WorldWideScience

Sample records for dynamical pattern formation

  1. Perspective: network-guided pattern formation of neural dynamics.

    Science.gov (United States)

    Hütt, Marc-Thorsten; Kaiser, Marcus; Hilgetag, Claus C

    2014-10-05

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Pattern formation and coexistence domains for a nonlocal population dynamics

    CERN Document Server

    da Cunha, J A R; Oliveira, F A

    2011-01-01

    In this communication we propose a most general equation to study pattern formation for one-species population and their limit domains in systems of length L. To accomplish this we include non-locality in the growth and competition terms where the integral kernels are now depend on characteristic length parameters alpha and beta. Therefore, we derived a parameter space (alpha,beta) where it is possible to analyze a coexistence curve alpha*=alpha*(\\beta) which delimits domains for the existence (or not) of pattern formation in population dynamics systems. We show that this curve has an analogy with coexistence curve in classical thermodynamics and critical phenomena physics. We have successfully compared this model with experimental data for diffusion of Escherichia coli populations.

  3. Building better oscillators using nonlinear dynamics and pattern formation

    Indian Academy of Sciences (India)

    M C Cross; Eyal Kenig; John-Mark A Allen

    2015-03-01

    Frequency and time references play an essential role in modern technology and in living systems. The precision of self-sustained oscillations is limited by the effects of noise, which becomes evermore important as the sizes of the devices become smaller. In this paper, we review our recent theoretical results on using nonlinear dynamics and pattern formation to reduce the effects of noise and improve the frequency precision of oscillators, with particular reference to ongoing experiments on oscillators based on nanomechanical resonators. We discuss using resonator nonlinearity, novel oscillator architectures and the synchronization of arrays of oscillators, to improve the frequency precision.

  4. A Broad Dynamical Model for Pattern Formation by Lateral Inhibition

    CERN Document Server

    Arcak, Murat

    2012-01-01

    Many patterning events in multi-cellular organisms rely on cell-to-cell contact signaling, such as the Notch pathway in metazoans. A particularly interesting phenomenon in this form of communication is lateral inhibition where a cell that adopts a particular fate inhibits its immediate neighbors from doing the same. Dynamical models are of great interest for understanding the circuit topologies involved in lateral inhibition and for predicting the associated patterns. Several simplified models have been employed for Notch signalling pathways in the literature. The objective of this paper is to present an abstract dynamical model that captures the essential features of lateral inhibition and to demonstrate with dynamical systems techniques that these features indeed lead to patterning.

  5. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-10-01

    A mathematical model of the process of pattern recognition in the first olfactory sensory cortex of the rabbit is presented. It explains the formation and alteration of spatial patterns in neural activity observed experimentally during classical Pavlovian conditioning. On each inspiration of the animal, a surge of receptor input enters the olfactory bulb. EEG activity recorded at the surface of the bulb undergoes a transition from a low amplitude background state of temporal disorder to coherent oscillation. There is a distinctive spatial pattern of rms amplitude in this oscillation which changes reliably to a second pattern during each successful recognition by the animal of a conditioned stimulus odor. When a new odor is paired as conditioned stimulus, these patterns are replaced by new patterns that stabilize as the animal adapts to the new environment. I will argue that a unification of the theories of pattern formation and associative memory is required to account for these observations. This is achieved in a model of the bulb as a discrete excitable medium with spatially inhomogeneous coupling expressed by a connection matrix. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of competing unstable oscillatory modes. These may be created in the system by proper coupling and selectively evoked by specific classes of inputs. This allows a view of limit cycle attractors as “stored” fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  6. Perspective: network-guided pattern formation of neural dynamics

    OpenAIRE

    Hütt, Marc-Thorsten; Kaiser, Marcus; Claus C Hilgetag

    2014-01-01

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to...

  7. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2010-01-01

    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  8. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2010-01-01

    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  9. Dynamics of Surfactants Spreading on Gel-like Materials: Cracking and Pattern Formation

    CERN Document Server

    Spandagos, Constantine; Matar, Omar

    2010-01-01

    We study the dynamics of surfactants spreading on gels, paying particular attention to the pattern formation accompanying the flow. The latter results from gel-cracking, promoted by Marangoni stresses, and resemble starbursts.

  10. Dynamic Transition and Pattern Formation in Taylor Problem

    Institute of Scientific and Technical Information of China (English)

    Tian MA; Shouhong WANG

    2010-01-01

    The main objective of this article is to study both dynamic and structural transitions of the Taylor-Couette flow,by using the dynamic transition theory and geometric theory of incompressible flows developed recently by the authors.In particular,it is shown that as the Taylor number crosses the critical number,the system undergoes either a continuous or a jump dynamic transition,dictated by the sign of a computable,nondimensional parameter R.In addition,it is also shown that the new transition states have the Taylor vortex type of flow structure,which is structurally stable.

  11. Pattern Formation

    Science.gov (United States)

    Hoyle, Rebecca

    2006-03-01

    From the stripes of a zebra and the spots on a leopard's back to the ripples on a sandy beach or desert dune, regular patterns arise everywhere in nature. The appearance and evolution of these phenomena has been a focus of recent research activity across several disciplines. This book provides an introduction to the range of mathematical theory and methods used to analyse and explain these often intricate and beautiful patterns. Bringing together several different approaches, from group theoretic methods to envelope equations and theory of patterns in large-aspect ratio-systems, the book also provides insight behind the selection of one pattern over another. Suitable as an upper-undergraduate textbook for mathematics students or as a fascinating, engaging, and fully illustrated resource for readers in physics and biology, Rebecca Hoyle's book, using a non-partisan approach, unifies a range of techniques used by active researchers in this growing field. Accessible description of the mathematical theory behind fascinating pattern formation in areas such as biology, physics and materials science Collects recent research for the first time in an upper level textbook Features a number of exercises - with solutions online - and worked examples

  12. Dynamic array generation and pattern formation for optical tweezers

    DEFF Research Database (Denmark)

    Mogensen, P.C.; Glückstad, J.

    2000-01-01

    The generalised phase contrast approach is used for the generation of optical arrays of arbitrary beam shape, suitable for applications in optical tweezers for the manipulation of biological specimens. This approach offers numerous advantages over current techniques involving the use of computer......-generated holograms or diffractive optical elements. We demonstrate a low-loss system for generating intensity patterns suitable for the trapping and manipulation of small particles or specimens....

  13. On the dynamics of Liesegang-type pattern formation in a gaseous system

    Science.gov (United States)

    Ramírez-Álvarez, Elizeth; Montoya, Fernando; Buhse, Thomas; Rios-Herrera, Wady; Torres-Guzmán, José; Rivera, Marco; Martínez-Mekler, Gustavo; Müller, Markus F.

    2016-01-01

    Liesegang pattern formations are widely spread in nature. In spite of a comparably simple experimental setup under laboratory conditions, a variety of spatio-temporal structures may arise. Presumably because of easier control of the experimental conditions, Liesegang pattern formation was mainly studied in gel systems during more than a century. Here we consider pattern formation in a gas phase, where beautiful but highly complex reaction-diffusion-convection dynamics are uncovered by means of a specific laser technique. A quantitative analysis reveals that two different, apparently independent processes, both highly correlated and synchronized across the extension of the reaction cloud, act on different time scales. Each of them imprints a different structure of salt precipitation at the tube walls. PMID:27025405

  14. Mosaic-pattern vegetation formation and dynamics driven by the water-wind crisscross erosion

    Science.gov (United States)

    Wu, Gao-Lin; Wang, Dong; Liu, Yu; Hao, Hong-Min; Fang, Nu-Fang; Shi, Zhi-Hua

    2016-07-01

    Theoretical explanations for vegetation pattern dynamic emphasized on banded pattern-forming systems on the dynamics of the spot pattern. In this context, we explore the patch pattern forming and development in the desertification land. We hypothesized that spatial heterogeneity of microtopography and soil properties with different patch sizes would determine vegetation pattern dynamics theory. The spatial heterogeneity of microtopography and soil properties with different patch sizes were studied. Differences between the inside and outside of the canopy of soil carbon content and soil total nitrogen content were significantly increasing with patches sizes. Sampling location across vegetation patch was the main factor controlling soil properties. Soil nutrient content and saturated hydraulic conductivity were the largest, while bulk density and the coarse sand content were the lowest at the sampling location of half-way between taproot and downslope edge of the canopy. The height of the mound relative to the adjacent soil interspace between shrubs increased as patches diameter increased at the upslope of the taproot. Hydrological and aeolian processes resulted in spatial distributions of soil moisture, nutrition properties, which lead to patch migrated to downslope rather than upslope. A conceptual model was integrated hydrological and nutrient facilitation and competition effects among the plant-soil in mosaic-pattern patch formation and succession process.

  15. Energy approach to rivalry dynamics, soliton stability, and pattern formation in neuronal networks

    Science.gov (United States)

    Loxley, P. N.; Robinson, P. A.

    2007-10-01

    Hopfield’s Lyapunov function is used to view the stability and topology of equilibria in neuronal networks for visual rivalry and pattern formation. For two neural populations with reciprocal inhibition and slow adaptation, the dynamics of neural activity is found to include a pair of limit cycles: one for oscillations between states where one population has high activity and the other has low activity, as in rivalry, and one for oscillations between states where both populations have the same activity. Hopfield’s Lyapunov function is used to find the dynamical mechanism for oscillations and the basin of attraction of each limit cycle. For a spatially continuous population with lateral inhibition, stable equilibria are found for local regions of high activity (solitons) and for bound states of two or more solitons. Bound states become stable when moving two solitons together minimizes the Lyapunov function, a result of decreasing activity in regions between peaks of high activity when the firing rate is described by a sigmoid function. Lowering the barrier to soliton formation leads to a pattern-forming instability, and a nonlinear solution to the dynamical equations is found to be given by a soliton lattice, which is completely characterized by the soliton width and the spacing between neighboring solitons. Fluctuations due to noise create lattice vacancies analogous to point defects in crystals, leading to activity which is spatially inhomogeneous.

  16. Dynamics of fast pattern formation in porous silicon by laser interference

    Energy Technology Data Exchange (ETDEWEB)

    Peláez, Ramón J.; Kuhn, Timo; Afonso, Carmen N. [Laser Processing Group, Instituto de Óptica, CSIC, Serrano 121, 28006 Madrid (Spain); Vega, Fidel [Departament d' Òptica i Optometria, UPC, Violinista Vellsolà 37, 08222 Terrasa (Spain)

    2014-10-20

    Patterns are fabricated on 290 nm thick nanostructured porous silicon layers by phase-mask laser interference using single pulses of an excimer laser (193 nm, 20 ns pulse duration). The dynamics of pattern formation is studied by measuring in real time the intensity of the diffraction orders 0 and 1 at 633 nm. The results show that a transient pattern is formed upon melting at intensity maxima sites within a time <30 ns leading to a permanent pattern in a time <100 ns upon solidification at these sites. This fast process is compared to the longer one (>1 μs) upon melting induced by homogeneous beam exposure and related to the different scenario for releasing the heat from hot regions. The diffraction efficiency of the pattern is finally controlled by a combination of laser fluence and initial thickness of the nanostructured porous silicon layer and the present results open perspectives on heat release management upon laser exposure as well as have potential for alternative routes for switching applications.

  17. Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation.

    Science.gov (United States)

    Norris, Scott A; Samela, Juha; Bukonte, Laura; Backman, Marie; Djurabekova, Flyura; Nordlund, Kai; Madi, Charbel S; Brenner, Michael P; Aziz, Michael J

    2011-01-01

    Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.

  18. Dynamic coupling of pattern formation and morphogenesis in the developing vertebrate retina.

    Directory of Open Access Journals (Sweden)

    Alexander Picker

    2009-10-01

    Full Text Available During embryonic development, pattern formation must be tightly synchronized with tissue morphogenesis to coordinate the establishment of the spatial identities of cells with their movements. In the vertebrate retina, patterning along the dorsal-ventral and nasal-temporal (anterior-posterior axes is required for correct spatial representation in the retinotectal map. However, it is unknown how specification of axial cell positions in the retina occurs during the complex process of early eye morphogenesis. Studying zebrafish embryos, we show that morphogenetic tissue rearrangements during eye evagination result in progenitor cells in the nasal half of the retina primordium being brought into proximity to the sources of three fibroblast growth factors, Fgf8/3/24, outside the eye. Triple-mutant analysis shows that this combined Fgf signal fully controls nasal retina identity by regulating the nasal transcription factor Foxg1. Surprisingly, nasal-temporal axis specification occurs very early along the dorsal-ventral axis of the evaginating eye. By in vivo imaging GFP-tagged retinal progenitor cells, we find that subsequent eye morphogenesis requires gradual tissue compaction in the nasal half and directed cell movements into the temporal half of the retina. Balancing these processes drives the progressive alignment of the nasal-temporal retina axis with the anterior-posterior body axis and is controlled by a feed-forward effect of Fgf signaling on Foxg1-mediated cell cohesion. Thus, the mechanistic coupling and dynamic synchronization of tissue patterning with morphogenetic cell behavior through Fgf signaling leads to the graded allocation of cell positional identity in the eye, underlying retinotectal map formation.

  19. Dynamic expression reveals a two-step patterning of WUS and CLV3 during axillary shoot meristem formation in Arabidopsis.

    Science.gov (United States)

    Xin, Wei; Wang, Zhicai; Liang, Yan; Wang, Yonghong; Hu, Yuxin

    2017-07-01

    Seed plants have a remarkable capability to produce axillary meristems (AM) in the leaf axils, however, the dynamic establishment of a stem cell niche in AM is largely uncharacterized. We comprehensively examined the dynamic patterning of WUSCHEL (WUS) and CLAVATA3 (CLV3), the two key marker genes defining the shoot stem cell niches, during AM formation in Arabidopsis, and we found that a two-step patterning of WUS and CLV3 occurred during AM stem cell niche establishment. Our further work on the wus and clv3 mutants implicates that such two-step patterning is likely critical for the maintenance of AM progenitor cells and the specification of AM stem cell niche. These data provide a cytological frame for how a stem cell niche is established during AM formation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Dynamical pattern formation in a low-concentration magnetorheological fluid under two orthogonal sinusoidal fields

    Energy Technology Data Exchange (ETDEWEB)

    Yépez, L.D.; Carrillo, J.L. [Instituto de Física de la Universidad Autónoma de Puebla, Ciudad Universitaria, Edif. 110 A, Puebla 72570 (Mexico); Donado, F.; Sausedo-Solorio, J.M.; Miranda-Romagnoli, P. [Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo, Pachuca 42090, Pachuca (Mexico)

    2016-06-15

    The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena. - Highlights: • A weighted average of the time-dependent Mason number is proposed. • The self-propelling clusters appear when a vertical rotating magnetic field is applied. • The largest average chain lengths are reached when frequencies are multiples one another. • Rotating and unidirectional alternating fields produce the largest average chain length values.

  1. Effects of Dynamic Changes in Ultrasound Attenuation and Blood Perfusion on Lesion Formation of Multiple focus Pattern during Ultrasound Surgery

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chen-xi; BAI Jing-feng; CHEN Ya-zhu

    2007-01-01

    A nonlinear finite-element program was developed to simulate the dynamic evolution of coagulation in tissue considering temperature and thermal-dose dependence of the ultrasound attenuation and blood perfusion rate.The effects of these dynamic parameters on the lesion formation were investigated in the particular case of ultrasound hepatic ablation with bi-focus intensity pattern.The results of simulations were compared that incorporate dynamic changes of ultrasound attenuation and perfusion and results that neglect these effects.The result shows that thermal-dose-dependent ultrasound attenuation is the dominating factor in the full dynamic model.If the dynamic ultrasound attenuation is ignored, a relatively significant underestimation of the temperature rise appears in the focal plane and the region next to the focal plane, resulting in an underestimation in predicting diameter of coagulation.Higher heating intensity leads to greater underestimation.

  2. Spontaneous formation of dynamical patterns with fractal fronts in the cyclic lattice Lotka-Volterra model.

    Science.gov (United States)

    Provata, A; Tsekouras, G A

    2003-05-01

    Dynamical patterns, in the form of consecutive moving stripes or rings, are shown to develop spontaneously in the cyclic lattice Lotka-Volterra model, when realized on square lattice, at the reaction limited regime. Each stripe consists of different particles (species) and the borderlines between consecutive stripes are fractal. The interface width w between the different species scales as w(L,t) approximately L(alpha)f(t/L(z)), where L is the linear size of the interface, t is the time, and alpha and z are the static and dynamical critical exponents, respectively. The critical exponents were computed as alpha=0.49+/-0.03 and z=1.53+/-0.13 and the propagating fronts show dynamical characteristics similar to those of the Eden growth models.

  3. Massive Galaxies at High-z: Assembly Patterns, Structure & Dynamics in the Fast Phase of Galaxy Formation

    CERN Document Server

    Oñorbe, J; Domínguez-Tenreiro, R; Knebe, A; Serna, A

    2011-01-01

    Relaxed, massive galactic objects have been identified at redshifts z = 4;5; and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high mass end of the galaxy distribution at these high zs, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previ...

  4. Pattern formation with repulsive soft-core interactions: Discrete particle dynamics and Dean-Kawasaki equation

    Science.gov (United States)

    Delfau, Jean-Baptiste; Ollivier, Hélène; López, Cristóbal; Blasius, Bernd; Hernández-García, Emilio

    2016-10-01

    Brownian particles interacting via repulsive soft-core potentials can spontaneously aggregate, despite repelling each other, and form periodic crystals of particle clusters. We study this phenomenon in low-dimensional situations (one and two dimensions) at two levels of description: by performing numerical simulations of the discrete particle dynamics and by linear and nonlinear analysis of the corresponding Dean-Kawasaki equation for the macroscopic particle density. Restricting to low dimensions and neglecting fluctuation effects, we gain analytical insight into the mechanisms of the instability leading to clustering which turn out to be the interplay among diffusion, the intracluster forces, and the forces between neighboring clusters. We show that the deterministic part of the Dean-Kawasaki equation provides a good description of the particle dynamics, including width and shape of the clusters and over a wide range of parameters, and analyze with weakly nonlinear techniques the nature of the pattern-forming bifurcation in one and two dimensions. Finally, we briefly discuss the case of attractive forces.

  5. Dynamic Pattern Formation for Wings of Pterygota in an Eclosion ---Pattern Analysis for Wings with the Imago---

    Science.gov (United States)

    Seino, M.; Kakazu, Y.

    The vein and cell patterns for the fore and hind wing of Lepidoptera, Hemiptera, Orthoptera and Odonata are analyzed and discussed. For vein patterns of them, the fractal properties are shown and the inequality between four orders is obtained. The nature of wings observed by mass distributions for fractal dimensions of the vein pattern is presented.

  6. Interlinked nonlinear subnetworks underlie the formation of robust cellular patterns in Arabidopsis epidermis: a dynamic spatial model

    Directory of Open Access Journals (Sweden)

    Padilla-Longoria Pablo

    2008-11-01

    Full Text Available Abstract Background Dynamical models are instrumental for exploring the way information required to generate robust developmental patterns arises from complex interactions among genetic and non-genetic factors. We address this fundamental issue of developmental biology studying the leaf and root epidermis of Arabidopsis. We propose an experimentally-grounded model of gene regulatory networks (GRNs that are coupled by protein diffusion and comprise a meta-GRN implemented on cellularised domains. Results Steady states of the meta-GRN model correspond to gene expression profiles typical of hair and non-hair epidermal cells. The simulations also render spatial patterns that match the cellular arrangements observed in root and leaf epidermis. As in actual plants, such patterns are robust in the face of diverse perturbations. We validated the model by checking that it also reproduced the patterns of reported mutants. The meta-GRN model shows that interlinked sub-networks contribute redundantly to the formation of robust hair patterns and permits to advance novel and testable predictions regarding the effect of cell shape, signalling pathways and additional gene interactions affecting spatial cell-patterning. Conclusion The spatial meta-GRN model integrates available experimental data and contributes to further understanding of the Arabidopsis epidermal system. It also provides a systems biology framework to explore the interplay among sub-networks of a GRN, cell-to-cell communication, cell shape and domain traits, which could help understanding of general aspects of patterning processes. For instance, our model suggests that the information needed for cell fate determination emerges from dynamic processes that depend upon molecular components inside and outside differentiating cells, suggesting that the classical distinction of lineage versus positional cell differentiation may be instrumental but rather artificial. It also suggests that interlinkage

  7. Dynamics of weed populations : spatial pattern formation and implications for control

    NARCIS (Netherlands)

    Wallinga, J.

    1998-01-01

    Modelling studies were carried out to analyse spatio-temporal dynamics of annual weed populations and to identify the key factors that determine the long-term herbicide use of weed control programmes. Three different weed control programmes were studied.

    In the first weed

  8. Pattern Formation in a Bacterial Colony Model

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2014-01-01

    Full Text Available We investigate the spatiotemporal dynamics of a bacterial colony model. Based on the stability analysis, we derive the conditions for Hopf and Turing bifurcations. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by parameters in the model and find that the model dynamics exhibit a diffusion controlled formation growth to spots, holes and stripes pattern replication, which show that the bacterial colony model is useful in revealing the spatial predation dynamics in the real world.

  9. From dynamic expression patterns to boundary formation in the presomitic mesoderm.

    Directory of Open Access Journals (Sweden)

    Hendrik B Tiedemann

    Full Text Available The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.

  10. Coupled dynamics of mobility and pattern formation in optional public goods games

    CERN Document Server

    Zhong, Li-Xin; Shi, Yong-Dong; Qiu, Tian

    2012-01-01

    In a static environment, optional participation and cooperator agglomeration are found to be beneficial for the occurrence and maintenance of cooperation. In the optional public goods game, the rock-scissors-paper cycles of different strategies yield the oscillatory persistence of cooperation but not different levels of stable cooperation. In this paper, by incorporating population density and individual mobility into the spatial optional public goods game, we study the coevolutionary dynamics of strategy updating and benefit-seeking movement. With low population density and slow movement, an optimal level of cooperation is easy to be reached. Both the increase of population density and the speed-up of free-floating of competing agents will lead to the decrease of cooperation. A log-log relation between the levels of cooperation and the free-floating probability is found. Theoretical analysis indicates that the decrease of cooperator frequency in the present model should result from the increase of the intera...

  11. Dynamics of evaporative colloidal patterning

    OpenAIRE

    Kaplan, Cihan Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, Lakshminarayanan

    2014-01-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming whe...

  12. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis.

  13. Pattern Formation in Hydrozoa

    Science.gov (United States)

    Berking, Stefan

    The fresh water polyp Hydra is famous for its ability to regenerate missing structures. Even aggregates of single cells transform eventually into normally shaped animals. This indicates a communication within the tissue and within the aggregates which determines the spatial pattern of gene expression. Such pattern-forming systems are thought to play a decisive role in the control of self-organization during embryogenesis. Marine and fresh water hydrozoa appear to allow an access to such a system. Although the molecular components are still mostly unknown, the regulatory properties of the pattern-forming system are increasingly well understood, and this may help eventually to identify the components involved.

  14. Evolution‐development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures

    Science.gov (United States)

    Kohsokabe, Takahiro

    2016-01-01

    ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution

  15. Understanding Alliance Formation Patterns

    Science.gov (United States)

    2015-12-01

    agreement to open international markets because trade produces security externalities.”131 Gowa explains the necessity to maintain trade among allies by...alone.”135 They present empirical evidence to “ indicate that allies conduct more trade than do non-allies and that the formation of alliances tends to...states to control their trade flows.”138 Morrow et al. indicate that “joint democracy and the 133

  16. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  17. Anisotropic assembly and pattern formation

    Science.gov (United States)

    von Brecht, James H.; Uminsky, David T.

    2017-01-01

    We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.

  18. Dynamic pattern formation of liquid crystals using binary self-assembled monolayers on an ITO surface under DC voltage.

    Science.gov (United States)

    Ishida, Takao; Oyama, Makiko; Terada, Kei-ichi; Haga, Masa-aki

    2014-12-07

    There have been numerous studies of liquid crystal (LC) convection using sandwich-type LC cells under AC voltage. In contrast to previous LC convection studies under AC voltage, we propose the use of a binary self-assembled monolayer (SAM) with a redox-active Ru complex and insulating octadecyl phosphonic acid (C18) molecules on an indium tin oxide (ITO) surface as the electrode of sandwich-type LC cells under DC bias voltage. This is because the functionalized molecules immobilized on the ITO surface are expected to control the LC orientation and electrical conduction of LC cells, under an exact DC bias voltage. We successfully achieved LC pattern formation using ITO electrodes with binary SAMs in LC cells. Moreover, we confirmed that the LC pattern size was increased by increasing the coverage of the Ru complex in binary SAMs. We consider that a combination of three factors, electrical conduction change, controlling of LC orientation in the initial stage and redox-activity of the Ru-complex, is the reason for LC convection although we cannot fully explain the distribution of these three factors. We believe that our LC pattern formation is promising for new type devices e.g., artificial compound eyes using the LC device technology.

  19. Spatiotemporal Wave Patterns: Information Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail Rabinovich; Lev Tsimring

    2006-01-20

    Pattern formation has traditionally been studied in non-equilibrium physics from the viewpoint of describing the basic structures and their interactions. While this is still an important area of research, the emphasis in the last few years has shifted towards analysis of specific properties of patterns in various complex media. For example, diverse and unexpected phenomena occur in neuro-like media that are characterized by highly non-trivial local dynamics. We carried out an active research program on analysis of spatio-temporal patterns in various physical systems (convection, oscillating fluid layer, soap film), as well as in neuro-like media, with an emphasis on informational aspects of the dynamics. Nonlinear nonequilibrium media and their discrete analogs have a unique ability to represent, memorize, and process the information contained in spatio-temporal patterns. Recent neurophysiological experiments demonstrated a certain universality of spatio-temporal representation of information by neural ensembles. Information processing is also revealed in the spatio-temporal dynamics of cellular patterns in nonequilibrium media. It is extremely important for many applications to study the informational aspects of these dynamics, including the origins and mechanisms of information generation, propagation and storage. Some of our results are: the discovery of self-organization of periodically oscillatory patterns in chaotic heterogeneous media; the analysis of the propagation of the information along a chaotic media as function of the entropy of the signal; the analysis of wave propagation in discrete non-equilibrium media with autocatalytic properties, which simulates the calcium dynamics in cellular membranes. Based on biological experiments we suggest the mechanism by which the spatial sensory information is transferred into the spatio-temporal code in the neural media. We also found a new mechanism of self-pinning in cellular structures and the related phenomenon

  20. Pattern formations and oscillatory phenomena

    CERN Document Server

    Kinoshita, Shuichi

    2013-01-01

    Patterns and their formations appear throughout nature, and are studied to analyze different problems in science and make predictions across a wide range of disciplines including biology, physics, mathematics, chemistry, material science, and nanoscience. With the emergence of nanoscience and the ability for researchers and scientists to study living systems at the biological level, pattern formation research has become even more essential. This book is an accessible first of its kind guide for scientists, researchers, engineers, and students who require a general introduction to thi

  1. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    KAUST Repository

    Kachalo, Sëma

    2015-05-14

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  2. The dynamics of latifundia formation.

    Science.gov (United States)

    Chaves, Luis Fernando

    2013-01-01

    Land tenure inequity is a major social problem in developing nations worldwide. In societies, where land is a commodity, inequities in land tenure are associated with gaps in income distribution, poverty and biodiversity loss. A common pattern of land tenure inequities through the history of civilization has been the formation of latifundia [Zhuāngyuán in chinese], i.e., a pattern where land ownership is concentrated by a small fraction of the whole population. Here, we use simple Markov chain models to study the dynamics of latifundia formation in a heterogeneous landscape where land can transition between forest, agriculture and recovering land. We systematically study the likelihood of latifundia formation under the assumption of pre-capitalist trade, where trade is based on the average utility of land parcels belonging to each individual landowner during a discrete time step. By restricting land trade to that under recovery, we found the likelihood of latifundia formation to increase with the size of the system, i.e., the amount of land and individuals in the society. We found that an increase of the transition rate for land use changes, i.e., how quickly land use changes, promotes more equitable patterns of land ownership. Disease introduction in the system, which reduced land profitability for infected individual landowners, promoted the formation of latifundia, with an increased likelihood for latifundia formation when there were heterogeneities in the susceptibility to infection. Finally, our model suggests that land ownership reforms need to guarantee an equitative distribution of land among individuals in a society to avoid the formation of latifundia.

  3. The dynamics of latifundia formation.

    Directory of Open Access Journals (Sweden)

    Luis Fernando Chaves

    Full Text Available Land tenure inequity is a major social problem in developing nations worldwide. In societies, where land is a commodity, inequities in land tenure are associated with gaps in income distribution, poverty and biodiversity loss. A common pattern of land tenure inequities through the history of civilization has been the formation of latifundia [Zhuāngyuán in chinese], i.e., a pattern where land ownership is concentrated by a small fraction of the whole population. Here, we use simple Markov chain models to study the dynamics of latifundia formation in a heterogeneous landscape where land can transition between forest, agriculture and recovering land. We systematically study the likelihood of latifundia formation under the assumption of pre-capitalist trade, where trade is based on the average utility of land parcels belonging to each individual landowner during a discrete time step. By restricting land trade to that under recovery, we found the likelihood of latifundia formation to increase with the size of the system, i.e., the amount of land and individuals in the society. We found that an increase of the transition rate for land use changes, i.e., how quickly land use changes, promotes more equitable patterns of land ownership. Disease introduction in the system, which reduced land profitability for infected individual landowners, promoted the formation of latifundia, with an increased likelihood for latifundia formation when there were heterogeneities in the susceptibility to infection. Finally, our model suggests that land ownership reforms need to guarantee an equitative distribution of land among individuals in a society to avoid the formation of latifundia.

  4. The temporal dynamics of global-to-local feedback in the formation of hierarchical motion patterns: psychophysics and computational simulations.

    Science.gov (United States)

    Hock, Howard S; Schöner, Gregor; Brownlow, Stacey; Taler, Dana

    2011-05-01

    Four motion quartets, each ambiguous with respect to the perception of parallel-path horizontal or vertical motion, were arranged in a diamond configuration. Both global parallel-path motion (the same motion axis for all the quartets), which is typical for multiquartet stimuli, and global rotational rocking are perceived. Experiment 1 indicated that rotational rocking is established at different levels of processing. Globally, larger displacements of each quartet's elements increase the angle of rotation and, thereby, the perception of rotational rocking. Locally, larger displacements have the opposite effect, weakening motion percepts. Experiment 2 showed that global-to-local feedback affects the local perception of rotation-consistent versus rotation-inconsistent motion directions. Experiment 3 provided evidence for hysteresis effects indicative of competition between global rotational rocking and parallel-path motion. The experimental results were simulated by a two-level dynamical model incorporating global-to-local feedback, with recurrent feedforward/feedback loops creating detection instabilities that amplify activation at both global and local levels of the rotational-rocking pattern.

  5. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge.......-time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present...

  6. Pattern formations and optimal packing.

    Science.gov (United States)

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite.

  7. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    Science.gov (United States)

    McCullen, Nick; Wagenknecht, Thomas

    2016-06-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system.

  8. Geometry-induced protein pattern formation.

    Science.gov (United States)

    Thalmeier, Dominik; Halatek, Jacob; Frey, Erwin

    2016-01-19

    Protein patterns are known to adapt to cell shape and serve as spatial templates that choreograph downstream processes like cell polarity or cell division. However, how can pattern-forming proteins sense and respond to the geometry of a cell, and what mechanistic principles underlie pattern formation? Current models invoke mechanisms based on dynamic instabilities arising from nonlinear interactions between proteins but neglect the influence of the spatial geometry itself. Here, we show that patterns can emerge as a direct result of adaptation to cell geometry, in the absence of dynamical instability. We present a generic reaction module that allows protein densities robustly to adapt to the symmetry of the spatial geometry. The key component is an NTPase protein that cycles between nucleotide-dependent membrane-bound and cytosolic states. For elongated cells, we find that the protein dynamics generically leads to a bipolar pattern, which vanishes as the geometry becomes spherically symmetrical. We show that such a reaction module facilitates universal adaptation to cell geometry by sensing the local ratio of membrane area to cytosolic volume. This sensing mechanism is controlled by the membrane affinities of the different states. We apply the theory to explain AtMinD bipolar patterns in [Formula: see text] EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also serve as a hitherto-unrecognized spatial template in many other bacterial systems. Moreover, the robustness of the mechanism enables self-organized optimization of protein patterns by evolutionary processes. Finally, the proposed module can be used to establish geometry-sensitive protein gradients in synthetic biological systems.

  9. Pattern Formation and Complexity Emergence

    Science.gov (United States)

    Berezin, Alexander A.

    2001-03-01

    Success of nonlinear modelling of pattern formation and self-organization encourages speculations on informational and number theoretical foundations of complexity emergence. Pythagorean "unreasonable effectiveness of integers" in natural processes is perhaps extrapolatable even to universal emergence "out-of-nothing" (Leibniz, Wheeler). Because rational numbers (R = M/N) are everywhere dense on real axis, any digital string (hence any "book" from "Library of Babel" of J.L.Borges) is "recorded" infinitely many times in arbitrary many rationals. Furthermore, within any arbitrary small interval there are infinitely many Rs for which (either or both) integers (Ms and Ns) "carry" any given string of any given length. Because any iterational process (such as generation of fractal features of Mandelbrot Set) is arbitrary closely approximatable with rational numbers, the infinite pattern of integers expresses itself in generation of complexity of the world, as well as in emergence of the world itself. This "tunnelling" from Platonic World ("Platonia" of J.Barbour) to a real (physical) world is modern recast of Leibniz's motto ("for deriving all from nothing there suffices a single principle").

  10. Study of pattern formation in multilayer adaptive network of phase oscillators in application to brain dynamics analysis

    Science.gov (United States)

    Kirsanov, Daniil V.; Nedaivozov, Vladimir O.; Makarov, Vladimir V.; Goremyko, Mikhail V.; Hramov, Alexander E.

    2017-04-01

    In the report we study the mechanisms of phase synchronization in the model of adaptive network of Kuramoto phase oscillators and discuss the possibility of the further application of the obtained results for the analysis of the neural network of brain. In our theoretical study the model network represents itself as the multilayer structure, in which the links between the elements belonging to the different layers are arranged according to the competitive rule. In order to analyze the dynamical states of the multilayer network we calculate and compare the values of local and global order parameter, which describe the degree of coherence between the neighboring nodes and the elements over whole network, respectively. We find that the global synchronous dynamics takes place for the large values of the coupling strength and are characterized by the identical topology of the interacting layers and a homogeneous distribution of the link strength within each layer. We also show that the partial (or cluster) synchronization, occurs for the small values of the coupling strength, lead to the emergence of the scale-free topology, within the layers.

  11. Excitable Pattern Formation in Inhomogeneous Systems

    Science.gov (United States)

    Prabhakara, Kaumudi; Gholami, Azam; Zykov, Vladimir; Bodenschatz, Eberhard

    2015-03-01

    On starvation, the amoebae Dictyostelium discoideum signal via the chemo-attractant cyclic adenosine monophosphate (cAMP). The amoebae sense cAMP through membrane receptors and produce their own cAMP. Simultaneously they produce a basal level of Phosphodiesterase, an enzyme that degrades cAMP. Soon a pattern of rotating spiral waves or circular waves is formed at the multi-cellular level. The causal reasons for the selection of one or the other pattern are still unclear. Here we report experimental and theoretical investigations of the pattern-formation of mixtures of cells starved for different times. The excitability of the amoebae depends on the starvation time due to time dependent gene expressions. Cells starved for longer times are known to exhibit increased excitability. We report phase maps of the patterns for mixtures of different combinations of excitability. Numerical simulations of a modified Kessler-Levine model allow us to explain the experimental results and provide new insights into the dynamical behavior of the system. This work is supported by the Max Planck Society.

  12. Dynamic Pattern Based Image Steganography

    OpenAIRE

    Thiyagarajan, P.; G. Aghila; Venkatesan, V. Prasanna

    2012-01-01

    Steganography is the art of hiding secret information in media such as image, audio and video. The purpose of steganography is to conceal the existence of the secret information in any given medium. This work aims at strengthening the security in steganography algorithm by generating dynamic pattern in selection of indicator sequence. In addition to this dynamicity is also encompassed in number of bits embedded in data channel. This technique has been implemented and the results have been com...

  13. The dynamics of travertine terrace formation

    CERN Document Server

    Hammer, O; Jamtveit, B; Dysthe, Dag K.; Hammer, Oyvind; Jamtveit, Bjorn

    2006-01-01

    Travertine (limestone) terraces are common in caves, springs and rivers worldwide, and represent one of the most striking examples of geological pattern formation on the Earth's surface. The terraces form over a wide range of scales, from millimeters to tens of meters. Their origin has been poorly understood, but most likely involves a coupling between the precipitation rate and hydrodynamics. Microbial activity may also play a role. Here we present a minimal model based on shallow water flow and an empirical positive correlation between the flow velocity and precipitation rate. The resulting selforganizing pattern formation process displays rich and unusual dynamics, consistent with field observations. Terraces coarsen with time, fold into lobes and migrate downstream with differential rates, resulting in striking patterns. This model, in which topography grows rather than erodes in response to rapid flow, produces patterns that are completely different from those generated by flow driven erosion.

  14. Comparing investigation of pattern formation in glow and streamer DBD

    Science.gov (United States)

    Li, Ben; Ouyang, Jiting

    2016-11-01

    In this paper, we investigate the behaviors of patterns in dielectric barrier discharge (DBD) in glow and streamer regimes under different operating conditions (driving frequency and voltage) and external electric/magnetic field to explore the similarity and difference of pattern formation. It is found that patterns in both glow and streamer DBDs can be homogenized by decreasing the driving frequency to a low level. But filamentary streamers can still appear at low frequency when the voltage is much higher. With an additional lateral electric field, patterns in both regimes can be homogenized. However, an axial magnetic field makes the glow DBD homogeneous, while the streamer DBD decreases in filamentary size. In both regimes, dynamics and distribution of the space charges, rather than the surface charges, play the predominant role in the formation of DBD patterns. But the surface charges may also play an important role in pattern formation, especially in streamer DBD.

  15. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge....

  16. Patterns and Interfaces in Dissipative Dynamics

    CERN Document Server

    Pismen, L.M

    2006-01-01

    Spontaneous pattern formation in nonlinear dissipative systems far from equilibrium is a paradigmatic case of emergent behaviour associated with complex systems. It is encountered in a great variety of settings, both in nature and technology, and has numerous applications ranging from nonlinear optics through solid and fluid mechanics, physical chemistry and chemical engineering to biology. Nature creates its variety of forms through spontaneous pattern formation and self-assembly, and this strategy is likely to be imitated by future biomorphic technologies. This book is a first-hand account by one of the leading players in this field, which gives in-depth descriptions of analytical methods elucidating the complex evolution of nonlinear dissipative systems, and brings the reader to the forefront of current research. The introductory chapter on the theory of dynamical systems is written with a view to applications of its powerful methods to spatial and spatio-temporal patterns. It is followed by two chapters t...

  17. Pattern formation in rotating fluids

    Science.gov (United States)

    Bühler, Karl

    2009-06-01

    Flows in nature and technology are often associated with specific structures and pattern. This paper deals with the development and behaviour of such flow pattern. Flow structures are important for the mass, momentum and energy transport. The behaviour of different flow pattern is used by engineers to obtain an efficient mass and energy consumption. Mechanical power is transmitted via the momentum of rotating machine parts. Therefore the physical and mathematical knowledge of these basic concepts is important. Theoretical and experimental investigations of principle experiments are described in the following. We start with the classical problem of the flow between two concentric cylinders where the inner cylinder rotates. Periodic instabilities occur which are called Taylor vortices. The analogy between the cylindrical gap flow, the heat transfer in a horizontal fluid layer exposed to the gravity field and the boundary layer flow along concave boundaries concerning their stability behaviour is addressed. The vortex breakdown phenomenon in a cylinder with rotating cover is also described. A generalization to spherical sectors leads then to investigations with different boundary conditions. The spherical gap flow exhibits interesting phenomena concerning the nonlinear character of the Navier-Stokes equations. Multiple solutions in the nonlinear regime give rise to different routes during the laminar-turbulent transition. The interaction of two rotating spheres results in flow structures with separation and stagnation lines. Experimental results are confirmed by numerical simulations.

  18. Pattern formation with trapped ions

    CERN Document Server

    Lee, Tony E

    2010-01-01

    We propose an experiment to study collective behavior in a nonlinear medium of trapped ions. Using laser cooling and heating and an anharmonic trap potential, one can turn an ion into a nonlinear van der Pol-Duffing oscillator. A chain of ions interacting electrostatically has stable plane waves for all parameters. The system also behaves like an excitable medium, since a sufficiently large perturbation generates a travelling pulse. Small chains exhibit multistability and limit cycles. We account for noise from spontaneous emission in the amplitude equation and find that the patterns are observable for realistic experimental parameters. The tunability of ion traps makes them an exciting setting to study nonequilibrium statistical physics.

  19. Cellular Automaton Modeling of Pattern Formation

    NARCIS (Netherlands)

    Boerlijst, M.C.

    2006-01-01

    Book review Andreas Deutsch and Sabine Dormann, Cellular Automaton Modeling of Biological Pattern Formation, Characterization, Applications, and Analysis, Birkhäuser (2005) ISBN 0-8176-4281-1 331pp..

  20. Pattern Formation in Driven Systems

    Science.gov (United States)

    Klymko, Katherine

    Model colloidal particles of two types, driven in opposite directions, will in two dimensions segregate into lanes, a phenomenon studied extensively by Lowen and co-workers [Dzubiella et al. Phys. Rev. E 65, 021402 (2002)]. We have simulated mixtures of oppositely-driven particles using three numerical protocols. We find that laning results from enhanced diffusion, in the direction perpendicular to the drive, of particles surrounded by particles of the opposite type, consistent with the observation of Vissers et al. [Soft Matter 7, 6, 2352 (2011)]. By comparing protocols we find that enhanced diffusion follows from a simple geometrical constraint: oppositely-driven particles must, in the time taken to encounter each other in the direction of the drive, diffuse in the perpendicular direction by about one particle diameter. This constraint implies that the effective lateral diffusion constant grows linearly with drive speed and as the square root of the packing fraction, a prediction supported by our numerics. By invoking an analogy between hard particles with environment-dependent mobilities and mutually attractive particles we argue that there exists an equilibrium system whose pattern-forming properties are similar to those of the driven system. Katherine Klymko acknowledges support from the NSF Graduate Research Fellowship.

  1. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis.

  2. Droplet dynamics on patterned substrates

    Indian Academy of Sciences (India)

    A Dupuis; J M Yeomans

    2005-06-01

    We present a lattice Boltzmann algorithm which can be used to explore the spreading of droplets on chemically and topologically patterned substrates. As an example we use the method to show that the final configuration of a drop on a substrate comprising hydrophobic and hydrophilic stripes can depend sensitively on the dynamical pathway by which the state is reached. We also consider a substrate covered with micron-scale posts and investigate how this can lead to superhydrophobic behaviour. Finally we model how a Namibian desert beetle collects water from the wind.

  3. Emergent pattern formation in an interstitial biofilm

    CERN Document Server

    Zachreson, Cameron; Whitchurch, Cynthia; Toth, Milos

    2016-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment, and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient {\\gamma}), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological ...

  4. Sequential pattern formation governed by signaling gradients

    CERN Document Server

    Jörg, David J; Jülicher, Frank

    2016-01-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentatio...

  5. Sequential pattern formation governed by signaling gradients

    Science.gov (United States)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  6. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  7. Transverse optical and atomic pattern formation

    CERN Document Server

    Schmittberger, Bonnie L

    2016-01-01

    The study of transverse optical pattern formation has been studied extensively in nonlinear optics, with a recent experimental interest in studying the phenomenon using cold atoms, which can undergo real-space self-organization. Here, we describe our experimental observation of pattern formation in cold atoms, which occurs using less than 1 microWatt of applied power. We show that the optical patterns and the self-organized atomic structures undergo continuous symmetry-breaking, which is characteristic of non-equilibrium phenomena in a multimode system. To theoretically describe pattern formation in cold atoms, we present a self-consistent model that allows for tight atomic bunching in the applied optical lattice. We derive the nonlinear refractive index of a gas of multi-level atoms in an optical lattice, and we derive the threshold conditions under which pattern formation occurs. We show that, by using small detunings and sub-Doppler temperatures, one achieves two orders of magnitude reduced intensity thres...

  8. Pattern formation in arrays of chemical oscillators

    Indian Academy of Sciences (India)

    Neeraj Kumar Kamal

    2012-05-01

    We describe a simple model mimicking diffusively coupled chemical micro-oscillators. We characterize the rich variety of dynamical states emerging from the model under variation of time delay in coupling, coupling strength and boundary conditions. The spatiotemporal patterns obtained include clustering, mixed dynamics, inhomogeneous steady states and amplitude death. Further, under delay in coupling, the model yields transitions from phase to antiphase oscillations, reminiscent of that observed in experiments [M Toiya et al, J. Chem. Lett. 1, 1241 (2010)].

  9. Visualizing Dynamic Bitcoin Transaction Patterns.

    Science.gov (United States)

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J

    2016-06-01

    This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network.

  10. Visualizing Dynamic Bitcoin Transaction Patterns

    Science.gov (United States)

    McGinn, Dan; Birch, David; Akroyd, David; Molina-Solana, Miguel; Guo, Yike; Knottenbelt, William J.

    2016-01-01

    Abstract This work presents a systemic top-down visualization of Bitcoin transaction activity to explore dynamically generated patterns of algorithmic behavior. Bitcoin dominates the cryptocurrency markets and presents researchers with a rich source of real-time transactional data. The pseudonymous yet public nature of the data presents opportunities for the discovery of human and algorithmic behavioral patterns of interest to many parties such as financial regulators, protocol designers, and security analysts. However, retaining visual fidelity to the underlying data to retain a fuller understanding of activity within the network remains challenging, particularly in real time. We expose an effective force-directed graph visualization employed in our large-scale data observation facility to accelerate this data exploration and derive useful insight among domain experts and the general public alike. The high-fidelity visualizations demonstrated in this article allowed for collaborative discovery of unexpected high frequency transaction patterns, including automated laundering operations, and the evolution of multiple distinct algorithmic denial of service attacks on the Bitcoin network. PMID:27441715

  11. Optimal temporal patterns for dynamical cellular signaling

    Science.gov (United States)

    Hasegawa, Yoshihiko

    2016-11-01

    Cells use temporal dynamical patterns to transmit information via signaling pathways. As optimality with respect to the environment plays a fundamental role in biological systems, organisms have evolved optimal ways to transmit information. Here, we use optimal control theory to obtain the dynamical signal patterns for the optimal transmission of information, in terms of efficiency (low energy) and reliability (low uncertainty). Adopting an activation-deactivation decoding network, we reproduce several dynamical patterns found in actual signals, such as steep, gradual, and overshooting dynamics. Notably, when minimizing the energy of the input signal, the optimal signals exhibit overshooting, which is a biphasic pattern with transient and steady phases; this pattern is prevalent in actual dynamical patterns. We also identify conditions in which these three patterns (steep, gradual, and overshooting) confer advantages. Our study shows that cellular signal transduction is governed by the principle of minimizing free energy dissipation and uncertainty; these constraints serve as selective pressures when designing dynamical signaling patterns.

  12. Chaotic Turing pattern formation in spatiotemporal systems

    Institute of Scientific and Technical Information of China (English)

    XIAO Jing-hua; LI Hai-hong; YANG Jun-zhong; HU Gang

    2006-01-01

    The problem of Turing pattern formation has attracted much attention in nonlinear science as well as physics,chemistry and biology.So far spatially ordered Turing patterns have been observed in stationary and oscillatory media only.In this paper we find that spatially ordered Turing patterns exist in chaotic extended systems.And chaotic Turing patterns are strikingly rich and surprisingly beautiful with their space structures.These findings are in sharp contrast with the intuition of pseudo-randomness of chaos.The richness and beauty of the chaotic Turing patterns are attributed to a large variety of symmetry properties realized by various types of self-organizations of partial chaos synchronizations.

  13. Argon ion beam induced surface pattern formation on Si

    Energy Technology Data Exchange (ETDEWEB)

    Hofsäss, H.; Bobes, O.; Zhang, K. [2nd Institute of Physics, Faculty of Physics, University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-01-21

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  14. Fractals in Spatial Patterns of Vegetation Formations

    Institute of Scientific and Technical Information of China (English)

    SONG Zhiyuan; HUANG Daming; Masae Shiyomi; WANG Yusheng; Shigeo Takahashi; Hori Yoshimichi; Yasuo Yamamuru; CHEN Jun

    2006-01-01

    The spatial distribution patterns of species are always scale-dependent and spatially self-similar in ecological systems. In this work, vegetation distribution data collected from the vegetation map of the Xigazê region was analyzed using a box-counting method. The power law of the box-counting dimension (DB) across a range of scales (5-160 km) confirms the fractal patterns for most vegetation formations, while the fluctuations of the scale-specific DB among the different abundance groups indicate limitations of fractal coherence. The fractal method is shown to be a useful tool for measuring the distribution patterns of vegetation formations across scales, which provides important information for both species and habitat conservation, especially in landscape management.

  15. Optimal signal patterns for dynamical cellular communication

    CERN Document Server

    Hasegawa, Yoshihiko

    2015-01-01

    Cells transmit information via signaling pathways, using temporal dynamical patterns. As optimality with respect to environments is the universal principle in biological systems, organisms have acquired an optimal way of transmitting information. Here we obtain optimal dynamical signal patterns which can transmit information efficiently (low power) and reliably (high accuracy) using the optimal control theory. Adopting an activation-inactivation decoding network, we reproduced several dynamical patterns found in actual signals, such as steep, gradual and overshooting dynamics. Notably, when minimizing the power of the input signal, optimal signals exhibit the overshooting pattern, which is a biphasic pattern with transient and steady phases; this pattern is prevalent in actual dynamical patterns as it can be generated by an incoherent feed-forward loop (FFL), a common motif in biochemical networks. We also identified conditions when the three patterns, steep, gradual and overshooting, confer advantages.

  16. Pattern formation during C. elegans vulval induction.

    Science.gov (United States)

    Wang, M; Sternberg, P W

    2001-01-01

    Studies of C. elegans vulval development provide insights into the process of pattern formation during animal development. The invariant pattern of vulval precursor cell fates is specified by the integration of at least two signaling systems. Recent findings suggest that multiple, partially redundant mechanisms are involved in patterning the vulval precursor cells. The inductive signal activates the LET-60/RAS signaling pathway and induces the 1 degree fate, whereas the lateral signal mediated by LIN-12/Notch is required for specification of the 2 degrees fate. Several regulatory pathways antagonize the RAS signaling pathway and specify the non-vulval 3 degrees fate in the absence of induction. The temporal and spatial regulation of VPC competence and production of the inductive and the lateral signal are precisely coordinated to ensure the wild-type vulval pattern.

  17. Pattern formation in superdiffusion Oregonator model

    Science.gov (United States)

    Feng, Fan; Yan, Jia; Liu, Fu-Cheng; He, Ya-Feng

    2016-10-01

    Pattern formations in an Oregonator model with superdiffusion are studied in two-dimensional (2D) numerical simulations. Stability analyses are performed by applying Fourier and Laplace transforms to the space fractional reaction-diffusion systems. Antispiral, stable turing patterns, and travelling patterns are observed by changing the diffusion index of the activator. Analyses of Floquet multipliers show that the limit cycle solution loses stability at the wave number of the primitive vector of the travelling hexagonal pattern. We also observed a transition between antispiral and spiral by changing the diffusion index of the inhibitor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. Y2012009 and ZD2015025), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project.

