WorldWideScience

Sample records for dynamical network reconstruction

  1. Dynamical networks reconstructed from time series

    CERN Document Server

    Levnajić, Zoran

    2012-01-01

    Novel method of reconstructing dynamical networks from empirically measured time series is proposed. By statistically examining the correlations between motions displayed by network nodes, we derive a simple equation that directly yields the adjacency matrix, assuming the intra-network interaction functions to be known. We illustrate the method's implementation on a simple example and discuss the dependence of the reconstruction precision on the properties of time series. Our method is applicable to any network, allowing for reconstruction precision to be maximized, and errors to be estimated.

  2. Reconstructing complex networks with binary-state dynamics

    CERN Document Server

    Li, Jingwen; Lai, Ying-Cheng; Grebogi, Celso

    2015-01-01

    The prerequisite for our understanding of many complex networked systems lies in the reconstruction of network structure from measurable data. Although binary-state dynamics occurring in a broad class of complex networked systems in nature and society and has been intensively investigated, a general framework for reconstructing complex networks from binary states, the inverse problem, is lacking. Here we offer a general solution to the reconstruction problem by developing a data-based linearization approach for binary-state dynamics with linear, nonlinear, discrete and stochastic switching functions. The linearization allows us to convert the network reconstruction problem into a sparse signal reconstruction problem that can be resolved efficiently and credibly by convex optimization based on compressed sensing. The completely data-based linearization method and the sparse signal reconstruction constitutes a general framework for reconstructing complex networks without any knowledge of the binary-state dynami...

  3. Reconstructing network topology and coupling strengths in directed networks of discrete-time dynamics

    Science.gov (United States)

    Lai, Pik-Yin

    2017-02-01

    Reconstructing network connection topology and interaction strengths solely from measurement of the dynamics of the nodes is a challenging inverse problem of broad applicability in various areas of science and engineering. For a discrete-time step network under noises whose noise-free dynamics is stationary, we derive general analytic results relating the weighted connection matrix of the network to the correlation functions obtained from time-series measurements of the nodes for networks with one-dimensional intrinsic node dynamics. Information about the intrinsic node dynamics and the noise strengths acting on the nodes can also be obtained. Based on these results, we develop a scheme that can reconstruct the above information of the network using only the time-series measurements of node dynamics as input. Reconstruction formulas for higher-dimensional node dynamics are also derived and illustrated with a two-dimensional node dynamics network system. Furthermore, we extend our results and obtain a reconstruction scheme even for the cases when the noise-free dynamics is periodic. We demonstrate that our method can give accurate reconstruction results for weighted directed networks with linear or nonlinear node dynamics of various connection topologies, and with linear or nonlinear couplings.

  4. Reconstructing Links in Directed Networks from Noisy Dynamics

    CERN Document Server

    Ching, Emily S C

    2016-01-01

    In this Letter, we address the longstanding challenge of how to reconstruct links in directed networks from measurements, and present a general method that makes use of a noise-induced relation between network structure and both the time-lagged covariance of measurements taken at two different times and the covariance of measurements taken at the same time. For coupling functions that have additional properties, we can further reconstruct the weights of the links.

  5. Universal data-based method for reconstructing complex networks with binary-state dynamics

    Science.gov (United States)

    Li, Jingwen; Shen, Zhesi; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2017-03-01

    To understand, predict, and control complex networked systems, a prerequisite is to reconstruct the network structure from observable data. Despite recent progress in network reconstruction, binary-state dynamics that are ubiquitous in nature, technology, and society still present an outstanding challenge in this field. Here we offer a framework for reconstructing complex networks with binary-state dynamics by developing a universal data-based linearization approach that is applicable to systems with linear, nonlinear, discontinuous, or stochastic dynamics governed by monotonic functions. The linearization procedure enables us to convert the network reconstruction into a sparse signal reconstruction problem that can be resolved through convex optimization. We demonstrate generally high reconstruction accuracy for a number of complex networks associated with distinct binary-state dynamics from using binary data contaminated by noise and missing data. Our framework is completely data driven, efficient, and robust, and does not require any a priori knowledge about the detailed dynamical process on the network. The framework represents a general paradigm for reconstructing, understanding, and exploiting complex networked systems with binary-state dynamics.

  6. Efficient network reconstruction from dynamical cascades identifies small-world topology of neuronal avalanches.

    Directory of Open Access Journals (Sweden)

    Sinisa Pajevic

    2009-01-01

    Full Text Available Cascading activity is commonly found in complex systems with directed interactions such as metabolic networks, neuronal networks, or disease spreading in social networks. Substantial insight into a system's organization can be obtained by reconstructing the underlying functional network architecture from the observed activity cascades. Here we focus on Bayesian approaches and reduce their computational demands by introducing the Iterative Bayesian (IB and Posterior Weighted Averaging (PWA methods. We introduce a special case of PWA, cast in nonparametric form, which we call the normalized count (NC algorithm. NC efficiently reconstructs random and small-world functional network topologies and architectures from subcritical, critical, and supercritical cascading dynamics and yields significant improvements over commonly used correlation methods. With experimental data, NC identified a functional and structural small-world topology and its corresponding traffic in cortical networks with neuronal avalanche dynamics.

  7. Network reconstruction from infection cascades

    CERN Document Server

    Braunstein, Alfredo

    2016-01-01

    Reconstructing propagation networks from observations is a fundamental inverse problem, and it's crucial to understand and control dynamics in complex systems. Here we show that it is possible to reconstruct the whole structure of an interaction network and to simultaneously infer the complete time course of activation spreading, relying just on single snapshots of a small number of activity cascades. The method, that we called Inverse Dynamics Network Reconstruction (IDNR), is shown to work successfully on several synthetic and real networks, inferring the networks and the sources of infection based on sparse observations, including single snapshots. IDNR is built on a Belief Propagation approximation, that has an impressive performance in a wide variety of topological structures. The method can be applied in absence of complete time-series data by providing a detailed modeling of the posterior distribution of trajectories conditioned to the observations. Furthermore, we show by experiments that the informat...

  8. Dynamic Regulatory Network Reconstruction for Alzheimer’s Disease Based on Matrix Decomposition Techniques

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common form of dementia and leads to irreversible neurodegenerative damage of the brain. Finding the dynamic responses of genes, signaling proteins, transcription factor (TF activities, and regulatory networks of the progressively deteriorative progress of AD would represent a significant advance in discovering the pathogenesis of AD. However, the high throughput technologies of measuring TF activities are not yet available on a genome-wide scale. In this study, based on DNA microarray gene expression data and a priori information of TFs, network component analysis (NCA algorithm is applied to determining the TF activities and regulatory influences on TGs of incipient, moderate, and severe AD. Based on that, the dynamical gene regulatory networks of the deteriorative courses of AD were reconstructed. To select significant genes which are differentially expressed in different courses of AD, independent component analysis (ICA, which is better than the traditional clustering methods and can successfully group one gene in different meaningful biological processes, was used. The molecular biological analysis showed that the changes of TF activities and interactions of signaling proteins in mitosis, cell cycle, immune response, and inflammation play an important role in the deterioration of AD.

  9. Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    CERN Document Server

    Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier

    2007-01-01

    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...

  10. Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks.

    Science.gov (United States)

    Tan, Chris Soon Heng; Linding, Rune

    2009-12-01

    The explosion of site- and context-specific in vivo phosphorylation events presents a potentially rich source of biological knowledge and calls for novel data analysis and modeling paradigms. Perhaps the most immediate challenge is delineating detected phosphorylation sites to their effector kinases. This is important for (re)constructing transient kinase-substrate interaction networks that are essential for mechanistic understanding of cellular behaviors and therapeutic intervention, but has largely eluded high-throughput protein-interaction studies due to their transient nature and strong dependencies on cellular context. Here, we surveyed some of the computational approaches developed to dissect phosphorylation data detected in systematic proteomic experiments and reviewed some experimental and computational approaches used to map phosphorylation sites to their effector kinases in efforts aimed at reconstructing biological signaling networks.

  11. Experimental and computational tools useful for (re)construction of dynamic kinase-substrate networks

    DEFF Research Database (Denmark)

    Tan, Chris Soon Heng; Linding, Rune

    2009-01-01

    The explosion of site- and context-specific in vivo phosphorylation events presents a potentially rich source of biological knowledge and calls for novel data analysis and modeling paradigms. Perhaps the most immediate challenge is delineating detected phosphorylation sites to their effector...... kinases. This is important for (re)constructing transient kinase-substrate interaction networks that are essential for mechanistic understanding of cellular behaviors and therapeutic intervention, but has largely eluded high-throughput protein-interaction studies due to their transient nature and strong...

  12. Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data.

    Science.gov (United States)

    Locasale, Jason W; Wolf-Yadlin, Alejandro

    2009-08-26

    Advances in mass spectrometry among other technologies have allowed for quantitative, reproducible, proteome-wide measurements of levels of phosphorylation as signals propagate through complex networks in response to external stimuli under different conditions. However, computational approaches to infer elements of the signaling network strictly from the quantitative aspects of proteomics data are not well established. We considered a method using the principle of maximum entropy to infer a network of interacting phosphotyrosine sites from pairwise correlations in a mass spectrometry data set and derive a phosphorylation-dependent interaction network solely from quantitative proteomics data. We first investigated the applicability of this approach by using a simulation of a model biochemical signaling network whose dynamics are governed by a large set of coupled differential equations. We found that in a simulated signaling system, the method detects interactions with significant accuracy. We then analyzed a growth factor mediated signaling network in a human mammary epithelial cell line that we inferred from mass spectrometry data and observe a biologically interpretable, small-world structure of signaling nodes, as well as a catalog of predictions regarding the interactions among previously uncharacterized phosphotyrosine sites. For example, the calculation places a recently identified tumor suppressor pathway through ARHGEF7 and Scribble, in the context of growth factor signaling. Our findings suggest that maximum entropy derived network models are an important tool for interpreting quantitative proteomics data.

  13. [Multiscale functional imaging: reconstructing network dynamics from the synaptic echoes recorded in a single visual cortex neuron].

    Science.gov (United States)

    Fregnac, Yves; Baudot, Pierre; Chavane, Frédéric; Marre, Olivier; Monier, Cyril; Pananceau, Marc; Sadoc, Gérard

    2009-04-01

    In vivo intracellular electrophysiology offers the unique possibility of listening to the "synaptic rumor " of the cortical network, captured by a recording electrode in a single V1 cell. It allows one to reconstruct the distribution of input sources in space and time, i.e. the effective network dynamics. We have used a reverse engineering method to demonstrate the propagation of visually evoked activity through lateral (and feedback) connectivity in the primary cortex of higher mammals. This approach, based on synaptic echography, is compared here with a real-time brain imaging technique based on voltage-sensitive dye imaging. The former method gives access to the microscopic convergence processes of single neurons, whereas the latter describes the macroscopic divergence process on the neuronal map. A combination of the two techniques can be used to elucidate the cortical origin of low-level (non attentive) binding processes participating in the emergence of Gestalt percepts.

  14. Dynamic Reconstruction-Based Fuzzy Neural Network Method for Fault Detection in Chaotic System

    Institute of Scientific and Technical Information of China (English)

    YANG Hongying; YE Hao; WANG Guizeng

    2008-01-01

    This paper presents a method for detecting weak fault signals in chaotic systems based on the chaotic dynamics reconstruction technique and the fuzzy neural system (FNS). The Grassberger-Procaccia algorithm and least squares regression were used to calculate the correlation dimension for the model order estimate. Based on the model order, an appropriately structured FNS model was designed to predict system faults. Through reasonable analysis of predicted errors, the disturbed signal can be extracted efficiently and correctly from the chaotic background. Satisfactory results were obtained by using several kinds of simula-tive faults which were extracted from the practical chaotic fault systems. Experimental results demonstra tethat the proposed approach has good prediction accuracy and can deal with data having a -40 dB signal to noise ratio (SNR). The low SNR requirement makes the approach a powerful tool for early fault detection.

  15. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  16. Reconstructing a network of stress-response regulators via dynamic system modeling of gene regulation.

    Science.gov (United States)

    Wu, Wei-Sheng; Li, Wen-Hsiung; Chen, Bor-Sen

    2008-02-10

    Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs) that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene's expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA) to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specific stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably sufficient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  17. Global and partitioned reconstructions of undirected complex networks

    CERN Document Server

    Xu, Ming; Wang, Huan; Li, Yong-Kui; Hu, Jing-Bo; Cao, Ke-Fei

    2015-01-01

    It is a significant challenge to predict the network topology from a small amount of dynamical observations. Different from the usual framework of the node-based reconstruction, two optimization approaches (i.e., the global and partitioned reconstructions) are proposed to reveal the structure of undirected networks from dynamics. These approaches are applied to evolutionary games occurring on both homogeneous and heterogeneous networks via compressed sensing, which can more efficiently achieve higher reconstruction accuracy with relatively small amounts of data. Our approaches provide different perspectives on effectively reconstructing complex networks.

  18. Progress towards the use of publicly available data networks to conduct cross-scale historical reconstructions of carbon dynamics in US Drylands

    Science.gov (United States)

    Washington-Allen, R. A.; Landolt, K.; Emanuel, R. E.; Therrell, M. D.; Nagle, N.; Grissino-Mayer, H. D.; Poulter, B.

    2016-12-01

    Emergent scale properties of water-limited or Dryland ecosystem's carbon flux are unknown at spatial scales from local to global and time scales of 10 - 1000 years or greater. The width of a tree ring is a metric of production that has been correlated with the amount of precipitation. This relationship has been used to reconstruct rainfall and fire histories in the Drylands of the southwestern US. The normalized difference vegetation index (NDVI) is globally measured by selected satellite sensors and is highly correlated with the fraction of solar radiation which is absorbed for photosynthesis by plants (FPAR), as well as with vegetation biomass, net primary productivity (NPP), and tree ring width. Publicly available web-based archives of free NDVI and tree ring data exist and have allowed historical temporal reconstructions of carbon dynamics for the past 300 to 500 years. Climate and tree ring databases have been used to spatially reconstruct drought dynamics for the last 500 years in the western US. In 2007, we hypothesized that NDVI and tree ring width could be used to spatially reconstruct carbon dynamics in US Drylands. In 2015, we succeeded with a 300-year historical spatial reconstruction of NPP in California using a Blue Oak tree ring chronology. Online eddy covariance flux tower measures of NPP are well correlated with satellite measures of NPP. This suggests that net ecosystem exchange (NEE = NPP - soil Respiration) could be historically reconstructed across Drylands. Ongoing research includes 1) scaling historical spatial reconstruction to US Drylands, 2) comparing the use of single versus multiple tree ring species (r2 = 68) and 3) use of the eddy flux tower network, remote sensing, and tree ring data to historically spatially reconstruct Dryland NEE.

  19. Network reconstruction via density sampling

    CERN Document Server

    Squartini, Tiziano; Gabrielli, Andrea; Garlaschelli, Diego

    2016-01-01

    Reconstructing weighted networks from partial information is necessary in many important circumstances, e.g. for a correct estimation of systemic risk. It has been shown that, in order to achieve an accurate reconstruction, it is crucial to reliably replicate the empirical degree sequence, which is however unknown in many realistic situations. More recently, it has been found that the knowledge of the degree sequence can be replaced by the knowledge of the strength sequence, which is typically accessible, complemented by that of the total number of links, thus considerably relaxing the observational requirements. Here we further relax these requirements and devise a procedure valid when even the the total number of links is unavailable. We assume that, apart from the heterogeneity induced by the degree sequence itself, the network is homogeneous, so that its link density can be estimated by sampling subsets of nodes with representative density. We show that the best way of sampling nodes is the random selecti...

  20. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  1. Network reconstruction via graph blending

    Science.gov (United States)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  2. Robust Reconstruction of Complex Networks from Sparse Data

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Di, Zengru

    2015-01-01

    Reconstructing complex networks from measurable data is a fundamental problem for understanding and controlling collective dynamics of complex networked systems. However, a significant challenge arises when we attempt to decode structural information hidden in limited amounts of data accompanied by noise and in the presence of inaccessible nodes. Here, we develop a general framework for robust reconstruction of complex networks from sparse and noisy data. Specifically, we decompose the task of reconstructing the whole network into recovering local structures centered at each node. Thus, the natural sparsity of complex networks ensures a conversion from the local structure reconstruction into a sparse signal reconstruction problem that can be addressed by using the lasso, a convex optimization method. We apply our method to evolutionary games, transportation, and communication processes taking place in a variety of model and real complex networks, finding that universal high reconstruction accuracy can be achieved from sparse data in spite of noise in time series and missing data of partial nodes. Our approach opens new routes to the network reconstruction problem and has potential applications in a wide range of fields.

  3. Reconstructing propagation networks with temporal similarity metrics

    CERN Document Server

    Liao, Hao

    2014-01-01

    Node similarity is a significant property driving the growth of real networks. In this paper, based on the observed spreading results we apply the node similarity metrics to reconstruct propagation networks. We find that the reconstruction accuracy of the similarity metrics is strongly influenced by the infection rate of the spreading process. Moreover, there is a range of infection rate in which the reconstruction accuracy of some similarity metrics drops to nearly zero. In order to improve the similarity-based reconstruction method, we finally propose a temporal similarity metric to take into account the time information of the spreading. The reconstruction results are remarkably improved with the new method.

  4. Automatic Network Reconstruction using ASP

    CERN Document Server

    Ostrowski, Max; Durzinsky, Markus; Marwan, Wolfgang; Wagler, Annegret

    2011-01-01

    Building biological models by inferring functional dependencies from experimental data is an im- portant issue in Molecular Biology. To relieve the biologist from this traditionally manual process, various approaches have been proposed to increase the degree of automation. However, available ap- proaches often yield a single model only, rely on specific assumptions, and/or use dedicated, heuris- tic algorithms that are intolerant to changing circumstances or requirements in the view of the rapid progress made in Biotechnology. Our aim is to provide a declarative solution to the problem by ap- peal to Answer Set Programming (ASP) overcoming these difficulties. We build upon an existing approach to Automatic Network Reconstruction proposed by part of the authors. This approach has firm mathematical foundations and is well suited for ASP due to its combinatorial flavor providing a characterization of all models explaining a set of experiments. The usage of ASP has several ben- efits over the existing heuristic a...

  5. Application of Neural Networks for Energy Reconstruction

    CERN Document Server

    Damgov, Jordan

    2002-01-01

    The possibility to use Neural Networks for reconstruction ofthe energy deposited in the calorimetry system of the CMS detector is investigated. It is shown that using feed-forward neural network, good linearity, Gaussian energy distribution and good energy resolution can be achieved. Significant improvement of the energy resolution and linearity is reached in comparison with other weighting methods for energy reconstruction.

  6. Neural Network Based 3D Surface Reconstruction

    Directory of Open Access Journals (Sweden)

    Vincy Joseph

    2009-11-01

    Full Text Available This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  7. Craniofacial Reconstruction Evaluation by Geodesic Network

    Directory of Open Access Journals (Sweden)

    Junli Zhao

    2014-01-01

    Full Text Available Craniofacial reconstruction is to estimate an individual’s face model from its skull. It has a widespread application in forensic medicine, archeology, medical cosmetic surgery, and so forth. However, little attention is paid to the evaluation of craniofacial reconstruction. This paper proposes an objective method to evaluate globally and locally the reconstructed craniofacial faces based on the geodesic network. Firstly, the geodesic networks of the reconstructed craniofacial face and the original face are built, respectively, by geodesics and isogeodesics, whose intersections are network vertices. Then, the absolute value of the correlation coefficient of the features of all corresponding geodesic network vertices between two models is taken as the holistic similarity, where the weighted average of the shape index values in a neighborhood is defined as the feature of each network vertex. Moreover, the geodesic network vertices of each model are divided into six subareas, that is, forehead, eyes, nose, mouth, cheeks, and chin, and the local similarity is measured for each subarea. Experiments using 100 pairs of reconstructed craniofacial faces and their corresponding original faces show that the evaluation by our method is roughly consistent with the subjective evaluation derived from thirty-five persons in five groups.

  8. Reconstruction of periodic signals using neural networks

    Directory of Open Access Journals (Sweden)

    José Danilo Rairán Antolines

    2014-01-01

    Full Text Available In this paper, we reconstruct a periodic signal by using two neural networks. The first network is trained to approximate the period of a signal, and the second network estimates the corresponding coefficients of the signal's Fourier expansion. The reconstruction strategy consists in minimizing the mean-square error via backpro-pagation algorithms over a single neuron with a sine transfer function. Additionally, this paper presents mathematical proof about the quality of the approximation as well as a first modification of the algorithm, which requires less data to reach the same estimation; thus making the algorithm suitable for real-time implementations.

  9. Reconstruction of Fine Scale Auroral Dynamics

    CERN Document Server

    Hirsch, Michael; Zettergren, Matthew; Dahlgren, Hanna; Goenka, Chhavi; Akbari, Hassanali

    2015-01-01

    We present a feasibility study for a high frame rate, short baseline auroral tomographic imaging system useful for estimating parametric variations in the precipitating electron number flux spectrum of dynamic auroral events. Of particular interest are auroral substorms, characterized by spatial variations of order 100 m and temporal variations of order 10 ms. These scales are thought to be produced by dispersive Alfv\\'en waves in the near-Earth magnetosphere. The auroral tomography system characterized in this paper reconstructs the auroral volume emission rate to estimate the characteristic energy and location in the direction perpendicular to the geomagnetic field of peak electron precipitation flux using a distributed network of precisely synchronized ground-based cameras. As the observing baseline decreases, the tomographic inverse problem becomes highly ill-conditioned; as the sampling rate increases, the signal-to-noise ratio degrades and synchronization requirements become increasingly critical. Our a...

  10. Exploring the topology of dynamical reconstructions

    Science.gov (United States)

    Garland, Joshua; Bradley, Elizabeth; Meiss, James D.

    2016-11-01

    Computing the state-space topology of a dynamical system from scalar data requires accurate reconstruction of those dynamics and construction of an appropriate simplicial complex from the results. The reconstruction process involves a number of free parameters and the computation of homology for a large number of simplices can be expensive. This paper is a study of how to compute the homology efficiently and effectively without a full (diffeomorphic) reconstruction. Using trajectories from the classic Lorenz system, we reconstruct the dynamics using the method of delays, then build a simplicial complex whose vertices are a small subset of the data: the "witness complex". Surprisingly, we find that the witness complex correctly resolves the homology of the underlying invariant set from noisy samples of that set even if the reconstruction dimension is well below the thresholds for assuring topological conjugacy between the true and reconstructed dynamics that are specified in the embedding theorems. We conjecture that this is because the requirements for reconstructing homology are less stringent: a homeomorphism is sufficient-as opposed to a diffeomorphism, as is necessary for the full dynamics. We provide preliminary evidence that a homeomorphism, in the form of a delay-coordinate reconstruction map, may exist at a lower dimension than that required to achieve an embedding.

  11. Dynamic Network Models

    CERN Document Server

    Armbruster, Benjamin

    2011-01-01

    We analyze random networks that change over time. First we analyze a dynamic Erdos-Renyi model, whose edges change over time. We describe its stationary distribution, its convergence thereto, and the SI contact process on the network, which has relevance for connectivity and the spread of infections. Second, we analyze the effect of node turnover, when nodes enter and leave the network, which has relevance for network models incorporating births, deaths, aging, and other demographic factors.

  12. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks

    Science.gov (United States)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2016-06-01

    Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.

  13. Compressive sensing reconstruction of feed-forward connectivity in pulse-coupled nonlinear networks.

    Science.gov (United States)

    Barranca, Victor J; Zhou, Douglas; Cai, David

    2016-06-01

    Utilizing the sparsity ubiquitous in real-world network connectivity, we develop a theoretical framework for efficiently reconstructing sparse feed-forward connections in a pulse-coupled nonlinear network through its output activities. Using only a small ensemble of random inputs, we solve this inverse problem through the compressive sensing theory based on a hidden linear structure intrinsic to the nonlinear network dynamics. The accuracy of the reconstruction is further verified by the fact that complex inputs can be well recovered using the reconstructed connectivity. We expect this Rapid Communication provides a new perspective for understanding the structure-function relationship as well as compressive sensing principle in nonlinear network dynamics.

  14. Assimilation Dynamic Network (ADN) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Assimilation Dynamic Network (ADN) is a dynamic inter-processor communication network that spans heterogeneous processor architectures, unifying components,...

  15. Airborne Network Optimization with Dynamic Network Update

    Science.gov (United States)

    2015-03-26

    AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Bradly S. Paul, Capt, USAF AFIT-ENG-MS-15-M-030 DEPARTMENT OF THE AIR FORCE AIR...to copyright protection in the United States. AFIT-ENG-MS-15-M-030 AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Presented to the...NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE Bradly S. Paul, B.S.C.P. Capt, USAF Committee Membership: Maj Thomas E. Dube Chair Dr. Kenneth M. Hopkinson

  16. Network-behavior dynamics

    NARCIS (Netherlands)

    Veenstra, René; Dijkstra, Jan; Steglich, Christian; Van Zalk, Maarten H. W.

    2013-01-01

    Researchers have become increasingly interested in disentangling selection and influence processes. This literature review provides context for the special issue on network-behavior dynamics. It brings together important conceptual, methodological, and empirical contributions focusing on longitudina

  17. On unitary reconstruction of linear optical networks

    CERN Document Server

    Tillmann, Max; Walther, Philip

    2015-01-01

    Linear optical elements are pivotal instruments in the manipulation of classical and quantum states of light. The vast progress in integrated quantum photonic technology enables the implementation of large numbers of such elements on chip while providing interferometric stability. As a trade-off these structures face the intrinsic challenge of characterizing their optical transformation as individual optical elements are not directly accessible. Thus the unitary transformation needs to be reconstructed from a dataset generated with having access to the input and output ports of the device only. Here we present a novel approach to unitary reconstruction that significantly improves upon existing approaches. We compare its performance to several approaches via numerical simulations for networks up to 14 modes. We show that an adapted version of our approach allows to recover all mode-dependent losses and to obtain highest reconstruction fidelities under such conditions.

  18. Interferometric phase reconstruction using simplified coherence network

    Science.gov (United States)

    Zhang, Kui; Song, Ruiqing; Wang, Hui; Wu, Di; Wang, Hua

    2016-09-01

    Interferometric time-series analysis techniques, which extend the traditional differential radar interferometry, have demonstrated a strong capability for monitoring ground surface displacement. Such techniques are able to obtain the temporal evolution of ground deformation within millimeter accuracy by using a stack of synthetic aperture radar (SAR) images. In order to minimize decorrelation between stacked SAR images, the phase reconstruction technique has been developed recently. The main idea of this technique is to reform phase observations along a SAR stack by taking advantage of a maximum likelihood estimator which is defined on the coherence matrix estimated from each target. However, the phase value of a coherence matrix element might be considerably biased when its corresponding coherence is low. In this case, it will turn to an outlying sample affecting the corresponding phase reconstruction process. In order to avoid this problem, a new approach is developed in this paper. This approach considers a coherence matrix element to be an arc in a network. A so-called simplified coherence network (SCN) is constructed to decrease the negative impact of outlying samples. Moreover, a pointed iterative strategy is designed to resolve the transformed phase reconstruction problem defined on a SCN. For validation purposes, the proposed method is applied to 29 real SAR images. The results demonstrate that the proposed method has an excellent computational efficiency and could obtain more reliable phase reconstruction solutions compared to the traditional method using phase triangulation algorithm.

  19. Reconstruction of transcriptional network from microarray data using combined mutual information and network-assisted regression.

    Science.gov (United States)

    Wang, X-D; Qi, Y-X; Jiang, Z-L

    2011-03-01

    Many methods had been developed on inferring transcriptional network from gene expression. However, it is still necessary to design new method that discloses more detailed and exact network information. Using network-assisted regression, the authors combined the averaged three-way mutual information (AMI3) and non-linear ordinary differential equation (ODE) model to infer the transcriptional network, and to obtain both the topological structure and the regulatory dynamics. Synthetic and experimental data were used to evaluate the performance of the above approach. In comparison with the previous methods based on mutual information, AMI3 obtained higher precision with the same sensitivity. To describe the regulatory dynamics between transcription factors and target genes, network-assisted regression and regression without network, respectively, were applied in the steady-state and time series microarray data. The results revealed that comparing with regression without network, network-assisted regression increased the precision, but decreased the fitting goodness. Then, the authors reconstructed the transcriptional network of Escherichia coli and simulated the regulatory dynamics of genes. Furthermore, the authors' approach identified potential transcription factors regulating yeast cell cycle. In conclusion, network-assisted regression, combined AMI3 and ODE model, was a more precisely to infer the topological structure and the regulatory dynamics of transcriptional network from microarray data. [Includes supplementary material].

  20. Prediction of missing links and reconstruction of complex networks

    Science.gov (United States)

    Zhang, Cheng-Jun; Zeng, An

    2016-04-01

    Predicting missing links in complex networks is of great significance from both theoretical and practical point of view, which not only helps us understand the evolution of real systems but also relates to many applications in social, biological and online systems. In this paper, we study the features of different simple link prediction methods, revealing that they may lead to the distortion of networks’ structural and dynamical properties. Moreover, we find that high prediction accuracy is not definitely corresponding to a high performance in preserving the network properties when using link prediction methods to reconstruct networks. Our work highlights the importance of considering the feedback effect of the link prediction methods on network properties when designing the algorithms.

  1. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    and the environment were included. A total of 708 structural open reading frames (ORFs) were accounted for in the reconstructed network, corresponding to 1035 metabolic reactions. Further, 140 reactions were included on the basis of biochemical evidence resulting in a genome-scale reconstructed metabolic network...... with Escherichia coli. The reconstructed metabolic network is the first comprehensive network for a eukaryotic organism, and it may be used as the basis for in silico analysis of phenotypic functions....

  2. Spectral reconstruction of protein contact networks

    Science.gov (United States)

    Maiorino, Enrico; Rizzi, Antonello; Sadeghian, Alireza; Giuliani, Alessandro

    2017-04-01

    In this work, we present a method for generating an adjacency matrix encoding a typical protein contact network. This work constitutes a follow-up to our recent work (Livi et al., 2015), whose aim was to estimate the relative contribution of different topological features in discovering of the unique properties of protein structures. We perform a genetic algorithm based optimization in order to modify the matrices generated with the procedures explained in (Livi et al., 2015). Our objective here is to minimize the distance with respect to a target spectral density, which is elaborated using the normalized graph Laplacian representation of graphs. Such a target density is obtained by averaging the kernel-estimated densities of a class of experimental protein maps having different dimensions. This is possible given the bounded-domain property of the normalized Laplacian spectrum. By exploiting genetic operators designed for this specific problem and an exponentially-weighted objective function, we are able to reconstruct adjacency matrices representing networks of varying size whose spectral density is indistinguishable from the target. The topological features of the optimized networks are then compared to the real protein contact networks and they show an increased similarity with respect to the starting networks. Subsequently, the statistical properties of the spectra of the newly generated matrices are analyzed by employing tools borrowed from random matrix theory. The nearest neighbors spacing distribution of the spectra of the generated networks indicates that also the (short-range) correlations of the Laplacian eigenvalues are compatible with those of real proteins.

  3. Dynamic Network Change Detection

    Science.gov (United States)

    2008-12-01

    detection methods is presented; the cumulative sum ( CUSUM ), the exponentially weighted moving average (EWMA), and a scan statistic (SS). Statistical...minimizing the risk of false alarms. Three common SPC methods that we consider here are the CUSUM (Page, 1961), EWMA (Roberts, 1959), and the SS...successive dynamic network measures are then used to calculate the statistics for the CUSUM , the EWMA, and the SS. These are then compared to decision

  4. Non-transcriptional regulatory processes shape transcriptional network dynamics

    OpenAIRE

    Ray, J. Christian J; Tabor, Jeffrey J.; Igoshin, Oleg A.

    2011-01-01

    Information about the extra- or intracellular environment is often captured as biochemical signals propagating through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programs in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. In many cases, the dynamical performance of transcriptional re...

  5. Reconstructing direct and indirect interactions in networked public goods game

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

  6. Reconstructing direct and indirect interactions in networked public goods game.

    Science.gov (United States)

    Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-22

    Network reconstruction is a fundamental problem for understanding many complex systems with unknown interaction structures. In many complex systems, there are indirect interactions between two individuals without immediate connection but with common neighbors. Despite recent advances in network reconstruction, we continue to lack an approach for reconstructing complex networks with indirect interactions. Here we introduce a two-step strategy to resolve the reconstruction problem, where in the first step, we recover both direct and indirect interactions by employing the Lasso to solve a sparse signal reconstruction problem, and in the second step, we use matrix transformation and optimization to distinguish between direct and indirect interactions. The network structure corresponding to direct interactions can be fully uncovered. We exploit the public goods game occurring on complex networks as a paradigm for characterizing indirect interactions and test our reconstruction approach. We find that high reconstruction accuracy can be achieved for both homogeneous and heterogeneous networks, and a number of empirical networks in spite of insufficient data measurement contaminated by noise. Although a general framework for reconstructing complex networks with arbitrary types of indirect interactions is yet lacking, our approach opens new routes to separate direct and indirect interactions in a representative complex system.

  7. A dynamic 3D foot reconstruction system.

    Science.gov (United States)

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  8. Dynamic Error Analysis Method for Vibration Shape Reconstruction of Smart FBG Plate Structure

    Directory of Open Access Journals (Sweden)

    Hesheng Zhang

    2016-01-01

    Full Text Available Shape reconstruction of aerospace plate structure is an important issue for safe operation of aerospace vehicles. One way to achieve such reconstruction is by constructing smart fiber Bragg grating (FBG plate structure with discrete distributed FBG sensor arrays using reconstruction algorithms in which error analysis of reconstruction algorithm is a key link. Considering that traditional error analysis methods can only deal with static data, a new dynamic data error analysis method are proposed based on LMS algorithm for shape reconstruction of smart FBG plate structure. Firstly, smart FBG structure and orthogonal curved network based reconstruction method is introduced. Then, a dynamic error analysis model is proposed for dynamic reconstruction error analysis. Thirdly, the parameter identification is done for the proposed dynamic error analysis model based on least mean square (LMS algorithm. Finally, an experimental verification platform is constructed and experimental dynamic reconstruction analysis is done. Experimental results show that the dynamic characteristics of the reconstruction performance for plate structure can be obtained accurately based on the proposed dynamic error analysis method. The proposed method can also be used for other data acquisition systems and data processing systems as a general error analysis method.

  9. via dynamic neural networks

    Directory of Open Access Journals (Sweden)

    J. Reyes-Reyes

    2000-01-01

    Full Text Available In this paper, an adaptive technique is suggested to provide the passivity property for a class of partially known SISO nonlinear systems. A simple Dynamic Neural Network (DNN, containing only two neurons and without any hidden-layers, is used to identify the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning law for this DNN, guarantying both successful identification and passivation effects, is derived. Based on this adaptive DNN model, an adaptive feedback controller, serving for wide class of nonlinear systems with an a priori incomplete model description, is designed. Two typical examples illustrate the effectiveness of the suggested approach.

  10. SYNCHRONIZATION IN COMPLEX DYNAMICAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaofan; CHEN Guanrong

    2003-01-01

    In the past few years, the discovery of small-world and scale-free properties of many natural and artificial complex networks has stimulated increasing interest in further studying the underlying organizing principles of various complex networks. This has led to significant advances in understanding the relationship between the topology and the dynamics of such complex networks. This paper reviews some recent research works on the synchronization phenomenon in various dynamical networks with small-world and scalefree connections.

  11. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions

    DEFF Research Database (Denmark)

    Schmidt, R.; Waschina, S.; Boettger-Schmidt, D.

