regions. The phase diagram is carefully examined according to the spectroscopic evidence, and the rigorous interpretation for the line shape changes. We show that the 2D-ELDOR spectra differ markedly with variation in the composition. The extensive line shape changes in the 2D-plus-mixing-time representation provide useful information to define and characterize the membrane phases with respect to their dynamic molecular structures and to determine the phase boundaries. The homogeneous T2's are extracted from the pure absorption spectra and are used to further distinguish the membrane phases. These results show 2D-ELDOR to be naturally suitable for probing and reporting the dynamic structures of microdomains in model membrane systems and, moreover, providing a very detailed picture of their molecular dynamic structure, especially with the aid of the "full Sc- method".
Institute of Scientific and Technical Information of China (English)
Yoshitsugu Tajima; Tamotsu Kuroki; Ryuji Tsutsumi; Ichiro Isomoto; Masataka Uetani; Takashi Kanematsu
2007-01-01
AIM: To evaluate the ability of the time-signal intensity curve (TIC) of the pancreas obtained from dynamic contrast-enhanced magnetic resonance imaging (MRI) for differentiation of focal pancreatic masses, especially pancreatic carcinoma coexisting with chronic pancreatitis and tumor-forming pancreatitis.METHODS: Forty-eight consecutive patients who underwent surgery for a focal pancreatic mass, including pancreatic ductal carcinoma (n = 33), tumor-forming pancreatitis (n = 8), and islet cell tumor (n = 7), were reviewed. Five pancreatic carcinomas coexisted with longstanding chronic pancreatitis. The pancreatic TICs were obtained from the pancreatic mass and the pancreatic parenchyma both proximal and distal to the mass lesion in each patient, prior to surgery, and were classified into 4 types according to the time to a peak: 25 s and 1, 2, and 3 min after the bolus injection of contrast material, namely, type-Ⅰ,Ⅱ,Ⅲ,and IV, respectively, and were then compared to the corresponding histological pancreatic conditions.RESULTS: Pancreatic carcinomas demonstrated type-m (n = 13) or IV (n = 20) TIC. Tumor-forming pancreatitis showed type-Ⅱ(n = 5) or Ⅲ(n = 3) TIC. All islet cell tumors revealed type-1. The type-IV TIC was only recognized in pancreatic carcinoma, and the TIC of carcinoma always depicted the slowest rise to a peak among the 3 pancreatic TICs measured in each patient, even in patients with chronic pancreatitis.CONCLUSION: Pancreatic TIC from dynamic MRI provides reliable information for distinguishing pancreatic carcinoma from other pancreatic masses, and may enable us to avoid unnecessary pancreatic surgery and delays in making a correct diagnosis of pancreatic carcinoma, especially, in patients with longstanding chronic pancreatitis.
Rubio-Marcos, Fernando; López-Juárez, Rigoberto; Rojas-Hernandez, Rocio E; del Campo, Adolfo; Razo-Pérez, Neftalí; Fernandez, Jose F
2015-10-21
Until now, lead zirconate titanate (PZT) based ceramics are the most widely used in piezoelectric devices. However, the use of lead is being avoided due to its toxicity and environmental risks. Indeed, the attention in piezoelectric devices has been moved to lead-free ceramics, especially on (K,Na)NbO3-based materials, due to growing environmental concerns. Here we report a systematic evaluation of the effects of the compositional modifications induced by replacement of the B-sites with Sb(5+) ions in 0.96[(K0.48Na0.52)0.95Li0.05Nb1-xSbxO3]-0.04[BaZrO3] lead-free piezoceramics. We show that this compositional design is the driving force for the development of the high piezoelectric properties. So, we find that this phenomenon can be explained by the stabilization of a Rhombohedral-Tetragonal (R-T) phase boundary close to room temperature, that facilities the polarization process of the system and exhibits a significantly high piezoelectric response with a d33 value as high as ∼400 pC/N, which is comparable to part soft PZTs. As a result, we believe that the general strategy and design principles described in this study open the possibility of obtaining (K,Na)NbO3-based lead-free ceramics with enhanced properties, expanding their application range.
Dynamical phase transitions in the two-dimensional ANNNI model
Energy Technology Data Exchange (ETDEWEB)
Barber, M.N.; Derrida, B.
1988-06-01
We study the phase diagram of the two-dimensional anisotropic next-nearest neighbor Ising (ANNNI) model by comparing the time evolution of two distinct spin configurations submitted to the same thermal noise. We clearly se several dynamical transitions between ferromagnetic, paramagnetic, antiphase, and floating phases. These dynamical transitions seem to occur rather close to the transition lines determined previously in the literature.
Complex phase dynamics in coupled bursters
DEFF Research Database (Denmark)
Postnov, D.E.; Sosnovtseva, Olga; Malova, S.Y.;
2003-01-01
The phenomenon of phase multistability in the synchronization of two coupled oscillatory systems typically arises when the systems individually display complex wave forms associated, for instance, with the presence of subharmonic components. Alternatively, phase multistability can be caused...
Partial dynamical symmetry at critical points of quantum phase transitions.
Leviatan, A
2007-06-15
We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.
Microtubules: dynamically unstable stochastic phase-switching polymers
Zakharov, P. N.; Arzhanik, V. K.; Ulyanov, E. V.; Gudimchuk, N. B.; Ataullakhanov, F. I.
2016-08-01
One of the simplest molecular motors, a biological microtubule, is reviewed as an example of a highly nonequilibrium molecular machine capable of stochastic transitions between slow growth and rapid disassembly phases. Basic properties of microtubules are described, and various approaches to simulating their dynamics, from statistical chemical kinetics models to molecular dynamics models using the Metropolis Monte Carlo and Brownian dynamics methods, are outlined.
Fixation-coexistence transition in spatial populations
Dall'Asta, Luca; Caccioli, Fabio; Beghè, Deborah
2013-01-01
Balancing selection is a special case of frequency-dependent selection that is known to be the major force for the maintenance of biodiversity and polymorphism in natural populations. In finite populations, genetic drift eventually drives the population to fixation to the detriment of biodiversity. The interplay between selection and genetic drift is much richer in spatially extended populations, where the local density of individuals can be low even in the limit of infinitely large systems. We consider the limit of low local density of individuals (strong genetic drift) that is well represented by a modified voter model. We show analytically the existence of a non-equilibrium phase transition between a region in which fixation always occurs and a coexistence phase for a one-dimensional system. We also provide a characterization of the dynamical properties of the system, in particular for what concerns the coarsening behavior and the speed of propagation of heterozygosity above the threshold.
Quantum Dynamics of Magnetic and Electric Dipoles and Berry's Phase
Furtado, C; Furtado, Claudio
2003-01-01
We study the quantum dynamics of neutral particle that posseses a permanent magnetic and electric dipole moments in the presence of an electromagnetic field. The analysis of this dynamics demonstrates the appearance of a quantum phase that combines the Aharonov-Casher effect and the He-Mckellar-Wilkens effect. We demonstrate that this phase is a special case of the Berry's quantum phase. A series of field configurations where this phase would be found are presented. A generalized Casella-type effect is found in one these configurations. A physical scenario for the quantum phase in an interferometric experiment is proposed.
Global minimizers of coexistence for competing species
2010-01-01
A class of variational models describing ecological systems of k species competing for the same resources is investigated. The occurrence of coexistence in minimal energy solutions is discussed and positive results are proven for suitably differentiated internal dynamics.
Dynamic characteristics of an NC table with phase space reconstruction
Institute of Scientific and Technical Information of China (English)
Linhong WANG; Bo WU; Runsheng DU; Shuzi YANG
2009-01-01
The dynamic properties of a numerical control (NC) table directly interfere with the accuracy and surface quality of work pieces machined by a computer numerical control (CNC) machine. Phase space reconstruction is an effective approach for researching dynamic behaviors of a system with measured time series. Based on the theory and method for phase space reconstruction, the correlation dimension, maximum Lyapunov exponent, and dynamic time series measured from the NC table were analyzed. The characteristic quantities such as the power spectrum, phase trajectories, correlation dimension, and maximum Lyapunov exponent are extracted from the measured time series. The chaotic characteristic of the dynamic properties of the NC table is revealed via various approaches.Therefore, an NC table is a nonlinear dynamic system. This research establishes a basis for dynamic system discrimi-nation of a CNC machine.
Windowed phase unwrapping using a first-order dynamic system following iso-phase contours.
Estrada, Julio C; Vargas, Javier; Flores-Moreno, J Mauricio; Quiroga, J Antonio
2012-11-01
In this work, we show a windowed phase-unwrapping technique that uses a first-order dynamic system and scans the phase following its iso-phase contours. In previous works, we have shown that low-pass first-order dynamic systems are very robust and useful in phase-unwrapping problems. However, it is well known that all phase-unwrapping methods have a minimum signal-to-noise ratio that they tolerate. This paper shows that scanning the phase within local windows and using a path following strategy, the first-order unwrapping method increases its tolerance to noise. In this way, using the improved approach, we can unwrap phase maps where the basic dynamic phase-unwrapping system fails. Tests and results are given, as well as the source code in order to show the performance of the proposed method.
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
A Dynamic and Heuristic Phase Balancing Method for LV Feeders
Directory of Open Access Journals (Sweden)
Samad Taghipour Boroujeni
2016-01-01
Full Text Available Due to the single-phase loads and their stochastic behavior, the current in the distribution feeders is not balanced. In addition, the single-phase loads are located in different positions along the LV feeders. So the amount of the unbalanced load and its location affect the feeder losses. An unbalanced load causes the feeder losses and the voltage drop. Because of time-varying behavior of the single-phase loads, phase balancing is a dynamic and combinatorial problem. In this research, a heuristic and dynamic solution for the phase balancing of the LV feeders is proposed. In this method, it is supposed that the loads’ tie could be connected to all phases through a three-phase switch. The aim of the proposed method is to make the feeder conditions as balanced as possible. The amount and the location of single-phase loads are considered in the proposed phase balancing method. Since the proposed method needs no communication interface or no remote controller, it is inexpensive, simple, practical, and robust. Applying this method provides a distributed and dynamic phase balancing control. In addition, the feasibility of reducing the used switches is investigated. The ability of the proposed method in the phase balancing of the LV feeders is approved by carrying out some simulations.
Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao
2015-06-24
A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.
Phase Space Structures of k-threshold Sequential Dynamical Systems
Rani, Raffaele
2011-01-01
Sequential dynamical systems (SDS) are used to model a wide range of processes occurring on graphs or networks. The dynamics of such discrete dynamical systems is completely encoded by their phase space, a directed graph whose vertices and edges represent all possible system configurations and transitions between configurations respectively. Direct calculation of the phase space is in most cases a computationally demanding task. However, for some classes of SDS one can extract information on the connected component structure of phase space from the constituent elements of the SDS, such as its base graph and vertex functions. We present a number of novel results about the connected component structure of the phase space for k-threshold dynamical system with binary state spaces. We establish relations between the structure of the components, the threshold value, and the update sequence. Also fixed-point reachability from garden of eden configurations is investigated and upper bounds for the length of paths in t...
Phase diagrams of block copolymer melts by dissipative particle dynamics simulations.
Gavrilov, Alexey A; Kudryavtsev, Yaroslav V; Chertovich, Alexander V
2013-12-14
Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length. For two other copolymer types, the continuous ODTs are observed. Large polydispersity of both blocks obeying the Flory distribution in length does not shift the ODT curve but considerably narrows the domains of the cylindrical and lamellar phases partially replacing them with the wormlike micelle and perforated lamellar phases, respectively. Instead of the pure 3d-bicontinuous phase in monodisperse diblocks, which could be identified as the gyroid, a coexistence of the 3d phase and cylindrical micelles is detected in polydisperse diblocks. The lamellar domain spacing D in monodisperse diblocks follows the strong-segregation theory prediction, D∕N(1∕2) ~ (χN)(1∕6), whereas in polydisperse diblocks it is almost independent of χN at χN < 100. Completely random multiblock copolymers cannot form ordered microstructures other than lamellas at any composition.
Design of multi-phase dynamic chemical networks
Chen, Chenrui; Tan, Junjun; Hsieh, Ming-Chien; Pan, Ting; Goodwin, Jay T.; Mehta, Anil K.; Grover, Martha A.; Lynn, David G.
2017-08-01
Template-directed polymerization reactions enable the accurate storage and processing of nature's biopolymer information. This mutualistic relationship of nucleic acids and proteins, a network known as life's central dogma, is now marvellously complex, and the progressive steps necessary for creating the initial sequence and chain-length-specific polymer templates are lost to time. Here we design and construct dynamic polymerization networks that exploit metastable prion cross-β phases. Mixed-phase environments have been used for constructing synthetic polymers, but these dynamic phases emerge naturally from the growing peptide oligomers and create environments suitable both to nucleate assembly and select for ordered templates. The resulting templates direct the amplification of a phase containing only chain-length-specific peptide-like oligomers. Such multi-phase biopolymer dynamics reveal pathways for the emergence, self-selection and amplification of chain-length- and possibly sequence-specific biopolymers.
Jiang, Nan; Chiang, Naihao; Madison, Lindsey R; Pozzi, Eric A; Wasielewski, Michael R; Seideman, Tamar; Ratner, Mark A; Hersam, Mark C; Schatz, George C; Van Duyne, Richard P
2016-06-08
Nanoscale chemical imaging of a dynamic molecular phase boundary has broad implications for a range of problems in catalysis, surface science, and molecular electronics. While scanning probe microscopy (SPM) is commonly used to study molecular phase boundaries, its information content can be severely compromised by surface diffusion, irregular packing, or three-dimensional adsorbate geometry. Here, we demonstrate the simultaneous chemical and structural analysis of N-N'-bis(2,6-diisopropylphenyl)-1,7-(4'-t-butylphenoxy)perylene-3,4:9,10-bis(dicarboximide) (PPDI) molecules by UHV tip-enhanced Raman spectroscopy. Both condensed and diffusing domains of PPDI coexist on Ag(100) at room temperature. Through comparison with time-dependent density functional theory simulations, we unravel the orientation of PPDI molecules at the dynamic molecular domain boundary with unprecedented ∼4 nm spatial resolution.
A stochastic phase-field model determined from molecular dynamics
von Schwerin, Erik
2010-03-17
The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.
Photorefractive dynamic holography using self-pumped phase conjugate beam
Indian Academy of Sciences (India)
Arun Anand; C S Narayanamurthy
2006-03-01
Dynamic holography in photorefractive materials using self-pumped phase conjugate beam of the object beam itself as the other writing beam is proposed. Our detailed theoretical analysis shows four-fold increase in the diffraction efficiency of dynamic holograms if recorded using this geometry even in photorefractive crystal like BTO (having low optical activity) without applying external field. Detailed theoretical analysis is given.
van der Maaten, Ernst; Pape, Jonas; van der Maaten Theunissen, Marieke; Scharnweber, Tobias; Smiljanic, Marko; Wilmking, Martin
2016-04-01
Dendrometers are measurement devices that continuously monitor stem-size changes of trees without invasive sampling of the cambium. Dendrometers record both irreversible tree growth as well as reversible signals of stem water storage and depletion, making them important tools for studying tree water status, tree physiology and short-term growth responses of trees to weather fluctuations. In this study, a three-year dendrometer dataset (2013-2015) is used to study seasonal growth dynamics and daily stem-size changes of three coexisting broadleaved tree species (common hornbeam (Carpinus betulus L.), European beech (Fagus sylvatica L.), and pedunculate oak (Quercus robur L.)), growing in an unmanaged forest in northeastern Germany. Seasonal growth patterns (i.e. growth onset, cessation and duration) are analyzed in relation to environmental conditions, and forest meteorological factors driving daily stem-size changes are identified. Following dry conditions in 2014, especially the growth of beech was reduced. Oak was less affected, and displayed a distinct early growth onset for all study years.
Dynamics and phase transitions in A 1C 60 compounds
Schober, H.; Renker, B.; Heid, R.; Tölle, A.
1997-02-01
We present an overview of extensive inelastic neutron scattering experiments carried out on powders of A 1C 60. The various phases leave strong fingerprints in the microscopic dynamics confirming the solid-state chemical reactions. The strong kinetic phase transitions can be followed in real time and turn out to be highly complex.
Relaxation towards phase-locked dynamics in long Josephson junctions
DEFF Research Database (Denmark)
Salerno, M.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm
1995-01-01
We study the relaxation phenomenon towards phase-locked dynamics in long Josephson junctions. In particular the dependence of the relaxation frequency for the equal time of flight solution on the junction parameters is derived. The analysis is based on a phase-locked map and is compared with dire...
Dynamic FLIR Target Acquisition. Phase I.
1978-08-02
eas re: e r- tecr- ’t(, es will be ised for the Phase st Cy. 5.3.2 :ae Vnar -oles These v~r ies relate to the im.age characteristics which are...ground target detection and identification, TM 1-62, Aberdeen Proving Grounds, MD: Human Engineering Laboratories, Jan. 1962, (AD273696). Nygaand, J. E
The Dynamics of Coupled Oscillator Phase Control
Pogorzelski, R. J.; Maccarini, P. F.; York, R. A.
1998-01-01
Arrays of coupled oscillators have been proposed as means of realizing high power rf sources via coherent spatial power combining. In such applications, a uniform phase distribution over the aperture is usually desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Of particular interest among those achievable are linear phase distributions because these result in steering of the output rf beam away from the broadside direction. The theory describing the behavior of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. However, a simplified theory has been developed which facilitates intuitive understanding. This simplified theory is based on a "continuum model" in which the aperture phase is represented by a continuous function of the aperture coordinates. A challenging aspect of the development of this theory is the derivation of appropriate boundary conditions at the edges or ends of the array.
Neuron-like dynamics of a phase-locked loop
Matrosov, Valery V.; Mishchenko, Mikhail A.; Shalfeev, Vladimir D.
2013-10-01
Dynamics of two coupled phase-controlled generators based on phase-locked loop systems with a high frequency filter in the control loop was studied. It was found that beating modes are synchronized in the systems and shown that different synchronization states form an overlapping structure in parameters space of the coupled systems. Usage of the phase-locked loop as a neuron-like element is proposed.
Kuila, Atanu; Maity, Nabasmita; Chatterjee, Dhruba P; Nandi, Arun K
2016-03-10
A thermoresponsive polymer poly(diethylene glycol methyl ether methacrylate) (PMeO2MA) is grafted from poly(vinylidene fluoride) (PVDF) backbone by using a combined ATRC and ATRP technique with a high conversion (69%) of the monomer to produce the graft copolymer (PD). It is highly soluble polymer and its solution property is studied by varying polarity in pure solvents (water, methanol, isopropanol) and also in mixed solvents (water-methanol and water-isopropanol) by measuring the hydrodynamic size (Z-average) of the particles by dynamic light scattering (DLS). The variation of Z-average size with temperature of the PD solution (0.2%, w/v) indicates a lower critical solution temperature (LCST)-type phase transition (T(PL)) in aqueous medium, an upper critical solution temperature (UCST)-type phase transition (T(PU)) in isopropanol medium, and no such phase transition for methanol solution. In the mixed solvent (water + isopropanol) at 0-20% (v/v) isopropanol the TPL increases, whereas the T(PU) decreases at 92-100% with isopropanol content. For the mixture 20-90% isopropanol, PD particles having larger sizes (400-750 nm) exhibit neither any break in Z-average size-temperature plot nor any cloudiness, indicating their dispersed swelled state in the medium. In the methanol + water mixture with methanol content of 0-30%, T(PL) increases, and at 40-60% both UCST- and LCST-type phase separations occur simultaneously, but at 70-90% methanol the swelled state of the particles (size 250-375 nm) is noticed. For 50 vol % methanol by varying polymer concentration (0.07-0.2% w/v) we have drawn a quasibinary phase diagram that indicates an approximate inverted hourglass phase diagram where a swelled state exists between two single phase boundary produced from LCST- and UCST-type phase transitions. An attempt is made to understand the phase separation process by temperature-dependent (1)H NMR spectroscopy along with transmission electron microscopy.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Dynamical and non-additive atomic van der Waals phases
Impens, François; Neto, Paulo A Maia
2013-01-01
We investigate dynamical corrections to the van der Waals phase induced by the non-unitary evolution of atomic waves propagating near a perfectly conducting surface. These corrections reflect the interplay between field retardation effects and the dynamics of the external atomic degrees of freedom. The dynamical atom-surface interaction phase shift contains both local and non-local contributions. We derive the local contributions and show that they are equivalent to coarse-graining the instantaneous van der Waals potential over the time scale corresponding to the round-trip travel time of light between atom and surface. We show that the non-local phase contributions are non-additive, and propose to use this property in a multiple-path van der Waals interferometer in order to isolate them from the standard (and much larger) quasi-static van der Waals phase.
Dynamical phase diagram of Gaussian wave packets in optical lattices
Hennig, H.; Neff, T.; Fleischmann, R.
2016-03-01
We study the dynamics of self-trapping in Bose-Einstein condensates (BECs) loaded in deep optical lattices with Gaussian initial conditions, when the dynamics is well described by the discrete nonlinear Schrödinger equation (DNLSE). In the literature an approximate dynamical phase diagram based on a variational approach was introduced to distinguish different dynamical regimes: diffusion, self-trapping, and moving breathers. However, we find that the actual DNLSE dynamics shows a completely different diagram than the variational prediction. We calculate numerically a detailed dynamical phase diagram accurately describing the different dynamical regimes. It exhibits a complex structure that can readily be tested in current experiments in BECs in optical lattices and in optical waveguide arrays. Moreover, we derive an explicit theoretical estimate for the transition to self-trapping in excellent agreement with our numerical findings, which may be a valuable guide as well for future studies on a quantum dynamical phase diagram based on the Bose-Hubbard Hamiltonian.
Watanabe, Y; Awaji, S; Watanabe, K; Fujishiro, H; Ikebe, M
2003-01-01
X-ray diffraction measurements under high and low temperature, and magnetic field have been performed for the doped La sub 1 sub - sub x Ca sub x MnO sub 3 sub + subdelta polycrystals to clarify the coexistent phases and their structures around the composition of x - 0.5. By measurements at high temperature, the transition from a Pnma to an Imma space group symmetry phase has been firstly observed in this system at the temperature between 500degC and 600degC. At low temperature, the importance of the measurement of (131) reflection is noticed and the phase fraction of two similar Pnma phases with ferromagnetic and anti-ferromagnetic states is determined. It is found that the application of the magnetic field by 5 T and the slight change of the composition x by 0.02 remarkably affect this phase fraction. (author)
Phase Separation Dynamics in Isotropic Ion-Intercalation Particles
Zeng, Yi
2013-01-01
Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to...
Spin Dynamics in an Ordered Stripe Phase
Tranquada, J. M.; Wochner, P.; Buttrey, D. J.
1997-09-01
Inelastic neutron scattering has been used to measure the low-energy spin excitations in the ordered charge-stripe phase of La2NiO4+δ with δ = 0.133. Spin-wave-like excitations disperse away from the incommensurate magnetic superlattice points with a velocity ~60% of that in the δ = 0 compound. Incommensurate inelastic peaks remain well resolved up to at least twice the magnetic ordering temperature. Paramagnetic scattering from a δ = 0.105 sample, which has a Néel-ordered ground state, shows anomalies suggestive of incipient stripe correlations. Similarities between these results and measurements on superconducting cuprates are discussed.
Phase multistability in a dynamical small world network
Energy Technology Data Exchange (ETDEWEB)
Shabunin, A. V., E-mail: shabuninav@info.sgu.ru [Radiophysics and Nonlinear Dynamics Department, Saratov State University, Saratov (Russian Federation)
2015-01-15
The effect of phase multistability is explored in a small world network of periodic oscillators with diffusive couplings. The structure of the network represents a ring with additional non-local links, which spontaneously arise and vanish between arbitrary nodes. The dynamics of random couplings is modeled by “birth” and “death” stochastic processes by means of the cellular automate approach. The evolution of the network under gradual increasing of the number of random couplings goes through stages of phases fluctuations and spatial cluster formation. Finally, in the presence of non-local couplings the phase multistability “dies” and only the in-phase regime survives.
Information Dynamics at a Phase Transition
Sowinski, Damian
2016-01-01
We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and processing of information is maximized at criticality.
Information Dynamics at a Phase Transition
Sowinski, Damian; Gleiser, Marcelo
2017-03-01
We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and fidelity of information processing is maximized at criticality.
Geometry and Dynamics of Vortex Loops at Superfluid Phase Transitions
Williams, Gary A.
2004-03-01
The geometrical properties of thermally-excited vortex loops near a superfluid phase transition can be deduced from the dynamics of the transition. The frictional force on a loop is proportional to the total length of the vortex core, and hence depends on the fractal Hausdorff dimension DH of the random-walking core. By comparing the results for the loop dynamics with the dynamic-scaling predictions of Halperin and Hohenberg for the relaxation time, we find DH = (D+2)/2 = 2.5 in D = 3 dimensions, if the dynamic exponent is z = D/2. Computing the frequency-dependence of the superfluid density and comparing with the dynamic scaling of Fisher, Fisher, and Huse gives just the same value. Since Shenoy and co-workers have found precisely the same DH from a Flory-scaling analysis of the loop random walk, our results show that Shenoy's theory is exact if dynamic scaling is exact.
Synchronization and Phase Dynamics of Oscillating Foils
Finkel, Cyndee L.
In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is
Phase dynamics of high radiance fiber laser arrays with active phase control
Bochove, Erik; Neschke, Brendan; Nair, Niketh; Delgado, Paul; Braiman, Yehuda
2015-03-01
The existing model of the LOCSET technique for the active phase synchronization of fiber laser arrays (T. Shay, Opt. Express, 2006) is extended to include relevant physical properties of the system, such as inherent optical path differences (OPD), line-width and group velocity dispersion (GVD), and we also include phase "jitter" of the master oscillator's output in the model, which in experiments is implemented to induce spectral broadening for suppression of nonlinear frequency conversion. Linearization of the phase error signal, which incorrectly predicts convergence to a synchronous equilibrium state, is not performed. Instead, the closed-loop control dynamics are shown to be described by differential equations of Kuramoto type when phase corrector response dynamics are negligible. Linear stability analysis indicates that there is always one and no more than one dynamically stable state. The latter is shown to be normally synchronous, except when strong "jitter" is applied. A Liapounov function is found as subject to the validity of certain symmetry conditions.
Zhang, Li; Meng, Yue; Mao, Ho-kwang
2016-12-01
Multigrain X-ray diffraction (XRD) can be used to accurately calculate the unit cell parameters of individual mineral phases in a mineral assemblage contained in a diamond anvil cell (DAC). Coexisting post-perovskite (ppv) and H-phase were synthesized at 119 GPa and 2500 K from (Mg0.85Fe0.15)SiO3 in a laser-heated DAC. The unit cell parameters of the ppv and coexisting H-phase were determined using multigrain XRD with a 5 μm spatial resolution, close to the size of the X-ray beam, to understand compositional variations across the center area (20-30 μm) in a laser-heated sample. The ppv phase was Fe-depleted and the unit cell volume of ppv decreased by only 0.16 % (corresponding to ~3 % variation of FeSiO3) from the heating center to 10 μm off the center, while the sample pressure remained at 119 GPa in a Ne quasi-hydrostatic environment. The unit cell volume of the H-phase decreased by 0.54 % (~10 % variation of FeSiO3 content) over the same 10 μm distance. Both phases were more Fe-enriched in the slightly hotter center. This observation suggests that thermal diffusion may not be the major driver for the compositional variations of ppv and H-phase in the center portion of a laser-heated sample. Instead, these variations could be caused by a temperature effect on the partitioning between the ppv and H-phase over the small gradient.
Energy Technology Data Exchange (ETDEWEB)
Bhowmik, R.N., E-mail: rnbhowmik.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 (India); Panda, Manas Ranjan [Department of Physics, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 (India); Yusuf, S.M.; Mukadam, M.D. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sinha, A.K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)
2015-10-15
The spinel oxide Co{sub 2.25}Fe{sub 0.75}O{sub 4} has been prepared by co-precipitation route. The as prepared material has been annealed at 800 °C under vacuum. Properties of the samples annealed under vacuum have been compared with the sample annealed in air. Synchrotron X-ray diffraction, Raman spectroscopy and X-ray absorption near edge structure spectroscopy have been used for structural phase characterization. The cubic spinel structure in air annealed sample has been splitted into Co and Fe rich phases. The Co rich spinel phase has transformed into Cobalt monoxide (CoO) after vacuum annealing. This has resulted an increase of Fe:Co ratio in the Fe rich spinel phase. Raman spectra indicated a transformation of the distribution of Co and Fe ions from normal spinel like structure for the sample annealed in air to mixed spinel structure for the samples annealed under vacuum. The existence tetravalent Fe{sup 4+} ion has been confirmed in all the samples and it is new information for Co doped spinel ferrite system. All the samples exhibited ferrimagnetic behavior and exchange bias effect. The focus point is that vacuum annealing has been used as an effective route of material processing to control the structural phase and also, enhancement of magnetic properties in Co rich ferrite. - Graphical abstract: M(H) loop of vacuum annealed CoFe8V4 samples (a-e) and air annealed CoFe8A4 sample (f-g) at selected measurement temperatures. The variation of exchange bias field with temperatures for both the samples (h). - Highlights: • Structure and ferrimagnetic properties of Co{sub 2.25}Fe{sub 0.75}O{sub 4} have been reported. • Self-composite structure of material has been tailored by vacuum annealing. • Synchrotron X-ray diffraction and XANES have been used for characterization. • The existence tetravalent Fe{sup 4+} ions in ferrite structure is a new information. • The coexistence of CoO gives a great opportunity for tuning ferrimagnetic parameters.