  18. Pattern formation and functionality in swarm models

    CERN Document Server

    Rauch, E M; Chialvo, D R; Rauch, Erik M; Millonas, Mark M; Chialvo, Dante R

    1995-01-01

    We explore a simplified class of models we call swarms, which are inspired by the collective behavior of social insects. We perform a mean-field stability analysis and perform numerical simulations of the model. Several interesting types of behavior emerge in the vicinity of a second-order phase transition in the model, including the formation of stable lines of traffic flow, and memory reconstitution and bootstrapping. In addition to providing an understanding of certain classes of biological behavior, these models bear a generic resemblance to a number of pattern formation processes in the physical sciences.

  19. Automatic Fringe Detection Of Dynamic Moire Patterns

    Science.gov (United States)

    Fang, Jing; Su, Xian-ji; Shi, Hong-ming

    1989-10-01

    Fringe-carrier method is used in automatic fringe-order numbering of dynamic in-plane moire patterns. In experiment both static carrier and dynamic moire patterns are recorded. The image files corresponding to instants are set up to assign fringe orders automatically. Subtracting the carrier image from the modulated ones, the moire patterns due to the dynamic deformations are restored with fringe-order variation displayed by different grey levels.

  20. Spontaneous pattern formation in broad-area lasers

    Science.gov (United States)

    Krents, Anton; Anchikov, Dmitry; Molevich, Nonna; Pakhomov, Anton

    2016-10-01

    The paper studies the spontaneous formation of nonlinear optical patterns in broad area lasers. Spatiotemporal transverse dynamics of the laser is described by the Maxwell-Bloch equations (MBE). The instability of the steady-state solution leads to pattern formation. Two different types of instabilities were observed analytically (Hopf and wave). 2D numerical simulation of the MBE with the random initial conditions has been performed using a split-step Fourier method and periodic boundary conditions. Hopf instability leads to homogeneous oscillations, spatiotemporal chaos and spiral waves. In the case of wave instability, the direct numerical simulation showed that space-time (periodic, quasi-periodic, or chaotic) modulation of the uniform profile is observed. The characteristic sizes of excited patterns are in good agreement with analytical predictions. The nonlinear interaction of four travelling waves forms a square optical vortex lattice similar to the vortex lattices observed in superconductors and Bose Einstein condensate.

  1. Noise induced pattern formation of oscillation growth in traffic flow

    CERN Document Server

    Tian, Junfang; Treiber, Martin

    2016-01-01

    Noise is able to induce diverse patterns in physical and interdisciplinary extended systems. This Letter investigates the role of noise in pattern formation of traffic flow, which is a typical self-driven system far from equilibrium. We demonstrate that noise is necessary to correctly describe the observed spatiotemporal dynamics of growing traffic oscillation in the car following process. A heuristic analysis qualitatively explains the concave growth of the oscillation amplitude along the vehicles of a platoon. Based on this analysis, we propose a simple car-following model containing indifference regions and acceleration noise described by Brownian motion which reproduces well the experimental and empirical observations. Our study indicates that noise might also play an important role in pattern formation in other biological or socio-economic systems that are subject to stochasticity.

  2. Pattern formation in oscillatory complex networks consisting of excitable nodes

    Science.gov (United States)

    Liao, Xuhong; Xia, Qinzhi; Qian, Yu; Zhang, Lisheng; Hu, Gang; Mi, Yuanyuan

    2011-05-01

    Oscillatory dynamics of complex networks has recently attracted great attention. In this paper we study pattern formation in oscillatory complex networks consisting of excitable nodes. We find that there exist a few center nodes and small skeletons for most oscillations. Complicated and seemingly random oscillatory patterns can be viewed as well-organized target waves propagating from center nodes along the shortest paths, and the shortest loops passing through both the center nodes and their driver nodes play the role of oscillation sources. Analyzing simple skeletons we are able to understand and predict various essential properties of the oscillations and effectively modulate the oscillations. These methods and results will give insights into pattern formation in complex networks and provide suggestive ideas for studying and controlling oscillations in neural networks.

  3. Sarcomeric Pattern Formation by Actin Cluster Coalescence

    Science.gov (United States)

    Friedrich, Benjamin M.; Fischer-Friedrich, Elisabeth; Gov, Nir S.; Safran, Samuel A.

    2012-01-01

    Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells. PMID:22685394

  4. Emergent pattern formation in an interstitial biofilm

    Science.gov (United States)

    Zachreson, Cameron; Wolff, Christian; Whitchurch, Cynthia B.; Toth, Milos

    2017-01-01

    Collective behavior of bacterial colonies plays critical roles in adaptability, survivability, biofilm expansion and infection. We employ an individual-based model of an interstitial biofilm to study emergent pattern formation based on the assumptions that rod-shaped bacteria furrow through a viscous environment and excrete extracellular polymeric substances which bias their rate of motion. Because the bacteria furrow through their environment, the substratum stiffness is a key control parameter behind the formation of distinct morphological patterns. By systematically varying this property (which we quantify with a stiffness coefficient γ ), we show that subtle changes in the substratum stiffness can give rise to a stable state characterized by a high degree of local order and long-range pattern formation. The ordered state exhibits characteristics typically associated with bacterial fitness advantages, even though it is induced by changes in environmental conditions rather than changes in biological parameters. Our findings are applicable to a broad range of biofilms and provide insights into the relationship between bacterial movement and their environment, and basic mechanisms behind self-organization of biophysical systems.

  5. Sarcomeric pattern formation by actin cluster coalescence.

    Directory of Open Access Journals (Sweden)

    Benjamin M Friedrich

    Full Text Available Contractile function of striated muscle cells depends crucially on the almost crystalline order of actin and myosin filaments in myofibrils, but the physical mechanisms that lead to myofibril assembly remains ill-defined. Passive diffusive sorting of actin filaments into sarcomeric order is kinetically impossible, suggesting a pivotal role of active processes in sarcomeric pattern formation. Using a one-dimensional computational model of an initially unstriated actin bundle, we show that actin filament treadmilling in the presence of processive plus-end crosslinking provides a simple and robust mechanism for the polarity sorting of actin filaments as well as for the correct localization of myosin filaments. We propose that the coalescence of crosslinked actin clusters could be key for sarcomeric pattern formation. In our simulations, sarcomere spacing is set by filament length prompting tight length control already at early stages of pattern formation. The proposed mechanism could be generic and apply both to premyofibrils and nascent myofibrils in developing muscle cells as well as possibly to striated stress-fibers in non-muscle cells.

  6. Pattern Formation by Electrostatic Self-Organization of Membrane Proteins

    Science.gov (United States)

    Boedec, G.; Jaeger, M.; Homble, F.; Leonetti, M.

    2012-07-01

    The electric activity of biological cells and organs such as heart for example is at the origin of various phenomena of pattern formation. The electric membrane potential appears as the order parameter to characterize these spatiotemporal dynamics. A kind of patterns is characterized by a stationary spatial modulation of membrane potential along the cell, breaking a symmetry of the system. They are associated to transcellular currents. A mechanism proposed in literature is based on the coupling of the electric current produced by membrane proteins and their electrophoretic mobilities. Beyond its classical linear stability analysis, the numerical and theoretical analysis of this model offers a variety of spatiotemporal dynamics. Firstly, the background in the modelization of electric phenomena is recalled. Secondly, the analysis is focused on two nonlinear dynamics.

  7. Clustering and Pattern Formation in Chemorepulsive Active Colloids.

    Science.gov (United States)

    Liebchen, Benno; Marenduzzo, Davide; Pagonabarraga, Ignacio; Cates, Michael E

    2015-12-18

    We demonstrate that migration away from self-produced chemicals (chemorepulsion) generates a generic route to clustering and pattern formation among self-propelled colloids. The clustering instability can be caused either by anisotropic chemical production, or by a delayed orientational response to changes of the chemical environment. In each case, chemorepulsion creates clusters of a self-limiting area which grows linearly with self-propulsion speed. This agrees with recent observations of dynamic clusters in Janus colloids (albeit not yet known to be chemorepulsive). More generally, our results could inform design principles for the self-assembly of chemorepulsive synthetic swimmers and/or bacteria into nonequilibrium patterns.

  8. Boundary-layer model of pattern formation in solidification

    Science.gov (United States)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1984-01-01

    A model of pattern formation in crystal growth is proposed, and its analytic properties are investigated. The principal dynamical variables in this model are the curvature of the solidification front and the thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along the interface. This model is mathematically much more tractable than the realistic, fully nonlocal version of the free-boundary problem, and still recaptures many of the features that seem essential for studying dendritic behavior, for example. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in nature.

  9. Pattern formation in nanoporous titania templates.

    Science.gov (United States)

    Richter, C; Wu, Z; Menon, L

    2007-02-01

    We have carried out a systematic investigation into the formation of nanoscaled patterns in titania (TiO2) templates under dc anodization of Ti in HF acid. At lower acid concentrations (around 0.5 wt% HF) either pores or tubes form at the surface of anodized titanium foil. The pores or nanotubes are separated from the bottom Ti layer by a thin barrier layer of TiO2. The critical voltage where the transition from pores to tubes occurs has been determined. It is observed that the transition voltage shift towards higher voltages as acid concentration is increased, with pore formation disappearing altogether at high acid concentrations. We have also carried out a systematic investigation into the dependence of pore and tube parameters on the applied dc anodization voltage. Our results indicate that the barrier layer thickness, pore and tube length increase as a function of applied voltage.

  10. Pattern formation, logistics, and maximum path probability

    Science.gov (United States)

    Kirkaldy, J. S.

    1985-05-01

    The concept of pattern formation, which to current researchers is a synonym for self-organization, carries the connotation of deductive logic together with the process of spontaneous inference. Defining a pattern as an equivalence relation on a set of thermodynamic objects, we establish that a large class of irreversible pattern-forming systems, evolving along idealized quasisteady paths, approaches the stable steady state as a mapping upon the formal deductive imperatives of a propositional function calculus. In the preamble the classical reversible thermodynamics of composite systems is analyzed as an externally manipulated system of space partitioning and classification based on ideal enclosures and diaphragms. The diaphragms have discrete classification capabilities which are designated in relation to conserved quantities by descriptors such as impervious, diathermal, and adiabatic. Differentiability in the continuum thermodynamic calculus is invoked as equivalent to analyticity and consistency in the underlying class or sentential calculus. The seat of inference, however, rests with the thermodynamicist. In the transition to an irreversible pattern-forming system the defined nature of the composite reservoirs remains, but a given diaphragm is replaced by a pattern-forming system which by its nature is a spontaneously evolving volume partitioner and classifier of invariants. The seat of volition or inference for the classification system is thus transferred from the experimenter or theoretician to the diaphragm, and with it the full deductive facility. The equivalence relations or partitions associated with the emerging patterns may thus be associated with theorems of the natural pattern-forming calculus. The entropy function, together with its derivatives, is the vehicle which relates the logistics of reservoirs and diaphragms to the analog logistics of the continuum. Maximum path probability or second-order differentiability of the entropy in isolation are

  11. Dynamic patterns and their interactions in networks of excitable elements.

    Science.gov (United States)

    Gong, Pulin; Steel, Harrison; Robinson, Peter; Qi, Yang

    2013-10-01

    Formation of localized propagating patterns is a fascinating self-organizing phenomenon that happens in a wide range of spatially extended, excitable systems in which individual elements have resting, activated, and refractory states. Here we study a type of stochastic three-state excitable network model that has been recently developed; this model is able to generate a rich range of pattern dynamics, including localized wandering patterns and localized propagating patterns with crescent shapes and long-range propagation. The collective dynamics of these localized patterns have anomalous subdiffusive dynamics before symmetry breaking and anomalous superdiffusive dynamics after that, showing long-range spatiotemporal coherence in the system. In this study, the stability of the localized wandering patterns is analyzed by treating an individual localized pattern as a subpopulation to develop its average response function. This stability analysis indicates that when the average refractory period is greater than a certain value, there are too many elements in the refractory state after being activated to allow the subpopulation to support a self-sustained pattern; this is consistent with symmetry breaking identified by using an order parameter. Furthermore, in a broad parameter space, the simple network model is able to generate a range of interactions between different localized propagating patterns including repulsive collisions and partial and full annihilations, and interactions between localized propagating patterns and the refractory wake behind others; in this study, these interaction dynamics are systematically quantified based on their relative propagation directions and the resultant angles between them before and after their collisions. These results suggest that the model potentially provides a modeling framework to understand the formation of localized propagating patterns in a broad class of systems with excitable properties.

  12. On the Implementation of Dynamic Patterns

    CERN Document Server

    Balabonski, Thibaut

    2011-01-01

    The evaluation mechanism of pattern matching with dynamic patterns is modelled in the Pure Pattern Calculus by one single meta-rule. This contribution presents a refinement which narrows the gap between the abstract calculus and its implementation. A calculus is designed to allow reasoning on matching algorithms. The new calculus is proved to be confluent, and to simulate the original Pure Pattern Calculus. A family of new, matching-driven, reduction strategies is proposed.

  13. Pore Scale Dynamics of Microemulsion Formation.

    Science.gov (United States)

    Unsal, Evren; Broens, Marc; Armstrong, Ryan T

    2016-07-19

    Experiments in various porous media have shown that multiple parameters come into play when an oleic phase is displaced by an aqueous solution of surfactant. In general, the displacement efficiency is improved when the fluids become quasi-miscible. Understanding the phase behavior oil/water/surfactant systems is important because microemulsion has the ability to generate ultralow interfacial tension (formation and the resulting properties under equilibrium conditions. However, the majority of applications where microemulsion is present also involve flow, which has received relatively less attention. It is commonly assumed that the characteristics of an oil/water/surfactant system under flowing conditions are identical to the one under equilibrium conditions. Here, we show that this is not necessarily the case. We studied the equilibrium phase behavior of a model system consisting of n-decane and an aqueous solution of olefin sulfonate surfactant, which has practical applications for enhanced oil recovery. The salt content of the aqueous solution was varied to provide a range of different microemulsion compositions and oil-water interfacial tensions. We then performed microfluidic flow experiments to study the dynamic in situ formation of microemulsion by coinjecting bulk fluids of n-decane and surfactant solution into a T-junction capillary geometry. A solvatochromatic fluorescent dye was used to obtain spatially resolved compositional information. In this way, we visualized the microemulsion formation and the flow of it along with the excess phases. A complex interaction between the flow patterns and the microemulsion properties was observed. The formation of microemulsion influenced the flow regimes, and the flow regimes affected the characteristics of the microemulsion formation. In particular, at low flow rates, slug flow was observed, which had profound consequences on the pore scale mixing behavior and resulting microemulsion properties.

  14. Noise and dynamical pattern selection

    CERN Document Server

    Kurtze, D A

    1995-01-01

    In pattern forming systems such as Rayleigh-Benard convection or directional solidification, a large number of linearly stable, patterned steady states exist when the basic, simple steady state is unstable. Which of these steady states will be realized in a given experiment appears to depend on unobservable details of the system's initial conditions. We show, however, that weak, Gaussian white noise drives such a system toward a preferred wave number which depends only on the system parameters and is independent of initial conditions. We give a prescription for calculating this wave number, analytically near the onset of instability and numerically otherwise.

  15. The dynamic pattern of human attention

    CERN Document Server

    Zhao, Zhi-Dan; Cai, Shi-Min

    2013-01-01

    A mass of traces of human activities show diverse dynamic patterns. In this paper, we comprehensively investigate the dynamic pattern of human attention defined by the quantity of interests on subdisciplines in an online academic communication forum. Both the expansion and exploration of human attention have a power-law scaling relation with browsing actions, of which the exponent is close to that in one-dimension random walk. Furthermore, the memory effect of human attention is characterized by the power-law distributions of both the return interval time and return interval steps, which is reinforced by studying the attention shift that monotonically increase with the interval order between pairs of continuously segmental sequences of expansion. At last, the observing dynamic pattern of human attention in the browsing process is analytically described by a dynamic model whose generic mechanism is analogy to that of human spatial mobility. Thus, our work not only enlarges the research scope of human dynamics,...

  16. Leader Election Problem Versus Pattern Formation Problem

    CERN Document Server

    Dieudonné, Yoann; Villain, Vincent

    2009-01-01

    Leader election and arbitrary pattern formation are fundammental tasks for a set of autonomous mobile robots. The former consists in distinguishing a unique robot, called the leader. The latter aims in arranging the robots in the plane to form any given pattern. The solvability of both these tasks turns out to be necessary in order to achieve more complex tasks. In this paper, we study the relationship between these two tasks in the semi-synchronous model (SSM), wherein the robots are weak in several aspects. In particular, they have no direct means of communication. They cannot remember any previous observation nor computation performed in any previous step. Such robots are said to be oblivious. The robots are also uniform and anonymous, i.e, they all have the same program using no global parameter (such that an identity) allowing to differentiate any of them. Moreover, none of them share any kind of common coordinate mechanism or common sense of direction, except that they agree on a common handedness (chir...

  17. Effects of patterned topography on biofilm formation

    Science.gov (United States)

    Vasudevan, Ravikumar

    2011-12-01

    Bacterial biofilms are a population of bacteria attached to each other and irreversibly to a surface, enclosed in a matrix of self-secreted polymers, among others polysaccharides, proteins, DNA. Biofilms cause persisting infections associated with implanted medical devices and hospital acquired (nosocomial) infections. Catheter-associated urinary tract infections (CAUTIs) are the most common type of nosocomial infections accounting for up to 40% of all hospital acquired infections. Several different strategies, including use of antibacterial agents and genetic cues, quorum sensing, have been adopted for inhibiting biofilm formation relevant to CAUTI surfaces. Each of these methods pertains to certain types of bacteria, processes and has shortcomings. Based on eukaryotic cell topography interaction studies and Ulva linza spore studies, topographical surfaces were suggested as a benign control method for biofilm formation. However, topographies tested so far have not included a systematic variation of size across basic topography shapes. In this study patterned topography was systematically varied in size and shape according to two approaches 1) confinement and 2) wetting. For the confinement approach, using scanning electron microscopy and confocal microscopy, orienting effects of tested topography based on staphylococcus aureus (s. aureus) (SH1000) and enterobacter cloacae (e. cloacae) (ATCC 700258) bacterial models were identified on features of up to 10 times the size of the bacterium. Psuedomonas aeruginosa (p. aeruginosa) (PAO1) did not show any orientational effects, under the test conditions. Another important factor in medical biofilms is the identification and quantification of phenotypic state which has not been discussed in the literature concerning bacteria topography characterizations. This was done based on antibiotic susceptibility evaluation and also based on gene expression analysis. Although orientational effects occur, phenotypically no difference

  18. Extrasolar planets formation, detection and dynamics

    CERN Document Server

    Dvorak, Rudolf

    2008-01-01

    This latest, up-to-date resource for research on extrasolar planets covers formation, dynamics, atmospheres and detection. After a look at the formation of giant planets, the book goes on to discuss the formation and dynamics of planets in resonances, planets in double stars, atmospheres and habitable zones, detection via spectra and transits, and the history and prospects of ESPs as well as satellite projects.Edited by a renowned expert in solar system dynamics with chapters written by the leading experts in the method described -- from the US and Europe -- this is an ideal textbook for g

  19. Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2013-01-01

    Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.

  20. Dynamical electron backscatter diffraction patterns. Part I: pattern simulations.

    Science.gov (United States)

    Callahan, Patrick G; De Graef, Marc

    2013-10-01

    A new approach for the simulation of dynamic electron backscatter diffraction (EBSD) patterns is introduced. The computational approach merges deterministic dynamic electron-scattering computations based on Bloch waves with a stochastic Monte Carlo (MC) simulation of the energy, depth, and directional distributions of the backscattered electrons (BSEs). An efficient numerical scheme is introduced, based on a modified Lambert projection, for the computation of the scintillator electron count as a function of the position and orientation of the EBSD detector; the approach allows for the rapid computation of an individual EBSD pattern by bi-linear interpolation of a master EBSD pattern. The master pattern stores the BSE yield as a function of the electron exit direction and exit energy and is used along with weight factors extracted from the MC simulation to obtain energy-weighted simulated EBSD patterns. Example simulations for nickel yield realistic patterns and energy-dependent trends in pattern blurring versus filter window energies are in agreement with experimental energy-filtered EBSD observations reported in the literature.

  1. The theory of pattern formation on directed networks.

    Science.gov (United States)

    Asllani, Malbor; Challenger, Joseph D; Pavone, Francesco Saverio; Sacconi, Leonardo; Fanelli, Duccio

    2014-07-31

    Dynamical processes on networks have generated widespread interest in recent years. The theory of pattern formation in reaction-diffusion systems defined on symmetric networks has often been investigated, due to its applications in a wide range of disciplines. Here we extend the theory to the case of directed networks, which are found in a number of different fields, such as neuroscience, computer networks and traffic systems. Owing to the structure of the network Laplacian, the dispersion relation has both real and imaginary parts, at variance with the case for a symmetric, undirected network. The homogeneous fixed point can become unstable due to the topology of the network, resulting in a new class of instabilities, which cannot be induced on undirected graphs. Results from a linear stability analysis allow the instability region to be analytically traced. Numerical simulations show travelling waves, or quasi-stationary patterns, depending on the characteristics of the underlying graph.

  2. Dynamic formation control for autonomous underwater vehicles

    Institute of Scientific and Technical Information of China (English)

    燕雪峰; 古锋; 宋琛; 胡晓琳; 潘毅

    2014-01-01

    Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles (AUVs) to collaborate with each other. In this work, a dynamic formation model was proposed, in which several algorithms were developed for the complex underwater environment. Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes. Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles. Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation. The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated. Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness, even with a concave obstacle. It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.

  3. Stability on Adaptive NN Formation Control with Variant Formation Patterns and Interaction Topologies

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2008-03-01

    Full Text Available The formation task achieved by multiple robots is a tough issue in practice, because of the limitations of the sensing abilities and communicating functions among them. This paper investigates the decentralized formation control in case of parameter uncertainties, bounded disturbances, and variant interactions among robots. To design decentralized controller, a formation description is firstly proposed, which consists of two aspects in terms of formation pattern and interaction topology. Then the formation control using adaptive neural network (ANN is proposed based on the relative error derived from formation description. From the analysis on stability of the formation control under invariant/variant formation pattern and interaction topology, it is concluded that if formation pattern is of class Ck, k ≥1, and interaction graph is connected and changed with finite times, the convergence of the formation control is guaranteed, so that robots must form the formation described by the formation pattern.

  4. Stability on Adaptive NN Formation Control with Variant Formation Patterns and Interaction Topologies

    Directory of Open Access Journals (Sweden)

    Yangmin Li

    2008-11-01

    Full Text Available The formation task achieved by multiple robots is a tough issue in practice, because of the limitations of the sensing abilities and communicating functions among them. This paper investigates the decentralized formation control in case of parameter uncertainties, bounded disturbances, and variant interactions among robots. To design decentralized controller, a formation description is firstly proposed, which consists of two aspects in terms of formation pattern and interaction topology. Then the formation control using adaptive neural network (ANN is proposed based on the relative error derived from formation description. From the analysis on stability of the formation control under invariant/variant formation pattern and interaction topology, it is concluded that if formation pattern is of class kC, 1k≥ , and interaction graph is connected and changed with finite times, the convergence of the formation control is guaranteed, so that robots must form the formation described by the formation pattern.

  5. Pattern formation in rotating Bénard convection

    Science.gov (United States)

    Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.

    1992-12-01

    Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.

  6. Flow-Induced Control of Pattern Formation in Chemical Systems

    Science.gov (United States)

    Berenstein, Igal; Beta, Carsten

    Since Alan Turing's seminal paper in 1952, the study of spatio-temporal patterns that arise in systems of reacting and diffusing components has grown into an immense and vibrant realm of scientific research. This field includes not only chemical systems but spans many areas of science as diverse as cell and developmental biology, ecology, geosciences, or semiconductor physics. For several decades research in this field has concentrated on the vast variety of patterns that can emerge in reaction-diffusion systems and on the underlying instabilities. In the 1990s, stimulated by the pioneering work of Ott, Grebogi and Yorke, control of pattern formation arose as a new topical focus and gradually developed into an entire new field of research. On the one hand, research interests concentrated on control and suppression of undesired dynamical states, in particular on control of chaos. On the other hand, the design and engineering of particular space-time patterns became a major focus in this field that motivates ongoing scientific effort until today...

  7. Pattern Formation in a Predator-Prey Model with Both Cross Diffusion and Time Delay

    Directory of Open Access Journals (Sweden)

    Boli Xie

    2014-01-01

    Full Text Available A predator-prey model with both cross diffusion and time delay is considered. We give the conditions for emerging Turing instability in detail. Furthermore, we illustrate the spatial patterns via numerical simulations, which show that the model dynamics exhibits a delay and diffusion controlled formation growth not only of spots and stripe-like patterns, but also of the two coexist. The obtained results show that this system has rich dynamics; these patterns show that it is useful for the diffusive predation model with a delay effect to reveal the spatial dynamics in the real model.

  8. Universal activity pattern in human interactive dynamics

    CERN Document Server

    Formentin, Marco; Maritan, Amos; Zanzotto, Giovanni

    2014-01-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new universal pattern for how the reactive dynamics of individuals is distributed across the set of each agent's contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We show this universal behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one's environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns constrain future models of com...

  9. Dynamics of sheet nacre formation in bivalves.

    Science.gov (United States)

    Rousseau, Marthe; Meibom, Anders; Gèze, Marc; Bourrat, Xavier; Angellier, Martine; Lopez, Evelyne

    2009-03-01

    Formation of nacre (mother-of-pearl) is a biomineralization process of fundamental scientific as well as industrial importance. However, the dynamics of the formation process is still not understood. Here, we use scanning electron microscopy and high spatial resolution ion microprobe depth-profiling to image the full three-dimensional distribution of organic materials around individual tablets in the top-most layer of forming nacre in bivalves. Nacre formation proceeds by lateral, symmetric growth of individual tablets mediated by a growth-ring rich in organics, in which aragonite crystallizes from amorphous precursors. The pivotal role in nacre formation played by the growth-ring structure documented in this study adds further complexity to a highly dynamical biomineralization process.

  10. Pattern formation by dewetting and evaporating sedimenting suspensions

    NARCIS (Netherlands)

    Habibi, M.; Moller, P.; Fall, A.; Rafaï, S.; Bonn, D.

    2012-01-01

    Pattern formation from drying droplets containing sedimenting particles and dewetting of thin films of such suspensions was studied. The dewetting causes the formation of finger-like patterns near the contact line which leave behind a deposit of branches. We find that the strikingly low speed of dew

  11. A New DAO Pattern with Dynamic Extensibility

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Currently existing data access object (DAO) patterns have several limitations. First, the interface of the patterns and business objects is tightly-coupled, which affects seriously the dynamic extensibility of software systems. Second, the patterns have duplicated implementation codes, which add to difficulties of system maintenance. To solve these problems, a new DAO pattern with stronger independency and dynamic extensibility is proposed in this paper. An example is given to illustrate the using process of the new DAO pattern. The greatest advantages of the new DAO pattern are as follows. If any business object is needed to add to the system, we do not have to modify any codes of the class DAO Factory. All we need to do is to modify the mapping file. Furthermore, because we have only one DAO implementation class to accomplish all the data access to business objects, if some SQL statements are needed to be modified, all we need to do is to modify the DAO implementation class but not need to modify any business objects.

  12. Hydrodynamic approach to surface pattern formation by ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Mario, E-mail: marioc@upcomillas.es [Grupo Interdisciplinar de Sistemas Complejos (GISC) and Grupo de Dinamica No Lineal (DNL), Escuela Tecnica Superior de Ingenieri a - ICAI, Universidad Pontificia Comillas, E-28015 Madrid (Spain); Cuerno, Rodolfo [Departamento de Matematicas and GISC, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes (Spain)

    2012-02-15

    On the proper timescale, amorphous solids can flow. Solid flow can be observed macroscopically in glaciers or lead pipes, but it can also be artificially enhanced by creating defects. Ion Beam Sputtering (IBS) is a technique in which ions with energies in the 0.110 keV range impact against a solid target inducing defect creation and dynamics, and eroding its surface leading to formation of ordered nanostructures. Despite its technological interest, a basic understanding of nanopattern formation processes occurring under IBS of amorphizable targets has not been clearly established, recent experiments on Si having largely questioned knowledge accumulated during the last two decades. A number of interfacial equations have been proposed in the past to describe these phenomena, typically by adding together different contributions coming from surface diffusion, ion sputtering or mass redistribution, etc. in a non-systematic way. Here, we exploit the general idea of solids flowing due to ion impacts in order to establish a general framework into which different mechanisms (such as viscous flow, stress, diffusion, or sputtering) can be incorporated, under generic physical conservation laws. As opposed to formulating phenomenological interfacial equations, this approach allows to assess systematically the relevance and interplay of different physical mechanisms influencing surface pattern formation by IBS.

  13. Regular pattern formation in real ecosystems

    NARCIS (Netherlands)

    Rietkerk, Max; Koppel, Johan van de

    2008-01-01

    Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer–resource interactions, localized disturbance-recovery processes and scale-dependent feedback. Despite abundant theore

  14. Pattern Formation in a Dusty Plasma System

    Institute of Scientific and Technical Information of China (English)

    黄峰; 叶茂福; 王龙; 江南

    2004-01-01

    A rich variety of dust patterns have been observed in a capacitively coupled rf discharge dusty plasma system. Dust particles are synthesized through chemical reaction of the filled gas mixture during discharge. Different patterns are formed in different stages of particle growth. In the early stage of particle growth, dust cloud can be formed by a large number of small particles, and its behavior appears to be fluid-like. Such interesting nonlinear phenomena as dust void and complex dust cloud patterns are observed in this stage. As dust particles grow, the particle size and structure can be controlled to follow two different routes. In one of the routes, the particles grow up in a ball-like shape and can be formed into regular lattice and cluster patterns.In the other, the particles grow up in a fractal shape.

  15. Regular pattern formation in real ecosystems

    NARCIS (Netherlands)

    Rietkerk, M.; Van de Koppel, J.

    2008-01-01

    Localized ecological interactions can generate striking large-scale spatial patterns in ecosystems through spatial self-organization. Possible mechanisms include oscillating consumer–resource interactions, localized disturbance-recovery processes and scale-dependent feedback. Despite abundant

  16. Dynamical patterns of cattle trade movements.

    Directory of Open Access Journals (Sweden)

    Paolo Bajardi

    Full Text Available Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displacement network hide important patterns of structural changes affecting nodes' centrality and farms' spreading potential, thus limiting the efficiency of interventions based on partial longitudinal information. By fully taking into account the longitudinal dimension, we propose a novel definition of dynamical motifs that is able to uncover the presence of a temporal arrow describing the evolution of the system and the causality patterns of its displacements, shedding light on mechanisms that may play a crucial role in the definition of preventive actions.

  17. Pattern formations in chaotic spatio-temporal systems

    Indian Academy of Sciences (India)

    Ying Zhang; Shihong Wang; Jinhua Xiao; Hilda A Cerdeira; S Chen; Gang Hu

    2005-06-01

    Pattern formations in chaotic spatio-temporal systems modelled by coupled chaotic oscillators are investigated. We focus on various symmetry breakings and different kinds of chaos synchronization–desynchronization transitions, which lead to certain types of spontaneous spatial orderings and the emergence of some typical ordered patterns, such as rotating wave patterns with splay phase ordering (orientational symmetry breaking) and partially synchronous standing wave patterns with in-phase ordering (translational symmetry breaking). General pictures of the global behaviors of pattern formations and transitions in coupled chaotic oscillators are provided.

  18. Pattern formation in oscillatory media without lateral inhibition

    Science.gov (United States)

    Ali, Rehman; Harris, Jeremy; Ermentrout, Bard

    2016-07-01

    Spontaneous symmetry breaking instabilities are the most common mechanism for how biological, chemical, and physical systems produce spatial patterns. Beginning with Turing's original paper, so-called lateral inhibition—in which negative feedback has greater spread than positive feedback—has been the underlying mechanism for pattern formation in biological models. Despite this, there are many biological systems that exhibit pattern formation but do not have lateral inhibition. In this paper, we present an example of such a system that is able to generate robust patterns emerging from a spatially homogeneous state. In fact, patterns can arise when there is only spatial spread of the activator. Unlike classic Turing pattern formation, these patterns arise from a spatially homogeneous oscillation rather than from a constant steady state.

  19. Dynamic moire patterns for profilometry applications

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passos da Patria, 156, Niteroi, R.J., Cep.: 24.210-240 (Brazil); De Oliveira, M E; Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work is proposed that dynamic moire-like fringe patterns produced by photorefraction, with low spatial frequencies, could be used for profile determination of small objects. The Fourier transform profilometry technique is applied in the projected moire fringe pattern onto an object surface. Basically, the Fourier transform of the projected fringes is obtained. After that, a phase map is generated. Then, the optical profile of object is obtained using phase unwrapping. So, the entire process can be indicated to measure, with good accuracy degree, profile of small objects in sub-micrometer scale in optical mechanical systems.

  20. Pattern formation - Instabilities in sand ripples

    DEFF Research Database (Denmark)

    Hansen, J. L.; v. Hecke, M.; Haaning, A.

    2001-01-01

    Sand ripples are seen below shallow wavy water and are formed whenever water oscillates over a bed of sand. Here we analyse the instabilities that can upset this perfect patterning when the ripples are subjected to large changes in driving amplitude or frequency, causing them to deform both...

  1. Dynamic Labyrinthine Pattern in an Active Liquid Film

    CERN Document Server

    Chen, Yong-Jun; Yoshikawa, Kenichi

    2012-01-01

    We report the generation of a dynamic labyrinthine pattern in an active alcohol film. A dynamic labyrinthine pattern is formed along the contact line of air/pentanol/aqueous three phases. The contact line shows a clear time-dependent change with regard to both perimeter and area of a domain. An autocorrelation analysis of time-development of the dynamics of the perimeter and area revealed a strong geometric correlation between neighboring patterns. The pattern showed autoregressive behavior. The behavior of the dynamic pattern is strikingly different from those of stationary labyrinthine patterns. The essential aspects of the observed dynamic pattern are reproduced by a diffusion-controlled geometric model.

  2. Dynamical Patterns of Cattle Trade Movements

    CERN Document Server

    Bajardi, Paolo; Natale, Fabrizio; Savini, Lara; Colizza, Vittoria; 10.1371/journal.pone.0019869

    2011-01-01

    Despite their importance for the spread of zoonotic diseases, our understanding of the dynamical aspects characterizing the movements of farmed animal populations remains limited as these systems are traditionally studied as static objects and through simplified approximations. By leveraging on the network science approach, here we are able for the first time to fully analyze the longitudinal dataset of Italian cattle movements that reports the mobility of individual animals among farms on a daily basis. The complexity and inter-relations between topology, function and dynamical nature of the system are characterized at different spatial and time resolutions, in order to uncover patterns and vulnerabilities fundamental for the definition of targeted prevention and control measures for zoonotic diseases. Results show how the stationarity of statistical distributions coexists with a strong and non-trivial evolutionary dynamics at the node and link levels, on all timescales. Traditional static views of the displ...

  3. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    Science.gov (United States)

    Seirin Lee, Sungrim

    2016-09-01

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning.

  4. The dynamics of group formation among leeches

    Directory of Open Access Journals (Sweden)

    Giacomo eBisson

    2012-05-01

    Full Text Available Leeches exploring a new environment continuously meet each other and merge in temporary groups. After 2-3 hours, leeches become attracted to each other eventually forming a large and stable group. When their number is reduced, leeches remain solitary, behaving independently. Group formation is facilitated by body injection of serotonin (5-HT and the level of endogenous 5-HT is elevated in leeches forming a large group. In contrast, intravenous injection of 5-HT antagonists prevented injected leeches from joining a large group of conspecifics. When sensilla near the head were ablated or the supraesophageal ganglion disconnected, leeches remained solitary, but explored the environment swimming and crawling. These results suggest that group formation is initiated by a release of 5-HT triggered by sensilla stimulation and its dynamics can be explained by the establishment of a reinforcement dynamics, as observed during human group formation. As 5-HT affects social interactions also in humans, group formation in leeches and humans share a similar dynamics and hormonal control.

  5. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    Science.gov (United States)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  6. Tree island pattern formation in the Florida Everglades

    Science.gov (United States)

    Carr, Joel; D'Odorico, P.; Engel, Victor C.; Redwine, Jed

    2016-01-01

    The Florida Everglades freshwater landscape exhibits a distribution of islands covered by woody vegetation and bordered by marshes and wet prairies. Known as “tree islands”, these ecogeomorphic features can be found in few other low gradient, nutrient limited freshwater wetlands. In the last few decades, however, a large percentage of tree islands have either shrank or disappeared in apparent response to altered water depths and other stressors associated with human impacts on the Everglades. Because the processes determining the formation and spatial organization of tree islands remain poorly understood, it is still unclear what controls the sensitivity of these landscapes to altered conditions. We hypothesize that positive feedbacks between woody plants and soil accretion are crucial to emergence and decline of tree islands. Likewise, positive feedbacks between phosphorus (P) accumulation and trees explain the P enrichment commonly observed in tree island soils. Here, we develop a spatially-explicit model of tree island formation and evolution, which accounts for these positive feedbacks (facilitation) as well as for long range competition and fire dynamics. It is found that tree island patterns form within a range of parameter values consistent with field data. Simulated impacts of reduced water levels, increased intensity of drought, and increased frequency of dry season/soil consuming fires on these feedback mechanisms result in the decline and disappearance of tree islands on the landscape.

  7. Embryogenesis, a process of pattern formation

    Institute of Scientific and Technical Information of China (English)

    Meng-Xiang SUN

    2011-01-01

    @@ Plant embryogenesis is traditionally defined as a develop-mental process from zygote to mature embryo, which has the potential to form a complete plant (Bhojwani, 1974; Hu,2005).In dicotyledonous species, the fertilized egg or zygote usually divides according to a stereotyped pattern and gives rise to an embryo that consists of an embryonic shoot,cotyledons, hypocotyls, and an embryonic root.Thus, the basic body plan of the plant is established during the embryogenesis.Interestingly, the shoot-leaf-stem structure,not including the root, is repeatedly photocopied as a basic unit throughout plant vegetative growth (Wolpert et al.,2002).

  8. New activity pattern in human interactive dynamics

    Science.gov (United States)

    Formentin, Marco; Lovison, Alberto; Maritan, Amos; Zanzotto, Giovanni

    2015-09-01

    We investigate the response function of human agents as demonstrated by written correspondence, uncovering a new pattern for how the reactive dynamics of individuals is distributed across the set of each agent’s contacts. In long-term empirical data on email, we find that the set of response times considered separately for the messages to each different correspondent of a given writer, generate a family of heavy-tailed distributions, which have largely the same features for all agents, and whose characteristic times grow exponentially with the rank of each correspondent. We furthermore show that this new behavioral pattern emerges robustly by considering weighted moving averages of the priority-conditioned response-time probabilities generated by a basic prioritization model. Our findings clarify how the range of priorities in the inputs from one’s environment underpin and shape the dynamics of agents embedded in a net of reactive relations. These newly revealed activity patterns might be universal, being present in other general interactive environments, and constrain future models of communication and interaction networks, affecting their architecture and evolution.

  9. Dynamic patterns of academic forum activities

    Science.gov (United States)

    Zhao, Zhi-Dan; Gao, Ya-Chun; Cai, Shi-Min; Zhou, Tao

    2016-11-01

    A mass of traces of human activities show rich dynamic patterns. In this article, we comprehensively investigate the dynamic patterns of 50 thousands of researchers' activities in Sciencenet, the largest multi-disciplinary academic community in China. Through statistical analyses, we found that (i) there exists a power-law scaling between the frequency of visits to an academic forum and the number of corresponding visitors, with the exponent being about 1.33; (ii) the expansion process of academic forums obeys the Heaps' law, namely the number of distinct visited forums to the number of visits grows in a power-law form with exponent being about 0.54; (iii) the probability distributions of time intervals and the number of visits taken to revisit the same academic forum both follow power-laws, indicating the existence of memory effect in academic forum activities. On the basis of these empirical results, we propose a dynamic model that incorporates the exploration, preferential return with memory effect, which can well reproduce the observed scaling laws.

  10. Labyrinthine Instability and Pattern Formation in Ferrofluids

    CERN Document Server

    Harrison, Timothy J

    2012-01-01

    Ferrofluids suspended in liquids and constrained in quasi-two dimensional domains were exposed to transverse magnetic fields. The points of elliptical instability of nearly circular drops were measured and compared to the theoretical prediction using a fitting parameter. The data matched the predicted trend well for 3 different liquids used as suspensions; however, at extreme values of drop radius, there was a significant deviation from prediction. The angles at each node of the labyrinthine pattern, formed using high magnetic fields, were measured and compared with the prediction of 120 degrees. For the dense labyrinth the most common angles were between 135 degrees -144 degrees, suggesting interaction between arms were having a repelling effect causing angles to widen. For the less dense labyrinth the most frequent angle category decreased, supporting this hypothesis. In the experiments the area, which theoretically should be constant, was noticed to change and this encouraged an investigation into how the ...

  11. Modular genetic regulatory networks increase organization during pattern formation.

    Science.gov (United States)

    Mohamadlou, Hamid; Podgorski, Gregory J; Flann, Nicholas S

    2016-08-01

    Studies have shown that genetic regulatory networks (GRNs) consist of modules that are densely connected subnetworks that function quasi-autonomously. Modules may be recognized motifs that comprise of two or three genes with particular regulatory functions and connectivity or be purely structural and identified through connection density. It is unclear what evolutionary and developmental advantages modular structure and in particular motifs provide that have led to this enrichment. This study seeks to understand how modules within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. We apply an algorithmic complexity to measure the organization of the patterns. A computational study was performed by creating Boolean intracellular networks within a simulated epithelial field of embryonic cells, where each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Intracellular networks with random connectivity were compared to those with modular connectivity and with motifs. Results show that modularity effects network dynamics and pattern organization significantly. In particular: (1) modular connectivity alone increases complexity in network dynamics and patterns; (2) bistable switch motifs simplify both the pattern and network dynamics; (3) all other motifs with feedback loops increase multicellular pattern complexity while simplifying the network dynamics; (4) negative feedback loops affect the dynamics complexity more significantly than positive feedback loops.

  12. Pattern Formation and Quasicrystal Structure in Azobenzene Polymer Film

    Institute of Scientific and Technical Information of China (English)

    XU Ze-Da; CAI Zhi-Gang; ZHANG Ling-Zhi; LIU Yan-Fa; YANG Jie; SHE Wei-Long; ZHOU Jian-Ying

    2000-01-01

    Pattern formation in azobenzene polymer film by degenerate four-wave mixing is reported. Island arrays with specific patterns are analyzed with scanning electron microscopy and polarizing optical microscopy. It is demonstrated that the control of photo-induced nanostructure sized micropattern in the nonlinear organic film is possible by using properly polarized writing beams with the total incident power exceeding a certain threshold.

  13. The role of auxin signaling in early embryo pattern formation

    NARCIS (Netherlands)

    Smit, Margot E.; Weijers, Dolf

    2015-01-01

    Pattern formation of the early Arabidopsis embryo generates precursors to all major cell types, and is profoundly controlled by the signaling molecule auxin. Here we discuss recent milestones in our understanding of auxin-dependent embryo patterning. Auxin biosynthesis, transport and response mec

  14. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  15. A Frame Work for Frequent Pattern Mining Using Dynamic Function

    Directory of Open Access Journals (Sweden)

    Sunil Joshi

    2011-05-01

    Full Text Available Discovering frequent objects (item sets, sequential patterns is one of the most vital fields in data mining. It is well understood that it require running time and memory for defining candidates and this is the motivation for developing large number of algorithm. Frequent patterns mining is the paying attention research issue in association rules analysis. Apriori algorithm is a standard algorithm of association rules mining. Plenty of algorithms for mining association rules and their mutations are projected on the foundation of Apriori Algorithm. Most of the earlier studies adopted Apriori-like algorithms which are based on generate-and-test candidates theme and improving algorithm approach and formation but no one give attention to the structure of database. Several modifications on apriori algorithms are focused on algorithm Strategy but no one-algorithm emphasis on least transaction and more attribute representation of database. We presented a new research trend on frequent pattern mining in which generate Transaction pair to lighten current methods from the traditional blockage, providing scalability to massive data sets and improving response time. In order to mine patterns in database with more columns than rows, we proposed a complete framework for the frequent pattern mining. A simple approach is if we generate pair of transaction instead of item id where attributes are much larger then transaction so result is very fast. Newly, different works anticipated a new way to mine patterns in transposed databases where there is a database with thousands of attributes but merely tens of stuff. We suggest a novel dynamic algorithm for frequent pattern mining in which generate transaction pair and for generating frequent pattern we find out by longest common subsequence using dynamic function. Our solutions give result more rapidly. A quantitative investigation of these tradeoffs is conducted through a wide investigational study on artificial and

  16. Pattern formation in mutation of "Game of Life"

    Institute of Scientific and Technical Information of China (English)

    HUANG Wen-gao; PAN Zhi-geng

    2005-01-01

    This paper presents pattern formation in generalized cellular automata (GCA) by varying parameters of classic “game Experiments show the emergence of the self-organizing patterns that is analogous with life forms at the edge of chaos, which consist of certain nontrivial structure and go through periods of growth, maturity and death. We describe these experiments and discuss their potential as alternative way for creating artificial life and generative art, and as a new method for pattern genesis.

  17. Is Team Formation Gender Neutral? Evidence from Coauthorship Patterns

    OpenAIRE

    Boschini, Anne; Sjögren, Anna

    2006-01-01

    We investigate if voluntary team formation is gender neutral. To this end, we model team formation as a random matching process influenced by the agents' preferences for team size and gender composition and derive how team formation depends on the gender ratio in the population of prospective team mates. We then test if the coauthorship pattern in articles published 1991-2002 in three top Economics journals is gender neutral, exploiting the variation in female presence across subfields of Eco...

  18. On pattern formation in ferrocolloid convection

    Energy Technology Data Exchange (ETDEWEB)

    Bozhko, A [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation); Putin, G [Department of Physics, Perm State University, Bukirev Str. 15, 614990 Perm (Russian Federation); Tynjaelae, T [Department of Energy and Environmental Technology, Lappeenranta University of Technology, 53851 Lappeenranta (Finland); Meshin, M Dabagh [Department of Energy and Environmental Technology, Lappeenranta University of Technology, 53851 Lappeenranta (Finland); Jalali, P [Department of Energy and Environmental Technology, Lappeenranta University of Technology, 53851 Lappeenranta (Finland)

    2007-04-15

    Experimental studies and numerical simulations of stability of buoyancy-driven flows in a ferrocolloid for the cases of horizontal and inclined vertical orientation of a thin cylindrical cavity are performed. The influence of a homogeneous longitudinal magnetic field on convective instability and spatio-temporal patterns were also investigated. In the case of ferrocolloids the gradients of magnetic permeability may arise due to both temperature and particle concentration gradients. The particle mass flux in a classical form is summarized from the translation diffusion coefficient and the thermal diffusion ratio. However, the explanation for the observed self-oscillation regimes in magnetic fluid for the cavities of sufficiently large thickness is conditioned by the competition of density variations originating from the fluid thermal expansion and barometric sedimentation. The results prove that a uniform longitudinal magnetic field allows to control the stability and the shape of secondary convection motions at inclined orientation of layer. In a ferrocolloid the repeated transients involving localized roll convection and pure shear flow took place. Under action of uniform longitudinal magnetic field orientated perpendicular to flux velocity of shear motion on such long-wave transients can lead to complicated types of chaotic localized states or solitary vortices.

  19. Spontaneous pattern formation and pinning in the visual cortex

    Science.gov (United States)

    Baker, Tanya I.

    Bifurcation theory and perturbation theory can be combined with a knowledge of the underlying circuitry of the visual cortex to produce an elegant story explaining the phenomenon of visual hallucinations. A key insight is the application of an important set of ideas concerning spontaneous pattern formation introduced by Turing in 1952. The basic mechanism is a diffusion driven linear instability favoring a particular wavelength that determines the size of the ensuing stripe or spot periodicity of the emerging spatial pattern. Competition between short range excitation and longer range inhibition in the connectivity profile of cortical neurons provides the difference in diffusion length scales necessary for the Turing mechanism to occur and has been proven by Ermentrout and Cowan to be sufficient to explain the generation of a subset of reported geometric hallucinations. Incorporating further details of the cortical circuitry, namely that neurons are also weakly connected to other neurons sharing a particular stimulus orientation or spatial frequency preference at even longer ranges and the resulting shift-twist symmetry of the neuronal connectivity, improves the story. We expand this approach in order to be able to include the tuned responses of cortical neurons to additional visual stimulus features such as motion, color and disparity. We apply a study of nonlinear dynamics similar to the analysis of wave propagation in a crystalline lattice to demonstrate how a spatial pattern formed through the Turing instability can be pinned to the geometric layout of various feature preferences. The perturbation analysis is analogous to solving the Schrodinger equation in a weak periodic potential. Competition between the local isotropic connections which produce patterns of activity via the Turing mechanism and the weaker patchy lateral connections that depend on a neuron's particular set of feature preferences create long wavelength affects analogous to commensurate

  20. Vascular tissue differentiation and pattern formation in plants.

    Science.gov (United States)

    Ye, Zheng-Hua

    2002-01-01

    Vascular tissues, xylem and phloem, are differentiated from meristematic cells, procambium, and vascular cambium. Auxin and cytokinin have been considered essential for vascular tissue differentiation; this is supported by recent molecular and genetic analyses. Xylogenesis has long been used as a model for study of cell differentiation, and many genes involved in late stages of tracheary element formation have been characterized. A number of mutants affecting vascular differentiation and pattern formation have been isolated in Arabidopsis. Studies of some of these mutants have suggested that vascular tissue organization within the bundles and vascular pattern formation at the organ level are regulated by positional information.

  1. Asymptotic Analysis in a Gas-Solid Combustion Model with Pattern Formation

    Institute of Scientific and Technical Information of China (English)

    Claude-Michel BRAUNER; Lina HU; Luca LORENZI

    2013-01-01

    The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation.A third-order,fully nonlinear,self-consistent equation for the flame front is derived.Asymptotic methods reveal that the interface approaches a solution to the Kuramoto-Sivashinsky equation.Numerical results which illustrate the dynamics are presented.

  2. Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems

    Science.gov (United States)

    Wang, Jinfeng; Wei, Junjie; Shi, Junping

    2016-02-01

    The dynamics of a general diffusive predator-prey system is considered. Existence and nonexistence of non-constant positive steady state solutions are shown to identify the ranges of parameters of spatial pattern formation. Bifurcations of spatially homogeneous and nonhomogeneous periodic solutions as well as non-constant steady state solutions are studied.

  3. Pattern Formation in a Vibrated Granular Layer on an Inclined Base

    Institute of Scientific and Technical Information of China (English)

    SHI Xiao-Dong; MIAO Guo-Qing

    2008-01-01

    We carry out the simulations of pattern formation in a two-dimensional vibrated granular layer on an inclined base by molecular dynamics.It is found that the maximum amplitude of the pattern is greater at the lower part than at the higher part of the base,and is proportional to the thickness of the layer.Meanwhile,the wavelength varies non-monotonically as the inclined angle of the base is increased.

  4. E × B shear pattern formation by radial propagation of heat flux waves

    OpenAIRE

    Kosuga, Y; Diamond, PH; Dif-Pradalier, G; Gürcan, OD

    2014-01-01

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing...