    2015-01-01

    by inherent inconsistencies and gaps. RESULTS: Here we present a novel method to validate metabolic network reconstructions based on the concept of autocatalytic sets. Autocatalytic sets correspond to collections of metabolites that, besides enzymes and a growth medium, are required to produce all biomass......MOTIVATION: Genome-scale metabolic network reconstructions have been established as a powerful tool for the prediction of cellular phenotypes and metabolic capabilities of organisms. In recent years, the number of network reconstructions has been constantly increasing, mostly because...... of the availability of novel (semi-)automated procedures, which enabled the reconstruction of metabolic models based on individual genomes and their annotation. The resulting models are widely used in numerous applications. However, the accuracy and predictive power of network reconstructions are commonly limited...

  12. Dynamical numerical model for nematic order reconstruction

    Science.gov (United States)

    Lombardo, G.; Ayeb, H.; Barberi, R.

    2008-05-01

    In highly frustrated calamitic nematic liquid crystals, a strong elastic distortion can be confined on a few nanometers. The classical elastic theory fails to describe such systems and a more complete description based on the tensor order parameter Q is required. A finite element method is used to implement the Q dynamics by a variational principle and it is shown that a uniaxial nematic configuration can evolve passing through transient biaxial states. This solution, which connects two competing uniaxial nematic textures, is known as “nematic order reconstruction.”

  13. Epidemic dynamics on complex networks

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tao; FU Zhongqian; WANG Binghong

    2006-01-01

    Recently, motivated by the pioneer work in revealing the small-world effect and scale-free property of various real-life networks, many scientists devote themselves to studying complex networks. One of the ultimate goals is to understand how the topological structures affect the dynamics upon networks. In this paper, we give a brief review on the studies of epidemic dynamics on complex networks, including the description of classical epidemic models, the epidemic spread on small-world and scale-free networks, and network immunization. Finally, perspectives and some interesting problems are proposed.

  14. Complex Dynamics in Communication Networks

    CERN Document Server

    Kocarev, Ljupco

    2005-01-01

    Computer and communication networks are among society's most important infrastructures. The internet, in particular, is a giant global network of networks without central control or administration. It is a paradigm of a complex system, where complexity may arise from different sources: topological structure, network evolution, connection and node diversity, or dynamical evolution. The present volume is the first book entirely devoted to the new and emerging field of nonlinear dynamics of TCP/IP networks. It addresses both scientists and engineers working in the general field of communication networks.

  15. Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing.

    Directory of Open Access Journals (Sweden)

    Long Ma

    Full Text Available Recent years have witnessed a rapid development of network reconstruction approaches, especially for a series of methods based on compressed sensing. Although compressed-sensing based methods require much less data than conventional approaches, the compressed sensing for reconstructing heterogeneous networks has not been fully exploited because of hubs. Hub neighbors require much more data to be inferred than small-degree nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a conflict-based method is proposed to overcome the cast effect to considerably reduce data amounts for achieving accurate reconstruction. Moreover, an element elimination method is presented to use the partially available structural information to reduce data requirements. The integration of both methods can further improve the reconstruction performance than separately using each technique. These methods are validated by exploring two evolutionary games taking place in scale-free networks, where individual information is accessible and an attempt to decode the network structure from measurable data is made. The results demonstrate that for all of the cases, much data are saved compared to that in the absence of these two methods. Due to the prevalence of heterogeneous networks in nature and society and the high cost of data acquisition in large-scale networks, these approaches have wide applications in many fields and are valuable for understanding and controlling the collective dynamics of a variety of heterogeneous networked systems.

  16. Efficient Reconstruction of Heterogeneous Networks from Time Series via Compressed Sensing.

    Science.gov (United States)

    Ma, Long; Han, Xiao; Shen, Zhesi; Wang, Wen-Xu; Di, Zengru

    2015-01-01

    Recent years have witnessed a rapid development of network reconstruction approaches, especially for a series of methods based on compressed sensing. Although compressed-sensing based methods require much less data than conventional approaches, the compressed sensing for reconstructing heterogeneous networks has not been fully exploited because of hubs. Hub neighbors require much more data to be inferred than small-degree nodes, inducing a cask effect for the reconstruction of heterogeneous networks. Here, a conflict-based method is proposed to overcome the cast effect to considerably reduce data amounts for achieving accurate reconstruction. Moreover, an element elimination method is presented to use the partially available structural information to reduce data requirements. The integration of both methods can further improve the reconstruction performance than separately using each technique. These methods are validated by exploring two evolutionary games taking place in scale-free networks, where individual information is accessible and an attempt to decode the network structure from measurable data is made. The results demonstrate that for all of the cases, much data are saved compared to that in the absence of these two methods. Due to the prevalence of heterogeneous networks in nature and society and the high cost of data acquisition in large-scale networks, these approaches have wide applications in many fields and are valuable for understanding and controlling the collective dynamics of a variety of heterogeneous networked systems.

  17. NeuralNetwork Based 3D Surface Reconstruction

    CERN Document Server

    Joseph, Vincy

    2009-01-01

    This paper proposes a novel neural-network-based adaptive hybrid-reflectance three-dimensional (3-D) surface reconstruction model. The neural network combines the diffuse and specular components into a hybrid model. The proposed model considers the characteristics of each point and the variant albedo to prevent the reconstructed surface from being distorted. The neural network inputs are the pixel values of the two-dimensional images to be reconstructed. The normal vectors of the surface can then be obtained from the output of the neural network after supervised learning, where the illuminant direction does not have to be known in advance. Finally, the obtained normal vectors can be applied to integration method when reconstructing 3-D objects. Facial images were used for training in the proposed approach

  18. Dynamic ad hoc networks

    CERN Document Server

    Rashvand, Habib

    2013-01-01

    Motivated by the exciting new application paradigm of using amalgamated technologies of the Internet and wireless, the next generation communication networks (also called 'ubiquitous', 'complex' and 'unstructured' networking) are changing the way we develop and apply our future systems and services at home and on local, national and global scales. Whatever the interconnection - a WiMAX enabled networked mobile vehicle, MEMS or nanotechnology enabled distributed sensor systems, Vehicular Ad hoc Networking (VANET) or Mobile Ad hoc Networking (MANET) - all can be classified under new networking s

  19. 3-D flame temperature field reconstruction with multiobjective neural network

    Institute of Scientific and Technical Information of China (English)

    Xiong Wan(万雄); Yiqing Gao(高益庆); Yuanmei Wang(汪元美)

    2003-01-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multi-wavelength thermometry and Hopfield neural network computed tomography. A mathematical modelof multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjectiveoptimization is developed. Through computer simulation and comparison with the algebraic reconstructiontechnique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the newmethod is discussed in detail. The study shows that the new method always gives the best reconstructionresults. At last, temperature distribution of a section of four peaks candle flame is reconstructed with thisnovel method.

  20. Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple 'Omic' Layers.

    Science.gov (United States)

    Yugi, Katsuyuki; Kubota, Hiroyuki; Hatano, Atsushi; Kuroda, Shinya

    2016-04-01

    We propose 'trans-omic' analysis for reconstructing global biochemical networks across multiple omic layers by use of both multi-omic measurements and computational data integration. We introduce technologies for connecting multi-omic data based on prior knowledge of biochemical interactions and characterize a biochemical trans-omic network by concepts of a static and dynamic nature. We introduce case studies of metabolism-centric trans-omic studies to show how to reconstruct a biochemical trans-omic network by connecting multi-omic data and how to analyze it in terms of the static and dynamic nature. We propose a trans-ome-wide association study (trans-OWAS) connecting phenotypes with trans-omic networks that reflect both genetic and environmental factors, which can characterize several complex lifestyle diseases as breakdowns in the trans-omic system.

  1. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Lorenzo, Ruben M.

    2013-01-01

    Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project.......Cognitive networks are a promising solution for the control of heterogeneous optical networks. We review their fundamentals as well as a number of applications developed in the framework of the EU FP7 CHRON project....

  2. Directed network discovery with dynamic network modelling.

    Science.gov (United States)

    Anzellotti, Stefano; Kliemann, Dorit; Jacoby, Nir; Saxe, Rebecca

    2017-05-01

    Cognitive tasks recruit multiple brain regions. Understanding how these regions influence each other (the network structure) is an important step to characterize the neural basis of cognitive processes. Often, limited evidence is available to restrict the range of hypotheses a priori, and techniques that sift efficiently through a large number of possible network structures are needed (network discovery). This article introduces a novel modelling technique for network discovery (Dynamic Network Modelling or DNM) that builds on ideas from Granger Causality and Dynamic Causal Modelling introducing three key changes: (1) efficient network discovery is implemented with statistical tests on the consistency of model parameters across participants, (2) the tests take into account the magnitude and sign of each influence, and (3) variance explained in independent data is used as an absolute (rather than relative) measure of the quality of the network model. In this article, we outline the functioning of DNM, we validate DNM in simulated data for which the ground truth is known, and we report an example of its application to the investigation of influences between regions during emotion recognition, revealing top-down influences from brain regions encoding abstract representations of emotions (medial prefrontal cortex and superior temporal sulcus) onto regions engaged in the perceptual analysis of facial expressions (occipital face area and fusiform face area) when participants are asked to switch between reporting the emotional valence and the age of a face. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cognitive Dynamic Optical Networks

    DEFF Research Database (Denmark)

    de Miguel, Ignacio; Duran, Ramon J.; Jimenez, Tamara

    2013-01-01

    learning with the aim of improving performance. In this paper, we review the fundamentals of cognitive networks and focus on their application to the optical networking area. In particular, a number of cognitive network architectures proposed so far, as well as their associated supporting technologies......The use of cognition is a promising element for the control of heterogeneous optical networks. Not only are cognitive networks able to sense current network conditions and act according to them, but they also take into account the knowledge acquired through past experiences; that is, they include......, are reviewed. Moreover, several applications, mainly developed in the framework of the EU FP7 Cognitive Heterogeneous Reconfigurable Optical Network (CHRON) project, are also described....

  4. Fast reconstruction of compact context-specific metabolic network models.

    Directory of Open Access Journals (Sweden)

    Nikos Vlassis

    2014-01-01

    Full Text Available Systemic approaches to the study of a biological cell or tissue rely increasingly on the use of context-specific metabolic network models. The reconstruction of such a model from high-throughput data can routinely involve large numbers of tests under different conditions and extensive parameter tuning, which calls for fast algorithms. We present fastcore, a generic algorithm for reconstructing context-specific metabolic network models from global genome-wide metabolic network models such as Recon X. fastcore takes as input a core set of reactions that are known to be active in the context of interest (e.g., cell or tissue, and it searches for a flux consistent subnetwork of the global network that contains all reactions from the core set and a minimal set of additional reactions. Our key observation is that a minimal consistent reconstruction can be defined via a set of sparse modes of the global network, and fastcore iteratively computes such a set via a series of linear programs. Experiments on liver data demonstrate speedups of several orders of magnitude, and significantly more compact reconstructions, over a rival method. Given its simplicity and its excellent performance, fastcore can form the backbone of many future metabolic network reconstruction algorithms.

  5. On the Complexity of Reconstructing Chemical Reaction Networks

    DEFF Research Database (Denmark)

    Fagerberg, Rolf; Flamm, Christoph; Merkle, Daniel

    2013-01-01

    The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from...... the full hypergraph description, e.g. on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP...

  6. Nonlinear Dynamics on Interconnected Networks

    Science.gov (United States)

    Arenas, Alex; De Domenico, Manlio

    2016-06-01

    Networks of dynamical interacting units can represent many complex systems, from the human brain to transportation systems and societies. The study of these complex networks, when accounting for different types of interactions has become a subject of interest in the last few years, especially because its representational power in the description of users' interactions in diverse online social platforms (Facebook, Twitter, Instagram, etc.) [1], or in representing different transportation modes in urban networks [2,3]. The general name coined for these networks is multilayer networks, where each layer accounts for a type of interaction (see Fig. 1).

  7. Tensor networks for dynamic spacetimes

    CERN Document Server

    May, Alex

    2016-01-01

    Existing tensor network models of holography are limited to representing the geometry of constant time slices of static spacetimes. We study the possibility of describing the geometry of a dynamic spacetime using tensor networks. We find it is necessary to give a new definition of length in the network, and propose a definition based on the mutual information. We show that by associating a set of networks with a single quantum state and making use of the mutual information based definition of length, a network analogue of the maximin formula can be used to calculate the entropy of boundary regions.

  8. Structurally Dynamic Spin Market Networks

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  9. Dynamical Convergence Trajectory in Networks

    Institute of Scientific and Technical Information of China (English)

    TAN Ning; ZHANG Yun-Jun; OUYANG Qi; GENG Zhi

    2005-01-01

    @@ It is well known that topology and dynamics are two major aspects to determine the function of a network. We study one of the dynamic properties of a network: trajectory convergence, i.e. how a system converges to its steady state. Using numerical and analytical methods, we show that in a logical-like dynamical model, the occurrence of convergent trajectory in a network depends mainly on the type of the fixed point and the ratio between activation and inhibition links. We analytically proof that this property is induced by the competition between two types of state transition structures in phase space: tree-like transition structure and star-like transition structure. We show that the biological networks, such as the cell cycle network in budding yeast, prefers the tree-like transition structures and suggest that this type of convergence trajectories may be universal.

  10. Human Metabolic Network: Reconstruction, Simulation, and Applications in Systems Biology

    Science.gov (United States)

    Wu, Ming; Chan, Christina

    2012-01-01

    Metabolism is crucial to cell growth and proliferation. Deficiency or alterations in metabolic functions are known to be involved in many human diseases. Therefore, understanding the human metabolic system is important for the study and treatment of complex diseases. Current reconstructions of the global human metabolic network provide a computational platform to integrate genome-scale information on metabolism. The platform enables a systematic study of the regulation and is applicable to a wide variety of cases, wherein one could rely on in silico perturbations to predict novel targets, interpret systemic effects, and identify alterations in the metabolic states to better understand the genotype-phenotype relationships. In this review, we describe the reconstruction of the human metabolic network, introduce the constraint based modeling approach to analyze metabolic networks, and discuss systems biology applications to study human physiology and pathology. We highlight the challenges and opportunities in network reconstruction and systems modeling of the human metabolic system. PMID:24957377

  11. Studying Dynamics in Business Networks

    DEFF Research Database (Denmark)

    Andersen, Poul Houman; Anderson, Helen; Havila, Virpi;

    1998-01-01

    This paper develops a theory on network dynamics using the concepts of role and position from sociological theory. Moreover, the theory is further tested using case studies from Denmark and Finland...

  12. Missing and spurious interactions and the reconstruction of complex networks

    CERN Document Server

    Guimera, R; 10.1073/pnas.0908366106

    2010-01-01

    Network analysis is currently used in a myriad of contexts: from identifying potential drug targets to predicting the spread of epidemics and designing vaccination strategies, and from finding friends to uncovering criminal activity. Despite the promise of the network approach, the reliability of network data is a source of great concern in all fields where complex networks are studied. Here, we present a general mathematical and computational framework to deal with the problem of data reliability in complex networks. In particular, we are able to reliably identify both missing and spurious interactions in noisy network observations. Remarkably, our approach also enables us to obtain, from those noisy observations, network reconstructions that yield estimates of the true network properties that are more accurate than those provided by the observations themselves. Our approach has the potential to guide experiments, to better characterize network data sets, and to drive new discoveries.

  13. Revealing physical interaction networks from statistics of collective dynamics

    Science.gov (United States)

    Nitzan, Mor; Casadiego, Jose; Timme, Marc

    2017-01-01

    Revealing physical interactions in complex systems from observed collective dynamics constitutes a fundamental inverse problem in science. Current reconstruction methods require access to a system’s model or dynamical data at a level of detail often not available. We exploit changes in invariant measures, in particular distributions of sampled states of the system in response to driving signals, and use compressed sensing to reveal physical interaction networks. Dynamical observations following driving suffice to infer physical connectivity even if they are temporally disordered, are acquired at large sampling intervals, and stem from different experiments. Testing various nonlinear dynamic processes emerging on artificial and real network topologies indicates high reconstruction quality for existence as well as type of interactions. These results advance our ability to reveal physical interaction networks in complex synthetic and natural systems. PMID:28246630

  14. Reconstructing Networks from Profit Sequences in Evolutionary Games via a Multiobjective Optimization Approach with Lasso Initialization

    Science.gov (United States)

    Wu, Kai; Liu, Jing; Wang, Shuai

    2016-11-01

    Evolutionary games (EG) model a common type of interactions in various complex, networked, natural and social systems. Given such a system with only profit sequences being available, reconstructing the interacting structure of EG networks is fundamental to understand and control its collective dynamics. Existing approaches used to handle this problem, such as the lasso, a convex optimization method, need a user-defined constant to control the tradeoff between the natural sparsity of networks and measurement error (the difference between observed data and simulated data). However, a shortcoming of these approaches is that it is not easy to determine these key parameters which can maximize the performance. In contrast to these approaches, we first model the EG network reconstruction problem as a multiobjective optimization problem (MOP), and then develop a framework which involves multiobjective evolutionary algorithm (MOEA), followed by solution selection based on knee regions, termed as MOEANet, to solve this MOP. We also design an effective initialization operator based on the lasso for MOEA. We apply the proposed method to reconstruct various types of synthetic and real-world networks, and the results show that our approach is effective to avoid the above parameter selecting problem and can reconstruct EG networks with high accuracy.

  15. Non-transcriptional regulatory processes shape transcriptional network dynamics.

    Science.gov (United States)

    Ray, J Christian J; Tabor, Jeffrey J; Igoshin, Oleg A

    2011-10-11

    Information about the extra- or intracellular environment is often captured as biochemical signals that propagate through regulatory networks. These signals eventually drive phenotypic changes, typically by altering gene expression programmes in the cell. Reconstruction of transcriptional regulatory networks has given a compelling picture of bacterial physiology, but transcriptional network maps alone often fail to describe phenotypes. Cellular response dynamics are ultimately determined by interactions between transcriptional and non-transcriptional networks, with dramatic implications for physiology and evolution. Here, we provide an overview of non-transcriptional interactions that can affect the performance of natural and synthetic bacterial regulatory networks.

  16. Tensor-based dictionary learning for dynamic tomographic reconstruction

    Science.gov (United States)

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-04-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction.

  17. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  18. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach.

    Directory of Open Access Journals (Sweden)

    Christian L Barrett

    2006-05-01

    Full Text Available The number of complete, publicly available genome sequences is now greater than 200, and this number is expected to rapidly grow in the near future as metagenomic and environmental sequencing efforts escalate and the cost of sequencing drops. In order to make use of this data for understanding particular organisms and for discerning general principles about how organisms function, it will be necessary to reconstruct their various biochemical reaction networks. Principal among these will be transcriptional regulatory networks. Given the physical and logical complexity of these networks, the various sources of (often noisy data that can be utilized for their elucidation, the monetary costs involved, and the huge number of potential experiments approximately 10(12 that can be performed, experiment design algorithms will be necessary for synthesizing the various computational and experimental data to maximize the efficiency of regulatory network reconstruction. This paper presents an algorithm for experimental design to systematically and efficiently reconstruct transcriptional regulatory networks. It is meant to be applied iteratively in conjunction with an experimental laboratory component. The algorithm is presented here in the context of reconstructing transcriptional regulation for metabolism in Escherichia coli, and, through a retrospective analysis with previously performed experiments, we show that the produced experiment designs conform to how a human would design experiments. The algorithm is able to utilize probability estimates based on a wide range of computational and experimental sources to suggest experiments with the highest potential of discovering the greatest amount of new regulatory knowledge.

  19. Dynamical detection of network communities

    Science.gov (United States)

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-05-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  20. The Dynamics of Semilattice Networks

    CERN Document Server

    Veliz-Cuba, Alan

    2010-01-01

    Time-discrete dynamical systems on a finite state space have been used with great success to model natural and engineered systems such as biological networks, social networks, and engineered control systems. They have the advantage of being intuitive and models can be easily simulated on a computer in most cases; however, few analytical tools beyond simulation are available. The motivation for this paper is to develop such tools for the analysis of models in biology. In this paper we have identified a broad class of discrete dynamical systems with a finite phase space for which one can derive strong results about their long-term dynamics in terms of properties of their dependency graphs. We classify completely the limit cycles of semilattice networks with strongly connected dependency graph and provide polynomial upper and lower bounds in the general case.

  1. Structurally dynamic spin market networks

    CERN Document Server

    Horváth, D

    2007-01-01

    The agent-based model of price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The resulting stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. For some properly selected parametric combination the network displays small-world phenomenon with high mean clustering coefficient and power-law node degree distribution. The mechanism of repeated random walk through network combined with a fitness recognition is proposed and tested to generate modular multi-leader market. The simulations suggest that dynamics of fitness is the slowest process that manifests itself in the volatility clustering of the log-price returns.

  2. Mean Field Theory for Nonequilibrium Network Reconstruction

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering, as an exam......There has been recent progress on the problem of inferring the structure of interactions in complex networks when they are in stationary states satisfying detailed balance, but little has been done for non-equilibrium systems. Here we introduce an approach to this problem, considering......-time and one time step-delayed correlation functions....

  3. MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.

    Science.gov (United States)

    Vitkin, Edward; Shlomi, Tomer

    2012-11-29

    Genome-scale metabolic network reconstructions are considered a key step in quantifying the genotype-phenotype relationship. We present a novel gap-filling approach, MetabolIc Reconstruction via functionAl GEnomics (MIRAGE), which identifies missing network reactions by integrating metabolic flux analysis and functional genomics data. MIRAGE's performance is demonstrated on the reconstruction of metabolic network models of E. coli and Synechocystis sp. and validated via existing networks for these species. Then, it is applied to reconstruct genome-scale metabolic network models for 36 sequenced cyanobacteria amenable for constraint-based modeling analysis and specifically for metabolic engineering. The reconstructed network models are supplied via standard SBML files.

  4. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction.

    Science.gov (United States)

    Rahmim, Arman; Tang, Jing; Zaidi, Habib

    2009-08-01

    In this article, the authors review novel techniques in the emerging field of spatiotemporal four-dimensional (4D) positron emission tomography (PET) image reconstruction. The conventional approach to dynamic PET imaging, involving independent reconstruction of individual PET frames, can suffer from limited temporal resolution, high noise (especially when higher frame sampling is introduced to better capture fast dynamics), as well as complex reconstructed image noise distributions that can be very difficult and time consuming to model in kinetic parameter estimation tasks. Various approaches that seek to address some or all of these limitations are described, including techniques that utilize (a) iterative temporal smoothing, (b) advanced temporal basis functions, (c) principal components transformation of the dynamic data, (d) wavelet-based techniques, as well as (e) direct kinetic parameter estimation methods. Future opportunities and challenges with regards to the adoption of 4D and higher dimensional image reconstruction techniques are also outlined.

  5. Spontaneous recovery in dynamical networks

    Science.gov (United States)

    Majdandzic, Antonio; Podobnik, Boris; Buldyrev, Sergey V.; Kenett, Dror Y.; Havlin, Shlomo; Eugene Stanley, H.

    2014-01-01

    Much research has been carried out to explore the structural properties and vulnerability of complex networks. Of particular interest are abrupt dynamic events that cause networks to irreversibly fail. However, in many real-world phenomena, such as brain seizures in neuroscience or sudden market crashes in finance, after an inactive period of time a significant part of the damaged network is capable of spontaneously becoming active again. The process often occurs repeatedly. To model this marked network recovery, we examine the effect of local node recoveries and stochastic contiguous spreading, and find that they can lead to the spontaneous emergence of macroscopic `phase-flipping' phenomena. As the network is of finite size and is stochastic, the fraction of active nodes z switches back and forth between the two network collective modes characterized by high network activity and low network activity. Furthermore, the system exhibits a strong hysteresis behaviour analogous to phase transitions near a critical point. We present real-world network data exhibiting phase switching behaviour in accord with the predictions of the model.

  6. Sparse time series chain graphical models for reconstructing genetic networks

    NARCIS (Netherlands)

    Abegaz, Fentaw; Wit, Ernst

    2013-01-01

    We propose a sparse high-dimensional time series chain graphical model for reconstructing genetic networks from gene expression data parametrized by a precision matrix and autoregressive coefficient matrix. We consider the time steps as blocks or chains. The proposed approach explores patterns of co

  7. Reconstruction of financial networks for robust estimation of systemic risk

    Science.gov (United States)

    Mastromatteo, Iacopo; Zarinelli, Elia; Marsili, Matteo

    2012-03-01

    In this paper we estimate the propagation of liquidity shocks through interbank markets when the information about the underlying credit network is incomplete. We show that techniques such as maximum entropy currently used to reconstruct credit networks severely underestimate the risk of contagion by assuming a trivial (fully connected) topology, a type of network structure which can be very different from the one empirically observed. We propose an efficient message-passing algorithm to explore the space of possible network structures and show that a correct estimation of the network degree of connectedness leads to more reliable estimations for systemic risk. Such an algorithm is also able to produce maximally fragile structures, providing a practical upper bound for the risk of contagion when the actual network structure is unknown. We test our algorithm on ensembles of synthetic data encoding some features of real financial networks (sparsity and heterogeneity), finding that more accurate estimations of risk can be achieved. Finally we find that this algorithm can be used to control the amount of information that regulators need to require from banks in order to sufficiently constrain the reconstruction of financial networks.

  8. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  9. Complex networks: Dynamics and security

    Indian Academy of Sciences (India)

    Ying-Cheng Lai; Adilson Motter; Takashi Nishikawa; Kwangho Park; Liang Zhao

    2005-04-01

    This paper presents a perspective in the study of complex networks by focusing on how dynamics may affect network security under attacks. In particular, we review two related problems: attack-induced cascading breakdown and range-based attacks on links. A cascade in a network means the failure of a substantial fraction of the entire network in a cascading manner, which can be induced by the failure of or attacks on only a few nodes. These have been reported for the internet and for the power grid (e.g., the August 10, 1996 failure of the western United States power grid). We study a mechanism for cascades in complex networks by constructing a model incorporating the flows of information and physical quantities in the network. Using this model we can also show that the cascading phenomenon can be understood as a phase transition in terms of the key parameter characterizing the node capacity. For a parameter value below the phase-transition point, cascading failures can cause the network to disintegrate almost entirely. We will show how to obtain a theoretical estimate for the phase-transition point. The second problem is motivated by the fact that most existing works on the security of complex networks consider attacks on nodes rather than on links. We address attacks on links. Our investigation leads to the finding that many scale-free networks are more sensitive to attacks on short-range than on long-range links. Considering that the small-world phenomenon in complex networks has been identified as being due to the presence of long-range links, i.e., links connecting nodes that would otherwise be separated by a long node-to-node distance, our result, besides its importance concerning network efficiency and security, has the striking implication that the small-world property of scale-free networks is mainly due to short-range links.

  10. Network dynamics for optimal compressive-sensing input-signal recovery.

    Science.gov (United States)

    Barranca, Victor J; Kovačič, Gregor; Zhou, Douglas; Cai, David

    2014-10-01

    By using compressive sensing (CS) theory, a broad class of static signals can be reconstructed through a sequence of very few measurements in the framework of a linear system. For networks with nonlinear and time-evolving dynamics, is it similarly possible to recover an unknown input signal from only a small number of network output measurements? We address this question for pulse-coupled networks and investigate the network dynamics necessary for successful input signal recovery. Determining the specific network characteristics that correspond to a minimal input reconstruction error, we are able to achieve high-quality signal reconstructions with few measurements of network output. Using various measures to characterize dynamical properties of network output, we determine that networks with highly variable and aperiodic output can successfully encode network input information with high fidelity and achieve the most accurate CS input reconstructions. For time-varying inputs, we also find that high-quality reconstructions are achievable by measuring network output over a relatively short time window. Even when network inputs change with time, the same optimal choice of network characteristics and corresponding dynamics apply as in the case of static inputs.

  11. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  12. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Lodowski Kerrie H

    2009-01-01

    Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  13. Unifying evolutionary and network dynamics

    Science.gov (United States)

    Swarup, Samarth; Gasser, Les

    2007-06-01

    Many important real-world networks manifest small-world properties such as scale-free degree distributions, small diameters, and clustering. The most common model of growth for these networks is preferential attachment, where nodes acquire new links with probability proportional to the number of links they already have. We show that preferential attachment is a special case of the process of molecular evolution. We present a single-parameter model of network growth that unifies varieties of preferential attachment with the quasispecies equation (which models molecular evolution), and also with the Erdős-Rényi random graph model. We suggest some properties of evolutionary models that might be applied to the study of networks. We also derive the form of the degree distribution resulting from our algorithm, and we show through simulations that the process also models aspects of network growth. The unification allows mathematical machinery developed for evolutionary dynamics to be applied in the study of network dynamics, and vice versa.

  14. Wealth dynamics on complex networks

    Science.gov (United States)

    Garlaschelli, Diego; Loffredo, Maria I.

    2004-07-01

    We study a model of wealth dynamics (Physica A 282 (2000) 536) which mimics transactions among economic agents. The outcomes of the model are shown to depend strongly on the topological properties of the underlying transaction network. The extreme cases of a fully connected and a fully disconnected network yield power-law and log-normal forms of the wealth distribution, respectively. We perform numerical simulations in order to test the model on more complex network topologies. We show that the mixed form of most empirical distributions (displaying a non-smooth transition from a log-normal to a power-law form) can be traced back to a heterogeneous topology with varying link density, which on the other hand is a recently observed property of real networks.

  15. Decoding network dynamics in cancer

    DEFF Research Database (Denmark)

    Linding, Rune

    2014-01-01

    models through computational integration of systematic, large-scale, high-dimensional quantitative data sets. I will review our latest advances in methods for exploring phosphorylation networks. In particular I will discuss how the combination of quantitative mass-spectrometry, systems...... in comparative phospho-proteomics and network evolution [Tan et al. Science Signaling 2009, Tan et al. Science 2009, Tan et al. Science 2011]. Finally, I will discuss our most recent work in analyzing genomic sequencing data from NGS studies and how we have developed new powerful algorithms to predict the impact......Biological systems are composed of highly dynamic and interconnected molecular networks that drive biological decision processes. The goal of network biology is to describe, quantify and predict the information flow and functional behaviour of living systems in a formal language...

  16. Systemic risk analysis in reconstructed economic and financial networks

    CERN Document Server

    Cimini, Giulio; Gabrielli, Andrea; Garlaschelli, Diego

    2014-01-01

    The assessment of fundamental properties for economic and financial systems, such as systemic risk, is systematically hindered by privacy issues$-$that put severe limitations on the available information. Here we introduce a novel method to reconstruct partially-accessible networked systems of this kind. The method is based on the knowledge of the fitnesses, $i.e.$, intrinsic node-specific properties, and of the number of connections of only a limited subset of nodes. Such information is used to calibrate a directed configuration model which can generate ensembles of networks intended to represent the real system, so that the real network properties can be estimated within the generated ensemble in terms of mean values of the observables. Here we focus on estimating those properties that are commonly used to measure the network resilience to shock and crashes. Tests on both artificial and empirical networks shows that the method is remarkably robust with respect to the limitedness of the information available...

  17. Reconstructing the Nonlinear Dynamical Systems by Evolutionary Computation Techniques

    Institute of Scientific and Technical Information of China (English)

    LIU Minzhong; KANG Lishan

    2006-01-01

    We introduce a new dynamical evolutionary algorithm(DEA) based on the theory of statistical mechanics and investigate the reconstruction problem for the nonlinear dynamical systems using observation data. The convergence of the algorithm is discussed. We make the numerical experiments and test our model using the two famous chaotic systems (mainly the Lorenz and Chen systems ). The results show the relatively accurate reconstruction of these chaotic systems based on observational data can be obtained. Therefore we may conclude that there are broad prospects using our method to model the nonlinear dynamical systems.

  18. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis.

    Science.gov (United States)

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E; Balázsi, Gábor; Gennaro, Maria Laura

    2016-03-31

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics.

  19. Automatic reconstruction of molecular and genetic networks from discrete time series data.

    Science.gov (United States)

    Durzinsky, Markus; Wagler, Annegret; Weismantel, Robert; Marwan, Wolfgang

    2008-09-01

    We apply a mathematical algorithm which processes discrete time series data to generate a complete list of Petri net structures containing the minimal number of nodes required to reproduce the data set. The completeness of the list as guaranteed by a mathematical proof allows to define a minimal set of experiments required to discriminate between alternative network structures. This in principle allows to prove all possible minimal network structures by disproving all alternative candidate structures. The dynamic behaviour of the networks in terms of a switching rule for the transitions of the Petri net is part of the result. In addition to network reconstruction, the algorithm can be used to determine how many yet undetected components at least must be involved in a certain process. The algorithm also reveals all alternative structural modifications of a network that are required to generate a predefined behaviour.

  20. Distributed Queuing in Dynamic Networks

    Directory of Open Access Journals (Sweden)

    Gokarna Sharma

    2013-10-01

    Full Text Available We consider the problem of forming a distributed queue in the adversarial dynamic network model of Kuhn, Lynch, and Oshman (STOC 2010 in which the network topology changes from round to round but the network stays connected. This is a synchronous model in which network nodes are assumed to be fixed, the communication links for each round are chosen by an adversary, and nodes do not know who their neighbors are for the current round before they broadcast their messages. Queue requests may arrive over rounds at arbitrary nodes and the goal is to eventually enqueue them in a distributed queue. We present two algorithms that give a total distributed ordering of queue requests in this model. We measure the performance of our algorithms through round complexity, which is the total number of rounds needed to solve the distributed queuing problem. We show that in 1-interval connected graphs, where the communication links change arbitrarily between every round, it is possible to solve the distributed queueing problem in O(nk rounds using O(log n size messages, where n is the number of nodes in the network and k 0 is the concurrency level parameter that captures the minimum number of active queue requests in the system in any round. These results hold in any arbitrary (sequential, one-shot concurrent, or dynamic arrival of k queue requests in the system. Moreover, our algorithms ensure correctness in the sense that each queue request is eventually enqueued in the distributed queue after it is issued and each queue request is enqueued exactly once. We also provide an impossibility result for this distributed queuing problem in this model. To the best of our knowledge, these are the first solutions to the distributed queuing problem in adversarial dynamic networks.

  1. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  2. Dynamics of network motifs in genetic regulatory networks

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Liu Zeng-Rong; Zhang Jian-Bao

    2007-01-01

    Network motifs hold a very important status in genetic regulatory networks. This paper aims to analyse the dynamical property of the network motifs in genetic regulatory networks. The main result we obtained is that the dynamical property of a single motif is very simple with only an asymptotically stable equilibrium point, but the combination of several motifs can make more complicated dynamical properties emerge such as limit cycles. The above-mentioned result shows that network motif is a stable substructure in genetic regulatory networks while their combinations make the genetic regulatory network more complicated.

  3. Dynamic characteristics of an NC table with phase space reconstruction

    Institute of Scientific and Technical Information of China (English)

    Linhong WANG; Bo WU; Runsheng DU; Shuzi YANG

    2009-01-01

    The dynamic properties of a numerical control (NC) table directly interfere with the accuracy and surface quality of work pieces machined by a computer numerical control (CNC) machine. Phase space reconstruction is an effective approach for researching dynamic behaviors of a system with measured time series. Based on the theory and method for phase space reconstruction, the correlation dimension, maximum Lyapunov exponent, and dynamic time series measured from the NC table were analyzed. The characteristic quantities such as the power spectrum, phase trajectories, correlation dimension, and maximum Lyapunov exponent are extracted from the measured time series. The chaotic characteristic of the dynamic properties of the NC table is revealed via various approaches.Therefore, an NC table is a nonlinear dynamic system. This research establishes a basis for dynamic system discrimi-nation of a CNC machine.