Dynamic Range Analysis of the Phase Generated Carrier Demodulation Technique
Directory of Open Access Journals (Sweden)
M. J. Plotnikov
2014-01-01
Full Text Available The dependence of the dynamic range of the phase generated carrier (PGC technique on low-pass filters passbands is investigated using a simulation model. A nonlinear character of this dependence, which could lead to dynamic range limitations or measurement uncertainty, is presented for the first time. A detailed theoretical analysis is provided to verify the simulation results and these results are consistent with performed calculations. The method for the calculation of low-pass filters passbands according to the required dynamic range upper limit is proposed.
Energy Technology Data Exchange (ETDEWEB)
Hall,G.E.; Sears, T.J.
2009-04-03
This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopy, augmented by theoretical and computational methods, is used to investigate the structure and collision dynamics of chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry. Applications and methods development are equally important experimental components of this work.
Phase-space approach to multi-population dynamics
Budko, Neil V
2015-01-01
Simultaneous deterministic dynamics of multiple populations described by a large set of ODE's is considered in the phase space of population sizes and ODE's parameters. The problem is formulated as a multidimensional phase-space conservation law and is solved explicitly for non-interacting multi-population models. Solutions for populations competing for a limited resource and populations with migration are obtained by simple iterative methods. The proposed approach also allows considering phase-space interaction between populations, which is intractable by other methods.
Capaccioli, S; Ngai, K L; Ancherbak, S; Paciaroni, A
2012-02-16
Mössbauer spectroscopy and neutron scattering measurements on proteins embedded in solvents including water and aqueous mixtures have emphasized the observation of the distinctive temperature dependence of the atomic mean square displacements, , commonly referred to as the dynamic transition at some temperature T(d). At low temperatures, increases slowly, but it assumes stronger temperature dependence after crossing T(d), which depends on the time/frequency resolution of the spectrometer. Various authors have made connection of the dynamics of solvated proteins, including the dynamic transition to that of glass-forming substances. Notwithstanding, no connection is made to the similar change of temperature dependence of obtained by quasielastic neutron scattering when crossing the glass transition temperature T(g), generally observed in inorganic, organic, and polymeric glass-formers. Evidences are presented here to show that such a change of the temperature dependence of from neutron scattering at T(g) is present in hydrated or solvated proteins, as well as in the solvent used, unsurprisingly since the latter is just another organic glass-former. If unaware of the existence of such a crossover of at T(g), and if present, it can be mistaken as the dynamic transition at T(d) with the ill consequences of underestimating T(d) by the lower value T(g) and confusing the identification of the origin of the dynamic transition. The obtained by neutron scattering at not so low temperatures has contributions from the dissipation of molecules while caged by the anharmonic intermolecular potential at times before dissolution of cages by the onset of the Johari-Goldstein β-relaxation or of the merged α-β relaxation. The universal change of at T(g) of glass-formers, independent of the spectrometer resolution, had been rationalized by sensitivity to change in volume and entropy of the dissipation of the caged molecules and its contribution to . The same rationalization applies
Dynamic phase response and amplitude-phase coupling of self-assembled semiconductor quantum dots
Lingnau, Benjamin; Herzog, Bastian; Kolarczik, Mirco; Woggon, Ulrike; Lüdge, Kathy; Owschimikow, Nina
2017-06-01
The optical excitation of semiconductor gain media introduces both gain and refractive index changes, commonly referred to as amplitude-phase coupling. Quantum-confined structures with an energetically well separated carrier reservoir usually exhibit a decreased amplitude-phase coupling compared to bulk materials. However, its magnitude and definition is still controversially discussed. We investigate the fundamental processes influencing the amplitude-phase coupling in semiconductor quantum-dot media using a coupled-carrier rate-equation model. We are able to analyze the dependence on the electronic structure and suggest routes towards an optimization of the dynamic phase response of the gain material.
Two Paths Diverged: Exploring Trajectories, Protocols, and Dynamic Phases
Gingrich, Todd Robert
-dimensional state space, the trajectory space may also be analytically studied using methods of large deviation theory. We review these methods and introduce a simple class of dynamical models whose dynamical fluctuations we compute exactly. The simplest such model is an asymmetric random walker on a one-dimensional ring with a single heterogeneous link connecting two sites of the ring. We derive conditions for the existence of a dynamic phase transition, which separates two dynamical phases---one localized and the other delocalized. The presence of distinct classes trajectories results in profoundly non-Gaussian fluctuations in dynamical quantities. We discuss the implications of such large dynamical fluctuations in the context of simple stochastic models for biological growth.
Unified rotational dynamics of molecular crystals with orientational phase transition
Michel, K.H.; Raedt, H. De
1976-01-01
A unified theory for the rotational dynamics of molecular crystals with orientational phase transitions is given. As basic secular variables one takes symmetry adapted functions, which describe the molecular orientations, and the angular momenta of the molecules. Using Mori’s projection operator tec
GAS PHASE MOLECULAR DYNAMICS: HIGH-RESOLUTION SPECTROSCOPIC PROBES OF CHEMICAL DYNAMICS.
Energy Technology Data Exchange (ETDEWEB)
HALL, G.E.
2006-05-30
This research is carried out as part of the Gas Phase Molecular Dynamics group program in the Chemistry Department at Brookhaven National Laboratory. High-resolution spectroscopic tools are developed and applied to problems in chemical dynamics. Recent topics have included the state-resolved studies of collision-induced electronic energy transfer, dynamics of barrierless unimolecular reactions, and the kinetics and spectroscopy of transient species.
Damage Characteristic of Interpenetrating Phase Composites under Dynamic Loading
Institute of Scientific and Technical Information of China (English)
WANG Fuchi; ZHANG Xu; WANG Yangwei; WANG Lu; MA Zhuang; FAN Qunbo
2014-01-01
In order to investigate the damage characteristic of ceramic-metal interpenetrating phase composite (IPC) under dynamic loading, uniaxial dynamic compression was performed to characterize the failure of SiC/Al composite with 15%porosity using a modified Split Hopkinson Pressure Bar (SHPB). High speed photography was used to capture the failure procedure and set up the relationship between deformation and real stress. The deformation control technology was used to obtain collected samples in different deformations under dynamic loading. Micro CT technology was utilized to acquire real damage distribution of these specimens. Moreover, SEM was employed in comparing the damage characteristics in IPC. A summary of the available experimental results showed that IPC without lateral confinement formed double cones. The different features compared with ceramic materials without restraint was shown to be the result of the lateral restraint effect provided by metal phase to ceramics skeleton.
Scaling and Universality at Dynamical Quantum Phase Transitions.
Heyl, Markus
2015-10-02
Dynamical quantum phase transitions (DQPTs) at critical times appear as nonanalyticities during nonequilibrium quantum real-time evolution. Although there is evidence for a close relationship between DQPTs and equilibrium phase transitions, a major challenge is still to connect to fundamental concepts such as scaling and universality. In this work, renormalization group transformations in complex parameter space are formulated for quantum quenches in Ising models showing that the DQPTs are critical points associated with unstable fixed points of equilibrium Ising models. Therefore, these DQPTs obey scaling and universality. On the basis of numerical simulations, signatures of these DQPTs in the dynamical buildup of spin correlations are found with an associated power-law scaling determined solely by the fixed point's universality class. An outlook is given on how to explore this dynamical scaling experimentally in systems of trapped ions.
Geometrical Models of the Phase Space Structures Governing Reaction Dynamics
Waalkens, Holger
2009-01-01
Hamiltonian dynamical systems possessing equilibria of ${saddle} \\times {centre} \\times...\\times {centre}$ stability type display \\emph{reaction-type dynamics} for energies close to the energy of such equilibria; entrance and exit from certain regions of the phase space is only possible via narrow \\emph{bottlenecks} created by the influence of the equilibrium points. In this paper we provide a thorough pedagogical description of the phase space structures that are responsible for controlling transport in these problems. Of central importance is the existence of a \\emph{Normally Hyperbolic Invariant Manifold (NHIM)}, whose \\emph{stable and unstable manifolds} have sufficient dimensionality to act as separatrices, partitioning energy surfaces into regions of qualitatively distinct behavior. This NHIM forms the natural (dynamical) equator of a (spherical) \\emph{dividing surface} which locally divides an energy surface into two components (`reactants' and `products'), one on either side of the bottleneck. This di...
Indian Academy of Sciences (India)
S Sarkar; C V Tomy; A D Thakur; G Balakrishnan; D McK Paul; S Ramakrishnan; A K Grover
2006-01-01
We have studied metastability effects pertaining to the peak effect (PE) in critical current density (c) via isofield scans in AC susceptibility measurements in a weakly pinned single crystal of Yb3Rh4Sn13 (c(0) ≈ 7.6 K). The order-disorder transition in this specimen proceeds in a multi-step manner. The phase coexistence regime between the onset temperature of the PE and the spinodal temperature (where metastability effects cease) seems to comprise two parts, where ordered and disordered regions dominate the bulk behavior, respectively. The PE line in the vortex phase diagram is argued to terminate at the low field end at a critical point in the elastic (Bragg) glass phase.
Asymmetric dynamic phase holographic grating in nematic liquid crystal
Ren, Chang-Yu; Shi, Hong-Xin; Ai, Yan-Bao; Yin, Xiang-Bao; Wang, Feng; Ding, Hong-Wei
2016-09-01
A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal (NLC) was presented. An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating. The diffraction efficiency we achieved is more than 40%, exceeding the theoretical limit for symmetric profile gratings. Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC. Finally, physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented, based on the photo-refractive-like (PR-like) effect. Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province, China (Grant No. 12541730) and the National Natural Science Foundation of China (Grant No. 61405057).
Dynamic Heterogeneity In The Monoclinic Phase Of CCl$_4$
Caballero, Nirvana B; Carignano, Marcelo; Serra, Pablo
2016-01-01
Carbon tetrachloride (CCl$_4$) is one of the simplest compounds having a translationally stable monoclinic phase while exhibiting a rich rotational dynamics below 226 K. Recent nuclear quadrupolar resonance (NQR) experiments revealed that the dynamics of CCl$_4$ is similar to that of the other members of the isostructural series CBr$_{n}$Cl$_{4-n}$, suggesting that the universal relaxation features of canonical glasses such as $\\alpha$- and $\\beta$-relaxation are also present in non-glass formers. Using molecular dynamics (MD) simulations we studied the rotational dynamics in the monoclinic phase of CCl$_4$. The molecules undergo $C3$ type jump-like rotations around each one of the four C-Cl bonds. The rotational dynamics is very well described with a master equation using as the only input the rotational rates measured from the simulated trajectories. It is found that the heterogeneous dynamics emerges from faster and slower modes associated with different rotational axes, which have fixed orientations relat...
Linking metacommunity paradigms to spatial coexistence mechanisms.
Shoemaker, Lauren G; Melbourne, Brett A
2016-09-01
Four metacommunity paradigms-usually called neutral, species sorting, mass effects, and patch dynamics, respectively-are widely used for empirical and theoretical studies of spatial community dynamics. The paradigm framework highlights key ecological mechanisms operating in metacommunities, such as dispersal limitation, competition-colonization tradeoffs, or species equivalencies. However, differences in coexistence mechanisms between the paradigms and in situations with combined influences of multiple paradigms are not well understood. Here, we create a common model for competitive metacommunities, with unique parameterizations for each metacommunity paradigm and for scenarios with multiple paradigms operating simultaneously. We derive analytical expressions for the strength of Chesson's spatial coexistence mechanisms and quantify these for each paradigm via simulation. For our model, fitness-density covariance, a concentration effect measuring the importance of intraspecific aggregation of individuals, is the dominant coexistence mechanism in all three niche-based metacommunity paradigms. Increased dispersal between patches erodes intraspecific aggregation, leading to lower coexistence strength in the mass effects paradigm compared to species sorting. Our analysis demonstrates the potential importance of aggregation of individuals (fitness-density covariance) over co-variation in abiotic environments and competition between species (the storage effect), as fitness-density covariance can be stronger than the storage effect and is the sole stabilizing mechanism in the patch dynamics paradigm. As expected, stable coexistence does not occur in the neutral paradigm, which requires species to be equal and emphasizes the role of stochasticity. We show that stochasticity also plays an important role in niche-structured metacommunities by altering coexistence strength. We conclude that Chesson's spatial coexistence mechanisms provide a flexible framework for comparing
Dynamic scaling at classical phase transitions approached through nonequilibrium quenching
Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W.
2014-02-01
We use Monte Carlo simulations to demonstrate generic scaling aspects of classical phase transitions approached through a quench (or annealing) protocol where the temperature changes as a function of time with velocity v. Using a generalized Kibble-Zurek ansatz, we demonstrate dynamic scaling for different types of stochastic dynamics (Metropolis, Swendsen-Wang, and Wolff) on Ising models in two and higher dimensions. We show that there are dual scaling functions governing the dynamic scaling, which together describe the scaling behavior in the entire velocity range v ∈[0,∞). These functions have asymptotics corresponding to the adiabatic and diabatic limits, and close to these limits they are perturbative in v and 1/v, respectively. Away from their perturbative domains, both functions cross over into the same universal power-law scaling form governed by the static and dynamic critical exponents (as well as an exponent characterizing the quench protocol). As a by-product of the scaling studies, we obtain high-precision estimates of the dynamic exponent z for the two-dimensional Ising model subject to the three variants of Monte Carlo dynamics: for single-spin Metropolis updates zM=2.1767(5), for Swendsen-Wang multicluster updates zSW=0.297(3), and for Wolff single-cluster updates zW=0.30(2). For Wolff dynamics, we find an interesting behavior with a nonanalytic breakdown of the quasiadiabatic and diabatic scalings, instead of the generic smooth crossover described by a power law. We interpret this disconnect between the two scaling regimes as a dynamic phase transition of the Wolff algorithm, caused by an effective sudden loss of ergodicity at high velocity.
Dynamical symmetries and causality in non-equilibrium phase transitions
Henkel, Malte
2015-01-01
Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions
Directory of Open Access Journals (Sweden)
Malte Henkel
2015-11-01
Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.
Study of dynamic strain aging in dual phase steel
Energy Technology Data Exchange (ETDEWEB)
Queiroz, R.R.U. [Instituto Federal de Minas Gerais. Rua Pandia Calogeras, 898, Bauxita, Ouro Preto, MG (Brazil); Cunha, F.G.G. [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG (Brazil); Gonzalez, B.M., E-mail: gonzalez@demet.ufmg.br [Department of Metallurgical and Materials Engineering, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte, MG (Brazil)
2012-05-01
Highlights: Black-Right-Pointing-Pointer Characterization of the high temperature mechanical behavior of a dual phase steel. Black-Right-Pointing-Pointer Determination of the effect of dynamic strain aging on the strain hardening rate. Black-Right-Pointing-Pointer Identification of the mechanism associated with dynamic strain aging. Black-Right-Pointing-Pointer The value of the interaction energy carbon-dislocation in ferrite was confirmed. - Abstract: The susceptibility to dynamic strain aging of a dual phase steel was evaluated by the variation of mechanical properties in tension with the temperature and the strain rate. The tensile tests were performed at temperatures varying between 25 Degree-Sign C and 600 Degree-Sign C and at strain rates ranging from 10{sup -2} to 5 Multiplication-Sign 10{sup -4} s{sup -1}. The studied steel presented typical manifestations related to dynamic strain aging: serrated flow (the Portevin-Le Chatelier effect) for certain combinations of temperature and strain rates; the presence of a plateau in the variation of yield stress with temperature; a maximum in the curves of tensile strength, flow stress, and work hardening exponent as a function of temperature; and a minimum in the variation of total elongation with temperature. The determined apparent activation energy values, associated with the beginning of the Portevin-Le Chatelier effect and the maximum in the variation of flow stress with temperature, were 83 kJ/mol and 156 kJ/mol, respectively. These values suggest that the mechanism responsible for dynamic strain aging in the dual phase steel is the locking of dislocations by carbon atoms in ferrite and that the formation of clusters and/or transition carbides and carbide precipitation in martensite do not interfere with the dynamic strain aging process.
Castillo, M Rosa; Fraile, José M; Mayoral, José A
2012-08-07
Solid-state NMR experiments show that the behavior of supported 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid phases depends on the type of support and the phase thickness. A mobile nearly liquid phase is obtained on silica, on the basis of the line widths of the bands in (1)H, (31)P, and (13)C spectra. However, the mobility is somehow restricted, as shown by the possibility of using the cross-polarization technique, although with slow dynamics. On laponite clay, a layered material with a negatively charged surface, a truly solid phase is obtained at low coverage, whereas the increase in ionic liquid loading leads to a second liquid phase, as shown by the presence of two contributions with very different line widths. These two phases seem to coexist without exchange in the NMR time frame. Heteronuclear correlation experiments evidence different relative dispositions of the imidazolium-surface-PF(6) system, with only aromatic protons involved in all the interactions on silica but participation of the benzylic groups (N-CH(3) and/or N-CH(2)) in the case of laponite clay.
Measurement of the phase diffusion dynamics in the micromaser
Casagrande, Federico; Lulli, A; Bonifacio, R; Solano, E; Walther, H
2003-01-01
We propose a realistic scheme for measuring the micromaser linewidth by monitoring the phase diffusion dynamics of the cavity field. Our strategy consists in exciting an initial coherent state with the same photon number distribution as the micromaser steady-state field, singling out a purely diffusive process in the system dynamics. After the injection of a counter-field, measurements of the population statistics of a probe atom allow us to derive the micromaser linewidth. Our proposal aims at solving a classic and relevant decoherence problem in cavity quantum electrodynamics, allowing to establish experimentally the distinctive features appearing in the micromaser spectrum due to the discreteness of the electromagnetic field.
Phase dynamics modeling of parallel stacks of Josephson junctions
Rahmonov, I. R.; Shukrinov, Yu. M.
2014-11-01
The phase dynamics of two parallel connected stacks of intrinsic Josephson junctions (JJs) in high temperature superconductors is numerically investigated. The calculations are based on the system of nonlinear differential equations obtained within the CCJJ + DC model, which allows one to determine the general current-voltage characteristic of the system, as well as each individual stack. The processes with increasing and decreasing base currents are studied. The features in the behavior of the current in each stack of the system due to the switching between the states with rotating and oscillating phases are analyzed.
Isomorphic phase transformation in shocked Cerium using molecular dynamics
Germann T.C.; Chen S.-P.; Dupont V.
2011-01-01
Cerium (Ce) undergoes a significant (∼16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plas...
Hadronic multiplicity distribution and dynamical fluctuations under QGP phase transitions
Institute of Scientific and Technical Information of China (English)
杨纯斌; 鄢文标; 蔡勖
1999-01-01
Hadronic multiplicity distributions in small bins are studied within the Ginzburg-Landau description for quark-hadron phase transitions. Direct comparison of the distributions with Poisson ones （with the same averages） is made in the light of dynamical factors dq for the distributions and ratios Dq≡dq/d1. Scaling behavior between Dq’ s is found, which can be used to detect the formation of quark-gluon plasma. The same method can be used in the analysis of other processes without phase transition.
Nonlinear dynamic theory for photorefractive phase hologram formation
Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.
1976-01-01
A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.
DEFF Research Database (Denmark)
Odgaard, Liselotte
“Peaceful coexistence,” long a key phrase in China’s strategic thinking, is a constructive doctrine that offers China a path for influencing the international system. So argues Liselotte Odgaard in this timely analysis of China's national security strategy in the context of its foreign policy...... practice. China’s program of peaceful coexistence emphasizes absolute sovereignty and non-interference in the internal affairs of other states. Odgaard suggests that China’s policy of working within the international community and with non-state actors such as the UN aims to win for China greater power...... and influence without requiring widespread exercise of military or economic pressure. Odgaard examines the origins of peaceful coexistence in early Soviet doctrine, its midcentury development by China and India, and its ongoing appeal to developing countries. She reveals what this foreign policy offers China...
Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.
2015-01-01
Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.
Geometric Phase Effects in Nonadiabatic Dynamics near Conical Intersections.
Ryabinkin, Ilya G; Joubert-Doriol, Loïc; Izmaylov, Artur F
2017-07-18
Dynamical consideration that goes beyond the common Born-Oppenheimer approximation (BOA) becomes necessary when energy differences between electronic potential energy surfaces become small or vanish. One of the typical scenarios of the BOA breakdown in molecules beyond diatomics is a conical intersection (CI) of electronic potential energy surfaces. CIs provide an efficient mechanism for radiationless electronic transitions: acting as "funnels" for the nuclear wave function, they enable rapid conversion of the excessive electronic energy into the nuclear motion. In addition, CIs introduce nontrivial geometric phases (GPs) for both electronic and nuclear wave functions. These phases manifest themselves in change of the wave function signs if one considers an evolution of the system around the CI. This sign change is independent of the shape of the encircling contour and thus has a topological character. How these extra phases affect nonadiabatic dynamics is the main question that is addressed in this Account. We start by considering the simplest model providing the CI topology: two-dimensional two-state linear vibronic coupling model. Selecting this model instead of a real molecule has the advantage that various dynamical regimes can be easily modeled in the model by varying parameters, whereas any fixed molecule provides the system specific behavior that may not be very illustrative. After demonstrating when GP effects are important and how they modify the dynamics for two sets of initial conditions (starting from the ground and excited electronic states), we give examples of molecular systems where the described GP effects are crucial for adequate description of nonadiabatic dynamics. Interestingly, although the GP has a topological character, the extent to which accounting for GPs affect nuclear dynamics profoundly depends on topography of potential energy surfaces. Understanding an extent of changes introduced by the GP in chemical dynamics poses a problem of
UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING
Energy Technology Data Exchange (ETDEWEB)
Zurek, Wojciech H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Campo, Adolfo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-02-13
In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.
Geometry of dynamics, Lyapunov exponents and phase transitions
Caiani, L; Clementi, C; Pettini, M; Caiani, Lando; Casetti, Lapo; Clementi, Cecilia; Pettini, Marco
1997-01-01
The Hamiltonian dynamics of classical planar Heisenberg model is numerically investigated in two and three dimensions. By considering the dynamics as a geodesic flow on a suitable Riemannian manifold, it is possible to analytically estimate the largest Lyapunov exponent in terms of some curvature fluctuations. The agreement between numerical and analytical values for Lyapunov exponents is very good in a wide range of temperatures. Moreover, in the three dimensional case, in correspondence with the second order phase transition, the curvature fluctuations exibit a singular behaviour which is reproduced in an abstract geometric model suggesting that the phase transition might correspond to a change in the topology of the manifold whose geodesics are the motions of the system.
Wang, Wei; Li, Yu; Wang, Xiangyuan; Lv, Yanping; Wang, Shufeng; Wang, Kai; Shi, Yantao; Xiao, Lixin; Chen, Zhijian; Gong, Qihuang
2016-10-01
The high efficiency of perovskite solar cells benefits from the high density of photoinduced free carriers. We studied how exciton and free carriers, as the two major photoproducts, coexist inside the C H3N H3Pb I3 perovskite. A new density-resolved spectroscopic method was developed for this purpose. The density-dependent coexistence of excitons and free carriers over a wide density range was experimentally observed. The quantitative analysis on the density-resolved spectra revealed a moderate exciton binding energy of 24 ± 2 meV. The results effectively proved that the strong ionic polarization inside the perovskite has a negligible contribution to exciton formation. The spectra also efficiently uncovered the effective mass of electron-hole pairs. Our spectroscopic method and the results profoundly enrich the understanding of the photophysics in perovskite materials for photovoltaic applications.
Energy Technology Data Exchange (ETDEWEB)
Albuixech, J.; Camarero, J. J.; Montserrat-Marti, G.
2012-11-01
The contribution of secondary growth's patterns and wood anatomy on the coexistence of two species of Quercus (Quercus ilex subsp ballota diffused porous wood and Quercus faginea ring porous wood) were studied in a location with continental Mediterranean climate, which has been studied during two years with contrasted climatology. According to our results secondary growth pattern of Q. faginea is concentrated in the spring, starting before, and responding more than Q. ilex to a rainfall increase during this period. Q. ilex extends wood formation into the fall and late summer growth. Q. ilex growth during the fall and late summer has a greater importance in terms of theoretical hydraulic conductivity than in Q. faginea, which concentrates hydraulic conductivity in spring vessels. Therefore, different response of wood phenology formation and xylem anatomy in both species to the seasonal pattern of precipitation could contribute to explain the coexistence of Q. ilex and Q. faginea. (Author) 48 refs.
Ito, Hiroaki; Shimokawa, Naofumi
2016-01-01
Biomembranes, which are mainly composed of neutral and charged lipids, exhibit a large variety of functional structures and dynamics. Here, we report a coarse-grained molecular dynamics (MD) simulation of the phase separation and morphological dynamics in charged lipid bilayer vesicles. The screened long-range electrostatic repulsion among charged head groups delays or inhibits the lateral phase separation in charged vesicles compared with neutral vesicles, suggesting the transition of the phase-separation mechanism from spinodal decomposition to nucleation or homogeneous dispersion. Moreover, the electrostatic repulsion causes morphological changes, such as pore formation, and further transformations into disk, string, and bicelle structures, which are spatiotemporally coupled to the lateral segregation of charged lipids. Based on our coarse-grained MD simulation, we propose a plausible mechanism of pore formation at the molecular level. The pore formation in a charged-lipid-rich domain is initiated by the p...
Phase-space Dynamics of Runaway Electrons In Tokamaks
Energy Technology Data Exchange (ETDEWEB)
Xiaoyin Guan, Hong Qin, and Nathaniel J. Fisch
2010-08-31
The phase-space dynamics of runaway electrons is studied, including the influence of loop voltage, radiation damping, and collisions. A theoretical model and a numerical algorithm for the runaway dynamics in phase space are developed. Instead of standard integrators, such as the Runge-Kutta method, a variational symplectic integrator is applied to simulate the long-term dynamics of a runaway electron. The variational symplectic integrator is able to globally bound the numerical error for arbitrary number of time-steps, and thus accurately track the runaway trajectory in phase space. Simulation results show that the circulating orbits of runaway electrons drift outward toward the wall, which is consistent with experimental observations. The physics of the outward drift is analyzed. It is found that the outward drift is caused by the imbalance between the increase of mechanical angular momentum and the input of toroidal angular momentum due to the parallel acceleration. An analytical expression of the outward drift velocity is derived. The knowledge of trajectory of runaway electrons in configuration space sheds light on how the electrons hit the first wall, and thus provides clues for possible remedies.
Noise robust linear dynamic system for phase unwrapping and smoothing.
Estrada, Julio C; Servin, Manuel; Quiroga, Juan A
2011-03-14
Phase unwrapping techniques remove the modulus ambiguities of wrapped phase maps. The present work shows a first-order feedback system for phase unwrapping and smoothing. This system is a fast sequential unwrapping system which also allows filtering some noise because in deed it is an Infinite Impulse Response (IIR) low-pass filter. In other words, our system is capable of low-pass filtering the wrapped phase as the unwrapping process proceeds. We demonstrate the temporal stability of this unwrapping feedback system, as well as its low-pass filtering capabilities. Our system even outperforms the most common and used unwrapping methods that we tested, such as the Flynn's method, the Goldstain's method, and the Ghiglia least-squares method (weighted or unweighted). The comparisons with these methods shows that our system filters-out some noise while preserving the dynamic range of the phase-data. Its application areas may cover: optical metrology, synthetic aperture radar systems, magnetic resonance, and those imaging systems where information is obtained as a demodulated wrapped phase map.
Isomorphic phase transformation in shocked Cerium using molecular dynamics
Directory of Open Access Journals (Sweden)
Germann T.C.
2011-01-01
Full Text Available Cerium (Ce undergoes a significant (∼16% volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.
Isomorphic phase transformation in shocked cerium using molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Dupont, Virginie [Los Alamos National Laboratory; Germann, Timothy C [Los Alamos National Laboratory; Chen, Shao - Ping [Los Alamos National Laboratory
2010-08-12
Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.
Energy Technology Data Exchange (ETDEWEB)
Hall, G.E.
2011-05-31
This research is carried out as part of the Gas-Phase Molecular Dynamics program in the Chemistry Department at Brookhaven National Laboratory. Chemical intermediates in the elementary gas-phase reactions involved in combustion chemistry are investigated by high resolution spectroscopic tools. Production, reaction, and energy transfer processes are investigated by transient, double resonance, polarization and saturation spectroscopies, with an emphasis on technique development and connection with theory, as well as specific molecular properties.
On the phase-correlation and phase-fluctuation dynamics of a strongly excited Bose gas
Energy Technology Data Exchange (ETDEWEB)
Sakhel, Roger R., E-mail: rogersakhel@yahoo.com [Department of Basic Sciences, Faculty of Information Technology, Isra University, Amman 11622 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Sakhel, Asaad R. [Department of Applied Sciences, Faculty of Engineering Technology, Balqa Applied University, Amman 11134 (Jordan); The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Trieste 34151 (Italy); Ghassib, Humam B. [Department of Physics, The University of Jordan, Amman 11942 (Jordan)
2015-12-01
The dynamics of a Bose–Einstein condensate (BEC) is explored in the wake of a violent excitation caused by a strong time-dependent deformation of a trapping potential under the action of an intense stirring laser. The system is a two-dimensional BEC confined to a power-law trap with hard-wall boundaries. The stirring agent is a moving red-detuned laser potential. The time-dependent Gross–Pitaevskii equation is solved numerically by the split-step Crank–Nicolson method in real time. The phase correlations and phase fluctuations are examined as functions of time to demonstrate the evolving properties of a strongly-excited BEC. Of special significance is the occurrence of spatial fluctuations while the condensate is being excited. These oscillations arise from stirrer-induced density fluctuations. While the stirrer is inside the trap, a reduction in phase coherence occurs, which is attributed to phase fluctuations.