  5. Laser-induced pattern formation from homogeneous polyisoprene solutions

    Institute of Scientific and Technical Information of China (English)

    Lin Dian-Yang; Li Ming; Wang Shu-Jie; Lü Zhi-Wei

    2008-01-01

    This paper reports that the pattern formation in homogeneous solutions of polyisoprene in toluene saturated with C60 induced by a continuous-wave visible laser is observed experimentally. The transmitted beam patterns change with the increase of the laser irradiation time. In the initial phase, the patterns with concentric ring-shaped structure are formed. In the end, the patterns become speckle-shaped. The incubation time of the transmitted beam widening is inversely proportional to the laser power density and solution concentration. The pattern formation results from the optical-field-induced refractive index changes in the solutions, but the mechanism of optical-field-induced refractive index changes in the polymer solutions needs to be further studied.

  6. Nonlinear Dynamics: Integrability, Chaos and Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Grammaticos, B [GMPIB, Universite Paris VII, Tour 24--14, 5e etage, Case 7021, 75251 Paris (France)

    2004-02-06

    When the editorial office of Journal of Physics A: Mathematical and General of the Institute of Physics Publishing asked me to review a book on nonlinear dynamics I experienced an undeniable apprehension. Indeed, the domain is a rapidly expanding one and writing a book aiming at a certain degree of completeness looks like an almost impossible task. My uneasiness abated somewhat when I saw the names of the authors, two well-known specialists of the nonlinear domain, but it was only when I held the book in my hands that I felt really reassured. The book is not just a review of the recent (and less so) findings on nonlinear systems. It is also a textbook. The authors set out to provide a detailed, step by step, introduction to the domain of nonlinearity and its various subdomains: chaos, integrability and pattern formation (although this last topic is treated with far less detail than the other two). The public they have in mind is obviously that of university students, graduate or undergraduate, who are interested in nonlinear phenomena. I suspect that a non-negligible portion of readers will be people who have to teach topics which figure among those included in the book: they will find this monograph an excellent companion to their course. The book is written in a pedagogical way, with a profusion of examples, detailed explanations and clear diagrams. The point of view is that of a physicist, which to my eyes is a major advantage. The mathematical formulation remains simple and perfectly intelligible. Thus the reader is not bogged down by fancy mathematical formalism, which would have discouraged the less experienced ones. A host of exercises accompanies every chapter. This will give the novice the occasion to develop his/her problem-solving skills and acquire competence in the use of nonlinear techniques. Some exercises are quite straightforward, like 'verify the relation 14.81'. Others are less so, such as 'prepare a write-up on a) frequency

  7. Spacecraft formation flying: Dynamics, control and navigation

    Science.gov (United States)

    Alfriend, Kyle Terry; Vadali, Srinivas Rao; Gurfil, Pini; How, Jonathan; Breger, Louis S.

    2009-12-01

    Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects - large unmanned and manned satellites (including the present International Space Station) - can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics.

  8. Biotic Population Dynamics: Creative Biotic Patterns

    Science.gov (United States)

    Sabelli, Hector; Kovacevic, Lazar

    We present empirical studies and computer models of population dynamics that demonstrate creative features and we speculate that these creative processes may underline evolution. Changes in population size of lynx, muskrat, beaver, salmon, and fox display diversification, episodic changes in pattern, novelty, and evidence for nonrandom causation. These features of creativity characterize bios, and rule out random, periodic, chaotic, and random walk patterns. Biotic patterns are also demonstrated in time series generated with multi-agent predator-prey simulations. These results indicate that evolutionary processes are continually operating. In contrast to standard evolutionary theory (random variation, competition for scarce resources, selection by survival of the fittest, and directionless, meaningless evolution), we propose that biological evolution is a creative development from simple to complex in which (1) causal actions generate biological variation; (2) bipolar feedback (synergy and antagonism, abundance and scarcity) generates information (diversification, novelty and complexity); (3) connections (of molecules, genes, species) construct systems in which simple processes have priority for survival but complex processes acquire supremacy.

  9. Network-Configurations of Dynamic Friction Patterns

    CERN Document Server

    Ghaffari, H O

    2012-01-01

    The complex configurations of dynamic friction patterns-regarding real time contact areas- are transformed into appropriate networks. With this transformation of a system to network space, many properties can be inferred about the structure and dynamics of the system. Here, we analyze the dynamics of static friction, i.e. nucleation processes, with respect to "friction networks". We show that networks can successfully capture the crack-like shear ruptures and possible corresponding acoustic features. We found that the fraction of triangles remarkably scales with the detachment fronts. There is a universal power law between nodes' degree and motifs frequency (for triangles, it reads T(k)\\proptok{\\beta} ({\\beta} \\approx2\\pm0.4)). We confirmed the obtained universality in aperture-based friction networks. Based on the achieved results, we extracted a possible friction law in terms of network parameters and compared it with the rate and state friction laws. In particular, the evolutions of loops are scaled with p...

  10. Gradient-driven diffusion and pattern formation in crowded mixtures

    Science.gov (United States)

    Nandigrami, Prithviraj; Grove, Brandy; Konya, Andrew; Selinger, Robin L. B.

    2017-02-01

    Gradient-driven diffusion in crowded, multicomponent mixtures is a topic of high interest because of its role in biological processes such as transport in cell membranes. In partially phase-separated solutions, gradient-driven diffusion affects microstructure, which in turn affects diffusivity; a key question is how this complex coupling controls both transport and pattern formation. To examine these mechanisms, we study a two-dimensional multicomponent lattice gas model, where "tracer" molecules diffuse between a source and a sink separated by a solution of sticky "crowder" molecules that cluster to form dynamically evolving obstacles. In the high-temperature limit, crowders and tracers are miscible, and transport may be predicted analytically. At intermediate temperatures, crowders phase separate into clusters that drift toward the tracer sink. As a result, steady-state tracer diffusivity depends nonmonotonically on both temperature and crowder density, and we observe a variety of complex microstructures. In the low-temperature limit, crowders rapidly aggregate to form obstacles that are kinetically arrested; if crowder density is near the percolation threshold, resulting tracer diffusivity shows scaling behavior with the same scaling exponent as the random resistor network model. Though highly idealized, this simple model reveals fundamental mechanisms governing coupled gradient-driven diffusion, phase separation, and microstructural evolution in crowded mixtures.

  11. Dynamics of gradient formation by intracellular shuttling

    Energy Technology Data Exchange (ETDEWEB)

    Berezhkovskii, Alexander M. [Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892 (United States); Shvartsman, Stanislav Y. [Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  12. Dynamics of gradient formation by intracellular shuttling

    Science.gov (United States)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  13. Dynamical Models of Terrestrial Planet Formation

    CERN Document Server

    Lunine, Jonathan I; Raymond, Sean N; Morbidelli, Alessandro; Quinn, Thomas; Graps, Amara

    2009-01-01

    We review the problem of the formation of terrestrial planets, with particular emphasis on the interaction of dynamical and geochemical models. The lifetime of gas around stars in the process of formation is limited to a few million years based on astronomical observations, while isotopic dating of meteorites and the Earth-Moon system suggest that perhaps 50-100 million years were required for the assembly of the Earth. Therefore, much of the growth of the terrestrial planets in our own system is presumed to have taken place under largely gas-free conditions, and the physics of terrestrial planet formation is dominated by gravitational interactions and collisions. The earliest phase of terrestrial-planet formation involve the growth of km-sized or larger planetesimals from dust grains, followed by the accumulations of these planetesimals into ~100 lunar- to Mars-mass bodies that are initially gravitationally isolated from one-another in a swarm of smaller planetesimals, but eventually grow to the point of sig...

  14. E × B shear pattern formation by radial propagation of heat flux waves

    Energy Technology Data Exchange (ETDEWEB)

    Kosuga, Y., E-mail: kosuga@riam.kyushu-u.ac.jp [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); IAS and RIAM, Kyushu University, Fukuoka (Japan); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon (Korea, Republic of); CASS and CMTFO, University of California, San Diego, California 92093 (United States); Dif-Pradalier, G. [CEA, IRFM, Paul-lez-Durance Cedex (France); Gürcan, Ö. D. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, Palaiseau (France)

    2014-05-15

    A novel theory to describe the formation of E×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E×B staircase is discussed.

  15. E × B shear pattern formation by radial propagation of heat flux wavesa)

    Science.gov (United States)

    Kosuga, Y.; Diamond, P. H.; Dif-Pradalier, G.; Gürcan, Ã.-. D.

    2014-05-01

    A novel theory to describe the formation of E ×B flow patterns by radially propagating heat flux waves is presented. A model for heat avalanche dynamics is extended to include a finite delay time between the instantaneous heat flux and the mean flux, based on an analogy between heat avalanche dynamics and traffic flow dynamics. The response time introduced here is an analogue of the drivers' response time in traffic dynamics. The microscopic foundation for the time delay is the time for mixing of the phase space density. The inclusion of the finite response time changes the model equation for avalanche dynamics from Burgers equation to a nonlinear telegraph equation. Based on the telegraph equation, the formation of heat flux jams is predicted. The growth rate and typical interval of jams are calculated. The connection of the jam interval to the typical step size of the E ×B staircase is discussed.

  16. Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns.

    Directory of Open Access Journals (Sweden)

    Mahesh Wickramasinghe

    Full Text Available Dynamical processes in many engineered and living systems take place on complex networks of discrete dynamical units. We present laboratory experiments with a networked chemical system of nickel electrodissolution in which synchronization patterns are recorded in systems with smooth periodic, relaxation periodic, and chaotic oscillators organized in networks composed of up to twenty dynamical units and 140 connections. The reaction system formed domains of synchronization patterns that are strongly affected by the architecture of the network. Spatially organized partial synchronization could be observed either due to densely connected network nodes or through the 'chimera' symmetry breaking mechanism. Relaxation periodic and chaotic oscillators formed structures by dynamical differentiation. We have identified effects of network structure on pattern selection (through permutation symmetry and coupling directness and on formation of hierarchical and 'fuzzy' clusters. With chaotic oscillators we provide experimental evidence that critical coupling strengths at which transition to identical synchronization occurs can be interpreted by experiments with a pair of oscillators and analysis of the eigenvalues of the Laplacian connectivity matrix. The experiments thus provide an insight into the extent of the impact of the architecture of a network on self-organized synchronization patterns.

  17. The mechanism of pattern formation in the developing drosophila retina

    Institute of Scientific and Technical Information of China (English)

    SUN QiCheng

    2007-01-01

    The biological patterning of the drosophila retina in vivo has striking resemblance to liquid bubbles, in which the surface mechanics due to N-cadherin within a sub-group of retina cells can be mimicked by surface tension. In this work, the aggregating patterns were reasonably simplified into 2D clusters consisting of 2-6 identical bubbles confined within a shrinking boundary. By using a hybrid fluid dynamics model proposed for liquid foams, the aggregating process of 2-6 retina cells was studied. Assuming the minimal perimeter for patterning cells to be the condition of stability patterns, the stable converged patterns we simulated in this work are the same as the experimental observations. More importantly, a new pattern of 6 cells was obtained which was found physically more stable than the other two reported by Hayashi and Carthew[1]. Aggregating perimeters of cells, i.e. the surface energy, showed a good linear fit with the cell numbers.

  18. The mechanism of pattern formation in the developing drosophila retina

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biological patterning of the drosophila retina in vivo has striking resemblance to liquid bubbles, in which the surface mechanics due to N-cadherin within a sub-group of retina cells can be mimicked by surface tension. In this work, the aggregating patterns were reasonably simplified into 2D clusters consisting of 2—6 identical bubbles confined within a shrinking boundary. By using a hybrid fluid dy-namics model proposed for liquid foams, the aggregating process of 2―6 retina cells was studied. Assuming the minimal perimeter for patterning cells to be the condition of stability patterns, the stable converged patterns we simulated in this work are the same as the experimental observations. More importantly, a new pattern of 6 cells was obtained which was found physically more stable than the other two reported by Hayashi and Carthew[1]. Aggregating perimeters of cells, i.e. the surface energy, showed a good linear fit with the cell numbers.

  19. Temperature pattern dynamics in shocked porous materials

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The physical fields in porous materials under strong shock wave reaction are very complicated. We simulate such systems using the grain contact material point method. The complex temperature fields in the material are treated with the morphological characterization. To compare the structures and evolution of characteristic regimes under various temperature thresholds, we introduce two concepts, structure similarity and process similarity. It is found that the temperature pattern dynamics may show high similarity under various conditions. Within the same material, the structures and evolution of high-temperature regimes may show high similarity if the shock strength and temperature threshold are chosen appropriately. For process similarity in materials with high porosity, the required temperature threshold increases parabolically with the impact velocity. When the porosity becomes lower, the increasing rate becomes higher. For process similarity in different materials, the required temperature threshold and the porosity follow a power-law relationship in some range.

  20. Vegetation pattern formation of a water-biomass model

    Science.gov (United States)

    Wang, Xiaoli; Wang, Wendi; Zhang, Guohong

    2017-01-01

    In this paper, a mathematical model with diffusion and cross-diffusion is proposed to describe the interaction between the vegetation and the soil water. Based on the view of Turing pattern, we discuss the conditions of the diffusion-induced instability and the cross-diffusion-induced instability of a homogenous uniform steady state. We find that either a fast diffusion speed of water or a great hydraulic diffusivity due to the suction of roots may drive the instability of the homogenous steady state. Furthermore, we find that both the rain-fall rate and the infiltration feedback parameter can induce the transitions among the vegetation state, pattern formation and bare soil state. It is also found that the "terrain slope" may cause the instability of the homogenous steady state and drive the formation of periodic stripe pattern. Consequently, the diversity of dryland vegetation in reality can be explained as a result of pattern solutions of the model.

  1. On the mechanical theory for biological pattern formation

    Science.gov (United States)

    Bentil, D. E.; Murray, J. D.

    1993-02-01

    We investigate the pattern-forming potential of mechanical models in embryology proposed by Oster, Murray and their coworkers. We show that the presence of source terms in the tissue extracellular matrix and cell density equations give rise to spatio-temporal oscillations. An extension of one such model to include ‘biologically realistic long range effects induces the formation of stationary spatial patterns. Previous attempts to solve the full system were in one dimension only. We obtain solutions in one dimension and extend our simulations to two dimensions. We show that a single mechanical model alone is capable of generating complex but regular spatial patterns rather than the requirement of model interaction as suggested by Nagorcka et al. and Shaw and Murray. We discuss some biological applications of the models among which are would healing and formation of dermatoglyphic (fingerprint) patterns.

  2. Phyllotactic pattern formation in early stages of cactus ontogeny

    Directory of Open Access Journals (Sweden)

    Edyta M. Gola

    2011-01-01

    Full Text Available Representatives of the family Cactaceae are characterized by a wide range of phyllotaxis. To assess the origin of this diversity, early stages of phyllotactic pattern formation were examined in seedlings. The analysis of the sequence of areole initiation revealed intertribal differences. In seedlings from the Trichocereeae (Gymnocalycium, Rebutia and Notocacteae (Parodia tribes, two opposite cotyledonal areoles developed as the first elements of a pattern. Usually, next pair of areoles was initiated perpendicularly to cotyledonal areoles, starting the decussate pattern. This pattern was subsequently transformed into bijugate or into simple spiral phyllotaxis. In seedlings from the Cacteae tribe (Mammillaria and Thelocactus, cotyledonal areoles were never observed and the first areoles always appeared in the space between cotyledons. It was either areole pair (mainly in Mammillaria, starting a decussate pattern, or a single areole (mainly in Thelocactus quickly followed by areoles spirally arranged, usually in accordance with the main Fibonacci phyllotaxis. Differences in the initial stages of pattern formation do not fully explain the phyllotaxis diversity in mature cacti. Only two, the most common phyllotactic patterns occurred in the early development of studied seedlings, i.e. the main Fibonacci and the decussate pattern. Discrepancy in the range of phyllotactic spectra in seedlings and in mature plants suggests that phyllotaxis diversity emerges during further plant growth. Initial phyllotactic transformations, occurring already in the very early stages, indicate great plasticity of cactus growth and seem to support the hypothesis of the ontogenetic increase of phyllotaxis diversity due to transformations.

  3. Dynamical Networks for Smog Pattern Analysis

    CERN Document Server

    Zong, Linqi; Zhu, Jia

    2015-01-01

    Smog, as a form of air pollution, poses as a serious problem to the environment, health, and economy of the world[1-4] . Previous studies on smog mostly focused on the components and the effects of smog [5-10]. However, as the smog happens with increased frequency and duration, the smog pattern which is critical for smog forecast and control, is rarely investigated, mainly due to the complexity of the components, the causes, and the spreading processes of smog. Here we report the first analysis on smog pattern applying the model of dynamical networks with spontaneous recovery. We show that many phenomena such as the sudden outbreak and dissipation of smog and the long duration smog can be revealed with the mathematical mechanism under a random walk simulation. We present real-world air quality index data in accord with the predictions of the model. Also we found that compared to external causes such as pollution spreading from nearby, internal causes such as industrial pollution and vehicle emission generated...

  4. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    Science.gov (United States)

    López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander

    2012-01-01

    We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429

  5. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    Directory of Open Access Journals (Sweden)

    Oscar Rodrigo López-Vaca

    2012-01-01

    Full Text Available We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13 and vascular endothelial growth factor (VEGF. It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification.

  6. Pattern Formation inside a Rotating Cylinder Partially Filled with Liquid and Granular Medium

    Directory of Open Access Journals (Sweden)

    Veronika Dyakova

    2014-01-01

    Full Text Available The paper focuses on the experimental study of the dynamics of liquid and granular medium in a rapidly rotating horizontal cylinder. In the cavity frame gravity field performs rotation and produces oscillatory liquid flow, which is responsible for the series of novel effects; the problem corresponds to “vibrational mechanics”—generation of steady flows and patterns by oscillating force field. The paper presents the initial results of experimental study of a novel pattern formation effect which is observed at the interface between fluid and sand and which takes the form of ripples extended along the axis of rotation. The initial results of experimental research of a novel effect of pattern formation at the interface between fluid and sand in the form of ripples extended along the axis of rotation are presented. The spatial period of the patterns is studied in dependence on liquid volume, viscosity, and rotation rate. The experimental study of long time dynamics of pattern formation manifests that regular ripples transform into a series of dunes within a few minutes or dozens of minutes. The variety of patterns is determined by the interaction of two types of liquid flows induced by gravity: oscillatory and steady azimuthal flows near the sand surface.

  7. Interfacial wave theory of pattern formation in solidification dendrites, fingers, cells and free boundaries

    CERN Document Server

    Xu, Jian-Jun

    2017-01-01

    This comprehensive work explores interfacial instability and pattern formation in dynamic systems away from the equilibrium state in solidification and crystal growth. Further, this significantly expanded 2nd edition introduces and reviews the progress made during the last two decades. In particular, it describes the most prominent pattern formation phenomena commonly observed in material processing and crystal growth in the framework of the previously established interfacial wave theory, including free dendritic growth from undercooled melt, cellular growth and eutectic growth in directional solidification, as well as viscous fingering in Hele-Shaw flow. It elucidates the key problems, systematically derives their mathematical solutions by pursuing a unified, asymptotic approach, and finally carefully examines these results by comparing them with the available experimental results. The asymptotic approach described here will be useful for the investigation of pattern formation phenomena occurring in a much b...

  8. Cortical instability drives periodic supracellular actin pattern formation in epithelial tubes.

    Science.gov (United States)

    Hannezo, Edouard; Dong, Bo; Recho, Pierre; Joanny, Jean-François; Hayashi, Shigeo

    2015-07-14

    An essential question of morphogenesis is how patterns arise without preexisting positional information, as inspired by Turing. In the past few years, cytoskeletal flows in the cell cortex have been identified as a key mechanism of molecular patterning at the subcellular level. Theoretical and in vitro studies have suggested that biological polymers such as actomyosin gels have the property to self-organize, but the applicability of this concept in an in vivo setting remains unclear. Here, we report that the regular spacing pattern of supracellular actin rings in the Drosophila tracheal tubule is governed by a self-organizing principle. We propose a simple biophysical model where pattern formation arises from the interplay of myosin contractility and actin turnover. We validate the hypotheses of the model using photobleaching experiments and report that the formation of actin rings is contractility dependent. Moreover, genetic and pharmacological perturbations of the physical properties of the actomyosin gel modify the spacing of the pattern, as the model predicted. In addition, our model posited a role of cortical friction in stabilizing the spacing pattern of actin rings. Consistently, genetic depletion of apical extracellular matrix caused strikingly dynamic movements of actin rings, mirroring our model prediction of a transition from steady to chaotic actin patterns at low cortical friction. Our results therefore demonstrate quantitatively that a hydrodynamical instability of the actin cortex can trigger regular pattern formation and drive morphogenesis in an in vivo setting.

  9. Temperature Controlled Lateral Pattern Formation in Confined Polymer Thin Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao-li; David G. Bucknall

    2004-01-01

    The thermal induced topography change in a model system consisting of a polymer film on a Si substrate capped by a thin metal layer has been studied by using AFM. Regular lateral patterns over large areas were observed on the surface when the system was heated to a sufficiently high temperature. 2D-FFT analysis to the AFM images indicates that the patterns are isotropic and have well defined periodicities. The periodicities of the characteristic patterns are found to depend strongly on the annealing temperature. The study of the kinetics of the formation reveals that such a topography forms almost instantaneously once the critical temperature is reached. It is suggested that this wave-like surface morphology is driven by the thermal expansion coefficient mismatch of the different layers. This method for generating regular wave-like patterns could be used as a general method for patterning various organic materials into micro/nanostructures.

  10. Incremental Mining for Regular Frequent Patterns in Vertical Format

    Directory of Open Access Journals (Sweden)

    Vijay Kumar G

    2013-04-01

    Full Text Available In the real world database updates continuously in several online applications like super market, network monitoring, web administration, stock market etc. Frequent pattern mining is afundamental and essential area in data mining research. Not only occurrence frequency of a pattern but also occurrence behaviour of a pattern may be treated as important criteria to measure the interestingness of a pattern. A frequent pattern is said to be regular frequent if the occurrence behaviour is less than or equal to the user given regularity threshold. In incremental transactional databases the occurrence frequency and the occurrence behaviour of a pattern changes whenever a small set of new transactions are added to the database. It is undesirable to mine regular frequent patterns from the scratch. Thus proposes a new algorithm called RFPID (Regular Frequent Pattern Mining in Incremental Databases to mine regular frequent patterns in incremental transactional databases using vertical data format which requires only one database scan. The experimental results show our algorithm is efficient in both memory utilization and execution.

  11. Micron-scale pattern formation in prestressed polygonal films

    NARCIS (Netherlands)

    Annabattula, R. K.; Onck, P. R.

    2011-01-01

    In this paper we explore the spontaneous formation of micropatterns in thin prestressed polygonal films using finite element simulations. We study films with different size, thickness, and shape, including square, rectangular, pentagonal, and hexagonal films. Patterns form when the films release the

  12. Self-organized surface ripple pattern formation by ion implantation

    Science.gov (United States)

    Hofsäss, Hans; Zhang, Kun; Bobes, Omar

    2016-10-01

    Ion induced ripple pattern formation on solid surfaces has been extensively studied in the past and the theories describing curvature dependent ion erosion as well as redistribution of recoil atoms have been very successful in explaining many features of the pattern formation. Since most experimental studies use noble gas ion irradiation, the incorporation of the ions into the films is usually neglected. In this work we show that the incorporation or implantation of non-volatile ions also leads to a curvature dependent term in the equation of motion of a surface height profile. The implantation of ions can be interpreted as a negative sputter yield; and therefore, the effect of ion implantation is opposite to the one of ion erosion. For angles up to about 50°, implantation of ions stabilizes the surface, whereas above 50°, ion implantation contributes to the destabilization of the surface. We present simulations of the curvature coefficients using the crater function formalism and we compare the simulation results to the experimental data on the ion induced pattern formation using non-volatile ions. We present several model cases, where the incorporation of ions is a crucial requirement for the pattern formation.

  13. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    Science.gov (United States)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  14. Dewetting-mediated pattern formation inside the coffee ring

    Science.gov (United States)

    Li, Weibin; Lan, Ding; Wang, Yuren

    2017-04-01

    The rearrangement of particles in the final stage of droplet evaporation has been investigated by utilizing differential interference contrast microscopy and the formation mechanism of a network pattern inside a coffee ring has been revealed. A tailored substrate with a circular hydrophilic domain is prepared to obtain thin liquid film containing monolayer particles. Real-time bottom-view images show that the evolution of a dry patch could be divided into three stages: rupture initiation, dry patch expansion, and drying of the residual liquid. A growing number of dry patches will repeat these stages to form the network patterns inside the ringlike stain. It can be shown that the suction effect promotes the rupture of the liquid film and the formation of the dry patch. The particle-assembling process is totally controlled by the liquid film dewetting and dominated by the surface tension of the liquid film, which eventually determine the ultimate deposition patterns.

  15. Design of Ordered Wrinkled Patterns with Dynamically Tuned Properties

    Science.gov (United States)

    Yagüe, Jose Luis; Yin, Jie; Boyce, Mary C.; Gleason, Karen K.

    The formation of patterned surfaces is a common tool to engineer materials. The capability to design and reproduce detailed features is a key factor to fulfill requirements for functional surfaces. Generation of wrinkles via buckling of a stiff film on a compliant surface is an inexpensive, easy and reliable method to yield a patterned surface. The wrinkling method has been exploited in a wide variety of areas, including photovoltaics, microfluidics, adhesion, and anti-fouling systems. Here we show the ability to obtain deterministically ordered herringbone patterns. In a biaxially pre-stretched PDMS sample a thin film of a stiff coating is deposited by initiated chemical vapor deposition (iCVD). iCVD is a solvent- free technique that yields a conformal thin coating on virtually any substrate, giving a controllable thickness and tunable structural, mechanical, thermal, wetting, and swelling properties. Sequential release of the film-substrate system shows the transition from 1-D ripples to an ordered herringbone pattern. Wrinkle features can be controlled adjusting the film thickness, the initial load and the release process. Moreover, the surface topography can be dynamically tuned by applying a controlled mechanical stimulus. These properties make these materials excellent candidates for flexible applications.

  16. Event Normalization Through Dynamic Log Format Detection

    Institute of Scientific and Technical Information of China (English)

    Christoph Meinel

    2014-01-01

    The analytical and monitoring capabilities of central event re-positories, such as log servers and intrusion detection sys-tems, are limited by the amount of structured information ex-tracted from the events they receive. Diverse networks and ap-plications log their events in many different formats, and this makes it difficult to identify the type of logs being received by the central repository. The way events are logged by IT systems is problematic for developers of host-based intrusion-detection systems (specifically, host-based systems), develop-ers of security-information systems, and developers of event-management systems. These problems preclude the develop-ment of more accurate, intrusive security solutions that obtain results from data included in the logs being processed. We propose a new method for dynamically normalizing events into a unified super-event that is loosely based on the Common Event Expression standard developed by Mitre Corporation. We explain how our solution can normalize seemingly unrelat-ed events into a single, unified format.

  17. Jet dynamics. Recollimation shocks and helical patterns

    CERN Document Server

    Perucho, M

    2013-01-01

    The dynamics and stability of extragalactic jets may be strongly influenced by small (and probable) differences in pressure between the jet and the ambient and within the jet itself. The former give rise to expansion and recollimation of the jet. This occurs in the form of conical shocks, or Mach disks, if the pressure difference is large enough. Pressure asymmetries within the jet may trigger the development of helical patterns via coupling to kink current-driven instability, or to helical Kelvin-Helmholtz instability, depending on the physical conditions in the jet. I summarize here the evidence collected during the last years on the presence of recollimation shocks and waves in jets. In the jet of CTA 102 evidence has been found for (traveling)shock-(standing)shock interaction in the core-region (0.1 mas from the core), using information from the light-curve of the source combined with VLBI data. The conclusions derived have been confirmed by numerical simulations combined with emission calculations that h...

  18. Liesegang patterns: Complex formation of precipitate in an electric field

    Indian Academy of Sciences (India)

    István Lagzi

    2005-02-01

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald’s supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of the first and the last bands () measured from the junction point of the outer and the inner electrolytes can be described by the function = 1 $_{}^{1/2}$ + 2 + 3 , where is the time elapsed until the nth band formation, 1, 2 and 3 are constants. The variation of the total number of bands with different electric field strengths () has a maximum. For higher one can observe a moving precipitation zone that becomes wider due to precipitation and reversible complex formation.

  19. A new mechanism for dendritic pattern formation in dense systems

    Science.gov (United States)

    Oikawa, Noriko; Kurita, Rei

    2016-06-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed.

  20. Wavenumber Locking And Pattern Formation In Spatially Forced Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagberg, Aric [Los Alamos National Laboratory; Meron, Ehud [BEN-GURION UNIV; Manor, Rotem [BEN-GURION UNIV

    2008-01-01

    We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that support stationary or traveling stripe patterns in the absence of the forcing, and assume that the one-dimensional forcing is aligned with the direction of the stripe patterns. When the forcing wavenumber is about twice as large as the wavenumber of the unforced system we find that the forcing can either select or stabilize a resonant stripe solution at half the forcing wavenumber, or create a new resonant solution. When the wavenumber mismatch is high we find that the wave-vector component of the pattern in the direction of the forcing can stilI lock at half the forcing wavenumber, but a wave-vector component in the orthogonal direction develops to compensate for the total wavenumber. As a result stationary two-dimensional rectangular and oblique patterns form. When the unforced system supports traveling waves resonant rectangular patterns remain stationary but the oblique patterns travel in a direction orthogonal to the traveling-waves.

  1. Reflective State Pattern with Dynamic Constructiveness

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    After discussing the reflective method of structure and behaviorin th e State design pattern based on Role Object pattern and the Reflective pattern o f software architecture, this paper proposes a reflective state pattern with dyn amic constructiveness. This paper explains the meta level and the base level, wh ich are two levels of this pattern, and specifies the relation of two levels by using Meta Object Protocol (MOP). Then it discusses mechanism of interception an d reification for reflecting base object from Meta object. Finally this paper g ives an example of network server for applying the Reflective State pattern

  2. Pattern formation in spatially extended nonlinear systems: Toward a foundation for meaning in symbolic forms

    Science.gov (United States)

    DeMaris, David

    1998-07-01

    This paper brings together observations from a variety of fields to point toward what the author believes to be the most promising computational approach to the modeling of brain-like symbol formation, unifying perceptual and linguistic domains under a common computational physics. It brings Cassirer's Gestalt era evolutionary theory of language and symbolic thought to the attention of the situated cognition community, and describes how recent observations in experimental brain dynamics and computational approaches can be brought to bear on the problem. Research by the author and others in oscillatory network models of ambiguous perception with an attentional component is emphasised as a starting point for exploring increasingly complex pattern formation processes leading to simple forms of linguistic performance. These forms occupy a space between iconic representations and grammar. The dynamic pattern network framework suggests that to separate perception, representation or models and action in a realistic biophysics of situated organisms may be problematic.

  3. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  4. Femtosecond Laser Patterning of the Biopolymer Chitosan for Biofilm Formation

    Science.gov (United States)

    Estevam-Alves, Regina; Ferreira, Paulo Henrique Dias; Coatrini, Andrey C.; Oliveira, Osvaldo N.; Fontana, Carla Raquel; Mendonca, Cleber Renato

    2016-01-01

    Controlling microbial growth is crucial for many biomedical, pharmaceutical and food industry applications. In this paper, we used a femtosecond laser to microstructure the surface of chitosan, a biocompatible polymer that has been explored for applications ranging from antimicrobial action to drug delivery. The influence of energy density on the features produced on chitosan was investigated by optical and atomic force microscopies. An increase in the hydrophilic character of the chitosan surface was attained upon laser micromachining. Patterned chitosan films were used to observe Staphylococcus aureus (ATCC 25923) biofilm formation, revealing an increase in the biofilm formation in the structured regions. Our results indicate that fs-laser micromachining is an attractive option to pattern biocompatible surfaces, and to investigate basic aspects of the relationship between surface topography and bacterial adhesion. PMID:27548153

  5. Modelling Global Pattern Formations for Collaborative Learning Environments

    DEFF Research Database (Denmark)

    Grappiolo, Corrado; Cheong, Yun-Gyung; Khaled, Rilla;

    2012-01-01

    We present our research towards the design of a computational framework capable of modelling the formation and evolution of global patterns (i.e. group structures) in a population of social individuals. The framework is intended to be used in collaborative environments, e.g. social serious games...... and computer simulations of artificial societies. The theoretical basis of our research, together with current state of the art and future work, are briefly introduced....

  6. On pattern formation in the Gray-Scott model

    Institute of Scientific and Technical Information of China (English)

    Rui PENG; Ming-xin WANG

    2007-01-01

    In the paper, we investigate an elliptic system well-known as the Gray-Scott model and present some further results for positive solutions of this model. More precisely, we give the refined a priori estimates of positive solutions, and improve some previous results for the non-existence and existence of positive non-constant solutions as the parameters are varied, which imply some certain conditions where the pattern formation occurs or not.

  7. Capillary-mediated interface perturbations: Deterministic pattern formation

    Science.gov (United States)

    Glicksman, Martin E.

    2016-09-01

    Leibniz-Reynolds analysis identifies a 4th-order capillary-mediated energy field that is responsible for shape changes observed during melting, and for interface speed perturbations during crystal growth. Field-theoretic principles also show that capillary-mediated energy distributions cancel over large length scales, but modulate the interface shape on smaller mesoscopic scales. Speed perturbations reverse direction at specific locations where they initiate inflection and branching on unstable interfaces, thereby enhancing pattern complexity. Simulations of pattern formation by several independent groups of investigators using a variety of numerical techniques confirm that shape changes during both melting and growth initiate at locations predicted from interface field theory. Finally, limit cycles occur as an interface and its capillary energy field co-evolve, leading to synchronized branching. Synchronous perturbations produce classical dendritic structures, whereas asynchronous perturbations observed in isotropic and weakly anisotropic systems lead to chaotic-looking patterns that remain nevertheless deterministic.

  8. Langmuir films of chiral lipid molecules and Pattern Formation .

    Science.gov (United States)

    Basnet, Prem; Mann, Elizabeth; Chaieb, Sahraoui

    2009-03-01

    Langmuir films of 1,2-bis(10,12 Tricosadiynoyl)-sn-Glycero-3-Phosphoethanolamine form spiral and target patterns when compressed between two movable barriers in a Langmuir trough above 30^0C, up to the chain-melting transition at ˜37^0C. The critical pressure, at which spirals appear, increases with temperature. The patterns themselves also depend on temperature, with single-armed spirals with many defects forming near 30^0C and defect-free target patterns at higher temperatures. The mechanism of spiral formation could be a competition among elasticity, chirality, and the boundary conditions at the core of the domains. Optical anisotropy and the growth rate of internal structures test this suggested mechanism. .

  9. A Model of Filamentous Cyanobacteria Leading to Reticulate Pattern Formation

    Directory of Open Access Journals (Sweden)

    Carlos Tamulonis

    2014-09-01

    Full Text Available The filamentous cyanobacterium, Pseudanabaena, has been shown to produce reticulate patterns that are thought to be the result of its gliding motility. Similar fossilized structures found in the geological record constitute some of the earliest signs of life on Earth. It is difficult to tie these fossils, which are billions of years old, directly to the specific microorganisms that built them. Identifying the physicochemical conditions and microorganism properties that lead microbial mats to form macroscopic structures can lead to a better understanding of the conditions on Earth at the dawn of life. In this article, a cell-based model is used to simulate the formation of reticulate patterns in cultures of Pseudanabaena. A minimal system of long and flexible trichomes capable of gliding motility is shown to be sufficient to produce stable patterns consisting of a network of streams. Varying model parameters indicate that systems with little to no cohesion, high trichome density and persistent movement are conducive to reticulate pattern formation, in conformance with experimental observations.

  10. Pattern Formation and Secondary Instabilities for Convection in Porous Media

    Science.gov (United States)

    Behringer, R. P.; Fiering, J.

    1996-11-01

    In recent work(Howle et al. Nature 362), 230 (1993); JFM to appear we showed that the pattern formation for convection in porous media could be studied by means of a simple shadowgraph if there is a line of sight through the medium which does not encounter curved fluid-medium interfaces. This work focused primarily on pattern formation near onset and was carried out in relatively small aspect ratios, Γ (the ratio of the horizontal dimension of the layer to the height, d). We present new studies with both higher Γ, and at high enough Rayleigh number R to encounter the secondary instabilities for the convection roll patterns. In a Γ = radius/d = 10.7 cylindrical experiment with a medium made from stacked bars, we find well aligned convection rolls with wavelength, λ in good agreement with theory. The alignment direction is determined by the periodic structure of the medium. In two other experiments, also with bar stackings for the medium, we have studied the secondary instabilities. The experiments have Γ = 4 and 8, respectively (with square planform), and consist of 8 and 4 layers of bars. In both cases, the instability is to cross rolls. In the Γ = 8 case, the strong symmetry of the system leads to heteroclinic orbits between different patterns.

  11. Fluctuations and Pattern Formation in Fluids with Competing Interactions

    Science.gov (United States)

    Imperio, A.; Pini, D.; Reatto, L.

    2007-08-01

    One of the most interesting phenomena in the soft-matter realm consists in the spontaneous formation of super-molecular structures (microphases) in condition of thermodynamic equilibrium. A simple mechanism responsible for this self-organization or pattern formation is based on the competition between attractive and repulsive forces with different length scales in the microscopic potential, typically, a short-range attraction against a longer-range repulsion. We analyse this problem by simulations in 2D fluids. We find that, as the temperature is lowered, liquid-vapor phase separation is inhibited by the competition between attraction and repulsion, and replaced by a transition to non-homogeneous phases. The structure of the fluid shows well defined signatures of the presence of both intra- and inter-cluster correlations. Even when the competition between attraction and repulsion is not so strong as to cause microphase formation, it still induces large density fluctuations in a wide region of the temperature-density plane. In this large-fluctuation regime, pattern formation can be triggered by a weak external modulating field.

  12. Pattern formation and self-organization in plasmas interacting with surfaces

    Science.gov (United States)

    Trelles, Juan Pablo

    2016-10-01

    emerging applications ranging from nanomaterial synthesis to medicine, show marked sensitivity to pattern formation and a broadened range of controlling parameters. The results related to the characteristics of the patterns, such as their geometric configuration and static or dynamic nature; as well as their controlling factors, including gas composition, driving voltage and current, electrode cooling, and imposed gas flow, are summarized and discussed. The article finalizes with an outlook of the research area, including theoretical, computational, and experimental needs to advance the field.

  13. How to build transcriptional network models of mammalian pattern formation.

    Directory of Open Access Journals (Sweden)

    Chrissa Kioussi

    Full Text Available BACKGROUND: Genetic regulatory networks of sequence specific transcription factors underlie pattern formation in multicellular organisms. Deciphering and representing the mammalian networks is a central problem in development, neurobiology, and regenerative medicine. Transcriptional networks specify intermingled embryonic cell populations during pattern formation in the vertebrate neural tube. Each embryonic population gives rise to a distinct type of adult neuron. The homeodomain transcription factor Lbx1 is expressed in five such populations and loss of Lbx1 leads to distinct respecifications in each of the five populations. METHODOLOGY/PRINCIPAL FINDINGS: We have purified normal and respecified pools of these five populations from embryos bearing one or two copies of the null Lbx1(GFP allele, respectively. Microarrays were used to show that expression levels of 8% of all transcription factor genes were altered in the respecified pool. These transcription factor genes constitute 20-30% of the active nodes of the transcriptional network that governs neural tube patterning. Half of the 141 regulated nodes were located in the top 150 clusters of ultraconserved non-coding regions. Generally, Lbx1 repressed genes that have expression patterns outside of the Lbx1-expressing domain and activated genes that have expression patterns inside the Lbx1-expressing domain. CONCLUSIONS/SIGNIFICANCE: Constraining epistasis analysis of Lbx1 to only those cells that normally express Lbx1 allowed unprecedented sensitivity in identifying Lbx1 network interactions and allowed the interactions to be assigned to a specific set of cell populations. We call this method ANCEA, or active node constrained epistasis analysis, and think that it will be generally useful in discovering and assigning network interactions to specific populations. We discuss how ANCEA, coupled with population partitioning analysis, can greatly facilitate the systematic dissection of

  14. Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111)

    OpenAIRE

    Hansen, H; Redinger, A.; Messlinger, S.; Stoian, G.; Rosandi, Y.; Urbassek, H. M.; Linke, U.; Michely, T.

    2006-01-01

    Ripple patterns forming on Pt(111) due to 5 keV Ar+ grazing-incidence ion bombardment were investigated by scanning tunneling microscopy in a broad temperature range from 100 to 720 K and for ion fluences up to 3x10(20) ions/m(2). A detailed morphological analysis together with molecular dynamics simulations of single ion impacts allow us to develop atomic scale models for the formation of these patterns. The large difference in step edge versus terrace damage is shown to be crucial for rippl...

  15. The role of hydrological transience in peatland pattern formation

    Science.gov (United States)

    Morris, P. J.; Baird, A. J.; Belyea, L. R.

    2013-10-01

    The sloping flanks of peatlands are commonly patterned with non-random, contour-parallel stripes of distinct micro-habitats such as hummocks, lawns and hollows. Patterning seems to be governed by feedbacks among peatland hydrological processes, plant micro-succession, plant litter production and peat decomposition. An improved understanding of peatland patterning may provide important insights into broader aspects of the long-term development of peatlands and their likely response to future climate change. We recreated a cellular simulation model from the literature, as well as three subtle variants of the model, to explore the controls on peatland patterning. Our models each consist of three submodels, which simulate: peatland water tables in a gridded landscape, micro-habitat dynamics in response to water-table depths, and changes in peat hydraulic properties. We found that the strength and nature of simulated patterning was highly dependent on the degree to which water tables had reached a steady state in response to hydrological inputs. Contrary to previous studies, we found that under a true steady state the models predict largely unpatterned landscapes that cycle rapidly between contrasting dry and wet states, dominated by hummocks and hollows, respectively. Realistic patterning only developed when simulated water tables were still transient. Literal interpretation of the degree of hydrological transience required for patterning suggests that the model should be discarded; however, the transient water tables appear to have inadvertently replicated an ecological memory effect that may be important to peatland patterning. Recently buried peat layers may remain hydrologically active despite no longer reflecting current vegetation patterns, thereby highlighting the potential importance of three-dimensional structural complexity in peatlands to understanding the two-dimensional surface-patterning phenomenon. The models were highly sensitive to the assumed values

  16. Boundedness of Formation Configuration for Nonlinear Three-body Dynamics

    Institute of Scientific and Technical Information of China (English)

    LI Peng; SONG Yongduan

    2011-01-01

    The configuration boundedness of the three-body model dynamics is studied for Sun-Earth formation flying missions. The three-body formation flying model is built up with considering the lunar gravitational acceleration and solar radiation pressure. Because traditional linearized dynamics based method has relatively lower accuracy, a modified nonlinear formation configuration analysis method is proposed in this paper. Comparative studies are carried out from three aspects, i.e., natural formation configuration with arbitrary departure time, initialization time and formation configuration boundedness, and specific initialization time for bounded formation configuration. Simulations demonstrate the differences between the two schemes,and indicate that the nonlinear dynamic method reduces the error caused by the model linearization and disturbance approximation, and thus provides higher accuracy for boundedness analysis, which is of value to initial parameters selection for natural three-body formation flying.

  17. Dynamics of lane formation in driven binary complex plasmas

    NARCIS (Netherlands)

    Sutterlin, K. R.; Wysocki, A.; Ivlev, A. V.; Rath, C.; Thomas, H. M.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.

    2009-01-01

    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane-formation proces

  18. The role of auxin signaling in early embryo pattern formation.

    Science.gov (United States)

    Smit, Margot E; Weijers, Dolf

    2015-12-01

    Pattern formation of the early Arabidopsis embryo generates precursors to all major cell types, and is profoundly controlled by the signaling molecule auxin. Here we discuss recent milestones in our understanding of auxin-dependent embryo patterning. Auxin biosynthesis, transport and response mechanisms interact to generate local auxin accumulation in the early embryo. New auxin-dependent reporters help identifying these sites, while atomic structures of transcriptional response mediators help explain the diverse outputs of auxin signaling. Key auxin outputs are control of cell identity and cell division orientation, and progress has been made towards understanding the cellular basis of each. Importantly, a number of studies have combined computational modeling and experiments to analyze the developmental role, genetic circuitry and molecular mechanisms of auxin-dependent cell division control.

  19. Fractal pattern formation in metallic ink sessile droplets

    Science.gov (United States)

    Hadj-Achour, Miloud; Brutin, David

    2014-11-01

    We report a fingering instability that occurs during the spreading and evaporation of a nanosuspension droplet. The patterns has a fractal structure similar to those reported by N. Shahidzadeh-Bonn et al. (2008) for salt crystallisation, during evaporation of saturated Na2SO4 on a hydrophilic surface. The fingering instability has been widely studied for both Newtonian and non-Newtonian fluids. However, we describe for the first time that a fingering instability is observed for the spreading of a nanosuspension sessile droplet. We demonstrate that in certain cases, the contact line evolves through different spreading regimes according to J. De Coninck et al. (2001) with an enhancement in the evaporation rate due the formation of the fractal patterns.

  20. Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs

    Science.gov (United States)

    Chan, Pak Yuen; Goldenfeld, Nigel

    2007-10-01

    A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics with shallow water flow, including corrections for turbulent drag and curvature effects. In the absence of capillarity and with a laminar flow profile, the theory predicts a one-parameter family of steady state solutions to the moving boundary problem describing the precipitation front. These shapes match the measured shapes near the vent at the top of observed travertine domes well. Closer to the base of the dome, the solutions deviate from observations and circular symmetry is broken by a fluting pattern, which we show is associated with capillary forces causing thin film break-up. We relate our model to that recently proposed for stalactite growth, and calculate the linear stability spectrum of both travertine domes and stalactites. Lastly, we apply the theory to the problem of precipitation pattern formation arising from turbulent flow down an inclined plane and identify a linear instability that underlies scale-invariant travertine terrace formation at geothermal hot springs.

  1. Pattern formation in the wake of triggered pushed fronts

    Science.gov (United States)

    Goh, Ryan; Scheel, Arnd

    2016-08-01

    Pattern-forming fronts are often controlled by an external stimulus which progresses through a stable medium at a fixed speed, rendering it unstable in its wake. By controlling the speed of excitation, such stimuli, or ‘triggers’, can mediate pattern forming fronts which freely invade an unstable equilibrium and control which pattern is selected. In this work, we analytically and numerically study when the trigger perturbs an oscillatory pushed free front. In such a situation, the resulting patterned front, which we call a pushed trigger front, exhibits a variety of phenomenon, including snaking, non-monotonic wave-number selection, and hysteresis. Assuming the existence of a generic oscillatory pushed free front, we use heteroclinic bifurcation techniques to prove the existence of trigger fronts in an abstract setting motivated by the spatial dynamics approach. We then derive a leading order expansion for the selected wave-number in terms of the trigger speed. Furthermore, we show that such a bifurcation curve is governed by the difference of certain strong-stable and weakly-stable spatial eigenvalues associated with the decay of the free pushed front. We also study prototypical examples of these phenomena in the cubic-quintic complex Ginzburg Landau equation and a modified Cahn-Hilliard equation.

  2. Jamming and pattern formation in models of segregation

    Science.gov (United States)

    Rogers, Tim; McKane, Alan J.

    2012-04-01

    We investigate the Schelling model of social segregation, formulated as an intrinsically nonequilibrium system, in which the agents occupy districts (or patches) rather than sites on a grid. We show that this allows the equations governing the dynamical behavior of the model to be derived. Analysis of these equations reveals a jamming transition in the regime of low-vacancy density, and inclusion of a spatial dimension in the model leads to a pattern forming instability. Both of these phenomena exhibit unusual characteristics which may be studied through our approach.

  3. An Integrative Approach for Modeling and Simulation of Heterocyst Pattern Formation in Cyanobacteria Filaments

    Science.gov (United States)

    Torres-Sánchez, Alejandro; Gómez-Gardeñes, Jesús; Falo, Fernando

    2015-01-01

    Heterocyst differentiation in cyanobacteria filaments is one of the simplest examples of cellular differentiation and pattern formation in multicellular organisms. Despite of the many experimental studies addressing the evolution and sustainment of heterocyst patterns and the knowledge of the genetic circuit underlying the behavior of single cyanobacterium under nitrogen deprivation, there is still a theoretical gap connecting these two macroscopic and microscopic processes. As an attempt to shed light on this issue, here we explore heterocyst differentiation under the paradigm of systems biology. This framework allows us to formulate the essential dynamical ingredients of the genetic circuit of a single cyanobacterium into a set of differential equations describing the time evolution of the concentrations of the relevant molecular products. As a result, we are able to study the behavior of a single cyanobacterium under different external conditions, emulating nitrogen deprivation, and simulate the dynamics of cyanobacteria filaments by coupling their respective genetic circuits via molecular diffusion. These two ingredients allow us to understand the principles by which heterocyst patterns can be generated and sustained. In particular, our results point out that, by including both diffusion and noisy external conditions in the computational model, it is possible to reproduce the main features of the formation and sustainment of heterocyst patterns in cyanobacteria filaments as observed experimentally. Finally, we discuss the validity and possible improvements of the model. PMID:25816286

  4. Pattern Formation in a Cross-Diffusive Ratio-Dependent Predator-Prey Model

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2012-01-01

    Full Text Available This paper presents a theoretical analysis of evolutionary process that involves organisms distribution and their interaction of spatial distribution of the species with self- and cross-diffusion in a Holling-III ratio-dependent predator-prey model. The diffusion instability of the positive equilibrium of the model with Neumann boundary conditions is discussed. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self- and cross-diffusion in the model and find that the model dynamics exhibits a cross-diffusion controlled formation growth to spots, stripes, and spiral wave pattern replication, which show that reaction-diffusion model is useful to reveal the spatial predation dynamics in the real world.

  5. Dynamic perfusion patterns in temporal lobe epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Patrick; Paesschen, Wim van [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); Zaknun, John J. [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Maes, Alex [KU Leuven/UZ Gasthuisberg, Nuclear Medicine, Medical Imaging Center and Neurology, Leuven (Belgium); AZ Groeninge, Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn; Locharernkul, Chaichon [Chulalongkorn University, Nuclear Medicine and Neurology, Bangkok (Thailand); Vasquez, Silvia; Carpintiero, Silvina [Fleni Instituto de Investigaciones Neurologicas, Nuclear Medicine, Buenos Aires (Argentina); Bal, C.S. [All India Institute of Medical Sciences, Nuclear Medicine, New Delhi (India); Dondi, Maurizio [International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, PO BOX 200, Vienna (Austria); Ospedale Maggiore, Nuclear Medicine, Bologna (Italy)

    2009-05-15

    To investigate dynamic ictal perfusion changes during temporal lobe epilepsy (TLE). We investigated 37 patients with TLE by ictal and interictal SPECT. All ictal injections were performed within 60 s of seizure onset. Statistical parametric mapping was used to analyse brain perfusion changes and temporal relationships with injection time and seizure duration as covariates. The analysis revealed significant ictal hyperperfusion in the ipsilateral temporal lobe extending to subcortical regions. Hypoperfusion was observed in large extratemporal areas. There were also significant dynamic changes in several extratemporal regions: ipsilateral orbitofrontal and bilateral superior frontal gyri and the contralateral cerebellum and ipsilateral striatum. The study demonstrated early dynamic perfusion changes in extratemporal regions probably involved in both propagation of epileptic activity and initiation of inhibitory mechanisms. (orig.)

  6. Thermodynamics and dynamics of the formation of spherical lipidic vesicles

    CERN Document Server

    Zapata, E Hernandez; Santamaría-Holek, I

    2009-01-01

    We propose a free energy expression accounting for the formation of spherical vesicles from planar lipidic membranes and derive a Fokker-Planck equation for the probability distribution describing the dynamics of vesicle formation. We found that formation may occur as an activated process for small membranes and as a transport process for sufficiently large membranes. We give explicit expressions for the transition rates and the characteristic time of vesicle formation in terms of the relevant physical parameters.