  4. Dynamic reconstruction of heterogeneous materials and microstructure evolution.

    Science.gov (United States)

    Chen, Shaohua; Li, Hechao; Jiao, Yang

    2015-08-01

    Reconstructing heterogeneous materials from limited structural information has been a topic that attracts extensive research efforts and still poses many challenges. The Yeong-Torquato procedure is one of the most popular reconstruction techniques, in which the material reconstruction problem based on a set of spatial correlation functions is formulated as a constrained energy minimization (optimization) problem and solved using simulated annealing [Yeong and Torquato, Phys. Rev. E 57, 495 (1998)]. The standard two-point correlation function S2 has been widely used in reconstructions, but can also lead to large structural degeneracy for certain nearly percolating systems. To improve reconstruction accuracy and reduce structural degeneracy, one can successively incorporate additional morphological information (e.g., nonconventional or higher-order correlation functions), which amounts to reshaping the energy landscape to create a deep (local) energy minimum. In this paper, we present a dynamic reconstruction procedure that allows one to use a series of auxiliary S2 to achieve the same level of accuracy as those incorporating additional nonconventional correlation functions. In particular, instead of randomly sampling the microstructure space as in the simulated annealing scheme, our procedure utilizes a series of auxiliary microstructures that mimic a physical structural evolution process (e.g., grain growth). This amounts to constructing a series auxiliary energy landscapes that bias the convergence of the reconstruction to a favored (local) energy minimum. Moreover, our dynamic procedure can be naturally applied to reconstruct an actual microstructure evolution process. In contrast to commonly used evolution reconstruction approaches that separately generate individual static configurations, our procedure continuously evolves a single microstructure according to a time-dependent correlation function. The utility of our procedure is illustrated by successfully

  5. Supersampling and Network Reconstruction of Urban Mobility

    Science.gov (United States)

    Sagarra, Oleguer; Szell, Michael; Santi, Paolo; Díaz-Guilera, Albert; Ratti, Carlo

    2015-01-01

    Understanding human mobility is of vital importance for urban planning, epidemiology, and many other fields that draw policies from the activities of humans in space. Despite the recent availability of large-scale data sets of GPS traces or mobile phone records capturing human mobility, typically only a subsample of the population of interest is represented, giving a possibly incomplete picture of the entire system under study. Methods to reliably extract mobility information from such reduced data and to assess their sampling biases are lacking. To that end, we analyzed a data set of millions of taxi movements in New York City. We first show that, once they are appropriately transformed, mobility patterns are highly stable over long time scales. Based on this observation, we develop a supersampling methodology to reliably extrapolate mobility records from a reduced sample based on an entropy maximization procedure, and we propose a number of network-based metrics to assess the accuracy of the predicted vehicle flows. Our approach provides a well founded way to exploit temporal patterns to save effort in recording mobility data, and opens the possibility to scale up data from limited records when information on the full system is required. PMID:26275237

  6. Supersampling and Network Reconstruction of Urban Mobility.

    Directory of Open Access Journals (Sweden)

    Oleguer Sagarra

    Full Text Available Understanding human mobility is of vital importance for urban planning, epidemiology, and many other fields that draw policies from the activities of humans in space. Despite the recent availability of large-scale data sets of GPS traces or mobile phone records capturing human mobility, typically only a subsample of the population of interest is represented, giving a possibly incomplete picture of the entire system under study. Methods to reliably extract mobility information from such reduced data and to assess their sampling biases are lacking. To that end, we analyzed a data set of millions of taxi movements in New York City. We first show that, once they are appropriately transformed, mobility patterns are highly stable over long time scales. Based on this observation, we develop a supersampling methodology to reliably extrapolate mobility records from a reduced sample based on an entropy maximization procedure, and we propose a number of network-based metrics to assess the accuracy of the predicted vehicle flows. Our approach provides a well founded way to exploit temporal patterns to save effort in recording mobility data, and opens the possibility to scale up data from limited records when information on the full system is required.

  7. Supersampling and Network Reconstruction of Urban Mobility.

    Science.gov (United States)

    Sagarra, Oleguer; Szell, Michael; Santi, Paolo; Díaz-Guilera, Albert; Ratti, Carlo

    2015-01-01

    Understanding human mobility is of vital importance for urban planning, epidemiology, and many other fields that draw policies from the activities of humans in space. Despite the recent availability of large-scale data sets of GPS traces or mobile phone records capturing human mobility, typically only a subsample of the population of interest is represented, giving a possibly incomplete picture of the entire system under study. Methods to reliably extract mobility information from such reduced data and to assess their sampling biases are lacking. To that end, we analyzed a data set of millions of taxi movements in New York City. We first show that, once they are appropriately transformed, mobility patterns are highly stable over long time scales. Based on this observation, we develop a supersampling methodology to reliably extrapolate mobility records from a reduced sample based on an entropy maximization procedure, and we propose a number of network-based metrics to assess the accuracy of the predicted vehicle flows. Our approach provides a well founded way to exploit temporal patterns to save effort in recording mobility data, and opens the possibility to scale up data from limited records when information on the full system is required.

  8. HAWC Energy Reconstruction via Neural Network

    Science.gov (United States)

    Marinelli, Samuel; HAWC Collaboration

    2016-03-01

    The High-Altitude Water-Cherenkov (HAWC) γ-ray observatory is located at 4100 m above sea level on the Sierra Negra mountain in the state of Puebla, Mexico. Its 300 water-filled tanks are instrumented with PMTs that detect Cherenkov light produced by charged particles in atmospheric air showers induced by TeV γ-rays. The detector became fully operational in March of 2015. With a 2-sr field of view and duty cycle exceeding 90%, HAWC is a survey instrument sensitive to diverse γ-ray sources, including supernova remnants, pulsar wind nebulae, active galactic nuclei, and others. Particle-acceleration mechanisms at these sources can be inferred by studying their energy spectra, particularly at high energies. We have developed a technique for estimating primary- γ-ray energies using an artificial neural network (ANN). Input variables to the ANN are selected to characterize shower multiplicity in the detector, the fraction of the shower contained in the detector, and atmospheric attenuation of the shower. Monte Carlo simulations show that the new estimator has superior performance to the current estimator used in HAWC publications. This work was supported by the National Science Foundation.

  9. Asynchronous networks and event driven dynamics

    Science.gov (United States)

    Bick, Christian; Field, Michael

    2017-02-01

    Real-world networks in technology, engineering and biology often exhibit dynamics that cannot be adequately reproduced using network models given by smooth dynamical systems and a fixed network topology. Asynchronous networks give a theoretical and conceptual framework for the study of network dynamics where nodes can evolve independently of one another, be constrained, stop, and later restart, and where the interaction between different components of the network may depend on time, state, and stochastic effects. This framework is sufficiently general to encompass a wide range of applications ranging from engineering to neuroscience. Typically, dynamics is piecewise smooth and there are relationships with Filippov systems. In this paper, we give examples of asynchronous networks, and describe the basic formalism and structure. In the following companion paper, we make the notion of a functional asynchronous network rigorous, discuss the phenomenon of dynamical locks, and present a foundational result on the spatiotemporal factorization of the dynamics for a large class of functional asynchronous networks.

  10. Competitive Dynamics on Complex Networks

    CERN Document Server

    Zhao, Jiuhua; Wang, Xiaofan

    2014-01-01

    We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is much more likely to be the winner. These findings may shed new light on the role of n...

  11. Coordination Games on Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Enea Pestelacci

    2010-07-01

    Full Text Available We propose a model in which agents of a population interacting according to a network of contacts play games of coordination with each other and can also dynamically break and redirect links to neighbors if they are unsatisfied. As a result, there is co-evolution of strategies in the population and of the graph that represents the network of contacts. We apply the model to the class of pure and general coordination games. For pure coordination games, the networks co-evolve towards the polarization of different strategies. In the case of general coordination games our results show that the possibility of refusing neighbors and choosing different partners increases the success rate of the Pareto-dominant equilibrium.

  12. Complex networks for streamflow dynamics

    Directory of Open Access Journals (Sweden)

    B. Sivakumar

    2014-07-01

    Full Text Available Streamflow modeling is an enormously challenging problem, due to the complex and nonlinear interactions between climate inputs and landscape characteristics over a wide range of spatial and temporal scales. A basic idea in streamflow studies is to establish connections that generally exist, but attempts to identify such connections are largely dictated by the problem at hand and the system components in place. While numerous approaches have been proposed in the literature, our understanding of these connections remains far from adequate. The present study introduces the theory of networks, and in particular complex networks, to examine the connections in streamflow dynamics, with a particular focus on spatial connections. Monthly streamflow data observed over a period of 52 years from a large network of 639 monitoring stations in the contiguous United States are studied. The connections in this streamflow network are examined using the concept of clustering coefficient, which is a measure of local density and quantifies the network's tendency to cluster. The clustering coefficient analysis is performed with several different threshold levels, which are based on correlations in streamflow data between the stations. The clustering coefficient values of the 639 stations are used to obtain important information about the connections in the network and their extent, similarity and differences between stations/regions, and the influence of thresholds. The relationship of the clustering coefficient with the number of links/actual links in the network and the number of neighbors is also addressed. The results clearly indicate the usefulness of the network-based approach for examining connections in streamflow, with important implications for interpolation and extrapolation, classification of catchments, and predictions in ungaged basins.

  13. Gene Expression Network Reconstruction by LEP Method Using Microarray Data

    Directory of Open Access Journals (Sweden)

    Na You

    2012-01-01

    Full Text Available Gene expression network reconstruction using microarray data is widely studied aiming to investigate the behavior of a gene cluster simultaneously. Under the Gaussian assumption, the conditional dependence between genes in the network is fully described by the partial correlation coefficient matrix. Due to the high dimensionality and sparsity, we utilize the LEP method to estimate it in this paper. Compared to the existing methods, the LEP reaches the highest PPV with the sensitivity controlled at the satisfactory level. A set of gene expression data from the HapMap project is analyzed for illustration.

  14. An integrated text mining framework for metabolic interaction network reconstruction.

    Science.gov (United States)

    Patumcharoenpol, Preecha; Doungpan, Narumol; Meechai, Asawin; Shen, Bairong; Chan, Jonathan H; Vongsangnak, Wanwipa

    2016-01-01

    Text mining (TM) in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals) as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions) through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module-MEE) and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module-MINR). The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME) corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP) and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data) for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme-metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source code, and virtual

  15. An integrated text mining framework for metabolic interaction network reconstruction

    Directory of Open Access Journals (Sweden)

    Preecha Patumcharoenpol

    2016-03-01

    Full Text Available Text mining (TM in the field of biology is fast becoming a routine analysis for the extraction and curation of biological entities (e.g., genes, proteins, simple chemicals as well as their relationships. Due to the wide applicability of TM in situations involving complex relationships, it is valuable to apply TM to the extraction of metabolic interactions (i.e., enzyme and metabolite interactions through metabolic events. Here we present an integrated TM framework containing two modules for the extraction of metabolic events (Metabolic Event Extraction module—MEE and for the construction of a metabolic interaction network (Metabolic Interaction Network Reconstruction module—MINR. The proposed integrated TM framework performed well based on standard measures of recall, precision and F-score. Evaluation of the MEE module using the constructed Metabolic Entities (ME corpus yielded F-scores of 59.15% and 48.59% for the detection of metabolic events for production and consumption, respectively. As for the testing of the entity tagger for Gene and Protein (GP and metabolite with the test corpus, the obtained F-score was greater than 80% for the Superpathway of leucine, valine, and isoleucine biosynthesis. Mapping of enzyme and metabolite interactions through network reconstruction showed a fair performance for the MINR module on the test corpus with F-score >70%. Finally, an application of our integrated TM framework on a big-scale data (i.e., EcoCyc extraction data for reconstructing a metabolic interaction network showed reasonable precisions at 69.93%, 70.63% and 46.71% for enzyme, metabolite and enzyme–metabolite interaction, respectively. This study presents the first open-source integrated TM framework for reconstructing a metabolic interaction network. This framework can be a powerful tool that helps biologists to extract metabolic events for further reconstruction of a metabolic interaction network. The ME corpus, test corpus, source

  16. A Total Variation-Based Reconstruction Method for Dynamic MRI

    Directory of Open Access Journals (Sweden)

    Germana Landi

    2008-01-01

    Full Text Available In recent years, total variation (TV regularization has become a popular and powerful tool for image restoration and enhancement. In this work, we apply TV minimization to improve the quality of dynamic magnetic resonance images. Dynamic magnetic resonance imaging is an increasingly popular clinical technique used to monitor spatio-temporal changes in tissue structure. Fast data acquisition is necessary in order to capture the dynamic process. Most commonly, the requirement of high temporal resolution is fulfilled by sacrificing spatial resolution. Therefore, the numerical methods have to address the issue of images reconstruction from limited Fourier data. One of the most successful techniques for dynamic imaging applications is the reduced-encoded imaging by generalized-series reconstruction method of Liang and Lauterbur. However, even if this method utilizes a priori data for optimal image reconstruction, the produced dynamic images are degraded by truncation artifacts, most notably Gibbs ringing, due to the spatial low resolution of the data. We use a TV regularization strategy in order to reduce these truncation artifacts in the dynamic images. The resulting TV minimization problem is solved by the fixed point iteration method of Vogel and Oman. The results of test problems with simulated and real data are presented to illustrate the effectiveness of the proposed approach in reducing the truncation artifacts of the reconstructed images.

  17. Ekofisk chalk: core measurements, stochastic reconstruction, network modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Saifullah

    2002-07-01

    This dissertation deals with (1) experimental measurements on petrophysical, reservoir engineering and morphological properties of Ekofisk chalk, (2) numerical simulation of core flood experiments to analyze and improve relative permeability data, (3) stochastic reconstruction of chalk samples from limited morphological information, (4) extraction of pore space parameters from the reconstructed samples, development of network model using pore space information, and computation of petrophysical and reservoir engineering properties from network model, and (5) development of 2D and 3D idealized fractured reservoir models and verification of the applicability of several widely used conventional up scaling techniques in fractured reservoir simulation. Experiments have been conducted on eight Ekofisk chalk samples and porosity, absolute permeability, formation factor, and oil-water relative permeability, capillary pressure and resistivity index are measured at laboratory conditions. Mercury porosimetry data and backscatter scanning electron microscope images have also been acquired for the samples. A numerical simulation technique involving history matching of the production profiles is employed to improve the relative permeability curves and to analyze hysteresis of the Ekofisk chalk samples. The technique was found to be a powerful tool to supplement the uncertainties in experimental measurements. Porosity and correlation statistics obtained from backscatter scanning electron microscope images are used to reconstruct microstructures of chalk and particulate media. The reconstruction technique involves a simulated annealing algorithm, which can be constrained by an arbitrary number of morphological parameters. This flexibility of the algorithm is exploited to successfully reconstruct particulate media and chalk samples using more than one correlation functions. A technique based on conditional simulated annealing has been introduced for exact reproduction of vuggy

  18. Network dynamics and systems biology

    Science.gov (United States)

    Norrell, Johannes A.

    The physics of complex systems has grown considerably as a field in recent decades, largely due to improved computational technology and increased availability of systems level data. One area in which physics is of growing relevance is molecular biology. A new field, systems biology, investigates features of biological systems as a whole, a strategy of particular importance for understanding emergent properties that result from a complex network of interactions. Due to the complicated nature of the systems under study, the physics of complex systems has a significant role to play in elucidating the collective behavior. In this dissertation, we explore three problems in the physics of complex systems, motivated in part by systems biology. The first of these concerns the applicability of Boolean models as an approximation of continuous systems. Studies of gene regulatory networks have employed both continuous and Boolean models to analyze the system dynamics, and the two have been found produce similar results in the cases analyzed. We ask whether or not Boolean models can generically reproduce the qualitative attractor dynamics of networks of continuously valued elements. Using a combination of analytical techniques and numerical simulations, we find that continuous networks exhibit two effects---an asymmetry between on and off states, and a decaying memory of events in each element's inputs---that are absent from synchronously updated Boolean models. We show that in simple loops these effects produce exactly the attractors that one would predict with an analysis of the stability of Boolean attractors, but in slightly more complicated topologies, they can destabilize solutions that are stable in the Boolean approximation, and can stabilize new attractors. Second, we investigate ensembles of large, random networks. Of particular interest is the transition between ordered and disordered dynamics, which is well characterized in Boolean systems. Networks at the

  19. Anomaly Detection in Dynamic Networks

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, Melissa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the

  20. Reconstruction dynamics of recorded holograms in photochromic glass

    Energy Technology Data Exchange (ETDEWEB)

    Mihailescu, Mona; Pavel, Eugen; Nicolae, Vasile B.

    2011-06-20

    We have investigated the dynamics of the record-erase process of holograms in photochromic glass using continuum Nd:YVO{sub 4} laser radiation ({lambda}=532 nm). A bidimensional microgrid pattern was formed and visualized in photochromic glass, and its diffraction efficiency decay versus time (during reconstruction step) gave us information (D, {Delta}n) about the diffusion process inside the material. The recording and reconstruction processes were carried out in an off-axis setup, and the images of the reconstructed object were recorded by a CCD camera. Measurements realized on reconstructed object images using holograms recorded at a different incident power laser have shown a two-stage process involved in silver atom kinetics.

  1. Industrial dynamic tomographic reconstruction; Reconstrucao tomografica dinamica industrial

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eric Ferreira de

    2016-07-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  2. Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm

    Institute of Scientific and Technical Information of China (English)

    Gui-xia Liu; Wei Feng; Han Wang; Lei Liu; Chun-guang Zhou

    2009-01-01

    In the post-genomic biology era, the reconstruction of gene regulatory networks from microarray gene expression data is very important to understand the underlying biological system, and it has been a challenging task in bioinformatics. The Bayesian network model has been used in reconstructing the gene regulatory network for its advantages, but how to determine the network structure and parameters is still important to be explored. This paper proposes a two-stage structure learning algorithm which integrates immune evolution algorithm to build a Bayesian network .The new algorithm is evaluated with the use of both simulated and yeast cell cycle data. The experimental results indicate that the proposed algorithm can find many of the known real regulatory relationships from literature and predict the others unknown with high validity and accuracy.

  3. Sensitive dependence of network dynamics on network structure

    CERN Document Server

    Nishikawa, Takashi; Motter, Adilson E

    2016-01-01

    The relation between network structure and dynamics is determinant for the behavior of complex systems in numerous domains. An important longstanding problem concerns the properties of the networks that optimize the dynamics with respect to a given performance measure. Here we show that such optimization can lead to sensitive dependence of the dynamics on the structure of the network. Specifically, we demonstrate that the stability of the dynamical state, as determined by the maximum Lyapunov exponent, can exhibit a cusp-like dependence on the number of nodes and links as well as on the size of perturbations applied to the network structure. As mechanisms underlying this sensitivity, we identify discontinuous transitions occurring in the complement of optimal networks and the prevalence of eigenvector degeneracy in these networks. These findings establish a unified characterization of networks optimized for dynamical stability in diffusively coupled systems, which we illustrate using Turing instability in act...

  4. Dynamic properties of network motifs contribute to biological network organization.

    Directory of Open Access Journals (Sweden)

    Robert J Prill

    2005-11-01

    Full Text Available Biological networks, such as those describing gene regulation, signal transduction, and neural synapses, are representations of large-scale dynamic systems. Discovery of organizing principles of biological networks can be enhanced by embracing the notion that there is a deep interplay between network structure and system dynamics. Recently, many structural characteristics of these non-random networks have been identified, but dynamical implications of the features have not been explored comprehensively. We demonstrate by exhaustive computational analysis that a dynamical property--stability or robustness to small perturbations--is highly correlated with the relative abundance of small subnetworks (network motifs in several previously determined biological networks. We propose that robust dynamical stability is an influential property that can determine the non-random structure of biological networks.

  5. Network dynamics in nanofilled polymers

    Science.gov (United States)

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-04-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.

  6. Dynamic network management and service integration for airborne network

    Science.gov (United States)

    Pan, Wei; Li, Weihua

    2009-12-01

    The development of airborne network is conducive to resource sharing, flight management and interoperability in civilian and military aviation fields. To enhance the integrated ability of airborne network, the paper focuses on dynamic network management and service integration architecture for airborne network (DNMSIAN). Adaptive routing based on the mapping mechanism between connection identification and routing identification can provide diversified network access, and ensure the credibility and mobility of the aviation information exchange. Dynamic network management based on trustworthy cluster can ensure dynamic airborne network controllable and safe. Service integration based on semantic web and ontology can meet the customized and diversified needs for aviation information services. The DNMSIAN simulation platform demonstrates that our proposed methods can effectively perform dynamic network management and service integration.

  7. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A [Sanford-Burnham Medical Research Institute; Novichkov, Pavel S [Lawrence Berkeley National Laboratory

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  8. Dynamic Data Updating Algorithm for Image Superresolution Reconstruction

    Institute of Scientific and Technical Information of China (English)

    TAN Bing; XU Qing; ZHANG Yan; XING Shuai

    2006-01-01

    A dynamic data updating algorithm for image superesolution is proposed. On the basis of Delaunay triangulation and its local updating property, this algorithm can update the changed region directly under the circumstances that only a part of the source images has been changed. For its high efficiency and adaptability, this algorithm can serve as a fast algorithm for image superesolution reconstruction.

  9. Factorial graphical lasso for dynamic networks

    NARCIS (Netherlands)

    Wit, E. C.; Abbruzzo, A.

    2012-01-01

    Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating

  10. Reconstruction of cellular forces in fibrous biopolymer network

    CERN Document Server

    Zhang, Yunsong; Heizler, Shay; Levine, Herbert

    2016-01-01

    How cells move through 3d extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on 2d surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. Here, we use a lattice-based mechanical model of ECM to study the cellular force reconstruction issue. We conceptually propose an efficient computational scheme to reconstruct cellular forces from the deformation and explore the performance of our scheme in presence of noise, varying marker bead distribution, varying bond stiffnesses and changing cell morphology. Our results show that micromechanical information, rather than merely the bulk rheology of the biopolymer networks, is essential for a precise recovery of cellular forces.

  11. Factorial graphical lasso for dynamic networks

    CERN Document Server

    Wit, E C

    2012-01-01

    Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating dynamic networks is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is bigger than the number of observations. However, a characteristic of many networks is that they are sparse. For example, the molecular structure of genes make interactions with other components a highly-structured and therefore sparse process. Penalized Gaussian graphical models have been used to estimate sparse networks. However, the literature has focussed on static networks, which lack specific temporal constraints. We propose a structured Gaussian dynamical graphical model, where structures can consist of specific time dynamics, known presence or abse...

  12. Tourism-planning network knowledge dynamics

    DEFF Research Database (Denmark)

    Dredge, Dianne

    2014-01-01

    , network agents, network boundaries and network resources. A case study of the development of the Next Generation Tourism Handbook (Queensland, Australia), a policy initiative that sought to bring tourism and land use planning knowledge closer together is presented. The case study illustrates...... that the tourism policy and land use planning networks operate in very different spheres and that context, network agents, network boundaries and network resources have a significant influence not only on knowledge dynamics but also on the capacity of network agents to overcome barriers to learning and to innovate.......This chapter explores the characteristics and functions of tourism networks as a first step in understanding how networks facilitate and reproduce knowledge. A framework to progress understandings of knowledge dynamics in tourism networks is presented that includes four key dimensions: context...

  13. Reconstruction of human protein interolog network using evolutionary conserved network

    Directory of Open Access Journals (Sweden)

    Lin Chung-Yen

    2007-05-01

    Full Text Available Abstract Background The recent increase in the use of high-throughput two-hybrid analysis has generated large quantities of data on protein interactions. Specifically, the availability of information about experimental protein-protein interactions and other protein features on the Internet enables human protein-protein interactions to be computationally predicted from co-evolution events (interolog. This study also considers other protein interaction features, including sub-cellular localization, tissue-specificity, the cell-cycle stage and domain-domain combination. Computational methods need to be developed to integrate these heterogeneous biological data to facilitate the maximum accuracy of the human protein interaction prediction. Results This study proposes a relative conservation score by finding maximal quasi-cliques in protein interaction networks, and considering other interaction features to formulate a scoring method. The scoring method can be adopted to discover which protein pairs are the most likely to interact among multiple protein pairs. The predicted human protein-protein interactions associated with confidence scores are derived from six eukaryotic organisms – rat, mouse, fly, worm, thale cress and baker's yeast. Conclusion Evaluation results of the proposed method using functional keyword and Gene Ontology (GO annotations indicate that some confidence is justified in the accuracy of the predicted interactions. Comparisons among existing methods also reveal that the proposed method predicts human protein-protein interactions more accurately than other interolog-based methods.

  14. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks

    Science.gov (United States)

    Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.

    2017-02-01

    A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.

  15. A molecular dynamics investigation of surface reconstruction on magnetite (001)

    Science.gov (United States)

    Rustad, J. R.; Wasserman, E.; Felmy, A. R.

    1999-07-01

    Molecular dynamics calculations using analytical potential functions with polarizable oxygen ions have been used to identify a novel mode of reconstruction on the half-occupied tetrahedral layer termination of the magnetite (Fe 3O 4) (001) surface. In the proposed reconstruction, the twofold coordinated iron ion in the top monolayer rotates downward to occupy a vacant half-octahedral site in the plane of the second-layer iron ions. At the same time, half of the tetrahedral iron ions in the third iron layer are pushed upward to occupy an adjacent octahedral vacancy at the level of the second-layer iron ions. The other half of the third-layer iron ions remain roughly in their original positions. The proposed reconstruction is consistent with recent low-energy electron diffraction and X-ray photoelectron spectroscopy results. It also provides a compelling interpretation for the arrangement of atoms suggested by high-resolution scanning-tunneling microscopy studies.

  16. Strength dynamics of weighted evolving networks

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-Jun; Gao Zi-You; Sun Hui-Jun

    2007-01-01

    In this paper, a simple model for the strength dynamics of weighted evolving networks is proposed to characterize the weighted networks. By considering the congestion effects, this approach can yield power law strength distribution appeared on the many real weighted networks, such as traffic networks, internet networks. Besides, the relationship between strength and degree is given. Numerical simulations indicate that the strength distribution is strongly related to the strength dynamics decline. The model also provides us with a better description of the real weighted networks.

  17. Network reconstruction by stationary distribution data of Markov chains based on correlation analysis

    CERN Document Server

    He, Zhe; Wang, Bing-Hong

    2014-01-01

    We propose a new method for network reconstruction by the stationary distribution data of Markov chains on this network. Our method has the merits that: the data we need are much few than most method and need not defer to the time order, and we do not need the input data. We define some criterions to measure the efficacy and the simulation results on several networks, including computer-generated networks and real networks, indicate our method works well. The method consist of two procedures, fist, reconstruct degree sequence, second, reconstruct the network(or edges). And we test the efficacy of each procedure.

  18. A dynamic network model for interbank market

    Science.gov (United States)

    Xu, Tao; He, Jianmin; Li, Shouwei

    2016-12-01

    In this paper, a dynamic network model based on agent behavior is introduced to explain the formation mechanism of interbank market network. We investigate the impact of credit lending preference on interbank market network topology, the evolution of interbank market network and stability of interbank market. Experimental results demonstrate that interbank market network is a small-world network and cumulative degree follows the power-law distribution. We find that the interbank network structure keeps dynamic stability in the network evolution process. With the increase of bank credit lending preference, network clustering coefficient increases and average shortest path length decreases monotonously, which improves the stability of the network structure. External shocks are main threats for the interbank market and the reduction of bank external investment yield rate and deposits fluctuations contribute to improve the resilience of the banking system.

  19. Bayesian Overlapping Community Detection in Dynamic Networks

    CERN Document Server

    Ghorbani, Mahsa; Khodadadi, Ali

    2016-01-01

    Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowledge about the number of communities is still an interesting open research problem. In this paper, we present an overlapping community detection method for dynamic networks called Dynamic Bayesian Overlapping Community Detector (DBOCD). DBOCD assumes that in every snapshot of network, overlapping parts of communities are dense areas and utilizes link communities instead of common node communities. Using Recurrent Chinese Restaurant Process and community structure of the network in the last snapshot, DBOCD simultaneously extracts the numbe...

  20. Controlling edge dynamics in complex networks

    CERN Document Server

    Nepusz, Tamás

    2011-01-01

    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges of a network, and demonstrate that the controllability properties of this process significantly differ from simple nodal dynamics. Evaluation of real-world networks indicates that most of them are more controllable than their randomized counterparts. We also find that transcriptional regulatory networks are particularly easy to control. Analytic calculations show that networks with scale-free degree distributions have better controllability properties than uncorrelated networks, and positively correlated in- and out-degre...

  1. Dynamic information routing in complex networks

    Science.gov (United States)

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function. PMID:27067257

  2. Dynamic information routing in complex networks

    Science.gov (United States)

    Kirst, Christoph; Timme, Marc; Battaglia, Demian

    2016-04-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this mechanism specifically for oscillatory dynamics and analyse how individual unit properties, the network topology and external inputs co-act to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine nonlocal network-wide communication. These results help understanding and designing information routing patterns across systems where collective dynamics co-occurs with a communication function.

  3. Systemic Risk Analysis on Reconstructed Economic and Financial Networks

    Science.gov (United States)

    Cimini, Giulio; Squartini, Tiziano; Garlaschelli, Diego; Gabrielli, Andrea

    2015-10-01

    We address a fundamental problem that is systematically encountered when modeling real-world complex systems of societal relevance: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the structure of such partially-accessible systems, based on the knowledge of intrinsic node-specific properties and of the number of connections of only a limited subset of nodes. This information is used to calibrate an inference procedure based on fundamental concepts derived from statistical physics, which allows to generate ensembles of directed weighted networks intended to represent the real system—so that the real network properties can be estimated as their average values within the ensemble. We test the method both on synthetic and empirical networks, focusing on the properties that are commonly used to measure systemic risk. Indeed, the method shows a remarkable robustness with respect to the limitedness of the information available, thus representing a valuable tool for gaining insights on privacy-protected economic and financial systems.

  4. Hybrid Dynamic Network Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Ling Li

    2015-01-01

    Full Text Available Conventional DEA models make no hypothesis concerning the internal operations in a static situation. To open the “black box” and work with dynamic assessment issues synchronously, we put forward a hybrid model for evaluating the relative efficiencies of a set of DMUs over an observed time period with a composite of network DEA and dynamic DEA. We vertically deal with intermediate products between divisions with assignable inputs in the network structure and, horizontally, we extend network structure by means of a dynamic pattern with unrelated activities between two succeeding periods. The hybrid dynamic network DEA model proposed in this paper enables us to (i pry into the internal operations of DEA by another network structure, (ii obtain dynamic change of period efficiency, and (iii gain the overall dynamic efficiency of DMUs over the entire observed periods. We finally illustrate the calculation procedure of the proposed approach by a numerical example.

  5. A fast and efficient gene-network reconstruction method from multiple over-expression experiments

    Directory of Open Access Journals (Sweden)

    Thurner Stefan

    2009-08-01

    Full Text Available Abstract Background Reverse engineering of gene regulatory networks presents one of the big challenges in systems biology. Gene regulatory networks are usually inferred from a set of single-gene over-expressions and/or knockout experiments. Functional relationships between genes are retrieved either from the steady state gene expressions or from respective time series. Results We present a novel algorithm for gene network reconstruction on the basis of steady-state gene-chip data from over-expression experiments. The algorithm is based on a straight forward solution of a linear gene-dynamics equation, where experimental data is fed in as a first predictor for the solution. We compare the algorithm's performance with the NIR algorithm, both on the well known E. coli experimental data and on in-silico experiments. Conclusion We show superiority of the proposed algorithm in the number of correctly reconstructed links and discuss computational time and robustness. The proposed algorithm is not limited by combinatorial explosion problems and can be used in principle for large networks.

  6. Dynamics of regulatory networks in gastrin-treated adenocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Naresh Doni Jayavelu

    Full Text Available Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs and target genes (TGs. The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA. Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE, mid-early (ME, mid-late (ML and very late (VL. Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.

  7. Capacity Analysis for Dynamic Space Networks

    Institute of Scientific and Technical Information of China (English)

    Yang Lu; Bo Li; Wenjing Kang; Gongliang Liu; Xueting Li

    2015-01-01

    To evaluate transmission rate of highly dynamic space networks, a new method for studying space network capacity is proposed in this paper. Using graph theory, network capacity is defined as the maximum amount of flows ground stations can receive per unit time. Combined with a hybrid constellation model, network capacity is calculated and further analyzed for practical cases. Simulation results show that network capacity will increase to different extents as link capacity, minimum ground elevation constraint and satellite onboard processing capability change. Considering the efficiency and reliability of communication networks, how to scientifically design satellite networks is also discussed.

  8. Revealing networks from dynamics: an introduction

    CERN Document Server

    Timme, Marc

    2014-01-01

    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.

  9. Learning dynamic Bayesian networks with mixed variables

    DEFF Research Database (Denmark)

    Bøttcher, Susanne Gammelgaard

    This paper considers dynamic Bayesian networks for discrete and continuous variables. We only treat the case, where the distribution of the variables is conditional Gaussian. We show how to learn the parameters and structure of a dynamic Bayesian network and also how the Markov order can be learn....... An automated procedure for specifying prior distributions for the parameters in a dynamic Bayesian network is presented. It is a simple extension of the procedure for the ordinary Bayesian networks. Finally the W¨olfer?s sunspot numbers are analyzed....

  10. Robustness and Optimization of Complex Networks: Reconstructability, Algorithms and Modeling

    NARCIS (Netherlands)

    Liu, D.

    2013-01-01

    The infrastructure networks, including the Internet, telecommunication networks, electrical power grids, transportation networks (road, railway, waterway, and airway networks), gas networks and water networks, are becoming more and more complex. The complex infrastructure networks are crucial to our

  11. Dynamic information routing in complex networks

    CERN Document Server

    Kirst, Christoph; Battaglia, Demian

    2015-01-01

    Flexible information routing fundamentally underlies the function of many biological and artificial networks. Yet, how such systems may specifically communicate and dynamically route information is not well understood. Here we identify a generic mechanism to route information on top of collective dynamical reference states in complex networks. Switching between collective dynamics induces flexible reorganization of information sharing and routing patterns, as quantified by delayed mutual information and transfer entropy measures between activities of a network's units. We demonstrate the power of this generic mechanism specifically for oscillatory dynamics and analyze how individual unit properties, the network topology and external inputs coact to systematically organize information routing. For multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local interventions within one sub-network may remotely determine non-local network-wide communication. These results help...

  12. Dynamic Analysis of Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    N. Ahmadi

    2008-01-01

    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  13. Synchronization of Intermittently Coupled Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2013-01-01

    Full Text Available This paper investigates the synchronization phenomenon of an intermittently coupled dynamical network in which the coupling among nodes can occur only at discrete instants and the coupling configuration of the network is time varying. A model of intermittently coupled dynamical network consisting of identical nodes is introduced. Based on the stability theory for impulsive differential equations, some synchronization criteria for intermittently coupled dynamical networks are derived. The network synchronizability is shown to be related to the second largest and the smallest eigenvalues of the coupling matrix, the coupling strength, and the impulsive intervals. Using the chaotic Chua system and Lorenz system as nodes of a dynamical network for simulation, respectively, the theoretical results are verified and illustrated.

  14. MODELS FOR NETWORK DYNAMICS - A MARKOVIAN FRAMEWORK

    NARCIS (Netherlands)

    LEENDERS, RTAJ

    1995-01-01

    A question not very often addressed in social network analysis relates to network dynamics and focuses on how networks arise and change. It alludes to the idea that ties do not arise or vanish randomly, but (partly) as a consequence of human behavior and preferences. Statistical models for modeling

  15. A system dynamics model for communications networks

    Science.gov (United States)

    Awcock, A. J.; King, T. E. G.

    1985-09-01

    An abstract model of a communications network in system dynamics terminology is developed as implementation of this model by a FORTRAN program package developed at RSRE is discussed. The result of this work is a high-level simulation package in which the performance of adaptive routing algorithms and other network controls may be assessed for a network of arbitrary topology.

  16. Using Network Dynamical Influence to Drive Consensus

    Science.gov (United States)

    Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.

    2016-05-01

    Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.

  17. Forced synchronization of autonomous dynamical Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx [División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, Col. Lomas 4 Sección, C.P. 78216, San Luis Potosí, S.L.P. (Mexico); Campos-Cantón, I. [Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, C.P. 78000, San Luis Potosí, S.L.P. (Mexico); Gauthier, Daniel J. [Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina 27708 (United States)

    2015-08-15

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  18. Forced synchronization of autonomous dynamical Boolean networks.