Beyond the Dirac phase factor: Dynamical Quantum Phase-Nonlocalities in the Schroedinger Picture
Moulopoulos, Konstantinos
2011-01-01
Generalized solutions of the standard gauge transformation equations are presented and discussed in physical terms. They go beyond the usual Dirac phase factors and they exhibit nonlocal quantal behavior, with the well-known Relativistic Causality of classical fields affecting directly the phases of wavefunctions in the Schroedinger Picture. These nonlocal phase behaviors, apparently overlooked in path-integral approaches, give a natural account of the dynamical nonlocality character of the various (even static) Aharonov-Bohm phenomena, while at the same time they seem to respect Causality. Indeed, for particles passing through nonvanishing magnetic or electric fields they lead to cancellations of Aharonov-Bohm phases at the observation point, generalizing earlier semiclassical experimental observations (of Werner & Brill) to delocalized (spread-out) quantum states. This leads to a correction of previously unnoticed sign-errors in the literature, and to a natural explanation of the deeper reason why certa...
Non-equilibrium dynamical phases of the two-atom Dicke model
Energy Technology Data Exchange (ETDEWEB)
Bhattacherjee, Aranya B.
2014-09-12
In this paper, we investigate the non-equilibrium dynamical phases of the two-atom Dicke model, which can be realized in a two species Bose–Einstein condensate interacting with a single light mode in an optical cavity. Apart from the usual non-equilibrium normal and inverted phases, a non-equilibrium mixed phase is possible which is a combination of normal and inverted phase. A new kind of dynamical phase transition is predicted from non-superradiant mixed phase to the superradiant phase which can be achieved by tuning the two different atom–photon couplings. We also show that a dynamical phase transition from the non-superradiant mixed phase to the superradiant phase is forbidden for certain values of the two atom–photon coupling strengths. - Highlights: • We investigate the non-equilibrium dynamical phases of the two-atom Dicke model. • The dynamical phase diagram reveals a new kind of non-equilibrium mixed phase. • A new kind of dynamical phase transition is predicted from mixed phase to the superradiant phase. • In the dynamical phase diagram of the mixed phase, there are regions where the superradiant phase cannot exist.
Phase transitions and relaxation dynamics of Ising models exchanging particles
Goh, Segun; Fortin, Jean-Yves; Choi, M. Y.
2017-01-01
A variety of systems in nature and in society are open and subject to exchanging their constituents with other systems (e.g., environments). For instance, in biological systems, cells collect necessary energy and material by exchange of molecules or ions. Similarly, countries, cities or research institutes evolve as their constituents move in or out. To probe the corresponding particle exchange dynamics in such systems, we consider two Ising models exchanging particles and establish a master equation describing the equilibrium phases as well as the non-equilibrium dynamics of the system. It is found that an additional stable phase emerges as a consequence of the particle exchange process. Furthermore, we formulate the Ginzburg-Landau theory which allows to probe correlation effects. Accordingly, critical slowing down is manifested and the associated dynamic exponent is computed in the linear relaxation regime. In particular, this approach is relevant for investigating the grand canonical description of the system plus environment, with particle exchange and state transitions taken into account explicitly.
Phase change energy storage for solar dynamic power systems
Chiaramonte, F. P.; Taylor, J. D.
1992-01-01
This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.
Sakata, Yuu; Ohta, Yutaka
2017-02-01
The interaction between surge and rotating stall in an axial flow compressor was investigated from the viewpoint of an unsteady inner flow structure. The aim of this study was to identify the key factor that determines the switching phenomenon of a surge cycle. The main feature of the tested compressor is a shock tube connected in series to the compressor outlet through a diaphragm, slits, and a concentric duplex pipe: this system allows surge and rotating stall to be generated by connecting the shock tube with the compressor, or enables the compression plane wave injection. The unsteady characteristics and the internal flow velocity fluctuations were measured in detail, and the stall cell structure was averaged and visualized along the movement of the operation point under a coexisting state of surge. A coefficient of the cell scale fluctuation was calculated using the result of the averaging, and it confirmed that the processes of inner flow structure change differed from each other according to the next cycle of the surge. The result suggests that the key factor that determines the next cycle is the transformation of the internal flow structure, particularly between the stall cell and the entire circumferential stall, in both the recovering and stalling processes.
Dynamic stability and phase resetting during biped gait
Nomura, Taishin; Kawa, Kazuyoshi; Suzuki, Yasuyuki; Nakanishi, Masao; Yamasaki, Taiga
2009-06-01
Dynamic stability during periodic biped gait in humans and in a humanoid robot is considered. Here gait systems of human neuromusculoskeletal system and a humanoid are simply modeled while keeping their mechanical properties plausible. We prescribe periodic gait trajectories in terms of joint angles of the models as a function of time. The equations of motion of the models are then constrained by one of the prescribed gait trajectories to obtain types of periodically forced nonlinear dynamical systems. Simulated gait of the models may or may not fall down during gait, since the constraints are made only for joint angles of limbs but not for the motion of the body trunk. The equations of motion can exhibit a limit cycle solution (or an oscillatory solution that can be considered as a limit cycle practically) for each selected gait trajectory, if an initial condition is set appropriately. We analyze the stability of the limit cycle in terms of Poincaré maps and the basin of attraction of the limit cycle in order to examine how the stability depends on the prescribed trajectory. Moreover, the phase resetting of gait rhythm in response to external force perturbation is modeled. Since we always prescribe a gait trajectory in this study, reacting gait trajectories during the phase resetting are also prescribed. We show that an optimally prescribed reacting gait trajectory with an appropriate amount of the phase resetting can increase the gait stability. Neural mechanisms for generation and modulation of the gait trajectories are discussed.
Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics
Scott, Adam; King, Dawn; Bahar, Sonya
2013-03-01
An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation
Phase coexistence in NaZn{sub 13}-type LaFe{sub 11.4}Al{sub 1.6}C{sub 0.02} compound
Energy Technology Data Exchange (ETDEWEB)
Chen Jing [State Key Laboratory of Magnetism, Institute of Physics and Centre for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430065 (China); Dong Qiaoyan [State Key Laboratory of Magnetism, Institute of Physics and Centre for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Hongwei [State Key Laboratory of Magnetism, Institute of Physics and Centre for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)], E-mail: hwzhang@aphy.iphy.ac.cn; Zhang Ligang [Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430065 (China); Sun Jirong; Shen Baogen [State Key Laboratory of Magnetism, Institute of Physics and Centre for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2009-10-15
In NaZn{sub 13}-type LaFe{sub 11.4}Al{sub 1.6}C{sub 0.02} compound, a signature of weak ferromagnetism is observed at {approx}100 K under a low field by ac magnetic-susceptibility and electrical-resistivity measurements, implying the coexistence of ferromagnetic (FM) and antiferromagnetic (AFM) phases. The hysteresis in isofield magnetization curves and large magnetic relaxation demonstrate the metastability of the magnetic state in the AFM-FM transition region. The variations of magnetization with temperature, time and field show distinct step-like behaviors, which is probably attributed to the discontinuous growth of ferromagnetic cluster in antiferromagnetic matrix.
Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.
Zang, Duyang; Yu, Yinkai; Chen, Zhen; Li, Xiaoguang; Wu, Hongjing; Geng, Xingguo
2017-05-01
The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamics of extended quintessence on the phase plane
Hrycyna, Orest
2008-01-01
In this publication we investigate dynamics of a flat FRW cosmological model with a non-minimally coupled scalar field with the coupling term $\\xi R \\psi^{2}$ in the scalar field action. The quadratic potential function $V(\\psi)\\propto \\psi^{2}$ is assumed. All the evolutional paths are visualized and classified in the phase plane, at which the parameter of non-minimal coupling $\\xi$ plays the role of a control parameter. The fragility of global dynamics with respect to changes of the coupling constant is studied in details. We find that the future big rip singularity appearing in the phantom scalar field cosmological models can be avoided due to non-minimal coupling constant effects. We have shown the existence of a finite scale factor singular point (future or past) where the Hubble function as well as its first cosmological time derivative diverges.
Emergence of coherence and the dynamics of quantum phase transitions
Braun, Simon; Friesdorf, Mathis; Hodgman, Sean S.; Schreiber, Michael; Ronzheimer, Jens Philipp; Riera, Arnau; del Rey, Marco; Bloch, Immanuel; Eisert, Jens
2015-01-01
The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose–Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble–Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model. PMID:25775515
Spin dynamics and spin freezing at ferromagnetic quantum phase transitions
Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Süllow, S.; Pedersen, B.; Böni, P.; Pfleiderer, C.
2015-07-01
We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.
Energy Technology Data Exchange (ETDEWEB)
Frankland, J.D.; Chbihi, A.; Hudan, S. [and others
2002-07-01
Fragment production in central collisions of Xe+Sn has been systematically studied with the INDRA multidetector from 25 to 150 AMeV. The predominant role of collision dynamics is evidenced in multiple intermediate mass fragment production even at the lowest energies, around the so-called multifragmentation threshold. For beam energies 50 AMeV and above, a promising agreement with suitably modified Anti-symmetrized Molecular Dynamics calculations has been achieved. Intriguingly the same reactions have recently been interpreted as evidence for a liquid-gas phase transition in thermodynamically equilibrated systems. The universal fluctuation theory, thanks to its lack of any equilibrium hypothesis, shows clearly that in all but a tiny minority of carefully-selected central collisions fragment production is incompatible with either critical or phase coexistence behaviour. On the other hand, it does not exclude some similarity with aggregation scenarios such as the lattice-gas or Fisher droplet models. (authors)
Solvable model for template coexistence in protocells
Fontanari, J F
2012-01-01
Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selective pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between two template types using the diffusion approximation of population genetics. The model combines competition at the template and protocell levels as well as genetic drift inside protocells. At the steady state, we find a continuous phase transition separating the coexistence and segregation regimes, with the order parameter vanishing linearly with the distance to the critical point. In addition, we derive explicit analytical expressions for the critical steady-state probability density of protocell compositions.
Solvable model for template coexistence in protocells
Fontanari, J. F.; Serva, M.
2013-02-01
Compartmentalization of self-replicating molecules (templates) in protocells is a necessary step towards the evolution of modern cells. However, coexistence between distinct template types inside a protocell can be achieved only if there is a selective pressure favoring protocells with a mixed template composition. Here we study analytically a group selection model for the coexistence between two template types using the diffusion approximation of population genetics. The model combines competition at the template and protocell levels as well as genetic drift inside protocells. At the steady state, we find a continuous phase transition separating the coexistence and segregation regimes, with the order parameter vanishing linearly with the distance to the critical point. In addition, we derive explicit analytical expressions for the critical steady-state probability density of protocell compositions.
Representation of robotic fractional dynamics in the pseudo phase plane
Institute of Scientific and Technical Information of China (English)
Miguel F.M. Lima; J.A. Tenreiro Machado
2011-01-01
This paper analyses robotic signals in the perspective of fractional dynamics and the pseudo phase plane (PPP). It is shown that the spectra of several experimental signals can be approximated by trend lines whose slope characterizes their fractional behavior. For the PPP reconstruc tion of each signal, the time lags are calculated through the fractal dimension. Moreover, to obtain a smooth PPP, the noisy signals are filtered through wavelets. The behavior of the spectra reveals a relationship with the fractal dimension of the PPP and the corresponding time delay.
Quantum dynamics via a time propagator in Wigner's phase space
DEFF Research Database (Denmark)
Grønager, Michael; Henriksen, Niels Engholm
1995-01-01
that the simple classical deterministic motion breaks down surprisingly fast in an anharmonic potential. Finally, we discuss the possibility of using the scheme as a useful approach to quantum dynamics in many dimensions. To that end we present a Monte Carlo integration scheme using the norm of the propagator......We derive an expression for a short-time phase space propagator. We use it in a new propagation scheme and demonstrate that it works for a Morse potential. The propagation scheme is used to propagate classical distributions which do not obey the Heisenberg uncertainty principle. It is shown...
Dynamics of an unbounded interface between ordered phases.
Krapivsky, P L; Redner, S; Tailleur, J
2004-02-01
We investigate the evolution of a single unbounded interface between ordered phases in two-dimensional Ising ferromagnets that are endowed with single-spin-flip zero-temperature Glauber dynamics. We examine specifically the cases where the interface initially has either one or two corners. In both examples, the interface evolves to a limiting self-similar form. We apply the continuum time-dependent Ginzburg-Landau equation and a microscopic approach to calculate the interface shape. For the single corner system, we also discuss a correspondence between the interface and the Young diagram that represents the partition of the integers.
Beam Dynamics for the CTF3 Preliminary Phase
Corsini, R; Rinolfi, Louis; Risselada, Thys; Royer, P; Tecker, F A
2001-01-01
In the framework of the CLIC RF power source studies, the new scheme of electron pulse compression and bunch frequency multiplication, using injection by RF deflectors into an isochronous ring, will be tested at CERN during the CTF3 preliminary phase. The present LPI complex will be modified in order to allow a test of this scheme at low charge. The design of the new front-end, of the modified linac, of the matched transfer line, and of the isochronous ring lattice is presented here.The results of the related beam dynamics studies are also discussed.
Dynamical Phase Transition in a Model for Evolution with Migration
Waclaw, Bartłomiej; Allen, Rosalind J.; Evans, Martin R.
2010-12-01
We study a simple quasispecies model for evolution in two different habitats, with different fitness landscapes, coupled through one-way migration. Our key finding is a dynamical phase transition at a critical value of the migration rate, at which the time to reach the steady state diverges. The genetic composition of the population is qualitatively different above and below the transition. Using results from localization theory, we show that the critical migration rate may be very small—demonstrating that evolutionary outcomes can be very sensitive to even a small amount of migration.
Belan, S.
2015-12-01
Decentralized control of autonomous phase oscillators integrated into networked systems is of great interest for many technological applications, from clock synchronization in sensor nets to coordinated motion in swarm robotics. In the simplest distributed synchronization scheme, each oscillator updates its phase from time to time to a new value equal to the average of its present phase and the phases of its neighbors. Here we describe the resulting synchronization dynamics within a mean-field model where the update actions of different oscillators are completely asynchronous. In particular, it is shown how the steady-state level of synchrony depends on noise intensity and frequency diversity for any given rate of updates. The central part of the analysis is devoted to the case when the correction rate positively correlates with the degree of macroscopic coherence. We demonstrate that depending on relation between correction rate and phase coherence the oscillators may exhibit both continuous and discontinuous transition from incoherence to synchrony upon the change of interaction constant. To illustrate our analytical results, numerical simulations have been performed for a large population of phase oscillators with the proposed type of coupling.
Belan, S
2015-12-01
Decentralized control of autonomous phase oscillators integrated into networked systems is of great interest for many technological applications, from clock synchronization in sensor nets to coordinated motion in swarm robotics. In the simplest distributed synchronization scheme, each oscillator updates its phase from time to time to a new value equal to the average of its present phase and the phases of its neighbors. Here we describe the resulting synchronization dynamics within a mean-field model where the update actions of different oscillators are completely asynchronous. In particular, it is shown how the steady-state level of synchrony depends on noise intensity and frequency diversity for any given rate of updates. The central part of the analysis is devoted to the case when the correction rate positively correlates with the degree of macroscopic coherence. We demonstrate that depending on relation between correction rate and phase coherence the oscillators may exhibit both continuous and discontinuous transition from incoherence to synchrony upon the change of interaction constant. To illustrate our analytical results, numerical simulations have been performed for a large population of phase oscillators with the proposed type of coupling.
Nonlinear dynamics of wind waves: multifractal phase/time effects
Directory of Open Access Journals (Sweden)
R. H. Mellen
1994-01-01
Full Text Available In addition to the bispectral coherence method, phase/time analysis of analytic signals is another promising avenue for the investigation of phase effects in wind waves. Frequency spectra of phase fluctuations obtained from both sea and laboratory experiments follow an F-β power law over several decades, suggesting that a fractal description is appropriate. However, many similar natural phenomena have been shown to be multifractal. Universal multifractals are quantified by two additional parameters: the Lévy index 0 α 2 for the type of multifractal and the co-dimension 0 C1 1 for intermittence. The three parameters are a full statistical measure the nonlinear dynamics. Analysis of laboratory flume data is reported here and the results indicate that the phase fluctuations are 'hard multifractal' (α > 1. The actual estimate is close to the limiting value α = 2, which is consistent with Kolmogorov's lognormal model for turbulent fluctuations. Implications for radar and sonar backscattering from the sea surface are briefly considered.
Ultrafast dynamics during the photoinduced phase transition in VO2
Wegkamp, Daniel; Stähler, Julia
2015-12-01
The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.
Rodríguez-Robles, Ulises; Arredondo, J Tulio; Huber-Sannwald, Elisabeth; Vargas, Rodrigo
2015-07-01
Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine.
Effects of noise on the phase dynamics of nonlinear oscillators
Daffertshofer, A.
1998-07-01
Various properties of human rhythmic movements have been successfully modeled using nonlinear oscillators. However, despite some extensions towards stochastical differential equations, these models do not comprise different statistical features that can be explained by nondynamical statistics. For instance, one observes certain lag one serial correlation functions for consecutive periods during periodic motion. This work aims at an extension of dynamical descriptions in terms of stochastically forced nonlinear oscillators such as ξ¨+ω20ξ=n(ξ,ξ˙)+q(ξ,ξ˙)Ψ(t), where the nonlinear function n(ξ,ξ˙) generates a limit cycle and Ψ(t) denotes colored noise that is multiplied via q(ξ,ξ˙). Nonlinear self-excited systems have been frequently investigated, particularly emphasizing stability properties and amplitude evolution. Thus, one can focus on the effects of noise on the frequency or phase dynamics that can be analyzed by use of time-dependent Fokker-Planck equations. It can be shown that noise multiplied via polynoms of arbitrary finite order cannot generate the desired period correlation but predominantly results in phase diffusion. The system is extended in terms of forced oscillators in order to find a minimal model producing the required error correction.
Phase response curves for models of earthquake fault dynamics
Franović, Igor; Perc, Matjaz; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen
2016-01-01
We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a ...
Phase response curves for models of earthquake fault dynamics
Franović, Igor; Kostić, Srdjan; Perc, Matjaž; Klinshov, Vladimir; Nekorkin, Vladimir; Kurths, Jürgen
2016-06-01
We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how the profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.
Estimating the probability of coexistence in cross-feeding communities.
Vessman, Björn; Gerlee, Philip; Lundh, Torbjörn
2016-11-07
The dynamics of many microbial ecosystems are driven by cross-feeding interactions, in which metabolites excreted by some species are metabolised further by others. The population dynamics of such ecosystems are governed by frequency-dependent selection, which allows for stable coexistence of two or more species. We have analysed a model of cross-feeding based on the replicator equation, with the aim of establishing criteria for coexistence in ecosystems containing three species, given the information of the three species' ability to coexist in their three separate pairs, i.e. the long term dynamics in the three two-species component systems. The triple-system is studied statistically and the probability of coexistence in the species triplet is computed for two models of species interactions. The interaction parameters are modelled either as stochastically independent or organised in a hierarchy where any derived metabolite carries less energy than previous nutrients in the metabolic chain. We differentiate between different modes of coexistence with respect to the pair-wise dynamics of the species, and find that the probability of coexistence is close to 12 for triplet systems with three pair-wise coexistent pairs and for the so-called intransitive systems. Systems with two and one pair-wise coexistent pairs are more likely to exist for random interaction parameters, but are on the other hand much less likely to exhibit triplet coexistence. Hence we conclude that certain species triplets are, from a statistical point of view, rare, but if allowed to interact are likely to coexist. This knowledge might be helpful when constructing synthetic microbial communities for industrial purposes. Copyright © 2016 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Xu, Sai; Lu, Wenjing; Mustafa, Muhammad Farooq
2017-01-01
, and an unknown cluster was primarily detected in autumn and winter. Similar patterns of seasonal variation in the community structure of DAMO bacteria were also observed. Group B was the dominant in spring and summer, whereas in autumn and winter, group A and group B presented almost the same proportion...... and their abundance in sewage sludge collected from wastewater treatment plants were analysed. Results indicated that ANAMMOX and DAMO bacteria co-existed in sewage sludge in different seasons and their abundance was positively correlated (P bacteria in autumn and winter...... indicated that these seasons were the preferred time to favour the growth of ANAMMOX and DAMO bacteria. The community structure of ANNAMOX and DAMO bacteria could also shift with seasonal changes. The â€œCandidatus Brocadiaâ€� genus of ANAMMOX bacteria was mainly recovered in spring and summer...
Stochastic Rotation Dynamics simulations of wetting multi-phase flows
Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin
2016-06-01
Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.
Validating and implementing modified Filinov phase filtration in semiclassical dynamics
Church, Matthew S.; Antipov, Sergey V.; Ananth, Nandini
2017-06-01
The Mixed Quantum-Classical Initial Value Representation (MQC-IVR) is a recently introduced approximate semiclassical (SC) method for the calculation of real-time quantum correlation functions. MQC-IVR employs a modified Filinov filtration (MFF) scheme to control the overall phase of the SC integrand, extending the applicability of SC methods to complex systems while retaining their ability to accurately describe quantum coherence effects. Here, we address questions regarding the effectiveness of the MFF scheme in combination with SC dynamics. Previous work showed that this filtering scheme is of limited utility in the context of semiclassical wavepacket propagation, but we find that the MFF is extraordinarily powerful in the context of correlation functions. By examining trajectory phase and amplitude contributions to the real-time SC correlation function in a model system, we clearly demonstrate that the MFF serves to reduce noise by damping amplitude only in regions of highly oscillatory phase leading to a reduction in computational effort while retaining accuracy. Further, we introduce a novel and efficient MQC-IVR formulation that allows for linear scaling in computational cost with the total simulation length, a significant improvement over the more-than quadratic scaling exhibited by the original method.
DEFF Research Database (Denmark)
Bañas, Andrew Rafael; Aabo, Thomas; Palima, Darwin
2013-01-01
as a combination of Generalized Phase Contrast and phase-only correlation. Such an analysis makes it convenient to optimize an mGPC system for different setup conditions. Results showing binary-only phase generation of dynamic spot arrays and line patterns are presented. © 201 Optical Society of America...
Zaliapin, Ilya
2010-01-01
We consider a highly idealized model for El Nino/Southern Oscillation (ENSO) variability, as introduced in an earlier paper. The model is governed by a delay differential equation for sea surface temperature in the Tropical Pacific, and it combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform a theoretical and numerical study of the model in the three-dimensional space of its physically relevant parameters: propagation period of oceanic waves across the Tropical Pacific, atmosphere-ocean coupling, and strength of seasonal forcing. Phase locking of model solutions to the periodic forcing is prevalent: the local maxima and minima of the solutions tend to occur at the same position within the seasonal cycle. Such phase locking is a key feature of the observed El Nino (warm) and La Nina (cold) events. The phasing of the extrema within the seasonal cycle depends sensitively on model parameters when forcing is weak. We also study co-existence of mu...
Maté, Sabina M; Vázquez, Romina F; Herlax, Vanesa S; Daza Millone, María A; Fanani, María L; Maggio, Bruno; Vela, María E; Bakás, Laura S
2014-07-01
α-Hemolysin (HlyA) is a protein toxin, a member of the pore-forming Repeat in Toxin (RTX) family, secreted by some pathogenic strands of Escherichia coli. The mechanism of action of this toxin seems to involve three stages that ultimately lead to cell lysis: binding, insertion, and oligomerization of the toxin within the membrane. Since the influence of phase segregation on HlyA binding and insertion in lipid membranes is not clearly understood, we explored at the meso- and nanoscale-both in situ and in real-time-the interaction of HlyA with lipid monolayers and bilayers. Our results demonstrate that HlyA could insert into monolayers of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/16:0SM/Cho) and DOPC/24:1SM/Cho. The time course for HlyA insertion was similar in both lipidic mixtures. HlyA insertion into DOPC/16:0SM/Cho monolayers, visualized by Brewster-angle microscopy (BAM), suggest an integration of the toxin into both the liquid-ordered and liquid-expanded phases. Atomic-force-microscopy imaging reported that phase boundaries favor the initial binding of the toxin, whereas after a longer time period the HlyA becomes localized into the liquid-disordered (Ld) phases of supported planar bilayers composed of DOPC/16:0SM/Cho. Our AFM images, however, showed that the HlyA interaction does not appear to match the general strategy described for other invasive proteins. We discuss these results in terms of the mechanism of action of HlyA.
Dynamic aspect of the chiral phase transition in the mode coupling theory
Ohnishi, K; Ohta, K
2005-01-01
We analyze the dynamic aspect of the chiral phase transition. We apply the mode coupling theory to the linear sigma model and derive the kinetic equation for the chiral phase transition. We challenge Hohenberg and Halperin's classification scheme of dynamic critical phenomena in which the dynamic universality class of the chiral phase transition has been identified with that of the antiferromagnet. We point out a crucial difference between the chiral dynamics and the antiferromagnet system. We also calculate the dynamic critical exponent for the chiral phase transition. Our result is $z=1-\\eta/2\\cong 0.98$ which is contrasted with $z=d/2=1.5$ of the antiferromagnet.
Dynamic phase transitions in confined lubricant fluids under shear
Energy Technology Data Exchange (ETDEWEB)
Drummond, Carlos; Israelachvili, Jacob
2001-04-01
A surface force apparatus was used to measure the transient and steady-state friction forces between molecularly smooth mica surfaces confining thin films of squalane, C{sub 30}H{sub 62}, a saturated, branched hydrocarbon liquid. The dynamic friction ''phase diagram'' was determined under different shearing conditions, especially the transitions between stick-slip and smooth sliding ''states'' that exhibited a chaotic stick-slip regime. The apparently very different friction traces exhibited by simple spherical, linear, and branched hydrocarbon films under shear are shown to be due to the much longer relaxation times and characteristic length scales associated with transitions from rest to steady-state sliding, and vice versa, in the case of branched liquids. The physical reasons and tribological implications for the different types of transitions observed with spherical, linear, and branched fluids are discussed.
Phase dynamics of two parallel stacks of coupled Josephson junctions
Shukrinov, Yu M.; Rahmonov, I. R.; Plecenik, A.; Seidel, P.; Ilʼichev, E.; Nawrocki, W.
2014-12-01
Two parallel stacks of coupled Josephson junctions (JJs) are investigated to clarify the physics of transitions between the rotating and oscillating states and their effect on the IV-characteristics of the system. The detailed study of phase dynamics and bias dependence of the superconducting and diffusion currents allows one to explain all features of simulated IV-characteristics and demonstrate the correspondence in their behavior. The coupling between JJ in the stacks leads to the branching of IV-characteristics and a decrease in the hysteretic region. The crucial role of the diffusion current in the formation of the IV-characteristic of the parallel stacks of coupled JJs is demonstrated. We discuss the effect of symmetry in a number of junctions in the stacks and show a decrease of the branching in the symmetrical stacks. The observed effects might be useful for development of superconducting electronic devices based on intrinsic JJs.
Phase instability and local dynamics in directional solidification
Ghazali, A.; Misbah, C.
1992-10-01
Recently a general phase equation has been derived from the boundary integral equation, and preliminary results on the Eckhaus instability were given [K. Brattkus and C. Misbah, Phys. Rev. Lett. 64, 1935 (1990)]. The first focus of the present study is devoted to an extensive analysis of both the derivation of the phase equation and the computation of the Eckhaus boundaries from the low-velocity regime until the planar-front restabilization. We pay a special attention to the experiments on liquid crystals [J. M. Flesselles, A. J. Simon, and A. J. Libchaber, Adv. Phys. 40, 1 (1991)]. The special shape of the Eckhaus boundaries in the present situation provides a simple hint for experimental investigations. The second line of this paper is motivated by a strong wish to go further towards the understanding of the diverse variety of dynamical manifestations observed in experiments, such as oscillatory modes and ``chaotic'' motions. The study of these phenomena is greatly facilitated by focusing on the large-velocity regime where the front dynamics turns out to be described by a local equation. We outline here the derivation of that equation appropriate for liquid-crystal experiments. A full study on this equation, going from order to chaos, is presented elsewhere [K. Kassner, C. Misbah, and H. Müller-Krumbhaar, Phys. Rev. Lett. 67, 1551 (1991)]. Among other results presented here we show that the wavelength of the pattern λ scales with the growth velocity V and the thermal gradient as λ~V-1f(G/V). At the fold singularity for steady symmetric solutions, we find that λ~V-1, which is in agreement with experiments on liquid crystals. This scaling is to be contrasted to the one obtained in the small-Péclet-number limit λ~V-1/2f(G/V) [K. Kassner and C. Misbah, Phys. Rev. Lett. 66, 445 (1991)].
Svedberg, M; Majumdar, S; Huhtinen, H; Paturi, P; Granroth, S
2011-09-28
Optimization of thin films of small bandwidth manganite, Pr(1-x)Ca(x)MnO3 (for x = 0.1), and their magnetic properties are investigated. Using different pulsed laser deposition (PLD) conditions, several films were deposited from the stoichiometric target material on SrTiO3 (001) substrate and their thorough structural and magnetic characterizations were carried out using x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy (XPS), SQUID magnetometry and ac susceptibility measurements. A systematic investigation shows that irrespective of the growth temperature (between 550 and 750 °C), all the as-deposited films have twin boundaries and magnetic double phases. Post-annealing in partial or full oxygen pressure removes the extra phase and the twin boundaries. Zero-field-cooled magnetization data show an antiferromagnetic to paramagnetic transition at around 100 K whereas the field-cooled magnetization data exhibit a paramagnetic to ferromagnetic transition close to 120 K. However, depending on the oxygen treatments, the saturation magnetization and Curie temperature of the films change significantly. Redistribution of oxygen vacancies due to annealing treatments leading to a change in ratio of Mn3+ and Mn4+ in the films is observed from XPS measurements. Low temperature (below 100 K) dc magnetization of these films shows metamagnetic transition, high coercivity and irreversibility magnetizations, indicating the presence of a spin-glass phase at low temperature. The frequency dependent shift in spin-glass freezing temperature from ac susceptibility measurement confirms the coexistence of spin-glass and ferromagnetic phases in these samples at low temperature.