  7. Principles of branch formation and branch patterning in Hydrozoa.

    Science.gov (United States)

    Berking, Stefan

    2006-01-01

    The freshwater polyp Hydra produces buds which separate from the parent. Other Hydrozoa produce branches which remain connected to the parent, thus forming a colony. Some Hydrozoa grow by means of an organ that is like a shoot apical meristem. Others display a sympodial type of growth. In this article, I propose that these different types of branches are organized by a common pattern-forming system. This system has self-organizing properties. It causes branch tip formation and is kept active in the tip when the tip finally differentiates into a hypostome of a polyp. The system does not cause structure formation directly but rather, determines a tissue property called positional value, in such a way that a gradient of values forms in the tissue of the bud or branch. The local value determines the local morphodynamic processes, including differentiation of the hypostome (highest positional value), tentacles and basal disc and of the exoskeleton pattern along the shoot. A high positional value favors the onset of a new self-organizing process and by lateral inhibition, such a process prevents the initiation of a further process in its surroundings. Small quantitative differences in the range of the signals involved determine whether a bud or a branch forms and whether monopodial and sympodial growth follows.

  8. Pattern formation mechanisms in motility mutants of Myxococcus xanthus

    CERN Document Server

    Starruss, Joern; Jakovljevic, Vladimir; Sogaard-Andersen, Lotte; Deutsch, Andreas; Baer, Markus

    2016-01-01

    Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of M. xanthus depends on two motility machineries: the S-engine and A-engine. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies depending on their nutritional status. To understand these two pattern formation processes and the contributions by the two motility machineries, as well as cell reversal, we analyze spatial self-organization in 3 strains: i) a mutant that moves unidirectionally without reversing by the A-motility system only, ii) a unidirectional mutant that is also equipped with the S-motility system, and iii) the wild-type that, in addition to the two motility systems, reverses its direction of movement. The mutant moving by the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria due to steric interactions of the rod-shaped cells, without the need of invoking any biochemica...

  9. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.

    2010-01-01

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate as

  10. Pattern formation and firing synchronization in networks of map neurons

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qingyun [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China); Duan Zhisheng [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China); Huang Lin [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China); Lu Qishao [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2007-10-15

    Patterns and collective phenomena such as firing synchronization are studied in networks of nonhomogeneous oscillatory neurons and mixtures of oscillatory and excitable neurons, with dynamics of each neuron described by a two-dimensional (2D) Rulkov map neuron. It is shown that as the coupling strength is increased, typical patterns emerge spatially, which propagate through the networks in the form of beautiful target waves or parallel ones depending on the size of networks. Furthermore, we investigate the transitions of firing synchronization characterized by the rate of firing when the coupling strength is increased. It is found that there exists an intermediate coupling strength; firing synchronization is minimal simultaneously irrespective of the size of networks. For further increasing the coupling strength, synchronization is enhanced. Since noise is inevitable in real neurons, we also investigate the effects of white noise on firing synchronization for different networks. For the networks of oscillatory neurons, it is shown that firing synchronization decreases when the noise level increases. For the missed networks, firing synchronization is robust under the noise conditions considered in this paper. Results presented in this paper should prove to be valuable for understanding the properties of collective dynamics in real neuronal networks.

  11. Chemical Pattern Formation in Far-From Systems.

    Science.gov (United States)

    Pearson, John Evan

    The diffusive instability was proposed as a mechanism for pattern formation in chemical systems, in the context of biological morphogenesis, by Alan Turing in 1952. The instability gives rise to a chemical pattern with an intrinsic "chemical wavelength" that is independent of the system size. Since 1952, the diffusive instability, or Turing bifurcation, has been invoked to explain pattern formation in a variety of fields. To date there has been no unambiguous observation of such an instability. Model studies of the instability are usually carried out on systems containing two variables. Such works do not address issues that are of fundamental importance in experimental studies. How does one go about finding Turing bifurcations in systems with many parameters and for which the chemical kinetics are only partially known? What is the chemical wavelength? Turing bifurcations cannot occur in systems with all diffusion coefficients exactly equal. How unequal must the diffusion coefficients be for a system to undergo a Turing bifurcation?. Reacting and diffusing systems obey a partial -differential equation which is a sum of a diffusion term and a reaction term. Dropping the diffusion term results in an ordinary differential equation describing the reaction kinetics in a well-mixed system. In this dissertation it is shown that, for systems with an arbitrary number of variables, Turing bifurcations can occur with diffusion coefficients arbitrarily close to equal, provided the corresponding well-mixed system is sufficiently close to a point of coalescence of Hopf and saddle-node bifurcations. Since the bifurcation set can be obtained directly from experiments, one does not need a detailed microscopic theory of the reaction kinetics. Similarly, the chemical wavelength can be estimated from experimental measurements without knowledge of the reaction kinetics.

  12. Phase separation like dynamics during Myxococcus xanthus fruiting body formation

    Science.gov (United States)

    Liu, Guannan; Thutupalli, Shashi; Wigbers, Manon; Shaevitz, Joshua

    2015-03-01

    Collective motion exists in many living organisms as an advantageous strategy to help the entire group with predation, forage, and survival. However, the principles of self-organization underlying such collective motions remain unclear. During various developmental stages of the soil-dwelling bacterium, Myxococcus xanthus, different types of collective motions are observed. In particular, when starved, M. xanthus cells eventually aggregate together to form 3-dimensional structures (fruiting bodies), inside which cells sporulate in response to the stress. We study the fruiting body formation process as an out of equilibrium phase separation process. As local cell density increases, the dynamics of the aggregation M. xanthus cells switch from a spatio-temporally random process, resembling nucleation and growth, to an emergent pattern formation process similar to a spinodal decomposition. By employing high-resolution microscopy and a video analysis system, we are able to track the motion of single cells within motile collective groups, while separately tuning local cell density, cell velocity and reversal frequency, probing the multi-dimensional phase space of M. xanthus development.

  13. Non-linear pattern formation in bone growth and architecture.

    Science.gov (United States)

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent

  14. Pattern formation and mass transfer under stationary solutal Marangoni instability.

    Science.gov (United States)

    Schwarzenberger, Karin; Köllner, Thomas; Linde, Hartmut; Boeck, Thomas; Odenbach, Stefan; Eckert, Kerstin

    2014-04-01

    According to the seminal theory by Sternling and Scriven, solutal Marangoni convection during mass transfer of surface-active solutes may occur as either oscillatory or stationary instability. With strong support of Manuel G. Velarde, a combined initiative of experimental works, in particular to mention those of Linde, Wierschem and coworkers, and theory has enabled a classification of dominant wave types of the oscillatory mode and their interactions. In this way a rather comprehensive understanding of the nonlinear evolution of the oscillatory instability could be achieved. A comparably advanced state-of-the-art with respect to the stationary counterpart seemed to be out of reach a short time ago. Recent developments on both the numerical and experimental side, in combination with assessing an extensive number of older experiments, now allow one to draw a more unified picture. By reviewing these works, we show that three main building blocks exist during the nonlinear evolution: roll cells, relaxation oscillations and relaxation oscillations waves. What is frequently called interfacial turbulence results from the interaction between these partly coexisting basic patterns which may additionally occur in different hierarchy levels. The second focus of this review lies on the practical importance of such convection patterns concerning their influence on mass transfer characteristics. Particular attention is paid here to the interaction between Marangoni and buoyancy effects which frequently complicates the pattern formation even more. To shed more light on these dependencies, new simulations regarding the limiting case of stabilizing density stratification and vanishing buoyancy are incorporated.

  15. Dewetting-mediated pattern formation in nanoparticle assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, Andrew, E-mail: andrew.stannard@nottingham.ac.uk [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2011-03-02

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered. (topical review)

  16. MODELLING DYNAMIC PATTERNS USING MOBILE DATA

    Directory of Open Access Journals (Sweden)

    uhad Faisal Behadili

    2016-01-01

    Full Text Available Understanding, modeling and simulating human mobility among urban regions is very challengeable effort. It is very important in rescue situations for many kinds of events, either in the indoor events like evacuation of buildings or outdoor ones like public assemblies, community evacuation, in exigency situations there are several incidents could be happened, the overcrowding causes injuries and death cases, which are emerged during emergency situations, as well as it serves urban planning and smart cities. The aim of this study is to explore the characteristics of human mobility patterns, and model them mathematically depending on inter-event time and traveled distances (displacements parameters by using CDRs (Call Detailed Records during Armada festival in France. However, the results of the numerical simulation endorse the other studies findings in that the most of real systems patterns are almost follows an exponential distribution. In the future the mobility patterns could be classified according (work or off days, and the radius of gyration could be considered as effective parameter in modelling human mobility.

  17. Gas Price Formation, Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, R.

    2008-07-01

    Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a

  18. Modeling of glutamate-induced dynamical patterns

    DEFF Research Database (Denmark)

    Faurby-Bentzen, Christian Krefeld; Zhabotinsky, A.M.; Laugesen, Jakob Lund

    2009-01-01

    Based on established physiological mechanisms, the paper presents a detailed computer model, which supports the hypothesis that temporal lobe epilepsy may be caused by failure of glutamate reuptake from the extracellular space. The elevated glutamate concentration causes an increased activation o...... of NMDA receptors in pyramidal neurons, which in turn leads to neuronal dynamics that is qualitatively identical to epileptiform activity. We identify by chaos analysis a surprising possibility that muscarinergic receptors can help the system out of a chaotic regime....

  19. How the propagation of heat-flux modulations triggers E × B flow pattern formation.

    Science.gov (United States)

    Kosuga, Y; Diamond, P H; Gürcan, O D

    2013-03-08

    We propose a novel mechanism to describe E×B flow pattern formation based upon the dynamics of propagation of heat-flux modulations. The E × B flows of interest are staircases, which are quasiregular patterns of strong, localized shear layers and profile corrugations interspersed between regions of avalanching. An analogy of staircase formation to jam formation in traffic flow is used to develop an extended model of heat avalanche dynamics. The extension includes a flux response time, during which the instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is the counterpart of the drivers' response time in traffic, during which drivers adjust their speed to match the background traffic flow. The finite response time causes the growth of mesoscale temperature perturbations, which evolve to form profile corrugations. The length scale associated with the maximum growth rate scales as Δ(2) ~ (v(thi)/λT(i))ρ(i)sqrt[χ(neo)τ], where λT(i) is a typical heat pulse speed, χ(neo) is the neoclassical thermal diffusivity, and τ is the response time of the heat flux. The connection between the scale length Δ(2) and the staircase interstep scale is discussed.

  20. The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.

  1. Soil erosion dynamics response to landscape pattern.

    Science.gov (United States)

    Ouyang, Wei; Skidmore, Andrew K; Hao, Fanghua; Wang, Tiejun

    2010-02-15

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate assessment, from 1977 to 2006, of erosion in the upper watershed of the Yellow River. At same time, the impacts of land use and landscape service features on soil erosion load were assessed. A series of supervised land use classifications of Landsat images characterized variations in land use and landscape patterns over three decades. The SWAT database was constructed with soil properties, climate and elevation data. Using water flow and sand density data as parameters, regional soil erosion load was simulated. A numerical statistical model was used to relate soil erosion to land use and landscape. The results indicated that decadal decrease of grassland areas did not pose a significant threat to soil erosion, while the continual increase of bare land, water area and farmland increased soil erosion. Regional landscape variation also had a strong relationship with erosion. Patch level landscape analyses demonstrated that larger water area led to more soil erosion. The patch correlation indicated that contagious grassland patches reduced soil erosion yield. The increased grassland patches led to more patch edges, in turn increasing the sediment transportation from the patch edges. The findings increase understanding of the temporal variation in soil erosion processes, which is the basis for preventing local pollution.

  2. Dynamic patterns of overexploitation in fisheries.

    Science.gov (United States)

    Perissi, Ilaria; Bardi, Ugo; El Asmar, Toufic; Lavacchi, Alessandro

    2017-09-10

    Understanding overfishing and regulating fishing quotas is a major global challenge for the 21st Century both in terms of providing food for humankind and to preserve the oceans' ecosystems. However, fishing is a complex economic activity, affected not just by overfishing but also by such factors as pollution, technology, financial factors and more. For this reason, it is often difficult to state with complete certainty that overfishing is the cause of the decline of a fishery. In this study, we developed a simple dynamic model specifically designed to isolate and to study the role of depletion on production. The model is based on the well-known Lotka-Volterra model, or Prey-Predator mechanism, assuming that the fish stock and the fishing industry are coupled variables that dynamically affect each other. In the model, the fishing industry acts as the "predator" and the fish stock as the "prey". If the model can fit historical data, in particular relative to the productive decline of specific fisheries, then we have a strong indication that the decline of the fish stock is driving the decline of the fishery production. The model doesn't pretend to be a general description of the fishing industry in all its varied forms; however, the data reported here show that the model can describe several historical cases of fisheries whose production decreased and collapsed, indicating that the overexploitation of the fish stocks is an important factor in the decline of fisheries.

  3. Dynamics of Perceived Parenting and Identity Formation in Late Adolescence

    Science.gov (United States)

    Beyers, Wim; Goossens, Luc

    2008-01-01

    Identity formation is a dynamic process of person-context interactions, and part of this context are parents, even in late adolescence. Several theories on parent-adolescent relationships share the idea that parents influence the process of identity formation. However, up to now, empirical evidence, particularly longitudinal evidence for this link…

  4. Ternary eutectic dendrites: Pattern formation and scaling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Mohri, Tetsuo [Center for Computational Materials Science, Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Gránásy, László, E-mail: granasy.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest (Hungary); Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  5. Pattern formation in particle systems driven by color field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The structural evolution of systems with two kinds of particles driven in opposite directions, i.e., driven by a color field, is investigated by molecular dynamics simulations. Gaussian thermostat,a common treatment to restrict the thermal velocity of the particles in the systems, has been used so as to account for the dissipation of heat and allow the system to reach a steady state. It has been found that with the increase of the strngth of driving force (F), the system undergoes an obvious structural transition from an initially random mixing state to a state characterized by separate lanes and in each lane only one kind of particles exists. The analysis shows that the reason for the formation of lane structure is not only the increase of F but also the variation of particle friction coefficient. While using Ganssian thermostat the particle friction coefficient becomes a function of F. Increasing F leads to high particle friction coefficient and inevitably results in lane formation for strong enough driving force. When lifting the effect of F on friction coefficient and choosing a constant friction coefficient,our results show that for a given F there always exists a critical value of friction coefficient higher than which the system will develop into lane structure.

  6. Light-driven dynamic Archimedes spirals and periodic oscillatory patterns of topological solitons in anisotropic soft matter.

    Science.gov (United States)

    Martinez, Angel; Smalyukh, Ivan I

    2015-02-23

    Oscillatory and excitable systems commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topological solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. We uncover underpinning physical mechanisms and discuss potential uses.

  7. Quasi-satellite dynamics in formation flight

    CERN Document Server

    Mikkola, Seppo

    2016-01-01

    The quasi-satellite (QS) phenomenon makes two celestial bodies to fly near each other (Mikkola et al. 2006) and that effect can be used also to make artificial satellites move in tandem. We consider formation flight of two or three satellites in low eccentricity near Earth orbits. With the help of weak ion thrusters it is possible to accomplish tandem flight. With ion thrusters it is also possible to mimic many kinds of mutual force laws between the satellites. We found that both a constant repulsive force or an attractive force that decreases with the distance are able to preserve the formation in which the eccentricities cause the actual relative motion and the weak thrusters keep the mean longitude difference small. Initial values are important for the formation flight but very exact adjustment of orbital elements is not important. Simplicity is one of our goals in this study and this result is achieved at least in the way that, when constant force thrusters are used, the satellites only need to detect the...

  8. Calling patterns in human communication dynamics.

    Science.gov (United States)

    Jiang, Zhi-Qiang; Xie, Wen-Jie; Li, Ming-Xia; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H Eugene

    2013-01-29

    Modern technologies not only provide a variety of communication modes (e.g., texting, cell phone conversation, and online instant messaging), but also detailed electronic traces of these communications between individuals. These electronic traces indicate that the interactions occur in temporal bursts. Here, we study intercall duration of communications of the 100,000 most active cell phone users of a Chinese mobile phone operator. We confirm that the intercall durations follow a power-law distribution with an exponential cutoff at the population level but find differences when focusing on individual users. We apply statistical tests at the individual level and find that the intercall durations follow a power-law distribution for only 3,460 individuals (3.46%). The intercall durations for the majority (73.34%) follow a Weibull distribution. We quantify individual users using three measures: out-degree, percentage of outgoing calls, and communication diversity. We find that the cell phone users with a power-law duration distribution fall into three anomalous clusters: robot-based callers, telecom fraud, and telephone sales. This information is of interest to both academics and practitioners, mobile telecom operators in particular. In contrast, the individual users with a Weibull duration distribution form the fourth cluster of ordinary cell phone users. We also discover more information about the calling patterns of these four clusters (e.g., the probability that a user will call the c(r)-th most contact and the probability distribution of burst sizes). Our findings may enable a more detailed analysis of the huge body of data contained in the logs of massive users.

  9. Hamiltonian Dynamics of Protein Filament Formation.

    Science.gov (United States)

    Michaels, Thomas C T; Cohen, Samuel I A; Vendruscolo, Michele; Dobson, Christopher M; Knowles, Tuomas P J

    2016-01-22

    We establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes. We finally show how these results reveal simple rate laws that provide the basis for interpreting experimental data in terms of specific mechanisms controlling the proliferation of fibrils.

  10. Three dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air

    Energy Technology Data Exchange (ETDEWEB)

    Kourtzanidis, K., E-mail: Konstantinos.Kourtzanidis@onera.fr; Boeuf, J. P. [LAPLACE (Laboratoire Plasma et Conversion d' Energie), Université de Toulouse, UPS, INPT, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); Rogier, F. [ONERA - The French Aerospace Lab, 2 Avenue édouard Belin, 31000 Toulouse (France)

    2014-12-15

    Recent experiments have demonstrated that a freely localized 100 GHz microwave discharge can propagate towards the microwave source with high speed, forming a complex pattern of self-organized filaments. We present three-dimensional simulations of the formation and propagation of such patterns that reveal more information on their nature and interaction with the electromagnetic waves. The developed three-dimensional Maxwell-plasma solver permits the study of different forms of incident field polarization. Results for linear and circular polarization of the wave are presented and comparisons with recent experiments show a good overall agreement. The three dimensional simulations provide a quantitative analysis of the parameters controlling the time and length scales of the strongly non-linear plasma dynamics and could be useful for potential microwave plasma applications such as aerodynamic flow and combustion control.

  11. Mechanisms for spatio-temporal pattern formation in highway traffic models.

    Science.gov (United States)

    Wilson, R Eddie

    2008-06-13

    A key qualitative requirement for highway traffic models is the ability to replicate a type of traffic jam popularly referred to as a phantom jam, shock wave or stop-and-go wave. Despite over 50 years of modelling, the precise mechanisms for the generation and propagation of stop-and-go waves and the associated spatio-temporal patterns are in dispute. However, the increasing availability of empirical datasets, such as those collected from motorway incident detection and automatic signalling system (MIDAS) inductance loops in the UK or the next-generation simulation trajectory data (NGSIM) project in the USA, means that we can expect to resolve these questions definitively in the next few years. This paper will survey the essence of the competing explanations of highway traffic pattern formation and introduce and analyse a new mechanism, based on dynamical systems theory and bistability, which can help resolve the conflict.

  12. Pattern formation in a complex Swift-Hohenberg equation with phase bistability

    CERN Document Server

    de Valcárcel, Manuel Martínez-Quesada Germán J

    2016-01-01

    We study pattern formation in a complex Swift Hohenberg equation with phase-sensitive (parametric) gain. Such an equation serves as a universal order parameter equation describing the onset of spontaneous oscillations in extended systems submitted to a kind of forcing dubbed rocking when the instability is towards long wavelengths. Applications include two-level lasers and photorefractive oscillators. Under rocking, the original continuous phase symmetry of the system is replaced by a discrete one, so that phase bistability emerges. This leads to the spontaneous formation of phase-locked spatial structures like phase domains and dark-ring (phase-) cavity solitons. Stability of the homogeneous solutions is studied and numerical simulations are made covering all the dynamical regimes of the model, which turn out to be very rich. Formal derivations of the rocked complex Swift-Hohenberg equation, using multiple scale techniques, are given for the two-level laser and the photorefractive oscillator.

  13. Pattern formation in polymerising actin flocks: spirals, spots and waves without nonlinear chemistry

    CERN Document Server

    Goff, Thomas Le; Marenduzzo, Davide

    2016-01-01

    We propose a model solely based on actin treadmilling and polymerisation which describes many characteristic states of actin wave formation: spots, spirals and travelling waves. In our model, as in experiments on cell recovering motility following actin depolymerisation, we choose an isotropic low density initial condition; polymerisation of actin filaments then raises the density towards the Onsager threshold where they align. We show that this alignment, in turn, destabilizes the isotropic phase and generically induces transient actin spots or spirals as part of the dynamical pathway towards a polarized phase which can either be uniform or consist of a series of actin-wave trains (flocks). Our results uncover a universal route to actin wave formation in the absence of any system specific nonlinear biochemistry, and it may help understand the mechanism underlying the observation of actin spots and waves in vivo. They also suggest a minimal setup to design similar patterns in vitro.

  14. Pattern Formation in Dewetting Nanoparticle/Polymer Bilayers

    Science.gov (United States)

    Esker, Alan; Paul, Rituparna; Karabiyik, Ufuk; Swift, Michael; Hottle, John

    2008-03-01

    Comprised of inorganic cores and flexible organic coronae with 1 -- 2 nm diameter monodisperse sizes, polyhedral oligomeric silsesquioxanes (POSS) are ideal model nanofillers. Our discovery that one POSS derivative, trisilanolphenyl-POSS (TPP), can form Langmuir-Blodgett (LB) films on hydrophobic substrates, allows us to create thin film bilayers of precisely controlled thickness and architecture. Work with poly(t-butylacrylate) (PtBA)/TPP bilayers reveals a two-step dewetting mechanism in which the upper TPP layer dewets first, followed by the formation of isolated holes with intricate, fractal, nanofiller aggregates. Like the PtBA/TPP bilayers, polystyrene (PS)/TPP bilayers also undergo a two-step dewetting mechanism. However, the upper TPP layer initially forms cracks that may arise from mismatches in thermal expansion coefficients. These cracks then serve as nucleation sites for complete dewetting of the entire bilayer. Understanding the rich diversity of surface patterns that can be formed from relatively simple processes is a key feature of this work.

  15. Heterogeneous patterns enhancing static and dynamic texture classification

    Science.gov (United States)

    Rosa da Silva, Núbia; Martinez Bruno, Odemir

    2013-02-01

    Some mixtures, such as colloids like milk, blood, and gelatin, have homogeneous appearance when viewed with the naked eye, however, to observe them at the nanoscale is possible to understand the heterogeneity of its components. The same phenomenon can occur in pattern recognition in which it is possible to see heterogeneous patterns in texture images. However, current methods of texture analysis can not adequately describe such heterogeneous patterns. Common methods used by researchers analyse the image information in a global way, taking all its features in an integrated manner. Furthermore, multi-scale analysis verifies the patterns at different scales, but still preserving the homogeneous analysis. On the other hand various methods use textons to represent the texture, breaking texture down into its smallest unit. To tackle this problem, we propose a method to identify texture patterns not small as textons at distinct scales enhancing the separability among different types of texture. We find sub patterns of texture according to the scale and then group similar patterns for a more refined analysis. Tests were performed in four static texture databases and one dynamical one. Results show that our method provide better classification rate compared with conventional approaches both in static and in dynamic texture.

  16. Dynamics of actin waves on patterned substrates: a quantitative analysis of circular dorsal ruffles.

    Directory of Open Access Journals (Sweden)

    Erik Bernitt

    Full Text Available Circular Dorsal Ruffles (CDRs have been known for decades, but the mechanism that organizes these actin waves remains unclear. In this article we systematically analyze the dynamics of CDRs on fibroblasts with respect to characteristics of current models of actin waves. We studied CDRs on heterogeneously shaped cells and on cells that we forced into disk-like morphology. We show that CDRs exhibit phenomena such as periodic cycles of formation, spiral patterns, and mutual wave annihilations that are in accord with an active medium description of CDRs. On cells of controlled morphologies, CDRs exhibit extremely regular patterns of repeated wave formation and propagation, whereas on random-shaped cells the dynamics seem to be dominated by the limited availability of a reactive species. We show that theoretical models of reaction-diffusion type incorporating conserved species capture partially the behavior we observe in our data.

  17. Complexity of gold nanoparticle formation disclosed by dynamics study

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten

    2013-01-01

    Although chemically synthesized gold nanoparticles (AuNPs) from gold salt (HAuCl4) are among the most studied nanomaterials, understanding the formation mechanisms is a challenge mainly due to limited dynamics information. A range of in situ methods with down to millisecond (ms) time resolution...... have been employed in the present report to monitor time-dependent physical and chemical properties in aqueous solution during the chemical synthesis. Chemical synthesis of AuNPs is a reduction process accompanied by release of ions and protons, and formation of solid particles. Dynamic information......]- to form Au atoms during the early stage of the synthesis process. pH- and conductivity-dynamics point further clearly to formation of coating layers on AuNPs and adsorbate exchange between MES and starch. © 2013 American Chemical Society....

  18. Handling Dynamic Weights in Weighted Frequent Pattern Mining

    Science.gov (United States)

    Ahmed, Chowdhury Farhan; Tanbeer, Syed Khairuzzaman; Jeong, Byeong-Soo; Lee, Young-Koo

    Even though weighted frequent pattern (WFP) mining is more effective than traditional frequent pattern mining because it can consider different semantic significances (weights) of items, existing WFP algorithms assume that each item has a fixed weight. But in real world scenarios, the weight (price or significance) of an item can vary with time. Reflecting these changes in item weight is necessary in several mining applications, such as retail market data analysis and web click stream analysis. In this paper, we introduce the concept of a dynamic weight for each item, and propose an algorithm, DWFPM (dynamic weighted frequent pattern mining), that makes use of this concept. Our algorithm can address situations where the weight (price or significance) of an item varies dynamically. It exploits a pattern growth mining technique to avoid the level-wise candidate set generation-and-test methodology. Furthermore, it requires only one database scan, so it is eligible for use in stream data mining. An extensive performance analysis shows that our algorithm is efficient and scalable for WFP mining using dynamic weights.

  19. An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control.

    Science.gov (United States)

    Halder, Partha; Nasabi, Mahyar; Jayasuriya, Niranjali; Shimeta, Jeff; Deighton, Margaret; Bhattacharya, Satinath; Mitchell, Arnan; Bhuiyan, Muhammed Ali

    2014-01-01

    Microstructure-based patterned surfaces with antifouling capabilities against a wide range of organisms are yet to be optimised. Several studies have shown that microtopographic features affect the settlement and the early stages of biofilm formation of microorganisms. It is speculated that the fluctuating stress-strain rates developed on patterned surfaces disrupt the stability of microorganisms. This study investigated the dynamic interactions of a motile bacterium (Escherichia coli) with microtopographies in relation to initial settlement. The trajectories of E. coli across a patterned surface of a microwell array within a microchannel-based flow cell system were assessed experimentally with a time-lapse imaging module. The microwell array was composed of 256 circular wells, each with diameter 10 μm, spacing 7 μm and depth 5 μm. The dynamics of E. coli over microwell-based patterned surfaces were compared with those over plain surfaces and an increased velocity of cell bodies was observed in the case of patterned surfaces. The experimental results were further verified and supported by computational fluid dynamic simulations. Finally, it was stated that the nature of solid boundaries and the associated microfluidic conditions play key roles in determining the dynamic stability of motile bacteria in the close vicinity over surfaces.

  20. Emergence of river dynamics through changing vegetation patterns

    Science.gov (United States)

    van Oorschot, Mijke; Kleinhans, Maarten; Middelkoop, Hans; Geerling, Gertjan

    2016-04-01

    Riparian vegetation interacts with morphodynamic processes in rivers to create distinct habitat mosaics supporting a large biodiversity. The aim of our work is to quantitatively investigate the emergent patterns in vegetation and river morphology at the river reach scale by dynamically modelling the processes and their interactions. Here, we coupled an advanced morphodynamic model to a novel dynamic riparian vegetation model to study the interaction between vegetation and morphodynamics. Vegetation colonizes bare substrate within the seed dispersal window, passes several growth stages with different properties and can die through flooding, desiccation, uprooting, scour or burial. We have compared river morphology and vegetation patterns of scenarios without vegetation, with static vegetation that does not grow or die and several dynamic vegetation scenarios with a range of vegetation strategies and eco-engineering properties. Results show that dynamic vegetation has a decreased lateral migration of meander bends and maintains its active meandering behavior as opposed to the scenarios without vegetation and with static vegetation. Also the patterns in vegetation and fluvial morphology and the vegetation age distribution mostly resemble the natural situation when compared to aerial photos of the study area. We find that river dynamics, specifically sinuosity and sediment transport, are very sensitive to vegetation properties that determine vegetation density, settlement location and survival. Future work will include the effects of invasive species, addition of silt and the effect of various river management strategies.

  1. Two-dimensional pattern formation in ionic liquids confined between graphene walls.

    Science.gov (United States)

    Montes-Campos, Hadrián; Otero-Mato, José Manuel; Méndez-Morales, Trinidad; Cabeza, Oscar; Gallego, Luis J; Ciach, Alina; Varela, Luis M

    2017-09-20

    We perform molecular dynamics simulations of ionic liquids confined between graphene walls under a large variety of conditions (pure ionic liquids, mixtures with water and alcohols, mixtures with lithium salts and defective graphene walls). Our results show that the formation of striped and hexagonal patterns in the Stern layer can be considered as a general feature of ionic liquids at electrochemical interfaces, the transition between patterns being controlled by the net balance of charge in the innermost layer of adsorbed molecules. This explains previously reported experimental and computational results and, for the first time, why these pattern changes are triggered by any perturbation of the charge density at the innermost layer of the electric double layer (voltage and composition changes, and vacancies at the electrode walls, among others), which may help tuning electrode-ionic liquid interfaces. Using Monte Carlo simulations we show that such structures can be reproduced by a simple two-dimensional lattice model with only nearest-neighbour interactions, governed by highly screened ionic interactions and short-range and excluded volume interactions. We also show that the results of our simulations are consistent with those inferred from the Landau-Brazovskii theory of pattern formation in self-assembling systems. The presence of these patterns at the ionic liquid graphene-electrode interfaces may have a strong impact on the process of ionic transfer from the bulk mixtures to the electrodes, on the differential capacitance of the electrode-electrolyte double layer or on the rates of redox reactions at the electrodes, among other physicochemical properties, and is therefore an effect of great technological interest.

  2. How the Propagation of Heat-Flux Modulations Triggers E × B Flow Pattern Formation

    Science.gov (United States)

    Kosuga, Yusuke

    2013-10-01

    Recently, a new class of E × B flow pattern, called an `` E × B staircase,'' was observed in a simulation study using the full- f flux driven GYSELA code. Here, E × B staircases are quasi-regular steady patterns of localized shear layers and temperature profile corrugations. The shear layers are interspaced between regions of turbulent avalanching of the size of several correlation length (~ 10Δc). In this work, a theory to describe the formation of such E × B staircases from a bath of stochastic avalanches is presented, based on analogy of staircase formation to jam formation in traffic flow. Namely, staircase formation is viewed as a heat flux ``jam'' that causes profile corrugation, which is analogous to a traffic jam that causes corrugations in the local car density in a traffic flow. To model such an effect in plasmas, a finite response time τ is introduced, during which instantaneous heat flux relaxes to the mean heat flux, determined by symmetry constraints. The response time introduced here is an analogue of drivers' response time in traffic flow dynamics. It is shown that the extended model describes a heat flux ``jam'' and profile corrugation, which appears as an instability, in analogy to the way a clustering instability leads to a traffic jam. Such local amplification of heat and profile corrugations can lead to the formation of E × B staircases. The scale length that gives the maximum growth rate falls in the mesoscale range and is comparable to the staircase step spacing. Present address: IAS and RIAM, Kyushu University, Japan.

  3. Multistability and dynamic transitions of intracellular Min protein patterns.

    Science.gov (United States)

    Wu, Fabai; Halatek, Jacob; Reiter, Matthias; Kingma, Enzo; Frey, Erwin; Dekker, Cees

    2016-06-08

    Cells owe their internal organization to self-organized protein patterns, which originate and adapt to growth and external stimuli via a process that is as complex as it is little understood. Here, we study the emergence, stability, and state transitions of multistable Min protein oscillation patterns in live Escherichia coli bacteria during growth up to defined large dimensions. De novo formation of patterns from homogenous starting conditions is observed and studied both experimentally and in simulations. A new theoretical approach is developed for probing pattern stability under perturbations. Quantitative experiments and simulations show that, once established, Min oscillations tolerate a large degree of intracellular heterogeneity, allowing distinctly different patterns to persist in different cells with the same geometry. Min patterns maintain their axes for hours in experiments, despite imperfections, expansion, and changes in cell shape during continuous cell growth. Transitions between multistable Min patterns are found to be rare events induced by strong intracellular perturbations. The instances of multistability studied here are the combined outcome of boundary growth and strongly nonlinear kinetics, which are characteristic of the reaction-diffusion patterns that pervade biology at many scales.

  4. Formation of white-eye pattern with microdischarge in an air dielectric barrier discharge system

    CERN Document Server

    He, Yafeng; Liu, Weili; Wang, Hongfang; Zhao, Zengchao; Fan, Weili

    2011-01-01

    We report on the first observation of white-eye pattern in an air dielectric barrier discharge. The patterned discharges undergo a development as following: random spots - quasihexagonal pattern - hexagonal pattern (type I) - hexagonal pattern (type II) - white-eye pattern - chaos as the voltage is increased. The spatiotemporal characteristics of patterned discharges are investigated by using an optical method. Results show that the two discharge modes, uniform mode and filamentary mode, are actually two different spatial presentations of the same origin: the microdischarge. From the viewpoint of pattern dynamics, the white-eye pattern results from a 3-wave resonance interaction.

  5. Coupled gas flow/solid dynamics model for predicting the formation of fracture patterns in gas well simulation experiments. [Propellant mixture used instead of explosives to fracture rock surrounding borehole

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.M.; Swenson, D.V.; Cooper, P.W.

    1984-07-01

    A two-dimensional finite element model for predicting fracture patterns obtained in high energy gas fracture experiments is presented. In these experiments, a mixture of propellants is used instead of explosives to fracture the rock surrounding the borehole. The propellant mixture is chosen to tailor the pressure pulse so that multiple fractures emanate from the borehole. The model allows the fracture pattern and pressure pulse to be calculated for different combinations of propellant mixture, in situ stress conditions, and rock properties. The model calculates the amount of gas generated by the burning propellants using a burn rate given by a power law in pressure. By assuming that the gas behaves as a perfect gas and that the flow down the fractures is isothermal, the loss of gas from the borehole due to flow down the cracks is accounted for. The flow of gas down the cracks is included in an approximate manner by assuming self-similar pressure profiles along the fractures. Numerical examples are presented and compared to three different full-scale experiments. Results show a good correlation with the experimental data over a wide variety of test parameters. 9 reference, 10 figures, 3 tables.

  6. Molecular dynamical modelling of endohedral fullerenes formation in plasma

    Science.gov (United States)

    Fedorov, A. S.; Kovaleva, E. A.; Lubkova, T. A.; Popov, Z. I.; Kuzubov, A. A.; Visotin, M. A.; Irle, S.

    2016-02-01

    The initial stages of fullerene and endohedral metallofullerene (EMF) synthesis in carbon-helium plasma at 1500 K and 2500 K have been simulated with quantum chemical molecular dynamics (MD) based on density-functional tight-binding (DFTB). The cases of formation of large (>100 atoms) sp2-carbon clusters with scandium atoms inside were observed. These clusters are considered as precursors of fullerenes or EMFs, and thus it is shown that formation of EMFs can be explained within the framework of "shrinking hot giant" mechanism. Also, the dependence of formation rates on plasma parameters, including temperature, buffer gas and metal atoms concentrations, has been studied.

  7. Formation Dynamics and Quantitative Prediction of Hydrocarbons of the Superpressure System in the Dongying Sag

    Institute of Scientific and Technical Information of China (English)

    SUI Fenggui; HAO Xuefeng; LIU Qing; ZHUO Qingong; ZHANG Shouchun

    2008-01-01

    Based on the theory of formation dynamics of oil/gas pools, the Dongying sag can be divided into three dynamic systems regarding the accumulation of oil and gas: the superpressure closed system,the semi-closed system and the normal pressure open system. Based on the analysis of genesis of superpressure in the superpressure closed system and the rule of hydrocarbon expulsion,it is found that hydrocarbon generation is related to superpressure, which is the main driving factor of hydrocarbon migration. Micro fractures formed by superpressure are the main channels for hydrocarbon migration. There are three dynamic patterns for hydrocarbon expulsion: free water drainage, hydrocarbon accumulation and drainage through micro fissures. In the superpressure closed system, the oil-driving-water process and oil/gas accumulation were completed in lithologic traps by way of such two dynamic patterns as episodic evolution of superpressure systems and episodic pressure release of faults. The oil-bearing capacity of lithologic traps is intimately related to reservoir-forming dynamic force. Quantitative evaluation of dynamic conditions for pool formation can effectively predict the oil-bearing capability of traps.

  8. Dynamics analysis on neural firing patterns by symbolic approach

    Institute of Scientific and Technical Information of China (English)

    Gao Zhi-Ying; Lu Qi-Shao

    2007-01-01

    Neural firing patterns are investigated by using symbolic dynamics. Bifurcation behaviour of the Hindmarsh-Rose (HR) neuronal model is simulated with the external stimuli gradually decreasing, and various firing activities with different topological structures are orderly numbered. Through constructing first-return maps of interspike intervals, all firing patterns are described and identified by symbolic expressions. On the basis of ordering rules of symbolic sequences, the corresponding relation between parameters and firing patterns is established, which will be helpful for encoding neural information. Moreover, using the operation rule of * product, generation mechanisms and intrinsic configurations of periodic patterns can be distinguished in detail. Results show that the symbolic approach is a powerful tool to study neural firing activities. In particular, such a coarse-grained way can be generalized in neural electrophysiological experiments to extract much valuable information from complicated experimental data.

  9. Patterning Multicomponent Polymer Thin Films via Dynamic Thermal Processing

    Science.gov (United States)

    Singh, Gurpreet

    Bottom-up patterning is gaining increased importance owing to the physical limitations and rising costs of top-down patterning. One example of bottom-up patterning is self-assembling polymer thin films. Although there are several pathways to facilitate polymer thin film self-assembly, this presentation will focus on dynamic thermal field based processes for patterning multicomponent polymer thin films. Dynamic thermal field processing is an attractive roll­to­roll (R2R) amenable directed self­assembly (DSA) method for molecular level organization of multicomponent polymer systems such as block copolymer thin films over large areas without requiring guiding templates. The talk will first outline how parameters such as magnitude of the temperature gradient, velocity of annealing, thermal expansion, and molecular weight of the polymer can be optimized to finely tune the morphology of the block copolymer thin films and also elucidate their associated physical mechanisms. The second part of the talk will outline application of dynamic thermal field processes for fabricating functional nanomaterials and discuss the recent advancements achieved using these processes.

  10. The Dynamics of Fullerene Structure Formation Order out of Chaos Phenomenon

    CERN Document Server

    Selvam, A M

    1999-01-01

    C60 molecules form spontaneously during vaporization of carbon associated with intense heating and turbulence such as in electrical arcs or flames. Self-organization of fluctuations in the highly turbulent (chaotic) atomized carbon vapor appears to result in the formation of the stable structure of C60 and therefore may be visualized as order out of chaos phenomenon. The geometry of C60, namely, the self-similar quasiperiodic Penrose tiling pattern implies long-range spatiotemporal correlations. Such non-local connections in space and time are ubiquitous to dynamical systems in nature and is recently identified as signatures of self-organized criticality . A cell dynamical system model for turbulent fluid flows developed by the author is summarized and it is shown that the observed quasiperiodic Penrose tiling pattern is a signature of quantum-like mechanics governing flow dynamics.

  11. Dynamical formation of cataclysmic variables in globular clusters

    Science.gov (United States)

    Hong, Jongsuk; Vesperini, Enrico; Belloni, Diogo; Giersz, Mirek

    2017-01-01

    The formation and evolution of X-ray sources in globular clusters is likely to be affected by the cluster internal dynamics and the stellar interactions in the cluster dense environment. Several observational studies have revealed a correlation between the number of X-ray sources and the stellar encounter rate, and provided evidence of the role of dynamics in the formation of X-ray binaries. We have performed a survey of Monte Carlo simulations aimed at exploring the connection between the dynamics and formation of cataclysmic variables (CVs) and the origin of the observed correlation between the number of these objects, Ncv, and the stellar encounter rate, Γ. The results of our simulations show a correlation between Ncv and Γ, as found in observational data, illustrate the essential role played by the dynamics, and shed light on the dynamical history behind this correlation. CVs in our simulations are more centrally concentrated than single stars with masses close to those of turn-off stars, although this trend is stronger for CVs formed from primordial binaries undergoing exchange encounters, which include a population of more massive CVs absent in the group of CVs formed from binaries not suffering any component exchange.

  12. Dynamical Formation of Cataclysmic Variables in Globular Clusters

    CERN Document Server

    Hong, Jongsuk; Belloni, Diogo; Giersz, Mirek

    2016-01-01

    The formation and evolution of X-ray sources in globular clusters is likely to be affected by the cluster internal dynamics and the stellar interactions in the cluster dense environment.Several observational studies have revealed a correlation between the number of X-ray sources and the stellar encounter rate and provided evidence of the role of dynamics in the formation of X-ray binaries. We have performed a survey of Monte-Carlo simulations aimed at exploring the connection between the dynamics and formation of cataclysmic variables (CVs) and the origin of the observed correlation between the number of these objects, $N_{\\rm cv}$, and the stellar encounter rate, $\\Gamma$.The results of our simulations show a correlation between $N_{\\rm cv}$ and $\\Gamma$ as found in observational data, illustrate the essential role played by dynamics, and shed light on the dynamical history behind this correlation. CVs in our simulations are more centrally concentrated than single stars with masses close to those of turn-off...

  13. Memory formation: from network structure to neural dynamics.

    Science.gov (United States)

    Feldt, Sarah; Wang, Jane X; Hetrick, Vaughn L; Berke, Joshua D; Zochowski, Michal

    2010-05-13

    Understanding the neural correlates of brain function is an extremely challenging task, since any cognitive process is distributed over a complex and evolving network of neurons that comprise the brain. In order to quantify observed changes in neuronal dynamics during hippocampal memory formation, we present metrics designed to detect directional interactions and the formation of functional neuronal ensembles. We apply these metrics to both experimental and model-derived data in an attempt to link anatomical network changes with observed changes in neuronal dynamics during hippocampal memory formation processes. We show that the developed model provides a consistent explanation of the anatomical network modifications that underlie the activity changes observed in the experimental data.

  14. Molecular Dynamics Simulation of Amyloid Beta Dimer Formation

    CERN Document Server

    Urbanc, B; Ding, F; Sammond, D; Khare, S; Buldyrev, S V; Stanley, H E; Dokholyan, N V

    2004-01-01

    Recent experiments with amyloid-beta (Abeta) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduce a molecular dynamics approach to study Abeta dimer formation: (1) we use discrete molecular dynamics simulations of a coarse-grained model to identify a variety of dimer conformations, and (2) we employ all-atom molecular mechanics simulations to estimate the thermodynamic stability of all dimer conformations. Our simulations of a coarse-grained Abeta peptide model predicts ten different planar beta-strand dimer conformations. We then estimate the free energies of all dimer conformations in all-atom molecular mechanics simulations with explicit water. We compare the free energies of Abeta(1-42) and Abeta(1-40...

  15. Satellite formation flying relative dynamics, formation design, fuel optimal maneuvers and formation maintenance

    CERN Document Server

    Wang, Danwei; Poh, Eng Kee

    2017-01-01

    This book systematically describes the concepts and principles for multi-satellite relative motion, passive and near passive formation designs, trajectory planning and control for fuel optimal formation maneuvers, and formation flying maintenance control design. As such, it provides a sound foundation for researchers and engineers in this field to develop further theories and pursue their implementations. Though satellite formation flying is widely considered to be a major advance in space technology, there are few systematic treatments of the topic in the literature. Addressing that gap, the book offers a valuable resource for academics, researchers, postgraduate students and practitioners in the field of satellite science and engineering.

  16. Torque-stiffness-controlled dynamic walking with central pattern generators.

    Science.gov (United States)

    Huang, Yan; Vanderborght, Bram; Van Ham, Ronald; Wang, Qining

    2014-12-01

    Walking behavior is modulated by controlling joint torques in most existing passivity-based bipeds. Controlled Passive Walking with adaptable stiffness exhibits controllable natural motions and energy efficient gaits. In this paper, we propose torque-stiffness-controlled dynamic bipedal walking, which extends the concept of Controlled Passive Walking by introducing structured control parameters and a bio-inspired control method with central pattern generators. The proposed walking paradigm is beneficial in clarifying the respective effects of the external actuation and the internal natural dynamics. We present a seven-link biped model to validate the presented walking. Effects of joint torque and joint stiffness on gait selection, walking performance and walking pattern transitions are studied in simulations. The work in this paper develops a new solution of motion control of bipedal robots with adaptable stiffness and provides insights of efficient and sophisticated walking gaits of humans.

  17. Human Dynamics: The Correspondence Patterns of Darwin and Einstein

    CERN Document Server

    Oliveira, J G

    2005-01-01

    While living in different historical era, Charles Darwin (1809-1882) and Albert Einstein (1879-1955) were both prolific correspondents: Darwin sent (received) at least 7,591 (6,530) letters during his lifetime while Einstein sent (received) over 14,500 (16,200). Before email scientists were part of an extensive university of letters, the main venue for exchanging new ideas and results. But were the communication patterns of the pre-email times any different from the current era of instant access? Here we show that while the means have changed, the communication dynamics has not: Darwin's and Einstein's pattern of correspondence and today's electronic exchanges follow the same scaling laws. Their communication belongs, however, to a different universality class from email communication, providing evidence for a new class of phenomena capturing human dynamics.

  18. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  19. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen.

    Science.gov (United States)

    Mahboubi, Amir; Linden, Pernilla; Hedenström, Mattias; Moritz, Thomas; Niittylä, Totte

    2015-06-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a (13)CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of (13)C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on (13)C incorporation to lignin and cell wall carbohydrates. No (13)C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique (13)C labeling method for the analysis of wood formation and secondary growth in trees.

  20. Pattern formation, synchronization, and outbreak of biodiversity in cyclically competing games.

    Science.gov (United States)

    Wang, Wen-Xu; Ni, Xuan; Lai, Ying-Cheng; Grebogi, Celso

    2011-01-01

    Species in nature are typically mobile over diverse distance scales, examples of which range from bacteria run to long-distance animal migrations. These behaviors can have a significant impact on biodiversity. Addressing the role of migration in biodiversity microscopically is fundamental but remains a challenging problem in interdisciplinary science. We incorporate both intra- and inter-patch migrations in stochastic games of cyclic competitions and find that the interplay between the migrations at the local and global scales can lead to robust species coexistence characterized dynamically by the occurrence of remarkable target-wave patterns in the absence of any external control. The waves can emerge from either mixed populations or isolated species in different patches, regardless of the size and the location of the migration target. We also find that, even in a single-species system, target waves can arise from rare mutations, leading to an outbreak of biodiversity. A surprising phenomenon is that target waves in different patches can exhibit synchronization and time-delayed synchronization, where the latter potentially enables the prediction of future evolutionary dynamics. We provide a physical theory based on the spatiotemporal organization of the target waves to explain the synchronization phenomena. We also investigate the basins of coexistence and extinction to establish the robustness of biodiversity through migrations. Our results are relevant to issues of general and broader interest such as pattern formation, control in excitable systems, and the origin of order arising from self-organization in social and natural systems.

  1. Pattern formation, synchronization, and outbreak of biodiversity in cyclically competing games

    Science.gov (United States)

    Wang, Wen-Xu; Ni, Xuan; Lai, Ying-Cheng; Grebogi, Celso

    2011-01-01

    Species in nature are typically mobile over diverse distance scales, examples of which range from bacteria run to long-distance animal migrations. These behaviors can have a significant impact on biodiversity. Addressing the role of migration in biodiversity microscopically is fundamental but remains a challenging problem in interdisciplinary science. We incorporate both intra- and inter-patch migrations in stochastic games of cyclic competitions and find that the interplay between the migrations at the local and global scales can lead to robust species coexistence characterized dynamically by the occurrence of remarkable target-wave patterns in the absence of any external control. The waves can emerge from either mixed populations or isolated species in different patches, regardless of the size and the location of the migration target. We also find that, even in a single-species system, target waves can arise from rare mutations, leading to an outbreak of biodiversity. A surprising phenomenon is that target waves in different patches can exhibit synchronization and time-delayed synchronization, where the latter potentially enables the prediction of future evolutionary dynamics. We provide a physical theory based on the spatiotemporal organization of the target waves to explain the synchronization phenomena. We also investigate the basins of coexistence and extinction to establish the robustness of biodiversity through migrations. Our results are relevant to issues of general and broader interest such as pattern formation, control in excitable systems, and the origin of order arising from self-organization in social and natural systems.

  2. Stabilization and destabilization effects of the electric field on stochastic precipitate pattern formation

    NARCIS (Netherlands)

    Lagzi, István; Izsák, Ferenc

    2004-01-01

    Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly stochastic behaviour as the initial conce

  3. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    Science.gov (United States)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  4. Topics in Complexity: Dynamical Patterns in the Cyberworld

    Science.gov (United States)

    Qi, Hong

    Quantitative understanding of mechanism in complex systems is a common "difficult" problem across many fields such as physical, biological, social and economic sciences. Investigation on underlying dynamics of complex systems and building individual-based models have recently been fueled by big data resulted from advancing information technology. This thesis investigates complex systems in social science, focusing on civil unrests on streets and relevant activities online. Investigation consists of collecting data of unrests from open digital source, featuring dynamical patterns underlying, making predictions and constructing models. A simple law governing the progress of two-sided confrontations is proposed with data of activities at micro-level. Unraveling the connections between activity of organizing online and outburst of unrests on streets gives rise to a further meso-level pattern of human behavior, through which adversarial groups evolve online and hyper-escalate ahead of real-world uprisings. Based on the patterns found, noticeable improvement of prediction of civil unrests is achieved. Meanwhile, novel model created from combination of mobility dynamics in the cyberworld and a traditional contagion model can better capture the characteristics of modern civil unrests and other contagion-like phenomena than the original one.

  5. Shock Dynamics in Stellar Outbursts. I. Shock Formation

    Science.gov (United States)

    Ro, Stephen; Matzner, Christopher D.

    2017-05-01

    Wave-driven outflows and non-disruptive explosions have been implicated in pre-supernova outbursts, supernova impostors, luminous blue variable eruptions, and some narrow-line and superluminous supernovae. To model these events, we investigate the dynamics of stars set in motion by strong acoustic pulses and wave trains, focusing on nonlinear wave propagation, shock formation, and an early phase of the development of a weak shock. We identify the shock formation radius, showing that a heuristic estimate based on crossing characteristics matches an exact expansion around the wave front and verifying both with numerical experiments. Our general analytical condition for shock formation applies to one-dimensional motions within any static environment, including both eruptions and implosions. We also consider the early phase of shock energy dissipation. We find that waves of super-Eddington acoustic luminosity always create shocks, rather than damping by radiative diffusion. Therefore, shock formation is integral to super-Eddington outbursts.