    Science.gov (United States)

    Rivera-Durón, R R; Campos-Cantón, E; Campos-Cantón, I; Gauthier, Daniel J

    2015-08-01

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enable future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.

  19. Dynamic Multi-class Network Loading Problem

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The dynamic network loading problem (DNLP) consists in determining on a congested network, timedependent arc volumes, together with arc and path travel times, given the time varying path flow departure rates over a finite time horizon. The objective of this paper is to present the formulation of an analytical dynamic multiclass network loading model. The model does not require the assumption of the FIFO condition. The existence of a solution to the model is shown.

  20. Stereo Matching Based on Immune Neural Network in Abdomen Reconstruction

    Directory of Open Access Journals (Sweden)

    Huan Liu

    2015-01-01

    Full Text Available Stereo feature matching is a technique that finds an optimal match in two images from the same entity in the three-dimensional world. The stereo correspondence problem is formulated as an optimization task where an energy function, which represents the constraints on the solution, is to be minimized. A novel intelligent biological network (Bio-Net, which involves the human B-T cells immune system into neural network, is proposed in this study in order to learn the robust relationship between the input feature points and the output matched points. A model from input-output data (left reference point-right target point is established. In the experiments, the abdomen reconstructions for different-shape mannequins are then performed by means of the proposed method. The final results are compared and analyzed, which demonstrate that the proposed approach greatly outperforms the single neural network and the conventional matching algorithm in precise. Particularly, as far as time cost and efficiency, the proposed method exhibits its significant promising and potential for improvement. Hence, it is entirely considered as an effective and feasible alternative option for stereo matching.

  1. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    Science.gov (United States)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  2. Charge transport network dynamics in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nicholas E. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry; Chen, Lin X. [Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Science and Engineering Division; Ratner, Mark A. [Northwestern Univ., Evanston, IL (United States). Dept. of Chemistry

    2016-07-20

    Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive with charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.

  3. Controlling edge dynamics in complex networks

    OpenAIRE

    Nepusz, Tamás; Vicsek, Tamás

    2012-01-01

    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges ...

  4. Efficient Surface Mesh Reconstruction from Unorganized Points Using Neural Network

    Institute of Scientific and Technical Information of China (English)

    YUANYouwei; YANLamei; GUOQingping

    2005-01-01

    In this paper, a new approach for the automatic reconstruction from unorganized points is presented,where first an artificial neural network is used to order the data and form a grid of control vertices with triangle topology. Then, we present a general scheme for mesh simplification and optimization that allows to control the geometric approximation as well as the element shape and size quality (required for numerical simulations). The new approach makes possible the construction of adapted geometric meshes for surfaces by specifying the element sizes(and directions) so as to bound the error below a usergiven threshold value. The experimental results show that our methods are accurate and simple to implement.

  5. Exploring Normalization and Network Reconstruction Methods using In Silico and In Vivo Models

    Science.gov (United States)

    Abstract: Lessons learned from the recent DREAM competitions include: The search for the best network reconstruction method continues, and we need more complete datasets with ground truth from more complex organisms. It has become obvious that the network reconstruction methods t...

  6. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and cont

  7. Low dose dynamic myocardial CT perfusion using advanced iterative reconstruction

    Science.gov (United States)

    Eck, Brendan L.; Fahmi, Rachid; Fuqua, Christopher; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2015-03-01

    Dynamic myocardial CT perfusion (CTP) can provide quantitative functional information for the assessment of coronary artery disease. However, x-ray dose in dynamic CTP is high, typically from 10mSv to >20mSv. We compared the dose reduction potential of advanced iterative reconstruction, Iterative Model Reconstruction (IMR, Philips Healthcare, Cleveland, Ohio) to hybrid iterative reconstruction (iDose4) and filtered back projection (FBP). Dynamic CTP scans were obtained using a porcine model with balloon-induced ischemia in the left anterior descending coronary artery to prescribed fractional flow reserve values. High dose dynamic CTP scans were acquired at 100kVp/100mAs with effective dose of 23mSv. Low dose scans at 75mAs, 50mAs, and 25mAs were simulated by adding x-ray quantum noise and detector electronic noise to the projection space data. Images were reconstructed with FBP, iDose4, and IMR at each dose level. Image quality in static CTP images was assessed by SNR and CNR. Blood flow was obtained using a dynamic CTP analysis pipeline and blood flow image quality was assessed using flow-SNR and flow-CNR. IMR showed highest static image quality according to SNR and CNR. Blood flow in FBP was increasingly over-estimated at reduced dose. Flow was more consistent for iDose4 from 100mAs to 50mAs, but was over-estimated at 25mAs. IMR was most consistent from 100mAs to 25mAs. Static images and flow maps for 100mAs FBP, 50mAs iDose4, and 25mAs IMR showed comparable, clear ischemia, CNR, and flow-CNR values. These results suggest that IMR can enable dynamic CTP at significantly reduced dose, at 5.8mSv or 25% of the comparable 23mSv FBP protocol.

  8. A temporal interpolation approach for dynamic reconstruction in perfusion CT.

    Science.gov (United States)

    Montes, Pau; Lauritsch, Günter

    2007-07-01

    This article presents a dynamic CT reconstruction algorithm for objects with time dependent attenuation coefficient. Projection data acquired over several rotations are interpreted as samples of a continuous signal. Based on this idea, a temporal interpolation approach is proposed which provides the maximum temporal resolution for a given rotational speed of the CT scanner. Interpolation is performed using polynomial splines. The algorithm can be adapted to slow signals, reducing the amount of data acquired and the computational cost. A theoretical analysis of the approximations made by the algorithm is provided. In simulation studies, the temporal interpolation approach is compared with three other dynamic reconstruction algorithms based on linear regression, linear interpolation, and generalized Parker weighting. The presented algorithm exhibits the highest temporal resolution for a given sampling interval. Hence, our approach needs less input data to achieve a certain quality in the reconstruction than the other algorithms discussed or, equivalently, less x-ray exposure and computational complexity. The proposed algorithm additionally allows the possibility of using slow rotating scanners for perfusion imaging purposes.

  9. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    Science.gov (United States)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-10-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback-Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data.

  10. Temporal fidelity in dynamic social networks

    DEFF Research Database (Denmark)

    Stopczynski, Arkadiusz; Sapiezynski, Piotr; Pentland, Alex ‘Sandy’

    2015-01-01

    of the network dynamics can be used to inform the process of measuring social networks. The details of measurement are of particular importance when considering dynamic processes where minute-to-minute details are important, because collection of physical proximity interactions with high temporal resolution......It has recently become possible to record detailed social interactions in large social systems with high resolution. As we study these datasets, human social interactions display patterns that emerge at multiple time scales, from minutes to months. On a fundamental level, understanding...... is difficult and expensive. Here, we consider the dynamic network of proximity-interactions between approximately 500 individuals participating in the Copenhagen Networks Study. We show that in order to accurately model spreading processes in the network, the dynamic processes that occur on the order...

  11. Pinning Synchronization of Switched Complex Dynamical Networks

    Directory of Open Access Journals (Sweden)

    Liming Du

    2015-01-01

    Full Text Available Network topology and node dynamics play a key role in forming synchronization of complex networks. Unfortunately there is no effective synchronization criterion for pinning synchronization of complex dynamical networks with switching topology. In this paper, pinning synchronization of complex dynamical networks with switching topology is studied. Two basic problems are considered: one is pinning synchronization of switched complex networks under arbitrary switching; the other is pinning synchronization of switched complex networks by design of switching when synchronization cannot achieved by using any individual connection topology alone. For the two problems, common Lyapunov function method and single Lyapunov function method are used respectively, some global synchronization criteria are proposed and the designed switching law is given. Finally, simulation results verify the validity of the results.

  12. Psychology and social networks: a dynamic network theory perspective.

    Science.gov (United States)

    Westaby, James D; Pfaff, Danielle L; Redding, Nicholas

    2014-04-01

    Research on social networks has grown exponentially in recent years. However, despite its relevance, the field of psychology has been relatively slow to explain the underlying goal pursuit and resistance processes influencing social networks in the first place. In this vein, this article aims to demonstrate how a dynamic network theory perspective explains the way in which social networks influence these processes and related outcomes, such as goal achievement, performance, learning, and emotional contagion at the interpersonal level of analysis. The theory integrates goal pursuit, motivation, and conflict conceptualizations from psychology with social network concepts from sociology and organizational science to provide a taxonomy of social network role behaviors, such as goal striving, system supporting, goal preventing, system negating, and observing. This theoretical perspective provides psychologists with new tools to map social networks (e.g., dynamic network charts), which can help inform the development of change interventions. Implications for social, industrial-organizational, and counseling psychology as well as conflict resolution are discussed, and new opportunities for research are highlighted, such as those related to dynamic network intelligence (also known as cognitive accuracy), levels of analysis, methodological/ethical issues, and the need to theoretically broaden the study of social networking and social media behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  13. Reconstruction of social group networks from friendship networks using a tag-based model

    Science.gov (United States)

    Guan, Yuan-Pan; You, Zhi-Qiang; Han, Xiao-Pu

    2016-12-01

    Social group is a type of mesoscopic structure that connects human individuals in microscopic level and the global structure of society. In this paper, we propose a tag-based model considering that social groups expand along the edge that connects two neighbors with a similar tag of interest. The model runs on a real-world friendship network, and its simulation results show that various properties of simulated group network can well fit the empirical analysis on real-world social groups, indicating that the model catches the major mechanism driving the evolution of social groups and successfully reconstructs the social group network from a friendship network and throws light on digging of relationships between social functional organizations.

  14. Quasispecies dynamics with network constraints.

    Science.gov (United States)

    Barbosa, Valmir C; Donangelo, Raul; Souza, Sergio R

    2012-11-07

    A quasispecies is a set of interrelated genotypes that have reached a stationary state while evolving according to the usual Darwinian principles of selection and mutation. Quasispecies studies invariably assume that it is possible for any genotype to mutate into any other, but recent finds indicate that this assumption is not necessarily true. Here we revisit the traditional quasispecies theory by adopting a network structure to constrain the occurrence of mutations. Such structure is governed by a random-graph model, whose single parameter (a probability p) controls both the graph's density and the dynamics of mutation. We contribute two further modifications to the theory, one to account for the fact that different loci in a genotype may be differently susceptible to the occurrence of mutations, the other to allow for a more plausible description of the transition from adaptation to degeneracy of the quasispecies as p is increased. We give analytical and simulation results for the usual case of binary genotypes, assuming the fitness landscape in which a genotype's fitness decays exponentially with its Hamming distance to the wild type. These results support the theory's assertions regarding the adaptation of the quasispecies to the fitness landscape and also its possible demise as a function of p.

  15. Neural networks and dynamical system techniques for volcanic tremor analysis

    Directory of Open Access Journals (Sweden)

    R. Carniel

    1996-06-01

    Full Text Available A volcano can be seen as a dynamical system, the number of state variables being its dimension N. The state is usually confined on a manifold with a lower dimension f, manifold which is characteristic of a persistent «structural configuration». A change in this manifold may be a hint that something is happening to the dynamics of the volcano, possibly leading to a paroxysmal phase. In this work the original state space of the volcano dynamical system is substituted by a pseudo state space reconstructed by the method of time-delayed coordinates, with suitably chosen lag time and embedding dimension, from experimental time series of seismic activity, i.e. volcanic tremor recorded at Stromboli volcano. The monitoring is done by a neural network which first learns the dynamics of the persistent tremor and then tries to detect structural changes in its behaviour.

  16. Emergent Opinion Dynamics on Endogenous Networks

    CERN Document Server

    Gulyás, L; Dugundji, Elenna R.

    2006-01-01

    In recent years networks have gained unprecedented attention in studying a broad range of topics, among them in complex systems research. In particular, multi-agent systems have seen an increased recognition of the importance of the interaction topology. It is now widely recognized that emergent phenomena can be highly sensitive to the structure of the interaction network connecting the system's components, and there is a growing body of abstract network classes, whose contributions to emergent dynamics are well-understood. However, much less understanding have yet been gained about the effects of network dynamics, especially in cases when the emergent phenomena feeds back to and changes the underlying network topology. Our work starts with the application of the network approach to discrete choice analysis, a standard method in econometric estimation, where the classic approach is grounded in individual choice and lacks social network influences. In this paper, we extend our earlier results by considering th...

  17. Global Synchronization of General Delayed Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    LI Zhi

    2007-01-01

    Global synchronization of general delayed dynamical networks with linear coupling are investigated. A sufficient condition for the global synchronization is obtained by using the linear matrix inequality and introducing a reference state. This condition is simply given based on the maximum nonzero eigenvalue of the network coupling matrix. Moreover, we show how to construct the coupling matrix to guarantee global synchronization of network,which is very convenient to use. A two-dimension system with delay as a dynamical node in network with global coupling is finally presented to verify the theoretical results of the proposed global synchronization scheme.

  18. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    Science.gov (United States)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  19. Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings

    Science.gov (United States)

    Ravindranath, A.; Devineni, N.

    2016-12-01

    Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.

  20. Symmetry in Critical Random Boolean Networks Dynamics

    Science.gov (United States)

    Bassler, Kevin E.; Hossein, Shabnam

    2014-03-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used to both greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. Classes of functions occur at the same frequency. These classes are orbits of the controlling symmetry group. We find the nature of the symmetry that controls the dynamics of critical random Boolean networks by determining the frequency of output functions utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using symmetry to characterize complex network dynamics, and introduce a novel approach to the analysis of heterogeneous complex systems. This work was supported by the NSF through grants DMR-0908286 and DMR-1206839, and by the AFSOR and DARPA through grant FA9550-12-1-0405.

  1. Complex networks repair strategies: Dynamic models

    Science.gov (United States)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree and enhances network invulnerability.

  2. Network games theory, models, and dynamics

    CERN Document Server

    Ozdaglar, Asu

    2011-01-01

    Traditional network optimization focuses on a single control objective in a network populated by obedient users and limited dispersion of information. However, most of today's networks are large-scale with lack of access to centralized information, consist of users with diverse requirements, and are subject to dynamic changes. These factors naturally motivate a new distributed control paradigm, where the network infrastructure is kept simple and the network control functions are delegated to individual agents which make their decisions independently (""selfishly""). The interaction of multiple

  3. Dynamics of comb-of-comb networks

    Science.gov (United States)

    Liu, Hongxiao; Lin, Yuan; Dolgushev, Maxim; Zhang, Zhongzhi

    2016-03-01

    The dynamics of complex networks, a current hot topic in many scientific fields, is often coded through the corresponding Laplacian matrix. The spectrum of this matrix carries the main features of the networks' dynamics. Here we consider the deterministic networks which can be viewed as "comb-of-comb" iterative structures. For their Laplacian spectra we find analytical equations involving Chebyshev polynomials whose properties allow one to analyze the spectra in deep. Here, in particular, we find that in the infinite size limit the corresponding spectral dimension goes as ds→2 . The ds leaves its fingerprint on many dynamical processes, as we exemplarily show by considering the dynamical properties of polymer networks, including single monomer displacement under a constant force, mechanical relaxation, and fluorescence depolarization.

  4. Identifying Community Structures in Dynamic Networks

    CERN Document Server

    Alvari, Hamidreza; Sukthankar, Gita; Lakkaraju, Kiran

    2016-01-01

    Most real-world social networks are inherently dynamic, composed of communities that are constantly changing in membership. To track these evolving communities, we need dynamic community detection techniques. This article evaluates the performance of a set of game theoretic approaches for identifying communities in dynamic networks. Our method, D-GT (Dynamic Game Theoretic community detection), models each network node as a rational agent who periodically plays a community membership game with its neighbors. During game play, nodes seek to maximize their local utility by joining or leaving the communities of network neighbors. The community structure emerges after the game reaches a Nash equilibrium. Compared to the benchmark community detection methods, D-GT more accurately predicts the number of communities and finds community assignments with a higher normalized mutual information, while retaining a good modularity.

  5. Boolean networks with reliable dynamics

    CERN Document Server

    Peixoto, Tiago P

    2009-01-01

    We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A reliable trajectory is defined as a sequence of states which is independent of the order in which the nodes are updated. We explored numerically the topology, the update functions, and the state space structure of these networks, which we constructed using a minimum number of links and the simplest update functions. We found that the clustering coefficient is larger than in random networks, and that the probability distribution of three-node motifs is similar to that found in gene regulation networks. Among the update functions, only a subset of all possible functions occur, and they can be classified according to their probability. More homogeneous functions occur more often, leading to a dominance of canalyzing functions. Finally, we studied the entire state space of the networks. We observed that with increasing systems size, fixed points become more dominant, moving the networks close to the frozen...

  6. Diffusion Dynamics with Changing Network Composition

    CERN Document Server

    Baños, Raquel A; Wang, Ning; Moreno, Yamir; González-Bailón, Sandra

    2013-01-01

    We analyze information diffusion using empirical data that tracks online communication around two instances of mass political mobilization, including the year that lapsed in-between the protests. We compare the global properties of the topological and dynamic networks through which communication took place as well as local changes in network composition. We show that changes in network structure underlie aggregated differences on how information diffused: an increase in network hierarchy is accompanied by a reduction in the average size of cascades. The increasing hierarchy affects not only the underlying communication topology but also the more dynamic structure of information exchange; the increase is especially noticeable amongst certain categories of nodes (or users). This suggests that the relationship between the structure of networks and their function in diffusing information is not as straightforward as some theoretical models of diffusion in networks imply.

  7. Dimensional characterization of anesthesia dynamic in reconstructed embedding space.

    Science.gov (United States)

    Gifani, P; Rabiee, H R; Hashemi, M; Ghanbari, M

    2007-01-01

    The depth of anesthesia quantification has been one of the most research interests in the field of EEG signal processing and nonlinear dynamical analysis has emerged as a novel method for the study of complex systems in the past few decades. In this investigation we use the concept of nonlinear time series analysis techniques to reconstruct the attractor of anesthesia from EEG signal which have been obtained from different hypnotic states during surgery to give a characterization of the dimensional complexity of EEG by Correlation Dimension estimation. The dimension of the anesthesia strange attractor can be thought of as a measure of the degrees of freedom or the ;complexity' of the dynamics at different hypnotic levels. The results imply that for awaked state the correlation dimension is high, On the other hand, for light, moderate and deep hypnotic states these values decrease respectively; which means for anesthetized situation we expect lower correlation dimension.

  8. Dynamical Adaptation in Terrorist Cells/Networks

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki

    2010-01-01

    Typical terrorist cells/networks have dynamical structure as they evolve or adapt to changes which may occur due to capturing or killing of a member of the cell/network. Analytical measures in graph theory like degree centrality, betweenness and closeness centralities are very common and have long...

  9. Fast Tomographic Reconstruction From Limited Data Using Artificial Neural Networks

    NARCIS (Netherlands)

    D.M. Pelt (Daniel); K.J. Batenburg (Joost)

    2013-01-01

    htmlabstractImage reconstruction from a small number of projections is a challenging problem in tomography. Advanced algorithms that incorporate prior knowledge can sometimes produce accurate reconstructions, but they typically require long computation times. Furthermore, the required prior

  10. Collective dynamics of active cytoskeletal networks

    CERN Document Server

    Köhler, Simone; Bausch, Andreas R

    2011-01-01

    Self organization mechanisms are essential for the cytoskeleton to adapt to the requirements of living cells. They rely on the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors. Here we present an in vitro minimal model system consisting of actin filaments, fascin and myosin-II filaments exhibiting pulsative collective long range dynamics. The reorganizations in the highly dynamic steady state of the active gel are characterized by alternating periods of runs and stalls resulting in a superdiffusive dynamics of the network's constituents. They are dominated by the complex competition of crosslinking molecules and motor filaments in the network: Collective dynamics are only observed if the relative strength of the binding of myosin-II filaments to the actin network allows exerting high enough forces to unbind actin/fascin crosslinks. The feedback between structure formation and dynamics can be resolved by combining these experiments with phenomenological simulations base...

  11. Symmetry in critical random Boolean network dynamics

    Science.gov (United States)

    Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  12. Symmetry in critical random Boolean network dynamics.

    Science.gov (United States)

    Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  13. Network Physiology: How Organ Systems Dynamically Interact.

    Science.gov (United States)

    Bartsch, Ronny P; Liu, Kang K L; Bashan, Amir; Ivanov, Plamen Ch

    2015-01-01

    We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS), we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  14. Network Physiology: How Organ Systems Dynamically Interact.

    Directory of Open Access Journals (Sweden)

    Ronny P Bartsch

    Full Text Available We systematically study how diverse physiologic systems in the human organism dynamically interact and collectively behave to produce distinct physiologic states and functions. This is a fundamental question in the new interdisciplinary field of Network Physiology, and has not been previously explored. Introducing the novel concept of Time Delay Stability (TDS, we develop a computational approach to identify and quantify networks of physiologic interactions from long-term continuous, multi-channel physiological recordings. We also develop a physiologically-motivated visualization framework to map networks of dynamical organ interactions to graphical objects encoded with information about the coupling strength of network links quantified using the TDS measure. Applying a system-wide integrative approach, we identify distinct patterns in the network structure of organ interactions, as well as the frequency bands through which these interactions are mediated. We establish first maps representing physiologic organ network interactions and discover basic rules underlying the complex hierarchical reorganization in physiologic networks with transitions across physiologic states. Our findings demonstrate a direct association between network topology and physiologic function, and provide new insights into understanding how health and distinct physiologic states emerge from networked interactions among nonlinear multi-component complex systems. The presented here investigations are initial steps in building a first atlas of dynamic interactions among organ systems.

  15. Local Checkability in Dynamic Networks

    DEFF Research Database (Denmark)

    Förster, Klaus-Tycho; Richter, Oliver; Seidel, Jochen

    2017-01-01

    In this work we study local checkability of network properties considering inconsistency throughout the verification process. We use disappearing and appearing edges to model inconsistency and prover-verifier-pairs (PVPs) for verification. We say that a network property N is locally checkable und...

  16. Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

    Institute of Scientific and Technical Information of China (English)

    Guixia Liu; Lei Liu; Chunyu Liu; Ming Zheng; Lanying Su; Chunguang Zhou

    2011-01-01

    Inferring gene regulatory networks from large-scale expression data is an important topic in both cellular systems and computational biology. The inference of regulators might be the core factor for understanding actual regulatory conditions in gene regulatory networks, especially when strong regulators do work significantly, in this paper, we propose a novel approach based on combining neuro-fuzzy network models with biological knowledge to infer strong regulators and interrelated fuzzy rules. The hybrid neuro-fuzzy architecture can not only infer the fuzzy rules, which are suitable for describing the regulatory conditions in regulatory networks, but also explain the meaning of nodes and weight value in the neural network. It can get useful rules automatically without factitious judgments. At the same time, it does not add recursive layers to the model, and the model can also strengthen the relationships among genes and reduce calculation. We use the proposed approach to reconstruct a partial gene regulatory network of yeast. The results show that this approach can work effectively.

  17. Synapto-protective drugs evaluation in reconstructed neuronal network.

    Directory of Open Access Journals (Sweden)

    Bérangère Deleglise

    Full Text Available Chronic neurodegenerative syndromes such as Alzheimer's and Parkinson's diseases, or acute syndromes such as ischemic stroke or traumatic brain injuries are characterized by early synaptic collapse which precedes axonal and neuronal cell body degeneration and promotes early cognitive impairment in patients. Until now, neuroprotective strategies have failed to impede the progression of neurodegenerative syndromes. Drugs preventing the loss of cell body do not prevent the cognitive decline, probably because they lack synapto-protective effects. The absence of physiologically realistic neuronal network models which can be easily handled has hindered the development of synapto-protective drugs suitable for therapies. Here we describe a new microfluidic platform which makes it possible to study the consequences of axonal trauma of reconstructed oriented mouse neuronal networks. Each neuronal population and sub-compartment can be chemically addressed individually. The somatic, mid axon, presynaptic and postsynaptic effects of local pathological stresses or putative protective molecules can thus be evaluated with the help of this versatile "brain on chip" platform. We show that presynaptic loss is the earliest event observed following axotomy of cortical fibers, before any sign of axonal fragmentation or post-synaptic spine alteration. This platform can be used to screen and evaluate the synapto-protective potential of several drugs. For instance, NAD⁺ and the Rho-kinase inhibitor Y27632 can efficiently prevent synaptic disconnection, whereas the broad-spectrum caspase inhibitor zVAD-fmk and the stilbenoid resveratrol do not prevent presynaptic degeneration. Hence, this platform is a promising tool for fundamental research in the field of developmental and neurodegenerative neurosciences, and also offers the opportunity to set up pharmacological screening of axon-protective and synapto-protective drugs.

  18. Metric projection for dynamic multiplex networks

    CERN Document Server

    Jurman, Giuseppe

    2016-01-01

    Evolving multiplex networks are a powerful model for representing the dynamics along time of different phenomena, such as social networks, power grids, biological pathways. However, exploring the structure of the multiplex network time series is still an open problem. Here we propose a two-steps strategy to tackle this problem based on the concept of distance (metric) between networks. Given a multiplex graph, first a network of networks is built for each time steps, and then a real valued time series is obtained by the sequence of (simple) networks by evaluating the distance from the first element of the series. The effectiveness of this approach in detecting the occurring changes along the original time series is shown on a synthetic example first, and then on the Gulf dataset of political events.

  19. Dynamic bandwidth allocation in GPON networks

    DEFF Research Database (Denmark)

    Ozimkiewiez, J.; Ruepp, Sarah Renée; Dittmann, Lars

    2009-01-01

    Two Dynamic Bandwidth Allocation algorithms used for coordination of the available bandwidth between end users in a GPON network have been simulated using OPNET to determine and compare the performance, scalability and efficiency of status reporting and non status reporting dynamic bandwidth allo...

  20. Traffic dynamics on dynamical networks: The connection between network lifetime and traffic congestion

    CERN Document Server

    Yang, Xianxia; Yan, Meichen; Sharafat, Rajput Ramiz; Yang, Jian

    2016-01-01

    For many power-limited networks, such as wireless sensor networks and mobile ad hoc networks, maximizing the network lifetime is the first concern in the related designing and maintaining activities. We study the network lifetime from the perspective of network science. In our dynamic network, nodes are assigned a fixed amount of energy initially and consume the energy in the delivery of packets. We divided the network traffic flow into four states: no, slow, fast, and absolute congestion states. We derive the network lifetime by considering the state of the traffic flow. We find that the network lifetime is generally opposite to traffic congestion in that the more congested traffic, the less network lifetime. We also find the impacts of factors such as packet generation rate, communication radius, node moving speed, etc., on network lifetime and traffic congestion.

  1. Markovian dynamics on complex reaction networks

    Energy Technology Data Exchange (ETDEWEB)

    Goutsias, J., E-mail: goutsias@jhu.edu; Jenkinson, G., E-mail: jenkinson@jhu.edu

    2013-08-10

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underlying population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions and the large size of the underlying state-spaces, computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating the solution of the master equation, discuss a recently developed approach for studying the stationary behavior of Markovian reaction networks using a potential energy landscape perspective, and provide an introduction to the emerging theory of thermodynamic analysis of such networks. Three representative problems of opinion formation, transcription regulation, and neural network dynamics are used as illustrative examples.

  2. Markovian Dynamics on Complex Reaction Networks

    CERN Document Server

    Goutsias, John

    2012-01-01

    Complex networks, comprised of individual elements that interact with each other through reaction channels, are ubiquitous across many scientific and engineering disciplines. Examples include biochemical, pharmacokinetic, epidemiological, ecological, social, neural, and multi-agent networks. A common approach to modeling such networks is by a master equation that governs the dynamic evolution of the joint probability mass function of the underling population process and naturally leads to Markovian dynamics for such process. Due however to the nonlinear nature of most reactions, the computation and analysis of the resulting stochastic population dynamics is a difficult task. This review article provides a coherent and comprehensive coverage of recently developed approaches and methods to tackle this problem. After reviewing a general framework for modeling Markovian reaction networks and giving specific examples, the authors present numerical and computational techniques capable of evaluating or approximating...

  3. Using relaxational dynamics to reduce network congestion

    Science.gov (United States)

    Piontti, Ana L. Pastore y.; La Rocca, Cristian E.; Toroczkai, Zoltán; Braunstein, Lidia A.; Macri, Pablo A.; López, Eduardo

    2008-09-01

    We study the effects of relaxational dynamics on congestion pressure in scale-free (SF) networks by analyzing the properties of the corresponding gradient networks (Toroczkai and Bassler 2004 Nature 428 716). Using the Family model (Family and Bassler 1986 J. Phys. A: Math. Gen. 19 L441) from surface-growth physics as single-step load-balancing dynamics, we show that the congestion pressure considerably drops on SF networks when compared with the same dynamics on random graphs. This is due to a structural transition of the corresponding gradient network clusters, which self-organize so as to reduce the congestion pressure. This reduction is enhanced when lowering the value of the connectivity exponent λ towards 2.

  4. A new algorithm for $H\\rightarrow\\tau\\bar{\\tau}$ invariant mass reconstruction using Deep Neural Networks

    CERN Document Server

    Dietrich, Felix

    2017-01-01

    Reconstructing the invariant mass in a Higgs boson decay event containing tau leptons turns out to be a challenging endeavour. The aim of this summer student project is to implement a new algorithm for this task, using deep neural networks and machine learning. The results are compared to SVFit, an existing algorithm that uses dynamical likelihood techniques. A neural network is found that reaches the accuracy of SVFit at low masses and even surpasses it at higher masses, while at the same time providing results a thousand times faster.

  5. Dynamic Data-Driven Event Reconstruction for Atmospheric Releases

    Energy Technology Data Exchange (ETDEWEB)

    Kosovic, B; Belles, R; Chow, F K; Monache, L D; Dyer, K; Glascoe, L; Hanley, W; Johannesson, G; Larsen, S; Loosmore, G; Lundquist, J K; Mirin, A; Neuman, S; Nitao, J; Serban, R; Sugiyama, G; Aines, R

    2007-02-22

    Accidental or terrorist releases of hazardous materials into the atmosphere can impact large populations and cause significant loss of life or property damage. Plume predictions have been shown to be extremely valuable in guiding an effective and timely response. The two greatest sources of uncertainty in the prediction of the consequences of hazardous atmospheric releases result from poorly characterized source terms and lack of knowledge about the state of the atmosphere as reflected in the available meteorological data. In this report, we discuss the development of a new event reconstruction methodology that provides probabilistic source term estimates from field measurement data for both accidental and clandestine releases. Accurate plume dispersion prediction requires the following questions to be answered: What was released? When was it released? How much material was released? Where was it released? We have developed a dynamic data-driven event reconstruction capability which couples data and predictive models through Bayesian inference to obtain a solution to this inverse problem. The solution consists of a probability distribution of unknown source term parameters. For consequence assessment, we then use this probability distribution to construct a ''''composite'' forward plume prediction which accounts for the uncertainties in the source term. Since in most cases of practical significance it is impossible to find a closed form solution, Bayesian inference is accomplished by utilizing stochastic sampling methods. This approach takes into consideration both measurement and forward model errors and thus incorporates all the sources of uncertainty in the solution to the inverse problem. Stochastic sampling methods have the additional advantage of being suitable for problems characterized by a non-Gaussian distribution of source term parameters and for cases in which the underlying dynamical system is non-linear. We initially

  6. Cognitive radio networks dynamic resource allocation schemes

    CERN Document Server

    Wang, Shaowei

    2014-01-01

    This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off

  7. Evolution of cooperation on stochastic dynamical networks.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    Full Text Available Cooperative behavior that increases the fitness of others at a cost to oneself can be promoted by natural selection only in the presence of an additional mechanism. One such mechanism is based on population structure, which can lead to clustering of cooperating agents. Recently, the focus has turned to complex dynamical population structures such as social networks, where the nodes represent individuals and links represent social relationships. We investigate how the dynamics of a social network can change the level of cooperation in the network. Individuals either update their strategies by imitating their partners or adjust their social ties. For the dynamics of the network structure, a random link is selected and breaks with a probability determined by the adjacent individuals. Once it is broken, a new one is established. This linking dynamics can be conveniently characterized by a Markov chain in the configuration space of an ever-changing network of interacting agents. Our model can be analytically solved provided the dynamics of links proceeds much faster than the dynamics of strategies. This leads to a simple rule for the evolution of cooperation: The more fragile links between cooperating players and non-cooperating players are (or the more robust links between cooperators are, the more likely cooperation prevails. Our approach may pave the way for analytically investigating coevolution of strategy and structure.

  8. Complexity, dynamic cellular network, and tumorigenesis.

    Science.gov (United States)

    Waliszewski, P

    1997-01-01

    A holistic approach to tumorigenesis is proposed. The main element of the model is the existence of dynamic cellular network. This network comprises a molecular and an energetistic structure of a cell connected through the multidirectional flow of information. The interactions within dynamic cellular network are complex, stochastic, nonlinear, and also involve quantum effects. From this non-reductionist perspective, neither tumorigenesis can be limited to the genetic aspect, nor the initial event must be of molecular nature, nor mutations and epigenetic factors are mutually exclusive, nor a link between cause and effect can be established. Due to complexity, an unstable stationary state of dynamic cellular network rather than a group of unrelated genes determines the phenotype of normal and transformed cells. This implies relativity of tumor suppressor genes and oncogenes. A bifurcation point is defined as an unstable state of dynamic cellular network leading to the other phenotype-stationary state. In particular, the bifurcation point may be determined by a change of expression of a single gene. Then, the gene is called bifurcation point gene. The unstable stationary state facilitates the chaotic dynamics. This may result in a fractal dimension of both normal and tumor tissues. The co-existence of chaotic dynamics and complexity is the essence of cellular processes and shapes differentiation, morphogenesis, and tumorigenesis. In consequence, tumorigenesis is a complex, unpredictable process driven by the interplay between self-organisation and selection.

  9. Competing dynamic phases of active polymer networks

    Science.gov (United States)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  10. Dynamics of deceptive interactions in social networks

    CERN Document Server

    Barrio, Rafael A; Dunbar, Robin; Iñiguez, Gerardo; Kaski, Kimmo

    2015-01-01

    In this paper we examine the role of lies in human social relations by implementing some salient characteristics of deceptive interactions into an opinion formation model, so as to describe the dynamical behaviour of a social network more realistically. In this model we take into account such basic properties of social networks as the dynamics of the intensity of interactions, the influence of public opinion, and the fact that in every human interaction it might be convenient to deceive or withhold information depending on the instantaneous situation of each individual in the network. We find that lies shape the topology of social networks, especially the formation of tightly linked, small communities with loose connections between them. We also find that agents with a larger proportion of deceptive interactions are the ones that connect communities of different opinion, and in this sense they have substantial centrality in the network. We then discuss the consequences of these results for the social behaviou...

  11. Control theory of digitally networked dynamic systems

    CERN Document Server

    Lunze, Jan

    2013-01-01

    The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic

  12. Synchronization of fractional order complex dynamical networks

    Science.gov (United States)

    Wang, Yu; Li, Tianzeng

    2015-06-01

    In this letter the synchronization of complex dynamical networks with fractional order chaotic nodes is studied. A fractional order controller for synchronization of complex network is presented. Some new sufficient synchronization criteria are proposed based on the Lyapunov stability theory and the LaSalle invariance principle. These synchronization criteria can apply to an arbitrary fractional order complex network in which the coupling-configuration matrix and the inner-coupling matrix are not assumed to be symmetric or irreducible. It means that this method is more general and effective. Numerical simulations of two fractional order complex networks demonstrate the universality and the effectiveness of the proposed method.