DEFF Research Database (Denmark)
Gumpert, Heidi
documented case wheretransfer of resistance genes was observed in situ of a non-perturbed gut in the absenceof antibiotic treatment. Additionally, cases of genomic deletions, phage infections andcuring, and plasmid loss were observed, highlighting that strains in the gut are highly dynamic. The detection...... were selected due to an observed change in their antibiotic susceptibility profile. Via full genome sequencing, we identified that in both cases a conjugative plasmid harboring antibiotic resistance genes was transferred between co-existing E. coli lineages and is responsible for the change...... in antibiotic susceptibility. In one case, the transfer occurred in the absenceof antibiotic treatment and the transconjugant remained amongst the gut microbiota for months, providing evidence to the hypothesis that resistance genes are stably maintained once acquired. To our knowledge, this is the first...
Ross, David S; Thurston, George M; Lutzer, Carl V
2008-08-14
In this paper we present a method for determining the free energies of ternary mixtures from light scattering data. We use an approximation that is appropriate for liquid mixtures, which we formulate as a second-order nonlinear partial differential equation. This partial differential equation (PDE) relates the Hessian of the intensive free energy to the efficiency of light scattering in the forward direction. This basic equation applies in regions of the phase diagram in which the mixtures are thermodynamically stable. In regions in which the mixtures are unstable or metastable, the appropriate PDE is the nonlinear equation for the convex hull. We formulate this equation along with continuity conditions for the transition between the two equations at cloud point loci. We show how to discretize this problem to obtain a finite-difference approximation to it, and we present an iterative method for solving the discretized problem. We present the results of calculations that were done with a computer program that implements our method. These calculations show that our method is capable of reconstructing test free energy functions from simulated light scattering data. If the cloud point loci are known, the method also finds the tie lines and tie triangles that describe thermodynamic equilibrium between two or among three liquid phases. A robust method for solving this PDE problem, such as the one presented here, can be a basis for optical, noninvasive means of characterizing the thermodynamics of multicomponent mixtures.
Digital Phased Array Ultrasonic Inspection system with dynamic focusing
Hwang, J. S.; Shin, H. J.; Song, S. J.; Song, T. K.
2000-05-01
Enhancement of the ultrasonic flaw detection and characterization is expected through the development of a high performance PAULI (Phased Array Ultrasonic Inspection) system which can provide high resolution two-dimensional (sector scan: S-scan) images. The high-resolution S-scan image renders inspection results more readable compared to the conventional A-scan and B-scan results. Therefore, it can improve inspection efficiency and reliability. In this study, the ultrasonic imaging technologies developed in medical applications were adapted to develop a digital PAULI system for nondestructive testing. To provide real-time S-scan images, the PAULI system uses 64 independent transceiver channels controlled by proper delay laws for steering and focusing the ultrasound beams along each scan lines. The PAULI system employs a novel dynamic receive focusing technique in order to optimize the lateral resolution by focusing the ultrasound wave at all imaging points. The dynamic receive focusing is achieved in real-time by digital signal processing methods. The feasibility of PAULI system is demonstrated for the NDE of steel structures.
Phase separation like dynamics during Myxococcus xanthus fruiting body formation
Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua
2015-03-01
Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.
Dynamic headspace time-extended helix liquid-phase microextraction.
Huang, Shih-Pin; Chen, Pai-Shan; Huang, Shang-Da
2009-05-15
Liquid-phase microextraction (LPME) has been proved to be a fast, inexpensive and effective sample pre-treatment technique for the analyses of pesticides and many other compounds. In this investigation, a new headspace microextraction technique, dynamic headspace time-extended helix liquid-phase microextraction (DHS-TEH-LPME), is presented. In this work, use of a solvent cooling system, permits the temperature of the extraction solvent to be lowered. Lowering the temperature of the extraction solvent not only reduces solvent loss but also extends the feasible extraction time, thereby improving extraction efficiency. Use of a larger volume of the solvent not only extends the feasible extraction time but also, after extraction, leaves a larger volume to be directly injected into the gas chromatography (GC) to increase extraction efficiency and instrument signal. The DHS-TEH-LPME technique was used to extract six organochlorine pesticides (OCPs) from 110ml water samples that had been spiked with the analytes at ng/l levels, and stirred for 60min. The proposed method attained enrichments up to 2121 fold. The effects of extraction solvent identity, sample agitation, extraction time, extraction temperature, and salt concentration on extraction performance were also investigated. The method detection limits (MDLs) varied from 0.2 to 25ng/l. The calibration curves were linear for at least 2 orders of magnitude with R(2)>==0.996. Relative recoveries in river water were more than 86%.
How variation between individuals affects species coexistence.
Hart, Simon P; Schreiber, Sebastian J; Levine, Jonathan M
2016-08-01
Although the effects of variation between individuals within species are traditionally ignored in studies of species coexistence, the magnitude of intraspecific variation in nature is forcing ecologists to reconsider. Compelling intuitive arguments suggest that individual variation may provide a previously unrecognised route to diversity maintenance by blurring species-level competitive differences or substituting for species-level niche differences. These arguments, which are motivating a large body of empirical work, have rarely been evaluated with quantitative theory. Here we incorporate intraspecific variation into a common model of competition and identify three pathways by which this variation affects coexistence: (1) changes in competitive dynamics because of nonlinear averaging, (2) changes in species' mean interaction strengths because of variation in underlying traits (also via nonlinear averaging) and (3) effects on stochastic demography. As a consequence of the first two mechanisms, we find that intraspecific variation in competitive ability increases the dominance of superior competitors, and intraspecific niche variation reduces species-level niche differentiation, both of which make coexistence more difficult. In addition, individual variation can exacerbate the effects of demographic stochasticity, and this further destabilises coexistence. Our work provides a theoretical foundation for emerging empirical interests in the effects of intraspecific variation on species diversity.
Coexistence between neighbours
DEFF Research Database (Denmark)
Shenge, K.C.; Mabagala, R.B.; Mortensen, C A Nieves Paulino
2008-01-01
Experiments were conducted under laboratory and screenhouse conditions to study the coexistence between Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria, incitants of bacterial speck and bacterial spot diseases of tomato. Results of in vitro studies showed that when mixed...... cultures of the pathogens were grown together in nutrient yeast dextrose broth over a period of 96 h, colonies of P. s. pv. tomato grossly out-numbered those of X. c. pv. vesicatoria, regardless of the ratio in which they were combined. Results of studies with mixed cultures in planta, under screenhouse...... conditions showed similar results. Results of experiments with heat-killed cells of the pathogens showed that heat-killed cells of either of the pathogens were unable to offer cross protection from infection by the other pathogen in susceptible tomato plants...
Kanno, H; Kajiwara, K; Miyata, K
2010-05-21
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (Rtemperatures (different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.
Freezing in porous media: Phase behavior, dynamics and transport phenomena
Energy Technology Data Exchange (ETDEWEB)
Wettlaufer, John S. [Yale Univ., New Haven, CT (United States)
2012-12-21
This research was focused on developing the underlying framework for the mechanisms that control the nature of the solidification of a broad range of porous media. To encompass the scope of porous media under consideration we considered material ranging from a dilute colloidal suspension to a highly packed saturated host matrix with a known geometry. The basic physical processes that occur when the interstitial liquid phase solidifies revealed a host of surprises with a broad range of implications from geophysics to materials science and engineering. We now understand that ostensibly microscopic films of unfrozen liquid control both the equilibrium and transport properties of a highly packed saturated host matrix as well as a rather dilute colloidal suspension. However, our description of the effective medium behavior in these settings is rather different and this sets the stage for the future research based on our past results. Once the liquid phase of a saturated relatively densely packed material is frozen, there is a rich dynamical behavior of particles for example due to the directed motion driven by thermomolecular pressure gradients or the confined Brownian motion of the particles. In quite striking contrast, when one freezes a dilute suspension the behavior can be rather more like that of a binary alloy with the particles playing the role of a ``solute''. We probed such systems quantitatively by (i) using X ray photon correlation spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS) at the Advanced Photon Source at Argonne (ii) studying the Argonne cell in the laboratory using optical microscopy and imagery (because it is not directly visible while in the vacuum can). (3) analyzed the general transport phenomena within the framework of both irreversible thermodynamics and alloy solidification and (4) applied the results to the study of the redistribution of solid particles in a frozen interstitial material. This research has gone a long way
Freezing in porous media: Phase behavior, dynamics and transport phenomena
Energy Technology Data Exchange (ETDEWEB)
Wettlaufer, John S. [Yale Univ., New Haven, CT (United States)
2012-12-21
This research was focused on developing the underlying framework for the mechanisms that control the nature of the solidification of a broad range of porous media. To encompass the scope of porous media under consideration we considered material ranging from a dilute colloidal suspension to a highly packed saturated host matrix with a known geometry. The basic physical processes that occur when the interstitial liquid phase solidifies revealed a host of surprises with a broad range of implications from geophysics to materials science and engineering. We now understand that ostensibly microscopic films of unfrozen liquid control both the equilibrium and transport properties of a highly packed saturated host matrix as well as a rather dilute colloidal suspension. However, our description of the effective medium behavior in these settings is rather different and this sets the stage for the future research based on our past results. Once the liquid phase of a saturated relatively densely packed material is frozen, there is a rich dynamical behavior of particles for example due to the directed motion driven by thermomolecular pressure gradients or the confined Brownian motion of the particles. In quite striking contrast, when one freezes a dilute suspension the behavior can be rather more like that of a binary alloy with the particles playing the role of a ``solute''. We probed such systems quantitatively by (i) using X ray photon correlation spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS) at the Advanced Photon Source at Argonne (ii) studying the Argonne cell in the laboratory using optical microscopy and imagery (because it is not directly visible while in the vacuum can). (3) analyzed the general transport phenomena within the framework of both irreversible thermodynamics and alloy solidification and (4) applied the results to the study of the redistribution of solid particles in a frozen interstitial material. This research has gone a long way
Dynamic phase-control of a rising sun magnetron using modulated and continuous current
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Gutierrez, Sulmer, E-mail: sulmer.a.fernandez.gutierrez@intel.com [Intel Corporation, 2111 NE 25th Ave, Hillsboro, Oregon 97214 (United States); Browning, Jim [Department of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725 (United States); Lin, Ming-Chieh [Department of Electrical and Biomedical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Smithe, David N. [Tech-X Corporation, 5621 Arapahoe Ave, Boulder, Colorado 80303 (United States); Watrous, Jack [Confluent Sciences, LLC, Albuquerque, New Mexico 87111 (United States)
2016-01-28
Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.
Phase resetting reveals network dynamics underlying a bacterial cell cycle.
Directory of Open Access Journals (Sweden)
Yihan Lin
Full Text Available Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS.
Self-Consistent Dynamics of Inflationary Phase Transitions
Boyanovsky, D; De Vega, H J; Holman, R; Kumar, S P
1997-01-01
The physics of the inflationary universe requires the study of the out of equilibrium evolution of quantum fields in curved spacetime. We present the evolution for both the geometry and the matter (described by the quantum inflaton field) by means of the non-perturbative large N limit combined with semi-classical gravitational dynamics including the back-reaction of quantum fluctuations self-consistently for a new inflation scenario. We provide a criterion for the validity of the classical approximation and a full analysis of the case in which spinodal quantum fluctuations drive the evolution of the scale factor. Under carefully determined conditions, we show that the full field equations may be well approximated by those of a single composite field which obeys the classical equation of motion in all cases. The de Sitter stage is found to be followed by a matter dominated phase. We compute the spectrum of scalar density perturbations and argue that the spinodal instabilities are responsible for a `red' spectr...
Dynamic dielectrophoresis model of multi-phase ionic fluids.
Directory of Open Access Journals (Sweden)
Ying Yan
Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.
Dynamic headspace liquid-phase microextraction of alcohols.
Saraji, Mohammad
2005-01-07
A method was developed using dynamic headspace liquid-phase microextraction and gas chromatography-mass spectrometry for extraction and determination of 9 alcohols from water samples. Four different solvents, hexyl acetate, n-octanol, o-xylene and n-decane were studied as extractants. The analytes were extracted using 0.8 microl of n-octanol from the headspace of a 2 ml sample solution. The effect of sampling volume, solvent volume, sample temperature, syringe plunger withdrawal rate and ionic strength of the solution on the extraction performance were studied. A semiautomated system including a variable speed stirring motor was used to ensure a uniform movement of syringe plunger through the barrel. The method provided a fairly good precision for all compounds (5.5-9.3%), except methanol (16.4%). Detection limits were found to be between 1 and 97 microg/l within an extraction time of approximately 9.5 min under GC-MS in full scan mode.
Interfaces in coexisting metals and Mott insulators
Lee, Juho; Yee, Chuck-Hou
2017-05-01
Motivated by the direct observation of electronic phase separation in first-order Mott transitions, we model the interface between thermodynamically coexisting metals and Mott insulators. We show how to model the required slab geometry and extract the electronic spectra. We construct an effective Landau free energy and compute the variation of its parameters across the phase diagram. Finally, using a linear mixture of the density and double occupancy, we identify a natural Ising order parameter which unifies the treatment of the bandwidth and filling controlled Mott transitions.
Energy Technology Data Exchange (ETDEWEB)
Schlüter, Steffen [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Berg, Steffen [Shell Global Solutions International B.V., Rijswijk Netherlands; Li, Tianyi [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA; Vogel, Hans-Jörg [Department Soil Physics, Helmholtz-Centre for Environmental Research-UFZ, Halle Germany; Institut für Agrar- und Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, Halle Germany; Wildenschild, Dorthe [School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis Oregon USA
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.
Intermittent control of coexisting attractors.
Liu, Yang; Wiercigroch, Marian; Ing, James; Pavlovskaia, Ekaterina
2013-06-28
This paper proposes a new control method applicable for a class of non-autonomous dynamical systems that naturally exhibit coexisting attractors. The central idea is based on knowledge of a system's basins of attraction, with control actions being applied intermittently in the time domain when the actual trajectory satisfies a proximity constraint with regards to the desired trajectory. This intermittent control uses an impulsive force to perturb one of the system attractors in order to switch the system response onto another attractor. This is carried out by bringing the perturbed state into the desired basin of attraction. The method has been applied to control both smooth and non-smooth systems, with the Duffing and impact oscillators used as examples. The strength of the intermittent control force is also considered, and a constrained intermittent control law is introduced to investigate the effect of limited control force on the efficiency of the controller. It is shown that increasing the duration of the control action and/or the number of control actuations allows one to successfully switch between the stable attractors using a lower control force. Numerical and experimental results are presented to demonstrate the effectiveness of the proposed method.
The Plastic and Liquid Phases of CCl$_3$Br Studied by Molecular Dynamics Simulations
Caballero, Nirvana; Carignano, Marcelo; Serra, Pablo
2013-01-01
We present a molecular dynamics study of the liquid and plastic crystalline phases of CCl$_3$Br. We investigated the short-range orientational order using a recently developed classification method and we found that both phases behave in a very similar way. The only differences occur at very short molecular separations, which are shown to be very rare. The rotational dynamics was explored using time correlation functions of the molecular bonds. We found that the relaxation dynamics corresponds to an isotropic diffusive mode for the liquid phase, but departs from this behavior as the temperature is decreased and the system transitions into the plastic phase.
Coexistence of neuropeptides in hydra
DEFF Research Database (Denmark)
Grimmelikhuijzen, C J
1983-01-01
Using a technique for simultaneous visualisation of two antigens in one section, oxytocin-like immunoreactivity has been found to coexist with bombesin-like immunoreactivity in neurons of the basal disk, gastric region and tentacles of hydra. Neurons with oxytocin-like immunoreactivity in peduncle...... and hypostome, on the other hand, have little or no bombesin-like material. Oxytocin-like immunoreactivity never coexists with FMRFamide-immunoreactivity. The neurons with oxytocin- and FMRFamide-like immunoreactivity, however, are often found to be closely intermingled. The results show that coexistence...
Energy Technology Data Exchange (ETDEWEB)
Phong, P.T., E-mail: ptphong.nh@khanhhoa.edu.vn [Department of Advanced Materials Chemistry, Dongguk University, 707 Suckjang-dong, Gyeongju-Si, Gyeonbuk 780-714 (Korea, Republic of); Nha Trang Pedagogic College, 01 Nguyen Chanh Street, Nha Trang, Khanh Hoa (Viet Nam); Nguyen, L.H. [Nha Trang Pedagogic College, 01 Nguyen Chanh Street, Nha Trang, Khanh Hoa (Viet Nam); Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Ha Noi (Viet Nam); Manh, D.H.; Phuc, N.X. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Ha Noi (Viet Nam); Lee, I.-J. [Department of Advanced Materials Chemistry, Dongguk University, 707 Suckjang-dong, Gyeongju-Si, Gyeonbuk 780-714 (Korea, Republic of)
2013-09-15
The temperature dependent resistivity and temperature coefficient of resistance of Ag doped La{sub 0.7−x}Ag{sub x}Ca{sub 0.3}MnO{sub 3} polycrystalline pellets (x=0, 0.05, 0.10, 0.15, and 0.20) are investigated. Ag substitution enhances the conductivity of this system. The Curie temperature also increases from 260 to 283 K with increasing Ag content. Using phase-coexistence transport model and phase separation model, we calculated the resistivity as a function of temperature and the temperature coefficient of resistivity (TCR) behavior. Comparing the calculated maximum TCR, we found that it is related to activation energy, transition temperature, and disorder in doped manganites. The relationship between the proposed TCR behavior and the transport parameters can suggest conditions improving TCR{sub max} of doped manganites for the use of the bolometric infrared detectors.
Design and control of single-phase dynamic voltage restorer
Indian Academy of Sciences (India)
AMIT MEENA; SHIRAZUL ISLAM; SANDEEP ANAND; YOGESH SONAWANE; SANJAY TUNGARE
2017-08-01
Dynamic voltage restorer (DVR) is a custom power device used in electrical distribution system for power quality improvement. It ensures regulated voltage supply to the sensitive loads, even in case of voltage sag and swell disturbances in the distribution network. It is a series connected device and compensates voltagesag and swell by injecting a voltage with the help of a series transformer. The injection of an appropriate voltage component in the event of a voltage disturbance requires a certain amount of real and reactive power. Conventionally,DVR consists of an energy storage device, which supplies the required power over the limited duration of the sags. Large magnitude and long duration of sags lead to heavy financial investment in energy storage unit. To overcome this limitation, a single-phase back-to-back converter-based DVR is implemented inthis work, which eliminates energy storage requirement. The integration of series and shunt converter makes the DVR capable of bidirectional flow of energy. Therefore, the key advantage of this topology is its capability to compensate for long-term voltage sag and swell. Modelling of the DVR and its controller design is included in this paper. The effectiveness of control schemes, protection schemes and starting sequence of operation of DVR is verified through detailed simulation studies. A scaled down laboratory prototype of DVR is developed. The viability of these schemes is confirmed by the experimental results generated from the laboratory prototype. Various challenges faced during the prototype development and corresponding solutions are also discussed in this paper.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Co-existence of Gel and Fluid Lipid Domains in Single-component Phospholipid Membranes
Energy Technology Data Exchange (ETDEWEB)
Armstrong, Clare L [McMaster University; Barrett, M [McMaster University; Toppozini, L [McMaster University; Yamani, Zahra [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratorie; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Katsaras, John [ORNL; Fragneto, Giovanna [Institut Laue-Langevin (ILL); Rheinstadter, Maikel C [McMaster University
2012-01-01
Lateral nanostructures in membranes, so-called rafts, are believed to strongly influence membrane properties and functions. The experimental observation of rafts has proven difficult as they are thought to be dynamic structures that likely fluctuate on nano- to microsecond time scales. Using neutron diffraction we present direct experimental evidence for the co-existence of gel and fluid lipid domains in a single-component phospholipid membrane made of DPPC as it undergoes its main phase transition. The coherence length of the neutron beam sets a lower limit for the size of structures that can be observed. Neutron coherence lengths between 30 and 242A used in this study were obtained by varying the incident neutron energy and the resolution of the neutron spectrometer. We observe Bragg peaks corresponding to co-existing nanometer sized structures, both in out-of-plane and in-plane scans, by tuning the neutron coherence length. During the main phase transition, instead of a continuous transition that shows a pseudo-critical behavior, we observe the co-existence of gel and fluid domains.
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
Mukherjee, K; Iyer, Kartik K; Sampathkumaran, E V
2011-05-25
Recently, we reported an anomalous enhancement of the positive magnetoresistance beyond a critical magnetic field in Tb(5)Si(3) in the magnetically ordered state, attributable to 'inverse metamagnetism'. This results in unusual magnetic hysteresis loops for the pressurized specimens, which are relevant to the topic of 'electronic phase separation'. In this paper, we report the influence of small substitutions of Lu for Tb, to show the evolution of these magnetic anomalies. We find that, at low temperatures, the high-field high-resistivity phase could be partially stabilized on returning the magnetic field to zero in many of these Lu substituted alloys, as measured through the electrical resistivity (ρ). Also, the relative fractions of this phase and the virgin phase appear to be controlled by a small tuning of the composition and temperature. Interestingly, at 1.8 K a sudden 'switch-over' of the value of ρ for this mixed phase to that for the virgin phase for some compositions is observed at low fields after a few field cycles, indicating metastability of this mixed phase.
Serrano-Garcia, David I.; Otani, Yukitoshi
2017-02-01
We implemented an interferometric configuration capable of following a phase variation in time. By using a pixelated polarization camera, the system is able to retrieve the phase information instantaneously avoiding the usage of moving components and the necessity of an extra replication method attached at the output of the interferometer. Taking into account the temporal stability obtained from the system, a spatial-temporal phase demodulation algorithm can be implemented on frequency domain for the dynamic phase measurement. Spatial resolution is analyzed experimentally using a USAF pattern, and dynamic phase measurements were done on air and water medium variations due to a jet flame and a living fish as a biological sample, respectively.
Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (NχFD)
Energy Technology Data Exchange (ETDEWEB)
Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Herold, Christoph [Suranaree University of Technology, School of Physics, Nakhon Ratchasima (Thailand)
2016-08-15
Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics. (orig.)
Coexistence of nuclear shapes: self-consistent mean-field and beyond
Li, Zhipan; Vretenar, Dario
2015-01-01
A quantitative analysis of the evolution of nuclear shapes and shape phase transitions, including regions of short-lived nuclei that are becoming accessible in experiments at radioactive-beam facilities, necessitate accurate modeling of the underlying nucleonic dynamics. Important theoretical advances have recently been made in studies of complex shapes and the corresponding excitation spectra and electromagnetic decay patterns, especially in the "beyond mean-field" framework based on nuclear density functionals. Interesting applications include studies of shape evolution and coexistence in N = 28 isotones, the structure of lowest $0^+$ excitations in deformed N $\\approx$ 90 rare-earth nuclei, and quadrupole and octupole shape transitions in thorium isotopes.
Phenotypic Plasticity and Species Coexistence.
Turcotte, Martin M; Levine, Jonathan M
2016-10-01
Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory.
Emergent neutrality drives phytoplankton species coexistence
Segura, Angel M.; Calliari, Danilo; Kruk, Carla; Conde, Daniel; Bonilla, Sylvia; Fort, Hugo
2011-01-01
The mechanisms that drive species coexistence and community dynamics have long puzzled ecologists. Here, we explain species coexistence, size structure and diversity patterns in a phytoplankton community using a combination of four fundamental factors: organism traits, size-based constraints, hydrology and species competition. Using a ‘microscopic’ Lotka–Volterra competition (MLVC) model (i.e. with explicit recipes to compute its parameters), we provide a mechanistic explanation of species coexistence along a niche axis (i.e. organismic volume). We based our model on empirically measured quantities, minimal ecological assumptions and stochastic processes. In nature, we found aggregated patterns of species biovolume (i.e. clumps) along the volume axis and a peak in species richness. Both patterns were reproduced by the MLVC model. Observed clumps corresponded to niche zones (volumes) where species fitness was highest, or where fitness was equal among competing species. The latter implies the action of equalizing processes, which would suggest emergent neutrality as a plausible mechanism to explain community patterns. PMID:21177680
Argolo, C.; Barros, P.; Tomé, T.; Arashiro, E.; Gleria, Iram; Lyra, M. L.
2016-08-01
We investigate a stochastic lattice model describing a predator-prey system in a fractal scale-free landscape, mimicked by the fractal Sierpinski carpet. We determine the threshold of species coexistence, that is, the critical phase boundary related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. We show that the predators must live longer in order to persist in a fractal habitat. We further performed a finite-size scaling analysis in the vicinity of the absorbing-state phase transition to compute a set of stationary and dynamical critical exponents. Our results indicate that the transition belongs to the directed percolation universality class exhibited by the usual contact process model on the same fractal landscape.
Average dynamics of a finite set of coupled phase oscillators
Energy Technology Data Exchange (ETDEWEB)
Dima, Germán C., E-mail: gdima@df.uba.ar; Mindlin, Gabriel B. [Laboratorio de Sistemas Dinámicos, IFIBA y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina)
2014-06-15
We study the solutions of a dynamical system describing the average activity of an infinitely large set of driven coupled excitable units. We compared their topological organization with that reconstructed from the numerical integration of finite sets. In this way, we present a strategy to establish the pertinence of approximating the dynamics of finite sets of coupled nonlinear units by the dynamics of its infinitely large surrogate.
Lattice dynamics and phase diagram of aluminum at high temperatures
Energy Technology Data Exchange (ETDEWEB)
Kudasov, Yu. B., E-mail: yu_kudasov@yahoo.com; Surdin, O. M.; Korshunov, A. S.; Pavlov, V. N. [National Research Nuclear University ' MEPhI,' , Sarov State Institute of Physics and Technology (Russian Federation); Frolova, N. V.; Kuzin, R. S. [Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (Russian Federation)
2013-10-15
The dispersion of phonons in the fcc, hcp, and bcc phases of aluminum is calculated at ultrahigh pressures by the method of small displacements in a supercell. The stability of the phonon subsystem is studied. The thermodynamic characteristics are calculated in the quasi-harmonic approximation, and a phase diagram of aluminum is plotted. As compared to the Debye model, the use of a phonon spectrum calculated in the quasi-harmonic approximation significantly broadens the hcp phase field and strongly shifts the phase boundary between the fcc and bcc phases. The normal isentrope is calculated at megabar pressures. It is shown to intersect the fcc-hcp and hcp-bcc phase boundaries. The sound velocity along the normal isentrope is calculated. It is shown to have a nonmonotonic character.
Shin, Seonho; Lee, Mihye; Guzei, Ilia A; Kang, Young Kee; Choi, Soo Hyuk
2016-10-12
We present the first examples of atomic-resolution crystal data for the β-peptide 12/10-helix from oligomers of cis-2-aminocyclohexane carboxylic acid (cis-ACHC) with alternating chirality. The local conformations of two enantiomeric cis-ACHC dimer units suggested that a chiral β-peptide may adopt both right-handed and left-handed helical conformations in solution. To probe the conformational behavior of 12/10-helical β-peptides, the two reference helices with a single handedness were synthesized with a more rigidified cis-ACHC derivative. Comparison with these reference helices at low temperature revealed that a chiral cis-ACHC oligomer with alternating chirality indeed displays 12/10-helical conformations with both handedness that equilibrate rapidly in solution. This is a very rare example of chiral oligomers with helix inversion ability. The 12/10-helical backbone should be a valuable addition to potential scaffolds for applications involving helices with dynamic folding propensity.
Nichols, S. Jerrine; Amberg, Jon
1999-01-01
In 1996, thousands of live Leptodea fragilis were collected from a marsh located in the western basin of Lake Erie that was infested with zebra mussels (Dreissena polymorpha). Despite the presence of zebra mussels at this site for a number of years, this L. fragilis population showed no signs of competition-induced changes in population dynamics. Biofouling was limited: fewer than 1% of the L. fragilis showed evidence of recent or past zebra mussel colonization. Successful recruitment occurred yearly, with multiple year classes collected that ranged in age from 1 to 12 years. However, age and shell length were not well correlated. Seventy-one percent of the individuals collected were 51-80 mm long, but ranged in age from 2 to 4.5 years. Three different patterns of growth or shell deposition were found. Some individuals grew rapidly, reaching 105 mm in 3.5 years, while others grew only 4.5 mm over the same time period. A few grew poorly during some years but very rapidly in others. Individuals with a shell length of 41 mm or more were sexually mature and females were more common than males. The strong recruitment and steady growth of this population showed no change between the years before and after the zebra mussel invasion, indicating that this marsh is functioning as a natural refugium from potential problems caused by zebra mussels.
Efficient molecular quantum dynamics in coordinate and phase space using pruned bases
Larsson, Henrik R; Tannor, David J
2016-01-01
We present an efficient implementation of dynamically pruned quantum dynamics, both in coordinate space and in phase space. We combine the ideas behind the biorthogonal von Neumann basis (PvB) with the orthogonalized momentum-symmetrized Gaussians (Weylets) to create a new basis, projected Weylets, that takes the best from both methods. We benchmark pruned dynamics using phase-space-localized PvB, projected Weylets, and coordinate-space-localized DVR bases, with real-world examples in up to six dimensions. We show that coordinate-space localization is most important for efficient pruning and that pruned dynamics is much faster compared to unpruned, exact dynamics. Phase-space localization is useful for more demanding dynamics where many basis functions are required. There, projected Weylets offer a more compact representation than pruned DVR bases.
Efficient molecular quantum dynamics in coordinate and phase space using pruned bases
Larsson, H. R.; Hartke, B.; Tannor, D. J.