  6. Pattern formation of reaction-diffusion system having self-determined flow in the amoeboid organism of Physarum plasmodium

    CERN Document Server

    Yamada, H; Ito, M

    1998-01-01

    The amoeboid organism, the plasmodium of Physarum polycephalum, behaves on the basis of spatio-temporal pattern formation by local contraction-oscillators. This biological system can be regarded as a reaction-diffusion system which has spatial interaction by active flow of protoplasmic sol in the cell. Paying attention to the physiological evidence that the flow is determined by contraction pattern in the plasmodium, a reaction-diffusion system having self-determined flow arises. Such a coupling of reaction-diffusion-advection is a characteristic of the biological system, and is expected to relate with control mechanism of amoeboid behaviours. Hence, we have studied effects of the self-determined flow on pattern formation of simple reaction-diffusion systems. By weakly nonlinear analysis near a trivial solution, the envelope dynamics follows the complex Ginzburg-Landau type equation just after bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the equation through the critic...

  7. Dynamic Patterns of Expertise: The Case of Orthopedic Medical Diagnosis.

    Directory of Open Access Journals (Sweden)

    Dan Assaf

    Full Text Available The aim of this study was to analyze dynamic patterns for scanning femoroacetabular impingement (FAI radiographs in orthopedics, in order to better understand the nature of expertise in radiography. Seven orthopedics residents with at least two years of expertise and seven board-certified orthopedists participated in the study. The participants were asked to diagnose 15 anteroposterior (AP pelvis radiographs of 15 surgical patients, diagnosed with FAI syndrome. Eye tracking data were recorded using the SMI desk-mounted tracker and were analyzed using advanced measures and methodologies, mainly recurrence quantification analysis. The expert orthopedists presented a less predictable pattern of scanning the radiographs although there was no difference between experts and non-experts in the deterministic nature of their scan path. In addition, the experts presented a higher percentage of correct areas of focus and more quickly made their first comparison between symmetric regions of the pelvis. We contribute to the understanding of experts' process of diagnosis by showing that experts are qualitatively different from residents in their scanning patterns. The dynamic pattern of scanning that characterizes the experts was found to have a more complex and less predictable signature, meaning that experts' scanning is simultaneously both structured (i.e. deterministic and unpredictable.

  8. Multidimensional Pattern Formation Has an Infinite Number of Constants of Motion

    CERN Document Server

    Mineev-Weinstein, M B

    1993-01-01

    Abstract: Extending our previous work on 2D growth for the Laplace equation we study here {\\it multidimensional} growth for {\\it arbitrary elliptic} equations, describing inhomogeneous and anisotropic pattern formations processes. We find that these nonlinear processes are governed by an infinite number of conservation laws. Moreover, in many cases {\\it all dynamics of the interface can be reduced to the linear time--dependence of only one ``moment" $M_0$} which corresponds to the changing volume while {\\it all higher moments, $M_l$, are constant in time. These moments have a purely geometrical nature}, and thus carry information about the moving shape. These conserved quantities (eqs.~(7) and (8) of this article) are interpreted as coefficients of the multipole expansion of the Newtonian potential created by the mass uniformly occupying the domain enclosing the moving interface. Thus the question of how to recover the moving shape using these conserved quantities is reduced to the classical inverse potential...

  9. FORMATION MECHANISM AND SPATIAL PATTERN OF URBAN AGGLOMERATION IN CENTRAL JILIN OF CHINA

    Institute of Scientific and Technical Information of China (English)

    QIN Gan; ZHANG Ping-yu; JIAO Bin

    2006-01-01

    Urban agglomeration is made up of cities with different sizes to be linked by traffic network in a given area, and it is an inevitable result when urbanization reaches a certain level. Taking urban agglomerationin central Jilin(UACJ) as an example, this article analyzes the formation mechanism and spatial pattern of urban agglomeration in the less-developed area. First, the dynamics of UACJ has been analyzed from the aspects of geographical condition, economic foundation, policy background, and traffic condition. Then the development process is divided into three stages-single city, city group and city cluster. Secondly, the central cities are identified from the aspects of city centrality, and the development axes are classified based on economic communication capacity. Finally, the urban agglomeration is divided into five urban economic regions in order to establish the reasonable distribution of industries.

  10. A reaction diffusion model of pattern formation in clustering of adatoms on silicon surfaces

    Directory of Open Access Journals (Sweden)

    Trilochan Bagarti

    2012-12-01

    Full Text Available We study a reaction diffusion model which describes the formation of patterns on surfaces having defects. Through this model, the primary goal is to study the growth process of Ge on Si surface. We consider a two species reaction diffusion process where the reacting species are assumed to diffuse on the two dimensional surface with first order interconversion reaction occuring at various defect sites which we call reaction centers. Two models of defects, namely a ring defect and a point defect are considered separately. As reaction centers are assumed to be strongly localized in space, the proposed reaction-diffusion model is found to be exactly solvable. We use Green's function method to study the dynamics of reaction diffusion processes. Further we explore this model through Monte Carlo (MC simulations to study the growth processes in the presence of a large number of defects. The first passage time statistics has been studied numerically.

  11. Advances in dynamics, patterns, cognition challenges in complexity

    CERN Document Server

    Pikovsky, Arkady; Rulkov, Nikolai; Tsimring, Lev

    2017-01-01

    This book focuses on recent progress in complexity research based on the fundamental nonlinear dynamical and statistical theory of oscillations, waves, chaos, and structures far from equilibrium. Celebrating seminal contributions to the field by Prof. M. I. Rabinovich of the University of California at San Diego, this volume brings together perspectives on both the fundamental aspects of complexity studies, as well as in applications in different fields ranging from granular patterns to understanding of the cognitive brain and mind dynamics. The slate of world-class authors review recent achievements that together present a broad and coherent coverage of modern research in complexity greater than the sum of its parts. Presents the most up-to-date developments in the studies of complexity Combines basic and applied aspects Links background nonlinear theory of oscillations and waves with modern approaches Allows readers to recognize general dynamical principles across the applications fields.

  12. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J [Harvard School of Engineering and Applied Sciences, Cambridge MA 02138 (United States)

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  13. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

    Science.gov (United States)

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  14. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  15. Convection-driven pattern formation in lawn grasses

    Science.gov (United States)

    Thompson, Sally; Daniels, Karen

    2009-11-01

    Spatial patterns of 'dead' lawn grass have often been ascribed to Turing-type reaction-diffusion processes related to water scarcity. We present an alternative hypothesis: that the air within the grass canopy is unstable to a convective instability, such that chill damage caused by falling cold air is responsible for the creation of brown and green bands of grass. This hypothesis is consistent with several features of small-scale vegetation patterns, including their length scale, rapid onset and transient nature. We find that the predictions of a porous medium convection model based are consistent with measurements made for a particular instance of lawn-patterning in North Carolina.

  16. Estimating dew formation in rice, using seasonally averaged diel patterns of weather variables

    OpenAIRE

    Luo, W.; Goudriaan, J.

    2004-01-01

    If dew formation cannot be measured it has to be estimated. Available simulation models for estimating dew formation require hourly weather data as input. However, such data are not available for places without an automatic weather station. In such cases the diel pattern of weather variables might be used to run the simulation model. To investigate the possibility of using diel patterns of weather variables to estimate dew formation, a field experiment was carried out from February to April 1...

  17. Dynamics of formation of ferromanganese nodules in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Ghosh, A.K.

    stream_size 27400 stream_content_type text/plain stream_name J_Asian_Earth_Sci_37_394a.pdf.txt stream_source_info J_Asian_Earth_Sci_37_394a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Author..., and the model should bring about a predictive estimate of other nodule bearing areas in the world oceans. Key Words: Ferromanganese nodules, Indian Ocean Nodule Field, influencing parameters, Nodule formation and dynamics, Model of nodule formation...

  18. Formation and post-formation dynamics of bacterial biofilm streamers as highly viscous liquid jets

    CERN Document Server

    Das, Siddhartha

    2013-01-01

    It has been recently reported that in presence of low Reynolds number (Re<<1) transport, preformed bacterial biofilms, several hours after their formation, may degenerate in form of filamentous structures, known as streamers. In this letter, we explain that such streamers form as the highly viscous liquid states of the intrinsically viscoelastic biofilms. Such "viscous liquid" state can be hypothesized by noting that the time of appearance of the streamers is substantially larger than the viscoelastic relaxation time scale of the biofilms, and this appearance is explained by the inability of a viscous liquid to withstand an external shear. Further, by identifying the post formation dynamics of the streamers as that of a viscous liquid jet in a surrounding flow field, we can interpret several unexplained issues associated with the post-formation dynamics of streamers, such as the clogging of the flow passage or the exponential time growth of streamer dimensions.

  19. Formation Pattern Based on Modified Cell Decomposition Algorithm

    Directory of Open Access Journals (Sweden)

    Iswanto Iswanto

    2017-06-01

    Full Text Available The purpose of this paper is to present the shortest path algorithm for Quadrotor to make a formation quickly and avoid obstacles in an unknown area. There are three algorithms proposed in this paper namely fuzzy, cell decomposition, and potential field algorithms. Cell decomposition algorithm is an algorithm derived from graph theory used to create maps of robot formations. Fuzzy algorithm is an artificial intelligence control algorithm used for robot navigation. The merger of these two algorithms are not able to form an optimum formation because some Quadrotors which have been hovering should wait for the other Quadrotors which are unable to find the shortest distance to reach the formation quickly. The problem is that the longer time the multi Quadrotors take to make a formation, the more energy they use. It can be overcome by adding potential field algorithm. The algorithm is used to give values of weight to the path planning taken by the Quadrotors. The proposed algorithms have shown that multi Quadrotors can quickly make a formation because they are able to avoid various obstacles and find the shortest path so that the time required to get to the goal position is fast.

  20. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    Science.gov (United States)

    Bennett, James E. M.; Bair, Wyeth

    2015-01-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406

  1. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays.

    Science.gov (United States)

    Seirin Lee, S; Gaffney, E A; Baker, R E

    2011-11-01

    Since its conception in 1952, the Turing paradigm for pattern formation has been the subject of numerous theoretical investigations. Experimentally, this mechanism was first demonstrated in chemical reactions over 20 years ago and, more recently, several examples of biological self-organisation have also been implicated as Turing systems. One criticism of the Turing model is its lack of robustness, not only with respect to fluctuations in the initial conditions, but also with respect to the inclusion of delays in critical feedback processes such as gene expression. In this work we investigate the possibilities for Turing patterns on growing domains where the morphogens additionally regulate domain growth, incorporating delays in the feedback between signalling and domain growth, as well as gene expression. We present results for the proto-typical Schnakenberg and Gierer-Meinhardt systems: exploring the dynamics of these systems suggests a reconsideration of the basic Turing mechanism for pattern formation on morphogen-regulated growing domains as well as highlighting when feedback delays on domain growth are important for pattern formation.

  2. Biological pattern formation: from basic mechanisms to complex structures

    Science.gov (United States)

    Koch, A. J.; Meinhardt, H.

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns? Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of Drosophila and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  3. Dynamic Trap Formation and Elimination in Colloidal Quantum Dots

    KAUST Repository

    Voznyy, O.

    2013-03-21

    Using first-principles simulations on PbS and CdSe colloidal quantum dots, we find that surface defects form in response to electronic doping and charging of the nanoparticles. We show that electronic trap states in nanocrystals are dynamic entities, in contrast with the conventional picture wherein traps are viewed as stable electronic states that can be filled or emptied, but not created or destroyed. These traps arise from the formation or breaking of atomic dimers at the nanoparticle surface. The dimers\\' energy levels can reside within the bandgap, in which case a trap is formed. Fortunately, we are also able to identify a number of shallow-electron-affinity cations that stabilize the surface, working to counter dynamic trap formation and allowing for trap-free doping. © 2013 American Chemical Society.

  4. Ice Formation on Kaolinite: Insights from Molecular Dynamics Simulations

    CERN Document Server

    Sosso, Gabriele C; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-01-01

    The formation of ice affects many aspects of our everyday life as well as technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even via state-of-the-art experimental techniques. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long timescales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaol...

  5. CDS Simulation and Pattern Formation of Phase Separation

    Institute of Scientific and Technical Information of China (English)

    ZhangjiLIU; MenCHENG; 等

    1998-01-01

    Several properties of the generation and evolution of phase separating patterns for binary material studied by CDS model are proposed.The main conclusions are(1) for alloys spinodal decomposition,the conceptions of “macro-pattern” and “micropattern” are posed by “black-and-white graph”and “gray-scale graph” respectively.We find that though the four forms of map f that represent the self-evolution of order parameter in a cell (lattice)are similar to each other in “macro-pattern”,there are evident differences in their micro-pattern,e.g.,some different fine netted sturctures in the black domain and the white domain are found by the micro-pattern.so that distinct mechanical and physical behaviors shall be obtained.(2) If the two constituteons of block copolymers are not symmetric (i.e.r≠0.5),a pattern called “grain-strip cross pattern is discovered,is the 0.43

  6. Track-etched membrane: dynamics of pore formation

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1994-02-01

    The dynamics of pore formation during etching of heavy ion (Ar 9+ - 4.5 MeV/amu) irradiated bisphenol-A polycarbonate (PC) and polyethylene terephthalate (PET) films is determined by a conductivity cell. This work presents the theoretical basis of this method and describes the experimental procedure. The obtained results allow the determination of the track ( Vt) and bulk ( Vg) etch rates, and an estimate of the damage zone diameter in PC before etching.

  7. Ice formation on kaolinite: Insights from molecular dynamics simulations

    Science.gov (United States)

    Sosso, Gabriele C.; Tribello, Gareth A.; Zen, Andrea; Pedevilla, Philipp; Michaelides, Angelos

    2016-12-01

    The formation of ice affects many aspects of our everyday life as well as important technologies such as cryotherapy and cryopreservation. Foreign substances almost always aid water freezing through heterogeneous ice nucleation, but the molecular details of this process remain largely unknown. In fact, insight into the microscopic mechanism of ice formation on different substrates is difficult to obtain even if state-of-the-art experimental techniques are used. At the same time, atomistic simulations of heterogeneous ice nucleation frequently face extraordinary challenges due to the complexity of the water-substrate interaction and the long time scales that characterize nucleation events. Here, we have investigated several aspects of molecular dynamics simulations of heterogeneous ice nucleation considering as a prototypical ice nucleating material the clay mineral kaolinite, which is of relevance in atmospheric science. We show via seeded molecular dynamics simulations that ice nucleation on the hydroxylated (001) face of kaolinite proceeds exclusively via the formation of the hexagonal ice polytype. The critical nucleus size is two times smaller than that obtained for homogeneous nucleation at the same supercooling. Previous findings suggested that the flexibility of the kaolinite surface can alter the time scale for ice nucleation within molecular dynamics simulations. However, we here demonstrate that equally flexible (or non flexible) kaolinite surfaces can lead to very different outcomes in terms of ice formation, according to whether or not the surface relaxation of the clay is taken into account. We show that very small structural changes upon relaxation dramatically alter the ability of kaolinite to provide a template for the formation of a hexagonal overlayer of water molecules at the water-kaolinite interface, and that this relaxation therefore determines the nucleation ability of this mineral.

  8. Mathematical study on robust tissue pattern formation in growing epididymal tubule.

    Science.gov (United States)

    Hirashima, Tsuyoshi

    2016-10-21

    Tissue pattern formation during development is a reproducible morphogenetic process organized by a series of kinetic cellular activities, leading to the building of functional and stable organs. Recent studies focusing on mechanical aspects have revealed physical mechanisms on how the cellular activities contribute to the formation of reproducible tissue patterns; however, the understanding for what factors achieve the reproducibility of such patterning and how it occurs is far from complete. Here, I focus on a tube pattern formation during murine epididymal development, and show that two factors influencing physical design for the patterning, the proliferative zone within the tubule and the viscosity of tissues surrounding to the tubule, control the reproducibility of epididymal tubule pattern, using a mathematical model based on experimental data. Extensive numerical simulation of the simple mathematical model revealed that a spatially localized proliferative zone within the tubule, observed in experiments, results in more reproducible tubule pattern. Moreover, I found that the viscosity of tissues surrounding to the tubule imposes a trade-off regarding pattern reproducibility and spatial accuracy relating to the region where the tubule pattern is formed. This indicates an existence of optimality in material properties of tissues for the robust patterning of epididymal tubule. The results obtained by numerical analysis based on experimental observations provide a general insight on how physical design realizes robust tissue pattern formation.

  9. Mathematical aspects of pattern formation in biological systems

    CERN Document Server

    Wei, Juncheng

    2013-01-01

    This monograph is concerned with the mathematical analysis of patterns which are encountered in biological systems. It summarises, expands and relates results obtained in the field during the last fifteen years. It also links the results to biological applications and highlights their relevance to phenomena in nature. Of particular concern are large-amplitude patterns far from equilibrium in biologically relevant models.The approach adopted in the monograph is based on the following paradigms:• Examine the existence of spiky steady states in reaction-diffusion systems and select as observabl

  10. Viscoelasticity and pattern formations in stock market indices

    Science.gov (United States)

    Gündüz, Güngör; Gündüz, Aydın

    2017-06-01

    The viscoelastic and thermodynamic properties of four stock indices, namely, DJI, Nasdaq-100, Nasdaq-Composite, and S&P were analyzed for a period of 30 years from 1986 to 2015. The asset values (or index) can be placed into Aristotelian `potentiality-actuality' framework by using scattering diagram. Thus, the index values can be transformed into vectorial forms in a scattering diagram, and each vector can be split into its horizontal and vertical components. According to viscoelastic theory, the horizontal component represents the conservative, and the vertical component represents the dissipative behavior. The related storage and the loss modulus of these components are determined and then work-like and heat-like terms are calculated. It is found that the change of storage and loss modulus with Wiener noise (W) exhibit interesting patterns. The loss modulus shows a featherlike pattern, whereas the storage modulus shows figurative man-like pattern. These patterns are formed due to branchings in the system and imply that stock indices do have a kind of `fine-order' which can be detected when the change of modulus values are plotted with respect to Wiener noise. In theoretical calculations it is shown that the tips of the featherlike patterns stay at negative W values, but get closer to W = 0 as the drift in the system increases. The shift of the tip point from W = 0 indicates that the price change involves higher number of positive Wiener number corrections than the negative Wiener. The work-like and heat-like terms also exhibit patterns but with different appearance than modulus patterns. The decisional changes of people are reflected as the arrows in the scattering diagram and the propagation path of these vectors resemble the path of crack propagation. The distribution of the angle between two subsequent vectors shows a peak at 90°, indicating that the path mostly obeys the crack path occurring in hard objects. Entropy mimics the Wiener noise in the evolution

  11. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  12. Swimming patterns and dynamics of simulated Escherichia coli bacteria.

    Science.gov (United States)

    Zonia, Laura; Bray, Dennis

    2009-11-06

    A spatially and temporally realistic simulation of Escherichia coli chemotaxis was used to investigate the swimming patterns of wild-type and mutant bacteria within a rectangular arena in response to chemoattractant gradients. Swimming dynamics were analysed during long time series with phase-space trajectories, power spectra and estimations of fractal dimensions (FDs). Cell movement displayed complex trajectories in the phase space owing to interaction of multiple attractors that captured runs and tumbles. Deletion of enzymes responsible for adaptation (CheR and CheB) restricted the pattern of bacterial swimming in the absence of a gradient. In the presence of a gradient, there was a strong increase in trajectories arising from runs and attenuation of those arising from tumbles. Similar dynamics were observed for mutants lacking CheY, which are unable to tumble. The deletion of CheR, CheB and CheY also caused significant shifts in chemotaxis spectral frequencies. Rescaled range analysis and estimation of FD suggest that wild-type bacteria display characteristics of fractional Brownian motion with positive correlation between past and future events. These results reveal an underlying order in bacterial swimming dynamics, which enables a chemotactic search strategy conforming to a fractal walk.

  13. Oligomer formation within secondary organic aerosol: equilibrium and dynamic considerations

    Directory of Open Access Journals (Sweden)

    E. R. Trump

    2013-09-01

    Full Text Available We present a model based on the volatility basis set to consider the potential influence of oligomer content on volatility-driven SOA yields. The implications for aerosol evaporation studies, including dilution, chamber thermo-equilibration, and thermodenuder studies are also considered. A simplified description of oligomer formation reproduces essentially all of the broad classes of equilibrium and dynamical observations related to SOA formation and evaporation: significant oligomer content may be consistent with mass yields that increase with organic aerosol mass concentration; reversible oligomerization can explain the hysteresis between the rate of SOA formation and its evaporation rate upon dilution; and the model is consistent with both chamber thermo-equilibration studies and thermodenuder studies of SOA evaporation.

  14. A Dynamical Study of the Formation of Peculiar Galaxies

    Science.gov (United States)

    Chatterjee, T. K.

    1990-11-01

    RESUMEN. Un estudlo de la formaci6n de diferentes tipos de galaxias peculiares (interactuantes) es conducido en base de la dina'mioa de la colisi6n lievando a su formaci6n usando la aproximaci6n impulsiva. Los resultados indican la existencia de una relaci6n caracteristica en base del camblo de la energia interna durante la colisi6n, cual determina el tipo de la galaxia peculiar formado. La relacion es analisada y valores criticos del camblo de Ia energia interna, ilevando a la interacci6n entre galaxias de varias intensidades y la formaci6n consecuente de varios tipos de sistemas peculiares es discutido. ABSTRACT. A study of the formation of different types of peculiar (interacting) galaxies is conducted based on the dynamics of the collision leading to their formation, using the impulsive approximation. Results indicate the existance of a characteristic relationship, based on the internal energy changes during the collision, governing the type of peculiar galaxy formed. The relationship is analysed and critical values of internal energy changes, leading to galaxy interaction of varying intensities and consequent formation of different types of peculiar galaxies is discussed. Key words: GALAXIES-DYNAMICS -- GALAXIES-FORMATION

  15. The formation and dynamical evolution of young star clusters

    CERN Document Server

    Fujii, Michiko

    2015-01-01

    Recent observations have revealed a variety of young star clusters, including embedded systems, young massive clusters, and associations. We study the formation and dynamical evolution of these clusters using a combination of simulations and theoretical models. Our simulations start with a turbulent molecular cloud that collapses under its own gravity. The stars are assumed to form in the densest regions in the collapsing cloud after an initial free-fall times of the molecular cloud. The dynamical evolution of these stellar distributions are continued by means of direct $N$-body simulations. The molecular clouds typical for the Milky Way Galaxy tend to form embedded clusters which evolve to resemble open clusters. The associations were initially considerably more clumpy, but lost their irregularity in about a dynamical time scale due to the relaxation process. The densest molecular clouds, which are absent in the Milky Way but are typical in starburst galaxies, form massive young star clusters. They indeed ar...

  16. Dynamically Multivalued Self-Organisation and Probabilistic Structure Formation Processes

    CERN Document Server

    Kirilyuk, A P

    2004-01-01

    The unreduced, universally nonperturbative analysis of arbitrary many-body interaction process reveals the irreducible, purely dynamic source of randomness. It leads to the universal definition of real system complexity (physics/9806002), where the internally chaotic self-organisation emerges as a limiting case of complex interaction dynamics (physics/0211071). It extends also the concept of "self-organised criticality" and corresponds to formation of distinct enough (but always internally chaotic) structures occurring if the system is far from characteristic frequency resonances. Transition to the opposite limiting regime of multivalued interaction dynamics, that of uniform (global) chaos, takes place around the main frequency resonance(s), which provides the absolutely universal criterion of global chaos onset, applicable to any kind of system, as well as the new, extended interpretation of the phenomenon of resonance itself. As a result, one obtains the causally complete description of world structure emer...

  17. Pattern formation in the bistable Gray-Scott model

    DEFF Research Database (Denmark)

    Mazin, W.; Rasmussen, K.E.; Mosekilde, Erik

    1996-01-01

    The paper presents a computer simulation study of a variety of far-from-equilibrium phenomena that can arise in a bistable chemical reaction-diffusion system which also displays Turing and Hopf instabilities. The Turing bifurcation curve and the wave number for the patterns of maximum linear grow...

  18. Size segregated ring pattern formation in particle impactors

    Science.gov (United States)

    Saylor, J. R.; Fredericks, S. A.

    2016-11-01

    Typical particle impactors consist of a nozzle that directs a particle laden flow onto a plate, and is designed to capture particles greater than a cutoff diameter. Connected in series as a cascade, with each impactor designed to have a progressively smaller cutoff diameter, the particle size distribution can be measured. Typical impactors utilize a nozzle-to-plate distance S that is on the order of one nozzle diameter W, S / W 1 , and give a nominally Gaussian particle deposition pattern on the plate. We explored conditions where S / W < < 1 and observed deposition patterns consisting of very fine rings. Moreover, we found that the ring diameter increased with decreasing particle diameter and the ring thickness increased with particle diameter. These results suggest a potential method for sizing particles by using the mature technology of impactors in a different way. Potential mechanisms for how these ring patterns are formed will be discussed. We note that prior studies have observed conditions where particle deposition patterns exhibited "halos". These halos appear less distinct than the rings we have observed, and it is unclear whether they are related.

  19. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...

  20. Spontaneous tunable Turing pattern formation for coherent high-power THz radiation

    CERN Document Server

    Huang, Shu-Wei; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T; Jarrahi, Mona; Wong, Chee Wei

    2016-01-01

    The spontaneous breaking of symmetry and homogeneity through dissipative pattern formation is a fundamental question in developmental biology, molecular biochemistry, mathematics and nonlinear physics. Self-organized patterns arise in nature, such as pigmentation in animals, tree branching fractals, Prigogine non-equilibrium chemical bifurcations, and are postulated by Turing to occur from diffusion-reaction driven instabilities. In spite of the spontaneous nature, these threshold-dependent patterns - when formed - can potentially be remarkably robust in the presence of noise. Here we report the spontaneous Turing pattern formation in chip-scale nonlinear oscillators, developing a precision frequency comb in the solid-state. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a sideband non-uniformity measured down to 1 part in 1.5x10^15. Local mode hybridizations in the nonlinear ring oscillator seeds the coherent pattern formation and phase matching, to obtain a record ...

  1. Mechanistic stochastic model of histone modification pattern formation

    NARCIS (Netherlands)

    L.C.M. Anink-Groenen; T.R. Maarleveld; P.J. Verschure; F.J. Bruggeman

    2014-01-01

    BACKGROUND: The activity of a single gene is influenced by the composition of the chromatin in which it is embedded. Nucleosome turnover, conformational dynamics, and covalent histone modifications each induce changes in the structure of chromatin and its affinity for regulatory proteins. The dynami

  2. 1D Josephson quantum interference grids: diffraction patterns and dynamics

    Science.gov (United States)

    Lucci, M.; Badoni, D.; Corato, V.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2016-02-01

    We investigate the magnetic response of transmission lines with embedded Josephson junctions and thus generating a 1D underdamped array. The measured multi-junction interference patterns are compared with the theoretical predictions for Josephson supercurrent modulations when an external magnetic field couples both to the inter-junction loops and to the junctions themselves. The results provide a striking example of the analogy between Josephson phase modulation and 1D optical diffraction grid. The Fiske resonances in the current-voltage characteristics with voltage spacing {Φ0}≤ft(\\frac{{\\bar{c}}}{2L}\\right) , where L is the total physical length of the array, {Φ0} the magnetic flux quantum and \\bar{c} the speed of light in the transmission line, demonstrate that the discrete line supports stable dynamic patterns generated by the ac Josephson effect interacting with the cavity modes of the line.

  3. Symmetry Breaking Patterns for the Little Higgs from Strong Dynamics

    CERN Document Server

    Batra, Puneet

    2007-01-01

    We show how the symmetry breaking pattern of the simplest little Higgs model, and that of the smallest moose model that incorporates an approximate custodial SU(2), can be realized through the condensation of strongly coupled fermions. In each case a custodial SU(2) symmetry of the new strong dynamics limits the sizes of corrections to precision electroweak observables. In the case of the simplest little Higgs, there are no new light states beyond those present in the original model. However, our realization of the symmetry breaking pattern of the moose model predicts an additional scalar field with mass of order a TeV or higher that has exactly the same quantum numbers as the Standard Model Higgs and which decays primarily to third generation quarks.

  4. Persistent dynamic attractors in activity patterns of cultured neuronal networks

    Science.gov (United States)

    Wagenaar, Daniel A.; Nadasdy, Zoltan; Potter, Steve M.

    2006-05-01

    Three remarkable features of the nervous system—complex spatiotemporal patterns, oscillations, and persistent activity—are fundamental to such diverse functions as stereotypical motor behavior, working memory, and awareness. Here we report that cultured cortical networks spontaneously generate a hierarchical structure of periodic activity with a strongly stereotyped population-wide spatiotemporal structure demonstrating all three fundamental properties in a recurring pattern. During these “superbursts,” the firing sequence of the culture periodically converges to a dynamic attractor orbit. Precursors of oscillations and persistent activity have previously been reported as intrinsic properties of the neurons. However, complex spatiotemporal patterns that are coordinated in a large population of neurons and persist over several hours—and thus are capable of representing and preserving information—cannot be explained by known oscillatory properties of isolated neurons. Instead, the complexity of the observed spatiotemporal patterns implies large-scale self-organization of neurons interacting in a precise temporal order even in vitro, in cultures usually considered to have random connectivity.

  5. Quantum properties of transverse pattern formation in second-harmonic generation

    DEFF Research Database (Denmark)

    Bache, Morten; Scotto, P.; Zambrini, R.;

    2002-01-01

    We investigate the spatial quantum noise properties of the one-dimensional transverse pattern formation instability in intracavity second-harmonic generation. The Q representation of a quasi-probability distribution is implemented in terms of nonlinear stochastic Langevin equations. We study...... these equations through extensive numerical simulations and analytically in the linearized limit. Our study, made below and above the threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern formation in second-harmonic generation. Close to the threshold...

  6. Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems

    Science.gov (United States)

    Paerl, Hans; Yin, Kedong; Cloern, James

    2011-03-01

    Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), “Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations” (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled “Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.”

  7. Theory of Networked Minority Games based on Strategy Pattern Dynamics

    OpenAIRE

    Lo, T. S.; H.Y. Chan; P.M. Hui; Johnson, N F

    2004-01-01

    We formulate a theory of agent-based models in which agents compete to be in a winning group. The agents may be part of a network or not, and the winning group may be a minority group or not. The novel feature of the present formalism is its focus on the dynamical pattern of strategy rankings, and its careful treatment of the strategy ties which arise during the system's temporal evolution. We apply it to the Minority Game (MG) with connected populations. Expressions for the mean success rate...

  8. THE DYNAMIC OF REGIONAL TRADE SPECIALISATION PATTERN IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Oana Ancuţa Stângaciu

    2011-06-01

    Full Text Available The paper analyses the evolution of the regional trade specialization pattern in Romanian regions, by studying the dynamic of their comparative advantages over the period 2000 - 2009. The study finds that, in almost all regions (exceptions are North-East and South-East Region the international specialization has increased for products in which regions were initially relatively less specialized and has decreased for those in which they were initially highly specialized. Finally, most regions recorded large respectively small specialization improvements in products for which the internal respectively external demand expanded at the fastest rate over the time.

  9. Direct numerical simulation of pattern formation in subaqueous sediment

    CERN Document Server

    Kidanemariam, Aman G

    2014-01-01

    We present results of direct numerical simulation of incompressible fluid flow over a thick bed of mobile, spherically-shaped particles. The algorithm is based upon the immersed boundary technique for fluid-solid coupling and uses a soft-sphere model for the solid-solid contact. Two parameter points in the laminar flow regime are chosen, leading to the emergence of sediment patterns classified as `small dunes', while one case under turbulent flow conditions leads to `vortex dunes' with significant flow separation on the lee side. Wavelength, amplitude and propagation speed of the patterns extracted from the spanwise-averaged fluid-bed interface are found to be consistent with available experimental data. The particle transport rates are well represented by available empirical models for flow over a plane sediment bed in both the laminar and the turbulent regimes.

  10. Dynamic patterns in a two-dimensional neural field with refractoriness.

    Science.gov (United States)

    Qi, Yang; Gong, Pulin

    2015-08-01

    The formation of dynamic patterns such as localized propagating waves is a fascinating self-organizing phenomenon that happens in a wide range of spatially extended systems including neural systems, in which they might play important functional roles. Here we derive a type of two-dimensional neural-field model with refractoriness to study the formation mechanism of localized waves. After comparing this model with existing neural-field models, we show that it is able to generate a variety of localized patterns, including stationary bumps, localized waves rotating along a circular path, and localized waves with longer-range propagation. We construct explicit bump solutions for the two-dimensional neural field and conduct a linear stability analysis on how a stationary bump transitions to a propagating wave under different spatial eigenmode perturbations. The neural-field model is then partially solved in a comoving frame to obtain localized wave solutions, whose spatial profiles are in good agreement with those obtained from simulations. We demonstrate that when there are multiple such propagating waves, they exhibit rich propagation dynamics, including propagation along periodically oscillating and irregular trajectories; these propagation dynamics are quantitatively characterized. In addition, we show that these waves can have repulsive or merging collisions, depending on their collision angles and the refractoriness parameter. Due to its analytical tractability, the two-dimensional neural-field model provides a modeling framework for studying localized propagating waves and their interactions.

  11. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    Science.gov (United States)

    Moore, Tyler G; Garzon, Max H; Deaton, Russell J

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems

  12. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    Directory of Open Access Journals (Sweden)

    Tyler G Moore

    Full Text Available Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic

  13. Influence of phase separation for surfactant driven pattern formation during ion beam erosion

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, Hans; Zhang, Kun; Vetter, Ulrich; Bobes, Omar; Pape, Andre; Gehrke, Hans-Gregor; Broetzmann, Marc [II. Physikalisches Institut, Goettingen Univ. (Germany)

    2012-07-01

    We will present results on metal surfactant driven self-organized pattern formation on surfaces by ion beam erosion, with a focus on the role of phase separation for the initial steps of pattern formation. Si substrates were irradiated with 5 keV Xe ions at normal incidence and ion fluences up to 5.10{sup 17} Xe/cm{sup 2} under continuous deposition of surfactant atoms. In the absence of such surfactants uniform flat surfaces are obtained, while in the presence of Fe and Mo surfactants pronounced patterns like dots, combinations of dots and ripples with wavelengths around 100 nm are generated. The surfactant coverage and deposition direction determine the pattern type and the pattern orientation, respectively. A critical steady-state coverage for onset of dot formation and onset of ripple formation is in the range of 10{sup 15} and 5.10{sup 15} Xe/cm{sup 2}. The steady-state surface region consists of a thin amorphous metal silicide layer with high metal concentration in the ripple and dot regions. Pattern formation is explained by ion induced diffusion and phase separation of the initially flat amorphous silicide layer and subsequent ion beam erosion with composition dependent sputter yield. To investigate the role of initial phase separation we additionally compare the pattern formation for different other metal surfactants.

  14. Nanoscale pattern formation at surfaces under ion-beam sputtering: A perspective from continuum models

    Energy Technology Data Exchange (ETDEWEB)

    Cuerno, Rodolfo, E-mail: cuerno@math.uc3m.e [Departamento de Matematicas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain); Castro, Mario [GISC and Grupo de Dinamica No Lineal (DNL), Escuela Tecnica Superior de Ingenieria (ICAI), Universidad Pontificia Comillas, E-28015 Madrid (Spain); Munoz-Garcia, Javier [Systems Biology Ireland and GISC, University College Dublin, Belfield, Dublin 4 (Ireland); Gago, Raul; Vazquez, Luis [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, E-28049 Madrid (Spain)

    2011-05-01

    Although reports on surface nanostructuring of solid targets by low to medium energy ion irradiation date back to the 1960s, only with the advent of high resolution tools for surface/interface characterization has the high potential of this procedure been recognized as a method for efficient production of surface patterns. Such morphologies are made up of periodic arrangements of nanometric sized features, like ripples and dots, with interest for technological applications due to their electronic, magnetic, and optical properties. Thus, roughly for the last ten years large efforts have been directed towards harnessing this nanofabrication technique. However, and particularly in view of recent experimental developments, we can say that the basic mechanisms controlling these pattern formation processes remain poorly understood. The lack of nanostructuring at low angles of incidence on some pure monoelemental targets, the role of impurities in the surface dynamics and other recent observations are challenging the classic view on the phenomenon as the mere interplay between the curvature dependence of the sputtering yield and surface diffusion. We review the main attempts at a theoretical (continuum) description of these systems, with emphasis on recent developments. Strong hints already exist that the nature of the morphological instability has to be rethought as originating in the material flow that is induced by the ion beam.

  15. On Pattern Formation Mechanisms for Lepidopteran Wing Patterns and Mammalian Coat Markings

    Science.gov (United States)

    Murray, J. D.

    1981-10-01

    The patterns on wings of Lepidoptera can be generated with a few pattern elements, but no mechanism has been suggested for producing them. I consider two of the basic patterns, namely, central symmetry and dependent patterns. A biochemically plausible model mechanism is proposed for generating major aspects of these patterns, based on a diffusing morphogen that activates a gene or colour-specific enzyme in a threshold manner to generate a stable heterogeneous spatial pattern. The model is applied to the determination stream hypothesis of Kuhn & von Engelhardt (Wilhelm Roux Arch. Entw Mech. Org. 130, 660 (1933)), and results from the model compared with their microcautery experiments on the pupal wing of Ephestia kuhniella. In the case of dependent patterns, results are compared with patterns on specific Papilionidae. For the same mechanism and a fixed set of parameters I demonstrate the important roles of geometry and scale on the spatial patterns obtained. The results and evidence presented here suggest the existence of diffusion fields of the order of several millimetres, which are very much larger than most embryonic fields. The existence of zones of polarizing activity is also indicated. Colour patterns on animals are considered to be genetically determined, but the mechanism is not known. I have previously suggested that a single mechanism that can exhibit an infinite variety of patterns is a candidate for that mechanism, and proposed that a reaction-diffusion system that can be diffusively driven unstable could be responsible for the laying down of the spacing patterns that generates the prepattern for animal coat markings. For illustrative purposes I consider a practical reaction mechanism, which exhibits substrate inhibition, and show that the geometry and scale of the domain (part of the epidermis) play a crucial role in the structural patterns that result. Patterns are obtained for a selection of geometries, and general features are related to the coat

  16. The Dynamics of Coalition Formation on Complex Networks

    Science.gov (United States)

    Auer, S.; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.

    2015-08-01

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) on an acquaintance network. We include both the network’s influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  17. Pattern formation in a complex plasma in high magnetic fields.

    Science.gov (United States)

    Schwabe, M; Konopka, U; Bandyopadhyay, P; Morfill, G E

    2011-05-27

    Low-pressure room-temperature neon, argon, krypton, and air plasmas were studied in magnetic fields up to flux densities of 2.3 T. Filaments appeared parallel to the magnetic field lines, and patterns such as spirals and concentric circles formed in the perpendicular direction. We link these effects to the magnetization of the ions. We also used a layer of embedded microparticles as probes in the plasma. Their motion changed dramatically from a collective rotation of the whole ensemble in moderate magnetic fields to a rotation in several small vortices centered at the filaments. © 2011 American Physical Society

  18. Pattern Formation and Continuation in a Trineuron Ring with Delays

    Institute of Scientific and Technical Information of China (English)

    Shang Jiang GUO; Li Hong HUANG

    2007-01-01

    In this paper, we consider a single-directional ring of three neurons with delays. First, linear stability of the model is investigated by analyzing the associated characteristic transcendental equation. Next, we studied the local Hopf bifurcations and the spatio-temporal patterns of Hopf bifurcating periodic orbits. Basing on the normal form approach and the center manifold theory, we derive the formula for determining the properties of Hopf bifurcating periodic orbit, such as the direction of Hopf bifurcation. Finally, global existence conditions for Hopf bifurcating periodic orbits are derived by using degree theory methods.

  19. Pattern Formation and Growth Kinetics in Eutectic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Jing [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  20. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    Science.gov (United States)

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  1. Pattern formation by temperature-gradient driven film instabilities in laterally confined geometries

    NARCIS (Netherlands)

    Nedelcu, M; Morariu, MD; Harkema, S; Voicu, NE; Steiner, U

    2005-01-01

    Film break-up driven by an electric field or temperature gradient typically exhibit a characteristic length scale. The presence of a lateral confinement significantly alters this pattern formation process.

  2. A survey on pattern formation of autonomous mobile robots: asynchrony, obliviousness and visibility

    Science.gov (United States)

    Yamauchi, Yukiko

    2013-12-01

    A robot system consists of autonomous mobile robots each of which repeats Look-Compute-Move cycles, where the robot observes the positions of other robots (Look phase), computes the track to the next location (Compute phase), and moves along the track (Move phase). In this survey, we focus on self-organization of mobile robots, especially their power of forming patterns. The formation power of a robot system is the class of patterns that the robots can form, and existing results show that the robot system's formation power is determined by their asynchrony, obliviousness, and visibility. We briefly survey existing results, with impossibilities and pattern formation algorithms. Finally, we present several open problems related to the pattern formation problem of mobile robots.

  3. Scenarios of domain pattern formation in a reaction-diffusion system

    CERN Document Server

    Muratov, C B

    1996-01-01

    We performed an extensive numerical study of a two-dimensional reaction-diffusion system of the activator-inhibitor type in which domain patterns can form. We showed that both multidomain and labyrinthine patterns may form spontaneously as a result of Turing instability. In the stable homogeneous system with the fast inhibitor one can excite both localized and extended patterns by applying a localized stimulus. Depending on the parameters and the excitation level of the system stripes, spots, wriggled stripes, or labyrinthine patterns form. The labyrinthine patterns may be both connected and disconnected. In the the stable homogeneous system with the slow inhibitor one can excite self-replicating spots, breathing patterns, autowaves and turbulence. The parameter regions in which different types of patterns are realized are explained on the basis of the asymptotic theory of instabilities for patterns with sharp interfaces developed by us in Phys. Rev. E. 53, 3101 (1996). The dynamics of the patterns observed i...

  4. [Family formation in Flanders: new patterns, different timing].

    Science.gov (United States)

    Lee, H Y; Rajulton, F; Wijewickrema, S; Lesthaeghe, R

    1987-01-01

    "The article presents a statistical study of the starting age and the speed of transitions in the process of family formation in Flanders. It contrasts two sets of generations, three groups according to educational achievement and three groups with differing religious practice. The methodology of shifted proportional hazard models is used and transition probabilities are fed into a semi-Markovian chain. Higher educational achievement results in later starting points, but not in a differing pace once started. By contrast, lower religious involvement speeds up the transitions to first sexual contact and premarital cohabitation, while it considerably retards the transition to parenthood among the generations born after 1950." (SUMMARY IN ENG AND FRE)

  5. BOOK REVIEW: Nonlinear Dynamics: Integrability, Chaos and Patterns

    Science.gov (United States)

    Grammaticos, B.

    2004-02-01

    When the editorial office of Journal of Physics A: Mathematical and General of the Institute of Physics Publishing asked me to review a book on nonlinear dynamics I experienced an undeniable apprehension. Indeed, the domain is a rapidly expanding one and writing a book aiming at a certain degree of completeness looks like an almost impossible task. My uneasiness abated somewhat when I saw the names of the authors, two well-known specialists of the nonlinear domain, but it was only when I held the book in my hands that I felt really reassured. The book is not just a review of the recent (and less so) findings on nonlinear systems. It is also a textbook. The authors set out to provide a detailed, step by step, introduction to the domain of nonlinearity and its various subdomains: chaos, integrability and pattern formation (although this last topic is treated with far less detail than the other two). The public they have in mind is obviously that of university students, graduate or undergraduate, who are interested in nonlinear phenomena. I suspect that a non-negligible portion of readers will be people who have to teach topics which figure among those included in the book: they will find this monograph an excellent companion to their course. The book is written in a pedagogical way, with a profusion of examples, detailed explanations and clear diagrams. The point of view is that of a physicist, which to my eyes is a major advantage. The mathematical formulation remains simple and perfectly intelligible. Thus the reader is not bogged down by fancy mathematical formalism, which would have discouraged the less experienced ones. A host of exercises accompanies every chapter. This will give the novice the occasion to develop his/her problem-solving skills and acquire competence in the use of nonlinear techniques. Some exercises are quite straightforward, like `verify the relation 14.81'. Others are less so, such as `prepare a write-up on a) frequency-locking and b) devil

  6. Radial-pattern formation in the polycarbonate substratum of recordable compact disks

    Science.gov (United States)

    Tanimura, M.; Ishikawa, I.; Tachibana, M.; Shinozaki, K.; Kojima, K.

    2001-09-01

    A radial pattern is found to form in the polycarbonate (PC) substratum of a recordable compact disk. Characteristic features of the pattern are that it is composed of about 80 needle-like regions, the shape of which closely resembles a thin film. In addition, white light is found to scatter at the needle-like region/matrix boundaries. This suggests that the PC substratum may have inferior transparency due to the formation of this pattern. Thus, it is important to understand the bifurcation of the radial-pattern formation from the viewpoint of materials science and engineering. Based on the mechanics of the PC viscous fluid, it has been found that the bifurcation of the pattern formation has a Reynolds number of about 10-3.

  7. Dynamics of optically excited tungsten and silicon for ripples formation

    Science.gov (United States)

    Zhang, Hao; Li, Chen; Colombier, Jean-Philippe; Cheng, Guanghua; Stoian, Razvan

    2015-03-01

    We measured the dielectric constant of optically excited silicon and tungsten using a dual-angle femtosecond reflectivity pump-probe technique. The energy deposition in the formation of laser-induced periodic surface structures (LIPSS) is then investigated by simulating the laser pulse interaction with an initially random distributed rough surface using 3D-Finite Difference Time Domain (FDTD) method, with the measured dielectric constant as a material input. We found in the FDTD simulation periodic energy deposition patterns both perpendicular and parallel to the laser polarization. The origin of them are discussed for originally plasmonic and non-plasmonic material.

  8. Generalized additive models reveal the intrinsic complexity of wood formation dynamics.

    Science.gov (United States)

    Cuny, Henri E; Rathgeber, Cyrille B K; Kiessé, Tristan Senga; Hartmann, Felix P; Barbeito, Ignacio; Fournier, Meriem

    2013-04-01

    The intra-annual dynamics of wood formation, which involves the passage of newly produced cells through three successive differentiation phases (division, enlargement, and wall thickening) to reach the final functional mature state, has traditionally been described in conifers as three delayed bell-shaped curves followed by an S-shaped curve. Here the classical view represented by the 'Gompertz function (GF) approach' was challenged using two novel approaches based on parametric generalized linear models (GLMs) and 'data-driven' generalized additive models (GAMs). These three approaches (GFs, GLMs, and GAMs) were used to describe seasonal changes in cell numbers in each of the xylem differentiation phases and to calculate the timing of cell development in three conifer species [Picea abies (L.), Pinus sylvestris L., and Abies alba Mill.]. GAMs outperformed GFs and GLMs in describing intra-annual wood formation dynamics, showing two left-skewed bell-shaped curves for division and enlargement, and a right-skewed bimodal curve for thickening. Cell residence times progressively decreased through the season for enlargement, whilst increasing late but rapidly for thickening. These patterns match changes in cell anatomical features within a tree ring, which allows the separation of earlywood and latewood into two distinct cell populations. A novel statistical approach is presented which renews our understanding of xylogenesis, a dynamic biological process in which the rate of cell production interplays with cell residence times in each developmental phase to create complex seasonal patterns.

  9. Salinity effects on the dynamics and patterns of desiccation cracks

    Science.gov (United States)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to

  10. Finite size effects in the dynamics of opinion formation

    CERN Document Server

    Toral, R; Tessone, Claudio J.; Toral, Raul

    2006-01-01

    For some models of relevance in the social sciences we review some examples in which system size plays an important role in the final outcome of the dynamics. We discuss the conditions under which changes of behavior can appear only when the number of agents in the model takes a finite value. Those changes of behavior can be related to the apparent phase transitions that appear in some physical models. We show examples in the Galam's model of opinion transmission and the Axelrod's model of culture formation stressing the role that the network of interactions has on the main results of both models. Finally, we present the phenomenon of system-size stochastic resonance by which a forcing signal (identified as an advertising agent) is optimally amplified by a population of the right (intermediate) size. Our work stresses the role that the system size has in the dynamics of social systems and the inappropriateness of taking the thermodynamic limit for these systems.

  11. Time rescaling and pattern formation in biological evolution.

    Science.gov (United States)

    Igamberdiev, Abir U

    2014-09-01

    Biological evolution is analyzed as a process of continuous measurement in which biosystems interpret themselves in the environment resulting in changes of both. This leads to rescaling of internal time (heterochrony) followed by spatial reconstructions of morphology (heterotopy). The logical precondition of evolution is the incompleteness of biosystem's internal description, while the physical precondition is the uncertainty of quantum measurement. The process of evolution is based on perpetual changes in interpretation of information in the changing world. In this interpretation the external biospheric gradients are used for establishment of new features of organization. It is concluded that biological evolution involves the anticipatory epigenetic changes in the interpretation of genetic symbolism which cannot generally be forecasted but can provide canalization of structural transformations defined by the existing organization and leading to predictable patterns of form generation.

  12. Developmental waves in myxobacteria: A distinctive pattern formation mechanism

    Science.gov (United States)

    Igoshin, Oleg A.; Neu, John; Oster, George

    2004-10-01

    In early stages of their development, starving myxobacteria organize their motion to produce a periodic pattern of traveling cell density waves. These waves arise from coordination of individual cell reversals by contact signaling when they collide. Unlike waves generated by reaction-diffusion instabilities, which annihilate on collision, myxobacteria waves appear to pass through one another unaffected. Here we analyze a mathematical model of these waves developed earlier [Igoshin , Proc. Natl. Acad. Sci. USA 98, 14 913 (2001)]. The mechanisms which generate and maintain the density waves are clearly revealed by tracing the reversal loci of individual cells. An evolution equation of reversal point density is derived in the weak-signaling limit. Linear stability analysis determines parameters favorable for the development of the waves. Numerical solutions demonstrate the stability of the fully developed nonlinear waves.

  13. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  14. Nonlinear dynamic theory for photorefractive phase hologram formation

    Science.gov (United States)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  15. Dynamic Cell Formation based on Multi-objective Optimization Model

    Directory of Open Access Journals (Sweden)

    Guozhu Jia

    2013-08-01

    Full Text Available In this paper, a multi-objective model is proposed to address the dynamic cellular manufacturing (DCM formation problem. This model considers four conflicting objectives: relocation cost, machine utilization, material handling cost and maintenance cost. The model also considers the situation that some machines could be shared by more than one cell at the same period. A genetic algorithm is applied to get the solution of this mathematical model. Three numerical examples are simulated to evaluate the validity of this model.  

  16. Seasonal and temporal patterns of NDMA formation potentials in surface waters.

    Science.gov (United States)

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2015-02-01

    The seasonal and temporal patterns of N-nitrosodimethylamine (NDMA) formation potentials (FPs) were examined with water samples collected monthly for 21 month period in 12 surface waters. This long term study allowed monitoring the patterns of NDMA FPs under dynamic weather conditions (e.g., rainy and dry periods) covering several seasons. Anthropogenically impacted waters which were determined by high sucralose levels (>100 ng/L) had higher NDMA FPs than limited impacted sources (spring months, while seasonal mean values remained relatively consistent. The study also showed that watershed characteristics played an important role in the seasonal and temporal patterns. In the two dam-controlled river systems (SW A and G), the NDMA FP levels at the downstream sampling locations were controlled by the NDMA levels in the dams independent of either the increases in discharge rates due to water releases from the dams prior to or during the heavy rain events or intermittent high NDMA FP levels observed at the upstream of dams. The large reservoirs and impoundments on rivers examined in this study appeared serving as an equalization basin for NDMA precursors. On the other hand, in a river without an upstream reservoir (SW E), the NDMA levels were influenced by the ratio of an upstream wastewater treatment plant (WWTP) effluent discharge to the river discharge rate. The impact of WWTP effluent decreased during the high river flow periods due to rain events. Linear regression with independent variables DOC, DON, and sucralose yielded poor correlations with NDMA FP (R(2) < 0.27). Multiple linear regression analysis using DOC and log [sucralose] yielded a better correlation with NDMA FP (R(2) = 0.53).