  13. Evolutionary dynamics of prokaryotic transcriptional regulatory networks.

    Science.gov (United States)

    Madan Babu, M; Teichmann, Sarah A; Aravind, L

    2006-04-28

    The structure of complex transcriptional regulatory networks has been studied extensively in certain model organisms. However, the evolutionary dynamics of these networks across organisms, which would reveal important principles of adaptive regulatory changes, are poorly understood. We use the known transcriptional regulatory network of Escherichia coli to analyse the conservation patterns of this network across 175 prokaryotic genomes, and predict components of the regulatory networks for these organisms. We observe that transcription factors are typically less conserved than their target genes and evolve independently of them, with different organisms evolving distinct repertoires of transcription factors responding to specific signals. We show that prokaryotic transcriptional regulatory networks have evolved principally through widespread tinkering of transcriptional interactions at the local level by embedding orthologous genes in different types of regulatory motifs. Different transcription factors have emerged independently as dominant regulatory hubs in various organisms, suggesting that they have convergently acquired similar network structures approximating a scale-free topology. We note that organisms with similar lifestyles across a wide phylogenetic range tend to conserve equivalent interactions and network motifs. Thus, organism-specific optimal network designs appear to have evolved due to selection for specific transcription factors and transcriptional interactions, allowing responses to prevalent environmental stimuli. The methods for biological network analysis introduced here can be applied generally to study other networks, and these predictions can be used to guide specific experiments.

  14. Dynamic simulation of regulatory networks using SQUAD

    Directory of Open Access Journals (Sweden)

    Xenarios Ioannis

    2007-11-01

    Full Text Available Abstract Background The ambition of most molecular biologists is the understanding of the intricate network of molecular interactions that control biological systems. As scientists uncover the components and the connectivity of these networks, it becomes possible to study their dynamical behavior as a whole and discover what is the specific role of each of their components. Since the behavior of a network is by no means intuitive, it becomes necessary to use computational models to understand its behavior and to be able to make predictions about it. Unfortunately, most current computational models describe small networks due to the scarcity of kinetic data available. To overcome this problem, we previously published a methodology to convert a signaling network into a dynamical system, even in the total absence of kinetic information. In this paper we present a software implementation of such methodology. Results We developed SQUAD, a software for the dynamic simulation of signaling networks using the standardized qualitative dynamical systems approach. SQUAD converts the network into a discrete dynamical system, and it uses a binary decision diagram algorithm to identify all the steady states of the system. Then, the software creates a continuous dynamical system and localizes its steady states which are located near the steady states of the discrete system. The software permits to make simulations on the continuous system, allowing for the modification of several parameters. Importantly, SQUAD includes a framework for perturbing networks in a manner similar to what is performed in experimental laboratory protocols, for example by activating receptors or knocking out molecular components. Using this software we have been able to successfully reproduce the behavior of the regulatory network implicated in T-helper cell differentiation. Conclusion The simulation of regulatory networks aims at predicting the behavior of a whole system when subject

  15. Failure dynamics of the global risk network

    CERN Document Server

    Szymanski, Boleslaw K; Asztalos, Andrea; Sreenivasan, Sameet

    2013-01-01

    The risks faced by modern societies form an intricately interconnected network that often underlies crisis situations. Yet, little is known about the ways in which risks materializing across different domains influence each other. Here we present an approach in which experts' assessment of network dynamics is mapped into state transition probabilities in the model of network evolution. This approach enables us to analyze difficult to quantify risks, such as geo-political or social. The model is optimized using historical data on risk materialization. We apply this approach to the World Economic Forum Global Risk Network to quantify the adverse effects of risk interdependency. The optimized model can predict how changes in risk characteristics impact future states of the risk network. Thus, our approach facilitates actionable insights for mitigating globally networked risks.

  16. Random graph models for dynamic networks

    CERN Document Server

    Zhang, Xiao; Newman, M E J

    2016-01-01

    We propose generalizations of a number of standard network models, including the classic random graph, the configuration model, and the stochastic block model, to the case of time-varying networks. We assume that the presence and absence of edges are governed by continuous-time Markov processes with rate parameters that can depend on properties of the nodes. In addition to computing equilibrium properties of these models, we demonstrate their use in data analysis and statistical inference, giving efficient algorithms for fitting them to observed network data. This allows us, for instance, to estimate the time constants of network evolution or infer community structure from temporal network data using cues embedded both in the probabilities over time that node pairs are connected by edges and in the characteristic dynamics of edge appearance and disappearance. We illustrate our methods with a selection of applications, both to computer-generated test networks and real-world examples.

  17. Relevance of Dynamic Clustering to Biological Networks

    CERN Document Server

    Kaneko, K

    1993-01-01

    Abstract Network of nonlinear dynamical elements often show clustering of synchronization by chaotic instability. Relevance of the clustering to ecological, immune, neural, and cellular networks is discussed, with the emphasis of partially ordered states with chaotic itinerancy. First, clustering with bit structures in a hypercubic lattice is studied. Spontaneous formation and destruction of relevant bits are found, which give self-organizing, and chaotic genetic algorithms. When spontaneous changes of effective couplings are introduced, chaotic itinerancy of clusterings is widely seen through a feedback mechanism, which supports dynamic stability allowing for complexity and diversity, known as homeochaos. Second, synaptic dynamics of couplings is studied in relation with neural dynamics. The clustering structure is formed with a balance between external inputs and internal dynamics. Last, an extension allowing for the growth of the number of elements is given, in connection with cell differentiation. Effecti...

  18. Dynamics-based centrality for directed networks

    Science.gov (United States)

    Masuda, Naoki; Kori, Hiroshi

    2010-11-01

    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.

  19. Agent-based modeling and network dynamics

    CERN Document Server

    Namatame, Akira

    2016-01-01

    The book integrates agent-based modeling and network science. It is divided into three parts, namely, foundations, primary dynamics on and of social networks, and applications. The book begins with the network origin of agent-based models, known as cellular automata, and introduce a number of classic models, such as Schelling’s segregation model and Axelrod’s spatial game. The essence of the foundation part is the network-based agent-based models in which agents follow network-based decision rules. Under the influence of the substantial progress in network science in late 1990s, these models have been extended from using lattices into using small-world networks, scale-free networks, etc. The book also shows that the modern network science mainly driven by game-theorists and sociophysicists has inspired agent-based social scientists to develop alternative formation algorithms, known as agent-based social networks. The book reviews a number of pioneering and representative models in this family. Upon the gi...

  20. The dynamics of transmission and the dynamics of networks.

    Science.gov (United States)

    Farine, Damien

    2017-05-01

    A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors

  1. Transportation dynamics on networks of mobile agents

    CERN Document Server

    Yang, Han-Xin; Xie, Yan-Bo; Lai, Ying-Cheng; Wang, Bing-Hong

    2011-01-01

    Most existing works on transportation dynamics focus on networks of a fixed structure, but networks whose nodes are mobile have become widespread, such as cell-phone networks. We introduce a model to explore the basic physics of transportation on mobile networks. Of particular interest are the dependence of the throughput on the speed of agent movement and communication range. Our computations reveal a hierarchical dependence for the former while, for the latter, we find an algebraic power law between the throughput and the communication range with an exponent determined by the speed. We develop a physical theory based on the Fokker-Planck equation to explain these phenomena. Our findings provide insights into complex transportation dynamics arising commonly in natural and engineering systems.

  2. Cascading Edge Failures: A Dynamic Network Process

    CERN Document Server

    Zhang, June

    2016-01-01

    This paper considers the dynamics of edges in a network. The Dynamic Bond Percolation (DBP) process models, through stochastic local rules, the dependence of an edge $(a,b)$ in a network on the states of its neighboring edges. Unlike previous models, DBP does not assume statistical independence between different edges. In applications, this means for example that failures of transmission lines in a power grid are not statistically independent, or alternatively, relationships between individuals (dyads) can lead to changes in other dyads in a social network. We consider the time evolution of the probability distribution of the network state, the collective states of all the edges (bonds), and show that it converges to a stationary distribution. We use this distribution to study the emergence of global behaviors like consensus (i.e., catastrophic failure or full recovery of the entire grid) or coexistence (i.e., some failed and some operating substructures in the grid). In particular, we show that, depending on...

  3. Competition and cooperation in dynamic replication networks.

    Science.gov (United States)

    Dadon, Zehavit; Wagner, Nathaniel; Alasibi, Samaa; Samiappan, Manickasundaram; Mukherjee, Rakesh; Ashkenasy, Gonen

    2015-01-07

    The simultaneous replication of six coiled-coil peptide mutants by reversible thiol-thioester exchange reactions is described. Experimental analysis of the time dependent evolution of networks formed by the peptides under different conditions reveals a complex web of molecular interactions and consequent mutant replication, governed by competition for resources and by autocatalytic and/or cross-catalytic template-assisted reactions. A kinetic model, first of its kind, is then introduced, allowing simulation of varied network behaviour as a consequence of changing competition and cooperation scenarios. We suggest that by clarifying the kinetic description of these relatively complex dynamic networks, both at early stages of the reaction far from equilibrium and at later stages approaching equilibrium, one lays the foundation for studying dynamic networks out-of-equilibrium in the near future.

  4. Dynamical and bursty interactions in social networks

    CERN Document Server

    Stehle, Juliette; Bianconi, Ginestra

    2010-01-01

    We present a modeling framework for dynamical and bursty contact networks made of agents in social interaction. We consider agents' behavior at short time scales, in which the contact network is formed by disconnected cliques of different sizes. At each time a random agent can make a transition from being isolated to being part of a group, or vice-versa. Different distributions of contact times and inter-contact times between individuals are obtained by considering transition probabilities with memory effects, i.e. the transition probabilities for each agent depend both on its state (isolated or interacting) and on the time elapsed since the last change of state. The model lends itself to analytical and numerical investigations. The modeling framework can be easily extended, and paves the way for systematic investigations of dynamical processes occurring on rapidly evolving dynamical networks, such as the propagation of an information, or spreading of diseases.

  5. Dynamic queuing transmission model for dynamic network loading

    DEFF Research Database (Denmark)

    Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2017-01-01

    This paper presents a new macroscopic multi-class dynamic network loading model called Dynamic Queuing Transmission Model (DQTM). The model utilizes ‘good’ properties of the Dynamic Queuing Model (DQM) and the Link Transmission Model (LTM) by offering a DQM consistent with the kinematic wave theory...... and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...

  6. The transformation of trust in China's alternative food networks: disruption, reconstruction, and development

    Directory of Open Access Journals (Sweden)

    Raymond Yu. Wang

    2015-06-01

    Full Text Available Food safety issues in China have received much scholarly attention, yet few studies systematically examined this matter through the lens of trust. More importantly, little is known about the transformation of different types of trust in the dynamic process of food production, provision, and consumption. We consider trust as an evolving interdependent relationship between different actors. We used the Beijing County Fair, a prominent ecological farmers' market in China, as an example to examine the transformation of trust in China's alternative food networks. We argue that although there has been a disruption of institutional trust among the general public since 2008 when the melamine-tainted milk scandal broke out, reconstruction of individual trust and development of organizational trust have been observed, along with the emergence and increasing popularity of alternative food networks. Based on more than six months of fieldwork on the emerging ecological agriculture sector in 13 provinces across China as well as monitoring of online discussions and posts, we analyze how various social factors - including but not limited to direct and indirect reciprocity, information, endogenous institutions, and altruism - have simultaneously contributed to the transformation of trust in China's alternative food networks. The findings not only complement current social theories of trust, but also highlight an important yet understudied phenomenon whereby informal social mechanisms have been partially substituting for formal institutions and gradually have been building trust against the backdrop of the food safety crisis in China.

  7. Dynamical behavior of disordered spring networks

    OpenAIRE

    Yucht, M. G.; Sheinman, M.; Broedersz, C. P.

    2013-01-01

    We study the dynamical rheology of spring networks with a percolation model constructed by bond dilution in a two-dimensional triangular lattice. Hydrodynamic interactions are implemented by a Stokesian viscous coupling between the network nodes and a uniformly deforming liquid. Our simulations show that in a critical connectivity regime, these systems display weak power law rheology in which the complex shear modulus scales with frequency as G^* ~ (i * omega)^Delta where Delta = 0.41, in dis...

  8. Dynamics of Abusive IPv6 Networks

    Science.gov (United States)

    2014-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DYNAMICS OF ABUSIVE IPV6 NETWORKS by Mark J. Turner September 2014 Thesis Advisor: Robert... IPV6 NETWORKS 5. FUNDING NUMBERS CNS-1111445 6. AUTHOR(S) Mark J. Turner 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School... IPv6 . As IPv6 becomes more commonplace, it permits abusive and malicious parties to exploit both new and existing vulnerabilities. Among such

  9. Dynamic Protection of Optical Networks

    DEFF Research Database (Denmark)

    Ruepp, Sarah Renée

    2008-01-01

    This thesis deals with making optical networks resilient to failures. The recovery performance of path, segment and span restoration is evaluated in a network with limited wavelength conversion capability using both standard and enhanced wavelength assignment schemes. The enhanced wavelength...... assignment scheme is based on the Suggested Vector (SV), which is a Generalized Multi-Protocol Label Switching (GMPLS) compliant signalling extension aiming at wavelength conversion minimization. To increase the recovery percentage, two modifcations of the signalling session are proposed and evaluated...... through simulation. By resolving wavelength contention, the blocking reduction scheme reduces the number of necessary recovery retries and thereby the restoration time and control plane load. The stub-awareness schemes avoids wavelength conversions when merging the restoration segment to the connection...

  10. Spreading dynamics in complex networks

    CERN Document Server

    Pei, Sen

    2013-01-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from the epidemic control, innovation diffusion, viral marketing, social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community -- LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in LiveJournal social network, only a small fraction of them involve in spreading. For the spreading processes in Li...

  11. Hydrogen application dynamics and networks

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)

    2010-12-30

    The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)

  12. Dynamics in online social networks

    CERN Document Server

    Grabowicz, Przemyslaw A; Eguiluz, Victor M

    2012-01-01

    An increasing number of today's social interactions occurs using online social media as communication channels. Some online social networks have become extremely popular in the last decade. They differ among themselves in the character of the service they provide to online users. For instance, Facebook can be seen mainly as a platform for keeping in touch with close friends and relatives, Twitter is used to propagate and receive news, LinkedIn facilitates the maintenance of professional contacts, Flickr gathers amateurs and professionals of photography, etc. Albeit different, all these online platforms share an ingredient that pervades all their applications. There exists an underlying social network that allows their users to keep in touch with each other and helps to engage them in common activities or interactions leading to a better fulfillment of the service's purposes. This is the reason why these platforms share a good number of functionalities, e.g., personal communication channels, broadcasted status...

  13. Network-Configurations of Dynamic Friction Patterns

    CERN Document Server

    Ghaffari, H O

    2012-01-01

    The complex configurations of dynamic friction patterns-regarding real time contact areas- are transformed into appropriate networks. With this transformation of a system to network space, many properties can be inferred about the structure and dynamics of the system. Here, we analyze the dynamics of static friction, i.e. nucleation processes, with respect to "friction networks". We show that networks can successfully capture the crack-like shear ruptures and possible corresponding acoustic features. We found that the fraction of triangles remarkably scales with the detachment fronts. There is a universal power law between nodes' degree and motifs frequency (for triangles, it reads T(k)\\proptok{\\beta} ({\\beta} \\approx2\\pm0.4)). We confirmed the obtained universality in aperture-based friction networks. Based on the achieved results, we extracted a possible friction law in terms of network parameters and compared it with the rate and state friction laws. In particular, the evolutions of loops are scaled with p...

  14. Failure and recovery in dynamical networks

    Science.gov (United States)

    Böttcher, L.; Luković, M.; Nagler, J.; Havlin, S.; Herrmann, H. J.

    2017-01-01

    Failure, damage spread and recovery crucially underlie many spatially embedded networked systems ranging from transportation structures to the human body. Here we study the interplay between spontaneous damage, induced failure and recovery in both embedded and non-embedded networks. In our model the network’s components follow three realistic processes that capture these features: (i) spontaneous failure of a component independent of the neighborhood (internal failure), (ii) failure induced by failed neighboring nodes (external failure) and (iii) spontaneous recovery of a component. We identify a metastable domain in the global network phase diagram spanned by the model’s control parameters where dramatic hysteresis effects and random switching between two coexisting states are observed. This dynamics depends on the characteristic link length of the embedded system. For the Euclidean lattice in particular, hysteresis and switching only occur in an extremely narrow region of the parameter space compared to random networks. We develop a unifying theory which links the dynamics of our model to contact processes. Our unifying framework may help to better understand controllability in spatially embedded and random networks where spontaneous recovery of components can mitigate spontaneous failure and damage spread in dynamical networks. PMID:28155876

  15. Dynamic Dilution Effects in Polymeric Networks

    DEFF Research Database (Denmark)

    Skov, Anne Ladegaard; Sommer-Larsen, Peter; Hassager, Ole

    2006-01-01

    processes, namely the reptation of linear species within the network and the arm withdrawal process of star arms in the sol fraction and of dangling single-chain ends attached to the network. The relaxation spectra are influenced by the stoichiometry to a large extent due to dynamic dilution effects caused...... by the change in the amount of dangling arms and solubles with stoichiometry. The star arm relaxation is suppressed by washing out the sol fraction which is seen as a clear example of the dynamic dilution effect arising from the small amount of non-reactive PDMS....

  16. Dynamics of High-Resolution Networks

    DEFF Research Database (Denmark)

    Sekara, Vedran

    NETWORKS are everywhere. From the smallest confines of the cells within our bodies to the webs of social relations across the globe. Networks are not static, they constantly change, adapt, and evolve to suit new conditions. In order to understand the fundamental laws that govern networks we need...... the unprecedented amounts of information collected by mobile phones to gain detailed insight into the dynamics of social systems. This dissertation presents an unparalleled data collection campaign, collecting highly detailed traces for approximately 1000 people over the course of multiple years. The availability...

  17. Eigenvector dynamics under perturbation of modular networks

    CERN Document Server

    Sarkar, Somwrita; Robinson, Peter A; Fortunato, Santo

    2015-01-01

    Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of $q$ communities, the number of eigenvectors corresponding to the $q$ largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way. A general derivation for the theoretical detectability limit for sparse modular networks with $q$ communities is presented, beyond which modularity persists in the system but cannot be detected, and estimation results are shown to hold right to this limit.

  18. Comparative Genome-Scale Reconstruction of Gapless Metabolic Networks for Present and Ancestral Species

    Science.gov (United States)

    Pitkänen, Esa; Jouhten, Paula; Hou, Jian; Syed, Muhammad Fahad; Blomberg, Peter; Kludas, Jana; Oja, Merja; Holm, Liisa; Penttilä, Merja; Rousu, Juho; Arvas, Mikko

    2014-01-01

    We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/. PMID:24516375

  19. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species.

    Directory of Open Access Journals (Sweden)

    Esa Pitkänen

    2014-02-01

    Full Text Available We introduce a novel computational approach, CoReCo, for comparative metabolic reconstruction and provide genome-scale metabolic network models for 49 important fungal species. Leveraging on the exponential growth in sequenced genome availability, our method reconstructs genome-scale gapless metabolic networks simultaneously for a large number of species by integrating sequence data in a probabilistic framework. High reconstruction accuracy is demonstrated by comparisons to the well-curated Saccharomyces cerevisiae consensus model and large-scale knock-out experiments. Our comparative approach is particularly useful in scenarios where the quality of available sequence data is lacking, and when reconstructing evolutionary distant species. Moreover, the reconstructed networks are fully carbon mapped, allowing their use in 13C flux analysis. We demonstrate the functionality and usability of the reconstructed fungal models with computational steady-state biomass production experiment, as these fungi include some of the most important production organisms in industrial biotechnology. In contrast to many existing reconstruction techniques, only minimal manual effort is required before the reconstructed models are usable in flux balance experiments. CoReCo is available at http://esaskar.github.io/CoReCo/.

  20. An automated algorithm for the generation of dynamically reconstructed trajectories

    Science.gov (United States)

    Komalapriya, C.; Romano, M. C.; Thiel, M.; Marwan, N.; Kurths, J.; Kiss, I. Z.; Hudson, J. L.

    2010-03-01

    The lack of long enough data sets is a major problem in the study of many real world systems. As it has been recently shown [C. Komalapriya, M. Thiel, M. C. Romano, N. Marwan, U. Schwarz, and J. Kurths, Phys. Rev. E 78, 066217 (2008)], this problem can be overcome in the case of ergodic systems if an ensemble of short trajectories is available, from which dynamically reconstructed trajectories can be generated. However, this method has some disadvantages which hinder its applicability, such as the need for estimation of optimal parameters. Here, we propose a substantially improved algorithm that overcomes the problems encountered by the former one, allowing its automatic application. Furthermore, we show that the new algorithm not only reproduces the short term but also the long term dynamics of the system under study, in contrast to the former algorithm. To exemplify the potential of the new algorithm, we apply it to experimental data from electrochemical oscillators and also to analyze the well-known problem of transient chaotic trajectories.

  1. Vascular Dynamics Aid a Coupled Neurovascular Network Learn Sparse Independent Features: A Computational Model.

    Science.gov (United States)

    Philips, Ryan T; Chhabria, Karishma; Chakravarthy, V Srinivasa

    2016-01-01

    Cerebral vascular dynamics are generally thought to be controlled by neural activity in a unidirectional fashion. However, both computational modeling and experimental evidence point to the feedback effects of vascular dynamics on neural activity. Vascular feedback in the form of glucose and oxygen controls neuronal ATP, either directly or via the agency of astrocytes, which in turn modulates neural firing. Recently, a detailed model of the neuron-astrocyte-vessel system has shown how vasomotion can modulate neural firing. Similarly, arguing from known cerebrovascular physiology, an approach known as "hemoneural hypothesis" postulates functional modulation of neural activity by vascular feedback. To instantiate this perspective, we present a computational model in which a network of "vascular units" supplies energy to a neural network. The complex dynamics of the vascular network, modeled by a network of oscillators, turns neurons ON and OFF randomly. The informational consequence of such dynamics is explored in the context of an auto-encoder network. In the proposed model, each vascular unit supplies energy to a subset of hidden neurons of an autoencoder network, which constitutes its "projective field." Neurons that receive adequate energy in a given trial have reduced threshold, and thus are prone to fire. Dynamics of the vascular network are governed by changes in the reconstruction error of the auto-encoder network, interpreted as the neuronal demand. Vascular feedback causes random inactivation of a subset of hidden neurons in every trial. We observe that, under conditions of desynchronized vascular dynamics, the output reconstruction error is low and the feature vectors learnt are sparse and independent. Our earlier modeling study highlighted the link between desynchronized vascular dynamics and efficient energy delivery in skeletal muscle. We now show that desynchronized vascular dynamics leads to efficient training in an auto-encoder neural network.

  2. Structural and dynamical properties of complex networks

    Science.gov (United States)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  3. Fundamental structures of dynamic social networks.

    Science.gov (United States)

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-06

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  4. Spreading dynamics in complex networks

    Science.gov (United States)

    Pei, Sen; Makse, Hernán A.

    2013-12-01

    Searching for influential spreaders in complex networks is an issue of great significance for applications across various domains, ranging from epidemic control, innovation diffusion, viral marketing, and social movement to idea propagation. In this paper, we first display some of the most important theoretical models that describe spreading processes, and then discuss the problem of locating both the individual and multiple influential spreaders respectively. Recent approaches in these two topics are presented. For the identification of privileged single spreaders, we summarize several widely used centralities, such as degree, betweenness centrality, PageRank, k-shell, etc. We investigate the empirical diffusion data in a large scale online social community—LiveJournal. With this extensive dataset, we find that various measures can convey very distinct information of nodes. Of all the users in the LiveJournal social network, only a small fraction of them are involved in spreading. For the spreading processes in LiveJournal, while degree can locate nodes participating in information diffusion with higher probability, k-shell is more effective in finding nodes with a large influence. Our results should provide useful information for designing efficient spreading strategies in reality.

  5. Dynamic Shortest Path Monitoring in Spatial Networks

    Institute of Scientific and Technical Information of China (English)

    Shuo Shang; Lisi Chen; Zhe-Wei Wei; Dan-Huai Guo; Ji-Rong Wen

    2016-01-01

    With the increasing availability of real-time traffic information, dynamic spatial networks are pervasive nowa-days and path planning in dynamic spatial networks becomes an important issue. In this light, we propose and investigate a novel problem of dynamically monitoring shortest paths in spatial networks (DSPM query). When a traveler aims to a des-tination, his/her shortest path to the destination may change due to two reasons: 1) the travel costs of some edges have been updated and 2) the traveler deviates from the pre-planned path. Our target is to accelerate the shortest path computing in dynamic spatial networks, and we believe that this study may be useful in many mobile applications, such as route planning and recommendation, car navigation and tracking, and location-based services in general. This problem is challenging due to two reasons: 1) how to maintain and reuse the existing computation results to accelerate the following computations, and 2) how to prune the search space effectively. To overcome these challenges, filter-and-refinement paradigm is adopted. We maintain an expansion tree and define a pair of upper and lower bounds to prune the search space. A series of optimization techniques are developed to accelerate the shortest path computing. The performance of the developed methods is studied in extensive experiments based on real spatial data.

  6. The fundamental structures of dynamic social networks

    CERN Document Server

    Sekara, Vedran; Lehmann, Sune

    2015-01-01

    Networks provide a powerful mathematical framework for analyzing the structure and dynamics of complex systems (1-3). The study of group behavior has deep roots in the social science literature (4,5) and community detection is a central part of modern network science. Network communities have been found to be highly overlapping and organized in a hierarchical structure (6-9). Recent technological advances have provided a toolset for measuring the detailed social dynamics at scale (10,11). In spite of great progress, a quantitative description of the complex temporal behavior of social groups-with dynamics spanning from minute-by-minute changes to patterns expressed on the timescale of years-is still absent. Here we uncover a class of fundamental structures embedded within highly dynamic social networks. On the shortest time-scale, we find that social gatherings are fluid, with members coming and going, but organized via a stable core of individuals. We show that cores represent social contexts (9), with recur...

  7. Dynamical networks with topological self-organization

    Science.gov (United States)

    Zak, M.

    2001-01-01

    Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.

  8. Distributed dynamic load balancing in wireless networks

    NARCIS (Netherlands)

    S.C. Borst (Sem); I. Saniee; P.A. Whiting

    2007-01-01

    htmlabstractSpatial and temporal load variations, e.g. flash overloads and traffic hot spots that persist for minutes to hours, are intrinsic features of wireless networks, and give rise to potentially huge performance repercussions. Dynamic load balancing strategies provide a natural mechanism for

  9. Wireless sensor networks dynamic runtime configuration

    NARCIS (Netherlands)

    Dulman, S.O.; Hofmeijer, T.J.; Havinga, Paul J.M.

    2004-01-01

    Current Wireless Sensor Networks (WSN) use fixed layered architectures, that can be modified only at compile time. Using a non-layered architecture, which allows dynamic loading of modules and automatic reconfiguration to adapt to the surrounding environment was believed to be too resource consuming

  10. Filtering in hybrid dynamic Bayesian networks

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    2004-01-01

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used for infere...

  11. Filtering in hybrid dynamic Bayesian networks (left)

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used for infere...

  12. Filtering in hybrid dynamic Bayesian networks (center)

    DEFF Research Database (Denmark)

    Andersen, Morten Nonboe; Andersen, Rasmus Ørum; Wheeler, Kevin

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2-Time Slice DBN (2T-DBN) from (Koller & Lerner, 2000) to model fault detection in a watertank system. In (Koller & Lerner, 2000) a generic Particle Filter (PF) is used for infere...

  13. Dynamical networks with topological self-organization

    Science.gov (United States)

    Zak, M.

    2001-01-01

    Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.

  14. Dynamic multicast traffic grooming in WDM networks

    Institute of Scientific and Technical Information of China (English)

    CHENG Xiao-jun; GE Ning; FENG Chong-xi

    2006-01-01

    Dynamic multicast traffic grooming in wavelength division multiplexing (WDM) networks was analyzed to minimize networkwide costs and to increase the network resource utilization.A network model was developed for dynamic multicast traffic grooming with resource constraints and an algorithm that can provide quality of service (QoS)was proposed.The QoS is measured by the maximum number of lightpaths passing between the source and the destinations.The blocking probability of the algorithm was assessed in simulations.The results show that a higher QoS requirement results in higher blocking probability,and when the QoS requirement is low,changes in the QoS requirements have only small effects on the blocking probability.

  15. Dynamical systems on networks a tutorial

    CERN Document Server

    Porter, Mason A

    2016-01-01

    This volume is a tutorial for the study of dynamical systems on networks. It discusses both methodology and models, including spreading models for social and biological contagions. The authors focus especially on “simple” situations that are analytically tractable, because they are insightful and provide useful springboards for the study of more complicated scenarios. This tutorial, which also includes key pointers to the literature, should be helpful for junior and senior undergraduate students, graduate students, and researchers from mathematics, physics, and engineering who seek to study dynamical systems on networks but who may not have prior experience with graph theory or networks. Mason A. Porter is Professor of Nonlinear and Complex Systems at the Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, UK. He is also a member of the CABDyN Complexity Centre and a Tutorial Fellow of Somerville College. James P. Gleeson is Professor of Industrial and Appli...

  16. Power Aware Dynamic Provisioning of HPC Networks

    Energy Technology Data Exchange (ETDEWEB)

    Groves, Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grant, Ryan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Future exascale systems are under increased pressure to find power savings. The network, while it consumes a considerable amount of power is often left out of the picture when discussing total system power. Even when network power is being considered, the references are frequently a decade or older and rely on models that lack validation on modern inter- connects. In this work we explore how dynamic mechanisms of an Infiniband network save power and at what granularity we can engage these features. We explore this within the context of the host controller adapter (HCA) on the node and for the fabric, i.e. switches, using three different mechanisms of dynamic link width, frequency and disabling of links for QLogic and Mellanox systems. Our results show that while there is some potential for modest power savings, real world systems need to improved responsiveness to adjustments in order to fully leverage these savings. This page intentionally left blank.

  17. Modeling epidemics dynamics on heterogenous networks.

    Science.gov (United States)

    Ben-Zion, Yossi; Cohen, Yahel; Shnerb, Nadav M

    2010-05-21

    The dynamics of the SIS process on heterogenous networks, where different local communities are connected by airlines, is studied. We suggest a new modeling technique for travelers movement, in which the movement does not affect the demographic parameters characterizing the metapopulation. A solution to the deterministic reaction-diffusion equations that emerges from this model on a general network is presented. A typical example of a heterogenous network, the star structure, is studied in detail both analytically and using agent-based simulations. The interplay between demographic stochasticity, spatial heterogeneity and the infection dynamics is shown to produce some counterintuitive effects. In particular it was found that, while movement always increases the chance of an outbreak, it may decrease the steady-state fraction of sick individuals. The importance of the modeling technique in estimating the outcomes of a vaccination campaign is demonstrated.

  18. Dynamic analysis of biochemical network using complex network method

    Directory of Open Access Journals (Sweden)

    Wang Shuqiang

    2015-01-01

    Full Text Available In this study, the stochastic biochemical reaction model is proposed based on the law of mass action and complex network theory. The dynamics of biochemical reaction system is presented as a set of non-linear differential equations and analyzed at the molecular-scale. Given the initial state and the evolution rules of the biochemical reaction system, the system can achieve homeostasis. Compared with random graph, the biochemical reaction network has larger information capacity and is more efficient in information transmission. This is consistent with theory of evolution.

  19. Attractor dynamics of network UP states in the neocortex

    Science.gov (United States)

    Cossart, Rosa; Aronov, Dmitriy; Yuste, Rafael

    2003-05-01

    The cerebral cortex receives input from lower brain regions, and its function is traditionally considered to be processing that input through successive stages to reach an appropriate output. However, the cortical circuit contains many interconnections, including those feeding back from higher centres, and is continuously active even in the absence of sensory inputs. Such spontaneous firing has a structure that reflects the coordinated activity of specific groups of neurons. Moreover, the membrane potential of cortical neurons fluctuates spontaneously between a resting (DOWN) and a depolarized (UP) state, which may also be coordinated. The elevated firing rate in the UP state follows sensory stimulation and provides a substrate for persistent activity, a network state that might mediate working memory. Using two-photon calcium imaging, we reconstructed the dynamics of spontaneous activity of up to 1,400 neurons in slices of mouse visual cortex. Here we report the occurrence of synchronized UP state transitions (`cortical flashes') that occur in spatially organized ensembles involving small numbers of neurons. Because of their stereotyped spatiotemporal dynamics, we conclude that network UP states are circuit attractors-emergent features of feedback neural networks that could implement memory states or solutions to computational problems.

  20. Structures and Boolean Dynamics in Gene Regulatory Networks

    Science.gov (United States)

    Szedlak, Anthony

    This dissertation discusses the topological and dynamical properties of GRNs in cancer, and is divided into four main chapters. First, the basic tools of modern complex network theory are introduced. These traditional tools as well as those developed by myself (set efficiency, interset efficiency, and nested communities) are crucial for understanding the intricate topological properties of GRNs, and later chapters recall these concepts. Second, the biology of gene regulation is discussed, and a method for disease-specific GRN reconstruction developed by our collaboration is presented. This complements the traditional exhaustive experimental approach of building GRNs edge-by-edge by quickly inferring the existence of as of yet undiscovered edges using correlations across sets of gene expression data. This method also provides insight into the distribution of common mutations across GRNs. Third, I demonstrate that the structures present in these reconstructed networks are strongly related to the evolutionary histories of their constituent genes. Investigation of how the forces of evolution shaped the topology of GRNs in multicellular organisms by growing outward from a core of ancient, conserved genes can shed light upon the ''reverse evolution'' of normal cells into unicellular-like cancer states. Next, I simulate the dynamics of the GRNs of cancer cells using the Hopfield model, an infinite range spin-glass model designed with the ability to encode Boolean data as attractor states. This attractor-driven approach facilitates the integration of gene expression data into predictive mathematical models. Perturbations representing therapeutic interventions are applied to sets of genes, and the resulting deviations from their attractor states are recorded, suggesting new potential drug targets for experimentation. Finally, I extend the Hopfield model to modular networks, cyclic attractors, and complex attractors, and apply these concepts to simulations of the cell cycle

  1. Spatiotemporal monthly rainfall reconstruction via artificial neural network – case study: south of Brazil

    Directory of Open Access Journals (Sweden)

    A. O. Cardoso

    2007-04-01

    Full Text Available Climatological records users, frequently, request time series for geographical locations where there is no observed meteorological attributes. Climatological conditions of the areas or points of interest have to be calculated interpolating observations in the time of neighboring stations and climate proxy. The aim of the present work is the application of reliable and robust procedures for monthly reconstruction of precipitation time series. Time series is a special case of symbolic regression and we can use Artificial Neural Network (ANN to explore the spatiotemporal dependence of meteorological attributes. The ANN seems to be an important tool for the propagation of the related weather information to provide practical solution of uncertainties associated with interpolation, capturing the spatiotemporal structure of the data. In practice, one determines the embedding dimension of the time series attractor (delay time that determine how data are processed and uses these numbers to define the network's architecture. Meteorological attributes can be accurately predicted by the ANN model architecture: designing, training, validation and testing; the best generalization of new data is obtained when the mapping represents the systematic aspects of the data, rather capturing the specific details of the particular training set. As illustration one takes monthly total rainfall series recorded in the period 1961–2005 in the Rio Grande do Sul – Brazil. This reliable and robust reconstruction method has good performance and in particular, they were able to capture the intrinsic dynamic of atmospheric activities. The regional rainfall has been related to high-frequency atmospheric phenomena, such as El Niño and La Niña events, and low frequency phenomena, such as the Pacific Decadal Oscillation.

  2. Water dynamics in rigid ionomer networks

    Science.gov (United States)

    Osti, N. C.; Etampawala, T. N.; Shrestha, U. M.; Aryal, D.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Cornelius, C. J.; Perahia, D.