2016-11-01
We present an efficient implementation of dynamically pruned quantum dynamics, both in coordinate space and in phase space. We combine the ideas behind the biorthogonal von Neumann basis (PvB) with the orthogonalized momentum-symmetrized Gaussians (Weylets) to create a new basis, projected Weylets, that takes the best from both methods. We benchmark pruned time-dependent dynamics using phase-space-localized PvB, projected Weylets, and coordinate-space-localized DVR bases, with real-world examples in up to six dimensions. For the examples studied, coordinate-space localization is the most important factor for efficient pruning and the pruned dynamics is much faster than the unpruned, exact dynamics. Phase-space localization is useful for more demanding dynamics where many basis functions are required. There, projected Weylets offer a more compact representation than pruned DVR bases.
Dynamical stability of the alpha and theta phases of alumina
DEFF Research Database (Denmark)
Lodziana, Zbigniew; Parlinski, K.
2003-01-01
Using density functional calculations the phonon dispersion relations, phonon density of states, and free energy of theta and alpha phases of alumina are investigated. The temperature dependence of the free energy indicates that entropy contributes to the destabilization of the alpha phase...
Direct Observation of Dynamical Quantum Phase Transitions in an Interacting Many-Body System
Jurcevic, P.; Shen, H.; Hauke, P.; Maier, C.; Brydges, T.; Hempel, C.; Lanyon, B. P.; Heyl, M.; Blatt, R.; Roos, C. F.
2017-08-01
The theory of phase transitions represents a central concept for the characterization of equilibrium matter. In this work we study experimentally an extension of this theory to the nonequilibrium dynamical regime termed dynamical quantum phase transitions (DQPTs). We investigate and measure DQPTs in a string of ions simulating interacting transverse-field Ising models. During the nonequilibrium dynamics induced by a quantum quench we show for strings of up to 10 ions the direct detection of DQPTs by revealing nonanalytic behavior in time. Moreover, we provide a link between DQPTs and the dynamics of other quantities such as the magnetization, and we establish a connection between DQPTs and entanglement production.
The structure and dynamics of amorphous and crystalline phases of ice
Energy Technology Data Exchange (ETDEWEB)
Klug, D. D.; Tse, J. S.; Tulk, C. A.; Svensson, E. C.; Swainson, I.; Loong, C.-K.
2000-07-14
The structures of the high and low-density amorphous phases of ice are studied using several techniques. The diffraction patterns of high and low density amorphous ice are analyzed using reverse Monte Carlo methods and compared with molecular dynamics simulations of these phases. The spectra of crystalline and amorphous phases of ice obtained by Raman and incoherent inelastic neutron scattering are analyzed to yield structural features for comparison with the results of molecular dynamics and Reverse Monte Carlo analysis. The structural details obtained indicate that there are significant differences between the structure of liquid water and the amorphous phases of ice.
Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin
2016-09-01
A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.
Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin
2016-01-01
A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures. PMID:27677356
Coexistence analysis of diploid and triploid hybrid water frogs
Apri, M.; Suandi, D.; Soewono, E.
2014-02-01
A dynamical model for genotype distributions of all hybrid populations of Pelophylax esculentus in the absence of differential survival is studied here. Assuming that under natural condition the parental genotypes LL and RR do not survive into adult stage, the dynamic is then reduced into three-dimensional dynamical system of classes LR, LLR, LRR genotypes. Coexistence of diploid (LR) and triploid (LLR and LRR) genotypes is analyzed here.
Phase-dependent dynamics of the lac promoter under nutrient stress.
Viswanathan, Anisha; Anufrieva, Olga; Sala, Adrien; Yli-Harja, Olli; Kandhavelu, Meenakshisundaram
2016-01-01
To survive, a bacterial population must sense nutrient availability and adjust its growth phase accordingly. Few studies have quantitatively analyzed the single-cell behavior of stress and growth phase-related transcriptional changes in Escherichia coli. To investigate the dynamic changes in transcription during different growth phases and starvation, we analyzed the single-cell transcriptional dynamics of the E. coli lac promoter. Cells were grown under different starvation conditions, including glucose, magnesium, phosphate and thiamine limitations, and transcription dynamics was quantified using a single RNA detection method at different phases. Differences in gene expression over conditions and phases indicate that stochasticity in transcription dynamics is directly connected to cell phase and availability of nutrients. Except for glucose, the pattern of transcription dynamics under all starvation conditions appears to be similar. Transcriptional bursts were more prominent in lag and stationary phase cells starved for energy sources. Identical behavior was observed in exponential phase cells starved for phosphate and thiamine. Noise measurements under all nutrient exhaustion conditions indicate that intrinsic noise is higher than extrinsic noise. Our results, obtained in a relA1 mutational background, which led to suboptimal production of ppGpp, suggest that the single-cell transcriptional changes we observed were largely ppGpp-independent. Taken together, we propose that, under different starvation conditions, cells are able to decrease the trend in cell-to-cell variability in transcription as a common means of adaptation.
Collective dynamics of time-delay-coupled phase oscillators in a frustrated geometry
Thakur, Bhumika; Sharma, Devendra; Sen, Abhijit; Johnston, George L.
2017-01-01
We study the effect of time delay on the dynamics of a system of repulsively coupled nonlinear oscillators that are configured as a geometrically frustrated network. In the absence of time delay, frustrated systems are known to possess a high degree of multistability among a large number of coexisting collective states except for the fully synchronized state that is normally obtained for attractively coupled systems. Time delay in the coupling is found to remove this constraint and to lead to such a synchronized ground state over a range of parameter values. A quantitative study of the variation of frustration in a system with the amount of time delay has been made and a universal scaling behavior is found. The variation in frustration as a function of the product of time delay and the collective frequency of the system is seen to lie on a characteristic curve that is common for all natural frequencies of the identical oscillators and coupling strengths. Thus time delay can be used as a tuning parameter to control the amount of frustration in a system and thereby influence its collective behavior. Our results can be of potential use in a host of practical applications in physical and biological systems in which frustrated configurations and time delay are known to coexist.
Definition of Astrobiology with Liquid Phase Change and Dynamic Cyclic Change
Miura, Yas.
2010-04-01
Definition of astrobiology is required for three factors of combined inorganic and organic materials of fossils, dynamic changes of gas-liquid-solid phases as min-water Earth with cycle, and space and time factors also in deep space.
Dynamic Gain Equalizer Based on the H-PDLC Volume Phase Grating
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The structure and Bragg diffraction characteristics of volume phase gratings based on H-PDLC technology are presented, and the principles and simulation aided design of dynamic gain equalizers with the gratings are discussed.
Interacting bosons in a disordered lattice: Dynamical characterization of the quantum phase diagram
Buonsante, Pierfrancesco; Pezzè, Luca; Smerzi, Augusto
2015-03-01
We study the quantum dynamics of interacting bosons in a three-dimensional disordered lattice. We show that the superfluid current induced by an adiabatic acceleration of the disordered lattice undergoes a dynamical instability signaling the onset of the Bose-glass phase. The dynamical superfluid-Bose-glass phase diagram is found in very good agreement with static superfluid fraction calculation. A different boundary is obtained when the disorder is suddenly quenched in a moving periodic lattice. In this case we do not observe a dynamical instability but rather a depletion of the superfluid density. Our analysis is based on a dynamical Gutzwiller approach which we show to reproduce the quantum Monte Carlo static phase diagram in the strong interaction limit.
Dynamic finite-size scaling at first-order transitions
Pelissetto, Andrea; Vicari, Ettore
2017-07-01
We investigate the dynamic behavior of finite-size systems close to a first-order transition (FOT). We develop a dynamic finite-size scaling (DFSS) theory for the dynamic behavior in the coexistence region where different phases coexist. This is characterized by an exponentially large time scale related to the tunneling between the two phases. We show that, when considering time scales of the order of the tunneling time, the dynamic behavior can be described by a two-state coarse-grained dynamics. This allows us to obtain exact predictions for the dynamical scaling functions. To test the general DFSS theory at FOTs, we consider the two-dimensional Ising model in the low-temperature phase, where the external magnetic field drives a FOT, and the 20-state Potts model, which undergoes a thermal FOT. Numerical results for a purely relaxational dynamics fully confirm the general theory.
Phase transitions in operational risk.
Anand, Kartik; Kühn, Reimer
2007-01-01
In this paper we explore the functional correlation approach to operational risk. We consider networks with heterogeneous a priori conditional and unconditional failure probability. In the limit of sparse connectivity, self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium conditions, expressions for the stationary states are also obtained. Consequences of the analytical theory developed are analyzed using phase diagrams. We find coexistence of operational and nonoperational phases, much as in liquid-gas systems. Such systems are susceptible to discontinuous phase transitions from the operational to nonoperational phase via catastrophic breakdown. We find this feature to be robust against variation of the microscopic modeling assumptions.
Institute of Scientific and Technical Information of China (English)
TIAN Jing; QIU Hai-Bo
2013-01-01
In this paper,by employing Bogliubov backreaction method,we investigate quantum correction effects on dynamical phase transition in a single species bosonic Josephson junction induced by increasing nonlinear interaction.Compared with mean field theory results,we find that the transition point is shifted.The dynamical phase transition is accompanied by a change of the entanglement entropy,which is found to reach a maximum at the transition point of the mean field theory.
Partial Dynamical Symmetry at Critical-Points of Quantum Phase Transitions
Leviatan, A
2007-01-01
We show that partial dynamical symmetries (PDS) can occur at critical-points of quantum phase transitions, in which case, underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of PDS are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape-phases in nuclei.
Change in blood pressure in recovery phase after combined (static & dynamic) exercise
桑村, 由美; 志内, 哲也; 野村, 千景; 幸田, 貴美子; 小原, 繁
1997-01-01
It is well known that systolic blood pressure (SBP) elevate but diastolic blood pressure (DBP) do not elevate during dynamic exercise and in statlc isometrlc exercise DBP show respectable elevation. However，changes in SBP and DBP in recovery phase after exercise is unclear.In this study we measured SBP and DBP by auscultatory recording method during recovery phase for 10 minutes. Resting blood pressure was determined immediately before exercise. The exercise was a dynamic (p...
Chaos crisis in coupled Duffing's systems with initial phase difference
Energy Technology Data Exchange (ETDEWEB)
Bi Qinsheng [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)], E-mail: qbi@ujs.edu.cn
2007-10-01
The dynamics of coupled Duffing's oscillators with initial phase difference is investigated in this Letter. For the averaged equations, different equilibrium points can be observed, the number of which may vary with the parameters. The stable equilibrium points, corresponding to the periodic motion of the original coupled oscillators, may coexist with different patterns of dynamics, including chaos. Furthermore, two different chaotic attractors associated with different attracting basin coexist for certain parameter conditions, which may interact with each other to form an enlarged chaotic attractor. Several new dynamical phenomena such as boundary chaos crises have been predicted as the initial phase difference varies.
Coexisting Oscillation and Extreme Multistability for a Memcapacitor-Based Circuit
Guangyi Wang; Chuanbao Shi; Xiaowei Wang; Fang Yuan
2017-01-01
The coexisting oscillations are observed with a memcapacitor-based circuit that consists of two linear inductors, two linear resistors, and an active nonlinear charge-controlled memcapacitor. We analyze the dynamics of this circuit and find that it owns an infinite number of equilibrium points and coexisting attractors, which means extreme multistability arises. Furthermore, we also show the stability of the infinite many equilibria and analyze the coexistence of fix point, limit cycle, and c...
Bifurcation behavior and coexisting motions in a time-delayed power system
Ma, Mei-Ling; Min, Fu-Hong
2015-03-01
With the increase of system scale, time delays have become unavoidable in nonlinear power systems, which add the complexity of system dynamics and induce chaotic oscillation and even voltage collapse events. In this paper, coexisting phenomenon in a fourth-order time-delayed power system is investigated for the first time with different initial conditions. With the mechanical power, generator damping factor, exciter gain, and time delay varying, the specific characteristic of the time-delayed system, including a discontinuous “jump” bifurcation behavior is analyzed by bifurcation diagrams, phase portraits, Poincaré maps, and power spectrums. Moreover, the coexistence of two different periodic orbits and chaotic attractors with periodic orbits are observed in the power system, respectively. The production condition and existent domain of the coexistence phenomenon are helpful to avoid undesirable behavior in time-delayed power systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 51475246 and 51075215), the Natural Science Foundation of Jiangsu Province of China (Grant No. Bk20131402), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grand No. [2012]1707).
Phase stability and dynamics of entangled polymer-nanoparticle composites.
Mangal, Rahul
2015-06-05
Nanoparticle-polymer composites, or polymer-nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales, where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.
Technology verification phase. Dynamic isotope power system. Final report
Energy Technology Data Exchange (ETDEWEB)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight system design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)
Phase transitions and dynamics of bulk and interfacial water
Energy Technology Data Exchange (ETDEWEB)
Franzese, G; Hernando-Martinez, A [Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Kumar, P [Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021 (United States); Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); De los Santos, F, E-mail: gfranzese@ub.ed [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)
2010-07-21
New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.
Nonequilibrium dynamical phase transition of 3D kinetic Ising/Heisenberg spin system
Institute of Scientific and Technical Information of China (English)
Shao Yuan-Zhi; Lai J. K. L.; Shek C. H.; Lin Guang-Ming; Lan Tu
2004-01-01
We have studied the nonequilibrium dynamic phase transitions of both three-dimensional (3D) kinetic Ising and Heisenberg spin systems in the presence of a perturbative magnetic field by Monte Carlo simulation. The feature of the phase transition is characterized by studying the distribution of the dynamical order parameter.In the case of anisotropic Ising spin system (ISS), the dynamic transition is discontinuous and continuous under low and high temperatures respectively, which indicates the existence of a tri-critical point (TCP) on the phase boundary separating low-temperature order phase and high-temperature disorder phase. The TCP shifts towards the higher temperature region with the decrease of frequency, I.e. TTCp=1.33×exp(-ω/30.7). In the case of the isotropic Heisenberg spin system (HSS), however, the situation on dynamic phase transition of HSS is quite different from that of ISS in that no stable dynamical phase transition was observed in kinetic HSS after a threshold time. The evolution of magnetization in the HSS driven by a symmetrical external field after a certain duration always tends asymptotically to a disorder state no matter what an initial state the system starts with. The threshold time τ depends upon the amplitude H0,reduced temperature T/TC and the frequency ωas τ=C·ωα·H-β0·(T/TC)-γ.
Laser phase noise effects on the dynamics of optomechanical resonators
Phelps, Gregory A
2010-01-01
We investigate theoretically the influence of laser phase noise on the cooling and heating of a generic cavity optomechanical system. We derive the back-action damping and heating rates and the mechanical frequency shift of the radiation pressure-driven oscillating mirror, and derive the minimum phonon occupation number for small laser linewidths. We find that in practice laser phase noise does not pose serious limitations to ground state cooling. We then consider the effects of laser phase noise in a parametric cavity driving scheme that minimizes the back-action heating of one of the quadratures of the mechanical oscillator motion. Laser linewidths narrow compared to the decay rate of the cavity field will not pose any problems in an experimental setting, but broader linewidths limit the practicality of this back-action evasion method.
Dynamical phase transition in a simple model of competing shops
Lambert, Gaultier; Bertin, Eric
2011-01-01
We consider a simple model in which a set of agents randomly visit one of two competing shops selling the same perishable products (typically food). The satisfaction of agents with respect to a given store is related to the freshness of the previously bought products. Agents then choose with a higher probability the store they are most satisfied with. Studying the model both through numerical simulations and mean-field analytical methods, we find a rich behaviour with continuous and discontinuous phase transitions between a symmetric phase where both stores maintain the same level of activity, and a phase with broken symmetry where one of the two shops attracts more customers than the other.
Cascading dynamics on random networks: Crossover in phase transition
Liu, Run-Ran; Wang, Wen-Xu; Lai, Ying-Cheng; Wang, Bing-Hong
2012-02-01
In a complex network, random initial attacks or failures can trigger subsequent failures in a cascading manner, which is effectively a phase transition. Recent works have demonstrated that in networks with interdependent links so that the failure of one node causes the immediate failures of all nodes connected to it by such links, both first- and second-order phase transitions can arise. Moreover, there is a crossover between the two types of transitions at a critical system-parameter value. We demonstrate that these phenomena can occur in the more general setting where no interdependent links are present. A heuristic theory is derived to estimate the crossover and phase-transition points, and a remarkable agreement with numerics is obtained.
Multiple charge beam dynamics in alternate phase focusing structure
Directory of Open Access Journals (Sweden)
S. Dechoudhury
2014-07-01
Full Text Available Asymmetrical alternate phase (A-APF focusing realized in a sequence of 36 superconducting quarter wave resonators (QWRs has been shown to accelerate almost 81% of input uranium beam before foil stripper to an energy of 6.2 MeV/u from 1.3 MeV/u. Ten charge states from 34+ to 43+ could be simultaneously accelerated with the phase of resonators tuned for 34+. The A-APF structure showed the unique nature of a large potential bucket for charge states higher than that of the tuned one. Steering inherent to QWRs can be mitigated by selecting appropriate phase variation of the APF periods and optimization of solenoid field strengths placed in each of the periods. This mitigation facilitates the multiple charge state acceleration scheme.
Wigner's dynamical transition state theory in phase space : classical and quantum
Waalkens, Holger; Schubert, Roman; Wiggins, Stephen
2008-01-01
We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs t
Kramers and non-Kramers Phase Transitions in Many-Particle Systems with Dynamical Constraint
Herrmann, Michael; Velázquez, Juan J L
2011-01-01
We study a Fokker-Planck equation with double-well potential that is nonlocally driven by a dynamical constraint and involves two small parameters. Relying on formal asymptotics we identify several parameter regimes and derive reduced dynamical models for different types of phase transitions.
Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids
1993-02-15
I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992
Disorder induced phase transition in an opinion dynamics model: results in 2 and 3 dimensions
Mukherjee, Sudip
2016-01-01
We study a model of continuous opinion dynamics with both positive and negative mutual interaction. The model shows a continuous phase transition between a phase with consensus (order) and a phase having no consensus (disorder). The mean field version of the model was already studied. Using extensive numerical simulations, we study the same model in $2$ and $3$ dimensions. The critical points of the phase transitions for various cases and the associated critical exponents have been estimated. The universality class of the phase transitions in the model is found to be same as Ising model in the respective dimensions.
Guidance of Nonlinear Nonminimum-Phase Dynamic Systems
Devasia, Santosh
1997-01-01
The first two years research work has advanced the inversion-based guidance theory for: (1) systems with non-hyperbolic internal dynamics; (2) systems with parameter jumps; (3) systems where a redesign of the output trajectory is desired; and (4) the generation of recovery guidance maneuvers.
Dynamics of charged gibbsite platelets in the isotropic phase
Kleshchanok, D.; Heinen, M.; Nägele, G.; Holmqvist, P.
2012-01-01
We report on depolarized and non-depolarized dynamic light scattering , static light scattering , and steady shear viscosity measurements on interacting charge-stabilized gibbsite platelets suspended in dimethyl sulfoxide (DMSO). The average collective and (long-time) translational self-diffusion co
Molecular dynamics simulations of barrier crossings in the condensed phase
den Otter, Wouter K.
1998-01-01
The isomerisation rates of a calix[4]arene in vacuo and in two solvents have been computed by means of molecular dynamics simulations (MD). In MD the equations of classical mechanics are used to calculate the motion of the reacting molecule and the surrounding solvent molecules. Thus, the intricate
DEFF Research Database (Denmark)
Cleary, Ciaran S.; Ji, Hua; Dailey, James M.
2013-01-01
Amplitude and phase dynamics of silicon nanowires were measured using time-resolved spectroscopy. Time shifts of the maximum phase change and minimum amplitude as a function of pump power due to saturation of the free-carrier density were observed. A phenomenological impulse response model used...
Dynamics and phase transitions in A{sub 1}C{sub 60} compounds
Energy Technology Data Exchange (ETDEWEB)
Schober, H.; Toelle, A. [Institut Max von Laue - Paul Langevin, 38 -Grenoble (France); Renker, B.; Heid, R. [INFP, Forschungszentrum Karlsruhe, D-76021, Karlsruhe (Germany)
1997-06-01
We present an overview of extensive inelastic neutron scattering experiments carried out on powders of A{sub 1}C{sub 60}. The various phases leave strong fingerprints in the microscopic dynamics confirming the solid-state chemical reactions. The strong kinetic phase transitions can be followed in real time and turn to be highly complex. (orig.).
Disentangling the Effects of Attentional and Amplitude Asymmetries on Relative Phase Dynamics
de Poel, Harjo J.; Peper, C. E.; Beek, Peter J.
2009-01-01
Attentional asymmetry in rhythmic interlimb coordination induces an asymmetry in relative phase dynamics, allegedly reflecting an asymmetry in coupling strength. However, relative phase asymmetries may also be engendered by an attention-induced difference between the amplitudes (and hence the preferred frequencies) of the limb movements. The…
Institute of Scientific and Technical Information of China (English)
Lou Zhi-Mei; Chen Zi-Dong; Wang Wen-Long
2005-01-01
In this paper, we express the differential equations of a noncentral dynamical system in Ermakov formalism to obtain the Ermakov invariant. In term of Hamiltonian theories and using the Ermakov invariant as the Hamiltonian,the Poisson structure of a noncentral dynamical system in four-dimensional phase space are constructed. The result indicates that the Poisson structure is degenerate and the noncentral dynamical system possesses four invariants: the Hamiltonian, the Ermakov invariant and two Casimir functions.
Discrete dynamics in transitional economies
Directory of Open Access Journals (Sweden)
J. Barkley Rosser, Jr.
1998-01-01
Full Text Available This paper traces the transition from planned command socialism to market capitalism and the accompanying complex non-linear dynamics involved. Long wave chaotic hysteretic investment cycles emerge under socialism leading to crisis and breakdown. Macroeconomic collapse occurs with bifurcations of coordination structures during transition. During recovery, transitional cobweb labor market dynamics exhibit chaos, fractal basin boundaries between coexisting non-chaotic attractors, discontinuous phase transitions, strange attractors, and cascades of infinitely many period-doubling bifurcations.
Diffraction phase microscopy: monitoring nanoscale dynamics in materials science [invited].
Edwards, Chris; Zhou, Renjie; Hwang, Suk-Won; McKeown, Steven J; Wang, Kaiyuan; Bhaduri, Basanta; Ganti, Raman; Yunker, Peter J; Yodh, Arjun G; Rogers, John A; Goddard, Lynford L; Popescu, Gabriel
2014-09-20
Quantitative phase imaging (QPI) utilizes the fact that the phase of an imaging field is much more sensitive than its amplitude. As fields from the source interact with the specimen, local variations in the phase front are produced, which provide structural information about the sample and can be used to reconstruct its topography with nanometer accuracy. QPI techniques do not require staining or coating of the specimen and are therefore nondestructive. Diffraction phase microscopy (DPM) combines many of the best attributes of current QPI methods; its compact configuration uses a common-path off-axis geometry which realizes the benefits of both low noise and single-shot imaging. This unique collection of features enables the DPM system to monitor, at the nanoscale, a wide variety of phenomena in their natural environments. Over the past decade, QPI techniques have become ubiquitous in biological studies and a recent effort has been made to extend QPI to materials science applications. We briefly review several recent studies which include real-time monitoring of wet etching, photochemical etching, surface wetting and evaporation, dissolution of biodegradable electronic materials, and the expansion and deformation of thin-films. We also discuss recent advances in semiconductor wafer defect detection using QPI.
Phase separation dynamics during Myxococcus xanthus fruiting body formation
Liu, Guannan; Bahar, Fatmagul; Patch, Adam; Thutupalli, Shashi; Yllanes, David; Marchetti, M. Cristina; Welch, Roy; Shaevitz, Joshua
Many living systems take advantage of collective behavior for group survival. We use the soil-dwelling bacterium Myxococcus xanthus as a model to study out-of-equilibrium phase separation during fruiting body formation. M. xanthus cells have the ability to glide on solid surfaces and reverse their direction periodically. When starved, M. xanthus cells aggregate together and form structures called fruiting bodies, inside of which cells sporulate to survive stressful conditions. We show that at high cell density the formation of fruiting bodies is a phase separation process. From experimental data that combines single-cell tracking, population-scale imaging, mutants, and drug applications, we construct the phase diagram of M. xanthus in the space of Péclet number and cell density. When wild type cells are starved, we find that they actively increase their Péclet number by modulating gliding speed and reversal frequency which induces a phase separation from a gas-like state to an aggregated fruiting body state.
Dynamics of Electrically Driven Martensitic Phase Transitions in Fe Nanoislands
Gerhard, L.; Wesselink, R.J.H.; Ostanin, S.; Ernst, A.; Wulfhekel, W.
2013-01-01
Magnetoelectric coupling has attracted interest due to its potential to write magnetic information with electric fields. In the model system of Fe islands on Cu(111), electric fields can induce martensitic phase transitions between ferromagnetic body-centered cubic and antiferromagnetic face-centere
Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui
2014-03-26
We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.
Zilberman, David; Wesseler, J.H.H.
2016-01-01
The backlash against the introduction of genetically modified (GM) crops and the concern about contamination of non-GM crops by genetic material originating from GM crops has resulted in a complex and costly legal and physical arrangement for coexistence of GM and non-GM agricultural product systems
Synchronization in Coupled Oscillators with Two Coexisting Attractors
Institute of Scientific and Technical Information of China (English)
ZHU Han-Han; YANG Jun-Zhong
2008-01-01
Dynamics in coupled Duffing oscillators with two coexisting symmetrical attractors is investigated. For a pair of Dutffng oscillators coupled linearly, the transition to the synchronization generally consists of two steps: Firstly, the two oscillators have to jump onto a same attractor, then they reach synchronization similarly to coupled monostable oscillators. The transition scenarios to the synchronization observed are strongly dependent on initial conditions.
Phase-space dynamics of runaway electrons in magnetic fields
Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu
2017-04-01
Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runaway electron dynamics in magnetic fields.
Bubble Dynamics in a Two-Phase Medium
Jayaprakash, Arvind; Chahine, Georges
2010-01-01
The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of vary...
Dynamic behavior of pipes conveying gas–liquid two-phase flow
Energy Technology Data Exchange (ETDEWEB)
An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)
2015-10-15
Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.
Attributes and Dynamic Development Phases of Informal ICT Consortia
Pohlmann, Tim
2010-01-01
Theoretical and empirical analyses about informal consortia are not yet able to entirely illustrate the informal standard setting landscape. This paper tries to provide a broad and comprehensive picture of informal standards consortia and their dynamic development in the past ten years. Analyses show that consortia have distinct characteristics which help to position and explain their existence in the standard setting context. Furthermore the observation of consortia survival identifies relat...
Molecular dynamics simulations of phase separation in the presence of surfactants
DEFF Research Database (Denmark)
Laradji, Mohamed; Mouritsen, Ole G.; Toxvaerd, Søren
1994-01-01
The dynamics of phase separation in two-dimensional binary mixtures diluted by surfactants is studied by means of molecular dynamics simulations. In contrast to pure binary systems, characterized by an algebraic time dependence of the average domain size, we find that systems containing surfactants...... exhibit nonalgebraic, slow dynamics. The average domain size eventually saturates at a value inversely proportional to the surfactant concentration. We also find that phase separation in systems with different surfactant concentrations follow a crossover scaling form. Finally, although these systems do...... not fully phase separate, we observe a dynamical scaling which is independent of the surfactant concentration. The results of these simulations are in general in agreement with previous Langevin simulations [Laradji, Guo, Grant, and Zuckermann, J. Phys. A 44, L629 (1991)] and a theory of Ostwald ripening...
Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes
Directory of Open Access Journals (Sweden)
Salmi T.
2000-01-01
Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.
Phase of transmitted wave in dynamical theory and quasi-kinematical approximation
Gorobtsov, O. Yu.; Vartanyants, I. A.
2016-05-01
Variation of the phase of the beam transmitted through a crystalline material as a function of the rocking angle is a well-known dynamical effect in x-ray scattering. Unfortunately, it is not so easy to directly measure these phase variations in a conventional scattering experiment. It was recently suggested that the transmitted phase can be directly measured in ptychography experiments performed on nanocrystal samples. Results of such experiment for different crystal thickness, reflections, and incoming photon energies, in principle, can be fully described in the frame of dynamical theory. However, dynamical theory does not provide a simple analytical expression for the further analysis. Here we develop a quasi-kinematical theory approach that allows one to correctly describe the phase of the transmitted beam for the crystal thickness less than extinction length that is beyond applicability of the conventional kinematical theory.
Phase transitions, nonequilibrium dynamics, and critical behavior of strongly interacting systems
Energy Technology Data Exchange (ETDEWEB)
Mottola, E.; Bhattacharya, T.; Cooper, F. [and others
1998-12-31
This is the final report of a three-year, Laboratory Directed Research and Development project at Los Alamos National Laboratory. In this effort, large-scale simulations of strongly interacting systems were performed and a variety of approaches to the nonequilibrium dynamics of phase transitions and critical behavior were investigated. Focus areas included (1) the finite-temperature quantum chromodynamics phase transition and nonequilibrium dynamics of a new phase of matter (the quark-gluon plasma) above the critical temperature, (2) nonequilibrium dynamics of a quantum fields using mean field theory, and (3) stochastic classical field theoretic models with applications to spinodal decomposition and structural phase transitions in a variety of systems, such as spin chains and shape memory alloys.
Phase Space Dynamics of Ionization Injection in Plasma Based Accelerators
Xu, X L; Li, F; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Chen, H B; Tang, C X; Lu, W; Yu, P; An, W; Mori, W B; Joshi, C
2013-01-01
The evolution of beam phase space in ionization-induced injection into plasma wakefields is studied using theory and particle-in-cell (PIC) simulations. The injection process causes special longitudinal and transverse phase mixing leading initially to a rapid emittance growth followed by oscillation, decay, and eventual slow growth to saturation. An analytic theory for this evolution is presented that includes the effects of injection distance (time), acceleration distance, wakefield structure, and nonlinear space charge forces. Formulas for the emittance in the low and high space charge regimes are presented. The theory is verified through PIC simulations and a good agreement is obtained. This work shows how ultra-low emittance beams can be produced using ionization-induced injection.