  17. Genetic oscillations. A Doppler effect in embryonic pattern formation.

    Science.gov (United States)

    Soroldoni, Daniele; Jörg, David J; Morelli, Luis G; Richmond, David L; Schindelin, Johannes; Jülicher, Frank; Oates, Andrew C

    2014-07-11

    During embryonic development, temporal and spatial cues are coordinated to generate a segmented body axis. In sequentially segmenting animals, the rhythm of segmentation is reported to be controlled by the time scale of genetic oscillations that periodically trigger new segment formation. However, we present real-time measurements of genetic oscillations in zebrafish embryos showing that their time scale is not sufficient to explain the temporal period of segmentation. A second time scale, the rate of tissue shortening, contributes to the period of segmentation through a Doppler effect. This contribution is modulated by a gradual change in the oscillation profile across the tissue. We conclude that the rhythm of segmentation is an emergent property controlled by the time scale of genetic oscillations, the change of oscillation profile, and tissue shortening.

  18. Pattern formation during electrodeposition of copper-antimony alloys

    Directory of Open Access Journals (Sweden)

    Vasil S. Kostov

    2016-04-01

    Full Text Available Aim of the present study is to establish the conditions of the electrolysis for the preparation of structured and unstressed purple-pink coatings of copper-antimony alloys, including their phase characterization. Also the task of the present investigation is, by changing drastically the metal content in the methanesulfonic electrolyte to find out the conditions of electrolysis where the self-organization of the different phases is expressed by higher-order structures - not only waves but also spirals and targets. The possibility to obtain copper-antimony alloy with up to 80 wt. % Sb from methanesulfonic acid is shown. The deposition rate, morphology and the phase composition of the obtained coatings are established. The phenomena of formation of spatio-temporal structures in this alloy are described.It is determined that the observed structures consist of Cu2Sb and Cu11Sb3 intermetallic phases.

  19. Mechanical compaction directly modulates the dynamics of bile canaliculi formation.

    Science.gov (United States)

    Wang, Yan; Toh, Yi-Chin; Li, Qiushi; Nugraha, Bramasta; Zheng, Baixue; Lu, Thong Beng; Gao, Yi; Ng, Mary Mah Lee; Yu, Hanry

    2013-02-01

    Homeostatic pressure-driven compaction is a ubiquitous mechanical force in multicellular organisms and is proposed to be important in the maintenance of multicellular tissue integrity and function. Previous cell-free biochemical models have demonstrated that there are cross-talks between compaction forces and tissue structural functions, such as cell-cell adhesion. However, its involvement in physiological tissue function has yet to be directly demonstrated. Here, we use the bile canaliculus (BC) as a physiological example of a multicellular functional structure in the liver, and employ a novel 3D microfluidic hepatocyte culture system to provide an unprecedented opportunity to experimentally modulate the compaction states of primary hepatocyte aggregates in a 3D physiological-mimicking environment. Mechanical compaction alters the physical attributes of the hepatocyte aggregates, including cell shape, cell packing density and cell-cell contact area, but does not impair the hepatocytes' remodeling and functional capabilities. Characterization of structural and functional polarity shows that BC formation in compact hepatocyte aggregates is accelerated to as early as 12 hours post-seeding; whereas non-compact control requires 48 hours for functional BC formation. Further dynamic immunofluorescence imaging and gene expression profiling reveal that compaction accelerated BC formation is accompanied by changes in actin cytoskeleton remodeling dynamics and transcriptional levels of hepatic nuclear factor 4α and Annexin A2. Our report not only provides a novel strategy of modeling BC formation for in vitro hepatology research, but also shows a first instance that homeostatic pressure-driven compaction force is directly coupled to the higher-order multicellular functions.

  20. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Directory of Open Access Journals (Sweden)

    Hans-Georg Braun

    2013-02-01

    Full Text Available The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO, molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

  1. Estimating dew formation in rice, using seasonally averaged diel patterns of weather variables

    NARCIS (Netherlands)

    Luo, W.; Goudriaan, J.

    2004-01-01

    If dew formation cannot be measured it has to be estimated. Available simulation models for estimating dew formation require hourly weather data as input. However, such data are not available for places without an automatic weather station. In such cases the diel pattern of weather variables might

  2. Exploring Formative E-Assessment: Using Case Stories and Design Patterns

    Science.gov (United States)

    Daly, Caroline; Pachler, Norbert; Mor, Yishay; Mellar, Harvey

    2010-01-01

    This article presents key findings from a Joint Information Systems Committee-funded project, which aimed to identify existing practices where technologies contribute to formative assessment and identify processes that take place around formative assessment where technologies play a significant role. Using a design pattern methodology, the project…

  3. Pattern formation induced by cross-diffusion in a predator-prey system

    Institute of Scientific and Technical Information of China (English)

    Sun Gui-Quan; Jin Zhen; Liu Quan-Xing; Li Li

    2008-01-01

    This paper considers the Holling-Tanner model for predator-prey with self and cross-diffusion.From the Turing theory,it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients.However,combined with cross-diffusion,it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations.Furthermore,nsynchrony of the predator and the prey in the space.The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator-prey system.

  4. Molecular Dynamics Simulation Suggests Possible Interaction Patterns at Early Steps of β2-Microglobulin Aggregation

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Viglino, Paolo; Zuccato, Pierfrancesco; Pieri, Lidia; Faccioli, Pietro; Bellotti, Vittorio; Esposito, Gennaro

    2007-01-01

    Early events in aggregation of proteins are not easily accessible by experiments. In this work, we perform a 5-ns molecular dynamics simulation of an ensemble of 27 copies of β2-microglobulin in explicit solvent. During the simulation, the formation of intermolecular contacts is observed. The simulation highlights the importance of apical residues and, in particular, of those at the N-terminus end of the molecule. The most frequently found pattern of interaction involves a head-to-head contact arrangement of molecules. Hydrophobic contacts appear to be important for the establishment of long-lived (on the simulation timescale) contacts. Although early events on the pathway to aggregation and fibril formation are not directly related to the end-state of the process, which is reached on a much longer timescale, simulation results are consistent with experimental data and in general with a parallel arrangement of intermolecular β-strand pairs. PMID:17158575

  5. Molecular dynamics study of the primary ferrofluid aggregate formation

    Energy Technology Data Exchange (ETDEWEB)

    Tanygin, B.M., E-mail: b.m.tanygin@gmail.com [Radiophysics Department, Taras Shevchenko Kyiv National University, 4G, Acad. Glushkov Ave., Kyiv UA-03127 (Ukraine); Kovalenko, V.F.; Petrychuk, M.V.; Dzyan, S.A. [Radiophysics Department, Taras Shevchenko Kyiv National University, 4G, Acad. Glushkov Ave., Kyiv UA-03127 (Ukraine)

    2012-11-15

    Investigations of the phase transitions and self-organization in the magnetic aggregates are of the fundamental and applied interest. The long-range ordering structures described in the Tomanek's systematization (M. Yoon, and D. Tomanek, 2010 ) are not yet obtained in the direct molecular dynamics simulations. The resulted structures usually are the linear chains or circles, or, else, amorphous (liquid) formations. In the present work, it was shown, that the thermodynamically equilibrium primary ferrofluid aggregate has either the long-range ordered or liquid phase. Due to the unknown steric layer force and other model idealizations, the clear experimental verification of the real equilibrium phase is still required. The predicted long-range ordered (crystallized) phase produces the faceting shape of the primary ferrofluid aggregate, which can be recognized experimentally. The medical (antiviral) application of the crystallized aggregates has been suggested. Dynamic formation of all observed ferrofluid nanostructures conforms to the Tomanek's systematization. - Highlights: Black-Right-Pointing-Pointer Primary ferrofluid aggregate has either the long-range ordered or liquid phase. Black-Right-Pointing-Pointer Simulation of ferrofluid nanostructures conforms to the Tomanek's systematization. Black-Right-Pointing-Pointer Long-range ordered phase produces the faceting shape. Black-Right-Pointing-Pointer The medical (antiviral) application is possible.

  6. The Formation and Dynamics of Super-Earth Planets

    CERN Document Server

    Haghighipour, Nader

    2013-01-01

    Super-Earths, objects slightly larger than Earth and slightly smaller than Uranus, have found a special place in exoplanetary science. As a new class of planetary bodies, these objects have challenged models of planet formation at both ends of the spectrum and have triggered a great deal of research on the composition and interior dynamics of rocky planets in connection to their masses and radii. Being relatively easier to detect than an Earth-sized planet at 1 AU around a G star, super-Earths have become the focus of worldwide observational campaigns to search for habitable planets. With a range of masses that allows these objects to retain moderate atmospheres and perhaps even plate tectonics, super-Earths may be habitable if they maintain long-term orbits in the habitable zones of their host stars. Given that in the past two years a few such potentially habitable super-Earths have in fact been discovered, it is necessary to develop a deep understanding of the formation and dynamical evolution of these obje...

  7. Dynamics of exciplex formation in rare gas media

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lorenzo, German, E-mail: grojas37@gmail.com [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba)] [Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rubayo-Soneira, Jesus [Departamento de Fisica General y Matematicas, Instituto Superior de Tecnologias y Ciencias Aplicadas, La Habana (Cuba); Alberti, Sebastian Fernandez [Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes, Roque Saenz Pena 180, Bernal B1876BXD (Argentina)

    2009-07-30

    A hopping-surface algorithm has been used to simulate the dynamics induced in rare gas matrices due to the photoexcitation ({sup 1}S{sub 0} {yields} {sup 3}P{sub 1}) of atomic mercury embedded in them. Especially, the study of the dynamics of an exciplex formation in a model system consisting of solid xenon doped with atomic mercury. The process starts upon the photoexcitation of the Hg atom to its {sup 3}P{sub 1} electronic excited state. Diatomics-in-Molecule approach has been used for constructing the adiabatic potential surfaces. In all trajectories we show that a triatomic Xe-Hg{sup *}-Xe complex is formed, but in two conformations: bent and linear. The mechanisms leading to the formation of one or the other are identified. Mainly, are noted the thermal fluctuations of the Hg impurity and the shape of the potential surfaces. Furthermore, we show that non-radiative intrastate relaxation occurs via a conical intersection between the excited state surfaces. The simulated spectra are in very good agreement with the experimental data.

  8. Morphologies of diblock copolymer confined in a slit with patterned surfaces studied by dissipative particle dynamics

    Institute of Scientific and Technical Information of China (English)

    FENG Jian; HUANG Yongmin; LIU Honglai; HU Ying

    2007-01-01

    Diblock copolymers with ordered mesophase structures have been used as templates for nano-fabrication.Unfortunately,the ordered structure only exists at micrometerscale areas,which precludes its use in many advanced applications.To overcome this disadvantage,the diblock copolymer confined in a restricted system with a patterned surface is proved to be an effective means to prohibit the formation of defects and obtain perfect ordered domains.In this work,the morphologies of a thin film of diblock copolymer confined between patterned and neutral surfaces were studied by dissipative particle dynamics.It is shown that the morphology of the symmetric diblock copolymer is affected by the ratio of the pattern period on the surface to the lamellar period of the symmetric diblock copolymer and by the repulsion parameters between blocks and wall particles.To eliminate the defects in the lamellar phase,the pattern period on the surface must match the lamellar period.The difference in the interface energy of different compartments of the pattern should increase with increasing film thickness.The pattern period on the surface has a scaling relationship with the chain length,which is the same as that between the lamellar period and the chain length.The lamellar period is also affected by the polydispersity of the symmetric diblock copolymer.The total period is the average of the period of each component multiplied by the weight of its volume ratio.The morphologies of asymmetric diblock copolymers are also affected by the pattern on the surface,especially when the matching period of the asymmetric diblock copolymer is equal to the pattern period,which is approximately equal to the lamellar period of a symmetric diblock copolymer with the same chain length.

  9. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription.

    Science.gov (United States)

    Heidemann, Martin; Hintermair, Corinna; Voß, Kirsten; Eick, Dirk

    2013-01-01

    The eukaryotic RNA polymerase II (RNAPII) catalyzes the transcription of all protein encoding genes and is also responsible for the generation of small regulatory RNAs. RNAPII has evolved a unique domain composed of heptapeptide repeats with the consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 at the C-terminus (CTD) of its largest subunit (Rpb1). Dynamic phosphorylation patterns of serine residues in CTD during gene transcription coordinate the recruitment of factors to the elongating RNAPII and to the nascent transcript. Recent studies identified threonine 4 and tyrosine 1 as new CTD modifications and thereby expanded the "CTD code". In this review, we focus on CTD phosphorylation and its function in the RNAPII transcription cycle. We also discuss in detail the limitations of the phosphospecific CTD antibodies, which are used in all studies. This article is part of a Special Issue entitled: RNA Polymerase II Transcript Elongation.

  10. Orthogonal combination of local binary patterns for dynamic texture recognition

    Science.gov (United States)

    Chen, Yin; Guo, Xuejun; Klein, Dominik

    2015-12-01

    Dynamic texture (DT) is an extension of texture to the temporal domain. Recognizing DTs has received increasing attention. Volume local binary pattern (VLBP) is the most widely used descriptor for DTs. However, it is time consuming to recognize DTs using VLBP due to the large scale of data and the high dimensionality of the descriptor itself. In this paper, we propose a new operator called orthogonal combination of VLBP (OC-VLBP) for DT recognition. The original VLBP is decomposed both longitudinally and latitudinally, and then combined to constitute the OC-VLBP operator, so that the dimensionality of the original VLBP descriptor is lowered. The experimental results show that the proposed operator significantly reduces the computational costs of recognizing DTs without much loss in recognizing accuracy.

  11. Social Group Dynamics and Patterns of Latin American Integration Processes

    Directory of Open Access Journals (Sweden)

    Sébastien Dubé

    2017-04-01

    Full Text Available This article proposes to incorporate social psychology elements with mainstream political science and international relations theories to help understand the contradictions related to the integration processes in Latin America. Through a theoretical analysis, it contributes to the challenge proposed by Dabène (2009 to explain the “resilience” of the Latin American regional integration process in spite of its “instability and crises.” Our main proposition calls for considering Latin America as a community and its regional organizations as “social groups.” In conclusion, three phenomena from the field of social psychology and particularly social group dynamics shed light on these contradictory patterns: the value of the group and the emotional bond, groupthink, and cognitive dissonance.

  12. Formation of Self-Organized Anode Patterns in Arc Discharge Simulations

    CERN Document Server

    Trelles, Juan Pablo

    2013-01-01

    Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic nonequilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant DC current between an axi-symmetric electrodes configuration in the absence of external forcing. The number of spots, their size, and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity, and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational require...

  13. Pattern formation in vibrated beds of dry and wet granular materials

    Science.gov (United States)

    Chuan Lim, Eldin Wee

    2014-01-01

    The Discrete Element Method was coupled with a capillary liquid bridge force model for computational studies of pattern formation in vibrated granular beds containing dry or wet granular materials. Depending on the vibration conditions applied, hexagonal, stripes, or cellular pattern was observed in the dry vibrated granular bed. In each of these cases, the same hexagonal, stripes, or cellular pattern was also observed in the spatial distribution of the magnitudes of particle-particle collision forces prior to the formation of the corresponding actual pattern in physical distributions of the particles. This seemed to suggest that the pattern formation phenomenon of vibrated granular bed systems might be the result of a two-dimensional Newton's cradle effect. In the presence of a small amount of wetness, these patterns were no longer formed in the vibrated granular beds under the same corresponding set of vibration conditions. Despite the relatively much weaker capillary forces arising from the simulated liquid bridges between particles compared with particle-particle collision forces, the spatial distributions of these collision forces, physical distributions of particles, as well as time profiles of average collision forces were altered significantly in comparison with the corresponding distributions and profiles observed for the dry vibrated granular beds. This seemed to suggest the presence of a two-dimensional Stokes' cradle effect in these wet vibrated granular bed systems which disrupted the formation of patterns in the wet granular materials that would have been observed in their dry counterparts.

  14. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    Science.gov (United States)

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production.

  15. How pattern formation in ring networks of excitatory and inhibitoryspiking neurons depends on the input current regime

    Directory of Open Access Journals (Sweden)

    Birgit eKriener

    2014-01-01

    Full Text Available Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics,specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningfulproperties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily.When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supercritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- orfluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability.In particular, if neurons are mean-driven, the linearization has a very simple form and becomesindependent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance areimportant parameters in the determination of the critical weight.We demonstrate that interestingly even in ``intermediate'' regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical couplingstrength. We moreover analyze the effects of structural randomness by rewiring individualsynapses or redistributing weights, as well as coarse-graining on pattern

  16. Conformal dynamics of fractal growth patterns without randomness

    Science.gov (United States)

    Davidovitch; Feigenbaum; Hentschel; Procaccia

    2000-08-01

    Many models of fractal growth patterns (such as diffusion limited aggregation and dielectric breakdown models) combine complex geometry with randomness; this double difficulty is a stumbling block to their elucidation. In this paper we introduce a wide class of fractal growth models with highly complex geometry but without any randomness in their growth rules. The models are defined in terms of deterministic itineraries of iterated conformal maps, generating the function Phi((n))(omega) which maps the exterior of the unit circle to the exterior of an n-particle growing aggregate. The complexity of the evolving interfaces is fully contained in the deterministic dynamics of the conformal map Phi((n))(omega). We focus attention on a class of growth models in which the itinerary is quasiperiodic. Such itineraries can be approached via a series of rational approximants. The analytic power gained is used to introduce a scaling theory of the fractal growth patterns and to identify the exponent that determines the fractal dimension.

  17. Dynamic expression pattern of kinesin accessory protein in Drosophila

    Indian Academy of Sciences (India)

    Ritu Sarpal; Krishanu Ray

    2002-09-01

    We have identified the Drosophila homologue of the non-motor accessory subunit of kinesin-II motor complex. It is homologous to the SpKAP115 of the sea urchin, KAP3A and KAP3B of the mouse, and SMAP protein in humans. In situ hybridization using a DmKAP specific cRNA probe has revealed a dynamic pattern of expression in the developing nervous system. The staining first appears in a subset of cells in the embryonic central nervous system at stage 13 and continues till the first instar larva stage. At the third instar larva stage the staining gets restricted to a few cells in the optic lobe and in the ventral ganglion region. It has also stained a subset of sensory neurons from late stage 13 and till the first instar larva stage. The DmKAP expression pattern in the nervous system corresponds well with that of Klp64D and Klp68D as reported earlier. In addition, we have found that the DmKAP gene is constitutively expressed in the germline cells and in follicle cells during oogenesis. These cells are also stained using an antibody to KLP68D protein, but mRNA in situ hybridization using KLP64D specific probe has not stained these cells. Together these results proved a basis for further analysis of tissue specific function of DmKAP in future.

  18. Liquid Droplet Impact Dynamics on Micro-Patterned Superhydrophobic Surfaces

    CERN Document Server

    Clavijo, Cristian; Crockett, Julie

    2013-01-01

    The video exhibits experimental qualitative and quantitative results of water/glycerol (50%/50% by mass) droplet impact on two types of micro-patterned superhydrophobic surfaces. The two types of surfaces used were 80% cavity fraction ribs and posts with a periodic spacing of 40 {\\mu}m and 32 {\\mu}m, respectively. All surfaces were manufactured through photolithography. The impact Weber number is used as the dynamic parameter to compare splash and rebound behaviors between the two types of surfaces. While droplets exhibit similar dynamics at low Weber numbers, rebound jet speed (normalized by droplet impact speed) is notably higher on posts than ribs for all Weber numbers tested here (5 265. On posts, satellite droplets also follow a specific path but in a different orientation. Satellite droplets form in locations aligned with the post lattice structure. This behavior is observed for 600 < We < 750. Jet rebound exhibits an interesting phenomenon on ribs under certain conditions. Due to the uneven shear...

  19. PSEUDOBULGE FORMATION AS A DYNAMICAL RATHER THAN A SECULAR PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Javiera; Mayer, Lucio; Carollo, Marcella [Institute for Astronomy, ETH Zuerich, Wolgang-Pauli-Strasse 27, 8093 Zurich (Switzerland); Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-07-20

    We investigate the formation and evolution of the pseudobulge in 'Eris', a high-resolution N-body + smoothed particle hydrodynamic cosmological simulation that successfully reproduces a Milky-Way-like massive late-type spiral in an cold dark matter universe. At the present epoch, Eris has a virial mass M{sub vir} {approx_equal} 8 Multiplication-Sign 10{sup 11} M{sub Sun }, a photometric stellar mass M{sub *} = 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers, both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolved from a stellar bar that formed at high redshift due to tidal interactions with satellites, was destroyed by minor mergers at z {approx} 3, re-formed shortly after, and weakened again following a steady gas inflow at z {approx}< 1. The gradual dissolution of the bar ensued at z {approx} 1 and continues until the present without increasing the stellar velocity dispersion in the inner regions. In this scenario, the pseudobulge is not a separate component from the inner disk in terms of formation path; rather, it is the first step in the inside-out formation of the baryonic disk, in agreement with the fact that pseudobulges of massive spiral galaxies typically have a dominant old stellar population. If our simulations do indeed reproduce the formation mechanisms of massive spirals, then the progenitors of late-type galaxies should have strong bars and small photometric pseudobulges at high redshift.

  20. Discrete dynamic system oriented on the formation of prebiotic dipeptides from Rode's experiment.

    Science.gov (United States)

    Polanco, Carlos; Samaniego, José Lino; Buhse, Thomas; Castañón González, Jorge Alberto

    2014-01-01

    This work attempts to rationalize the possible prebiotic profile of the first dipeptides of about 4 billion years ago based on a computational discrete dynamic system that uses the final yields of the dipeptides obtained in Rode's experiments of salt-induced peptide formation (Rode et al., 1999, Peptides 20: 773-786). The system built a prebiotic scenario that allowed us to observe that (i) the primordial peptide generation was strongly affected by the abundances of the amino acid monomers, (ii) small variations in the concentration of the monomers have almost no effect on the final distribution pattern of the dipeptides and (iii) the most plausible chemical reaction of prebiotic peptide bond formation can be linked to Rode's hypothesis of a salt-induced scenario. The results of our computational simulations were related to former simulations of the Miller, and Fox & Harada experiments on amino acid monomer and oligomer generation, respectively, offering additional information to our approach.

  1. Continuum modelling of piston driven shock waves through granular gases and ensuing pattern formations

    Science.gov (United States)

    Sirmas, Nick; Radulescu, Matei

    2015-11-01

    Two-dimensional event-driven Molecular Dynamics (MD) simulations were previously completed to investigate the stability of piston driven shock waves through dilute granular gases. By considering viscoelastic collisions, allowing for finite dissipation within the shock wave, instabilities were found in the form of distinctive high density non-uniformities and convective rolls within the shock structure. This work is now extended to the continuum level. Euler and Navier-Stokes equations for granular gases are modelled with a modified cooling rate to include an impact threshold necessary for inelastic collisions. The shock structure predicted by the continuum formulation is found in good agreement with the structure obtained by MD. Non-linear stability analyses of the travelling wave solution are performed, showing a neutrally stable structure and responding only to fluctuations in the upstream state. Introducing strong perturbations to the incoming density field, in accordance with the spacial fluctuations in upstream state seen in MD, yields similar instabilities as those previously observed. While the inviscid model predicts a highly turbulent structure from these perturbations, the inclusion of viscosity yields comparable wavelengths of pattern formations to those seen in MD.

  2. Polar pattern formation in driven filament systems requires non-binary particle collisions

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A.; Frey, Erwin; Bausch, Andreas R.

    2015-10-01

    From the self-organization of the cytoskeleton to the synchronous motion of bird flocks, living matter has the extraordinary ability to behave in a concerted manner. The Boltzmann equation for self-propelled particles is frequently used in silico to link a system’s meso- or macroscopic behaviour to the microscopic dynamics of its constituents. But so far such studies have relied on an assumption of simplified binary collisions owing to a lack of experimental data suggesting otherwise. We report here experimentally determined binary-collision statistics by studying a recently introduced molecular system, the high-density actomyosin motility assay. We demonstrate that the alignment induced by binary collisions is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, indicating that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. Our findings demonstrate that the unique properties of biological active-matter systems require a description that goes well beyond that developed in the framework of kinetic theories.

  3. Polar Pattern Formation in Driven Filament Systems Require Non-Binary Particle Collisions.

    Science.gov (United States)

    Suzuki, Ryo; Weber, Christoph A; Frey, Erwin; Bausch, Andreas R

    2015-10-01

    Living matter has the extraordinary ability to behave in a concerted manner, which is exemplified throughout nature ranging from the self-organisation of the cytoskeleton to flocks of animals [1-4]. The microscopic dynamics of constituents have been linked to the system's meso- or macroscopic behaviour in silico via the Boltzmann equation for propelled particles [5-10]. Thereby, simplified binary collision rules between the constituents had to be assumed due to the lack of experimental data. We report here experimentally determined binary collision statistics by studying the recently introduced molecular system, the high density actomyosin motility assay [11-13]. We demonstrate that the alignment effect of the binary collision statistics is too weak to account for the observed ordering transition. The transition density for polar pattern formation decreases quadratically with filament length, which indicates that multi-filament collisions drive the observed ordering phenomenon and that a gas-like picture cannot explain the transition of the system to polar order. The presented findings demonstrate that the unique properties of biological active matter systems require a description that goes well beyond a gas-like picture developed in the framework of kinetic theories.

  4. Hypothetical way of pollen aperture patterning. 2. Formation of polycolpate patterns and pseudoaperture geometry.

    Science.gov (United States)

    Pozhidaev

    2000-05-01

    Deviant forms of polycolpate pollen, differing from the typical pattern in the number and arrangement of apertures, are found to be similar in distantly related dicotyledon taxa. The range of variation of common and deviant aperture patterns may be arranged as a continuous series, which may be described as a gradual and geometrically regular transformation of the deviant form with a meridional circular colpus to one of the common polycolpate conditions. Similar series have been observed in the taxa with colporate and pseudocolpate pollen. All possible spatial isomers and their mirror symmetrical variants of the deviant polycolpate and polypseudocolpate pollen have been predicted in terms of the suggested regularities of aperture multiplication. Some of them have been identified in the samples studied.

  5. Fibroblast-fibronectin patterning and network formation in 3D fibrin matrices.

    Science.gov (United States)

    Miron-Mendoza, Miguel; Graham, Eric; Manohar, Sujal; Petroll, W Matthew

    2017-06-07

    We previously reported that fibroblasts migrating within 3-D collagen matrices move independently, whereas fibroblasts within 3-D fibrin matrices form an interconnected network. Similar networks have been identified previously during in vivo corneal wound healing. In this study, we investigate the role of fibronectin in mediating this mechanism of collective cell spreading, migration and patterning. To assess cell spreading, corneal fibroblasts were plated within fibrillar collagen or fibrin matrices. To assess migration, compacted cell-populated collagen matrices were nested inside cell-free fibrin matrices. Constructs were cultured in serum-free media containing PDGF, with or without RGD peptide, anti-α5 or anti-fibronectin blocking antibodies. In some experiments, LifeAct and fluorescent fibronectin were used to allow dynamic assessment of cell-induced fibronectin reorganization. 3-D and 4-D imaging were used to assess cell mechanical behavior, connectivity, F-actin, α5 integrin and fibronectin organization. Corneal fibroblasts within 3-D fibrin matrices formed an interconnected network that was lined with cell-secreted fibronectin. Live cell imaging demonstrated that fibronectin tracks were formed at the leading edge of spreading and migrating cells. Furthermore, fibroblasts preferentially migrated through fibronectin tracks laid down by other cells. Interfering with cell-fibronectin binding with RGD, anti α5 integrin or anti fibronectin antibodies inhibited cell spreading and migration through fibrin, but did not affect cell behavior in collagen. In this study, a novel mode of cell patterning was identified in which corneal fibroblasts secrete and attach to fibronectin via α5β1 integrin to facilitate spreading and migration within 3-D fibrin matrices, resulting in the formation of localized fibronectin tracks. Other cells use these fibronectin tracks as conduits, resulting in an interconnected cell-fibronectin network. Copyright © 2017 International

  6. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops.

    Science.gov (United States)

    Parsa, Maryam; Harmand, Souad; Sefiane, Khellil; Bigerelle, Maxence; Deltombe, Raphaël

    2015-03-24

    This study investigates pattern formation during evaporation of water-based nanofluid sessile droplets placed on a smooth silicon surface at various temperatures. An infrared thermography technique was employed to observe the temperature distribution along the air-liquid interface of evaporating droplets. In addition, an optical interferometry technique is used to quantify and characterize the deposited patterns. Depending on the substrate temperature, three distinctive deposition patterns are observed: a nearly uniform coverage pattern, a "dual-ring" pattern, and multiple rings corresponding to "stick-slip" pattern. At all substrate temperatures, the internal flow within the drop builds a ringlike cluster of the solute on the top region of drying droplets, which is found essential for the formation of the secondary ring deposition onto the substrate for the deposits with the "dual-ring" pattern. The size of the secondary ring is found to be dependent on the substrate temperature. For the deposits with the rather uniform coverage pattern, the ringlike cluster of the solute does not deposit as a distinct secondary ring; instead, it is deformed by the contact line depinning. In the case of the "stick-slip" pattern, the internal flow behavior is complex and found to be vigorous with rapid circulating flow which appears near the edge of the drop.

  7. Dynamical patterning modules: a "pattern language" for development and evolution of multicellular form.

    Science.gov (United States)

    Newman, Stuart A; Bhat, Ramray

    2009-01-01

    This article considers the role played by a core set of "dynamical patterning modules" (DPMs) in the origination, development and evolution of complex organisms. These consist of the products of a subset of the genes of what has come to be known as the "developmental-genetic toolkit" in association with physical processes they mobilize. The physical processes are those characteristic of chemically and mechanically excitable mesoscopic systems like cell aggregates: cohesion, viscoelasticity, diffusion, spatiotemporal heterogeneity based on activator-inhibitor interaction, and multistable and oscillatory dynamics. We focus on the emergence of the Metazoa, and show how toolkit gene products and pathways that pre-existed the metazoans acquired novel morphogenetic functions simply by virtue of the change in scale and context inherent to multicellularity. We propose that DPMs, acting singly and in combination with each other, constitute a "pattern language" capable of generating all metazoan body plans and organ forms. This concept implies that the multicellular organisms of the late Precambrian-early Cambrian were phenotypically plastic, fluently exploring morphospace in a fashion decoupled from both function-based selection and genotypic change. The relatively stable developmental trajectories and morphological phenotypes of modern organisms, then, are considered to be products of stabilizing selection. This perspective solves the apparent "molecular homology-analogy paradox," whereby widely divergent modern animal types utilize the same molecular toolkit during development, but it does so by inverting the neo-Darwinian principle that phenotypic disparity was generated over long periods of time in concert with, and in proportion to genotypic change.

  8. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    Science.gov (United States)

    Batygin, Konstantin; Bodenheimer, Peter H.; Laughlin, Gregory P.

    2016-10-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ˜10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we offer the contrasting view that a substantial fraction of the hot Jupiter population formed in situ via the core-accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by super-Earth-type planets, comprising 10-20 Earth masses of refractory material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ˜100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems’ lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring provides the best prospect for their detection.

  9. In Situ Formation and Dynamical Evolution of Hot Jupiter Systems

    CERN Document Server

    Batygin, Konstantin; Laughlin, Gregory P

    2015-01-01

    Hot Jupiters, giant extrasolar planets with orbital periods shorter than ~10 days, have long been thought to form at large radial distances, only to subsequently experience long-range inward migration. Here, we propose that in contrast with this picture, a substantial fraction of the hot Jupiter population formed in situ via the core accretion process. We show that under conditions appropriate to the inner regions of protoplanetary disks, rapid gas accretion can be initiated by Super-Earth type planets, comprising 10-20 Earth masses of refractory composition material. An in situ formation scenario leads to testable consequences, including the expectation that hot Jupiters should frequently be accompanied by additional low-mass planets with periods shorter than ~100 days. Our calculations further demonstrate that dynamical interactions during the early stages of planetary systems' lifetimes should increase the inclinations of such companions, rendering transits rare. High-precision radial velocity monitoring p...

  10. Dynamical complexity in the perception-based network formation model

    Science.gov (United States)

    Jo, Hang-Hyun; Moon, Eunyoung

    2016-12-01

    Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.

  11. Impact of degree mixing pattern on consensus formation in social networks

    Science.gov (United States)

    Liu, Xiao Fan; Tse, Chi Kong

    The consensus formation process in a social network is affected by a number of factors. This paper studies how the degree mixing pattern of a social network affects the consensus formation process. A social network of more than 50,000 nodes was sampled from the online social services website Twitter. Nodes in the Twitter user network are grouped by their in-degrees and out-degrees. A degree mixing correlation is proposed to measure the randomness of the mixing pattern for each degree group. The DeGroot model is used to simulate the consensus formation processes in the network. Simulation suggests that the non-random degree mixing pattern of social networks can slow down the rate of consensus.

  12. Wavelength Analysis of Interface between Two Miscible Solutions Observed in Formation of Fractal Pattern

    Science.gov (United States)

    Shimokawa, Michiko; Takami, Toshiya

    2014-04-01

    When a droplet of a higher-density solution (HDS) is placed on top of a lower-density solution (LDS), the HDS draws a fractal pattern on the surface of the LDS. Before the fractal pattern is formed, a stick-like pattern with a periodic structure emerges in a region surrounding the surface pattern due to interfacial instability. We experimentally measure the wavelength of this stick-like pattern. The wavelength increases with the volume of the HDS and is independent of the viscosities of the two solutions. To understand the stick generation, we propose a model of miscible viscous fingering whose boundary conditions are similar to those of the experiments. The wavelength obtained from the model agrees with the experimentally obtained wavelength. The formation of the fractal pattern is discussed by comparing it with the viscous fingering.

  13. Classification of time series patterns from complex dynamic systems

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, J.C.; Rao, N.

    1998-07-01

    An increasing availability of high-performance computing and data storage media at decreasing cost is making possible the proliferation of large-scale numerical databases and data warehouses. Numeric warehousing enterprises on the order of hundreds of gigabytes to terabytes are a reality in many fields such as finance, retail sales, process systems monitoring, biomedical monitoring, surveillance and transportation. Large-scale databases are becoming more accessible to larger user communities through the internet, web-based applications and database connectivity. Consequently, most researchers now have access to a variety of massive datasets. This trend will probably only continue to grow over the next several years. Unfortunately, the availability of integrated tools to explore, analyze and understand the data warehoused in these archives is lagging far behind the ability to gain access to the same data. In particular, locating and identifying patterns of interest in numerical time series data is an increasingly important problem for which there are few available techniques. Temporal pattern recognition poses many interesting problems in classification, segmentation, prediction, diagnosis and anomaly detection. This research focuses on the problem of classification or characterization of numerical time series data. Highway vehicles and their drivers are examples of complex dynamic systems (CDS) which are being used by transportation agencies for field testing to generate large-scale time series datasets. Tools for effective analysis of numerical time series in databases generated by highway vehicle systems are not yet available, or have not been adapted to the target problem domain. However, analysis tools from similar domains may be adapted to the problem of classification of numerical time series data.

  14. Molecular Dynamics Simulations of CO2 Formation in Interstellar Ices

    CERN Document Server

    Arasa, Carina; van Dishoeck, Ewine F; Kroes, Geert-Jan

    2013-01-01

    CO2 ice is one of the most abundant components in ice-coated interstellar ices besides H2O and CO, but the most favorable path to CO2 ice is still unclear. Molecular dynamics calculations on the ultraviolet photodissociation of different kinds of CO-H2O ice systems have been performed at 10 K in order to demonstrate that the reaction between CO and an OH molecule resulting from H2O photodissociation through the first excited state is a possible route to form CO2 ice. However, our calculations, which take into account different ice surface models, suggest that there is another product with a higher formation probability ((3.00+-0.07)x10-2), which is the HOCO complex, whereas the formation of CO2 has a probability of only (3.6+-0.7)x10-4. The initial location of the CO is key to obtain reaction and form CO2: the CO needs to be located deep into the ice. The HOCO complex becomes trapped in the cold ice surface in the trans-HOCO minimum because it quickly loses its internal energy to the surrounding ice, preventi...

  15. A dynamic model for tumour growth and metastasis formation.

    Science.gov (United States)

    Haustein, Volker; Schumacher, Udo

    2012-07-05

    A simple and fast computational model to describe the dynamics of tumour growth and metastasis formation is presented. The model is based on the calculation of successive generations of tumour cells and enables one to describe biologically important entities like tumour volume, time point of 1st metastatic growth or number of metastatic colonies at a given time. The model entirely relies on the chronology of these successive events of the metastatic cascade. The simulation calculations were performed for two embedded growth models to describe the Gompertzian like growth behaviour of tumours. The initial training of the models was carried out using an analytical solution for the size distribution of metastases of a hepatocellular carcinoma. We then show the applicability of our models to clinical data from the Munich Cancer Registry. Growth and dissemination characteristics of metastatic cells originating from cells in the primary breast cancer can be modelled thus showing its ability to perform systematic analyses relevant for clinical breast cancer research and treatment. In particular, our calculations show that generally metastases formation has already been initiated before the primary can be detected clinically.

  16. Gravity effects on thick brane formation from scalar field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, Alexander A. [Saint-Petersburg State University, V.A. Fock Department of Theoretical Physics, St. Petersburg (Russian Federation); Universitat de Barcelona, Institut de Ciencies del Cosmos, Barcelona (Spain); Andrianov, Vladimir A.; Novikov, Oleg O. [Saint-Petersburg State University, V.A. Fock Department of Theoretical Physics, St. Petersburg (Russian Federation)

    2013-12-15

    The formation of a thick brane in five-dimensional space-time is investigated when warp geometries of AdS{sub 5} type are induced by scalar matter dynamics and triggered by a thin-brane defect. The scalar matter is taken to consist of two fields with O(2) symmetric self-interaction and with manifest O(2) symmetry breaking by terms quadratic in fields. One of them serves as a thick brane formation mode around a kink background and another one is of a Higgs-field type which may develop a classical background as well. Scalar matter interacts with gravity in the minimal form and gravity effects on (quasi)localized scalar fluctuations are calculated with usage of gauge invariant variables suitable for perturbation expansion. The calculations are performed in the vicinity of the critical point of spontaneous breaking of the combined parity symmetry where a non-trivial v.e.v. of the Higgs-type scalar field is generated. The non-perturbative discontinuous gravitational effects in the mass spectrum of light localized scalar states are studied in the presence of a thin-brane defect. The thin brane with negative tension happens to be the most curious case when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk. (orig.)

  17. Star formation in isolated AMIGA galaxies: dynamical influence of bars

    CERN Document Server

    Verley, S; Verdes-Montenegro, L; Bergond, G; Leon, S

    2007-01-01

    Star formation depends strongly both on the local environment of galaxies, and on the internal dynamics of the interstellar medium. To disentangle the two effects, we obtained, in the framework of the AMIGA project, Ha and Gunn r photometric data for more than 200 spiral galaxies lying in very low-density regions of the local Universe. We characterise the Ha emission, tracing current star formation, of the 45 largest and less inclined galaxies observed for which we estimate the torques between the gas and the bulk of the optical matter. We could subsequently study the Ha morphological aspect of these isolated spiral galaxies. Using Fourier analysis, we focus on the modes of the spiral arms and also on the strength of the bars, computing the torques between the gas and newly formed stars (Ha) and the bulk of the optical matter (Gunn r). We interpret the various bar/spiral morphologies observed in terms of the secular evolution experienced by galaxies in isolation. We also classify the different spatial distrib...

  18. Pattern formation in directional solidification under shear flow. I. Linear stability analysis and basic patterns.

    Science.gov (United States)

    Marietti, Y; Debierre, J M; Bock, T M; Kassner, K

    2001-06-01

    An asymptotic interface equation for directional solidification near the absolute stability limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies which is described in the following paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.

  19. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology.

    Science.gov (United States)

    Othmer, Hans G; Painter, Kevin; Umulis, David; Xue, Chuan

    2009-01-01

    We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems - Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns - illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago'We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.'

  20. The mechanism of Turing pattern formation in a positive feedback system with cross diffusion

    Science.gov (United States)

    Yang, Xiyan; Liu, Tuoqi; Zhang, Jiajun; Zhou, Tianshou

    2014-03-01

    In this paper, we analyze a reaction-diffusion (R-D) system with a double negative feedback loop and find cases where self diffusion alone cannot lead to Turing pattern formation but cross diffusion can. Specifically, we first derive a set of sufficient conditions for Turing instability by performing linear stability analysis, then plot two bifurcation diagrams that specifically identify Turing regions in the parameter phase plane, and finally numerically demonstrate representative Turing patterns according to the theoretical predictions. Our analysis combined with previous studies actually implies an interesting fact that Turing patterns can be generated not only in a class of monostable R-D systems where cross diffusion is not necessary but also in a class of bistable R-D systems where cross diffusion is necessary. In addition, our model would be a good candidate for experimentally testing Turing pattern formation from the viewpoint of synthetic biology.

  1. Performance analysis and optimal design for well patterns in anisotropic formations

    Institute of Scientific and Technical Information of China (English)

    Liu Yuetian

    2008-01-01

    The mechanism of the effects of anisotropic permeability on well patterns and reservoir development are investigated by coordinate transformation,fluid flow analysis,and reservoir development concepts.Anisotropy of permeability has reconstructive effects on well patterns.The originally designed flooding units are broken up,and new pattern units are made up of the wells that belong to different original units.The behavior possesses strong randomness,and leads to a complicated relationship among the injection and production wells,and unpredictable productivity of the formations.To prevent the break-up of well patterns,well lines should be either parallel or perpendicular to the maximum principal direction of the anisotropic permeability(i.e.the fracture direction).To optimize the development effects of anisotropic formations,the latitudinal and longitudinal well spacing of the well network are calculated from the principal values of the anisotropic permeability.

  2. Dynamics of alliance formation and the egalitarian revolution.

    Directory of Open Access Journals (Sweden)

    Sergey Gavrilets

    Full Text Available BACKGROUND: Arguably the most influential force in human history is the formation of social coalitions and alliances (i.e., long-lasting coalitions and their impact on individual power. Understanding the dynamics of alliance formation and its consequences for biological, social, and cultural evolution is a formidable theoretical challenge. In most great ape species, coalitions occur at individual and group levels and among both kin and non-kin. Nonetheless, ape societies remain essentially hierarchical, and coalitions rarely weaken social inequality. In contrast, human hunter-gatherers show a remarkable tendency to egalitarianism, and human coalitions and alliances occur not only among individuals and groups, but also among groups of groups. These observations suggest that the evolutionary dynamics of human coalitions can only be understood in the context of social networks and cognitive evolution. METHODOLOGY/PRINCIPAL FINDINGS: Here, we develop a stochastic model describing the emergence of networks of allies resulting from within-group competition for status or mates between individuals utilizing dyadic information. The model shows that alliances often emerge in a phase transition-like fashion if the group size, awareness, aggressiveness, and persuasiveness of individuals are large and the decay rate of individual affinities is small. With cultural inheritance of social networks, a single leveling alliance including all group members can emerge in several generations. CONCLUSIONS/SIGNIFICANCE: We propose a simple and flexible theoretical approach for studying the dynamics of alliance emergence applicable where game-theoretic methods are not practical. Our approach is both scalable and expandable. It is scalable in that it can be generalized to larger groups, or groups of groups. It is expandable in that it allows for inclusion of additional factors such as behavioral, genetic, social, and cultural features. Our results suggest that a rapid

  3. Insular dentin formation pattern in human odontogenesis in relation to the scalloped dentino-enamel junction.

    Science.gov (United States)

    Radlanski, Ralf J; Renz, Herbert

    2007-01-01

    This study is a first report on the modality of early dentin formation in respect to the scalloped pattern of the dentino-enamel junction (DEJ). We applied scanning electron microscopy (SEM), transmission electron microscopy (TEM), histological serial sections, and three-dimensional (3D) reconstructions. TEM and SEM showed scallops and secondary scallops on the DEJ of deciduous dental primordia and on deciduous teeth with the enamel cap removed. This peculiar outline of the DEJ requires a specific dentin formation pattern; histological sections showed that dentin formation began at the brims of the scallops, seen as triangular spikes in serial sections. The dentin formation front was not uniform; instead, it was characterized by multiple, insular forming centers, as revealed by our 3D reconstructions. As thicker dentin layers formed, the islands became confluent. Factors are discussed, which may lead to crimpling of the inner enamel epithelium, and maintained as the scalloped pattern of the DEJ develops. Signaling patterns in accordance with the insular dentin formation are unknown so far.

  4. Predicting the distribution of spiral waves from cell properties in a developmental-path model of Dictyostelium pattern formation.

    Directory of Open Access Journals (Sweden)

    Daniel Geberth

    2009-07-01

    Full Text Available The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers. This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path.

  5. Hardware format pattern banks for the Associative memory boards in the ATLAS Fast Tracker Trigger System

    CERN Document Server

    Grewcoe, Clay James

    2014-01-01

    The aim of this project is to streamline and update the process of encoding the pattern bank to hardware format in the Associative memory board (AM) of the Fast Tracker (FTK) for the ATLAS detector. The encoding is also adapted to Gray code to eliminate possible misreadings in high frequency devices such as this one, ROOT files are used to store the pattern banks because of the compression utilized in ROOT.

  6. Topological analysis of the formation of Jet-Wake flow pattern in centrifugal impeller channel

    Institute of Scientific and Technical Information of China (English)

    ZHENG Qun; LIU Shun-long

    2004-01-01

    Topological analyses are carried out for the numerical results of internal flow field in centrifugal impeller. Topological rules of the singular point characteristics of the limiting streamline are derived and used to determine three dimensional separation patterns in centrifugal impeller and to verify the numerical results. The results reveal that the wake is saddle to nodal closed separation and the formation, its onset point and its developing process of Jet-Wake Flow pattern in centrifugal impeller are presented in this paper.

  7. Performance of Dynamically Simulated Reference Patterns for Cross-Correlation Electron Backscatter Diffraction.

    Science.gov (United States)

    Jackson, Brian E; Christensen, Jordan J; Singh, Saransh; De Graef, Marc; Fullwood, David T; Homer, Eric R; Wagoner, Robert H

    2016-08-01

    High-resolution (or "cross-correlation") electron backscatter diffraction analysis (HR-EBSD) utilizes cross-correlation techniques to determine relative orientation and distortion of an experimental electron backscatter diffraction pattern with respect to a reference pattern. The integrity of absolute strain and tetragonality measurements of a standard Si/SiGe material have previously been analyzed using reference patterns produced by kinematical simulation. Although the results were promising, the noise levels were significantly higher for kinematically produced patterns, compared with real patterns taken from the Si region of the sample. This paper applies HR-EBSD techniques to analyze lattice distortion in an Si/SiGe sample, using recently developed dynamically simulated patterns. The results are compared with those from experimental and kinematically simulated patterns. Dynamical patterns provide significantly more precision than kinematical patterns. Dynamical patterns also provide better estimates of tetragonality at low levels of distortion relative to the reference pattern; kinematical patterns can perform better at large values of relative tetragonality due to the ability to rapidly generate patterns relating to a distorted lattice. A library of dynamically generated patterns with different lattice parameters might be used to achieve a similar advantage. The convergence of the cross-correlation approach is also assessed for the different reference pattern types.

  8. Design of a diffractive optical element for pattern formation in a bilingual virtual keyboard

    Science.gov (United States)

    Manouchehri, Sohrab; Rahimi, Mojtaba; Oboudiat, Mohammad

    2016-03-01

    Pattern formation is one of the many applications of diffractive optical elements (DOEs) for display. Since DOEs have lightweight and slim nature compared to other optical devices, using them as image projection device in virtual keyboards is suggested. In this paper, we present an approach to designing elements that produce distinct intensity patterns, in the far field, for two wavelengths. These two patterns are images of bilingual virtual keyboard. To achieve this with DOEs is not simple, as they are inherently wavelength specific. Our technique is based on phase periodic characteristic of wavefront using iterative algorithm to design the phase profiles.

  9. Two-dimensional intraventricular flow pattern visualization using the image-based computational fluid dynamics.

    Science.gov (United States)

    Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S

    2016-10-31

    The image-based computational fluid dynamics (IB-CFD) technique, as the combination of medical images and the CFD method, is utilized in this research to analyze the left ventricle (LV) hemodynamics. The research primarily aims to propose a semi-automated technique utilizing some freely available and commercial software packages in order to simulate the LV hemodynamics using the IB-CFD technique. In this research, moreover, two different physiological time-resolved 2D models of a patient-specific LV with two different types of aortic and mitral valves, including the orifice-type valves and integrated with rigid leaflets, are adopted to visualize the process of developing intraventricular vortex formation and propagation. The blood flow pattern over the whole cardiac cycle of two models is also compared to investigate the effect of utilizing different valve types in the process of the intraventricular vortex formation. Numerical findings indicate that the model with integrated valves can predict more complex intraventricular flow that can match better the physiological flow pattern in comparison to the orifice-type model.

  10. The Self-Made Puzzle: Integrating Self-Assembly and Pattern Formation Under Non-Random Genetic Regulation

    Science.gov (United States)

    Doursat, René

    On the one hand, research in self-assembling systems, whether natural or artificial, has traditionally focused on pre-existing components endowed with fixed shapes. Biological development, by contrast, dynamically creates new cells that acquire selective adhesion properties through differentiation induced by their neighborhood. On the other hand, pattern formation phenomena are generally construed as orderly states of activity on top of a continuous 2-D or 3-D substrate. Yet, again, the spontaneous patterning of an organism into domains of gene expression arises within a multicellular medium in perpetual expansion and reshaping. Finally, both phenomena are often thought in terms of stochastic events, whether mixed components that randomly collide in self-assembly, or spots and stripes that occur unpredictably from instabilities in pattern formation. Here too, these notions need significant revision if they are to be extended and applied to embryogenesis. Cells are not randomly mixed but pre-positioned where cell division occurs. Genetic identity domains are not randomly distributed but highly regulated in number and position. In this work, I present a computational model of program-mable and reproducible artificial morphogenesis that integrates self-assembly and pattern formation under the control of a nonrandom gene regulatory network. The specialized properties of cells (division, adhesion, migration) are determined by the gene expression domains to which they belong, while at the same time these domains further expand and segment into subdomains due to the self-assembly of specialized cells. Through this model, I also promote a new discipline, embryomorphic engineering to solve the paradox of "meta-designing" decentralized, autonomous systems.

  11. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Auman, Tzach; Vreede, Barbara M I; Weiss, Aryeh; Hester, Susan D; Williams, Terri A; Nagy, Lisa M; Chipman, Ariel D

    2017-05-15

    We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. © 2017. Published by The Company of Biologists Ltd.