    2016-12-01

    The dynamics of water within ionic polymer networks formed by sulfonated poly(phenylene) (SPP), as revealed by quasi-elastic neutron scattering (QENS), is presented. These polymers are distinguished from other ionic macromolecules by their rigidity and therefore in their network structure. QENS measurements as a function of temperature as the fraction of ionic groups and humidity were varied have shown that the polymer molecules are immobile while absorbed water molecules remain dynamic. The water molecules occupy multiple sites, either bound or loosely constrained, and bounce between the two. With increasing temperature and hydration levels, the system becomes more dynamic. Water molecules remain mobile even at subzero temperatures, illustrating the applicability of the SPP membrane for selective transport over a broad temperature range.

  3. DYNAMIC CONGESTION CONTROL IN WDM OPTICAL NETWORK

    Directory of Open Access Journals (Sweden)

    Sangita Samajpati

    2013-02-01

    Full Text Available This paper is based on Wavelength Division Multiplexing (WDM optical networking. In this optical networking, prior to data transfer, lightpath establishment between source and destination nodes is usually carried out through a wavelength reservation protocol. This wavelength is reserved corresponding to a route between the source and destination and the route is chosen following any standard routing protocol based on shortest path. The backward reservation protocol is implemented initially. A fixed connected and weighted network is considered. The inputs of this implementation are the fixed network itself and its corresponding shortest path matrix. After this initial level of implementation, the average node usage over a time period is calculated and various thresholds for node usage are considered. Above threshold value, request arriving at that path selects its next shortest path. This concept is implemented on various wavelengths. The output represents the performance issues of dynamic congestion control.

  4. Complex Dynamics in Information Sharing Networks

    Science.gov (United States)

    Cronin, Bruce

    This study examines the roll-out of an electronic knowledge base in a medium-sized professional services firm over a six year period. The efficiency of such implementation is a key business problem in IT systems of this type. Data from usage logs provides the basis for analysis of the dynamic evolution of social networks around the depository during this time. The adoption pattern follows an "s-curve" and usage exhibits something of a power law distribution, both attributable to network effects, and network position is associated with organisational performance on a number of indicators. But periodicity in usage is evident and the usage distribution displays an exponential cut-off. Further analysis provides some evidence of mathematical complexity in the periodicity. Some implications of complex patterns in social network data for research and management are discussed. The study provides a case study demonstrating the utility of the broad methodological approach.

  5. Dynamics on modular networks with heterogeneous correlations

    Science.gov (United States)

    Melnik, Sergey; Porter, Mason A.; Mucha, Peter J.; Gleeson, James P.

    2014-06-01

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  6. Innovation networking between stability and political dynamics

    DEFF Research Database (Denmark)

    Koch, Christian

    2004-01-01

    of the contribution is to challenge and transcend these notions and develop an understanding of innovation networks as an interplay between stable and dynamic elements, where political processes in innovation are much more than a disruptive and even a counterproductive feature. It reviews the growing number......This contribution views innovation as a social activity of building networks, using software product development in multicompany alliances and networks as example. Innovation networks are frequently understood as quite stable arrangements characterised by high trust among the participants. The aim...... of studies that highlight the political aspect of innovation. The paper reports on a study of innovation processes conducted within the EU—TSER-programme and a study made under the banner of management of technology. Intensive field studies in two constellations of enterprises were carried out. One...

  7. Traffic Dynamics of Computer Networks

    CERN Document Server

    Fekete, Attila

    2008-01-01

    Two important aspects of the Internet, namely the properties of its topology and the characteristics of its data traffic, have attracted growing attention of the physics community. My thesis has considered problems of both aspects. First I studied the stochastic behavior of TCP, the primary algorithm governing traffic in the current Internet, in an elementary network scenario consisting of a standalone infinite-sized buffer and an access link. The effect of the fast recovery and fast retransmission (FR/FR) algorithms is also considered. I showed that my model can be extended further to involve the effect of link propagation delay, characteristic of WAN. I continued my thesis with the investigation of finite-sized semi-bottleneck buffers, where packets can be dropped not only at the link, but also at the buffer. I demonstrated that the behavior of the system depends only on a certain combination of the parameters. Moreover, an analytic formula was derived that gives the ratio of packet loss rate at the buffer ...

  8. Ab-initio reconstruction of complex Euclidean networks in two dimensions.

    Science.gov (United States)

    Gujarathi, S R; Farrow, C L; Glosser, C; Granlund, L; Duxbury, P M

    2014-05-01

    Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. We cast this problem as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. We present a method for reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network. The theoretical foundations of the method are based on rigidity theory, which enables derivation of a polynomial bound on its efficiency. An efficient implementation of the method is discussed and timing results indicate that the run time of the algorithm is polynomial in the number of nodes in the network. We have reconstructed Euclidean networks of about 1000 nodes in approximately 24 h on a desktop computer using this implementation. We also reconstruct Euclidean networks corresponding to polymer chains in two dimensions and planar graphene nanoparticles. We have also modified our base algorithm so that it can successfully solve random point sets when the input data are less precise.

  9. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.

    Science.gov (United States)

    Li, Yifeng; Chen, Haifen; Zheng, Jie; Ngom, Alioune

    2016-01-01

    Accurately reconstructing gene regulatory network (GRN) from gene expression data is a challenging task in systems biology. Although some progresses have been made, the performance of GRN reconstruction still has much room for improvement. Because many regulatory events are asynchronous, learning gene interactions with multiple time delays is an effective way to improve the accuracy of GRN reconstruction. Here, we propose a new approach, called Max-Min high-order dynamic Bayesian network (MMHO-DBN) by extending the Max-Min hill-climbing Bayesian network technique originally devised for learning a Bayesian network's structure from static data. Our MMHO-DBN can explicitly model the time lags between regulators and targets in an efficient manner. It first uses constraint-based ideas to limit the space of potential structures, and then applies search-and-score ideas to search for an optimal HO-DBN structure. The performance of MMHO-DBN to GRN reconstruction was evaluated using both synthetic and real gene expression time-series data. Results show that MMHO-DBN is more accurate than current time-delayed GRN learning methods, and has an intermediate computing performance. Furthermore, it is able to learn long time-delayed relationships between genes. We applied sensitivity analysis on our model to study the performance variation along different parameter settings. The result provides hints on the setting of parameters of MMHO-DBN.

  10. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  11. Dynamic relaxation in algebraic reconstruction technique (ART) for breast tomosynthesis imaging.

    Science.gov (United States)

    Oliveira, N; Mota, A M; Matela, N; Janeiro, L; Almeida, P

    2016-08-01

    A major challenge in Digital Breast Tomosynthesis (DBT) is handling image noise since the 3D reconstructed images are obtained from low dose projections and limited angular range. The use of the iterative reconstruction algorithm Algebraic Reconstruction Technique (ART) in clinical context depends on two key factors: the number of iterations needed (time consuming) and the image noise after iterations. Both factors depend highly on a relaxation coefficient (λ), which may give rise to slow or noisy reconstructions, when a single λ value is considered for the entire iterative process. The aim of this work is to present a new implementation for the ART that takes into account a dynamic mode to calculate λ in DBT image reconstruction. A set of initial reconstructions of real phantom data was done using constant λ values. The results were used to choose, for each iteration, the suitable λ value, taking into account the image noise level and the convergence speed. A methodology to optimize λ automatically during the image reconstruction was proposed. Results showed we can dynamically choose λ values in such a way that the time needed to reconstruct the images can be significantly reduced (up to 70%) while achieving similar image quality. These results were confirmed with one clinical dataset. With simple methodology we were able to dynamically choose λ in DBT image reconstruction with ART, allowing a shorter image reconstruction time without increasing image noise. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Dynamic pricing by hopfield neural network

    Institute of Scientific and Technical Information of China (English)

    Lusajo M Minga; FENG Yu-qiang(冯玉强); LI Yi-jun(李一军); LU Yang(路杨); Kimutai Kimeli

    2004-01-01

    The increase in the number of shopbots users in e-commerce has triggered flexibility of sellers in their pricing strategies. Sellers see the importance of automated price setting which provides efficient services to a large number of buyers who are using shopbots. This paper studies the characteristic of decreasing energy with time in a continuous model of a Hopfield neural network that is the decreasing of errors in the network with respect to time. The characteristic shows that it is possible to use Hopfield neural network to get the main factor of dynamic pricing; the least variable cost, from production function principles. The least variable cost is obtained by reducing or increasing the input combination factors, and then making the comparison of the network output with the desired output, where the difference between the network output and desired output will be decreasing in the same manner as in the Hopfield neural network energy. Hopfield neural network will simplify the rapid change of prices in e-commerce during transaction that depends on the demand quantity for demand sensitive model of pricing.

  13. Advances in dynamic network modeling in complex transportation systems

    CERN Document Server

    Ukkusuri, Satish V

    2013-01-01

    This book focuses on the latest in dynamic network modeling, including route guidance and traffic control in transportation systems and other complex infrastructure networks. Covers dynamic traffic assignment, flow modeling, mobile sensor deployment and more.

  14. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.

    Science.gov (United States)

    Zheng, Guangyong; Xu, Yaochen; Zhang, Xiujun; Liu, Zhi-Ping; Wang, Zhuo; Chen, Luonan; Zhu, Xin-Guang

    2016-12-23

    A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory networks, in particular, genome-scale networks, is essential for comparative exploration of different species and mechanistic investigation of biological processes. Currently, most of network inference methods are computationally intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to construct GRNs at genome-scale. Here, we present a software package for gene regulatory network reconstruction at a genomic level, in which gene interaction is measured by the conditional mutual information measurement using a parallel computing framework (so the package is named CMIP). The package is a greatly improved implementation of our previous PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period. In addition, successful application on a real genomic dataset confirms its practical applicability of the package. This new software package provides a powerful tool for genomic network reconstruction to biological community. The software can be accessed at http://www.picb.ac.cn/CMIP/ .

  15. Strategy on energy saving reconstruction of distribution networks based on life cycle cost

    Science.gov (United States)

    Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng

    2017-08-01

    Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.

  16. Population Dynamics of Genetic Regulatory Networks

    Science.gov (United States)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  17. Dynamic motifs in socio-economic networks

    Science.gov (United States)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  18. Bayesian network reconstruction using systems genetics data: comparison of MCMC methods.

    Science.gov (United States)

    Tasaki, Shinya; Sauerwine, Ben; Hoff, Bruce; Toyoshiba, Hiroyoshi; Gaiteri, Chris; Chaibub Neto, Elias

    2015-04-01

    Reconstructing biological networks using high-throughput technologies has the potential to produce condition-specific interactomes. But are these reconstructed networks a reliable source of biological interactions? Do some network inference methods offer dramatically improved performance on certain types of networks? To facilitate the use of network inference methods in systems biology, we report a large-scale simulation study comparing the ability of Markov chain Monte Carlo (MCMC) samplers to reverse engineer Bayesian networks. The MCMC samplers we investigated included foundational and state-of-the-art Metropolis-Hastings and Gibbs sampling approaches, as well as novel samplers we have designed. To enable a comprehensive comparison, we simulated gene expression and genetics data from known network structures under a range of biologically plausible scenarios. We examine the overall quality of network inference via different methods, as well as how their performance is affected by network characteristics. Our simulations reveal that network size, edge density, and strength of gene-to-gene signaling are major parameters that differentiate the performance of various samplers. Specifically, more recent samplers including our novel methods outperform traditional samplers for highly interconnected large networks with strong gene-to-gene signaling. Our newly developed samplers show comparable or superior performance to the top existing methods. Moreover, this performance gain is strongest in networks with biologically oriented topology, which indicates that our novel samplers are suitable for inferring biological networks. The performance of MCMC samplers in this simulation framework can guide the choice of methods for network reconstruction using systems genetics data.

  19. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  20. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  1. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  2. Three dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization

    DEFF Research Database (Denmark)

    Dahl, Rannvá; Larsen, Steen; Dohlmann, Tine L

    2015-01-01

    mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, since they are physically interconnected. This article is protected by copyright. All rights reserved....... reconstruction of FIB/SEM data sets shows that some subsarcolemmal mitochondria are physically interconnected with some intermyofibrillar mitochondria (Figure 3). Conclusion: Two microscopy methods to visualize skeletal muscle mitochondrial networks in 3D are described and can be used as tools to investigate...

  3. Inferring the physical connectivity of complex networks from their functional dynamics

    Directory of Open Access Journals (Sweden)

    Holm Liisa

    2010-05-01

    Full Text Available Abstract Background Biological networks, such as protein-protein interactions, metabolic, signalling, transcription-regulatory networks and neural synapses, are representations of large-scale dynamic systems. The relationship between the network structure and functions remains one of the central problems in current multidisciplinary research. Significant progress has been made toward understanding the implication of topological features for the network dynamics and functions, especially in biological networks. Given observations of a network system's behaviours or measurements of its functional dynamics, what can we conclude of the details of physical connectivity of the underlying structure? Results We modelled the network system by employing a scale-free network of coupled phase oscillators. Pairwise phase coherence (PPC was calculated for all the pairs of oscillators to present functional dynamics induced by the system. At the regime of global incoherence, we observed a Significant pairwise synchronization only between two nodes that are physically connected. Right after the onset of global synchronization, disconnected nodes begin to oscillate in a correlated fashion and the PPC of two nodes, either connected or disconnected, depends on their degrees. Based on the observation of PPCs, we built a weighted network of synchronization (WNS, an all-to-all functionally connected network where each link is weighted by the PPC of two oscillators at the ends of the link. In the regime of strong coupling, we observed a Significant similarity in the organization of WNSs induced by systems sharing the same substrate network but different configurations of initial phases and intrinsic frequencies of oscillators. We reconstruct physical network from the WNS by choosing the links whose weights are higher than a given threshold. We observed an optimal reconstruction just before the onset of global synchronization. Finally, we correlated the topology of the

  4. Personality traits and ego-network dynamics

    Science.gov (United States)

    Centellegher, Simone; López, Eduardo; Saramäki, Jari; Lepri, Bruno

    2017-01-01

    Strong and supportive social relationships are fundamental to our well-being. However, there are costs to their maintenance, resulting in a trade-off between quality and quantity, a typical strategy being to put a lot of effort on a few high-intensity relationships while maintaining larger numbers of less close relationships. It has also been shown that there are persistent individual differences in this pattern; some individuals allocate their efforts more uniformly across their networks, while others strongly focus on their closest relationships. Furthermore, some individuals maintain more stable networks than others. Here, we focus on how personality traits of individuals affect this picture, using mobile phone calls records and survey data from the Mobile Territorial Lab (MTL) study. In particular, we look at the relationship between personality traits and the (i) persistence of social signatures, namely the similarity of the social signature shape of an individual measured in different time intervals; (ii) the turnover in egocentric networks, that is, differences in the set of alters present at two consecutive temporal intervals; and (iii) the rank dynamics defined as the variation of alter rankings in egocentric networks in consecutive intervals. We observe that some traits have effects on the stability of the social signatures as well as network turnover and rank dynamics. As an example, individuals who score highly in the Openness to Experience trait tend to have higher levels of network turnover and larger alter rank variations. On broader terms, our study shows that personality traits clearly affect the ways in which individuals maintain their personal networks. PMID:28253333

  5. Personality traits and ego-network dynamics.

    Science.gov (United States)

    Centellegher, Simone; López, Eduardo; Saramäki, Jari; Lepri, Bruno

    2017-01-01

    Strong and supportive social relationships are fundamental to our well-being. However, there are costs to their maintenance, resulting in a trade-off between quality and quantity, a typical strategy being to put a lot of effort on a few high-intensity relationships while maintaining larger numbers of less close relationships. It has also been shown that there are persistent individual differences in this pattern; some individuals allocate their efforts more uniformly across their networks, while others strongly focus on their closest relationships. Furthermore, some individuals maintain more stable networks than others. Here, we focus on how personality traits of individuals affect this picture, using mobile phone calls records and survey data from the Mobile Territorial Lab (MTL) study. In particular, we look at the relationship between personality traits and the (i) persistence of social signatures, namely the similarity of the social signature shape of an individual measured in different time intervals; (ii) the turnover in egocentric networks, that is, differences in the set of alters present at two consecutive temporal intervals; and (iii) the rank dynamics defined as the variation of alter rankings in egocentric networks in consecutive intervals. We observe that some traits have effects on the stability of the social signatures as well as network turnover and rank dynamics. As an example, individuals who score highly in the Openness to Experience trait tend to have higher levels of network turnover and larger alter rank variations. On broader terms, our study shows that personality traits clearly affect the ways in which individuals maintain their personal networks.

  6. Traffic chaotic dynamics modeling and analysis of deterministic network

    Science.gov (United States)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  7. Network Reconstruction and Systems Analysis of Cardiac Myocyte Hypertrophy Signaling*

    Science.gov (United States)

    Ryall, Karen A.; Holland, David O.; Delaney, Kyle A.; Kraeutler, Matthew J.; Parker, Audrey J.; Saucerman, Jeffrey J.

    2012-01-01

    Cardiac hypertrophy is managed by a dense web of signaling pathways with many pathways influencing myocyte growth. A quantitative understanding of the contributions of individual pathways and their interactions is needed to better understand hypertrophy signaling and to develop more effective therapies for heart failure. We developed a computational model of the cardiac myocyte hypertrophy signaling network to determine how the components and network topology lead to differential regulation of transcription factors, gene expression, and myocyte size. Our computational model of the hypertrophy signaling network contains 106 species and 193 reactions, integrating 14 established pathways regulating cardiac myocyte growth. 109 of 114 model predictions were validated using published experimental data testing the effects of receptor activation on transcription factors and myocyte phenotypic outputs. Network motif analysis revealed an enrichment of bifan and biparallel cross-talk motifs. Sensitivity analysis was used to inform clustering of the network into modules and to identify species with the greatest effects on cell growth. Many species influenced hypertrophy, but only a few nodes had large positive or negative influences. Ras, a network hub, had the greatest effect on cell area and influenced more species than any other protein in the network. We validated this model prediction in cultured cardiac myocytes. With this integrative computational model, we identified the most influential species in the cardiac hypertrophy signaling network and demonstrate how different levels of network organization affect myocyte size, transcription factors, and gene expression. PMID:23091058

  8. Dynamic Trust Management for Mobile Networks and Its Applications

    Science.gov (United States)

    Bao, Fenye

    2013-01-01

    Trust management in mobile networks is challenging due to dynamically changing network environments and the lack of a centralized trusted authority. In this dissertation research, we "design" and "validate" a class of dynamic trust management protocols for mobile networks, and demonstrate the utility of dynamic trust management…

  9. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  10. Enhanced Route Re-Construction Method for Associativity Based Routing Protocol for Mobile Ad hoc NETworks (MANET

    Directory of Open Access Journals (Sweden)

    Fawaz A.M. Masoud

    2006-01-01

    Full Text Available A mobile Ad-hoc NETwork (MANET is wireless network composed of mobile nodes that are dynamically and randomly located in such a manner that the interconnections between nodes are capable of changing on a continual basis. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad-hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction and maintenance should be done with a minimum of overhead and bandwidth consumption. The ABR is a source-initiated protocol and is working on the assumption of stable route from the source to the destination node. Maintenance for the route when the destination node moves will be performed in backtracking scheme starting from the immediate upstream node from the destination. If this process results in backtracking more than halfway to the source, it will discontinue and a new route request will be initiated from the source. In the case if the Source Node moves, then the Source Node will invoke a route reconstruction because the ABR is source-initiated protocol. This study presents an enhanced method for the route re-construction in case the source, the intermediate, or the destination node changes its location by giving more active role to the moving node in maintaining the established route.

  11. Sequential reconstruction of driving-forces from nonlinear nonstationary dynamics

    Science.gov (United States)

    Güntürkün, Ulaş

    2010-07-01

    This paper describes a functional analysis-based method for the estimation of driving-forces from nonlinear dynamic systems. The driving-forces account for the perturbation inputs induced by the external environment or the secular variations in the internal variables of the system. The proposed algorithm is applicable to the problems for which there is too little or no prior knowledge to build a rigorous mathematical model of the unknown dynamics. We derive the estimator conditioned on the differentiability of the unknown system’s mapping, and smoothness of the driving-force. The proposed algorithm is an adaptive sequential realization of the blind prediction error method, where the basic idea is to predict the observables, and retrieve the driving-force from the prediction error. Our realization of this idea is embodied by predicting the observables one-step into the future using a bank of echo state networks (ESN) in an online fashion, and then extracting the raw estimates from the prediction error and smoothing these estimates in two adaptive filtering stages. The adaptive nature of the algorithm enables to retrieve both slowly and rapidly varying driving-forces accurately, which are illustrated by simulations. Logistic and Moran-Ricker maps are studied in controlled experiments, exemplifying chaotic state and stochastic measurement models. The algorithm is also applied to the estimation of a driving-force from another nonlinear dynamic system that is stochastic in both state and measurement equations. The results are judged by the posterior Cramer-Rao lower bounds. The method is finally put into test on a real-world application; extracting sun’s magnetic flux from the sunspot time series.

  12. Study of the structure and dynamics of complex biological networks

    Science.gov (United States)

    Samal, Areejit

    2008-12-01

    In this thesis, we have studied the large scale structure and system level dynamics of certain biological networks using tools from graph theory, computational biology and dynamical systems. We study the structure and dynamics of large scale metabolic networks inside three organisms, Escherichia coli, Saccharomyces cerevisiae and Staphylococcus aureus. We also study the dynamics of the large scale genetic network controlling E. coli metabolism. We have tried to explain the observed system level dynamical properties of these networks in terms of their underlying structure. Our studies of the system level dynamics of these large scale biological networks provide a different perspective on their functioning compared to that obtained from purely structural studies. Our study also leads to some new insights on features such as robustness, fragility and modularity of these large scale biological networks. We also shed light on how different networks inside the cell such as metabolic networks and genetic networks are interrelated to each other.

  13. A network-based dynamical ranking system

    CERN Document Server

    Motegi, Shun

    2012-01-01

    Ranking players or teams in sports is of practical interests. From the viewpoint of networks, a ranking system is equivalent a centrality measure for sports networks, whereby a directed link represents the result of a single game. Previously proposed network-based ranking systems are derived from static networks, i.e., aggregation of the results of games over time. However, the score (i.e., strength) of a player, for example, depends on time. Defeating a renowned player in the peak performance is intuitively more rewarding than defeating the same player in other periods. To account for this factor, we propose a dynamic variant of such a network-based ranking system and apply it to professional men's tennis data. Our ranking system, also interpreted as a centrality measure for directed temporal networks, has two parameters. One parameter represents the exponential decay rate of the past score, and the other parameter controls the effect of indirect wins on the score. We derive a set of linear online update equ...

  14. Reconstruction of neutron spectra through neural networks; Reconstruccion de espectros de neutrones mediante redes neuronales

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E. [Cuerpo Academico de Radiobiologia, Estudios Nucleares, Universidad Autonoma de Zacatecas, A.P. 336, 98000 Zacatecas (Mexico)] e-mail: rvega@cantera.reduaz.mx [and others

    2003-07-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  15. Physical Proximity and Spreading in Dynamic Social Networks

    CERN Document Server

    Stopczynski, Arkadiusz; Lehmann, Sune

    2015-01-01

    Most infectious diseases spread on a dynamic network of human interactions. Recent studies of social dynamics have provided evidence that spreading patterns may depend strongly on detailed micro-dynamics of the social system. We have recorded every single interaction within a large population, mapping out---for the first time at scale---the complete proximity network for a densely-connected system. Here we show the striking impact of interaction-distance on the network structure and dynamics of spreading processes. We create networks supporting close (intimate network, up to ~1m) and longer distance (ambient network, up to ~10m) modes of transmission. The intimate network is fragmented, with weak ties bridging densely-connected neighborhoods, whereas the ambient network supports spread driven by random contacts between strangers. While there is no trivial mapping from the micro-dynamics of proximity networks to empirical epidemics, these networks provide a telling approximation of droplet and airborne modes o...

  16. Programming the dynamics of biochemical reaction networks.

    Science.gov (United States)

    Simmel, Friedrich C

    2013-01-22

    The development of complex self-organizing molecular systems for future nanotechnology requires not only robust formation of molecular structures by self-assembly but also precise control over their temporal dynamics. As an exquisite example of such control, in this issue of ACS Nano, Fujii and Rondelez demonstrate a particularly compact realization of a molecular "predator-prey" ecosystem consisting of only three DNA species and three enzymes. The system displays pronounced oscillatory dynamics, in good agreement with the predictions of a simple theoretical model. Moreover, its considerable modularity also allows for ecological studies of competition and cooperation within molecular networks.

  17. Orthotropic conductivity reconstruction with virtual-resistive network and Faraday's law

    KAUST Repository

    Lee, Min-Gi

    2015-06-01

    We obtain the existence and the uniqueness at the same time in the reconstruction of orthotropic conductivity in two-space dimensions by using two sets of internal current densities and boundary conductivity. The curl-free equation of Faraday\\'s law is taken instead of the elliptic equation in a divergence form that is typically used in electrical impedance tomography. A reconstruction method based on layered bricks-type virtual-resistive network is developed to reconstruct orthotropic conductivity with up to 40% multiplicative noise.

  18. Evolutionary epistemology and dynamical virtual learning networks.

    Science.gov (United States)

    Giani, Umberto

    2004-01-01

    This paper is an attempt to define the main features of a new educational model aimed at satisfying the needs of a rapidly changing society. The evolutionary epistemology paradigm of culture diffusion in human groups could be the conceptual ground for the development of this model. Multidimensionality, multi-disciplinarity, complexity, connectivity, critical thinking, creative thinking, constructivism, flexible learning, contextual learning, are the dimensions that should characterize distance learning models aimed at increasing the epistemological variability of learning communities. Two multimedia educational software, Dynamic Knowledge Networks (DKN) and Dynamic Virtual Learning Networks (DVLN) are described. These two complementary tools instantiate these dimensions, and were tested in almost 150 online courses. Even if the examples are framed in the medical context, the analysis of the shortcomings of the traditional educational systems and the proposed solutions can be applied to the vast majority of the educational contexts.

  19. River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches

    Science.gov (United States)

    Sivakumar, B.; Jayawardena, A. W.; Fernando, T. M. K. G.

    2002-08-01

    The use of two non-linear black-box approaches, phase-space reconstruction (PSR) and artificial neural networks (ANN), for forecasting river flow dynamics is studied and a comparison of their performances is made. This is done by attempting 1-day and 7-day ahead forecasts of the daily river flow from the Nakhon Sawan station at the Chao Phraya River basin in Thailand. The results indicate a reasonably good performance of both approaches for both 1-day and 7-day ahead forecasts. However, the performance of the PSR approach is found to be consistently better than that of ANN. One reason for this could be that in the PSR approach the flow series in the phase-space is represented step by step in local neighborhoods, rather than a global approximation as is done in ANN. Another reason could be the use of the multi-layer perceptron (MLP) in ANN, since MLPs may not be most appropriate for forecasting at longer lead times. The selection of training set for the ANN may also contribute to such results. A comparison of the optimal number of variables for capturing the flow dynamics, as identified by the two approaches, indicates a large discrepancy in the case of 7-day ahead forecasts (1 and 7 variables, respectively), though for 1-day ahead forecasts it is found to be consistent (3 variables). A possible explanation for this could be the influence of noise in the data, an observation also made from the 1-day ahead forecast results using the PSR approach. The present results lead to observation on: (1) the use of other neural networks for runoff forecasting, particularly at longer lead times; (2) the influence of training set used in the ANN; and (3) the effect of noise on forecast accuracy, particularly in the PSR approach.

  20. Patellofemoral Pressure Changes After Static and Dynamic Medial Patellofemoral Ligament Reconstructions

    NARCIS (Netherlands)

    Rood, A.; Hannink, G.; Lenting, A.; Groenen, K.; Koeter, S.; Verdonschot, N.J.; Kampen, A. van

    2015-01-01

    BACKGROUND: Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixa

  1. Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions

    NARCIS (Netherlands)

    Rood, A.; Hannink, G.; Lenting, A.; Groenen, K.; Koëter, S.; Verdonschot, N.J.J.; Kampen, van A.

    2015-01-01

    Background: Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixa

  2. Message Passing for Dynamic Network Energy Management

    CERN Document Server

    Kraning, Matt; Lavaei, Javad; Boyd, Stephen

    2012-01-01

    We consider a network of devices, such as generators, fixed loads, deferrable loads, and storage devices, each with its own dynamic constraints and objective, connected by lossy capacitated lines. The problem is to minimize the total network objective subject to the device and line constraints, over a given time horizon. This is a large optimization problem, with variables for consumption or generation in each time period for each device. In this paper we develop a decentralized method for solving this problem. The method is iterative: At each step, each device exchanges simple messages with its neighbors in the network and then solves its own optimization problem, minimizing its own objective function, augmented by a term determined by the messages it has received. We show that this message passing method converges to a solution when the device objective and constraints are convex. The method is completely decentralized, and needs no global coordination other than synchronizing iterations; the problems to be...

  3. Dynamic Spectrum Leasing to Cooperating Secondary Networks

    CERN Document Server

    Li, Cuilian

    2008-01-01

    We propose and analyze a dynamic implementation of the property-rights model of cognitive radio, whereby a primary link has the possibility to lease the owned spectrum to a MAC network of secondary nodes in exchange for cooperation in the form of distributed space-time coding. On one hand, the primary link attempts to maximize its quality of service in terms of Signal-to-interference-plus-noise ratio (SINR), accounting for the possible contribution from cooperation. On the other hand, nodes in the secondary network compete among themselves for transmission within the leased time-slot following a distributed heterogeneous opportunistic power control mechanism. The cooperation and competition between the primary and secondary network are cast in the framework of sequential game. We give consider both a baseline model with complete information and a more practical version with incomplete information, Using the backward induction approach for the former and providing approximating algorithm for the latter. Analys...

  4. Eigenvector dynamics under perturbation of modular networks

    Science.gov (United States)

    Sarkar, Somwrita; Chawla, Sanjay; Robinson, P. A.; Fortunato, Santo

    2016-06-01

    Rotation dynamics of eigenvectors of modular network adjacency matrices under random perturbations are presented. In the presence of q communities, the number of eigenvectors corresponding to the q largest eigenvalues form a "community" eigenspace and rotate together, but separately from that of the "bulk" eigenspace spanned by all the other eigenvectors. Using this property, the number of modules or clusters in a network can be estimated in an algorithm-independent way. A general argument and derivation for the theoretical detectability limit for sparse modular networks with q communities is presented, beyond which modularity persists in the system but cannot be detected. It is shown that for detecting the clusters or modules using the adjacency matrix, there is a "band" in which it is hard to detect the clusters even before the theoretical detectability limit is reached, and for which the theoretically predicted detectability limit forms the sufficient upper bound. Analytic estimations of these bounds are presented and empirically demonstrated.

  5. Information spreading on dynamic social networks

    CERN Document Server

    Liu, Chuang

    2012-01-01

    Nowadays, information spreading on social networks has triggered an explosive attention in various disciplines. Most of previous related works in this area mainly focus on discussing the effects of spreading probability or immunization strategy on static networks. However, in real systems, the peer-to-peer network structure changes constantly according to frequently social activities of users. In order to capture this dynamical property and study its impact on information spreading, in this Letter, a link rewiring strategy based on the Fermi function is introduced. In the present model, the informed individuals tend to break old links and reconnect to ones with more uninformed neighbors. Simulation results on the susceptible-infected (\\textit{SI}) model with non-redundancy contacts indicate that the information spread more faster and broader with the rewiring strategy. Extensive analyses of the information cascading show that the spreading process of the initial steps plays a very important role, that is to s...

  6. Time-Varying Graphs and Dynamic Networks

    CERN Document Server

    Casteigts, Arnaud; Quattrociocchi, Walter; Santoro, Nicola

    2010-01-01

    The past few years have seen intensive research efforts carried out in some apparently unrelated areas of dynamic systems -- delay-tolerant networks, opportunistic-mobility networks, social networks -- obtaining closely related insights. Indeed, the concepts discovered in these investigations can be viewed as parts of the same conceptual universe; and the formal models proposed so far to express some specific concepts can be viewed as fragments of a larger formal description of this universe. The main contribution of this paper is to integrate the existing partial models proposed in the literature into a unified framework, which we call TVG (for time-varying graphs). Using this framework, it is possible to express directly in the same formalism not only the concepts common to all those different areas, but also those specific to each. As part of the framework definition, we identify a hierarchy of classes of TVGs, defined with respects to basic properties to which correspond necessary conditions and impossibi...

  7. Dynamic Network Analysis for Robust Uncertainty Management

    Science.gov (United States)

    2010-03-01

    kpc , kgc are controller gains and A" is a constant skew symmetric matrix. Please see [11] for more details on the potential and gyroscropic...distilled from the study of statistical physics such as the small-world and the scale-free network (10,11), begin to see their application in gene ...dynamics of the nuclear factor NFKB, which regulates various genes important for pathogen or cytokine inflammation, immune re- 4 170 B.6. UNFOLDING

  8. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases with the stren...... cortex. Finally, an extension of the model to describe an orientation hypercolumn provides understanding of how cortical interactions sharpen orientation tuning, in a way that is consistent with observed firing statistics...

  9. Synchronization of coupled chaotic dynamics on networks

    Indian Academy of Sciences (India)

    R E Amritkar; Sarika Jalan

    2005-03-01

    We review some recent work on the synchronization of coupled dynamical systems on a variety of networks. When nodes show synchronized behaviour, two interesting phenomena can be observed. First, there are some nodes of the floating type that show intermittent behaviour between getting attached to some clusters and evolving independently. Secondly, two different ways of cluster formation can be identified, namely self-organized clusters which have mostly intra-cluster couplings and driven clusters which have mostly inter-cluster couplings.

  10. Neural Networks in Chemical Reaction Dynamics

    CERN Document Server

    Raff, Lionel; Hagan, Martin

    2011-01-01

    This monograph presents recent advances in neural network (NN) approaches and applications to chemical reaction dynamics. Topics covered include: (i) the development of ab initio potential-energy surfaces (PES) for complex multichannel systems using modified novelty sampling and feedforward NNs; (ii) methods for sampling the configuration space of critical importance, such as trajectory and novelty sampling methods and gradient fitting methods; (iii) parametrization of interatomic potential functions using a genetic algorithm accelerated with a NN; (iv) parametrization of analytic interatomic

  11. Dynamics of living phytoplankton: Implications for paleoenvironmental reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, A B [Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)], E-mail: abarbosa@ualg.pt

    2009-01-01

    Phytoplankton is the dominant primary producer in aquatic ecosystems and is considered a gauge of ecological condition and change. Some phytoplankton groups, namely diatoms, dinoflagellates, and coccolithophores, produce morphological or chemical fossils that can be used for paleoenvironmental reconstruction. This study aims to review the processes that regulate dynamics in living phytoplankton and to highlight how this knowledge is used in paleoecological studies. The distribution patterns of phytoplankton in present-day aquatic ecosystems are shaped by the interplay between processes that regulate cell growth and cell death. Cell growth and cell death are regulated by the internal environment of phytoplankton (e.g., specific environmental tolerances, resource uptake properties, cell size, density and morphology, alternative nutritional strategies such as mixotrophy or N{sub 2} uptake, motility, intracellular storage capacities, grazing resistance properties), and by its external environment. The external environment includes variables dependent on the availability of resources (e.g., light intensity, concentration of CO{sub 2} and dissolved inorganic macronutrients and micronutrients, availability of living prey in case of mixotrophs) and variables independent of resources (e.g., temperature, salinity, turbulence, ultraviolet radiation, bioactive compounds, activity of grazers, viruses, and eukaryotic parasites). The importance of recently described loss processes, such as grazing by phagotrophic protists, viral lyses, and programmed cell death, is discussed in the context of its potential impact upon phytoplankton vertical fluxes. Examples of the use of different phytoplankton metrics (e.g. abundance, species composition, species morphology, and elemental composition) to infer contemporaneous as well as past environmental and ecological conditions are critically evaluated.

  12. Dynamic congestion control mechanisms for MPLS networks

    Science.gov (United States)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  13. Gene Regulatory Network Reconstruction Using Conditional Mutual Information

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2008-06-01

    Full Text Available The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and coregulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.