Dynamics Assessment of Advanced Single-Phase PLL Structures
DEFF Research Database (Denmark)
Golestan, Saeed; Monfarad, Mohammad; Freijedo, Francisco D.
2013-01-01
Recently, several advanced phase locked loop (PLL) techniques have been proposed for single-phase applications. Among these, the Park-PLL, and the second order generalized integrator (SOGI) based PLL are very attractive, owing to their simple digital implementation, low computational burden......, and desired performance under frequency-varying and harmonically distorted grid conditions. Despite the wide acceptance and use of these two advanced PLLs, no comprehensive design guidelines to fine-tune their parameters have been reported yet. Through a detailed mathematical analysis it is shown...... that these two PLL structures are equivalent to each other, from the control point of view. Then, a linearized model is developed which is valid for both PLLs. The derived model significantly simplifies the stability analysis and the parameter design. To fine-tune the PLL parameters, a systematic design approach...
Effects of phase transition induced density fluctuations on pulsar dynamics
Directory of Open Access Journals (Sweden)
Partha Bagchi
2015-07-01
Full Text Available We show that density fluctuations during phase transitions in pulsar cores may have non-trivial effects on pulsar timings, and may also possibly account for glitches and anti-glitches. These density fluctuations invariably lead to non-zero off-diagonal components of the moment of inertia, leading to transient wobbling of star. Thus, accurate measurements of pulsar timing and intensity modulations (from wobbling may be used to identify the specific pattern of density fluctuations, hence the particular phase transition, occurring inside the pulsar core. Changes in quadrupole moment from rapidly evolving density fluctuations during the transition, with very short time scales, may provide a new source for gravitational waves.
Identifying phase synchronization clusters in spatially extended dynamical systems
Bialonski, Stephan; 10.1103/PhysRevE.74.051909
2010-01-01
We investigate two recently proposed multivariate time series analysis techniques that aim at detecting phase synchronization clusters in spatially extended, nonstationary systems with regard to field applications. The starting point of both techniques is a matrix whose entries are the mean phase coherence values measured between pairs of time series. The first method is a mean field approach which allows to define the strength of participation of a subsystem in a single synchronization cluster. The second method is based on an eigenvalue decomposition from which a participation index is derived that characterizes the degree of involvement of a subsystem within multiple synchronization clusters. Simulating multiple clusters within a lattice of coupled Lorenz oscillators we explore the limitations and pitfalls of both methods and demonstrate (a) that the mean field approach is relatively robust even in configurations where the single cluster assumption is not entirely fulfilled, and (b) that the eigenvalue dec...
Dynamic changes of phase in a van der Waals fluid
Hagan, R.; Serrin, J.
1984-03-01
This paper gives sufficient conditions to guarantee the existence of a shock layer solution connecting two different equilibrium states in a van der Waals fluid. In particular, the equilibrium states can belong to two different phases of the fluid. The constitutive laws come from a modified Korteweg theory which is compatible with the Clausius Duhem inequality. The Clausius Duhem inequality in turn gives rise to a Liapunov function. The main mathematical tool is the LaSalle invariance principle.
Dynamical charge density waves rule the phase diagram of cuprates
Caprara, S.; Di Castro, C.; Seibold, G.; Grilli, M.
2017-06-01
In the last few years, charge density waves (CDWs) have been ubiquitously observed in high-temperature superconducting cuprates and are now the most investigated among the competing orders in the still hot debate on these systems. A wealth of new experimental data raises several fundamental issues that challenge the various theoretical proposals. We here relate our mean-field instability line TCDW0 of a strongly correlated Fermi liquid to the pseudogap T*(p ) line, marking in this way the onset of CDW-fluctuations. These fluctuations reduce strongly the mean-field critical line. Controlling this reduction via an infrared frequency cutoff related to the characteristic time of the probes, we account for the complex experimental temperature versus doping phase diagram. We provide a coherent scenario explaining why different CDW onset curves are observed by different experimental probes and seem to extrapolate at zero temperature into seemingly different quantum critical points (QCPs) in the intermediate and overdoped region. The nearly singular anisotropic scattering mediated by these fluctuations also accounts for the rapid changes of the Hall number seen in experiments and provides the first necessary step for a possible Fermi surface reconstruction fully establishing at lower doping. Finally, we show that phase fluctuations of the CDWs, which are enhanced in the presence of strong correlations near the Mott insulating phase, naturally account for the disappearance of the CDWs at low doping with yet another QCP as seen by the experiments.
Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.
Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha
2015-09-03
Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.
Reddy, P Madhusudhana; Venkatesu, P; Bohidar, H B
2011-10-27
We report the influence of variation of molecular weights (MWs = 2, 4, 6, and 9 × 10(5) g mol(-1)) and concentration (C) of a long-chain polymer (polyethylene oxide, PEO) on an upper critical solution temperature (UCST) of isobutyric acid (I) + water (W) using density (ρ) measurements as a function of temperature. The ρ values in each coexisting phase of IW have been measured at three different PEO concentrations (C = 0.395, 0.796, and 1.605 mg/cm(3)) in the near critical composition of IW at temperatures below the system's upper critical point for each molecular weight (MW) of PEO. Further, to ascertain the PEO behavior in IW we have measured the polydispersity values for both coexisting liquid phases by using dynamic light scattering (DLS). The data show that the polymer was significantly affected in the critical region of IW and these various MWs and concentrations of PEO show significant modulation on the critical exponents (β), the critical temperatures (T(c)), and critical composition (ϕ(c)), which are depicting the shape of the coexistence curve. The values of β and T(c) increase with increasing PEO MW and concentrations. Besides, the ϕ(c) values slightly decrease with increasing the C values in the mixture of IW. However, the rate of decrease in ϕ(c) is insignificant. Our experimental results explicitly elucidate that most of polymer chain entangles in water rich phase, thereby the polymer monomers strongly interact with neighbor solvent particles and also intra chain interaction between polymer monomers.
Dynamically Reconfigurable Control Struture for Three Phase Induction Motor Drives
Directory of Open Access Journals (Sweden)
Rajendran Ramasamy
2012-01-01
Full Text Available Field Programmable Gate Arrays (FPGAs are a suitable hardware platform for the industrial control systems. These dynamically reconfigurable FPGAs can be used as an alternative digital solution to conventional microcontrollers and DSPs to ensure fast operation. This paper presents the feasibility of embedding the Direct Torque Control with Space Vector Modulation (DTC-SVM of an induction motor into FPGA.The DTC-SVM of induction motor drives is simulated in a Matlab/Simulink environment using a Xilinx System Generator.
Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin
2017-02-21
Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.
Directory of Open Access Journals (Sweden)
Yue Hou
2017-02-01
Full Text Available Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM experiments, Phase Dynamics Theory and Molecular Dynamics (MD Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.
Coexistence and Survival in Conservative Lotka-Volterra Networks
Knebel, Johannes; Krüger, Torben; Weber, Markus F.; Frey, Erwin
2013-04-01
Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network’s interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time.
Coexistence and survival in conservative Lotka-Volterra networks.
Knebel, Johannes; Krüger, Torben; Weber, Markus F; Frey, Erwin
2013-04-19
Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network's interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time.
Capture into resonance and phase space dynamics in optical centrifuge
Armon, Tsafrir
2016-01-01
The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1,P2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory.
Dynamics of a "Two-Phase" Bubble in Compression Waves
Khabeev, N. S.
2016-07-01
The behavior of a vapor envelope around a heated solid particle in a variable pressure field has been studied. Problems of this kind arise in propagation of shock waves in three-phase systems ″liquid-hot solid particles surrounded by vapor envelopes.″ The behavior of the system in the vicinity of the forward shock wave front on a linear rise in pressure in the system has been studied analytically. A simple formula describing the change in the radius of the vapor layer in time has been obtained.
Coexistence of density wave and superfluid order in a dipolar Fermi gas
DEFF Research Database (Denmark)
Wu, Zhigang; Block, Jens Kusk; Bruun, Georg M.
2015-01-01
We analyse the coexistence of superfluid and density wave (stripe) order in a quasi-two-dimensional gas of dipolar fermions aligned by an external field. Remarkably, the anisotropic nature of the dipolar interaction allows for such a coexistence in a large region of the zero temperature phase dia...
Energy Technology Data Exchange (ETDEWEB)
Yoon, Dae Young; Choi, Byung Ihn; Han, Joon Koo; Han, Man Chung [College of Medicine, Seoul National University, Seoul (Korea, Republic of)
1994-12-15
The purpose of this study was to characterize the enhancing patterns of hepatocellular carcinoma (HCC) on two-phase dynamic incremental liver scan with spiral CT. Two-phase dynamic incremental liver scan using spiral CT was performed on 230 lesions in 107 patients with HCC. CT scanning was performed with a table speed of 13 mm/sec and a section thickness of 10 mm; 120 mL of contrast medium was injected intravenously with a automatic injector at the rate of 3 mL/sec. CT scans were started 35 sec(early phase) and 3 min(delayed phase) after beginning injection of contrast medium. The tumors were divided into 2 groups according to size({<=}3cm and > 3cm), the contrast enhancement patterns of HCCs and capsules in the early and delayed phases were analyzed in each group. Most of HCCs appeared as high-attenuating lesions in the early phase(75% in tumors smaller than 3cm and 61 % in tumors larger than 3cm), and as low-attenuating lesions in the delayed phase(68% in tumors smaller than 3cm and 90% in tumors larger than 3cm). Forty-eight percent of HCCs smaller than 3cm and 58% of HCCs larger than 3 cm were high-attenuating in the early phase and low-attenuating in the delayed phase. Thirty-two percent of capsules were low- or iso-attenuating in the early phase and high-attenuating in the delayed phase. Capsules were demonstrated in 22% in HCCs smaller than 3cm and 67% in HCCs larger than 3 cm (p <. 01). Two-phase dynamic scan with spiral CT is useful in the diagnosis of HCC because of a precise display of hemodynamic characteristics of HCCs.
Taha, Mohamed; Khoiroh, Ianatul; Lee, Ming-Jer
2013-01-17
Here, for the first time, we show that with addition of a biological buffer, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), into aqueous solutions of tetrahydrofuran (THF), 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone, the organic solvent can be excluded from water to form a new liquid phase. The phase diagrams have been determined at ambient temperature. In order to understand why and how a zwitterion solute (HEPES) induced phase separation of the investigated systems, molecular dynamics (MD) simulation studies are performed for HEPES + water + THF system. The MD simulations were conducted for the aqueous mixtures with 12 different compositions. The reliability of the simulation results of HEPES in pure water and beyond the phase separation mixtures was justified by comparing the densities obtained from MD with the experimental values. The simulation results of HEPES in pure THF and in a composition inside the phase separation region were justified qualitatively. Interestingly, all HEPES molecules entirely aggregated in pure THF. This reveals that HEPES is insoluble in pure THF, which is consistent with the experimental results. Even more interestingly, the MD simulation for the mixture with composition inside the phase separation region showed the formation of two phases. The THF molecules are squeezed out from the water network into a new liquid phase. The hydrogen bonds (HBs), HB lifetime, HB Gibbs energy (ΔG), radial distribution functions (RDFs), coordination numbers (CNs), electrostatic interactions, and the van der Waals interactions between the different species have been analyzed. Further, MD simulations for the other phase separation systems by choosing a composition inside the two liquids region for each system were also simulated. Our findings will therefore pave the way for designing new benign separation auxiliary agents.
Yang, Rui; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2010-06-01
Evolutionary-game based models of nonhierarchical, cyclically competing populations have become paradigmatic for addressing the fundamental problem of species coexistence in spatially extended ecosystems. We study the role of intraspecific competition in the coexistence and find that the competition can strongly promote the coexistence for high individual mobility in the sense that stable coexistence can arise in parameter regime where extinction would occur without the competition. The critical value of the competition rate beyond which the coexistence is induced is found to be independent of the mobility. We derive a theoretical model based on nonlinear partial differential equations to predict the critical competition rate and the boundaries between the coexistence and extinction regions in a relevant parameter space. We also investigate pattern formation and well-mixed spatiotemporal population dynamics to gain further insights into our findings.
Lavrov, Roman; Peil, Michael; Jacquot, Maxime; Larger, Laurent; Udaltsov, Vladimir; Dudley, John
2009-08-01
We demonstrate experimentally how nonlinear optical phase dynamics can be generated with an electro-optic delay oscillator. The presented architecture consists of a linear phase modulator, followed by a delay line, and a differential phase-shift keying demodulator (DPSK-d). The latter represents the nonlinear element of the oscillator effecting a nonlinear transformation. This nonlinearity is considered as nonlocal in time since it is ruled by an intrinsic differential delay, which is significantly greater than the typical phase variations. To study the effect of this specific nonlinearity, we characterize the dynamics in terms of the dependence of the relevant feedback gain parameter. Our results reveal the occurrence of regular GHz oscillations (approximately half of the DPSK-d free spectral range), as well as a pronounced broadband phase-chaotic dynamics. Beyond this, the observed dynamical phenomena offer potential for applications in the field of microwave photonics and, in particular, for the realization of novel chaos communication systems. High quality and broadband phase-chaos synchronization is also reported with an emitter-receiver pair of the setup.
Phase transformation near the classical limit of stability
Energy Technology Data Exchange (ETDEWEB)
Maibaum, Lutz
2008-11-06
Successful theories of phase transformation processes include classical nucleation theory (CNT), which envisions a local equilibrium between coexisting phases, and non--equilibrium kinetic cluster theories. Using computer simulations of the magnetization reversal of the Ising model in three different ensembles we make quantitative connections between these physical pictures. We show that the critical nucleus size of CNT is strongly correlated with a dynamical measure of metastability, and that the metastable phase persists to thermodynamic conditions previously thought of as unstable.
Institute of Scientific and Technical Information of China (English)
Shao Yuan-Zhi; Zhong Wei-Rong; Lin Guang-Ming; Li Jian-Can
2005-01-01
The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-noise are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of h0-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.
Performance Analysis on the Coexistence of Multiple Cognitive Radio Networks
Directory of Open Access Journals (Sweden)
Lijun Qian
2015-05-01
Full Text Available The demand for wireless services is growing on a daily basis while spectral resources to support this growth are static. Therefore, there is need for the adoption of a new spectrum sharing paradigm. Cognitive Radio (CR is a revolutionary technology aiming to increase spectrum utilization through dynamic spectrum access, as well as mitigating interference among multiple coexisting wireless networks. In many practical scenarios, multiple CR networks may coexist in the same geographical area, and they may interfere with each other and also have to yield to the primary user (PU. In this study, we investigate how much throughput a node in a CR network can achieve in the presence of another CR network and a PU. The results of this study illustrate how the transmission probability and sensing performance affect the achievable throughput of a node in coexisting CR networks. In addition, these results may serve as guidance for the deployment of multiple CR networks.
Dynamics of phase oscillators with generalized frequency-weighted coupling
Xu, Can; Gao, Jian; Xiang, Hairong; Jia, Wenjing; Guan, Shuguang; Zheng, Zhigang
2016-12-01
Heterogeneous coupling patterns among interacting elements are ubiquitous in real systems ranging from physics, chemistry to biology communities, which have attracted much attention during recent years. In this paper, we extend the Kuramoto model by considering a particular heterogeneous coupling scheme in an ensemble of phase oscillators, where each oscillator pair interacts with different coupling strength that is weighted by a general function of the natural frequency. The Kuramoto theory for the transition to synchronization can be explicitly generalized, such as the expression for the critical coupling strength. Also, a self-consistency approach is developed to predict the stationary states in the thermodynamic limit. Moreover, Landau damping effects are further revealed by means of linear stability analysis and resonance poles theory below the critical threshold, which turns to be far more generic. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the synchronization transition in general networks with heterogenous couplings.
Dynamical Autler-Townes control of a phase qubit.
Li, Jian; Paraoanu, G S; Cicak, Katarina; Altomare, Fabio; Park, Jae I; Simmonds, Raymond W; Sillanpää, Mika A; Hakonen, Pertti J
2012-01-01
Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.
Dynamics of electrons in quantum Hall bubble phases
Côté, R.; Doiron, C. B.; Bourassa, J.; Fertig, H. A.
2003-10-01
In Landau levels N>1, the ground state of the two-dimensional electron gas (2DEG) in a perpendicular magnetic field evolves from a Wigner crystal for small filling ν* of the partially filled Landau level, into a succession of bubble states with increasing number of guiding centers per bubble as ν* increases, to a modulated stripe state near ν*=0.5. In this work, we show that these first-order phase transitions between the bubble states lead to measurable discontinuities in several physical quantities such as the density of states and the magnetization of the 2DEG. We discuss in detail the behavior of the collective excitations of the bubble states and show that their spectra have higher-energy modes besides the pinned phonon mode. The frequencies of these modes, at small wave vector k, have a discontinuous evolution as a function of filling factor that should be measurable in, for example, microwave absorption experiments.
Dynamics of evolving phase boundaries in deformable continua
Directory of Open Access Journals (Sweden)
Morton E. Gurtin
1991-05-01
Full Text Available Recent studies of Gurtin [8,9,10], Angenent and Gurtin [4], and Gurtin and Struthers [15] form an investigation whose goal is a nonequilibrium thermodynamics of two-phase continua in which the interface is sharp and endowed with energy, entropy and superficial force. In all of these studies except the last the crystal is rigid, an assumption that forms the basis for a large class of problems discussed by material scientists, but there are situations in which deformation is the paramount concern, examples being shock-ind of Gurtin and Struthers, who consider deformable crystal-crystal systems with coherent interfaced transformations and mechanical twinning. Here I discuss the results of Gurtin and Struthers, who consider deformable crystal-crystal systems with coherent interface.
Phases of polymer systems in solution studied via molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Anderson, Joshua Allen [Iowa State Univ., Ames, IA (United States)
2009-05-01
Polymers are amazingly versatile molecules with a tremendous range of applications. Our lives would be very different without them. There would be no multitudes of plastic encased electronic gizmos, no latex paint on the walls and no rubber tires, just to name a few of the many commonplace polymer materials. In fact, life as we know it wouldn’t exist without polymers as two of the most essential types of molecules central to cellular life, Proteins and DNA, are both polymers! [1] With their wide range of application to a variety of uses, polymers are still a very active field in basic research. Of particular current interest is the idea of combining polymers with inorganic particles to form novel composite materials. [2] As computers are becoming faster, they are becoming all the more powerful tools for modeling and simulating real systems. With recent advances in computing on graphics processing units (GPUs) [3–7], questions can now be answered via simulation that could not even be asked before. This thesis focuses on the use of computer simulations to model novel polymerinorganic composite systems in order to predict what possible phases can form and under what conditions. The goal is to provide some direction for future experiments and to gain a deeper understanding of the fundamental physics involved. Along the way, there are some interesting and essential side-tracks in the areas of equilibrating complicated phases and accelerating the available computer power with GPU computing, both of which are necessary steps to enable the study of polymer nanocomposites.
Pramanik, Dibyadyuti; Sarkar, M Saha; Bisoi, Abhijit; Ray, Sudatta; Dasgupta, Shinjinee; Chakraborty, A; Krishichayan,; Kshetri, Ritesh; Ray, Indrani; Ganguly, S; Pradhan, M K; Basu, M Ray; Raut, R; Ganguly, G; Ghugre, S S; Sinha, A K; Basu, S K; Bhattacharya, S; Mukherjee, A; Banerjee, P; Goswami, A
2016-01-01
The high-spin states in 153Ho, have been studied by 139 57 La(20Ne, 6n) reaction at a projectile energy of 139 MeV at Variable Energy Cyclotron Centre (VECC), Kolkata, India, utilizing an earlier campaign of Indian National Gamma Array (INGA) setup. Data from gamma-gamma coincidence, directional correlation and polarization measurements have been analyzed to assign and confirm the spins and parities of the levels. We have suggested a few additions and revisions of the reported level scheme of 153Ho. The RF-gamma time difference spectra have been useful to confirm the half-life of an isomer in this nucleus. From the comparison of experimental and theoretical results, it is found that there are definite indications of shape coexistence in this nucleus. The experimental and calculated lifetimes of several isomers have been compared to follow the coexistence and evolution of shape with increasing spin.
Institute of Scientific and Technical Information of China (English)
SHEN Chuan-Sheng; CHEN Han-Shuang; ZHANG Ji-Qian
2008-01-01
@@ We study the dynamic behaviour of two intracellular calcium oscillators that are coupled through gap junctions both to Ca2+ and inositol(1,4,5)-trisphosphate(IPa).It is found that synchronized anti-phase and in-phase oscillations of cytoplasmic calcium coexist in parameters space.Especially,synchronized anti-phase oecillations only occur near the onset of a Hopf bifurcation point when the velocity of IP3 synthesis is increased.
Reichhardt, C.; Olson Reichhardt, C. J.
2017-02-01
We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.
Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm
Wang, Minmin; Du, Guangliang; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie
2017-02-01
Measuring objects with large reflectivity variations across their surface is one of the open challenges in phase measurement profilometry (PMP). Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time three-dimensional (3D) shape measurement method (Jiang et al., 2016) [17] that does not require changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval whenever any of the regular fringe patterns are saturated. Nonetheless, Jiang's method has some drawbacks: (1) the phases of saturated pixels are estimated by different formulas on a case by case basis; in other words, the method lacks a universal formula; (2) it cannot be extended to the four-step phase-shifting algorithm, because inverted fringe patterns are the repetition of regular fringe patterns; (3) for every pixel in the fringe patterns, only three unsaturated intensity values can be chosen for phase demodulation, leaving the other unsaturated ones idle. We propose a method to enhance high dynamic range 3D shape measurement based on a generalized phase-shifting algorithm, which combines the complementary techniques of inverted and regular fringe patterns with a generalized phase-shifting algorithm. Firstly, two sets of complementary phase-shifted fringe patterns, namely the regular and the inverted fringe patterns, are projected and collected. Then, all unsaturated intensity values at the same camera pixel from two sets of fringe patterns are selected and employed to retrieve the phase using a generalized phase-shifting algorithm. Finally, simulations and experiments are conducted to prove the validity of the proposed method. The results are analyzed and compared with those of Jiang's method, demonstrating that our method not only expands the scope of Jiang's method, but also improves
Competitive intransitivity, population interaction structure, and strategy coexistence.
Laird, Robert A; Schamp, Brandon S
2015-01-21
Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather form loops-as in the game rock-paper-scissors. Due to its cyclic competitive replacement, competitive intransitivity promotes strategy coexistence, both in rock-paper-scissors and in higher-richness communities. Previous work has shown that this intransitivity-mediated coexistence is strongly influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we extend and broaden this line of research and examine the impact on coexistence of intransitive competition taking place on a continuum of small-world networks linking spatial lattices and regular random graphs. We use simulations to show that the positive effect of competitive intransitivity on strategy coexistence holds when competition occurs on networks toward the spatial end of the continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that the degree of disorder that leads to the transition between these two regimes is positively dependent on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may even be possible in regular graphs with completely random connections. Our results emphasize the importance of interaction structure in determining strategy dynamics and diversity.
Joshi, Nidhi; Rawat, Kamla; Bohidar, H B
2014-06-12
We report unique colloidal gel-glass coexistence in aqueous laponite dispersion (2% w/v) in the presence of 1-methyl-3-octylimidazolium chloride ionic liquid (IL, [C8mim][Cl], concentration 0.01 to 0.05% w/v), where both of the phases had identical nonergodicity and were dynamically interactive. With aging, the nascent heterogeneous dispersion exhibited spontaneous two-phase separation, and the time-dependent relative viscosity followed: η(r) = |ε|(-k) where ε = (t - t(g))/t(g) and t(g) is the time required for the system to get arrested, with k decreasing from 3.13 to 2.54 as the IL concentration was increased from 0 to 0.03% (w/v), implying slowing down of the arrest kinetics. This time was measured from viscosity and rheology studies, revealing the formation of IL-mediated finite size colloidal networks on a time scale of ~4 × 10(3) s, whereas the dispersion developed a large viscosity one decade in time later (~4 × 10(4) s). Homogeneous transparent upper phase was an entropic glass and exhibited substantial storage modulus gain (300-3000 Pa) with an increase in IL concentration (0 to 0.05% (w/v)). The translucent lower gel phase had a much higher storage modulus. Dynamic light scattering measured bimodal relaxation time of concentration fluctuations. The degree of nonergodicity in the two phases was approximately the same, implying laponite-IL cluster exchange across the interface (identical slow-mode diffusivity). In summary, IL-induced first-order phase separation in laponite dispersion produced a homogeneous colloidal gel coexisting with a glass not commonly observed in soft matter systems. This implied that the two phases were dynamically coupled on long time scales, whereas their short-time behavior was distinctively different.
Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases
Dub, Mark O.; McFarland, Shane M.
2010-01-01
In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.
Heinrichs-Graham, Elizabeth; Wilson, Tony W
2015-08-01
Many electrophysiology studies have examined neural oscillatory activity during the encoding, maintenance, and/or retrieval phases of various working memory tasks. Together, these studies have helped illuminate the underlying neural dynamics, although much remains to be discovered and some findings have not replicated in subsequent work. In this study, we examined the oscillatory dynamics that serve visual working memory operations using high-density magnetoencephalography (MEG) and advanced time-frequency and beamforming methodology. Specifically, we recorded healthy adults while they performed a high-load, Sternberg-type working memory task, and focused on the encoding and maintenance phases. We found significant 9-16 Hz desynchronizations in the bilateral occipital cortices, left dorsolateral prefrontal cortex (DLPFC), and left superior temporal areas throughout the encoding phase. Our analysis of the dynamics showed that the left DLPFC and superior temporal desynchronization became stronger as a function of time during the encoding period, and was sustained throughout most of the maintenance phase until sharply decreasing in the milliseconds preceding retrieval. In contrast, desynchronization in occipital areas became weaker as a function of time during encoding and eventually evolved into a strong synchronization during the maintenance period, consistent with previous studies. These results provide clear evidence of dynamic network-level processes during the encoding and maintenance phases of working memory, and support the notion of a dynamic pattern of functionally-discrete subprocesses within each working memory phase. The presence of such dynamic oscillatory networks may be a potential source of inconsistent findings in this literature, as neural activity within these networks changes dramatically with time. Copyright © 2015 Elsevier Ltd. All rights reserved.
Long-wavelength properties of phase-field-crystal models with second-order dynamics
Heinonen, V.; Achim, C. V.; Ala-Nissila, T.
2016-05-01
The phase-field-crystal (PFC) approach extends the notion of phase-field models by describing the topology of the microscopic structure of a crystalline material. One of the consequences is that local variation of the interatomic distance creates an elastic excitation. The dynamics of these excitations poses a challenge: pure diffusive dynamics cannot describe relaxation of elastic stresses that happen through phonon emission. To this end, several different models with fast dynamics have been proposed. In this article we use the amplitude expansion of the PFC model to compare the recently proposed hydrodynamic PFC amplitude model with two simpler models with fast dynamics. We compare these different models analytically and numerically. The results suggest that in order to have proper relaxation of elastic excitations, the full hydrodynamical description of the PFC amplitudes is required.
Kumar, Pramod
2013-01-01
We numerically investigate the complex nonlinear dynamics for two independent coupled lasers systems consisting of (i) mutually delay-coupled edge emitting diode lasers and (ii) injection-locked quantum nano-structures lasers. A comparative study in dependence on the dynamical role of alpha parameter, that determines phase-amplitude coupling of the optical field, in both the cases is probed. The variation of alpha leads to conspicuous changes of the dynamics of both the systems, which are characterized and investigated as a function of optical injection strength for the fixed coupled-cavity delay time. Our analysis is based on the observation that the cross-correlation and bifurcation measures unveil the signature of enhancement of amplitude-death islands in which the coupled lasers mutually stay in stable phase-locked states. In addition, we provide a qualitative understanding of the physical mechanisms underlying the observed dynamical behavior and its dependence on alpha. The amplitude death and existence ...
Shape coexistence: the shell model view
Poves, A.
2016-02-01
We shall discuss the meaning of the ‘nuclear shape’ in the laboratory frame proper to the spherical shell model. A brief historical promenade will bring us from Elliott’s SU3 breakthrough to today’s large scale shell model calculations. A section is devoted to the algebraic model which extends drastically the field of applicability of Elliot’s SU3, providing a precious heuristic guidance for the exploration of collectivity in the nuclear chart. Shape coexistence and shape mixing will be shown to occur as the result of the competition between the main actors in the nuclear dynamics; the spherical mean field, and the pairing and quadrupole-quadrupole interactions. These ideas will be illustrated with examples in magic nuclei (40Ca and 68Ni); neutron rich semi-magic (32Mg, and 64Cr); and in proton rich N = Z (72Kr).
Competitive exclusion and coexistence of universal grammars.
Mitchener, W Garrett; Nowak, Martin A
2003-01-01
Universal grammar (UG) is a list of innate constraints that specify the set of grammars that can be learned by the child during primary language acquisition. UG of the human brain has been shaped by evolution. Evolution requires variation. Hence, we have to postulate and study variation of UG. We investigate evolutionary dynamics and language acquisition in the context of multiple UGs. We provide examples for competitive exclusion and stable coexistence of different UGs. More specific UGs admit fewer candidate grammars, and less specific UGs admit more candidate grammars. We will analyze conditions for more specific UGs to outcompete less specific UGs and vice versa. An interesting finding is that less specific UGs can resist invasion by more specific UGs if learning is more accurate. In other words, accurate learning stabilizes UGs that admit large numbers of candidate grammars.