  12. Biological Dynamics Markup Language (BDML): an open format for representing quantitative biological dynamics data.

    Science.gov (United States)

    Kyoda, Koji; Tohsato, Yukako; Ho, Kenneth H L; Onami, Shuichi

    2015-04-01

    Recent progress in live-cell imaging and modeling techniques has resulted in generation of a large amount of quantitative data (from experimental measurements and computer simulations) on spatiotemporal dynamics of biological objects such as molecules, cells and organisms. Although many research groups have independently dedicated their efforts to developing software tools for visualizing and analyzing these data, these tools are often not compatible with each other because of different data formats. We developed an open unified format, Biological Dynamics Markup Language (BDML; current version: 0.2), which provides a basic framework for representing quantitative biological dynamics data for objects ranging from molecules to cells to organisms. BDML is based on Extensible Markup Language (XML). Its advantages are machine and human readability and extensibility. BDML will improve the efficiency of development and evaluation of software tools for data visualization and analysis. A specification and a schema file for BDML are freely available online at http://ssbd.qbic.riken.jp/bdml/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  13. Star Formation and Cloud Dynamics in the Galactic Bar Region

    Science.gov (United States)

    Tolls, Volker

    The Inner Galaxy (IG) that is the Galactic Bar Region (GBR) and the Central Molecular Zone (CMZ) including the Galactic Center (GC) are, despite being the sites of dramatic processes and unique sources, still only incompletely understood. Detailed new datasets from the Herschel Space Observatory can be systematically combined with older archival material to enable a new and more complete analysis of the region, its large-scale dynamics, its unusual giant molecular clouds, and the likely influences of its bar and its supermassive black hole. Such a study is both timely and important: the region has affected the structure and evolution of the galaxy; its individual sources are opportunities to examine star formation (for example) under extreme conditions; the processes feeding the CMZ and, subsequently, its black hole are important; and not least, it is a nearby template for the inner regions of other galaxies. The Herschel Space Observatory has provided us with exciting new datasets including full FIR photometric maps and highand low-resolution far-infrared/submillimeter spectra of key sources and lines of the locations of dynamical importance. All these datasets are publicly available from the Herschel Science Archive. Our experienced team has already developed preliminary models, and we propose a thorough investigation to combine the Herschel datasets with Spitzer and WISE datasets. We will supplement them with ground-based observations in cases when it will improve the results. We will then analyze the data and use the results to refine the models and improve our understanding of this key region. Our specific goal is to characterize and model the 3 giant high-velocity molecular cloud clumps in the Galaxy Bar Region (GBR) in detail and to combine the conclusions to produce an improved model of the IG. We have seven tasks: (1) identify all smaller scale gas and dust cores using archival Herschel FIR photometric observations and obtain their physical characteristics

  14. Multi-target trapping in constrained environments using gene regulatory network-based pattern formation

    Directory of Open Access Journals (Sweden)

    Xingguang Peng

    2016-10-01

    Full Text Available Inspired by the morphogenesis of biological organisms, gene regulatory network-based methods have been used in complex pattern formation of swarm robotic systems. In this article, obstacle information was embedded into the gene regulatory network model to make the robots trap targets with an expected pattern while avoiding obstacles in a distributed manner. Based on the modified gene regulatory network model, an implicit function method was adopted to represent the expected pattern which is easily adjusted by adding extra feature points. Considering environmental constraints (e.g. tunnels or gaps in which robots must adjust their pattern to conduct trapping task, a pattern adaptation strategy was proposed for the pattern modeler to adaptively adjust the expected pattern. Also to trap multiple targets, a splitting pattern adaptation strategy was proposed for diffusively moving targets so that the robots can trap each target separately with split sub-patterns. The proposed model and strategies were verified through a set of simulation with complex environmental constraints and non-consensus movements of targets.

  15. Dynamics of Drop Formation in an Electric Field.

    Science.gov (United States)

    Notz; Basaran

    1999-05-01

    The effect of an electric field on the formation of a drop of an inviscid, perfectly conducting liquid from a capillary which protrudes from the top plate of a parallel-plate capacitor into a surrounding dynamically inactive, insulating gas is studied computationally. This free boundary problem which is comprised of the surface Bernoulli equation for the transient drop shape and the Laplace equation for the velocity potential inside the drop and the electrostatic potential outside the drop is solved by a method of lines incorporating the finite element method for spatial discretization. The finite element algorithm employed relies on judicious use of remeshing and element addition to a two-region adaptive mesh to accommodate large domain deformations, and allows the computations to proceed until the thickness of the neck connecting an about to form drop to the rest of the liquid in the capillary is less than 0.1% of the capillary radius. The accuracy of the computations is demonstrated by showing that in the absence of an electric field predictions made with the new algorithm are in excellent agreement with boundary integral calculations (Schulkes, R. M. S. M. J. Fluid Mech. 278, 83 (1994)) and experimental measurements on water drops (Zhang, X., and Basaran, O. A. Phys. Fluids 7(6), 1184 (1995)). In the presence of an electric field, the algorithm predicts that as the strength of the applied field increases, the mode of drop formation changes from simple dripping to jetting to so-called microdripping, in accordance with experimental observations (Cloupeau, M., and Prunet-Foch, B. J. Aerosol Sci. 25(6), 1021 (1994); Zhang, X., and Basaran, O. A. J. Fluid Mech. 326, 239 (1996)). Computational predictions of the primary drop volume and drop length at breakup are reported over a wide range of values of the ratios of electrical, gravitational, and inertial forces to surface tension force. In contrast to previously mentioned cases where both the flow rate in the tube

  16. Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies

    Science.gov (United States)

    Aguilar, L. A.

    1990-11-01

    RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other

  17. Forest landscape patterns dynamics of Yihe—Luohe river basin

    Institute of Scientific and Technical Information of China (English)

    DINGShengyan; SHANGFude; QIANLexiang; CAOXinxiang; LIShuang

    2003-01-01

    Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999,six indices were used to analyze spatial patterns and dynamics of forest landscapes of the typical region in the middle of the Yihe-Luohe river basin.These indices include patch number,mean patch area,fragment index,patdch extension index,etc,The results showed that;(1) There was a rapid increase in the number of patch and total area from 1983 to 1999 in the study area,The fragment degree became very high.(2) The area of all the forest patch types had witnessed great changes,The fractal degree of each forest patch type became big from 1983 to 1999 ,The mean extension index of Robinia pseudoacacia forest ,non- forest shrub forest ,sparse forest ,and Quercus species forest in creased rapidly,but that of economic forest became zero ,The fractal dimension each showed that forest coverage has been promoted.(3)The changes of landscape patterns were different in different geomprhic regions.From 1983 to 1999 the vegetation cover area,the gross number and the density of patch,diversity and evenness of landscape were all reduced greatly in gullies and ravines,but the maximum area and the mean area of patch types were increased ,In hilly region,both the forest cover area and the number of patch increased from 1983 to 1999,but the mean area of patch was reduced greatly,In mountain region,even though the area under forest canopy reduced from 1983 to 1999 ,the patch number was increased greatly,the mean area of all patch types was reduced ,the extension index,diversity index and evenness index of landscape were all increased.Furthermore,because of different types of land use,human activtiy and terratin ,the vegetation changes on northern and southern mountain slopes were different.According to these analyses,the main driving forces,such as the policies of management,market economy,influence of human activities etc.are brought out.

  18. Phase-field modeling of microstructural pattern formation in alloys and geological veins

    OpenAIRE

    Ankit, Kumar

    2016-01-01

    With the advent of high performance computing, the application areas of the phase-field method, traditionally used to numerically model the phase transformation in metals and alloys, have now spanned into geoscience. A systematic investigation of the two distinct scientific problems in consideration suggest a strong influence of interfacial energy on the natural and induced pattern formation in diffusion-controlled regime.

  19. Patterned electrospun nanofiber matrices via localized dissolution: potential for guided tissue formation.

    Science.gov (United States)

    Jia, Chao; Yu, Dou; Lamarre, Marven; Leopold, Philip L; Teng, Yang D; Wang, Hongjun

    2014-12-23

    With the assistance of an ink-jet printer, solvent (the "ink") can be controllably and reproducibly printed onto electrospun nanofiber meshes (the "paper") to generate various micropatterns and subsequently guide distinct cellular organization and phenotype expression. In combination with the nanofiber-assisted layer-by-layer cell assembly, the patterned electrospun meshes will define an instructive microenvironment for guided tissue formation.

  20. Transverse Mode Structure and Pattern Formation in Oxide Confined Vertical Cavity Semiconductor Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hegarty, S.P.; Hou, H.Q.; Huyet, G.; McInerney, J.G.; Porta, P.

    1999-07-06

    We analyze the transverse profiles of oxide-confined vertical cavity laser diodes as a function of aperture size. For small apertures we demonstrate that thermal lensing can be the dominant effect in determining the transverse resonator properties. We also analyze pattern formation in lasers with large apertures where we observe the appearance of tilted waves.

  1. Variation in brachial plexus formation, branching pattern and relation with major vessels

    Directory of Open Access Journals (Sweden)

    G. Anwer Khan

    2014-08-01

    Conclusion: The present study carried out on adult human cadavers revealed some rare variations in the formation, branching pattern and relations of the brachial plexus. These variations are of clinical significance for the surgeons, radiologists and the anesthesiologists. [Int J Res Med Sci 2014; 2(4.000: 1591-1594

  2. Collective motion of cells mediates segregation and pattern formation in co-cultures.

    Directory of Open Access Journals (Sweden)

    Elod Méhes

    Full Text Available Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion.

  3. Spatial Heterogeneity and Imperfect Mixing in Chemical Reactions: Visualization of Density-Driven Pattern Formation

    Directory of Open Access Journals (Sweden)

    Sabrina G. Sobel

    2009-01-01

    Full Text Available Imperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines, and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue propagate into a background of low ferriin concentration (red; their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe3+ with colorless SCN− to form the blood-red Fe(SCN2+ complex ion in aqueous solution. Careful addition of one drop of Fe(NO33 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.

  4. Fluid patterns and dynamics induced by vibrations in microgravity conditions

    Science.gov (United States)

    Porter, Jeff; Tinao Perez-Miravete, Ignacio; Laverón-Simavilla, Ana

    Understanding the effects of vibrations is extremely important in microgravity environments where residual acceleration, or g-jitter, is easily generated by crew manoeuvring or machinery, and can have a significant impact on material processing systems and on-board experiments. Indeed, vibrations can dramatically affect fluid behaviour whether gravity is present or not, inducing instability in some cases while suppressing it in others. We will describe the results of investigations being conducted at the ESA affiliated Spanish User Support and Operations Centre (E-USOC) on the effect of vibrations on fluids interfaces, most notably with the forcing oriented parallel to the fluid surface. Pattern formation properties will be described in detail, and the importance of symmetry constraints and mean flows will be considered. Current exper-imental results are intriguing and have challenged existing assumptions in the field, particularly with regard to the parametric instability underlying subharmonic cross-waves. They suggest an intimate connection between Faraday waves, which are observed in vertically vibrated systems, and cross-waves, which are found in horizontally forced systems. Concurrent theoretical work, based on the analysis of reduced models, and on numerical simulations, will then be described. Finally, this research will be placed in a microgravity context and used to motivate the defini-tion of a proposed set of experiments on the International Space Station (ISS). The experiments would be in the large-aspect-ratio-limit, requiring relatively high frequency but low amplitude vibrations, where comparatively little microgravity research has been done. The interest of such a microgravity experiment will be discussed, with emphasis on fluid management and the potential of vibrations to act as a kind of artificial gravity by orienting surfaces (or density contours) perpendicular to the axis of vibration.

  5. Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka-Volterra model.

    Science.gov (United States)

    Bendahmane, Mostafa; Ruiz-Baier, Ricardo; Tian, Canrong

    2016-05-01

    In this paper we analyze the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population super-diffusion. First, we study how cross super-diffusion influences the formation of spatial patterns: a linear stability analysis is carried out, showing that cross super-diffusion triggers Turing instabilities, whereas classical (self) super-diffusion does not. In addition we perform a weakly nonlinear analysis yielding a system of amplitude equations, whose study shows the stability of Turing steady states. A second goal of this contribution is to propose a fully adaptive multiresolution finite volume method that employs shifted Grünwald gradient approximations, and which is tailored for a larger class of systems involving fractional diffusion operators. The scheme is aimed at efficient dynamic mesh adaptation and substantial savings in computational burden. A numerical simulation of the model was performed near the instability boundaries, confirming the behavior predicted by our analysis.

  6. SIMULATION OF ELECTRICAL FIELD FOR THE FORMATION MECHANISM OF BIRD'S NEST PATTERNED STRUCTURES BY ELECTROSPINNING

    Institute of Scientific and Technical Information of China (English)

    Xiang-yu Ye; Yi-ning Jin; Xiao-jun Huang; Lei Luo; Zhi-kang Xu

    2013-01-01

    In our previous work,it was found that large Bird's Nest patterned nanofibrous membranes can be simply electrospun from chlorinated polypropylene solution doped with an ionic liquid,and a plausible formation mechanism of Bird's Nest patterned architectures was proposed.Here,we use Ansoft Maxwell version 12 software (3D,electrostatic solver) to simulate the electrical field distribution of the electrospirming setup,and to clarify the rationality of proposed formation mechanism.Calculation results clearly show that the introduction of charged nanofibrous bundles would produce a similar patterned electrical field distribution,which definitely confirms the important role of surface residual charges.The proposed mechanism can be well extended to other polymer systems including polystyrene,poly(acrylonitrile-co-acrylic acid) and chitosan/poly(ethvlene oxide).

  7. The effect of the signalling scheme on the robustness of pattern formation in development

    KAUST Repository

    Kang, H.-W.

    2012-03-21

    Pattern formation in development is a complex process which involves spatially distributed signals called morphogens that influence gene expression and thus the phenotypic identity of cells. Usually different cell types are spatially segregated, and the boundary between them may be determined by a threshold value of some state variable. The question arises as to how sensitive the location of such a boundary is to variations in properties, such as parameter values, that characterize the system. Here, we analyse both deterministic and stochastic reaction-diffusion models of pattern formation with a view towards understanding how the signalling scheme used for patterning affects the variability of boundary determination between cell types in a developing tissue.

  8. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization.

    Science.gov (United States)

    Braun, Hans-Georg; Meyer, Evelyn

    2013-02-05

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

  9. Spatial and polarization entanglement of lasing patterns and related dynamic behaviors in laser-diode-pumped solid-state lasers.

    Science.gov (United States)

    Otsuka, K; Chu, S-C; Lin, C-C; Tokunaga, K; Ohtomo, T

    2009-11-23

    To provide the underlying physical mechanism for formations of spatial- and polarization-entangled lasing patterns (namely, SPEPs), we performed experiments using a c-cut Nd:GdVO(4) microchip laser with off-axis laser-diode pumping. This extends recent work on entangled lasing pattern generation from an isotropic laser, where such a pattern was explained only in terms of generalized coherent states (GCSs) formed by mathematical manipulation. Here, we show that polarization-resolved transverse patterns can be well explained by the transverse mode-locking of distinct orthogonal linearly polarized Ince-Gauss (IG) mode pairs rather than GCSs. Dynamic properties of SPEPs were experimentally examined in both free-running and modulated conditions to identify long-term correlations of IG mode pairs over time. The complete chaos synchronization among IG mode pairs subjected to external perturbation is also demonstrated.

  10. Pseudobulge Formation as a Dynamical Rather than a Secular Process

    CERN Document Server

    Guedes, Javiera; Carollo, Marcella; Madau, Piero

    2012-01-01

    We investigate the formation and evolution of the pseudobulge in "Eris", a high-resolution N-body + smoothed particle hydrodynamics (SPH) cosmological simulation that successfully reproduces a Milky Way-like massive late-type spiral in a cold dark matter (LCDM) universe. At the present epoch, Eris has a virial mass Mvir=8x10^11 Msun, a photometric stellar mass M*=3.2x10^10 Msun, a bulge-to-total ratio B/T = 0.26, and a weak nuclear bar. We find that the bulk of the pseudobulge forms quickly at high redshift via a combination of non-axisymmetric disk instabilities and tidal interactions or mergers both occurring on dynamical timescales, not through slow secular processes at lower redshift. Its subsequent evolution is not strictly secular either, and is closely intertwined with the evolution of the stellar bar. In fact, the structure that we recognize as a pseudobulge today evolves from a stellar bar that formed at high redshift, was destroyed by minor mergers at z~3, reformed shortly after, and weakened again ...

  11. The dynamics of Bax channel formation: influence of ionic strength.

    Science.gov (United States)

    Ganesan, Vidyaramanan; Walsh, Timothy; Chang, Kai-Ti; Colombini, Marco

    2012-08-08

    Mitochondrial outer membrane permeabilization (MOMP) is a complex multistep process. Studies of MOMP in vivo are limited by the stochastic variability of MOMP between cells and rapid completion of IMS protein release within single cells. In vitro models have provided useful insights into MOMP. We have investigated the dynamics of Bax-mediated MOMP in isolated mitochondria using ionic strength as a tool to control the rate of MOMP. We find that Bax can induce both transient permeabilization, detected by protein release, and more substantial long-lasting permeabilization, measured by the rate of oxidation of added cytochrome c. We found that higher ionic strength causes Bax to form small channels quickly but the expansion of these early channels is impeded. This inhibitory effect of ionic strength is independent of tBid. Channels formed under low ionic strength are not destabilized by raising the ionic strength. Increase in ionic strength also increases the ability of Bcl-xL to inhibit Bax-mediated MOMP. Ionic strength does not affect Bax insertion into mitochondria. Thus, ionic strength influences the assembly of Bax molecules already in membrane into channels. Ionic strength can be used as an effective biophysical tool to study Bax-mediated channel formation.

  12. Extracellular matrix proteins and the dynamics of dentin formation.

    Science.gov (United States)

    Butler, William T; Brunn, Jan C; Qin, Chunlin; McKee, Marc D

    2002-01-01

    Dentinogenesis involves controlled reactions that result in conversion of unmineralized predentin to dentin when apatite crystals are formed. This process is dynamic: Maturation events occur within predentin beginning at the proximal layer and progressing to the predentin-dentin (PD) border. One type of controlled reaction is the proteolytic processing of dentin sialophosphoprotein (DSPP) to dentin sialoprotein (DSP) and dentin phosphoprotein (DPP), by cleavage of at least three highly conserved peptide bonds. We postulate that this processing event represents an activation step, resulting in release of DPP, which is active in its effects on formation and growth of apatite crystals. Dentin matrix protein 1 (DPM1), present as a processed fragment (57-kD protein) in bone, is seen in dentin on sodium dodecyl sulfate polyacrylamide gel electrophoresis as one intact protein of 150-200 kD. Anti-57-kD antibodies elicit immunoreactivity in bone, dentin, and cellular cementum. In bone, the reactivity is associated with osteocytes and their cell processes. Similarly, dentin shows reactivity in odontoblasts, predentin, and the odontoblast processes. In summary, the processing of large sialic acid-rich proteins into smaller fragments may be an important part of the controlled conversion of predentin to dentin and osteoid to bone.

  13. Block Co-Polymers for Nanolithography: Rapid Microwave Annealing for Pattern Formation on Substrates

    Directory of Open Access Journals (Sweden)

    Dipu Borah

    2015-03-01

    Full Text Available The integration of block copolymer (BCP self-assembled nanopattern formation as an alternative lithographic tool for nanoelectronic device fabrication faces a number of challenges such as defect densities, feature size, pattern transfer, etc. Key barriers are the nanopattern process times and pattern formation on current substrate stack layers such as hard masks (e.g., silicon nitride, Si3N4. We report a rapid microwave assisted solvothermal (in toluene environments self-assembly and directed self-assembly of a polystyrene-block-polydimethylsiloxane (PS-b-PDMS BCP thin films on planar and topographically patterned Si3N4 substrates. Hexagonally arranged, cylindrical structures were obtained and good pattern ordering was achieved. Factors affecting BCP self-assembly, notably anneal time and temperature, were studied and seen to have significant effects. Graphoepitaxy within the topographical structures provided long range, translational alignment of the patterns. The effect of surface topography feature size and spacing was investigated. The solvothermal microwave based technique used to provide periodic order in the BCP patterns showed significant promise and ordering was achieved in much shorter periods than more conventional thermal and solvent annealing methods. The implications of the work in terms of manufacturing technologies are discussed.

  14. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate.

    Science.gov (United States)

    Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian

    2017-03-21

    When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.

  15. Formation of coffee-stain patterns at the nanoscale: The role of nanoparticle solubility and solvent evaporation rate

    Science.gov (United States)

    Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian

    2017-03-01

    When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.

  16. The Developmental Genetics of Vertebrate Color Pattern Formation: Lessons from Zebrafish.

    Science.gov (United States)

    Irion, Uwe; Singh, Ajeet Pratap; Nüsslein-Volhard, Christiane

    2016-01-01

    Color patterns are prominent features of many animals; they are highly variable and evolve rapidly leading to large diversities even within a single genus. As targets for natural as well as sexual selection, they are of high evolutionary significance. The zebrafish (Danio rerio) has become an important model organism for developmental biology and biomedical research in general, and it is the model organism to study color pattern formation in vertebrates. The fish display a conspicuous pattern of alternating blue and golden stripes on the body and on the anal and tail fins. This pattern is produced by three different types of pigment cells (chromatophores) arranged in precise layers in the hypodermis of the fish. In this essay, we will summarize the recent advances in understanding the developmental and genetic basis for stripe formation in the zebrafish. We will describe the cellular events leading to the formation of stripes during metamorphosis based on long-term lineage imaging. Mutant analysis has revealed that a number of signaling pathways are involved in the establishment and maintenance of the individual pigment cells. However, the striped pattern itself is generated by self-organizing mechanisms requiring interactions between all three pigment cell types. The involvement of integral membrane proteins, including connexins and potassium channels, suggests that direct physical contacts between chromatophores are involved, and that the directed transport of small molecules or bioelectrical coupling is important for these interactions. This mode of patterning by transmitting spatial information between adjacent tissues within three superimposed cell layers is unprecedented in other developmental systems. We propose that variations in the patterns among Danio species are caused by allelic differences in the genes responsible for these interactions.

  17. Market Mill Dependence Pattern in the Stock Market: Multiscale Conditional Dynamics

    OpenAIRE

    Sergey Zaitsev; Alexander Zaitsev; Andrei Leonidov; Vladimir Trainin

    2008-01-01

    Market Mill is a complex dependence pattern leading to nonlinear correlations and predictability in intraday dynamics of stock prices. The present paper puts together previous efforts to build a dynamical model reflecting the market mill asymmetries. We show that certain properties of the conditional dynamics at a single time scale such as a characteristic shape of an asymmetry generating component of the conditional probability distribution result in the "elementary" market mill pattern. Thi...

  18. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  19. Formation mechanism of ordered stress-relief patterns in a free sustained Cu film system

    Institute of Scientific and Technical Information of China (English)

    Chen Miao-Gen; Xie Jian-Ping; Jin Jin-Sheng; Xia A-Gen; Ye Gao-Xiang

    2008-01-01

    A nearly free sustained copper (Cu) film system has been successfully fabricated by thermal evaporation deposition of Cu atoms on silicone oil surfaces,and a characteristic ordered pattern has been systematically studied.The ordered pattern,namely,band,is composed of a large number of parallel key-formed domains with different width w but nearly uniform length L;its characteristic values of ω and L are very susceptible to the growth period,deposition rate and nominal film thickness.The formation mechanism of the ordered patterns is well explained in terms of the relaxation of the internal stress in the films,which is related to the nearly zero adhesion of the solid-liquid interface.By using a two-time deposition method,it is confirmed that the ordered patterns really form in the vacuum chamber.

  20. An ecohydrological approach to predicting hillslope-scale vegetation patterns and dynamics in dryland ecosystems

    Science.gov (United States)

    Franz, Trenton; King, Elizabeth

    2015-04-01

    Drylands are an important ecosystem, as they cover over 40% of the Earth's land surface and are know to exhibit threshold behavior in response to climatic change and anthropogenic disturbance. Where dryland vegetation supports pastoralist livestock production, catastrophic ecological shifts present a grave concern because of the direct coupling between the livestock forage available and human livelihoods. In this research we investigate the spatiotemporal organization of grazing resources on hillslopes by developing a relatively simple spatially explicit daily stochastic ecohydrological 1-layer bucket model with dynamic vegetation and grazing components. The model, MVUA MINGI (Mosaic Vegetation Using Agent-based Modeling Incorporating Non-linear Grazing Impacts), was constructed using a 2-year observational study in central Kenya combining in-situ sensors with near surface hydrogeophysical surveys. The data were used to derive an empirical patch water balance of three representative patch types, bare soil, grass, and tree. Visual and hydrogeophysical observations indicated the system is dominated by Hortonian runoff, overland flow, and vertical infiltration of water into vegetation patches. The patch-based water balances were next incorporated into a Cellular Automata model allowing us to simulate a range of surface flowpath convergence states across the hillslope during a rain event. The model also allows the root to canopy radius of the tree patches to vary affecting the length scale of water competition. By changing the length scales of facilitation and competition, we find the model demonstrates a range of most efficient static vegetation patterns from random to highly organized. In order simulate the vegetation dynamics we incorporated continuous transition probabilities for each patch type based on the frequency and duration of drought and grazing intensity. The modeled vegetation dynamics indicate various stable states and the timescales between the state

  1. Star Formation in the LMC: Gravitational Instability and Dynamical Triggering

    CERN Document Server

    Chu, Y H; Yang, C C

    2007-01-01

    Evidence for triggered star formation is difficult to establish because energy feedback from massive stars tend to erase the interstellar conditions that led to the star formation. Young stellar objects (YSOs) mark sites of {\\it current} star formation whose ambient conditions have not been significantly altered. Spitzer observations of the Large Magellanic Cloud (LMC) effectively reveal massive YSOs. The inventory of massive YSOs, in conjunction with surveys of interstellar medium, allows us to examine the conditions for star formation: spontaneous or triggered. We examine the relationship between star formation and gravitational instability on a global scale, and we present evidence of triggered star formation on local scales in the LMC.

  2. Simultaneous formation of fine and large-area electrode patterns using screen-offset printing and its application to the patterning on adhesive materials

    Science.gov (United States)

    Nomura, Ken-ichi; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Sato, Junya; Takahashi, Seiya; Nakajima, Shin-ichiro; Arai, Masahiro; Kurata, Yuji; Iwata, Shiro

    2016-03-01

    Additive-type printing techniques such as gravure-offset printing and screen printing are effective for low-cost and ecofriendly electrode pattern formation. Gravure-offset printing is effective for fine pattern formation with widths on the order of 10-20 µm, whereas screen printing is effective for the formation of large-area patterns. However, it is difficult to simultaneously form fine and large-area patterns using these printing techniques. In this study, we demonstrate that fine (minimum width of 15 µm) and medium- as well as large-area patterns can be formed simultaneously using our developed screen-offset printing technique, which is a combination of screen printing on a silicone blanket and transfer printing from the blanket to a substrate. Furthermore, we demonstrate the application of our method to printing on adhesive materials, which allows electrode formation without applying heat to the film substrate.

  3. Formation and Dynamical Evolution of the Asteroid Belt

    Science.gov (United States)

    Bottke, William F.

    2015-08-01

    Asteroids are critical to our desire to unravel the origin of the Solar System because they supply unique, relatively pristine snapshots of the environment in which the Earth formed and evolved. This is due to the fact that, although the asteroids and Earth have followed very different evolutionary pathways, they all formed from the same set of physical processes and share a common ancestry. The asteroid belt presents a particular challenge to understanding terrestrial planet formation because of its small mass. Models of the protoplanetary disk suggest the region between 2-3 AU should contain roughly 3 Earth masses, while less than 0.001 of an Earth mass is actually found there.A long-standing explanation for the asteroid belt's small mass is that it is due to the gravitational influence of Jupiter and Saturn. Some have suggested protoplanets grew there before they were dynamically removed from the asteroid belt by resonances with the gas giants. This left the asteroid belt dynamically excited (which is observed) and heavily depleted in mass. More recently, however, detailed models have shown that this process produces an asteroid belt that is inconsistent with observations.Two recent models propose new ways to match asteroid belt constraints. The first, the so-called ‘Grand Tack’ scenario, uses the results of hydrodynamic simulations to show that Jupiter (and Saturn) migrated both inward and outward across the asteroid belt while interacting with the protoplanetary gas disk. The Grand Tack not only reproduces the mass and mixture of spectral types in the asteroid belt, but it also truncates the planetesimal disk from which the terrestrial planets form, potentially explaining why Mars is less massive than Earth. In a second scenario, planetesimals that form directly from cm- to meter-sized objects, known as “pebbles”, are rapidly converted to 100 to 1000 km asteroid-like object that subsequently grow by accreting even more pebbles. Pebble accretion models

  4. Formation and characteristics of patterns in atmospheric-pressure radio-frequency dielectric barrier discharge plasma

    Science.gov (United States)

    Yang, Lizhen; Liu, Zhongwei; Mao, Zhiguo; Li, Sen; Chen, Qiang

    2017-01-01

    The patterns in radio-frequency dielectric barrier discharge (RF DBD) are studied at atmospheric pressure of argon (Ar) or helium (He) mixed with nitrogen (N2) gas. When a small amount of N2 is mixed with He or Ar gas, discharge patterns are formed. In a N2/He gas mixture, besides the filament discharge that forms patterns, a glow background discharge is also observed, whereas only the filament discharge forms patterns in a N2/Ar gas mixture. The resolution of the hexagonal pattern as a function of applied power and gas flow rate is then explored. On the basis of spatial-temporal images taken using an intensified charge-coupled device (ICCD), we find that there is no interleaving of two transient hexagon sublattices in N2/Ar or N2/He plasma in RF DBD patterns, which are totally different from those in which surface charges dominated in the mid-frequency DBD plasma. This supports our hypothesis that the bulk charges dominate the pattern formation in RF DBD.

  5. Formation and all-optical control of optical patterns in semiconductor microcavities

    Science.gov (United States)

    Binder, R.; Tsang, C. Y.; Tse, Y. C.; Luk, M. H.; Kwong, N. H.; Chan, Chris K. P.; Leung, P. T.; Lewandowski, P.; Schumacher, Stefan; Lafont, O.; Baudin, E.; Tignon, J.

    2016-05-01

    Semiconductor microcavities offer a unique way to combine transient all-optical manipulation of GaAs quantum wells with the benefits of structural advantages of microcavities. In these systems, exciton-polaritons have dispersion relations with very small effective masses. This has enabled prominent effects, for example polaritonic Bose condensation, but it can also be exploited for the design of all-optical communication devices. The latter involves non-equilibrium phase transitions in the spatial arrangement of exciton-polaritons. We consider the case of optical pumping with normal incidence, yielding a spatially homogeneous distribution of exciton-polaritons in optical cavities containing the quantum wells. Exciton-exciton interactions can trigger instabilities if certain threshold behavior requirements are met. Such instabilities can lead, for example, to the spontaneous formation of hexagonal polariton lattices (corresponding to six-spot patterns in the far field), or to rolls (corresponding to two-spot far field patterns). The competition among these patterns can be controlled to a certain degree by applying control beams. In this paper, we summarize the theory of pattern formation and election in microcavities and illustrate the switching between patterns via simulation results.

  6. Dynamics of altered surface layer formation on dissolving silicates

    Science.gov (United States)

    Daval, Damien; Bernard, Sylvain; Rémusat, Laurent; Wild, Bastien; Guyot, François; Micha, Jean Sébastien; Rieutord, François; Magnin, Valérie; Fernandez-Martinez, Alejandro

    2017-07-01

    The extrapolation of mineral dissolution kinetics experiments to geological timescales has frequently been challenged by the observation that mineral dissolution rates decrease with time. In the present study, we report a detailed investigation of the early stages of wollastonite dissolution kinetics, linking time-resolved measurements of wollastonite dissolution rate as a function of crystallographic orientation to the evolution of physicochemical properties (i.e., diffusivity, density, and thickness) of amorphous silica-rich layers (ASSLs) that developed on each surface. Batch dissolution experiments conducted at room temperature and at far-from-equilibrium conditions revealed that the initial (i.e., ASSL-free) dissolution rate of wollastonite (R(hkl)) based on Ca release observe the following trend: R(010) ≈R(100) >R(101) >R(001) . A gradual decrease of the dissolution rate of some faces by up to one order of magnitude resulted in a modification of this trend after two days: R(010) ≫R(100) ⩾R(101) ≈R(001) . In parallel, the diffusivity of ASSLs developed on each face was estimated based on the measurement of the concentration profile of a conservative tracer (methylene blue) across the ASSL using nanoSIMS. The apparent diffusion coefficients of methylene blue as a function of the crystallographic orientation (Dapp(hkl)) observe the following trend: Dapp(010) ⩾Dapp(100) >Dapp(101) ≫Dapp(001) , and decreases as a function of time for the (1 0 0) and (1 0 1) faces. Finally, the density of ASSL was estimated based on the modeling of X-ray reflectivity patterns acquired as a function of time. The density of ASSLs developed on the (0 1 0) faces remains low and constant, whereas it increases for the ASSLs developed on the (0 0 1) faces. On the whole, our results suggest that the impact of the formation of ASSLs on the wollastonite dissolution rate is anisotropic: while some crystal faces are weakly affected by the formation of non-passivating ASSLs (e

  7. A new computational approach to simulate pattern formation in Paenibacillus dendritiformis bacterial colonies

    Science.gov (United States)

    Tucker, Laura Jane

    Under the harsh conditions of limited nutrient and hard growth surface, Paenibacillus dendritiformis in agar plates form two classes of patterns (morphotypes). The first class, called the dendritic morphotype, has radially directed branches. The second class, called the chiral morphotype, exhibits uniform handedness. The dendritic morphotype has been modeled successfully using a continuum model on a regular lattice; however, a suitable computational approach was not known to solve a continuum chiral model. This work details a new computational approach to solving the chiral continuum model of pattern formation in P. dendritiformis. The approach utilizes a random computational lattice and new methods for calculating certain derivative terms found in the model.

  8. Rhythmic pattern formations in gels and Matalon–Packter law: A fresh perspective

    Indian Academy of Sciences (India)

    Jacob George; Issac Paul; P A Varughese; George Varghese

    2003-06-01

    The periodic precipitation pattern formation in gelatinous media is interpreted as a moving boundary problem. The time law, spacing law and width law are revisited on the basis of the new scenario. The explicit dependence of the geometric structure on the initial concentrations of the reactants is derived. Matalon–Packter law, which relates the spacing coefficient with the initial concentrations is reformulated removing many ambiguities and impractical parameters. Experimental results are discussed to establish the significance of moving boundary concept in the diffusion controlled pattern forming systems.

  9. Buckling patterns of gold thin films on silicon substrates: Formation of superimposed blisters

    Science.gov (United States)

    Colin, J.; Coupeau, C.; Durinck, J.; Grilhé, J.

    2009-06-01

    Buckling phenomena leading to the formation of superimposed blisters have been experimentally observed with the help of a confocal interferometric microscope onto the surface of gold thin films deposited on silicon substrates. Assuming that residual folding effects resulting from plastic deformation mechanisms take place in the film during its morphological evolution, different probable scenarios for the formation of the observed buckling patterns are elaborated in the framework of the Föppl-von Karman's theory of thin plates. Multi-step buckling with growing interface delamination is considered for the first scenario while a single or multi-step buckling at a given delamination width is assumed for the other ones.

  10. A model for gyrotactic pattern formation of motile micro-organisms in turbulence

    CERN Document Server

    Gustavsson, K; Jonsson, P R; Mehlig, B

    2015-01-01

    Recent studies show that the dynamics of motile organisms subject to gravitational torques in turbulence gives rise to patchiness. Spherical motile organisms gather in down-welling regions of the turbulent flow. We determine how shape affects preferential sampling and small-scale spatial clustering (determining local encounter rates) by analysing a statistical model in two and three spatial dimensions. By recursively refining approximations for the paths the organisms take through the flow we determine analytically how preferential sampling and small-scale clustering in the model depend upon the dimensionless parameters of the problem. We show that singularities ("caustics") occur in the dynamics and discuss how these singularities affect spatial patterns.

  11. Dynamic aspects of the ozone anomalies formation in the Antarctic region

    Science.gov (United States)

    Lapo, Palina; Svetashev, Alexander; Krasouski, Alexander; Barodka, Siarhei

    2013-04-01

    The ozone layer is a unique shield protecting all living creatures on our planet. However, it has become subject of active research only after the first ozone hole was discovered over Antarctica. Ozone layer depletion over Antarctica is an even more acute problem, since Antarctica is the only continent having a very endemic, rich nature with least human impact. It has been shown that extreme temperature conditions in polar stratosphere and polar stratospheric clouds formation in addition to photochemical reactions involving ozone and ozone-depleting substances act as a primary cause of ozone-layer depletion. In the present study we review the dynamic aspects of ozone anomalies formation in the Antarctic region by numerical simulation. For that purpose we consider the ozone hole which formed over Antarctica in the period of September-October 2011. Using the WRF modelling system and its PolarWRF modification, we simulate meteorological situation over Antarctica in the time periods of ozone hole formation and destruction, and also in the time period when the ozone hole is absent. Based on the modelling results, we argue that a cold air mass (anticyclone) formed over the territory of Antarctica during the formation of the ozone hole. Absence of solar irradiation and strong cooling of the atmosphere contribute to formation of such meteorological conditions during the Antarctic winter. In the stratosphere there is a region of low atmospheric pressure, which is clearly visible on a pressure topography map. Under the effect of the tropospheric and the stratospheric vortices, air patches movement leads to ozone concentration decrease and formation of the ozone anomalies. From the WRF system modelling results we calculate several basic meteorological characteristics and analyze surface maps and aerological (skew-T) diagrams for atmospheric variables with the NCL scripting language. We conclude that atmospheric dynamics has an impact on ozone depression. Also, we evaluate the

  12. Effects of texture on salt precipitation dynamics and deposition patterns in drying porous media

    Science.gov (United States)

    Norouzi Rad, Mansoureh; Shokri, Nima

    2015-04-01

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, CO2 sequestration and water quality. Also excess of salt accumulation in soil may result in soil salinization which is a global problem adversely affecting vegetation, plant growth and crop production. Thus it is important to understand the parameters affecting salt transport and precipitation in porous media. We applied X-ray micro-tomography to investigate the dynamics of salt precipitation during evaporation from porous media as influenced by the particle and pore sizes. The packed beds were saturated with NaCl solution of 3 Molal and the time-lapse X-ray imaging was continued for one day. The results show that the presence of preferential evaporation sites (associated with fine pores) on the surface of the sand columns influences significantly the patterns and dynamics of NaCl precipitation (Norouzi Rad et al., 2013; Norouzi Rad and Shokri, 2014). They confirm the formation of an increasingly thick and discrete salt crust with increasing grain size in the sand column due to the presence of fewer fine pores (preferential precipitation sites) at the surface compared to the sand packs with finer grains. Fewer fine pores on the surface also results in shorter stage-1 precipitation for the columns with larger grain sizes. A simple model for the evolution of salt crust thickness based on this principle shows a good agreement with our experiments. Our results provide new insights regarding the physics of salt precipitation and its complex dynamics in porous media during evaporation. References Norouzi Rad, M., Shokri, N., Sahimi, M. (2013), Pore-Scale Dynamics of Salt Precipitation in Drying Porous Media, Phys. Rev. E, 88, 032404. Norouzi Rad, M., Shokri, N. (2014), Effects of grain angularity on NaCl precipitation in porous media during evaporation, Water Resour. Res

  13. Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system.

    Science.gov (United States)

    Rodrigues, Luiz Alberto Díaz; Mistro, Diomar Cristina; Petrovskii, Sergei

    2011-08-01

    Understanding of population dynamics in a fragmented habitat is an issue of considerable importance. A natural modelling framework for these systems is spatially discrete. In this paper, we consider a predator-prey system that is discrete both in space and time, and is described by a Coupled Map Lattice (CML). The prey growth is assumed to be affected by a weak Allee effect and the predator dynamics includes intra-specific competition. We first reveal the bifurcation structure of the corresponding non-spatial system. We then obtain the conditions of diffusive instability on the lattice. In order to reveal the properties of the emerging patterns, we perform extensive numerical simulations. We pay a special attention to the system properties in a vicinity of the Turing-Hopf bifurcation, which is widely regarded as a mechanism of pattern formation and spatiotemporal chaos in space-continuous systems. Counter-intuitively, we obtain that the spatial patterns arising in the CML are more typically stationary, even when the local dynamics is oscillatory. We also obtain that, for some parameter values, the system's dynamics is dominated by long-term transients, so that the asymptotical stationary pattern arises as a sudden transition between two different patterns. Finally, we argue that our findings may have important ecological implications.

  14. Turing Bifurcation and Pattern Formation of Stochastic Reaction-Diffusion System

    Directory of Open Access Journals (Sweden)

    Qianiqian Zheng

    2017-01-01

    Full Text Available Noise is ubiquitous in a system and can induce some spontaneous pattern formations on a spatially homogeneous domain. In comparison to the Reaction-Diffusion System (RDS, Stochastic Reaction-Diffusion System (SRDS is more complex and it is very difficult to deal with the noise function. In this paper, we have presented a method to solve it and obtained the conditions of how the Turing bifurcation and Hopf bifurcation arise through linear stability analysis of local equilibrium. In addition, we have developed the amplitude equation with a pair of wave vector by using Taylor series expansion, multiscaling, and further expansion in powers of small parameter. Our analysis facilitates finding regions of bifurcations and understanding the pattern formation mechanism of SRDS. Finally, the simulation shows that the analytical results agree with numerical simulation.

  15. Quantum noise and spatio-temporal pattern formation in nonlinear optics

    DEFF Research Database (Denmark)

    Bache, Morten

    2002-01-01

    -harmonic field, and the distinct peaks at the critical wave numbers reveal a quantum image. A microscopical model is suggested as a guide to understanding the processes involved in producing a classical pattern. Finally, the quantum nature of the correlations leads to spatial multimode nonclassical light, which......This work concerns analytical and numerical investigations of cavity enhanced x2 frequency conversion processes, specifically second-harmonic generation (SHG). We focus on how the transverse degrees of freedom affect the dynamics, where the interaction between nonlinearity and diffraction gives...... rise to spatially modulated structures, patterns. The two main parts of the thesis are the classical model and the quantum mechanical model, the latter being an extension of the former by including the inherent quantum fluctuations of light. From a theoretical point of view the classical dynamics...

  16. Many-beam dynamical simulation of electron backscatter diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Winkelmann, Aimo [Max-Planck-Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)], E-mail: winkelm@mpi-halle.mpg.de; Trager-Cowan, Carol; Sweeney, Francis [Department of Physics, University of Strathclyde, Glasgow G4 ONG, Scotland (United Kingdom); Day, Austin P. [Aunt Daisy Scientific Ltd., Dixton Rd., Monmouth, Gwent, NP25 3PP (United Kingdom); Parbrook, Peter [EPSRC National Centre for III-V Technologies, University of Sheffield (United Kingdom)

    2007-04-15

    We present an approach for the simulation of complete electron backscatter diffraction (EBSD) patterns where the relative intensity distributions in the patterns are accurately reproduced. The Bloch wave theory is applied to describe the electron diffraction process. For the simulation of experimental patterns with a large field of view, a large number of reflecting planes has to be taken into account. This is made possible by the Bethe perturbation of weak reflections. Very good agreement is obtained for simulated and experimental patterns of gallium nitride GaN{l_brace}0001{r_brace} at 20 kV electron energy. Experimental features like zone-axis fine structure and higher-order Laue zone rings are accurately reproduced. We discuss the influence of the diffraction of the incident beam in our experiment.

  17. Formation mechanism of dot-line square superlattice pattern in dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weibo; Dong, Lifang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com; Wang, Yongjie; Zhang, Xinpu [College of Physics Science and Technology, Hebei University, Baoding 071002 (China); College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China); Pan, Yuyang, E-mail: donglfhbu@163.com, E-mail: pyy1616@163.com [College of Quality and Technical Supervision, Hebei University, Baoding 071002 (China)

    2014-11-15

    We investigate the formation mechanism of the dot-line square superlattice pattern (DLSSP) in dielectric barrier discharge. The spatio-temporal structure studied by using the intensified-charge coupled device camera shows that the DLSSP is an interleaving of three different subpatterns in one half voltage cycle. The dot square lattice discharges first and, then, the two kinds of line square lattices, which form square grid structures discharge twice. When the gas pressure is varied, DLSSP can transform from square superlattice pattern (SSP). The spectral line profile method is used to compare the electron densities, which represent the amounts of surface charges qualitatively. It is found that the amount of surface charges accumulated by the first discharge of DLSSP is less than that of SSP, leading to a bigger discharge area of the following discharge (lines of DLSSP instead of halos of SSP). The spatial distribution of the electric field of the surface charges is simulated to explain the formation of DLSSP. This paper may provide a deeper understanding for the formation mechanism of complex superlattice patterns in DBD.

  18. Modeling and interpreting speckle pattern formation in swept-source optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Demidov, Valentin; Vitkin, I. Alex; Doronin, Alexander; Meglinski, Igor

    2017-03-01

    We report on the development of a unified Monte-Carlo based computational model for exploring speckle pattern formation in swept-source optical coherence tomography (OCT). OCT is a well-established optical imaging modality capable of acquiring cross-sectional images of turbid media, including biological tissues, utilizing back scattered low coherence light. The obtained OCT images include characteristic features known as speckles. Currently, there is a growing interest to the OCT speckle patterns due to their potential application for quantitative analysis of medium's optical properties. Here we consider the mechanisms of OCT speckle patterns formation for swept-source OCT approaches and introduce further developments of a Monte-Carlo based model for simulation of OCT signals and images. The model takes into account polarization and coherent properties of light, mutual interference of back-scattering waves, and their interference with the reference waves. We present a corresponding detailed description of the algorithm for modeling these light-medium interactions. The developed model is employed for generation of swept-source OCT images, analysis of OCT speckle formation and interpretation of the experimental results. The obtained simulation results are compared with selected analytical solutions and experimental studies utilizing various sizes / concentrations of scattering microspheres.

  19. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  20. Antibiotic Resistance Pattern and Biofilm Formation Ability of Clinically Isolates of Salmonella enterica Serotype typhimurium

    Directory of Open Access Journals (Sweden)

    Hadi Ghasemmahdi

    2015-05-01

    Full Text Available Background: The emergence of antimicrobial-resistant bacteria with biofilm formation ability may be a major threat to public health and food safety and sanitation. Objectives: The aim of this study was to determine antibiotic resistance patterns and biofilm production characteristics of Salmonella typhimurium isolated from different species of birds. Materials and Methods: The antibiotic resistance patterns of 38 pre-identified isolates were screened by standard Kirby-Bauer disc-diffusion method performed on Mueller–Hinton agar to a panel of 17 antibiotics. The extent of biofilm formation was measured by Microtiter plate (MTP-based systems. Results: The highest antimicrobial resistance was detected against nalidixic acid (97%, followed by doxycycline (86%, colistin (84%, streptomycin (84% and tetracycline (84%. All isolates were sensitive to amikacin (100% and 97% and 95% of the isolates were sensitive to ceftazidime and ceftriaxone, respectively. Twenty one different antibiotic resistance patterns were observed among S. typhimurium isolates. According to the results of the microtitre plate biofilm assay, there was a wide variation in biofilm forming ability among S. typhimurium isolates. Most of the isolates (60.52% were not capable of producing biofilm, while 26.31%, 7.89%, and 5.26% isolates were weak, strong and moderate biofilm producers, respectively. Conclusions: It was concluded that nearly all S. typhimurium isolates revealed a high multiple antibiotic resistant with low biofilm forming capabilities which proposed low association between biofilm formation and antibiotic resistance of a major food important pathogen.

  1. ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway.

    Science.gov (United States)

    Miyashima, Shunsuke; Hashimoto, Takashi; Nakajima, Keiji

    2009-03-01

    The formation of radially symmetric tissue patterns is one of the most basic processes in the development of vascular plants. In Arabidopsis thaliana, plant-specific GRAS-type transcription factors, SHORT-ROOT (SHR) and SCARECROW (SCR), are required for asymmetric cell divisions that separate two ground tissue cell layers, the endodermis and cortex, as well as for endodermal cell fate specification. While loss of SHR or SCR results in a single-layered ground tissue, radially symmetric cellular patterns are still maintained, suggesting that unknown regulatory mechanisms act independently of the SHR/SCR-dependent pathway. In this study, we identified a novel root radial pattern mutant and found that it is a new argonaute1 (ago1) allele. Multiple ago1 mutant alleles contained supernumerary ground tissue cell layers lacking a concentric organization, while expression patterns of SHR and SCR were not affected, revealing a previously unreported role for AGO1 in root ground tissue patterning. Analyses of ago1 scr double mutants demonstrated that the simultaneous loss of the two pathways caused a dramatic reduction in cellular organization and ground tissue identity as compared with the single mutants. Based on these results, we propose that highly symmetric root ground tissue patterns are maintained by the actions of two independent pathways, one using post-transcriptional regulation mediated by AGO1 and the other using the SHR/SCR transcriptional regulator.

  2. Opportunities for Fluid Dynamics Research in the Forensic Discipline of Bloodstain Pattern Analysis

    Science.gov (United States)

    Attinger, Daniel; Moore, Craig; Donaldson, Adam; Jafari, Arian; Stone, Howard

    2013-11-01

    This review [Forensic Science International, vol. 231, pp. 375-396, 2013] highlights research opportunities for fluid dynamics (FD) studies related to the forensic discipline of bloodstain pattern analysis (BPA). The need for better integrating FD and BPA is mentioned in a 2009 report by the US National Research Council, entitled ``Strengthening Forensic Science in the United States: A Path Forward''. BPA aims for practical answers to specific questions of the kind: ``How did a bloodletting incident happen?'' FD, on the other hand, aims to quantitatively describe the transport of fluids and the related causes, with general equations. BPA typically solves the indirect problem of inspecting stains in a crime scene to infer the most probable bloodletting incident that produced these patterns. FD typically defines the initial and boundary conditions of a fluid system and from there describe how the system evolves in time and space, most often in a deterministic manner. We review four topics in BPA with strong connections to FD: the generation of drops, their flight, their impact and the formation of stains. Future research on these topics would deliver new quantitative tools and methods for BPA, and present new multiphase flow problems for FD.

  3. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution

    Indian Academy of Sciences (India)

    Stuart A Newman; Ramray Bhat; Nadejda V Mezentseva

    2009-10-01

    Ancient metazoan organisms arose from unicellular eukaryotes that had billions of years of genetic evolution behind them. The transcription factor networks present in single-celled ancestors at the origin of the Metazoa (multicellular animals) were already capable of mediating the switching of the unicellular phenotype among alternative states of gene activity in response to environmental conditions. Cell differentiation, therefore, had its roots in phenotypic plasticity, with the ancient regulatory proteins acquiring new targets over time and evolving into the ``developmental transcription factors” (DTFs) of the ``developmental-genetic toolkit.” In contrast, the emergence of pattern formation and morphogenesis in the Metazoa had a different trajectory. Aggregation of unicellular metazoan ancestors changed the organisms’ spatial scale, leading to the first ``dynamical patterning module” (DPM): cell-cell adhesion. Following this, other DPMs (defined as physical forces and processes pertinent to the scale of the aggregates mobilized by a set of toolkit gene products distinct from the DTFs), transformed simple cell aggregates into hollow, multilayered, segmented, differentiated and additional complex structures, with minimal evolution of constituent genes. Like cell differentiation, therefore, metazoan morphologies also originated from plastic responses of cells and tissues. Here we describe examples of DTFs and most of the important DPMs, discussing their complementary roles in the evolution of developmental mechanisms. We also provide recently characterized examples of DTFs in cell type switching and DPMs in morphogenesis of avian limb bud mesenchyme, an embryo-derived tissue that retains a high degree of developmental plasticity.