  14. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    Science.gov (United States)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  15. Dynamic Pathloss Model for Future Mobile Communication Networks

    DEFF Research Database (Denmark)

    Kumar, Ambuj; Mihovska, Albena Dimitrova; Prasad, Ramjee

    2016-01-01

    — Future mobile communication networks (MCNs) are expected to be more intelligent and proactive based on new capabilities that increase agility and performance. However, for any successful mobile network service, the dexterity in network deployment is a key factor. The efficiency of the network...... that incorporates the environmental dynamics factor in the propagation model for intelligent and proactively iterative networks...

  16. Reconstruction of biological networks based on life science data integration

    OpenAIRE

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-01-01

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and V...

  17. Dynamic network structure of interhemispheric coordination.

    Science.gov (United States)

    Doron, Karl W; Bassett, Danielle S; Gazzaniga, Michael S

    2012-11-13

    Fifty years ago Gazzaniga and coworkers published a seminal article that discussed the separate roles of the cerebral hemispheres in humans. Today, the study of interhemispheric communication is facilitated by a battery of novel data analysis techniques drawn from across disciplinary boundaries, including dynamic systems theory and network theory. These techniques enable the characterization of dynamic changes in the brain's functional connectivity, thereby providing an unprecedented means of decoding interhemispheric communication. Here, we illustrate the use of these techniques to examine interhemispheric coordination in healthy human participants performing a split visual field experiment in which they process lexical stimuli. We find that interhemispheric coordination is greater when lexical information is introduced to the right hemisphere and must subsequently be transferred to the left hemisphere for language processing than when it is directly introduced to the language-dominant (left) hemisphere. Further, we find that putative functional modules defined by coherent interhemispheric coordination come online in a transient manner, highlighting the underlying dynamic nature of brain communication. Our work illustrates that recently developed dynamic, network-based analysis techniques can provide novel and previously unapproachable insights into the role of interhemispheric coordination in cognition.

  18. Dynamics of the ethanolamine glycerophospholipid remodeling network.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1 sn1 and sn2 acyl positions are independently remodeled; (2 remodeling reaction rates are constant over time; and (3 acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In contrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.

  19. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J

    2016-06-21

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  20. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  1. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function modelToReconstruction

  2. Global dynamic evolution of the cold plasma inferred with neural networks

    Science.gov (United States)

    Zhelavskaya, Irina; Shprits, Yuri; Spasojevic, Maria

    2017-04-01

    The electron number density is a fundamental parameter of plasmas and is critical for the wave-particle interactions. Despite its global importance, the distribution of cold plasma and its dynamic dependence on solar wind conditions remains poorly quantified. Existing empirical models present statistical averages based on static geomagnetic parameters, but cannot reflect the dynamics of the highly structured and quickly varying plasmasphere environment, especially during times of high geomagnetic activity. Global imaging provides insights on the dynamics but quantitative inversion to electron number density has been lacking. We propose an empirical model for reconstruction of global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. We develop a neural network that is capable of globally reconstructing the dynamics of the cold plasma density distribution for L shells from 2 to 6 and all local times. We utilize the density database obtained using the NURD algorithm [Zhelavskaya et al., 2016] in conjunction with solar wind data and geomagnetic indices to train the neural network. This study demonstrates how the global dynamics can be reconstructed from local in-situ observations by using machine learning tools. We describe aspects of the validation process in detail and discuss the selected inputs to the model and their physical implication.

  3. Universal structural estimator and dynamics approximator for complex networks

    CERN Document Server

    Chen, Yu-Zhong

    2016-01-01

    Revealing the structure and dynamics of complex networked systems from observed data is of fundamental importance to science, engineering, and society. Is it possible to develop a universal, completely data driven framework to decipher the network structure and different types of dynamical processes on complex networks, regardless of their details? We develop a Markov network based model, sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator. The SDBM attains its topology according to that of the original system and is capable of simulating the original dynamical process. We develop a fully automated method based on compressive sensing and machine learning to find the SDBM. We demonstrate, for a large variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and predicts its dynamical behavior with high precision.

  4. Biblio-MetReS: A bibliometric network reconstruction application and server

    Directory of Open Access Journals (Sweden)

    Alves Rui

    2011-10-01

    Full Text Available Abstract Background Reconstruction of genes and/or protein networks from automated analysis of the literature is one of the current targets of text mining in biomedical research. Some user-friendly tools already perform this analysis on precompiled databases of abstracts of scientific papers. Other tools allow expert users to elaborate and analyze the full content of a corpus of scientific documents. However, to our knowledge, no user friendly tool that simultaneously analyzes the latest set of scientific documents available on line and reconstructs the set of genes referenced in those documents is available. Results This article presents such a tool, Biblio-MetReS, and compares its functioning and results to those of other user-friendly applications (iHOP, STRING that are widely used. Under similar conditions, Biblio-MetReS creates networks that are comparable to those of other user friendly tools. Furthermore, analysis of full text documents provides more complete reconstructions than those that result from using only the abstract of the document. Conclusions Literature-based automated network reconstruction is still far from providing complete reconstructions of molecular networks. However, its value as an auxiliary tool is high and it will increase as standards for reporting biological entities and relationships become more widely accepted and enforced. Biblio-MetReS is an application that can be downloaded from http://metres.udl.cat/. It provides an easy to use environment for researchers to reconstruct their networks of interest from an always up to date set of scientific documents.

  5. Inflationary Dynamics Reconstruction via Inverse-Scattering Theory

    CERN Document Server

    Mastache, Jorge; Kosowsky, Arthur

    2016-01-01

    The evolution of inflationary fluctuations can be recast as an inverse scattering problem. In this context, we employ the Gel'fand-Levitan method from inverse-scattering theory to reconstruct the evolution of both the inflaton field freeze-out horizon and the Hubble parameter during inflation. We demonstrate this reconstruction procedure numerically for a scenario of slow-roll inflation, as well as for a scenario which temporarily departs from slow-roll. The field freeze-out horizon is reconstructed from the accessible primordial scalar power spectrum alone, while the reconstruction of the Hubble parameter requires additional information from the tensor power spectrum. We briefly discuss the application of this technique to more realistic cases incorporating estimates of the primordial power spectra over limited ranges of scales and with specified uncertainties.

  6. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Christopher S. [Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne Illinois; Computation Institute, University of Chicago, Chicago Illinois; Bernstein, Hans C. [Biodetection Sciences, National Security Directorate, Pacific Northwest National Laboratory Richland Washington; Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Weisenhorn, Pamela [Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne Illinois; Division of Biosciences, Argonne National Laboratory, Argonne Illinois; Taylor, Ronald C. [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Lee, Joon-Yong [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Zucker, Jeremy [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Song, Hyun-Seob [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington

    2016-06-02

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.

  7. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  8. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  9. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, J.P.

    1992-12-31

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  10. Reconstruction of a real world social network using the Potts model and Loopy Belief Propagation

    Directory of Open Access Journals (Sweden)

    Cristian eBisconti

    2015-11-01

    Full Text Available The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, aiming at the reconstruction of a networked structure from observations of the states of the nodes in the network.The inverse Potts model, normally applied to observations of quantum states, is here addressed to observations of the node states in a network and their (anticorrelations, thus inferring interactions as links connecting the nodes. Adopting the Bethe approximation, such an inverse problem is known to be tractable.Within this operational framework, we discuss and apply this network-reconstruction method to a small real-world social network, where it is easy to track statuses of its members: the Italian parliament, adopted as a case study. The dataset is made of (cosponsorships of law proposals by parliament members. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with standard methods, outlining discrepancies and advantages.

  11. Discrete Opinion Dynamics on Online Social Networks

    Institute of Scientific and Technical Information of China (English)

    HU Yan-Li; BAI Liang; ZHANG Wei-Ming

    2013-01-01

    This paper focuses on the dynamics of binary opinions {+1,-1} on online social networks consisting of heterogeneous actors.In our model,actors update their opinions under the interplay of social influence and selfaffirmation,which leads to rich dynamical behaviors on online social networks.We find that the opinion leading to the consensus features an advantage of the initially weighted fraction based on actors' strength over the other,instead of the population.For the role of specific actors,the consensus converges towards the opinion that a small fraction of high-strength actors hold,and individual diversity of self-affirmation slows down the ordering process of consensus.These indicate that high-strength actors play an essential role in opinion formation with strong social influence as well as high persistence.Further investigations show that the initial fraction of high-strength actors to dominate the evolution depends on the heterogeneity of the strength distribution,and less high-strength actors are needed in the case of a smaller exponent of power-law distribution of actors' strength.Our study provides deep insights into the role of social influence and self-affirmation on opinion formation on online social networks.

  12. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.

    Directory of Open Access Journals (Sweden)

    Benjamin A Logsdon

    Full Text Available Cellular gene expression measurements contain regulatory information that can be used to discover novel network relationships. Here, we present a new algorithm for network reconstruction powered by the adaptive lasso, a theoretically and empirically well-behaved method for selecting the regulatory features of a network. Any algorithms designed for network discovery that make use of directed probabilistic graphs require perturbations, produced by either experiments or naturally occurring genetic variation, to successfully infer unique regulatory relationships from gene expression data. Our approach makes use of appropriately selected cis-expression Quantitative Trait Loci (cis-eQTL, which provide a sufficient set of independent perturbations for maximum network resolution. We compare the performance of our network reconstruction algorithm to four other approaches: the PC-algorithm, QTLnet, the QDG algorithm, and the NEO algorithm, all of which have been used to reconstruct directed networks among phenotypes leveraging QTL. We show that the adaptive lasso can outperform these algorithms for networks of ten genes and ten cis-eQTL, and is competitive with the QDG algorithm for networks with thirty genes and thirty cis-eQTL, with rich topologies and hundreds of samples. Using this novel approach, we identify unique sets of directed relationships in Saccharomyces cerevisiae when analyzing genome-wide gene expression data for an intercross between a wild strain and a lab strain. We recover novel putative network relationships between a tyrosine biosynthesis gene (TYR1, and genes involved in endocytosis (RCY1, the spindle checkpoint (BUB2, sulfonate catabolism (JLP1, and cell-cell communication (PRM7. Our algorithm provides a synthesis of feature selection methods and graphical model theory that has the potential to reveal new directed regulatory relationships from the analysis of population level genetic and gene expression data.

  13. Signal agnostic compressive sensing for Body Area Networks: comparison of signal reconstructions.

    Science.gov (United States)

    Casson, Alexander J; Rodriguez-Villegas, Esther

    2012-01-01

    Compressive sensing is a lossy compression technique that is potentially very suitable for use in power constrained sensor nodes and Body Area Networks as the compression process has a low computational complexity. This paper investigates the reconstruction performance of compressive sensing when applied to EEG, ECG, EOG and EMG signals; establishing the performance of a signal agnostic compressive sensing strategy that could be used in a Body Area Network monitoring all of these. The results demonstrate that the EEG, ECG and EOG can all be reconstructed satisfactorily, although large inter- and intra- subject variations are present. EMG signals are not well reconstructed. Compressive sensing may therefore also find use as a novel method for the identification of EMG artefacts in other electro-physiological signals.

  14. Reconstructing missing daily precipitation data using regression trees and artificial neural networks

    Science.gov (United States)

    Incomplete meteorological data has been a problem in environmental modeling studies. The objective of this work was to develop a technique to reconstruct missing daily precipitation data in the central part of Chesapeake Bay Watershed using regression trees (RT) and artificial neural networks (ANN)....

  15. Efficient content-based low-altitude images correlated network and strips reconstruction

    Science.gov (United States)

    He, Haiqing; You, Qi; Chen, Xiaoyong

    2017-01-01

    The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.

  16. Comparison study of typical algorithms for reconstructing time series from the recurrence plot of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    Liu Jie; Shi Shu-Ting; Zhao Jun-Chan

    2013-01-01

    The three most widely used methods for reconstructing the underlying time series via the recurrence plots (RPs) of a dynamical system are compared with each other in this paper.We aim to reconstruct a toy series,a periodical series,a random series,and a chaotic series to compare the effectiveness of the most widely used typical methods in terms of signal correlation analysis.The application of the most effective algorithm to the typical chaotic Lorenz system verifies the correctness of such an effective algorithm.It is verified that,based on the unthresholded RPs,one can reconstruct the original attractor by choosing different RP thresholds based on the Hirata algorithm.It is shown that,in real applications,it is possible to reconstruct the underlying dynamics by using quite little information from observations of real dynamical systems.Moreover,rules of the threshold chosen in the algorithm are also suggested.

  17. Competing dynamical processes on two interacting networks

    CERN Document Server

    Alvarez-Zuzek, L G; Braunstein, L A; Vazquez, F

    2016-01-01

    We propose and study a model for the competition between two different dynamical processes, one for opinion formation and the other for decision making, on two interconnected networks. The networks represent two interacting social groups, the society and the Congress. An opinion formation process takes place on the society, where the opinion S of each individual can take one of four possible values (S=-2,-1,1,2), describing its level of agreement on a given issue, from totally against (S=-2) to totally in favor (S=2). The dynamics is controlled by a reinforcement parameter r, which measures the ratio between the likelihood to become an extremist or a moderate. The dynamics of the Congress is akin to that of the Abrams-Strogatz model, where congressmen can adopt one of two possible positions, to be either in favor (+) or against (-) the issue. The probability that a congressman changes his decision is proportional to the fraction of interacting neighbors that hold the opposite opinion raised to a power $\\beta$...

  18. Persistence and periodicity in a dynamic proximity network

    CERN Document Server

    Clauset, Aaron

    2012-01-01

    The topology of social networks can be understood as being inherently dynamic, with edges having a distinct position in time. Most characterizations of dynamic networks discretize time by converting temporal information into a sequence of network "snapshots" for further analysis. Here we study a highly resolved data set of a dynamic proximity network of 66 individuals. We show that the topology of this network evolves over a very broad distribution of time scales, that its behavior is characterized by strong periodicities driven by external calendar cycles, and that the conversion of inherently continuous-time data into a sequence of snapshots can produce highly biased estimates of network structure. We suggest that dynamic social networks exhibit a natural time scale \\Delta_{nat}, and that the best conversion of such dynamic data to a discrete sequence of networks is done at this natural rate.

  19. An improved technique for the reconstruction of former glacier mass-balance and dynamics

    Science.gov (United States)

    Carr, Simon; Coleman, Christopher

    2007-11-01

    The recognition of past glacier extent and dynamics is a fundamental aspect of investigations of the climatic sensitivity of glaciers, especially when examining short-lived climate events such as the Younger Dryas or Little Ice Age. Existing approaches to the reconstruction of glacier form and dynamics depend on speculative reasoning of key glacier dynamic parameters, including the role of basal slip and subglacial deformation in glacier mass-transfer. This study reviews approaches to glacier reconstruction, derivation of former glacier equilibrium line altitudes (ELA's) and estimation of mass-balance and dynamics, concluding that most reconstructions of glacier mass-balance are compromised by a lack of glaciological considerations. An alternative approach to glacier reconstruction is presented, demonstrated and discussed, by which an empirical relationship between ablation gradient and mass loss at the ELA is used to derive mass-balance, mass-flux through the ELA and average balance velocity at the ELA. This 'glaciological' approach is applied to four reconstructed glaciers to test previous interpretations that each reflects Younger Dryas glaciation in the UK. The study concludes that this approach provides a more robust technique for reconstructing former glacier dynamics, and may be applied to test geomorphological interpretations of former mountain glaciation.

  20. Modeling Dynamic Evolution of Online Friendship Network

    Institute of Scientific and Technical Information of China (English)

    吴联仁; 闫强

    2012-01-01

    In this paper,we study the dynamic evolution of friendship network in SNS (Social Networking Site).Our analysis suggests that an individual joining a community depends not only on the number of friends he or she has within the community,but also on the friendship network generated by those friends.In addition,we propose a model which is based on two processes:first,connecting nearest neighbors;second,strength driven attachment mechanism.The model reflects two facts:first,in the social network it is a universal phenomenon that two nodes are connected when they have at least one common neighbor;second,new nodes connect more likely to nodes which have larger weights and interactions,a phenomenon called strength driven attachment (also called weight driven attachment).From the simulation results,we find that degree distribution P(k),strength distribution P(s),and degree-strength correlation are all consistent with empirical data.

  1. Optimizing Dynamical Network Structure for Pinning Control

    Science.gov (United States)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  2. Collective dynamics of active cytoskeletal networks.

    Directory of Open Access Journals (Sweden)

    Simone Köhler

    Full Text Available Self organization mechanisms are essential for the cytoskeleton to adapt to the requirements of living cells. They rely on the intricate interplay of cytoskeletal filaments, crosslinking proteins and molecular motors. Here we present an in vitro minimal model system consisting of actin filaments, fascin and myosin-II filaments exhibiting pulsatile collective dynamics and superdiffusive transport properties. Both phenomena rely on the complex competition of crosslinking molecules and motor filaments in the network. They are only observed if the relative strength of the binding of myosin-II filaments to the actin network allows exerting high enough forces to unbind actin/fascin crosslinks. This is shown by varying the binding strength of the acto-myosin bond and by combining the experiments with phenomenological simulations based on simple interaction rules.

  3. Dynamics of neural networks with continuous attractors

    Science.gov (United States)

    Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si

    2008-10-01

    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.

  4. Stochastic epidemic dynamics on extremely heterogeneous networks

    CERN Document Server

    Parra-Rojas, César; McKane, Alan J

    2016-01-01

    Networks of contacts capable of spreading infectious diseases are often observed to be highly heterogeneous, with the majority of individuals having fewer contacts than the mean, and a significant minority having relatively very many contacts. We derive a two-dimensional diffusion model for the full temporal behavior of the stochastic susceptible-infectious-recovered (SIR) model on such a network, by making use of a time-scale separation in the deterministic limit of the dynamics. This low-dimensional process is an accurate approximation to the full model in the limit of large populations, even for cases when the time-scale separation is not too pronounced, provided the maximum degree is not of the order of the population size.

  5. Stochastic epidemic dynamics on extremely heterogeneous networks

    Science.gov (United States)

    Parra-Rojas, César; House, Thomas; McKane, Alan J.

    2016-12-01

    Networks of contacts capable of spreading infectious diseases are often observed to be highly heterogeneous, with the majority of individuals having fewer contacts than the mean, and a significant minority having relatively very many contacts. We derive a two-dimensional diffusion model for the full temporal behavior of the stochastic susceptible-infectious-recovered (SIR) model on such a network, by making use of a time-scale separation in the deterministic limit of the dynamics. This low-dimensional process is an accurate approximation to the full model in the limit of large populations, even for cases when the time-scale separation is not too pronounced, provided the maximum degree is not of the order of the population size.

  6. The Dynamics of Initiative in Communication Networks

    CERN Document Server

    Mollgaard, Anders

    2016-01-01

    Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take ...

  7. Creative Cognition and Brain Network Dynamics

    Science.gov (United States)

    Beaty, Roger E.; Benedek, Mathias; Silvia, Paul J.; Schacter, Daniel L.

    2015-01-01

    Creative thinking is central to the arts, sciences, and everyday life. How does the brain produce creative thought? A series of recently published papers has begun to provide insight into this question, reporting a strikingly similar pattern of brain activity and connectivity across a range of creative tasks and domains, from divergent thinking to poetry composition to musical improvisation. This research suggests that creative thought involves dynamic interactions of large-scale brain systems, with the most compelling finding being that the default and executive control networks, which can show an antagonistic relationship, actually cooperate during creative cognition and artistic performance. These findings have implications for understanding how brain networks interact to support complex cognitive processes, particularly those involving goal-directed, self-generated thought. PMID:26553223

  8. Reconstruction of an engine combustion process with a neural network

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.J.; Gu, F.; Ball, A.D. [School of Engineering, University of Manchester, Manchester (United Kingdom)

    1997-12-31

    The cylinder pressure waveform in an internal combustion engine is one of the most important parameters in describing the engine combustion process. It is used for a range of diagnostic tasks such as identification of ignition faults or mechanical wear in the cylinders. However, it is very difficult to measure this parameter directly. Never-the-less, the cylinder pressure may be inferred from other more readily obtainable parameters. In this presentation it is shown how a Radial Basis Function network, which may be regarded as a form of neural network, may be used to model the cylinder pressure as a function of the instantaneous crankshaft velocity, recorded with a simple magnetic sensor. The application of the model is demonstrated on a four cylinder DI diesel engine with data from a wide range of speed and load settings. The prediction capabilities of the model once trained are validated against measured data. (orig.) 4 refs.

  9. Dynamic Homeostasis in Packet Switching Networks

    CERN Document Server

    Oka, Mizuki; Ikegami, Takashi

    2014-01-01

    In this study, we investigate the adaptation and robustness of a packet switching network (PSN), the fundamental architecture of the Internet. We claim that the adaptation introduced by a transmission control protocol (TCP) congestion control mechanism is interpretable as the self-organization of multiple attractors and stability to switch from one attractor to another. To discuss this argument quantitatively, we study the adaptation of the Internet by simulating a PSN using ns-2. Our hypothesis is that the robustness and fragility of the Internet can be attributed to the inherent dynamics of the PSN feedback mechanism called the congestion window size, or \\textit{cwnd}. By varying the data input into the PSN system, we investigate the possible self-organization of attractors in cwnd temporal dynamics and discuss the adaptability and robustness of PSNs. The present study provides an example of Ashby's Law of Requisite Variety in action.

  10. Sensory Coding with Dynamically Competitive Networks

    CERN Document Server

    Rabinovich, M I; Volkovskii, A R; Abarbanel, Henry D I; Laurent, G; Abarbanel, Henry D I

    1999-01-01

    Studies of insect olfactory processing indicate that odors are represented by rich spatio-temporal patterns of neural activity. These patterns are very difficult to predict a priori, yet they are stimulus specific and reliable upon repeated stimulation with the same input. We formulate here a theoretical framework in which we can interpret these experimental results. We propose a paradigm of ``dynamic competition'' in which inputs (odors) are represented by internally competing neural assemblies. Each pattern is the result of dynamical motion within the network and does not involve a ``winner'' among competing possibilities. The model produces spatio-temporal patterns with strong resemblance to those observed experimentally and possesses many of the general features one desires for pattern classifiers: large information capacity, reliability, specific responses to specific inputs, and reduced sensitivity to initial conditions or influence of noise. This form of neural processing may thus describe the organiza...

  11. A dynamic network in a dynamic population: asymptotic properties

    CERN Document Server

    Britton, Tom; Turova, Tatyana

    2011-01-01

    We derive asymptotic properties for a stochastic dynamic network model in a stochastic dynamic population. In the model, nodes give birth to new nodes until they die, each node being equipped with a social index given at birth. During the life of a node it creates edges to other nodes, nodes with high social index at higher rate, and edges disappear randomly in time. For this model we derive criterion for when a giant connected component exists after the process has evolved for a long period of time, assuming the node population grows to infinity. We also obtain an explicit expression for the degree correlation $\\rho$ (of neighbouring nodes) which shows that $\\rho$ is always positive irrespective of parameter values in one of the two treated submodels, and may be either positive or negative in the other model, depending on the parameters.

  12. CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Munro, Troy [Multiscale Thermal-Physics Lab, Department of Mechanical and Aerospace Engineering, Utah State University, 4130 Old Main Hill, Logan, Utah 84322 (United States); Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Liu, Liwang; Glorieux, Christ [Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Ban, Heng [Multiscale Thermal-Physics Lab, Department of Mechanical and Aerospace Engineering, Utah State University, 4130 Old Main Hill, Logan, Utah 84322 (United States)

    2016-06-07

    As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity, peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of

  13. CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction

    Science.gov (United States)

    Munro, Troy; Liu, Liwang; Glorieux, Christ; Ban, Heng

    2016-06-01

    As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity, peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of

  14. Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states

    DEFF Research Database (Denmark)

    Cho, Byung-Kwan; Kim, Donghyuk; Knight, Eric M.

    2014-01-01

    to transcription units (TUs), representing an increase of more than 300% over what has been previously reported. The reconstructed network was used to investigate competition between alternative sigma-factors (the sigma(70) and sigma(38) regulons), confirming the competition model of sigma substitution......Background: At the beginning of the transcription process, the RNA polymerase (RNAP) core enzyme requires a sigma-factor to recognize the genomic location at which the process initiates. Although the crucial role of sigma-factors has long been appreciated and characterized for many individual...... promoters, we do not yet have a genome-scale assessment of their function. Results: Using multiple genome-scale measurements, we elucidated the network of s-factor and promoter interactions in Escherichia coli. The reconstructed network includes 4,724 sigma-factor-specific promoters corresponding...

  15. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  16. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    CERN Document Server

    Wang, Yaming; Woessner, Jochen; Sornette, Didier; Husen, Stephan

    2013-01-01

    We introduce the Anisotropic Clustering of Location Uncertainty Distributions (ACLUD) method to reconstruct active fault networks on the basis of both earthquake locations and their estimated individual uncertainties. After a massive search through the large solution space of possible reconstructed fault networks, we apply six different validation procedures in order to select the corresponding best fault network. Two of the validation steps (cross-validation and Bayesian Information Criterion (BIC) process the fit residuals, while the four others look for solutions that provide the best agreement with independently observed focal mechanisms. Tests on synthetic catalogs allow us to qualify the performance of the fitting method and of the various validation procedures. The ACLUD method is able to provide solutions that are close to the expected ones, especially for the BIC and focal mechanismbased techniques. The clustering method complemented by the validation step based on focal mechanisms provides good solu...

  17. Molecular Dynamics Simulations of Network Glasses

    Science.gov (United States)

    Drabold, David A.

    The following sections are included: * Introduction and Background * History and use of MD * The role of the potential * Scope of the method * Use of a priori information * Appraising a model * MD Method * Equations of motion * Energy minimization and equilibration * Deeper or global minima * Simulated annealing * Genetic algorithms * Activation-relaxation technique * Alternate dynamics * Modeling infinite systems: Periodic boundary conditions * The Interatomic Interactions * Overview * Empirical classical potentials * Potentials from electronic structure * The tight-binding method * Approximate methods based on tight-binding * First principles * Local basis: "ab initio tight binding" * Plane-waves: Car-Parrinello methods * Efficient ab initio methods for large systems * The need for locality of electron states in real space * Avoiding explicit orthogonalization * Connecting Simulation to Experiment * Structure * Network dynamics * Computing the harmonic modes * Dynamical autocorrelation functions * Dynamical structure factor * Electronic structure * Density of states * Thermal modulation of the electron states * Transport * Applications * g-GeSe2 * g-GexSe1-x glasses * Amorphous carbon surface * Where to Get Codes to Get Started * Acknowledgments * References

  18. Dynamic knee joint mechanics after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Clarke, Sarah B; Kenny, Ian C; Harrison, Andrew J

    2015-01-01

    There is scarcity of information on the long-term adaptations in lower limb biomechanics during game-specific movements after anterior cruciate ligament (ACL) reconstruction. Particularly, variables such as knee abduction moments and transverse plane knee motion have not been studied during a game-specific landing and cutting task after ACL reconstruction. The purpose of this study was to compare the hip and knee mechanics between the ACL-reconstructed (ACLr) group and a healthy control group. Thirty-eight reconstructed athletes (18 ACLr, 18 control) participated in the study. Three-dimensional hip, knee, and ankle angles were calculated during a maximal drop jump land from a 0.30-m box and unanticipated cutting task at 45°. During the landing phase, ACLr participants had increased hip flexion (P knee range of motion (P = 0.027). During the cutting phase, the ACLr participant's previously injured limb had increased internal knee abduction moment compared with that of the control group (P = 0.032). No significant differences were reported between the previously injured and contralateral uninjured limb. Previously injured participants demonstrated higher knee abduction moment and transverse plane range of motion when compared with those of control participants during a game-specific landing and cutting task.

  19. Dynamic Processes in Network Goods: Modeling, Analysis and Applications

    Science.gov (United States)

    Paothong, Arnut

    2013-01-01

    The network externality function plays a very important role in the study of economic network industries. Moreover, the consumer group dynamic interactions coupled with network externality concept is going to play a dominant role in the network goods in the 21st century. The existing literature is stemmed on a choice of externality function with…

  20. Harnessing diversity towards the reconstructing of large scale gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Takeshi Hase

    Full Text Available Elucidating gene regulatory network (GRN from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks.

  1. Imaging complex nutrient dynamics in mycelial networks.

    Science.gov (United States)

    Fricker, M D; Lee, J A; Bebber, D P; Tlalka, M; Hynes, J; Darrah, P R; Watkinson, S C; Boddy, L

    2008-08-01

    techniques shows that as the colony forms, it self-organizes into well demarcated domains that are identifiable by differences in the phase relationship of the pulses. On the centimetre to metre scale, we have begun to use techniques borrowed from graph theory to characterize the development and dynamics of the network, and used these abstracted network models to predict the transport characteristics, resilience, and cost of the network.

  2. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  3. Dynamic Coverage of Mobile Sensor Networks

    CERN Document Server

    Liu, Benyuan; Nain, Philippe; Towsley, Don

    2011-01-01

    In this paper we study the dynamic aspects of the coverage of a mobile sensor network resulting from continuous movement of sensors. As sensors move around, initially uncovered locations are likely to be covered at a later time. A larger area is covered as time continues, and intruders that might never be detected in a stationary sensor network can now be detected by moving sensors. However, this improvement in coverage is achieved at the cost that a location is covered only part of the time, alternating between covered and not covered. We characterize area coverage at specific time instants and during time intervals, as well as the time durations that a location is covered and uncovered. We further characterize the time it takes to detect a randomly located intruder. For mobile intruders, we take a game theoretic approach and derive optimal mobility strategies for both sensors and intruders. Our results show that sensor mobility brings about unique dynamic coverage properties not present in a stationary sens...

  4. Vertex Reconstructing Neural Network at the ZEUS Central Tracking Detector

    CERN Document Server

    Dror, G; Dror, Gideon; Etzion, Erez

    2001-01-01

    An unconventional solution for finding the location of event creation is presented. It is based on two feed-forward neural networks with fixed architecture, whose parameters are chosen so as to reach a high accuracy. The interaction point location is a parameter that can be used to select events of interest from the very high rate of events created at the current experiments in High Energy Physics. The system suggested here is tested on simulated data sets of the ZEUS Central Tracking Detector, and is shown to perform better than conventional algorithms.

  5. Information diversity in structure and dynamics of simulated neuronal networks.

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  6. Dynamic Localization Schemes in Malicious Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kaiqi Xiong

    2009-10-01

    Full Text Available Wireless sensor networks (WSN have recently shown many potential military and civilian applications, especially those used in hostile environments where malicious adversaries can be present. The accuracy of location information is critical for such applications. It is impractical to have a GPS device on each sensor in WSN due to costs. Most of the existing location discovery schemes can only be used in the trusted environment. Recent research has addressed security issues in sensor network localization, but to the best of our knowledge, none have completely solved the secure localization problem. In this paper, we propose novel schemes for secure dynamic localization in sensor networks. These proposed schemes can tolerate up to 50% of beacon nodes being malicious, and they have linear computation time with respect to the number of reference nodes. Our security analysis has showed that our schemes are applicable and resilient to attacks from adversaries. We have further conducted simulations to analyze and compare the performance of these schemes, and to indicate when each should be used. The efficiencies of each method shows why we needed to propose multiple methods.

  7. Theoretical research progress in complexity of complex dynamical networks

    Institute of Scientific and Technical Information of China (English)

    Fang Jinqing

    2007-01-01

    This article reviews the main progress in dynamical complexity of theoretical models for nonlinear complex networks proposed by our Joint Complex Network Research Group (JCNRG). The topological and dynamical properties of these theoretical models are numerically and analytically studied. Several findings are useful for understanding and deeply studying complex networks from macroscopic to microscopic levels and have a potential of applications in real-world networks.

  8. Agent Based Modeling on Organizational Dynamics of Terrorist Network

    OpenAIRE

    Bo Li; Duoyong Sun; Renqi Zhu; Ze Li

    2015-01-01

    Modeling organizational dynamics of terrorist network is a critical issue in computational analysis of terrorism research. The first step for effective counterterrorism and strategic intervention is to investigate how the terrorists operate with the relational network and what affects the performance. In this paper, we investigate the organizational dynamics by employing a computational experimentation methodology. The hierarchical cellular network model and the organizational dynamics model ...

  9. Identifying the topology of networks with discrete-time dynamics

    Science.gov (United States)

    Guo, Shu-Juan; Fu, Xin-Chu

    2010-07-01

    We suggest a method for identifying the topology of networks with discrete-time dynamics based on the dynamical evolution supported by the networks. The Frobenius matrix norm and Lasalle's invariance principle are used in this work. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, several examples are illustrated to verify the theoretical results.

  10. Identifying the topology of networks with discrete-time dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Guo Shujuan [School of Physics and Mathematics, Changzhou University, Changzhou 213164 (China); Fu Xinchu, E-mail: sjguo1@gmail.co, E-mail: enxcfu@gmail.co [Department of Mathematics, Shanghai University, Shanghai 200444 (China)

    2010-07-23

    We suggest a method for identifying the topology of networks with discrete-time dynamics based on the dynamical evolution supported by the networks. The Frobenius matrix norm and Lasalle's invariance principle are used in this work. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, several examples are illustrated to verify the theoretical results.

  11. Quantifying the dynamics of coupled networks of switches and oscillators.

    Directory of Open Access Journals (Sweden)

    Matthew R Francis

    Full Text Available Complex network dynamics have been analyzed with models of systems of coupled switches or systems of coupled oscillators. However, many complex systems are composed of components with diverse dynamics whose interactions drive the system's evolution. We, therefore, introduce a new modeling framework that describes the dynamics of networks composed of both oscillators and switches. Both oscillator synchronization and switch stability are preserved in these heterogeneous, coupled networks. Furthermore, this model recapitulates the qualitative dynamics for the yeast cell cycle consistent with the hypothesized dynamics resulting from decomposition of the regulatory network into dynamic motifs. Introducing feedback into the cell-cycle network induces qualitative dynamics analogous to limitless replicative potential that is a hallmark of cancer. As a result, the proposed model of switch and oscillator coupling provides the ability to incorporate mechanisms that underlie the synchronized stimulus response ubiquitous in biochemical systems.

  12. Complex Dynamical Network Control for Trajectory Tracking Using Delayed Recurrent Neural Networks

    Directory of Open Access Journals (Sweden)

    Jose P. Perez

    2014-01-01

    Full Text Available In this paper, the problem of trajectory tracking is studied. Based on the V-stability and Lyapunov theory, a control law that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a complex dynamical network is obtained. To illustrate the analytic results, we present a tracking simulation of a dynamical network with each node being just one Lorenz’s dynamical system and three identical Chen’s dynamical systems.

  13. Reconstruction

    Directory of Open Access Journals (Sweden)

    Stefano Zurrida

    2011-01-01

    Full Text Available Breast cancer is the most common cancer in women. Primary treatment is surgery, with mastectomy as the main treatment for most of the twentieth century. However, over that time, the extent of the procedure varied, and less extensive mastectomies are employed today compared to those used in the past, as excessively mutilating procedures did not improve survival. Today, many women receive breast-conserving surgery, usually with radiotherapy to the residual breast, instead of mastectomy, as it has been shown to be as effective as mastectomy in early disease. The relatively new skin-sparing mastectomy, often with immediate breast reconstruction, improves aesthetic outcomes and is oncologically safe. Nipple-sparing mastectomy is newer and used increasingly, with better acceptance by patients, and again appears to be oncologically safe. Breast reconstruction is an important adjunct to mastectomy, as it has a positive psychological impact on the patient, contributing to improved quality of life.