Phase Space and Dynamical Fluctuations of Kaon--to--Pion Ratios
Tawfik, A
2010-01-01
The dynamical fluctuations of kaon--to--pion ratios have been studied over a wide range of center--of--mass energies $\\sqrt{s}$. Based on changing phase space volume which apparently is the consequence of phase transition from hadrons to quark--gluon plasma at large $\\sqrt{s}$, single--particle distribution function $f$ is assumed to be rather modified. Varying $f$ and phase space volume are implemented in the grand--canonical partition function, especially at large $\\sqrt{s}$, so that hadron resonance gas model, when taking into account the experimental acceptance and quark phase space occupation factor, turns to be able to reproduce the dynamical fluctuations over the entire range of $\\sqrt{s}$.
Interplay between lattice dynamics and the low-pressure phase of simple cubic polonium
Zaoui, A.; Belabbes, A.; Ahuja, R.; Ferhat, M.
2011-04-01
Low-pressure structural properties of simple cubic polonium are explored through first-principles density-functional theory based relativistic total energy calculations using pseudopotentials and plane-wave basis set, as well as linear-response theory. We have found that Po undergoes structural phase transition at low pressure near 2 GPa, where the element transforms from simple cubic to a mixture of two trigonal phases namely, hR1 (α=86°) and hR2 (α=97.9°) structures. The lattice dynamics calculations provide strong support for the observed phase transition, and show the dynamical stability (instability) of the hR2 (hR1) phase.
Process Dynamics and Fractal Analysis of New Phase Formation in Thermal Processes
Institute of Scientific and Technical Information of China (English)
Wang J; Shen Z.W; Shen Z. Q
2001-01-01
Boiling and fouling are taken as typical examples of new phase formation process to be analyzed and discussed in this paper. The process dynamics of nucleate boiling is analyzed and its mechanism is discussed from the view point of self-organization. Fouling, which is a more complicated phenomenon of new phase formation, involves series of underlying processes. The morphology and fractal analysis of fouling on low-energy surface and that with fouling inhibitors are studied and discussed. It is suggested that considering the process dynamics, fractal analysis and self-organization, a new avenue of research should be found.
Benchmarking of small-signal dynamics of single-phase PLLs
DEFF Research Database (Denmark)
Zhang, Chong; Wang, Xiongfei; Blaabjerg, Frede
2015-01-01
Phase-looked Loop (PLL) is a critical component for the control and grid synchronization of grid-connected power converters. This paper presents a benchmarking study on the small-signal dynamics of three commonly used PLLs for single-phase converters, including enhanced PLL, second......-order generalized integrator based PLL, and the inverse-PLL. First, a unified small-signal model of those PLLs is established for comparing their dynamics. Then, a systematic design guideline for parameters tuning of the PLLs is formulated. To confirm the validity of theoretical analysis, nonlinear time...
The interface dynamics of bicontinuous phase separating structure in a polymer blend
Energy Technology Data Exchange (ETDEWEB)
Saito, Haruko; Yoshinaga, Masahiro; Mihara, Takaaki; Jinnai, Hiroshi [Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Nishi, Toshio, E-mail: n08a0001@kit.ac.j [World Premier International, Advanced Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577 (Japan)
2009-08-01
The time evolution of the phase separating pattern during the spinodal decomposition (SD) of a specimen was observed at the same volume of the specimen using X-ray computerized microtomography (X-ray CT). A careful examination of time-dependent three-dimensional (3D) images revealed that bridge-like domains played an important role in the phase separation dynamics. In the course of the SD, some bridge-like domains became thicker, while the others became thinner. It was found that the pressure difference across the interface, which is quantified through the mean curvature of the interface, influences such interface dynamics.
Border Figure Detection Using a Phase Oscillator Network with Dynamical Coupling
Directory of Open Access Journals (Sweden)
L. H. A. Monteiro
2008-01-01
Full Text Available Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.
Phase Locking Phenomena and Electroencephalogram-Like Activities in Dynamic Neuronal Systems
Institute of Scientific and Technical Information of China (English)
XU Xin-Jian; WANG Sheng-Jun; TANG Wei; WANG Ying-Hai
2005-01-01
@@ We study signal detection and transduction of dynamic neuronal systems under the influence of external noise,white and coloured. Based on simulations, we show explicitly phase locking phenomena between the output and the input of a single neuron and Electroencephalogram-like activities on neural networks with small-world connectivity. The numerical results prove that the dynamic neuronal system can be adjusted to an optimal sensitive state for signal processing in the presence of additive noise.
Non-Abelian Geometric Phase, Floquet Theory, and Periodic Dynamical Invariants
Mostafazadeh, A
1998-01-01
For a periodic Hamiltonian, periodic dynamical invariants may be used to obtain non-degenerate cyclic states. This observation is generalized to the degenerate cyclic states, and the relation between the periodic dynamical invariants and the Floquet decompositions of the time-evolution operator is elucidated. In particular, a necessary condition for the occurrence of cyclic non-adiabatic non-Abelian geometrical phase is derived. Degenerate cyclic states are obtained for a magnetic dipole interacting with a precessing magnetic field.
Gas phase depletion and flow dynamics in horizontal MOCVD reactors
Van de Ven, J.; Rutten, G. M. J.; Raaijmakers, M. J.; Giling, L. J.
1986-08-01
Growth rates of GaAs in the MOCVD process have been studied as a function of both lateral and axial position in horizontal reactor cells with rectangular cross-sections. A model to describe growth rates in laminar flow systems on the basis of concentration profiles under diffusion controlled conditions has been developed. The derivation of the growth rate equations includes the definition of an entrance length for the concentration profile to developed. In this region, growth rates appear to decrease with the 1/3 power of the axial position. Beyond this region, an exponential decrease is found. For low Rayleigh number conditions, the present experimental results show a very satisfactory agreement with the model without parameter fitting for both rectangular and tapered cells, and with both H 2 and N 2 as carrier gases. Theory also predicts that uniform deposition can be obtained over large areas in the flow direction for tapered cells, which has indeed been achieved experimentally. The influence of top-cooling in the present MOCVD system has been considered in more detail. From the experimental results, conclusions could be drawn concerning the flow characteristics. For low Rayleigh numbers (present study ≲ 700) it follows that growth rate distributions correspond with forced laminar flow characteristics. For relatively high Rayleigh numbers (present work 1700-2800), free convective effects with vortex formation are important. These conclusions are not specific for the present system, but apply to horizontal cold-wall reactors in general. On the basis of the present observations, recommendations for a cell design to obtain large area homogeneous deposition have been formulated. In addition, this work supports the conclusion that the final decomposition of trimethylgallium in the MOCVD process mainly takes place at the hot substrate and susceptor and not in the gas phase.
Photoassociation dynamics driven by second- and third-order phase-modulated laser fields
Wang, Meng; Chen, Mao-Du; Hu, Xue-Jin; Li, Jing-Lun; Cong, Shu-Lin
2016-05-01
We investigate theoretically the photoassociation dynamics of ultracold 85Rb atoms driven by second- and third-order phase-modulated laser fields. The interplay between the second-order and third-order terms of the phase-modulated pulse has an obvious influence on photoassociation dynamics. The different combinations of the second-order and third-order phase coefficients lead to different pulse shapes. Most of the molecular population in the excited electronic state driven only by the third-order phase pulses can be distributed in a single vibrational level. The second-order term of the phase-modulated pulse can change the instantaneous frequency, and therefore the final population is distributed on several resonant vibrational levels, instead of concentrating on a single level. Although the second- and third-order phase-modulated pulse covers more resonant vibrational levels, the total population on the resonant vibrational levels is much smaller than that controlled only by the third-order phase pulse. In particular, the third-order term of the phase-modulated pulse can weaken the ‘multiple interaction’ to some degree.
Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier.
Vallaitis, T; Koos, C; Bonk, R; Freude, W; Laemmlin, M; Meuer, C; Bimberg, D; Leuthold, J
2008-01-07
Gain and phase dynamics in InAs/GaAs quantum dot semiconductor optical amplifiers are investigated. It is shown that gain recovery is dominated by fast processes, whereas phase recovery is dominated by slow processes. Relative strengths and time constants of the underlying processes are measured. We find that operation at high bias currents optimizes the performance for nonlinear cross-gain signal processing if a low chirp is required.
Energy Technology Data Exchange (ETDEWEB)
Baglioni, P [University of Florence; Chen, Wei-Ren [ORNL; Falus, Peter [ORNL; Faraone, Antonio [National Institute of Standards and Technology (NIST); Fratini, Emiliano [University of Florence; Hong, Kunlun [ORNL; Liu, Yun [National Institute of Standards and Technology (NIST); Porcar, L. [National Institute of Standards and Technology (NIST)
2012-01-01
Recently experiments that combine both small angle neutron scattering (SANS) and Neutron Spin Echo (NSE) have demonstrated that dynamic clusters can form in concentrated lysozyme solutions when there is a right combination of a short-ranged attraction and a long-ranged electrostatic repulsion. In this paper, we study the temperature effect on the dynamic cluster formation and try to pinpoint the transition concentration from a monomer phase to a cluster phase. Interestingly at even a relatively high concentration (10 % mass fraction), despite the significant change of the SANS patterns that are associated with the change of the short-ranged attraction among proteins, the normalized short-time self-diffusion coefficient is not affected. This is interpreted due to the fact that there is no cluster formation at this condition. However, at larger concentrations such as 17.5 % and 22.5 % mass fraction, we show that the average hydrodynamic radius increase significantly and causes a large decrease of the normalized self-diffusion coefficient when the temperature is changed from 25 oC to 5 oC indicating the formation of dynamic clusters in solution.
Segregation and phase dynamics in supported bimetallic nanoparticles
Nashner, Michael Sydney
1997-12-01
spectroscopy (AES), Si was found to readily diffuse into the Pt substrate and sequentially form at least two unique intermetallic Pt-Si surface structural phases with (surd7 x surd7)R±19.1sp° and (surd19 x surd19)R±23.4sp° real space unit cells as characterized by low energy electron diffraction (LEED). The reactive properties of each overlayer were studied, with respect to the clean Pt(111) surface, using CO as a chemisorption probe.
Phase diagrams and dynamics of a computationally efficient map-based neuron model
Gonsalves, Jheniffer J.; Tragtenberg, Marcelo H. R.
2017-01-01
We introduce a new map-based neuron model derived from the dynamical perceptron family that has the best compromise between computational efficiency, analytical tractability, reduced parameter space and many dynamical behaviors. We calculate bifurcation and phase diagrams analytically and computationally that underpins a rich repertoire of autonomous and excitable dynamical behaviors. We report the existence of a new regime of cardiac spikes corresponding to nonchaotic aperiodic behavior. We compare the features of our model to standard neuron models currently available in the literature. PMID:28358843
Dynamical nonlocality of the entangled coherent state in the phase damping model
Institute of Scientific and Technical Information of China (English)
Lu Huai-Xin; Li Ying-De
2009-01-01
This paper studies the dynamics of nonlocality for a bosonic entangled coherent state in a phase damping model. The density operator of the system is solved by using a superoperator method. The dynamics of nonlocality for the bosonic entangled coherent state is uncovered by the Bell operator based on the pseudospin operator of a light field. The dynamics of the nonlocality for this state has also been studied by other Bell operators. The result of the numerical calculations of the Bell function shows that the quantum nonlocality heavily depends on the chosen Bell operator.
Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain
Azimi, M.; Sekania, M.; Mishra, S. K.; Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.
2016-08-01
Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: ultrashort terahertz excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations, we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, and the pairwise and many-body entanglement. If the characteristic frequencies of the generated states are noncommensurate, then a partial loss of pair concurrence occurs. Increasing the system size, this effect becomes even more pronounced. Many-particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and the Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of the Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench-induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.
A Multi-Phase Chemo-Dynamical SPH Code for Galaxy Evolution
Berczik, P.; Hensler, G.; Theis, Ch.; Spurzem, R.
2003-01-01
In this paper we present some test results of our newly developed Multi-Phase Chemo-Dynamical Smoothed Particle Hydrodynamics (MP- CD-SPH) code for galaxy evolution. At first, we present a test of the ``pure'' hydro SPH part of the code. Then we describe and test the multi-phase description of the gaseous components of the interstellar matter. In this second part we also compare our condensation and evaporation description with the results of a previous 2d multi-phase hydrodynamic mesh code.
Directory of Open Access Journals (Sweden)
Jian Sheng-Rui
2008-01-01
Full Text Available AbstractThis work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100 subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a non-bonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions.
Zhong, Fan; Chen, Qizhou
2005-10-21
Phase transitions are of great importance in a diversity of fields. They are usually classified into continuous phase transitions and first-order phase transitions (FOPTs). Whereas the former has a well-developed theoretical framework of the renormalization-group (RG) theory, no general theory has yet been developed for the latter that appear far more frequently. Focusing on the dynamics of a generic FOPT in the phi4 model below its critical point, we show by a field-theoretic RG method that it is governed by an unexpected unstable fixed point of the corresponding phi3 model. Accordingly, it exhibits a distinct scaling and universality behavior with unstable exponents different from the critical ones.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
Energy Technology Data Exchange (ETDEWEB)
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
Dynamic characterization of crystalline and glass phases of deuterated 1,1,2,2 tetrachloroethane
Energy Technology Data Exchange (ETDEWEB)
Pérez, Silvina C., E-mail: clyde@famaf.unc.edu.ar; Zuriaga, Mariano, E-mail: zuriaga@famaf.unc.edu.ar; Serra, Pablo, E-mail: serra@famaf.unc.edu.ar; Wolfenson, Alberto, E-mail: wolf@famaf.unc.edu.ar [Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba and IFEG-CONICET, Ciudad Universitaria, X5016LAE Córdoba (Argentina); Negrier, Philippe, E-mail: philippe.negrier@u-bordeaux.fr [Université Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and LOMA, UMR 5798, F-33400 Talence (France); Tamarit, Josep Lluis, E-mail: josep.lluis.tamarit@upc.edu [Grup de Caracterització de Materials, Departament de Física i Enginyeria Nuclear, ETSEIB, Diagonal 647, Universitat Politècnica de Catalunya, 08028 Barcelona, Catalonia (Spain)
2015-10-07
A thorough characterization of the γ, β, and glass phases of deuterated 1,1,2,2 tetrachloroethane (C{sub 2}D{sub 2}Cl{sub 4}) via nuclear quadrupole resonance and Molecular Dynamic Simulations (MDSs) is reported. The presence of molecular reorientations was experimentally observed in the glass phase and in the β phase. In the β phase, and from MDS, these reorientations are attributed to two possible movements, i.e., a 180° reorientation around the C{sub 2} molecular symmetry axis and a reorientation of the molecule between two non-equivalent positions. In the glass phase, the spin-lattice relaxation time T{sub 1} is of the order of 16 times lower than in the crystalline phase and varies as T{sup −1} below 100 K in good agreement with the strong quadrupolar relaxation observed in amorphous materials and in the glassy state of molecular organic systems. The activation energy of molecular reorientations in the glass phase (19 kJ/mol) is comparable to that observed in the glassy crystal of a “molecular cousin” compound, Freon 112 (C{sub 2}F{sub 2}Cl{sub 4}), for the secondary β-relaxation. Moreover, the on-site orientational motion of tetrachloroethane molecules offers a new indirect evidence of the prominent role of such orientational disorder in glassy dynamics.
A Stochastic Phase-Field Model Computed From Coarse-Grained Molecular Dynamics
von Schwerin, Erik
2007-01-01
Results are presented from numerical experiments aiming at the computation of stochastic phase-field models for phase transformations by coarse-graining molecular dynamics. The studied phase transformations occur between a solid crystal and a liquid. Nucleation and growth, sometimes dendritic, of crystal grains in a sub-cooled liquid is determined by diffusion and convection of heat, on the macroscopic level, and by interface effects, where the width of the solid-liquid interface is on an atomic length-scale. Phase-field methods are widely used in the study of the continuum level time evolution of the phase transformations; they introduce an order parameter to distinguish between the phases. The dynamics of the order parameter is modelled by an Allen--Cahn equation and coupled to an energy equation, where the latent heat at the phase transition enters as a source term. Stochastic fluctuations are sometimes added in the coupled system of partial differential equations to introduce nucleation and to get qualita...
Nonlinear wave dynamics near phase transition in PT-symmetric localized potentials
Nixon, Sean; Yang, Jianke
2016-09-01
Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for a phase transition to occur are derived based on a generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.
Nonlinear wave dynamics near phase transition in $\\mathcal{PT}$-symmetric localized potentials
Nixon, Sean
2015-01-01
Nonlinear wave propagation in parity-time ($\\mathcal{PT}$) symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for phase transition to occur are derived based on a generalization of the Krein signature. Using multi-scale perturbation analysis, a reduced nonlinear ODE model is derived for the amplitude of localized solutions near phase transition. Above phase transition, this ODE model predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.
vanVlimmeren, BAC; Fraaije, JGEM
1996-01-01
We present a simple method for the numerical calculation of the noise distribution in multicomponent functional Langevin models. The topic is of considerable importance, in view of the increased interest in the application of mesoscopic dynamics simulation models to phase separation of complex
The Dynamics of Small-Sized Ensembles of the Phase-Locked Loops with Unidirectional Couplings
Aleshin, K. N.; V. Matrosov, V.; Shalfeev, V. D.
2016-06-01
We study collective dynamics of a small-sized chain of the unidirectionally coupled phase-locked loop. The conditions for the synchronous-regime existence are found, the asynchronous selfoscillation regimes and the transitions among them are studied, and the property of inheriting the structure of the parameter space of the chain when a new element is added to it is established.
Universal Quantum Gates Based on Both Geometric and Dynamic Phases in Quantum Dots
Institute of Scientific and Technical Information of China (English)
杨开宇; 朱诗亮; 汪子丹
2003-01-01
A large-scalable quantum computer model, whose qubits are represented by the subspace subtended by the ground state and the single exciton state on semiconductor quantum dots, is proposed. A universal set of quantum gates in this system may be achieved by a mixed approach, composed of dynamic evolution and nonadiabatic geometric phase.
Energy Technology Data Exchange (ETDEWEB)
Chou, M.Y.
1992-04-01
This report discusses the following topics: calculation of the Structural Properties of Yttrium; dynamical and pairing properties of {alpha}-YH{chi}; electronic and structural properties of YH{sub 2} and YH{sub 3}; phase diagram of hydrogen on Ru(000); peierls distortion in hexagonal YH{sub 3}; and study of hydrogen in niobium and palladium.
Requirements for dynamical differential phase contrast x-ray imaging with a laboratory source
Macindoe, David; Kitchen, Marcus J.; Irvine, Sarah C.; Fouras, Andreas; Morgan, Kaye S.
2016-12-01
X-ray phase contrast enables weakly-attenuating structures to be imaged, with bright synchrotron sources adding the ability to capture time sequences and analyse sample dynamics. Here, we describe the translation of dynamical differential phase contrast imaging from the synchrotron to a compact x-ray source, in order to achieve this kind of time sequence imaging in the laboratory. We formulate broadly-applicable set-up guidelines for the single-grid, single-exposure imaging technique using a divergent source, exploring the experimental factors that restrict set-up size, imaging sensitivity and sample size. Experimental images are presented using the single-grid phase contrast technique with a steel attenuation grid and a liquid-metal-jet x-ray source, enabling exposure times as short as 0.5 s for dynamic imaging. Differential phase contrast images were retrieved from phantoms, incorporating noise filtering to improve the low-count images encountered when imaging dynamics using short exposures.
Institute of Scientific and Technical Information of China (English)
Jun; Endo; Akira; Ohki; Rieko; Sato; Toshio; Ito; Yuichi; Tohmori; Yasuhiro; Suzuki
2003-01-01
We successfully demonstrated low power penalty operation of a cross-phase modulated (XPM) wavelength converter using a semiconductor optical amplifier (SOA) power equalizer. We also clarified the SOA equalizing level for more adaptive wavelength conversion and achieved a power penalty of less than 1 dB over the wide input dynamic range of 15 dB.
Benhabib, K.; Town, R.M.; Leeuwen, van H.P.
2009-01-01
Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the
Dynamic Modeling & Stability Analysis of a Generic UAV in Glide Phase
Directory of Open Access Journals (Sweden)
Mir Imran
2017-01-01
Full Text Available In this paper, we present dynamic modelling and stability analysis of a generic UAV in the glide phase under engine failure condition. When such extreme phenomena occurs, the most desirable requirement is to survive that stage by keeping the vehicle controllable by maintaining its orientation and to glide the vehicle towards the intended direction with maximum extended range. This study investigates the stability aspects of one such aerial vehicle under engine failure condition. In the proposed architecture, a six degree of freedom vehicle dynamic simulation model is implemented through a set of coupled non-linear differential equations. The aerodynamic forces and moments encountered by the UAV during various phases of the flight are ascertained through empirical / non-empirical techniques. Non-linear constrained optimization technique is employed to evaluate the steady state values of the optimized trajectory for the complete flight regime. Results from dynamical systems theory are applied to investigate local stability characteristics of UAV around the steady state. Complete set of dynamic modes of UAV throughout the glide phase are evaluated and mode content in each of the motion variable is determined using modal decomposition technique. The dynamic characteristics of the open-loop configuration are assessed to generate adequate benchmark performance for closed-loop controller design
Mihailescu, M; Endo, H; Allgaier, J; Gompper, G; Stellbrink, J; Richter, D; Jakobs, B; Sottmann, T; Faragó, B
2002-01-01
Using neutron spin-echo (NSE) spectroscopy in combination with dynamic light scattering (DLS), we performed an extensive investigation of the bicontinuous phase in ternary water-surfactant-oil microemulsions, with extension to lamellar and droplet phases. The dynamical behavior of surfactant monolayers of decyl-polyglycol-ether (C sub 1 sub 0 E sub 4) molecules, or mixtures of surfactant with long amphiphilic block-copolymers of type poly-ethylene propylene/poly-ethylene oxide (PEP-PEO) was studied, under comparable conditions. The investigation techniques provide access to different length scales relative to the characteristic periodicity length of the microemulsion structure. Information on the elastic bending modulus is obtained from the local scale dynamics in view of existing theoretical descriptions and is found to be in accordance with small angle neutron scattering (SANS) studies. Evidence for the modified elastic properties and additional interaction of the amphiphilic layers due to the polymer is mo...
Recent progress on phase-space turbulence and dynamical response in collisionless plasmas
Lesur, Maxime
2013-01-01
In the presence of wave dissipation, phase-space structures emerge in nonlinear Vlasov dynamics. Their dynamics can lead to a nonlinear continuous shifting of the wave frequency (chirping). This report summarizes my personal contribution to these topics in the fiscal year 2012. The effects of collisions on chirping characteristics were investigated, with a one-dimensional beam-plasma kinetic model. The long-time nonlinear evolution was systematically categorized as damped, steady-state, periodic, chaotic and chirping. The chirping regime was sub-categorized as periodic, chaotic, bursty, and intermittent. Existing analytic theory was extended to account for Krook-like collisions. Relaxation oscillations, associated with chirping bursts, were investigated in the presence of dynamical friction and velocity-diffusion. The period increases with decreasing drag, and weakly increases with decreasing diffusion. A new theory gives a simple relation between the growth of phase-space structures and that of the wave ener...
Shestakova, T P
2013-01-01
We construct Hamiltonian dynamics of the generalized spherically symmetric gravitational model in extended phase space. We start from the Faddeev - Popov effective action with gauge-fixing and ghost terms, making use of gauge conditions in differential form. It enables us to introduce missing velocities into the Lagrangian and then construct a Hamiltonian function according a usual rule which is applied for systems without constraints. The main feature of Hamiltonian dynamics in extended phase space is that it can be proved to be completely equivalent to Lagrangian dynamics derived from the effective action. The sets of Lagrangian and Hamiltonian equations are not gauge invariant in general. We demonstrate that solutions to the obtained equations include those of the gauge invariant Einstein equations, and also discuss a possible role of gauge-noninvariant terms. Then, we find a BRST invariant form of the effective action by adding terms not affecting Lagrangian equations. After all, we construct the BRST cha...
Phase slips and vortex dynamics in Josephson oscillations between Bose-Einstein condensates
Abad, M.; Guilleumas, M.; Mayol, R.; Piazza, F.; Jezek, D. M.; Smerzi, A.
2015-02-01
We study the relation between Josephson dynamics and topological excitations in a dilute Bose-Einstein condensate confined in a double-well trap. We show that the phase slips responsible for the self-trapping regime are created by vortex rings entering and annihilating inside the weak-link region or created at the center of the barrier and expanding outside the system. Large amplitude oscillations just before the onset of self-trapping are also strictly connected with the dynamics of vortex rings at the edges of the inter-well barrier. Our results extend and analyze the dynamics of the vortex-induced phase slippages suggested a few decades ago in relation to the “ac” Josephson effect of superconducting and superfluid helium systems.
Nonlinear dynamics of phase space zonal structures and energetic particle physics in fusion plasmas
Zonca, Fulvio; Briguglio, Sergio; Fogaccia, Giuliana; Vlad, Gregorio; Wang, Xin
2014-01-01
A general theoretical framework for investigating nonlinear dynamics of phase space zonal structures is presented in this work. It is then, more specifically, applied to the limit where the nonlinear evolution time scale is smaller or comparable to the wave-particle trapping period. In this limit, both theoretical and numerical simulation studies show that non-adiabatic frequency chirping and phase locking could lead to secular resonant particle transport on meso- or macro-scales. The interplay between mode structures and resonant particles then provides the crucial ingredient to properly understand and analyze the nonlinear dynamics of Alfv\\'en wave instabilities excited by non-perturbative energetic particles in burning fusion plasmas. Analogies with autoresonance in nonlinear dynamics and with superradiance in free electron lasers are also briefly discussed.
Pelissetto, Andrea; Vicari, Ettore
2017-01-01
We study the off-equilibrium behavior of systems with short-range interactions, slowly driven across a thermal first-order transition, where the equilibrium dynamics is exponentially slow. We consider a dynamics that starts in the high-T phase at time t =ti0 in the low-T phase, with a time-dependent temperature T (t )/Tc≈1 -t /ts, where ts is the protocol time scale. A general off-equilibrium scaling (OS) behavior emerges in the limit of large ts. We check it at the first-order transition of the two-dimensional q -state Potts model with q =20 and 10. The numerical results show evidence of a dynamic transition, where the OS functions show a spinodal-like singularity. Therefore, the general mean-field picture valid for systems with long-range interactions is qualitatively recovered, provided the time dependence is appropriately (logarithmically) rescaled.
Phase behaviour and dynamics in primitive models of molecular ionic liquids
Directory of Open Access Journals (Sweden)
G.C. Ganzenmüller
2011-09-01
Full Text Available The phase behaviour and dynamics of molecular ionic liquids are studied using primitive models and extensive computer simulations. The models account for size disparity between cation and anion, charge location on the cation, and cation-shape anisotropy, which are all prominent features of important materials such as room-temperature ionic liquids. The vapour-liquid phase diagrams are determined using high-precision Monte Carlo simulations, setting the scene for in-depth studies of ion dynamics in the liquid state. Molecular dynamics simulations are used to explore the structure, single-particle translational and rotational autocorrelation functions, cation orientational autocorrelations, self diffusion, viscosity, and frequency-dependent conductivity. The results reveal some of the molecular-scale mechanisms for charge transport, involving molecular translation, rotation, and association.
Quantum phase transition and quench dynamics in the anisotropic Rabi model
Shen, Li-Tuo; Yang, Zhen-Biao; Wu, Huai-Zhi; Zheng, Shi-Biao
2017-01-01
We investigate the quantum phase transition (QPT) and quench dynamics in the anisotropic Rabi model when the ratio of the qubit transition frequency to the oscillator frequency approaches infinity. Based on the Schrieffer-Wolff transformation, we find an anti-Hermitian operator that maps the original Hamiltonian into a one-dimensional oscillator Hamiltonian within the spin-down subspace. We analytically derive the eigenenergy and eigenstate of the normal and superradiant phases and demonstrate that the system undergoes a second-order quantum phase transition at a critical border. The critical border is a straight line in a two-dimensional parameter space which essentially extends the dimensionality of QPT in the Rabi model. By combining the Kibble-Zurek mechanism and the adiabatic dynamics method, we find that the residual energy vanishes as the quench time tends to zero, which is a sharp contrast to the universal scaling where the residual energy diverges in the same limit.
Network Risk and Forecasting Power in Phase-Flipping Dynamical Networks
Podobnik, B; Curme, C; Qiao, Z; Zhou, W -X; Stanley, H E; Li, B
2014-01-01
In order to model volatile real-world network behavior, we analyze phase-flipping dynamical scale-free network in which nodes and links fail and recover. We investigate how stochasticity in a parameter governing the recovery process affects phase-flipping dynamics, and find the probability that no more than q% of nodes and links fail. We derive higher moments of the fractions of active nodes and active links, $f_n(t)$ and $f_{\\ell}(t)$, and define two estimators to quantify the level of risk in a network. We find hysteresis in the correlations of $f_n(t)$ due to failures at the node level, and derive conditional probabilities for phase-flipping in networks. We apply our model to economic and traffic networks.
Dynamic Study of Polymer Particle Growth in Gas Phase Polymerization of Butadiene
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
An experimental apparatus composed of microscope, video camera. image-processing, and mini reactor which can be used for real-time measurement of the growth of polymer particle in gas phase polymerization was built up to carry out dynamic study of gas phase polymerization of butadiene by heterogeneous catalyst based on neodymium(Nd). The studies of the shape duplication of polymer particles and catalyst particles and the growth rate of polymer particle were made. Results show that the apparatus and procedure designed can be well utilized to make dynamic observation and data collection of the growth of polymer particle in gas phase polymerization. A phenomenon of shape duplication of polymer particles and catalyst particles was observed by the real-time measurement. The result also concludes that the activity of individual catalyst particle is different, and the effect of reaction pressure on the growth of polymer particle is significant.