  4. Dynamical effect of gas on spiral pattern speed in galaxies

    CERN Document Server

    Ghosh, Soumavo

    2016-01-01

    In the density wave theory of spiral structure, the grand-design two-armed spiral pattern is taken to rotate rigidly in a galactic disc with a constant, definite pattern speed. The observational measurement of the pattern speed of the spiral arms, though difficult, has been achieved in a few galaxies such as NGC 6946, NGC 2997, and M 51 which we consider here. We examine whether the theoretical dispersion relation permits a real solution for wavenumber corresponding to a stable wave, for the observed rotation curve and the pattern speed values. We find that the disc when treated to consist of stars alone, as is usually done in literature, does not generally support a stable density wave for the observed pattern speed. Instead the inclusion of the low velocity dispersion component, namely, gas, is essential to obtain a stable density wave. Further, we obtain a theoretical range of allowed pattern speeds that correspond to a stable density wave at a certain radius, and check that for the three galaxies consider...

  5. Localization and Pattern Formation in Quantum Physics. II. Waveletons in Quantum Ensembles

    CERN Document Server

    Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.

    2005-01-01

    In this second part we present a set of methods, analytical and numerical, which can describe behaviour in (non) equilibrium ensembles, both classical and quantum, especially in the complex systems, where the standard approaches cannot be applied. The key points demonstrating advantages of this approach are: (i) effects of localization of possible quantum states; (ii) effects of non-perturbative multiscales which cannot be calculated by means of perturbation approaches; (iii) effects of formation of complex/collective quantum patterns from localized modes and classification and possible control of the full zoo of quantum states, including (meta) stable localized patterns (waveletons). We demonstrate the appearance of nontrivial localized (meta) stable states/patterns in a number of collective models covered by the (quantum)/(master) hierarchy of Wigner-von Neumann-Moyal-Lindblad equations, which are the result of ``wignerization'' procedure (Weyl-Wigner-Moyal quantization) of classical BBGKY kinetic hierarchy...

  6. Rotational Brownian Dynamics simulations of clathrin cage formation

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, Ioana M.; Briels, Wim J. [Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Otter, Wouter K. den, E-mail: w.k.denotter@utwente.nl [Computational BioPhysics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  7. Rotational Brownian dynamics simulations of clathrin cage formation.

    Science.gov (United States)

    Ilie, Ioana M; den Otter, Wouter K; Briels, Wim J

    2014-08-14

    The self-assembly of nearly rigid proteins into ordered aggregates is well suited for modeling by the patchy particle approach. Patchy particles are traditionally simulated using Monte Carlo methods, to study the phase diagram, while Brownian Dynamics simulations would reveal insights into the assembly dynamics. However, Brownian Dynamics of rotating anisotropic particles gives rise to a number of complications not encountered in translational Brownian Dynamics. We thoroughly test the Rotational Brownian Dynamics scheme proposed by Naess and Elsgaeter [Macromol. Theory Simul. 13, 419 (2004); Naess and Elsgaeter Macromol. Theory Simul. 14, 300 (2005)], confirming its validity. We then apply the algorithm to simulate a patchy particle model of clathrin, a three-legged protein involved in vesicle production from lipid membranes during endocytosis. Using this algorithm we recover time scales for cage assembly comparable to those from experiments. We also briefly discuss the undulatory dynamics of the polyhedral cage.

  8. Turing pattern formation in the chlorine dioxide-iodine- malonic acid reaction-diffusion system

    Science.gov (United States)

    Setayeshgar, Sima

    The formation of localized structures in the chlorine dioxide-idodine-malonic acid (CDIMA) reaction-diffusion system is investigated numerically using a realistic model of this system. We analyze the one-dimensional patterns formed along the gradients imposed by boundary feeds, and study their linear stability to symmetry- breaking perturbations (the Turing instability) in the plane transverse to these gradients. We establish that an often-invoked simple local linear analysis which neglects longitudinal diffusion is inappropriate for predicting the linear stability of these patterns. Using a fully nonuniform analysis, we investigate the structure of the patterns formed along the gradients and their stability to transverse Turing pattern formation as a function of the values of two control parameters: the malonic acid feed concentration and the size of the reactor in the dimension along the gradients. The results from this investigation are compared with existing experimental results. We also verify that the two-variable reduction of the chemical model employed in the linear stability analysis is justified. Finally, we present numerical solution of the CDIMA system in two dimensions which is in qualitative agreement with experiments. This result also confirms our linear stability analysis, while demonstrating the feasibility of numerical exploration of realistic chemical models.

  9. GVE-Based Dynamics and Control for Formation Flying Spacecraft

    Science.gov (United States)

    Breger, Louis; How, Jonathan P.

    2004-01-01

    Formation flying is an enabling technology for many future space missions. This paper presents extensions to the equations of relative motion expressed in Keplerian orbital elements, including new initialization techniques for general formation configurations. A new linear time-varying form of the equations of relative motion is developed from Gauss Variational Equations and used in a model predictive controller. The linearizing assumptions for these equations are shown to be consistent with typical formation flying scenarios. Several linear, convex initialization techniques are presented, as well as a general, decentralized method for coordinating a tetrahedral formation using differential orbital elements. Control methods are validated using a commercial numerical propagator.

  10. Self-organization in patch pattern dynamics along the climatic gradient of the Judean lowland in central Israel

    Energy Technology Data Exchange (ETDEWEB)

    Shoshany, M.

    2009-07-01

    The role of Self-organization in the formation, evolution and recovery of natural systems from organismic to global scale cannot be over-estimated. Many of these systems represent a type of patch pattern dynamic behavior where patches are created, spread, expanded, aggregated, dissected and dissolved in parallel, forming myriad patterns through their evolution. Self-organization concern the functioning of intrinsic mechanisms which intrinsically regulate pattern changes leading these systems toward order following phases of disturbance or structural transformation (e.g., from herbaceous ecosystem to shrub lands). The aim of this paper is to present a new approach of Converging Self-Organization (CSO) coupling between information from geo simulated self-organization and remote sensing data. (Author) 4 refs.

  11. Oman metamorphic sole formation reveals early subduction dynamics

    Science.gov (United States)

    Soret, Mathieu; Agard, Philippe; Dubacq, Benoît; Plunder, Alexis; Ildefonse, Benoît; Yamato, Philippe; Prigent, Cécile

    2016-04-01

    Metamorphic soles correspond to m to ~500m thick tectonic slices welded beneath most of the large-scale ophiolites. They typically show a steep inverted metamorphic structure where the pressure and temperature conditions of crystallization increase upward (from 500±100°C at 0.5±0.2 GPa to 800±100°C at 1.0±0.2 GPa), with isograds subparallel to the contact with the overlying ophiolitic peridotite. The proportion of mafic rocks in metamorphic soles also increases from the bottom (meta-sediments rich) to the top (approaching the ophiolite peridotites). These soles are interpreted as the result of heat transfer from the incipient mantle wedge toward the nascent slab (associated with large-scale fluid transfer and possible shear heating) during the first My of intra-oceanic subduction (as indicated by radiometric ages). Metamorphic soles provide therefore major constraints on early subduction dynamics (i.e., thermal structure, fluid migration and rheology along the nascent slab interface). We present a detailed structural and petrological study of the metamorphic sole from 4 major cross-sections along the Oman ophiolite. We show precise pressure-temperature estimates obtained by pseudosection modelling and EBSD measurements performed on both the garnet-bearing and garnet-free high-grade sole. Results allow quantification of the micro-scale deformation and highlight differences in pressure-temperature-deformation conditions between the 4 different locations, showing that the inverted metamorphic gradient through the sole is not continuous in all locations. Based on these new constraints, we suggest a new tectonic-petrological model for the formation of metamorphic soles below ophiolites. This model involves the stacking of several homogeneous slivers of oceanic crust leading to the present-day structure of the sole. In this view, these thrusts are the result of rheological contrasts between the sole and the peridotite as the plate interface progressively cools down

  12. Measurement of dynamic patterns of an elastic membrane at bi-modal vibration using high speed electronic speckle pattern interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Preciado, Jorge Sanchez; Lopez, Carlos Perez; Santoyo, Fernando Mendoza [Grupo de Metrología Optica, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Col. Lomas del Campestre, León, Guanajuato, 37150 (Mexico)

    2014-05-27

    Implementing a hybrid arrangement of Laser Doppler Vibrometry (LDV) and high speed Electronic Speckle Pattern Interferometry (ESPI) we were able to measure the dynamic patterns of a flat rectangular elastic membrane clamped at its edges stimulated with the sum of two resonance frequencies. ESPI is a versatile technique to analyze in real-time the deformation of a membrane since its low computational cost and easy implementation of the optical setup. Elastic membranes present nonlinear behaviors when stimulated with low amplitude signals. The elastic membrane under test, with several non rational related vibrating modals below the 200 Hz, was stimulated with two consecutives resonant frequencies. The ESPI patterns, acquired at high speed rates, shown a similar behavior for the dual frequency stimulation as in the case of patterns formed with the entrainment frequency. We think this may be related to the effects observed in the application of dual frequency stimulation in ultrasound.

  13. 2D pattern evolution constrained by complex network dynamics

    CERN Document Server

    Rocha, L E C; Costa, Luciano da Fontoura; Rocha, Luis Enrique Correa da

    2006-01-01

    Complex networks have established themselves along the last years as being particularly suitable and flexible for representing and modeling several complex natural and human-made systems. At the same time in which the structural intricacies of such networks are being revealed and understood, efforts have also been directed at investigating how such connectivity properties define and constrain the dynamics of systems unfolding on such structures. However, lesser attention has been focused on hybrid systems, \\textit{i.e.} involving more than one type of network and/or dynamics. Because several real systems present such an organization (\\textit{e.g.} the dynamics of a disease coexisting with the dynamics of the immune system), it becomes important to address such hybrid systems. The current paper investigates a specific system involving a diffusive (linear and non-linear) dynamics taking place in a regular network while interacting with a complex network of defensive agents following Erd\\"os-R\\'enyi and Barab\\'a...

  14. Research on framework for formation control of multiple underwater robots in a dynamic environment

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-song; XU Hong-gen; ZHANG Ming-jun

    2004-01-01

    In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem. The approach allows online planning of the formation paths using a Dijkstra's search algorithm based on the current sensor data. The formation is allowed to be dynamically changed in order to avoid obstacles in the environment. A controller is designed to keep the robots in their planned trajectories. It is shown that the approach is effec In this paper a practical framework is proposed to keep formation control of multiple underwater robots in a dynamic environment. The approach is a viable solution to solve formation problem.

  15. Temporal patterns and behavioral characteristics of aggregation formation and spawning in the Bermuda chub ( Kyphosus sectatrix)

    Science.gov (United States)

    Nemeth, Richard S.; Kadison, Elizabeth

    2013-12-01

    Reef fish spawning aggregations are important life history events that occur at specific times and locations and represent the primary mode of reproduction for many species. This paper provides detailed descriptions of aggregation formation and mass spawning of the Bermuda chub ( Kyphosus sectatrix). Spawning coloration and gamete release of K. sectatrix were observed and filmed at the Grammanik Bank, a deep spawning aggregation site used by many different species located on the southern edge of the Puerto Rican shelf 10 km south of St. Thomas, US Virgin Islands. Underwater visual surveys using technical Nitrox and closed circuit re-breathers were conducted from December 2002 to March 2013 and documented spatial and temporal patterns of movement and aggregation formation along 1.5 km of mesophotic reef. The largest aggregations of K. sectatrix (>200 fish) were observed on the Grammanik Bank January to March from 0 to 11 d after the full moon with peak abundance from 60 to 80 d after the winter solstice across all survey years. Aggregation formation of K. sectatrix coincided with the spawning season of Nassau ( Epinephelus striatus) and yellowfin ( Mycteroperca venenosa) groupers. These spatial and temporal patterns of aggregation formation and spawning suggest that K. sectatrix, an herbivore, may also be a transient aggregating species. On several occasions, chubs were observed both pair spawning and mass spawning. Color patterns and behaviors associated with aggregation and spawning are described and compared to spawning characteristics observed in other species, many of which are similar but others that appear unique to K. sectatrix. This represents the first report of a kyphosid species aggregating to spawn and illuminates a portion of the poorly understood life history of the Bermuda chub.

  16. The expansion of neighborhood and pattern formation on spatial prisoner's dilemma

    Science.gov (United States)

    Qian, Xiaolan; Xu, Fangqian; Yang, Junzhong; Kurths, Jürgen

    2015-04-01

    The prisoner's dilemma (PD), in which players can either cooperate or defect, is considered a paradigm for studying the evolution of cooperation in spatially structured populations. There the compact cooperator cluster is identified as a characteristic pattern and the probability of forming such pattern in turn depends on the features of the networks. In this paper, we investigate the influence of expansion of neighborhood on pattern formation by taking a weak PD game with one free parameter T, the temptation to defect. Two different expansion methods of neighborhood are considered. One is based on a square lattice and expanses along four directions generating networks with degree increasing with K = 4 m . The other is based on a lattice with Moore neighborhood and expanses along eight directions, generating networks with degree of K = 8 m . Individuals are placed on the nodes of the networks, interact with their neighbors and learn from the better one. We find that cooperator can survive for a broad degree 4 ≤ K ≤ 70 by taking a loose type of cooperator clusters. The former simple corresponding relationship between macroscopic patterns and the microscopic PD interactions is broken. Under a condition that is unfavorable for cooperators such as large T and K, systems prefer to evolve to a loose type of cooperator clusters to support cooperation. However, compared to the well-known compact pattern, it is a suboptimal strategy because it cannot help cooperators dominating the population and always corresponding to a low cooperation level.

  17. Mesoscopic study of the effects of gel concentration and materials on the formation of precipitation patterns.

    Science.gov (United States)

    Chen, Li; Kang, Qinjun; He, Ya-Ling; Tao, Wen-Quan

    2012-08-14

    A mesoscopic model based on the lattice Boltzmann method (LBM) is proposed to simulate the formation of Liesegang precipitation patterns and investigate the effects of gel on the morphology of the precipitates. In this model, nucleation is introduced on the basis of Ostwald's supersaturation theory, and subsequent crystal growth on the precipitate surface is simulated using a crystal growth model by taking into account the heterogeneous reaction on the surface of the precipitate. This model can capture the porous structures of the precipitates and can take into account the effects of the gel concentration and material by adjusting the gel porosity and nucleation threshold. The density of the precipitate nodes in the model is limited. A wide range of precipitation patterns is predicted under different gel concentrations, including regular bands, treelike patterns, and for the first time with numerical models, transition patterns between regular bands and treelike patterns. Both the spacing law and the width law are carefully investigated with different gel concentrations and gel materials, and the obtained α in the width law (w(n) ≈ x(n)(α), where x(n) and w(n) are the position and the width of the nth band, respectively) is in the range of 0.58-0.67, sandwiched by previously predicted ranges.

  18. On island landscape pattern of forests in Helan Mountain and its cause of formation

    Institute of Scientific and Technical Information of China (English)

    DENG; Hongbing; WANG; Yingming; ZHANG; Qiaoxian

    2006-01-01

    Based on the spatial information techniques such as RS, GIS, and GPS, the forest landscape patterns in the Helan Mountain, western China, were studied. The Landsat 5 TM data were used to classify the forest landscapes through RS digital cartography, and then, the landscape characteristics and landscape pattern were analyzed quantificationally. Furthermore, through spatial data collection and spatial analysis of the main disturbances in this area, the cause of landscape formation was studied. The results showed that the total 1177 forest landscape patches could be classified into 21 landscape types, and the forest landscape in the Helan Mountain was island pattern, which was encircled by deserta as matrix. The values of landscape diversity index and landscape fragmentation index were 2.61 and 0.43, respectively. In this area, the landscape pattern was clearly formed and continuously changed in response to geological processes, climate, activities of organisms, forest fire, desertification, human activities and so on. This landscape pattern had an obviously negative effect on the stability and ecosystem services of forests. So, scientific landscape planning and protection should be adopted to improve the sustainability of forest management in this area.

  19. Sensitivity study of fluid dynamic effects on nitric oxide formation in CFB combustion of wood

    Energy Technology Data Exchange (ETDEWEB)

    Kallio, S.; Kilpinen, P.; Konttinen, J. [Abo Akademi Univ., Turku (Finland); Leckner, B.; Armand, L.E. [Chalmers Univ. of Technology, Goteborg (Sweden)

    2002-07-01

    The type of fuel and operating conditions in circulating fluidized bed combustion (CFBC) can vary widely. Potential fuels include coals, biofuels and wastes. The use of biofuels as an energy source has stimulated much interest around the world, but the nitric oxide (NO) emissions from CFB combustion of wood is of the same order of magnitude as from combustion of coal with high N content. This paper presents a newly developed 1.5D numerical model that examines the formation of NO and nitrous oxide (N{sub 2}O) emissions in a CFBC under varying operating conditions and different fuel types. A comprehensive kinetic scheme was used for the homogeneous chemistry and a single particle model for char combustion. Gas mixing and release of volatiles were the fluid dynamic factors that were examined for wood combustion under normal air staging conditions. The formation of high NO emissions from wood burning was found to depend greatly on the pattern of volatile releases as well as the mixing of secondary air and gas. Nitric oxide was found to form higher in the riser during wood combustion compared to coal combustion. The large amount of char at the bottom of the bed is an important source of nitric oxide. 14 refs., 1 tab., 8 figs.

  20. Transverse coupling and dynamics of patterns in a photorefractive oscillator

    Institute of Scientific and Technical Information of China (English)

    XU; Jiong(徐炯); ZHUANG; Jun(庄军); ZHAO; Li(赵利); LI; Yufen(李郁芬); LI; Fuming(李富铭)

    2003-01-01

    The effect of transverse coupling in a photorefractive oscillator is studied. From the study the condition for stable optical patterns of multimode oscillation is given analytically and verified by numerical simulation. Under the stable condition, the period-doubling route to spatiotemporal chaos is observed.

  1. Pattern formation in terms of semiclassically limited distribution on lower dimensional manifolds for the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation

    Science.gov (United States)

    Levchenko, E. A.; Shapovalov, A. V.; Trifonov, A. Yu

    2014-01-01

    We have investigated the pattern formation in systems described by the nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov equation for the cases where the dimension of the pattern concentration domain is lower than that of the domain of independent variables. We have obtained a system of integro-differential equations which describe the dynamics of the concentration domain and the semiclassically limited density distribution for a pattern in the class of trajectory concentrated functions. Also, asymptotic large time solutions have been obtained that describe the semiclassically limited distribution for a quasi-steady-state pattern on the concentration manifold. The approach is illustrated by an example for which the analytical solution is in good agreement with the results of numerical calculations.

  2. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    Directory of Open Access Journals (Sweden)

    Vera eRocha-Perugini

    2016-01-01

    Full Text Available Tetraspanin-enriched microdomains (TEMs are specialized membrane platforms driven by protein-protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen presenting cells (APCs through the organization of pattern recognition receptors (PRRs and their downstream induced-signaling, as well as the regulation of MHC-II-peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation, and in the dynamics of IS architectural organization.

  3. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics

    NARCIS (Netherlands)

    Csatho, Beata M.; Schenk, Anton F.; van der Veen, Cornelis J.; Babonis, Gregory; Duncan, Kyle; Rezvanbehbahani, Soroush; van den Broeke, Michiel R.; Simonsen, Sebastian B.; Nagarajan, Sudhagar; van Angelen, Jan H.

    2014-01-01

    We present a new record of ice thickness change, reconstructed at nearly 100,000 sites on the Greenland Ice Sheet (GrIS) from laser altimetry measurements spanning the period 1993-2012, partitioned into changes due to surface mass balance (SMB) and ice dynamics. We estimate a mean annual GrIS mass l

  4. Dynamical Pattern Vector in Pattern Recognition with the Use of Thermal Images

    OpenAIRE

    Kuś Zygmunt

    2016-01-01

    The goal of the following paper was to develop the methodology of object tracking in adverse conditions. Suddenly appearing clouds, fog or smoke could be the examples of atmospheric conditions. We used thermal and visible images in each moment during object tracking. We computed the pattern vectors of the tracked object on the basis of the visual and thermal images separately. The pattern vector and current feature vector for an image of a given type are used to compute the distance between t...

  5. Perceptual similarity of visual patterns predicts dynamic neural activation patterns measured with MEG.

    Science.gov (United States)

    Wardle, Susan G; Kriegeskorte, Nikolaus; Grootswagers, Tijl; Khaligh-Razavi, Seyed-Mahdi; Carlson, Thomas A

    2016-05-15

    Perceptual similarity is a cognitive judgment that represents the end-stage of a complex cascade of hierarchical processing throughout visual cortex. Previous studies have shown a correspondence between the similarity of coarse-scale fMRI activation patterns and the perceived similarity of visual stimuli, suggesting that visual objects that appear similar also share similar underlying patterns of neural activation. Here we explore the temporal relationship between the human brain's time-varying representation of visual patterns and behavioral judgments of perceptual similarity. The visual stimuli were abstract patterns constructed from identical perceptual units (oriented Gabor patches) so that each pattern had a unique global form or perceptual 'Gestalt'. The visual stimuli were decodable from evoked neural activation patterns measured with magnetoencephalography (MEG), however, stimuli differed in the similarity of their neural representation as estimated by differences in decodability. Early after stimulus onset (from 50ms), a model based on retinotopic organization predicted the representational similarity of the visual stimuli. Following the peak correlation between the retinotopic model and neural data at 80ms, the neural representations quickly evolved so that retinotopy no longer provided a sufficient account of the brain's time-varying representation of the stimuli. Overall the strongest predictor of the brain's representation was a model based on human judgments of perceptual similarity, which reached the limits of the maximum correlation with the neural data defined by the 'noise ceiling'. Our results show that large-scale brain activation patterns contain a neural signature for the perceptual Gestalt of composite visual features, and demonstrate a strong correspondence between perception and complex patterns of brain activity.

  6. Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus

    Science.gov (United States)

    Jelsbak, Lars; Søgaard-Andersen, Lotte

    2002-02-01

    In response to starvation, an unstructured population of identical Myxococcus xanthus cells rearranges into an asymmetric, stable pattern of multicellular fruiting bodies. Central to this pattern formation process are changes in organized cell movements from swarming to aggregation. Aggregation is induced by the cell surface-associated C-signal. To understand how aggregation is accomplished, we have analyzed how C-signal modulates cell behavior. We show that C-signal induces a motility response that includes increases in transient gliding speeds and in the duration of gliding intervals and decreases in stop and reversal frequencies. This response results in a switch in cell behavior from an oscillatory to a unidirectional type of behavior in which the net-distance traveled by a cell per minute is increased. We propose that the C-signal-dependent regulation of the reversal frequency is essential for aggregation and that the remaining C-signal-dependent changes in motility parameters contribute to aggregation by increasing the net-distance traveled by starving cells per minute. In our model for symmetry-breaking and aggregation, C-signal transmission is a local event involving direct contacts between cells that results in a global organization of cells. This pattern formation mechanism does not require a diffusible substance or other actions at a distance. Rather it depends on contact-induced changes in motility behavior to direct cells appropriately

  7. Clastic patterned ground in Lomonosov crater, Mars: examining fracture controlled formation mechanisms

    Science.gov (United States)

    Barrett, Alexander M.; Balme, Matthew R.; Patel, Manish R.; Hagermann, Axel

    2017-10-01

    The area surrounding Lomonosov crater on Mars has a high density of seemingly organised boulder patterns. These form seemingly sorted polygons and stripes within kilometre scale blockfields, patches of boulder strewn ground which are common across the Martian high latitudes. Several hypotheses have been suggested to explain the formation of clastic patterned ground on Mars. It has been proposed that these structures could have formed through freeze-thaw sorting, or conversely by the interaction of boulders with underlying fracture polygons. In this investigation a series of sites were examined to evaluate whether boulder patterns appear to be controlled by the distribution of underlying fractures and test the fracture control hypotheses for their formation. It was decided to focus on this suite of mechanisms as they are characterised by a clear morphological relationship, namely the presence of an underlying fracture network which can easily be evaluated over a large area. It was found that in the majority of examples at these sites did not exhibit fracture control. Although fractures were present at many sites there were very few sites where the fracture network appeared to be controlling the boulder distribution. In general these were not the sites with the best examples of organization, suggesting that the fracture control mechanisms are not the dominant geomorphic process organising the boulders in this area.

  8. Exploring the formation of focal adhesions on patterned surfaces using super-resolution imaging.

    Science.gov (United States)

    Chien, Fan-Ching; Kuo, Chiung Wen; Yang, Zong-Han; Chueh, Di-Yen; Chen, Peilin

    2011-10-17

    The formation of focal adhesions on various sizes of fibronectin patterns, ranging from 200 μm to 250 nm, was systematically investigated by total internal reflection fluorescence microscopy and super-resolution imaging. It was found that cells adhered to and spread on these micro/nanopatterns, forming focal adhesions. On a micrometer scale the shape of the focal adhesions was elongated. However, on the nanometer scale, the shape of focal adhesions became dotlike. To further explore the distribution of focal adhesion proteins formed on surfaces, a localization-based super-resolution imaging technique was employed in order to determine the position and density of vinculin proteins. A characteristic distance of 50 nm was found between vinculin molecules in the focal adhesions, which did not depend on the size of the fibronectin nanopatterns. This distance was found to be crucial for the formation of focal adhesions. In addition, the density of vinculin at the focal adhesions formed on the nanopatterns increased as the pattern size decreased. The density of the protein was found to be 425 ± 247, 584 ± 302, and 703 ± 305 proteins μm(-2) on the 600, 400, and 250 nm fibronectin patterns respectively. Whereas 226 ± 77 proteins μm(-2) was measured for the matured focal adhesions on homogeneous fibronectin coated substrates. The increase in vinculin density implies that an increase in mechanical load was applied to the focal adhesions formed on the smaller nanopatterns.

  9. Dissipative parametric modulation instability and pattern formation in nonlinear optical systems

    Science.gov (United States)

    Perego, A. M.; Tarasov, N.; Churkin, D. V.; Turitsyn, S. K.; Staliunas, K.

    2016-04-01

    We present the essential features of the dissipative parametric instability, in the universal complex Ginzburg- Landau equation. Dissipative parametric instability is excited through a parametric modulation of frequency dependent losses in a zig-zag fashion in the spectral domain. Such damping is introduced respectively for spectral components in the +ΔF and in the -ΔF region in alternating fashion, where F can represent wavenumber or temporal frequency depending on the applications. Such a spectral modulation can destabilize the homogeneous stationary solution of the system leading to growth of spectral sidebands and to the consequent pattern formation: both stable and unstable patterns in one- and in two-dimensional systems can be excited. The dissipative parametric instability provides an useful and interesting tool for the control of pattern formation in nonlinear optical systems with potentially interesting applications in technological applications, like the design of mode- locked lasers emitting pulse trains with tunable repetition rate; but it could also find realizations in nanophotonics circuits or in dissipative polaritonic Bose-Einstein condensates.

  10. Ordered nano-scale dimple pattern formation on a titanium alloy (Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2012-09-01

    Full Text Available Due to the many applications of nanostructured surfaces – including in biomaterials – there is a strong interest in cost- and time-efficient methods for their fabrication. Previously, our group established a simple electrochemical method generating nanoscale patterns on large areas of a number of different metal surfaces. They consist of dimples that are around 6-10 nm deep and hexagonally closed packed with a tunable periodicity of around 50 nm. Ordering requires careful tuning of the surface chemistry, which makes the translation of these findings to multi-component alloys non-obvious. Here, we demonstrate for the first time that such a pattern can also be achieved on the surface of an alloy, namely Ti-6Al-4V. This alloy is of particular interest for biomedical implants. While dimple formation on the main component metals titanium and aluminum has previously been reported (albeit under conditions that differ from each other, we now also report dimple formation on pure vanadium surfaces to occur under very different conditions. Dimple formation occurs preferentially on the (dominant α-phase grains of the alloy. The size of dimples of the alloy material is subject to the electropolishing potential, electrolyte concentration and surface chemical composition, which gives us the opportunity to control the surface features. Since a main application of this alloy are biomedical implants, this level of control will be an important tool for accommodating cell growth.

  11. NFI-C2 temporal-spatial expression and cellular localization pattern during tooth formation.

    Science.gov (United States)

    Lamani, Ejvis; Gluhak-Heinrich, Jelica; MacDougall, Mary

    2015-12-01

    Currently, little is known regarding critical signaling pathways during later stages of tooth development, especially those associated with root formation. Nfi-c null mice, lacking molar roots, have implicated the transcription factor NFI-C as having an essential role in root development. Previously, we identified three NFI-C isoforms expressed in dental tissues with NFI-C2 being the major transcript. However, the expression pattern of the NFI-C2 protein is not characterized. In this study we performed in situ hybridization and immunohistochemistry using isoform specific probes. We show the production of a NFI-C2 peptide antibody, its characterization, the temporal-spatial expression pattern of the NFI-C2 protein during odontogenesis and sub-cellular localization in dental cells. Moderate NFI-C2 staining, as early as bud stage, was detected mostly in the condensing dental ectomesenchyme. This staining intensified within the dental pulp at later stages culminating in high expression in the dentin producing odontoblasts. The dental epithelium showed slight staining until cytodifferentiation of enamel organ into ameloblasts and stratum intermedium. During root formation NFI-C2 expression was high in the Hertwig's epithelial root sheath and later was found in the fully developed root and its supporting tissues. NFI-C2 cellular staining was cytosolic, associated with the Golgi, and nuclear. These data suggest a broader role for NFI-C during tooth formation than limited to root and periodontal ligament development. © 2015 Japanese Society of Developmental Biologists.

  12. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control

    NARCIS (Netherlands)

    Verdaasdonk, B.W.; Koopman, H.F.J.M.; Van der Helm, F.C.T.

    2009-01-01

    Like human walking, passive dynamic walking—i.e. walking down a slope with no actuation except gravity—is energy efficient by exploiting the natural dynamics. In the animal world, neural oscillators termed central pattern generators (CPGs) provide the basic rhythm for muscular activity in

  13. Romantic Relationship Dynamics of Urban African American Adolescents: Patterns of Monogamy, Commitment, and Trust

    Science.gov (United States)

    Towner, Senna L.; Dolcini, M. Margaret; Harper, Gary W.

    2015-01-01

    Relationship dynamics develop early in life and are influenced by social environments. STI/HIV prevention programs need to consider romantic relationship dynamics that contribute to sexual health. The aim of this study was to examine monogamous patterns, commitment, and trust in African American adolescent romantic relationships. The authors also…

  14. Romantic Relationship Dynamics of Urban African American Adolescents: Patterns of Monogamy, Commitment, and Trust

    Science.gov (United States)

    Towner, Senna L.; Dolcini, M. Margaret; Harper, Gary W.

    2015-01-01

    Relationship dynamics develop early in life and are influenced by social environments. STI/HIV prevention programs need to consider romantic relationship dynamics that contribute to sexual health. The aim of this study was to examine monogamous patterns, commitment, and trust in African American adolescent romantic relationships. The authors also…

  15. Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control

    NARCIS (Netherlands)

    Verdaasdonk, B.W.; Koopman, H.F.J.M.; Van der Helm, F.C.T.

    2009-01-01

    Like human walking, passive dynamic walking—i.e. walking down a slope with no actuation except gravity—is energy efficient by exploiting the natural dynamics. In the animal world, neural oscillators termed central pattern generators (CPGs) provide the basic rhythm for muscular activity in locomotion

  16. Pattern formation in reaction-diffusion systems: From spiral waves to turbulence

    Science.gov (United States)

    Davidsen, Joern

    2009-05-01

    Almost all systems we encounter in nature possess some sort of form or structure. In many cases, the structures arise from an initially unstructured state without the action of an agent that predetermines the pattern. Such self-organized structures emerge from cooperative interactions among the constituents of the system and often exhibit properties that are distinct from those of their constituent elements or molecules. For example, chemical waves in reaction-diffusion systems are at the core of a huge variety of physical, chemical, and biological processes. In (quasi) two-dimensional situations, spiral wave patterns are especially prevalent and determine the characteristics of processes such as surface catalytic oxidation reactions, contraction of the heart muscle, and various signaling mechanisms in biological systems. In this talk, I will review and discuss recent theoretical and experimental results regarding the dynamics, properties and stability of spiral waves and their three-dimensional analog (scroll waves). Special emphasis will be given to synchronization defect lines which generically arise in complex-oscillatory media, and the phenomenon of defect-mediated turbulence or filament turbulence where the dynamics of a pattern is dominated by the rapid motion, nucleation, and annihilation of spirals or scroll waves, respectively. The latter is of direct relevance in the context of ventricular fibrillation - a turbulent electrical wave activity that destroys the coherent contraction of the ventricular muscle and its main pumping function leading to sudden cardiac death.

  17. Mesoscale pattern formation of self-propelled rods with velocity reversal

    Science.gov (United States)

    Großmann, Robert; Peruani, Fernando; Bär, Markus

    2016-11-01

    We study self-propelled particles with velocity reversal interacting by uniaxial (nematic) alignment within a coarse-grained hydrodynamic theory. Combining analytical and numerical continuation techniques, we show that the physics of this active system is essentially controlled by the reversal frequency. In particular, we find that elongated, high-density, ordered patterns, called bands, emerge via subcritical bifurcations from spatially homogeneous states. Our analysis reveals further that the interaction of bands is weakly attractive and, consequently, bands fuse upon collision in analogy with nonequilibrium nucleation processes. Moreover, we demonstrate that a renormalized positive line tension can be assigned to stable bands below a critical reversal rate, beyond which they are transversally unstable. In addition, we discuss the kinetic roughening of bands as well as their nonlinear dynamics close to the threshold of transversal instability. Altogether, the reduction of the multiparticle system onto the dynamics of bands provides a unified framework to understand the emergence and stability of nonequilibrium patterns in this self-propelled particle system. In this regard, our results constitute a proof of principle in favor of the hypothesis in microbiology that velocity reversal of gliding rod-shaped bacteria regulates the transitions between various self-organized patterns observed during the bacterial life cycle.

  18. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Directory of Open Access Journals (Sweden)

    Ray Huffaker

    Full Text Available Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A. to sites with lower-average speeds (such as the Southeast U.S.A. by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  19. Pattern dynamics in an annular CO2 laser

    OpenAIRE

    Ramon, M.L. (M. L.); R. Meucci; Allaria, E.; Boccaletti, S.

    2000-01-01

    Competition among modes in an annular CO2 laser has been experimentally and numerically analyzed. During the coexistence of di erent patterns, each of them resulting from the interaction of two transverse modes with opposite angular momentum, chaos has been experimentally detected. A numerical model, derived from the Maxwell-Bloch equations and including symmetry breaking terms, enables the interpretation of the main experimental features.

  20. Structure, dynamics and movement patterns of the Australian pig industry.

    Science.gov (United States)

    East, I J; Davis, J; Sergeant, E S G; Garner, M G

    2014-03-01

    To assess management practices and movement patterns that could influence the establishment and spread of exotic animal diseases (EAD) in pigs in Australia. A literature review of published information and a telephone survey of 370 pig producers owning >10 pigs who were registered with the PigPass national vendor declaration scheme. The movement and marketing patterns of Australian pig producers interviewed were divided into two groups based predominantly on the size of the herd. Major pig producers maintain closed herds, use artificial insemination and market direct to abattoirs. Smaller producers continue to purchase from saleyards and market to other farms, abattoirs and through saleyards in an apparently opportunistic fashion. The role of saleyards in the Australian pig industry continues to decline, with 92% of all pigs marketed directly from farm to abattoir. This survey described movement patterns that will assist in modelling the potential spread of EAD in the Australian pig industry. Continued movement towards vertical integration and closed herds in the Australian pig industry effectively divides the industry into a number of compartments that mitigate against the widespread dissemination of disease to farms adopting these practices. © 2014 Australian Veterinary Association.

  1. Dynamical Pattern Vector in Pattern Recognition with the Use of Thermal Images

    Directory of Open Access Journals (Sweden)

    Kuś Zygmunt

    2016-01-01

    Full Text Available The goal of the following paper was to develop the methodology of object tracking in adverse conditions. Suddenly appearing clouds, fog or smoke could be the examples of atmospheric conditions. We used thermal and visible images in each moment during object tracking. We computed the pattern vectors of the tracked object on the basis of the visual and thermal images separately. The pattern vector and current feature vector for an image of a given type are used to compute the distance between the object pattern vector and feature vector calculated for a given location of the aperture. It is calculated for both: the visual and thermal image. The crux of the proposed method was the algorithm of selection which distance (for visual or thermal image was used for object tracking. It was obtained by multiplying the values of the distances between a pattern vector and current feature vector by some coefficients (different for thermal and visual images. The values of these coefficients depended on the usefulness of a given type of an image for pattern recognition. This usefulness was defined by the variability of the particular pixels in the image which is represented by calculating gradient in the image. On top of that, this study presented the examples of the object recognition by means of the developed method.

  2. Dynamics of social positioning patterns in group-robot interactions

    OpenAIRE

    Vroon, Jered; Joosse, Michiel; Lohse, Manja; Kolkmeier, Jan; Kim, Jaebok; Truong, Khiet; Englebienne, Gwenn; Heylen, Dirk; Evers, Vanessa

    2015-01-01

    When a mobile robot interacts with a group of people, it has to consider its position and orientation. We introduce a novel study aimed at generating hypotheses on suitable behavior for such social positioning, explicitly focusing on interaction with small groups of users and allowing for the temporal and social dynamics inherent in most interactions. In particular, the interactions we look at are approach, converse and retreat. In this study, groups of three participants and a telepresence r...

  3. Weblog patterns and human dynamics with decreasing interest

    Science.gov (United States)

    Guo, J.-L.; Fan, C.; Guo, Z.-H.

    2011-06-01

    In order to describe the phenomenon that people's interest in doing something always keep high in the beginning while gradually decreases until reaching the balance, a model which describes the attenuation of interest is proposed to reflect the fact that people's interest becomes more stable after a long time. We give a rigorous analysis on this model by non-homogeneous Poisson processes. Our analysis indicates that the interval distribution of arrival-time is a mixed distribution with exponential and power-law feature, which is a power law with an exponential cutoff. After that, we collect blogs in ScienceNet.cn and carry on empirical study on the interarrival time distribution. The empirical results agree well with the theoretical analysis, obeying a special power law with the exponential cutoff, that is, a special kind of Gamma distribution. These empirical results verify the model by providing an evidence for a new class of phenomena in human dynamics. It can be concluded that besides power-law distributions, there are other distributions in human dynamics. These findings demonstrate the variety of human behavior dynamics.

  4. Disappearing scales in carps: re-visiting Kirpichnikov's model on the genetics of scale pattern formation.

    Directory of Open Access Journals (Sweden)

    Laura Casas

    Full Text Available The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the 'S' gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called 'N' has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude × nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype, those with two Hungarian nude parents did not. We further extended Kirpichnikov's work by correlating changes in phenotype (scale-pattern to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here. We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dose-dependent effect probably due to a concerted action of multiple pathways involved in scale formation.

  5. Disappearing scales in carps: re-visiting Kirpichnikov's model on the genetics of scale pattern formation.

    Science.gov (United States)

    Casas, Laura; Szűcs, Réka; Vij, Shubha; Goh, Chin Heng; Kathiresan, Purushothaman; Németh, Sándor; Jeney, Zsigmond; Bercsényi, Miklós; Orbán, László

    2013-01-01

    The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n) regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the 'S' gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called 'N' has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude × nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s) showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype), those with two Hungarian nude parents did not. We further extended Kirpichnikov's work by correlating changes in phenotype (scale-pattern) to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here). We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dose-dependent effect) probably due to a concerted action of multiple pathways involved in scale formation.

  6. Disappearing scales in carps: Re-visiting Kirpichnikov's model on the genetics of scale pattern formation

    KAUST Repository

    Casas, Laura

    2013-12-30

    The body of most fishes is fully covered by scales that typically form tight, partially overlapping rows. While some of the genes controlling the formation and growth of fish scales have been studied, very little is known about the genetic mechanisms regulating scale pattern formation. Although the existence of two genes with two pairs of alleles (S&s and N&n) regulating scale coverage in cyprinids has been predicted by Kirpichnikov and colleagues nearly eighty years ago, their identity was unknown until recently. In 2009, the \\'S\\' gene was found to be a paralog of fibroblast growth factor receptor 1, fgfr1a1, while the second gene called \\'N\\' has not yet been identified. We re-visited the original model of Kirpichnikov that proposed four major scale pattern types and observed a high degree of variation within the so-called scattered phenotype due to which this group was divided into two sub-types: classical mirror and irregular. We also analyzed the survival rates of offspring groups and found a distinct difference between Asian and European crosses. Whereas nude x nude crosses involving at least one parent of Asian origin or hybrid with Asian parent(s) showed the 25% early lethality predicted by Kirpichnikov (due to the lethality of the NN genotype), those with two Hungarian nude parents did not. We further extended Kirpichnikov\\'s work by correlating changes in phenotype (scale-pattern) to the deformations of fins and losses of pharyngeal teeth. We observed phenotypic changes which were not restricted to nudes, as described by Kirpichnikov, but were also present in mirrors (and presumably in linears as well; not analyzed in detail here). We propose that the gradation of phenotypes observed within the scattered group is caused by a gradually decreasing level of signaling (a dosedependent effect) probably due to a concerted action of multiple pathways involved in scale formation. 2013 Casas et al.

  7. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Wishart, J.F.

    2011-06-12

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields

  8. Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study

    CERN Document Server

    Bhardwaj, Rajneesh; Attinger, Daniel

    2010-01-01

    An efficient way to precisely pattern particles on solid surfaces is to dispense and evaporate colloidal drops, as for bioassays. The dried deposits often exhibit complex structures exemplified by the coffee ring pattern, where most particles have accumulated at the periphery of the deposit. In this work, the formation of deposits during the drying of nanoliter colloidal drops on a flat substrate is investigated numerically and experimentally. A finite-element numerical model is developed that solves the Navier-Stokes, heat and mass transport equations in a Lagrangian framework. The diffusion of vapor in the atmosphere is solved numerically, providing an exact boundary condition for the evaporative flux at the droplet-air interface. Laplace stresses and thermal Marangoni stresses are accounted for. The particle concentration is tracked by solving a continuum advection-diffusion equation. Wetting line motion and the interaction of the free surface of the drop with the growing deposit are modeled based on crite...

  9. Polymer Wall Formation Using Liquid-Crystal/Polymer Phase Separation Induced on Patterned Polyimide Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2004-12-01

    We could form lattice-shaped polymer walls in a liquid crystal (LC) layer through the thermal phase separation of an LC/polystyrene solution between substrates with polyimide films etched by short-wavelength ultraviolet irradiation using a photomask. The LC wetting difference between the polyimide and substrate surfaces caused the coalescence of growing LC droplets on patterned polyimide films with the progress of phase separation. Consequently, polymer walls were formed on substrate surface areas without polyimide films. The shape of the polymer wall formed became sharp with the use of rubbed polyimide films because the nucleation of growing LC droplets concentrated on the patterned polyimide films. It is thought that the increase in the alignment order of LC molecules in the solution near the rubbed polyimide films promotes the formation of LC molecular aggregation, which becomes the growth nuclei of LC droplets.

  10. Formation of mixed and patterned self-assembled films of alkylphosphonates on commercially pure titanium surfaces

    Science.gov (United States)

    Rudzka, Katarzyna; Sanchez Treviño, Alda Y.; Rodríguez-Valverde, Miguel A.; Cabrerizo-Vílchez, Miguel A.

    2016-12-01

    Titanium is extensively employed in biomedical devices, in particular as implant. The self-assembly of alkylphosphonates on titanium surfaces enable the specific adsorption of biomolecules to adapt the implant response against external stimuli. In this work, chemically-tailored cpTi surfaces were prepared by self-assembly of alkylphosphonate molecules. By bringing together attributes of two grafting molecules, aqueous mixtures of two alkylphosphonates were used to obtain mixed self-assembled films. Single self-assembled films were also altered by laser abrasion to produce chemically patterned cpTi surfaces. Both mixed and patterned self-assembled films were confirmed by AFM, ESEM and X-ray photoelectron spectroscopy. Water contact angle measurements also revealed the composition of the self-assembly films. Chemical functionalization with two grafting phosphonate molecules and laser surface engineering may be combined to guide the bone-like formation on cpTi, and the future biological response in the host.

  11. Patterns formations in a diffusive ratio-dependent predator-prey model of interacting populations

    Science.gov (United States)

    Camara, B. I.; Haque, M.; Mokrani, H.

    2016-11-01

    The present investigation deals with the analysis of the spatial pattern formation of a diffusive predator-prey system with ratio-dependent functional response involving the influence of intra-species competition among predators within two-dimensional space. The appropriate condition of Turing instability around the interior equilibrium point of the present model has been determined. The emergence of complex patterns in the diffusive predator-prey model is illustrated through numerical simulations. These results are based on the existence of bifurcations of higher codimension such as Turing-Hopf, Turing-Saddle-node, Turing-Transcritical bifurcation, and the codimension- 3 ​Turing-Takens-Bogdanov bifurcation. The paper concludes with discussions of our results in ecology.

  12. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Science.gov (United States)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  13. Statistical analysis and modeling of collective cell motion and pattern formation

    Science.gov (United States)

    Czirok, Andras; Szabo, Andras

    2009-03-01

    Cell motility and its guidance through cell-cell contacts is instrumental in vasculogenesis and in several other morphogenic processes as well. During vasculogenesis multicellular sprouts invade rapidly into avascular areas, eventually creating an interconnected network pattern. Epithelial cell sheets migrate during organogenesis or wound healing. These phenomena were studied with time-lapse microscopy both in vivo and in vitro. Statistical analysis of cell trajectories reveals that motile confluent cultures may behave either as vortical fluids or as deforming elastic sheets. The observed flow fields and pattern formation can be explained by our generalized cellular Potts model -- representing cell polarization and self-propulsion, links between the cytoskeleton of adjacent cells as well as an asymmetric preferential attraction to the surface of adjacent cells.

  14. Dynamic behavior of a social model for opinion formation

    Science.gov (United States)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    2007-12-01

    The dynamic behavior of a social group influenced by both a strong leader and the mass media, which is modeled according to the social impact theory, is studied under two situations: (i) The strong leader changes his/her state of opinion periodically while the mass media are not considered. In this case, the leader is capable of driving the group between a dynamically ordered state with a weak leader-group coupling (high-frequency regime) and a dynamically disordered state where the group follows the opinion of the leader (low-frequency regime). (ii) The mass-media change periodically their message and have to compete with a strong leader that keeps his/her state of opinion unchanged. In this case, the mass media require an amplitude threshold in order to overcome the influence of the leader and drive the system into a dynamically disordered state. The dynamic behavior characteristic of the studied social opinion model shares many features of physical systems that are relevant in the fields of statistical mechanics and condensed matter.

  15. Quantifying the patterns and dynamics of river deltas under conditions of steady forcing and relative sea level rise

    Science.gov (United States)

    Liang, Man; Van Dyk, Corey; Passalacqua, Paola

    2016-02-01

    Understanding deltaic channel dynamics is essential to acquiring knowledge on how deltas respond to environmental changes, as channels control the distribution of water, sediment, and nutrients. Channel-resolving morphodynamic models provide the basis for quantitative study of channel-scale dynamics, but they need to be properly assessed with a set of robust metrics able to quantitatively characterize delta patterns and dynamics before being used as predictive tools. In this work we use metrics developed in the context of delta formation, to assess the morphodynamic results of DeltaRCM, a parcel-based cellular model for delta formation and evolution. By comparing model results to theoretical predictions and field and experimental observations, we show that DeltaRCM captures the geometric growth characteristics of deltas such as fractality of channel network, spatial distribution of wet and dry surfaces, and temporal dynamics of channel-scale processes such as the decay of channel planform correlation. After evaluating the ability of DeltaRCM to produce delta patterns and dynamics at the scale of channel processes, we use the model to predict the deltaic response to relative sea level rise (RSLR). We show that uniform subsidence and absolute sea level rise have similar effects on delta evolution and cause intensified channel branching. Channel network fractality and channel mobility increase with higher-RSLR rates, while the spatial and temporal scales of avulsion events decrease, resulting in smaller sand bodies in the stratigraphy. Our modeling results provide the first set of quantitative predictions of the effects of RSLR on river deltas with a specific focus on the distributary channel network.

  16. REGULAR PATTERN MINING (WITH JITTER ON WEIGHTED-DIRECTED DYNAMIC GRAPHS

    Directory of Open Access Journals (Sweden)

    A. GUPTA

    2017-02-01

    Full Text Available Real world graphs are mostly dynamic in nature, exhibiting time-varying behaviour in structure of the graph, weight on the edges and direction of the edges. Mining regular patterns in the occurrence of edge parameters gives an insight into the consumer trends over time in ecommerce co-purchasing networks. But such patterns need not necessarily be precise as in the case when some product goes out of stock or a group of customers becomes unavailable for a short period of time. Ignoring them may lead to loss of useful information and thus taking jitter into account becomes vital. To the best of our knowledge, no work has been yet reported to extract regular patterns considering a jitter of length greater than unity. In this article, we propose a novel method to find quasi regular patterns on weight and direction sequences of such graphs. The method involves analysing the dynamic network considering the inconsistencies in the occurrence of edges. It utilizes the relation between the occurrence sequence and the corresponding weight and direction sequences to speed up this process. Further, these patterns are used to determine the most central nodes (such as the most profit yielding products. To accomplish this we introduce the concept of dynamic closeness centrality and dynamic betweenness centrality. Experiments on Enron e-mail dataset and a synthetic dynamic network show that the presented approach is efficient, so it can be used to find patterns in large scale networks consisting of many timestamps.

  17. Instability and pattern formation in reaction-diffusion systems: a higher order analysis.

    Science.gov (United States)

    Riaz, Syed Shahed; Sharma, Rahul; Bhattacharyya, S P; Ray, D S

    2007-08-14

    We analyze the condition for instability and pattern formation in reaction-diffusion systems beyond the usual linear regime. The approach is based on taking into account perturbations of higher orders. Our analysis reveals that nonlinearity present in the system can be instrumental in determining the stability of a system, even to the extent of destabilizing one in a linearly stable parameter regime. The analysis is also successful to account for the observed effect of additive noise in modifying the instability threshold of a system. The analytical study is corroborated by numerical simulation in a standard reaction-diffusion system.

  18. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  19. Formation and removal of multi-layered fluorescence patterns in gold-ion doped glass

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jongho; Jang, Kyungsik [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Lim, Ki-Soo, E-mail: kslim@chungbuk.ac.kr [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Kim, Youn-Shil; Lee, You-Lee; Choi, Jung-Hyun [BK21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sohn, Ik-Bu; Lee, Jongmin [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Myeongkyu [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2009-09-30

    We report the formation of fluorescence patterns inside gold-doped glass medium by femtosecond-laser fabrication. Strong fluorescence images appeared from the irradiated multi-layered region after low temperature annealing. We removed the images by exposing the glass to an electric furnace or a CO{sub 2} laser beam for high temperature annealing. The method was also applied to recording, reading, and erasing of fluorescence data by a femtosecond laser, a 405-nm laser diode, and a CO{sub 2} laser respectively.

  20. DSA patterning options for FinFET formation at 7nm node

    Science.gov (United States)

    Liu, Chi-Chun C.; Franke, Elliott; Lie, Fee Li; Sieg, Stuart; Tsai, Hsinyu; Lai, Kafai; Truong, Hoa; Farrell, Richard; Somervell, Mark; Sanders, Daniel; Felix, Nelson; Guillorn, Michael; Burns, Sean; Hetzer, David; Ko, Akiteru; Arnold, John; Colburn, Matthew

    2016-03-01

    Several 27nm-pitch directed self-assembly (DSA) processes targeting fin formation for FinFET device fabrication are studied in a 300mm pilot line environment, including chemoepitaxy for a conventional Fin arrays, graphoepitaxy for a customization approach and a hybrid approach for self-aligned Fin cut. The trade-off between each DSA flow is discussed in terms of placement error, Fin CD/profile uniformity, and restricted design. Challenges in pattern transfer are observed and process optimization are discussed. Finally, silicon Fins with 100nm depth and on-target CD using different DSA options with either lithographic or self-aligned customization approach are demonstrated.