Cavity-assisted dynamical quantum phase transition in superconducting quantum simulators
Tian, Lin
Coupling a quantum many-body system to a cavity can create bifurcation points in the phase diagram, where the many-body system switches between different phases. Here I will discuss the dynamical quantum phase transitions at the bifurcation points of a one-dimensional transverse field Ising model coupled to a cavity. The Ising model can be emulated with various types of superconducting qubits connected in a chain. With a time-dependent Bogoliubov method, we show that an infinitesimal quench of the driving field can cause gradual evolution of the transverse field on the Ising spins to pass through the quantum critical point. Our calculation shows that the cavity-induced nonlinearity plays an important role in the dynamics of this system. Quasiparticles can be excited in the Ising chain during this process, which results in the deviation of the system from its adiabatic ground state. This work is supported by the National Science Foundation under Award Number 0956064.
Phase extraction in dynamic speckle interferometry: proposal of a road map
Directory of Open Access Journals (Sweden)
Jacquot P.
2010-06-01
Full Text Available Of all the two-beam interference patterns, the ones obtained in speckle interferometry (SI are the most difficult to be phase-demodulated. Many solutions exist in classical smooth-wave interferometry and alike techniques, both in static and dynamic regimes. In SI, the three constituents of the signals – the background, the modulation and the phase – are all basically random variables. There is no way to make a prediction of the evolution of these variables outside the small size of the correlation volumes – the volumes defined by the average speckle grain. To some extent, the classical methods can be adapted to SI. Here, we prefer to develop a series of new processing tools tailored to the specificities of the dynamic SI signals: the cooperative use of the empirical mode decomposition (EMD, the Hilbert transform (HT, and the three dimensional piecewise processing (3DPP for recovering efficiently the phase of these signals.
Nigam, R; Pan, A V; Dou, S X
2011-11-02
In this work, we present magnetic phase diagrams of a RuSr(2)Eu(1.5)Ce(0.5)Cu(2)O(10-δ) (Ru-1222) superconducting ferromagnet derived from its static and dynamic magnetic responses, measured by temperature and field dependences of dc magnetization and nonlinear ac susceptibility in both low and high magnetic fields. Comparison of magnetic phase diagrams of phase pure and impure samples singles out the intrinsic and extrinsic magnetic features, naturally proposing a unified model of Ru-1222 magnetic behaviour. The results considered within the proposed interpretation indicate full agreement between static and dynamic properties which, if measured in combination, effectively complement each other, uncovering existing ambiguities.
Coexistence in preferential attachment networks
Antunović, Tonći; Racz, Miklos Z
2013-01-01
Competition in markets is ubiquitous: cell-phone providers, computer manufacturers, and sport gear brands all vie for customers. Though several coexisting competitors are often observed in empirical data, many current theoretical models of competition on small-world networks predict a single winner taking over the majority of the network. We introduce a new model of product adoption that focuses on word-of-mouth recommendations to provide an explanation for this coexistence of competitors. The key property of our model is that customer choices evolve simultaneously with the network of customers. When a new node joins the network, it chooses neighbors according to preferential attachment, and then chooses its type based on the number of initial neighbors of each type. This can model a new cell-phone user choosing a cell-phone provider, a new student choosing a laptop, or a new athletic team member choosing a gear provider. We provide a detailed analysis of the new model; in particular, we determine the possibl...
Gluonic phase in neutral two-flavor dense QCD
Gorbar, E V; Miransky, V A; Hashimoto, Michio
2006-01-01
In the Ginzburg-Landau approach, we describe a new phase in neutral two-flavor quark matter in which gluonic degrees of freedom play a crucial role. We call it a gluonic phase. In this phase gluonic dynamics cure a chromomagnetic instability in the 2SC solution and lead to spontaneous breakdown of the color gauge symmetry, the electromagnetic U(1), and the rotational SO(3). In other words, the gluonic phase describes an anisotropic medium in which the color and electric superconductivities coexist. Because most of the initial symmetries in this system are spontaneously broken, its dynamics is very rich.
Lee, SangYun; Kim, Kyoohyun; Park, YongKeun
2017-02-01
There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.
Gartner, Thomas E; Epps, Thomas H; Jayaraman, Arthi
2016-11-08
We describe an extension of the Gibbs ensemble molecular dynamics (GEMD) method for studying phase equilibria. Our modifications to GEMD allow for direct control over particle transfer between phases and improve the method's numerical stability. Additionally, we found that the modified GEMD approach had advantages in computational efficiency in comparison to a hybrid Monte Carlo (MC)/MD Gibbs ensemble scheme in the context of the single component Lennard-Jones fluid. We note that this increase in computational efficiency does not compromise the close agreement of phase equilibrium results between the two methods. However, numerical instabilities in the GEMD scheme hamper GEMD's use near the critical point. We propose that the computationally efficient GEMD simulations can be used to map out the majority of the phase window, with hybrid MC/MD used as a follow up for conditions under which GEMD may be unstable (e.g., near-critical behavior). In this manner, we can capitalize on the contrasting strengths of these two methods to enable the efficient study of phase equilibria for systems that present challenges for a purely stochastic GEMC method, such as dense or low temperature systems, and/or those with complex molecular topologies.
Stehr, René; Schöpflin, Robert; Ettig, Ramona; Kepper, Nick; Rippe, Karsten; Wedemann, Gero
2010-03-17
The three-dimensional structure of chromatin affects DNA accessibility and is therefore a key regulator of gene expression. However, the path of the DNA between consecutive nucleosomes, and the resulting chromatin fiber organization remain controversial. The conformational space available for the folding of the nucleosome chain has been analytically described by phase diagrams with a two-angle model, which describes the chain trajectory by a DNA entry-exit angle at the nucleosome and a torsion angle between consecutive nucleosomes. Here, a novel type of numerical phase diagrams is introduced that relates the geometric phase space to the energy associated with a given chromatin conformation. The resulting phase diagrams revealed differences in the energy landscape that reflect the probability of a given conformation to form in thermal equilibrium. Furthermore, we investigated the effects of entropy and additional degrees of freedom in the dynamic phase diagrams by performing Monte Carlo simulations of the initial chain trajectories. Using our approach, we were able to demonstrate that conformations that initially were geometrically impossible could evolve into energetically favorable states in thermal equilibrium due to DNA bending and torsion. In addition, dynamic phase diagrams were applied to identify chromatin fibers that reflect certain experimentally determined features.
Ni, Xuan; Yang, Rui; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso
2010-12-01
Microscopic models based on evolutionary games on spatially extended scales have recently been developed to address the fundamental issue of species coexistence. In this pursuit almost all existing works focus on the relevant dynamical behaviors originated from a single but physically reasonable initial condition. To gain comprehensive and global insights into the dynamics of coexistence, here we explore the basins of coexistence and extinction and investigate how they evolve as a basic parameter of the system is varied. Our model is cyclic competitions among three species as described by the classical rock-paper-scissors game, and we consider both discrete lattice and continuous space, incorporating species mobility and intraspecific competitions. Our results reveal that, for all cases considered, a basin of coexistence always emerges and persists in a substantial part of the parameter space, indicating that coexistence is a robust phenomenon. Factors such as intraspecific competition can, in fact, promote coexistence by facilitating the emergence of the coexistence basin. In addition, we find that the extinction basins can exhibit quite complex structures in terms of the convergence time toward the final state for different initial conditions. We have also developed models based on partial differential equations, which yield basin structures that are in good agreement with those from microscopic stochastic simulations. To understand the origin and emergence of the observed complicated basin structures is challenging at the present due to the extremely high dimensional nature of the underlying dynamical system.
Enhanced high dynamic range 3D shape measurement based on generalized phase-shifting algorithm
Wang, Minmin; Zhou, Canlin; Zhang, Chaorui; Si, Shuchun; Li, Hui; Lei, Zhenkun; Li, YanJie
2016-01-01
It is a challenge for Phase Measurement Profilometry (PMP) to measure objects with a large range of reflectivity variation across the surface. Saturated or dark pixels in the deformed fringe patterns captured by the camera will lead to phase fluctuations and errors. Jiang et al. proposed a high dynamic range real-time 3D shape measurement method without changing camera exposures. Three inverted phase-shifted fringe patterns are used to complement three regular phase-shifted fringe patterns for phase retrieval when any of the regular fringe patterns are saturated. But Jiang's method still has some drawbacks: (1) The phases in saturated pixels are respectively estimated by different formulas for different cases. It is shortage of an universal formula; (2) it cannot be extended to four-step phase-shifting algorithm because inverted fringe patterns are the repetition of regular fringe patterns; (3) only three unsaturated intensity values at every pixel of fringe patterns are chosen for phase demodulation, lying i...
Avena, L
2012-01-01
We perform simulations for one dimensional continuous-time random walks in two dynamic random environments with fast (independent spin-flips) and slow (simple symmetric exclusion) decay of space-time correlations, respectively. We focus on the asymptotic speeds and the scaling limits of such random walks. We observe different behaviors depending on the dynamics of the underlying random environment and the ratio between the jump rate of the random walk and the one of the environment. We compare our data with well known results for static random environment. We observe that the non-diffusive regime known so far only for the static case can occur in the dynamic setup too. Such anomalous fluctuations emerge in a new phase diagram. Further we discuss possible consequences for general static and dynamic random environments.
Rossi, Mariana; Paesani, Francesco; Bowman, Joel; Ceriotti, Michele
2014-01-01
Including quantum mechanical effects on the dynamics of nuclei in the condensed phase is challenging, because the complexity of exact methods grows exponentially with the number of quantum degrees of freedom. Efforts to circumvent these limitations can be traced down to two approaches: methods that treat a small subset of the degrees of freedom with rigorous quantum mechanics, considering the rest of the system as a static or classical environment, and methods that treat the whole system quantum mechanically, but using approximate dynamics. Here we perform a systematic comparison between these two philosophies for the description of quantum effects in vibrational spectroscopy, taking the Embedded Local Monomer (LMon) model and a mixed quantum-classical (MQC) model as representatives of the first family of methods, and centroid molecular dynamics (CMD) and thermostatted ring polymer molecular dynamics (TRPMD) as examples of the latter. We use as benchmarks D$_2$O doped with HOD and pure H$_2$O at three distinc...
Nonlinear response and dynamical transitions in a phase-field crystal model for adsorbed overlayers
Energy Technology Data Exchange (ETDEWEB)
Ramos, J A P [Departamento de Ciencias Exatas, Universidade Estadual do Sudoeste da Bahia, 45000-000 Vitoria da Conquista, BA (Brazil); Granato, E [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, 12245-970 Sao Jose dos Campos, SP (Brazil); Ying, S C; Ala-Nissila, T [Department of Physics, PO Box 1843, Brown University, Providence, RI 02912-1843 (United States); Achim, C V [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FI-00076 Aalto, Espoo (Finland); Elder, K R, E-mail: Jorge@las.inpe.b [Department of Physics, Oakland University, Rochester, Michigan 48309-4487 (United States)
2010-09-01
The nonlinear response and sliding friction behavior of a phase-field crystal model for driven adsorbed atomic layers is determined numerically. The model describes the layer as a continuous density field coupled to the pinning potential of the substrate and under an external driving force. Dynamical equations which take into account both thermal fluctuations and inertial effects are used for numerical simulations of commensurate and incommensurate layers. At low temperatures, the velocity response of an initially commensurate layer shows hysteresis with dynamical melting and freezing transitions at different critical forces. The main features of the sliding friction behavior are similar to the results obtained previously from molecular dynamics simulations of particle models. However, the dynamical transitions correspond to nucleations of stripes rather than closed domains.
Studies of phase return map and symbolic dynamics in a periodically driven Hodgkin—Huxley neuron
Ding, Jiong; Zhang, Hong; Tong, Qin-Ye; Chen, Zhuo
2014-02-01
How neuronal spike trains encode external information is a hot topic in neurodynamics studies. In this paper, we investigate the dynamical states of the Hodgkin—Huxley neuron under periodic forcing. Depending on the parameters of the stimulus, the neuron exhibits periodic, quasiperiodic and chaotic spike trains. In order to analyze these spike trains quantitatively, we use the phase return map to describe the dynamical behavior on a one-dimensional (1D) map. According to the monotonicity or discontinuous point of the 1D map, the spike trains are transformed into symbolic sequences by implementing a coarse-grained algorithm — symbolic dynamics. Based on the ordering rules of symbolic dynamics, the parameters of the external stimulus can be measured in high resolution with finite length symbolic sequences. A reasonable explanation for why the nervous system can discriminate or cognize the small change of the external signals in a short time is also presented.
The coexistence of controlling and other management methods
Agnieszka Bienkowska; Anna Zgrzywa-Ziemak
2014-01-01
The aim of the article was the analysis of the relations of the coexistence of Controlling and other management methods (Benchmarking, BPM, BPR, BSC, Competency-based Management, CRM, ERP, KM, LM, Outsourcing, Six Sigma, TQM). The complexity and dynamics of modern management systems in fact determine the simultaneous and sequential application of many concepts and methods of management. Controlling is a comprehensive method of interdisciplinary character which is the integrating plane for man...
Inherent Shear-Dilatation Coexistence in Metallic Glass
Institute of Scientific and Technical Information of China (English)
JIANG Min-Qiang; JIANG Si-Yue; DAI Lan-Hong
2009-01-01
Shear deformation can induce normal stress or hydrostatic stress in metallic glasses [Nature Mater. 2 (2003) 449, Intermetallics 14 (2006) 1033]. We perform the bulk deformation of three-dimensional Cu46Zr54 metallic glass (MG) and Cu single crystal model systems using molecular dynamics simulation. The results indicate that hydrostatic stress can incur shear stress in MG, but not in crystal. The resultant pronounced asymmetry between tension and compression originates from this inherent shear-dilatation coexistence in MG.
Species coexistence in a lattice-structured habitat: effects of species dispersal and interactions.
Ying, Zhixia; Liao, Jinbao; Wang, Shichang; Lu, Hui; Liu, Yongjie; Ma, Liang; Li, Zhenqing
2014-10-21
Opinions differ on how the spatial distribution of species over space affects species coexistence. Here, we constructed both mean-field and pair approximation (PA) models to explore the effects of interspecific and intraspecific interactions and dispersal modes on species coexistence. We found that spatial structure resulting from species dispersal traits and neighboring interactions in PA model did not promote coexistence if two species had the same traits, though it might intensify the contact frequency of intraspecific competition. If two species adopt different dispersal modes, the spatial structure in PA would make the coexistence or founder control less likely since it alters the species effective birth rate. This suggests that the spatial distribution caused by neighboring interactions and local dispersal does not affect species coexistence unless it adequately alters the effective birth rate for two species. Besides, we modeled how the initial densities and patterns affected population dynamics and revealed how the final spatial pattern was generated.
Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys.
Pun, G P Purja; Mishin, Y
2010-10-01
Using molecular dynamics simulations with an embedded-atom interatomic potential, we study the effect of chemical composition and uniaxial mechanical stresses on the martensitic phase transformation in Ni-rich NiAl alloys. The martensitic phase has a tetragonal crystal structure and can contain multiple twins arranged in domains and plates. The transformation is reversible and is characterized by a significant temperature hysteresis. The magnitude of the hysteresis depends on the chemical composition and stress. We show that applied compressive and tensile stresses reduce and can even eliminate the hysteresis. Crystalline defects such as free surfaces, dislocations and anti-phase boundaries reduce the martensitic transformation temperature and affect the microstructure of the martensite. Their effect can be explained by heterogeneous nucleation of the new phase in defected regions.
Chen, L.; Fan, J. L.; Gong, H. R.
2017-03-01
Molecular dynamic simulation is used to systematically find out the effects of the size and shape of nanoparticles on phase transition and mechanical properties of W nanomaterials. It is revealed that the body-centered cubic (BCC) to face-centered cubic (FCC) phase transition could only happen in cubic nanoparticles of W, instead of the shapes of sphere, octahedron, and rhombic dodecahedron, and that the critical number to trigger the phase transition is 5374 atoms. Simulation also shows that the FCC nanocrystalline W should be prevented due to its much lower tensile strength than its BCC counterpart and that the octahedral and rhombic dodecahedral nanoparticles of W, rather than the cubic nanoparticles, should be preferred in terms of phase transition and mechanical properties. The derived results are discussed extensively through comparing with available observations in the literature to provide a deep understanding of W nanomaterials.
Chiang, Yun-Wei; Shimoyama, Yuhei; Feigenson, Gerald W; Freed, Jack H
2004-10-01
The hydrated ternary lamellar lipid mixture of dipalmitoyl-PC/dilauroyl-PC/cholesterol (DPPC/DLPC/Chol) has been studied by electron spin resonance (ESR) to reveal the dynamic structure on a molecular level of the different phases that exist and coexist over virtually the full range of composition. The spectra for more than 100 different compositions at room temperature were analyzed by nonlinear least-squares fitting to provide the rotational diffusion rates and order parameters of the end-chain labeled phospholipid 16-PC. The ESR spectra exhibit substantial variation as a function of composition, even though the respective phases generally differ rather modestly from each other. The Lalpha and Lbeta phases are clearly distinguished, with the former exhibiting substantially lower ordering and greater motional rates, whereas the well-defined Lo phase exhibits the greatest ordering and relatively fast motional rates. Typically, smaller variations occur within a given phase. The ESR spectral analysis also yields phase boundaries and coexistence regions which are found to be consistent with previous results from fluorescence methods, although new features are found. Phase coexistence regions were in some cases confirmed by observing the existence of isosbestic points in the absorption mode ESR spectra from the phases. The dynamic structural properties of the DPPC-rich Lbeta and DLPC-rich Lalpha phases, within their two-phase coexistence region do not change with composition along a tie-line, but the ratio of the two phases follows the lever rule in accordance with thermodynamic principles. The analysis shows that 16-PC spin-label partitions nearly equally between the Lalpha and Lbeta phases, making it a useful probe for studying such coexisting phases. Extensive study of two-phase coexistence regions requires the determination of tie-lines, which were approximated in this study. However, a method is suggested to accurately determine the tie-lines by ESR.
Dynamic Transcriptional Regulation of Fis in Salmonella During the Exponential Phase.
Wang, Hui; Wang, Lei; Li, Ping; Hu, Yilang; Zhang, Wei; Tang, Bo
2015-12-01
Fis is one of the most important global regulators and has attracted extensive research attention. Many studies have focused on comparing the Fis global regulatory networks for exploring Fis function during different growth stages, such as the exponential and stationary stages. Although the Fis protein in bacteria is mainly expressed in the exponential phase, the dynamic transcriptional regulation of Fis during the exponential phase remains poorly understood. To address this question, we used RNA-seq technology to identify the Fis-regulated genes in the S. enterica serovar Typhimurium during the early exponential phase, and qRT-PCR was performed to validate the transcriptional data. A total of 1495 Fis-regulated genes were successfully identified, including 987 Fis-repressed genes and 508 Fis-activated genes. Comparing the results of this study with those of our previous study, we found that the transcriptional regulation of Fis was diverse during the early- and mid-exponential phases. The results also showed that the strong positive regulation of Fis on Salmonella pathogenicity island genes in the mid-exponential phase transitioned into insignificant effect in the early exponential phase. To validate these results, we performed a cell infection assay and found that Δfis only exhibited a 1.49-fold decreased capacity compared with the LT2 wild-type strain, indicating a large difference from the 6.31-fold decrease observed in the mid-exponential phase. Our results provide strong evidence for a need to thoroughly understand the dynamic transcriptional regulation of Fis in Salmonella during the exponential phase.
Climate change threatens coexistence within communities of Mediterranean forested wetlands.
Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco
2012-01-01
The Mediterranean region is one of the hot spots of climate change. This study aims at understanding what are the conditions sustaining tree diversity in Mediterranean wet forests under future scenarios of altered hydrological regimes. The core of the work is a quantitative, dynamic model describing the coexistence of different Mediterranean tree species, typical of arid or semi-arid wetlands. Two kind of species, i.e. Hygrophilous (drought sensitive, flood resistant) and Non-hygrophilous (drought resistant, flood sensitive), are broadly defined according to the distinct adaptive strategies of trees against water stress of summer drought and winter flooding. We argue that at intermediate levels of water supply the dual role of water (resource and stress) results in the coexistence of the two kind of species. A bifurcation analysis allows us to assess the effects of climate change on the coexistence of the two species in order to highlight the impacts of predicted climate scenarios on tree diversity. Specifically, the model has been applied to Mediterranean coastal swamp forests of Central Italy located at Castelporziano Estate and Circeo National Park. Our results show that there are distinct rainfall thresholds beyond which stable coexistence becomes impossible. Regional climatic projections show that the lower rainfall threshold may be approached or crossed during the XXI century, calling for an urgent adaptation and mitigation response to prevent biodiversity losses.
Climate change threatens coexistence within communities of Mediterranean forested wetlands.
Directory of Open Access Journals (Sweden)
Arianna Di Paola
Full Text Available The Mediterranean region is one of the hot spots of climate change. This study aims at understanding what are the conditions sustaining tree diversity in Mediterranean wet forests under future scenarios of altered hydrological regimes. The core of the work is a quantitative, dynamic model describing the coexistence of different Mediterranean tree species, typical of arid or semi-arid wetlands. Two kind of species, i.e. Hygrophilous (drought sensitive, flood resistant and Non-hygrophilous (drought resistant, flood sensitive, are broadly defined according to the distinct adaptive strategies of trees against water stress of summer drought and winter flooding. We argue that at intermediate levels of water supply the dual role of water (resource and stress results in the coexistence of the two kind of species. A bifurcation analysis allows us to assess the effects of climate change on the coexistence of the two species in order to highlight the impacts of predicted climate scenarios on tree diversity. Specifically, the model has been applied to Mediterranean coastal swamp forests of Central Italy located at Castelporziano Estate and Circeo National Park. Our results show that there are distinct rainfall thresholds beyond which stable coexistence becomes impossible. Regional climatic projections show that the lower rainfall threshold may be approached or crossed during the XXI century, calling for an urgent adaptation and mitigation response to prevent biodiversity losses.
Exact Dynamical and Partial Symmetries
Leviatan, A
2010-01-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
Exact dynamical and partial symmetries
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
2011-03-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
Acevedo, Óscar L.; Quiroga, Luis; Rodríguez, Ferney J.; Johnson, Neil F.
2014-03-01
Dynamical quantum phase crossings of spin networks have recently received increased attention thanks to their relation to adiabatic quantum computing, and their feasible realizations using ultra-cold atomic and molecular systems with a highly tunable degree of connectivity. Dynamical scaling of spatially distributed systems like Ising models have been widely studied, and successfully related to well-known theories like the Kibble-Zurek mechanism. The case of totally connected networks such as the Dicke Model and Lipkin-Meshkov-Glick Model, however, is known to exhibit a breakdown of these frameworks. Our analysis overcomes the lack of spatial correlation structure by developing a general approach which (i) is valid regardless the connectivity of the system, (ii) goes beyond critical exponents, and (iii) provides a time-resolved picture of dynamical scaling. By treating these models as a method for macroscopic quantum control of their subsystems, we have found microscopic signatures of the dynamical scaling as well as instances of dynamical enhancement of distinctive quantum properties such as entanglement and coherence. Our results yield novel prescriptions for the fields of quantum simulations and quantum control, and deepen our fundamental understanding of phase transitions.
Shape coexistence along N = 40
Energy Technology Data Exchange (ETDEWEB)
Liddick, S. N. [Michigan State University, East Lansing; Suchyta, S. [Michigan State University, East Lansing; Abromeit, B. [Michigan State University, East Lansing; Ayres, A [University of Tennessee, Knoxville (UTK); Bey, A. [University of Tennessee Medical Center, Knoxville; Bingham, C. R. [University of Tennessee, Knoxville (UTK); Bolla, M [Michigan State University, East Lansing; Carpenter, M. P. [Argonne National Laboratory (ANL); Cartegni, L. [University of Tennessee, Knoxville (UTK); Chiara, C. J. [University of Maryland & Argonne National Laboratory; Crawford, H. L. [Lawrence Berkeley National Laboratory (LBNL); Darby, I. G. [Katholieke University Leuven, Belgium; Grzywacz, R. [University of Tennessee, Knoxville (UTK); Gurdal, G. [Argonne National Laboratory (ANL); Ilyushkin, S. [Mississippi State University (MSU); Larson, N. [Michigan State University, East Lansing; Madurga, M [University of Tennessee, Knoxville (UTK); McCutchan, E. A. [Argonne National Laboratory (ANL); Miller, D [University of Tennessee, Knoxville (UTK); Padgett, Stephen [University of Tennessee, Knoxville (UTK); Paulauskas, S. [University of Tennessee, Knoxville (UTK); Pereira, J. [National Superconducting Cyclotron Laboratory (NSCL); Rajabali, M. M. [Katholieke University Leuven, Belgium; Rykaczewski, Krzysztof Piotr [ORNL; Vinnikova, S. [Michigan State University, East Lansing; Walters, W. B. [University of Maryland; Zhu, S. [Argonne National Laboratory (ANL)
2011-01-01
The low-energy level structures of 64 25Mn39 and 66 25Mn41 were investigated through both the decay of Mn metastable states and the population of levels following the decay of 64Cr and 66Cr. The deduced level schemes and tentatively assigned spins and parities suggest the coexistence of spherical and deformed configurations above and below N = 40 for the odd-odd Mn isotopes. The low-energy deformed configurations are attributed to the coupling between a proton in a K = 1/2 level with neutrons in either the K = 1/2 or K = 3/2+ levels originating from the p3/2, p1/2, and g9/2 single-particle states, respectively.
Gastric stromal tumor: two-phase dynamic CT findings with water as oral contrast agents
Energy Technology Data Exchange (ETDEWEB)
Lee, Se Hyo; Cho, June Sik; Shin, Kyung Sook; Jeong, Ki Ho; Park, Jin Yong; Yu, Ho Jun; Kim, Young Min; Jeon, Kwang Jin [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)
2000-01-01
To evaluate two-phase dynamic CT with water as oral contrast agents in the CT diagnosis of gastric stromal tumors. We retrospectively reviewed the CT findings in 21 patients with pathologically proven gastric stromal tumors. Six were found to be benign, twelve were malignant, and there were three cases of STUMP (stromal tumor uncertain malignant potential). Two-phase dynamic CT scans with water as oral contrast agents were obtained 60-70 secs (portal phase) and 3 mins (equilibrium phase) after the start of IV contrast administration. We determined the size, growth pattern, and enhancement pattern of the tumors and overlying mucosa, the presence or absence of ulceration and necrosis, tumor extent, and lymph nod and distant metastasis. The CT and pathologic findings were correlated. All six benign tumors and three STUMP were less than 5.5 cm in size, and during the portal phase showed round endogastric masses with highly enhanced, intact overlying mucosa. Twelve malignant tumors were 4.5-15.5 cm in size (mean, 11.5 cm); an endogastric mass was seen in three cases, an exogastric mass in one, and a mixed pattern in eight. On portal phase images the tumors were not significantly enhanced, but highly enhanced feeding vessels were noted in five larger tumors (greater than 10 cm). All 12 malignant tumors showed ulceration and necrosis, and interruption of overlying mucosa was clearly seen during the portal phase. We were readily able to evaluate tumor extent during this phase, and in ten malignant tumors there was no invasion of adjacent organs. Seven malignant tumors showed air density within their necrotic portion (p less than 0.05). On equilibrium phase images, all malignant tumors showed heterogeneous enhancement due to necrosis, and poorly enhanced overlying mucosa. Dynamic CT during the portal phase with water as oral contrast agents was useful for depicting the submucosal origin of gastric stromal tumors and for evaluating the extent of malignant stromal tumors. Our
Energy Technology Data Exchange (ETDEWEB)
Wang, Ruixue; Xu, Han; Yang, Bin; Luo, Zhenlin; Sun, Enwei; Zhao, Jiangtao; Zheng, Limei; Dong, Yongqi; Zhou, Hua; Ren, Yang; Gao, Chen; Cao, Wenwu
2016-04-11
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T and MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.
Wang, Ruixue; Xu, Han; Yang, Bin; Luo, Zhenlin; Sun, Enwei; Zhao, Jiangtao; Zheng, Limei; Dong, Yongqi; Zhou, Hua; Ren, Yang; Gao, Chen; Cao, Wenwu
2016-04-01
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T and MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.
Massobrio, Carlo; Bernasconi, Marco; Salmon, Philip S
2015-01-01
This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering ""traditional"" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and firs
Dynamic study in partial transient liquid phase bonding of Si3N4
Institute of Scientific and Technical Information of China (English)
邹家生; 初雅杰; 许志荣; 陈光
2004-01-01
Dynamics in partial transient liquid phase bonding (PTLP bonding) of Si3N4 ceramic with Ti/Cu/Ti multi-interlayer was systematically studied through micro-analysis of joint interfaces. The results show that growth of reaction layer and isothermal solidification procession do at the same time. Growth of reaction layer and moving of isothermal solidification interface obey the parabolic law governed by the diffusion of participating elements during the PTLP bonding. Coordination of the above two dynamics process is done through time and temperature. When reaction layer thickness is suitable and isothermal solidification process is finished, the high bonding strength at room temperature and high temperature are obtained.
Schirò, Giorgio; Fomina, Margarita; Cupane, Antonio
2013-09-01
In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related.
Lyapunov exponent corresponding to enslaved phase dynamics: Estimation from time series.
Moskalenko, Olga I; Koronovskii, Alexey A; Hramov, Alexander E
2015-07-01
A method for the estimation of the Lyapunov exponent corresponding to enslaved phase dynamics from time series has been proposed. It is valid for both nonautonomous systems demonstrating periodic dynamics in the presence of noise and coupled chaotic oscillators and allows us to estimate precisely enough the value of this Lyapunov exponent in the supercritical region of the control parameters. The main results are illustrated with the help of the examples of the noised circle map, the nonautonomous Van der Pole oscillator in the presence of noise, and coupled chaotic Rössler systems.