  14. Reconstructing Genome-Wide Protein–Protein Interaction Networks Using Multiple Strategies with Homologous Mapping

    Science.gov (United States)

    Lo, Yu-Shu; Huang, Sing-Han; Luo, Yong-Chun; Lin, Chun-Yu; Yang, Jinn-Moon

    2015-01-01

    Background One of the crucial steps toward understanding the biological functions of a cellular system is to investigate protein–protein interaction (PPI) networks. As an increasing number of reliable PPIs become available, there is a growing need for discovering PPIs to reconstruct PPI networks of interesting organisms. Some interolog-based methods and homologous PPI families have been proposed for predicting PPIs from the known PPIs of source organisms. Results Here, we propose a multiple-strategy scoring method to identify reliable PPIs for reconstructing the mouse PPI network from two well-known organisms: human and fly. We firstly identified the PPI candidates of target organisms based on homologous PPIs, sharing significant sequence similarities (joint E-value ≤ 1 × 10−40), from source organisms using generalized interolog mapping. These PPI candidates were evaluated by our multiple-strategy scoring method, combining sequence similarities, normalized ranks, and conservation scores across multiple organisms. According to 106,825 PPI candidates in yeast derived from human and fly, our scoring method can achieve high prediction accuracy and outperform generalized interolog mapping. Experiment results show that our multiple-strategy score can avoid the influence of the protein family size and length to significantly improve PPI prediction accuracy and reflect the biological functions. In addition, the top-ranked and conserved PPIs are often orthologous/essential interactions and share the functional similarity. Based on these reliable predicted PPIs, we reconstructed a comprehensive mouse PPI network, which is a scale-free network and can reflect the biological functions and high connectivity of 292 KEGG modules, including 216 pathways and 76 structural complexes. Conclusions Experimental results show that our scoring method can improve the predicting accuracy based on the normalized rank and evolutionary conservation from multiple organisms. Our predicted

  15. Reconstructing regional climate networks from irregularly sampled satellite data

    Science.gov (United States)

    Wiedermann, Marc; Donner, Reik V.; Sykioti, Olga; Papadimitriou, Constantinos; Kurths, Jürgen

    2015-04-01

    With the increasing availability of remote sensing data Earth System Analysis has taken a great step forward. Satellite data with high resolution in time and space allow for an in-depth analysis of small-scale processes in the climate as well as ecosystems. This data type, however, also harbors crucial conceptual complications. First, depending on whether the satellite is orbiting on an ascending or descending path systematic biases are induced into the dataset and both measurements can not be evaluated simultaneously without an appropriate preprocessing. Second, remote sensing data are usually not produced with equidistant temporal sampling, but might contain huge gaps, due to cloud cover or maintenance work and irregular time steps, due to the orbiting time of the satellite. In this work, we utilize sea surface temperature (SST) data obtained from the SMOS satellite as part of ESA's Earth Explorer Mission to study small-scale regional interactions between different parts of the Mediterranean, Aegean and Black Sea. In a first step, we create homogeneous time series for each grid point by combining data from ascending and descending satellite paths by utilizing principal component and singular spectrum analysis. To address the issue of irregular temporal sampling we utilize a kernel weighted version of the linear cross-correlation function to compute lagged correlations between all pairs of grid points in the dataset. By setting a threshold to the thus obtained correlation matrix we obtain a binary matrix which can be interpreted as the adjacency matrix of a complex network. We then use tools from complex network theory to study regional interdependencies in the study area for different time lags of up to forty days. We find that the obtained networks represent well the observed average wind directions and speeds and display interaction structures between small regions in the Aegean Sea, which are in good agreement with earlier observations. The methods presented

  16. Social Balance on Networks: The Dynamics of Friendship and Enmity

    CERN Document Server

    Antal, T; Redner, S

    2006-01-01

    How do social networks evolve when both friendly and unfriendly relations exist? Here we propose a simple dynamics for social networks in which the sense of a relationship can change so as to eliminate imbalanced triads--relationship triangles that contains 1 or 3 unfriendly links. In this dynamics, a friendly link changes to unfriendly or vice versa in an imbalanced triad to make the triad balanced. Such networks undergo a dynamic phase transition from a steady state to "utopia"--all friendly links--as the amount of network friendliness is changed. Basic features of the long-time dynamics and the phase transition are discussed.

  17. Metabolism and evolution: A comparative study of reconstructed genome-level metabolic networks

    Science.gov (United States)

    Almaas, Eivind

    2008-03-01

    The availability of high-quality annotations of sequenced genomes has made it possible to generate organism-specific comprehensive maps of cellular metabolism. Currently, more than twenty such metabolic reconstructions are publicly available, with the majority focused on bacteria. A typical metabolic reconstruction for a bacterium results in a complex network containing hundreds of metabolites (nodes) and reactions (links), while some even contain more than a thousand. The constrain-based optimization approach of flux-balance analysis (FBA) is used to investigate the functional characteristics of such large-scale metabolic networks, making it possible to estimate an organism's growth behavior in a wide variety of nutrient environments, as well as its robustness to gene loss. We have recently completed the genome-level metabolic reconstruction of Yersinia pseudotuberculosis, as well as the three Yersinia pestis biovars Antiqua, Mediaevalis, and Orientalis. While Y. pseudotuberculosis typically only causes fever and abdominal pain that can mimic appendicitis, the evolutionary closely related Y. pestis strains are the aetiological agents of the bubonic plague. In this presentation, I will discuss our results and conclusions from a comparative study on the evolution of metabolic function in the four Yersiniae networks using FBA and related techniques, and I will give particular focus to the interplay between metabolic network topology and evolutionary flexibility.

  18. Reconstruction of a Real World Social Network using the Potts Model and Loopy Belief Propagation.

    Science.gov (United States)

    Bisconti, Cristian; Corallo, Angelo; Fortunato, Laura; Gentile, Antonio A; Massafra, Andrea; Pellè, Piergiuseppe

    2015-01-01

    The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here addressed to observations of the members' states in an organization and their (anti)correlations, thus inferring interactions as links among the members. Adopting proper (Bethe) approximations, such an inverse problem is showed to be tractable. Within an operational framework, this network-reconstruction method is tested for a small real-world social network, the Italian parliament. In this study case, it is easy to track statuses of the parliament members, using (co)sponsorships of law proposals as the initial dataset. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with such standard methods, outlining discrepancies and advantages.

  19. Google matrix, dynamical attractors, and Ulam networks

    Science.gov (United States)

    Shepelyansky, D. L.; Zhirov, O. V.

    2010-03-01

    We study the properties of the Google matrix generated by a coarse-grained Perron-Frobenius operator of the Chirikov typical map with dissipation. The finite-size matrix approximant of this operator is constructed by the Ulam method. This method applied to the simple dynamical model generates directed Ulam networks with approximate scale-free scaling and characteristics being in certain features similar to those of the world wide web with approximate scale-free degree distributions as well as two characteristics similar to the web: a power-law decay in PageRank that mirrors the decay of PageRank on the world wide web and a sensitivity to the value α in PageRank. The simple dynamical attractors play here the role of popular websites with a strong concentration of PageRank. A variation in the Google parameter α or other parameters of the dynamical map can drive the PageRank of the Google matrix to a delocalized phase with a strange attractor where the Google search becomes inefficient.

  20. Improved reconstruction of in silico gene regulatory networks by integrating knockout and perturbation data.

    Directory of Open Access Journals (Sweden)

    Kevin Y Yip

    Full Text Available We performed computational reconstruction of the in silico gene regulatory networks in the DREAM3 Challenges. Our task was to learn the networks from two types of data, namely gene expression profiles in deletion strains (the 'deletion data' and time series trajectories of gene expression after some initial perturbation (the 'perturbation data'. In the course of developing the prediction method, we observed that the two types of data contained different and complementary information about the underlying network. In particular, deletion data allow for the detection of direct regulatory activities with strong responses upon the deletion of the regulator while perturbation data provide richer information for the identification of weaker and more complex types of regulation. We applied different techniques to learn the regulation from the two types of data. For deletion data, we learned a noise model to distinguish real signals from random fluctuations using an iterative method. For perturbation data, we used differential equations to model the change of expression levels of a gene along the trajectories due to the regulation of other genes. We tried different models, and combined their predictions. The final predictions were obtained by merging the results from the two types of data. A comparison with the actual regulatory networks suggests that our approach is effective for networks with a range of different sizes. The success of the approach demonstrates the importance of integrating heterogeneous data in network reconstruction.

  1. Structure and dynamics of core-periphery networks

    CERN Document Server

    Csermely, Peter; Wu, Ling-Yun; Uzzi, Brian

    2013-01-01

    Recent studies uncovered important core/periphery network structures characterizing complex sets of cooperative and competitive interactions between network nodes, be they proteins, cells, species or humans. Better characterization of the structure, dynamics and function of core/periphery networks is a key step of our understanding cellular functions, species adaptation, social and market changes. Here we summarize the current knowledge of the structure and dynamics of "traditional" core/periphery networks, rich-clubs, nested, bow-tie and onion networks. Comparing core/periphery structures with network modules, we discriminate between global and local cores. The core/periphery network organization lies in the middle of several extreme properties, such as random/condensed structures, clique/star configurations, network symmetry/asymmetry, network assortativity/disassortativity, as well as network hierarchy/anti-hierarchy. These properties of high complexity together with the large degeneracy of core pathways e...

  2. 3.5D dynamic PET image reconstruction incorporating kinetics-based clusters.

    Science.gov (United States)

    Lu, Lijun; Karakatsanis, Nicolas A; Tang, Jing; Chen, Wufan; Rahmim, Arman

    2012-08-07

    Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled '3.5D' image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated (11)C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV and

  3. Dynamic three-dimensional reconstruction of the heart by transesophageal echocardiography

    Directory of Open Access Journals (Sweden)

    Veiga Maria de Fátima

    1999-01-01

    Full Text Available OBJECTIVE: To evaluate echocardiography accuracy in performing and obtaining images for dynamical three-dimensional (3D reconstruction. METHODS: Three-dimensional (3D image reconstruction was obtained in 20 consecutive patients who underwent transesophageal echocardiography. A multiplanar 5 MHz transducer was used for 3D reconstruction. RESULTS: Twenty patients were studied consecutively. The following cardiac diseases were present: valvar prostheses-6 (2 mitral, 2 aortic and 2 mitral and aortic; mitral valve prolapse- 3; mitral and aortic disease - 2; aortic valve disease- 5; congenital heart disease- 3 (2 atrial septal defect- ASD - and 1 transposition of the great arteries -TGA; arteriovenous fistula- 1. In 7 patients, color Doppler was also obtained and used for 3D flow reconstruction. Twenty five cardiac structures were acquired and 60 reconstructions generated (28 of mitral valves, 14 of aortic valves, 4 of mitral prostheses, 7 of aortic prostheses and 7 of the ASD. Fifty five of 60 (91.6% reconstructions were considered of good quality by 2 independent observers. The 11 reconstructed mitral valves/prostheses and the 2 reconstructed ASDs provided more anatomical information than two dimensional echocardiography (2DE alone. CONCLUSION: 3D echocardiography using a transesophageal transducer is a feasible technique, which improves detection of anatomical details of cardiac structures, particularly of the mitral valve and atrial septum.

  4. Dynamics on networks: competition of temporal and topological correlations

    CERN Document Server

    Artime, Oriol; Miguel, Maxi San

    2016-01-01

    Links in many real-world networks activate and deactivate in correspondence to the sporadic interactions between the elements of the system. The activation patterns may be irregular or bursty and play an important role on the dynamics of processes taking place in the network. Social networks and information or disease spreading processes are paradigmatic examples of this situation. Besides the burstiness, several other correlations may appear in the network dynamics. The activation of links connecting to the same node can be synchronized or the existence of communities in the network may mediate the activation patterns of internal an external links. Here we study the competition of topological and temporal correlations in link activation and how they affect the dynamics of systems running on the network. Interestingly, both types of correlations by separate have opposite effects: one (topological) delays the dynamics of processes on the network, while the other (temporal) accelerates it. When they occur toget...

  5. Interestingness-Driven Diffusion Process Summarization in Dynamic Networks

    DEFF Research Database (Denmark)

    Qu, Qiang; Liu, Siyuan; Jensen, Christian S.

    2014-01-01

    tool in this regard is data summarization. However, few existing studies aim to summarize graphs/networks for dynamics. Dynamic networks raise new challenges not found in static settings, including time sensitivity and the needs for online interestingness evaluation and summary traceability, which......The widespread use of social networks enables the rapid diffusion of information, e.g., news, among users in very large communities. It is a substantial challenge to be able to observe and understand such diffusion processes, which may be modeled as networks that are both large and dynamic. A key...... render existing techniques inapplicable. We study the topic of dynamic network summarization: how to summarize dynamic networks with millions of nodes by only capturing the few most interesting nodes or edges over time, and we address the problem by finding interestingness-driven diffusion processes...

  6. Self-organization of complex networks as a dynamical system

    Science.gov (United States)

    Aoki, Takaaki; Yawata, Koichiro; Aoyagi, Toshio

    2015-01-01

    To understand the dynamics of real-world networks, we investigate a mathematical model of the interplay between the dynamics of random walkers on a weighted network and the link weights driven by a resource carried by the walkers. Our numerical studies reveal that, under suitable conditions, the co-evolving dynamics lead to the emergence of stationary power-law distributions of the resource and link weights, while the resource quantity at each node ceaselessly changes with time. We analyze the network organization as a deterministic dynamical system and find that the system exhibits multistability, with numerous fixed points, limit cycles, and chaotic states. The chaotic behavior of the system leads to the continual changes in the microscopic network dynamics in the absence of any external random noises. We conclude that the intrinsic interplay between the states of the nodes and network reformation constitutes a major factor in the vicissitudes of real-world networks.

  7. Reconstructing coherent networks from electroencephalography and magnetoencephalography with reduced contamination from volume conduction or magnetic field spread.

    Directory of Open Access Journals (Sweden)

    Mark Drakesmith

    Full Text Available Volume conduction (VC and magnetic field spread (MFS induce spurious correlations between EEG/MEG sensors, such that the estimation of functional networks from scalp recordings is inaccurate. Imaginary coherency [1] reduces VC/MFS artefacts between sensors by assuming that instantaneous interactions are caused predominantly by VC/MFS and do not contribute to the imaginary part of the cross-spectral densities (CSDs. We propose an adaptation of the dynamic imaging of coherent sources (DICS [2] - a method for reconstructing the CSDs between sources, and subsequently inferring functional connectivity based on coherences between those sources. Firstly, we reformulate the principle of imaginary coherency by performing an eigenvector decomposition of the imaginary part of the CSD to estimate the power that only contributes to the non-zero phase-lagged (NZPL interactions. Secondly, we construct an NZPL-optimised spatial filter with two a priori assumptions: (1 that only NZPL interactions exist at the source level and (2 the NZPL CSD at the sensor level is a good approximation of the projected source NZPL CSDs. We compare the performance of the NZPL method to the standard method by reconstructing a coherent network from simulated EEG/MEG recordings. We demonstrate that, as long as there are phase differences between the sources, the NZPL method reliably detects the underlying networks from EEG and MEG. We show that the method is also robust to very small phase lags, noise from phase jitter, and is less sensitive to regularisation parameters. The method is applied to a human dataset to infer parts of a coherent network underpinning face recognition.

  8. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.

    Science.gov (United States)

    Chow, Chi-Nga; Zheng, Han-Qin; Wu, Nai-Yun; Chien, Chia-Hung; Huang, Hsien-Da; Lee, Tzong-Yi; Chiang-Hsieh, Yi-Fan; Hou, Ping-Fu; Yang, Tien-Yi; Chang, Wen-Chi

    2016-01-01

    Transcription factors (TFs) are sequence-specific DNA-binding proteins acting as critical regulators of gene expression. The Plant Promoter Analysis Navigator (PlantPAN; http://PlantPAN2.itps.ncku.edu.tw) provides an informative resource for detecting transcription factor binding sites (TFBSs), corresponding TFs, and other important regulatory elements (CpG islands and tandem repeats) in a promoter or a set of plant promoters. Additionally, TFBSs, CpG islands, and tandem repeats in the conserve regions between similar gene promoters are also identified. The current PlantPAN release (version 2.0) contains 16 960 TFs and 1143 TF binding site matrices among 76 plant species. In addition to updating of the annotation information, adding experimentally verified TF matrices, and making improvements in the visualization of transcriptional regulatory networks, several new features and functions are incorporated. These features include: (i) comprehensive curation of TF information (response conditions, target genes, and sequence logos of binding motifs, etc.), (ii) co-expression profiles of TFs and their target genes under various conditions, (iii) protein-protein interactions among TFs and their co-factors, (iv) TF-target networks, and (v) downstream promoter elements. Furthermore, a dynamic transcriptional regulatory network under various conditions is provided in PlantPAN 2.0. The PlantPAN 2.0 is a systematic platform for plant promoter analysis and reconstructing transcriptional regulatory networks.

  9. Photogrammetric Network for Evaluation of Human Faces for Face Reconstruction Purpose

    Science.gov (United States)

    Schrott, P.; Detrekői, Á.; Fekete, K.

    2012-08-01

    Facial reconstruction is the process of reconstructing the geometry of faces of persons from skeletal remains. A research group (BME Cooperation Research Center for Biomechanics) was formed representing several organisations to combine knowledgebases of different disciplines like anthropology, medical, mechanical, archaeological sciences etc. to computerize the face reconstruction process based on a large dataset of 3D face and skull models gathered from living persons: cranial data from CT scans and face models from photogrammetric evaluations. The BUTE Dept. of Photogrammetry and Geoinformatics works on the method and technology of the 3D data acquisition for the face models. In this paper we will present the research and results of the photogrammetric network design, the modelling to deal with visibility constraints, and the investigation of the developed basic photogrammetric configuration to specify the result characteristics to be expected using the device built for the photogrammetric face measurements.

  10. Application of generalized regression neural network on fast 3D reconstruction

    Institute of Scientific and Technical Information of China (English)

    Babakhani Asad; DU Zhi-jiang; SUN Li-ning; Kardan Reza; Mianji A. Fereidoun

    2007-01-01

    In robot-assisted surgery projects,researchers should be able to make fast 3 D reconstruction. Usually 2D images acquired with common diagnostic equipments such as UT, CT and MRI are not enough and complete for an accurate 3D reconstruction. There are some interpolation methods for approximating non value voxels which consume large execution time. A novel algorithm is introduced based on generalized regression neural network (GRNN) which can interpolate unknown voxles fast and reliable. The GRNN interpolation is used to produce new 2D images between each two succeeding ultrasonic images. It is shown that the composition of GRNN with image distance transformation can produce higher quality 3D shapes. The results of this method are compared with other interpolation methods practically. It shows this method can decrease overall time consumption on online 3D reconstruction.

  11. Reconstruction based approach to sensor fault diagnosis using auto-associative neural networks

    Institute of Scientific and Technical Information of China (English)

    Mousavi Hamidreza; Shahbazian Mehdi; Jazayeri-Rad Hooshang; Nekounam Aliakbar

    2014-01-01

    Fault diagnostics is an important research area including different techniques. Principal component analysis (PCA) is a linear technique which has been widely used. For nonlinear processes, however, the nonlinear principal component analysis (NLPCA) should be applied. In this work, NLPCA based on auto-associative neural network (AANN) was applied to model a chemical process using historical data. First, the residuals generated by the AANN were used for fault detection and then a reconstruction based approach called enhanced AANN (E-AANN) was presented to isolate and reconstruct the faulty sensor simultaneously. The proposed method was implemented on a continuous stirred tank heater (CSTH) and used to detect and isolate two types of faults (drift and offset) for a sensor. The results show that the proposed method can detect, isolate and reconstruct the occurred fault properly.

  12. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors

    Science.gov (United States)

    Klimenko, S.; Vedovato, G.; Drago, M.; Salemi, F.; Tiwari, V.; Prodi, G. A.; Lazzaro, C.; Ackley, K.; Tiwari, S.; Da Silva, C. F.; Mitselmakher, G.

    2016-02-01

    We present a method for detection and reconstruction of the gravitational wave (GW) transients with the networks of advanced detectors. Originally designed to search for transients with the initial GW detectors, it uses significantly improved algorithms, which enhance both the low-latency searches with rapid localization of GW events for the electromagnetic follow-up and high confidence detection of a broad range of the transient GW sources. In this paper, we present the analytic framework of the method. Following a short description of the core analysis algorithms, we introduce a novel approach to the reconstruction of the GW polarization from a pattern of detector responses to a GW signal. This polarization pattern is a unique signature of an arbitrary GW signal that can be measured independently from the other source parameters. The polarization measurements enable rapid reconstruction of the GW waveforms, sky localization, and helps identification of the source origin.

  13. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors

    CERN Document Server

    Klimenko, S; Drago, M; Salemi, F; Tiwari, V; Prodi, G A; Lazzaro, C; Tiwari, S; Da Silva, F; Mitselmakher, G

    2015-01-01

    We present a method for detection and reconstruction of the gravitational wave (GW) transients with the networks of advanced detectors. Originally designed to search for the transients with the initial GW detectors, it uses significantly improved algorithms, which enable both the low-latency searches with rapid localization of GW events for the electro-magnetic followup and high confidence detection of a broad range of the transient GW sources. In the paper we present the analytic framework of the method. Following a short description of the core analysis algorithms, we introduce a novel approach to the reconstruction of the GW polarization from a pattern of detector responses to a GW signal. This polarization pattern is a unique signature of an arbitrary GW signal that can be measured independent from the other source parameters. The polarization measurements enable rapid reconstruction of the GW waveforms, sky localization and helps identification of the source origin.

  14. Dynamical Analysis of Protein Regulatory Network in Budding Yeast Nucleus

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Ting; JIA Xun

    2006-01-01

    @@ Recent progresses in the protein regulatory network of budding yeast Saccharomyces cerevisiae have provided a global picture of its protein network for further dynamical research. We simplify and modularize the protein regulatory networks in yeast nucleus, and study the dynamical properties of the core 37-node network by a Boolean network model, especially the evolution steps and final fixed points. Our simulation results show that the number of fixed points N(k) for a given size of the attraction basin k obeys a power-law distribution N(k)∝k-2.024. The yeast network is more similar to a scale-free network than a random network in the above dynamical properties.

  15. Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu

    2017-09-01

    In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.

  16. A Random Laser as a Dynamical Network

    CERN Document Server

    Höfner, M; Henneberger, F

    2013-01-01

    The mode dynamics of a random laser is investigated in experiment and theory. The laser consists of a ZnCdO/ZnO multiple quantum well with air-holes that provide the necessary feedback. Time-resolved measurements reveal multimode spectra with individually developing features but no variation from shot to shot. These findings are qualitatively reproduced with a model that exploits the specifics of a dilute system of weak scatterers and can be interpreted in terms of a lasing network. Introducing the phase-sensitive node coherence reveals new aspects of the self-organization of the laser field. Lasing is carried by connected links between a subset of scatterers, the fields on which are oscillating coherently in phase. In addition, perturbing feedback with possibly unfitting phases from frustrated other scatterers is suppressed by destructive superposition. We believe that our findings are representative at least for weakly scattering random lasers. A generalization to random laser with dense and strong scattere...

  17. Magnetoencephalography from signals to dynamic cortical networks

    CERN Document Server

    Aine, Cheryl

    2014-01-01

    "Magnetoencephalography (MEG) provides a time-accurate view into human brain function. The concerted action of neurons generates minute magnetic fields that can be detected---totally noninvasively---by sensitive multichannel magnetometers. The obtained millisecond accuracycomplements information obtained by other modern brain-imaging tools. Accurate timing is quintessential in normal brain function, often distorted in brain disorders. The noninvasiveness and time-sensitivityof MEG are great assets to developmental studies, as well. This multiauthored book covers an ambitiously wide range of MEG research from introductory to advanced level, from sensors to signals, and from focal sources to the dynamics of cortical networks. Written by active practioners of this multidisciplinary field, the book contains tutorials for newcomers and chapters of new challenging methods and emerging technologies to advanced MEG users. The reader will obtain a firm grasp of the possibilities of MEG in the study of audition, vision...

  18. Topological stabilization for synchronized dynamics on networks

    Science.gov (United States)

    Cencetti, Giulia; Bagnoli, Franco; Battistelli, Giorgio; Chisci, Luigi; Di Patti, Francesca; Fanelli, Duccio

    2017-01-01

    A general scheme is proposed and tested to control the symmetry breaking instability of a homogeneous solution of a spatially extended multispecies model, defined on a network. The inherent discreteness of the space makes it possible to act on the topology of the inter-nodes contacts to achieve the desired degree of stabilization, without altering the dynamical parameters of the model. Both symmetric and asymmetric couplings are considered. In this latter setting the web of contacts is assumed to be balanced, for the homogeneous equilibrium to exist. The performance of the proposed method are assessed, assuming the Complex Ginzburg-Landau equation as a reference model. In this case, the implemented control allows one to stabilize the synchronous limit cycle, hence time-dependent, uniform solution. A system of coupled real Ginzburg-Landau equations is also investigated to obtain the topological stabilization of a homogeneous and constant fixed point.

  19. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  20. Spatial Dynamics of Multilayer Cellular Neural Networks

    Science.gov (United States)

    Wu, Shi-Liang; Hsu, Cheng-Hsiung

    2017-06-01

    The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.

  1. Neural network forecasting model based on phase space re-construction in water yield of mine

    Institute of Scientific and Technical Information of China (English)

    LIU Wei-lin; DONG Zeng-chuan; CHEN Nan-xiang; CAO Lian-hai

    2007-01-01

    The neutral network forecasting model based on the phase space reconstruction was proposed. First, through reconstructing the phase space, the time series of single variable was done excursion and expanded into multi- dimension series which included the ergodic information and more rich information could be excavated. Then, on the basis of the embedding dimension of the time series, the structure form of neutral network was constructed, of which the node number in input layer was the embedding dimension of the time series minus 1, and the node number in output layers was 1. Finally, as an example,the model was applied for water yield of mine forecasting. The result shows that the model has good fitting accuracy and forecasting precision.

  2. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  3. Quantum state reconstruction of an oscillator network in an optomechanical setting

    Science.gov (United States)

    Moore, Darren W.; Tufarelli, Tommaso; Paternostro, Mauro; Ferraro, Alessandro

    2016-11-01

    We introduce a scheme to reconstruct an arbitrary quantum state of a mechanical oscillator network. We assume that a single element of the network is coupled to a cavity field via a linearized optomechanical interaction, the time dependence of which is controlled by a classical driving field. By designing a suitable interaction profile, we show how the statistics of an arbitrary mechanical quadrature can be encoded in the cavity field, which can then be measured. We discuss the important special case of Gaussian state reconstruction and study numerically the effectiveness of our scheme for a finite number of measurements. Finally, we speculate on possible routes to extend our ideas to the regime of single-photon optomechanics.

  4. Spatially embedded social networks: dynamic models and data reconstruction

    OpenAIRE

    Hegemann, Rachel Anne

    2012-01-01

    ``Bottom-up" and ``top-down" identify two fundamental approaches to modeling complex systems. As the name suggests, a bottom-up approach analyzes how elements on a micro scale affect observations on the macro scale. On the other hand, top-down approaches use macro scale data to identify patterns evolved from the micro scale. This thesis details two models, agent-based and data driven, designed for complex systems. These models are applied to the complex system of street gang violence. The fir...

  5. Filtering in Hybrid Dynamic Bayesian Networks

    Science.gov (United States)

    Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin

    2004-01-01

    We demonstrate experimentally that inference in a complex hybrid Dynamic Bayesian Network (DBN) is possible using the 2 - T i e Slice DBN (2T-DBN) from [Koller & Lerner, 20001 to model fault detection in a watertank system. In [Koller & Lerner, 20001 a generic Particle Filter (PF) is used for inference. We extend the experiment and perform approximate inference using The Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). Furthermore, we combine these techniques in a 'non-strict' Rao-Blackwellisation framework and apply it to the watertank system. We show that UKF and UKF in a PF framework outperfom the generic PF, EKF and EKF in a PF framework with respect to accuracy and robustness in terms of estimation RMSE. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. We also show that the choice of network structure is very important for the performance of the generic PF and the EKF algorithms, but not for the UKF algorithms. Furthermore, we investigate the influence of data noise in the water[ank simulation. Theory and implementation is based on the theory presented.

  6. Choice Shift in Opinion Network Dynamics

    Science.gov (United States)

    Gabbay, Michael

    Choice shift is a phenomenon associated with small group dynamics whereby group discussion causes group members to shift their opinions in a more extreme direction so that the mean post-discussion opinion exceeds the mean pre-discussion opinion. Also known as group polarization, choice shift is a robust experimental phenomenon and has been well-studied within social psychology. In opinion network models, shifts toward extremism are typically produced by the presence of stubborn agents at the extremes of the opinion axis, whose opinions are much more resistant to change than moderate agents. However, we present a model in which choice shift can arise without the assumption of stubborn agents; the model evolves member opinions and uncertainties using coupled nonlinear differential equations. In addition, we briefly describe the results of a recent experiment conducted involving online group discussion concerning the outcome of National Football League games are described. The model predictions concerning the effects of network structure, disagreement level, and team choice (favorite or underdog) are in accord with the experimental results. This research was funded by the Office of Naval Research and the Defense Threat Reduction Agency.

  7. Filtering in Hybrid Dynamic Bayesian Networks

    Science.gov (United States)

    Andersen, Morten Nonboe; Andersen, Rasmus Orum; Wheeler, Kevin

    2000-01-01

    We implement a 2-time slice dynamic Bayesian network (2T-DBN) framework and make a 1-D state estimation simulation, an extension of the experiment in (v.d. Merwe et al., 2000) and compare different filtering techniques. Furthermore, we demonstrate experimentally that inference in a complex hybrid DBN is possible by simulating fault detection in a watertank system, an extension of the experiment in (Koller & Lerner, 2000) using a hybrid 2T-DBN. In both experiments, we perform approximate inference using standard filtering techniques, Monte Carlo methods and combinations of these. In the watertank simulation, we also demonstrate the use of 'non-strict' Rao-Blackwellisation. We show that the unscented Kalman filter (UKF) and UKF in a particle filtering framework outperform the generic particle filter, the extended Kalman filter (EKF) and EKF in a particle filtering framework with respect to accuracy in terms of estimation RMSE and sensitivity with respect to choice of network structure. Especially we demonstrate the superiority of UKF in a PF framework when our beliefs of how data was generated are wrong. Furthermore, we investigate the influence of data noise in the watertank simulation using UKF and PFUKD and show that the algorithms are more sensitive to changes in the measurement noise level that the process noise level. Theory and implementation is based on (v.d. Merwe et al., 2000).

  8. The Dynamics of Initiative in Communication Networks.

    Science.gov (United States)

    Mollgaard, Anders; Mathiesen, Joachim

    2016-01-01

    Human social interaction is often intermittent. Two acquainted persons can have extended periods without social interaction punctuated by periods of repeated interaction. In this case, the repeated interaction can be characterized by a seed initiative by either of the persons and a number of follow-up interactions. The tendency to initiate social interaction plays an important role in the formation of social networks and is in general not symmetric between persons. In this paper, we study the dynamics of initiative by analysing and modeling a detailed call and text message network sampled from a group of 700 individuals. We show that in an average relationship between two individuals, one part is almost twice as likely to initiate communication compared to the other part. The asymmetry has social consequences and ultimately might lead to the discontinuation of a relationship. We explain the observed asymmetry by a positive feedback mechanism where individuals already taking initiative are more likely to take initiative in the future. In general, people with many initiatives receive attention from a broader spectrum of friends than people with few initiatives. Lastly, we compare the likelihood of taking initiative with the basic personality traits of the five factor model.

  9. Polarization dynamics in optical ground wire network.

    Science.gov (United States)

    Leeson, Jesse; Bao, Xiaoyi; Côté, Alain

    2009-04-20

    We report the polarization dynamics in an optical ground wire (OPGW) network for a summer period and a fall period for what is believed to be the first time. To better observe the surrounding magnetic fields contribution to modulating the state of polarization (SOP) we installed a Faraday rotating mirror to correct reciprocal birefringence from quasi-static changes. We also monitored the OPGW while no electrical current was present in the towers' electrical conductors. The spectral analysis, the arc length mapped out over a given time interval on a Poincaré sphere, histograms of the arc length, and the SOP autocorrelation function are calculated to analyze the SOP changes. Ambient temperature changes, wind, Sun-induced temperature gradients, and electrical current all have a significant impact on the SOP drift in an OPGW network. Wind-generated cable oscillations and Sun-induced temperature gradients are shown to be the dominant slow SOP modulations, while Aeolian vibrations and electrical current are shown to be the dominant fast SOP modulations. The spectral analysis revealed that the electrical current gives the fastest SOP modulation to be 300 Hz for the sampling frequency of 1 KHz. This has set the upper speed limit for real-time polarization mode dispersion compensation devices.

  10. The stochastic network dynamics underlying perceptual discrimination

    Directory of Open Access Journals (Sweden)

    Genis Prat-Ortega

    2015-04-01

    Full Text Available The brain is able to interpret streams of high-dimensional ambiguous information and yield coherent percepts. The mechanisms governing sensory integration have been extensively characterized using time-varying visual stimuli (Britten et al. 1996; Roitman and Shadlen 2002, but some of the basic principles regarding the network dynamics underlying this process remain largely unknown. We captured the basic features of a neural integrator using three canonical one-dimensional models: (1 the Drift Diffusion Model (DDM, (2 the Perfect Integrator (PI which is a particular case of the DDM where the bounds are set to infinity and (3 the double-well potential (DW which captures the dynamics of the attractor networks (Wang 2002; Roxin and Ledberg 2008. Although these models has been widely studied (Bogacz et al. 2006; Roxin and Ledberg 2008; Gold and Shadlen 2002, it has been difficult to experimentally discriminate among them because most of the observables measured are only quantitatively different among these models (e.g. psychometric curves. Here we aim to find experimentally measurable quantities that can yield qualitatively different behaviors depending on the nature of the underlying network dynamics. We examined the categorization dynamics of these models in response to fluctuating stimuli of different duration (T. On each time step, stimuli are drawn from a Gaussian distribution N(μ, σ and the two stimulus categories are defined by μ > 0 and μ < 0. Psychometric curves can therefore be obtained by quantifying the probability of the integrator to yield one category versus μ . We find however that varying σ can reveal more clearly the differences among the different integrators. In the small σ regime, both the DW and the DDM perform transient integration and exhibit a decaying stimulus reverse correlation kernel revealing a primacy effect (Nienborg and Cumming 2009; Wimmer et al. 2015 . In the large σ regime, the integration in the DDM

  11. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2011-10-01

    Full Text Available Abstract Background Transcriptional regulation by transcription factor (TF controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data.

  12. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    Science.gov (United States)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  13. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks.

    Science.gov (United States)

    Zhu, Shijia; Wang, Yadong

    2015-12-18

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is 'stationarity', and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  14. Reconstructing topological properties of complex networks from partial information using the Fitness Model

    Science.gov (United States)

    Gabrielli, Andrea; Battiston, Stefano; Caldarelli, Guido; Musmeci, Nicoló; Puliga, Michelangelo

    2014-03-01

    We present a new method to reconstruct global topological properties of complex networks starting from limited information. We assume to know for all nodes a non-topological quantity that we interpret as fitness, while the degree is known only for a subset of the nodes. We then use a fitness model, calibrated on the subset of nodes for which degrees are known, to generate ensembles of networks. We focus on topological properties relevant for processes of contagion and distress propagation in networks, i.e. network density and k-core structure. We study how well these properties can be estimated as a function of the size of the subset of nodes utilized for the calibration. We perform a first test on ensembles of synthetic networks generated with the Exponential Random Graph model. We then perform a second test on empirical networks taken from economic and financial contexts (World Trade Web and e-mid interbank network). In both cases, we find that a subset as small as 10% of nodes can be enough to estimate the properties of the network with an error of 5%.

  15. SCENERY: a web application for (causal) network reconstruction from cytometry data

    KAUST Repository

    Papoutsoglou, Georgios

    2017-05-08

    Flow and mass cytometry technologies can probe proteins as biological markers in thousands of individual cells simultaneously, providing unprecedented opportunities for reconstructing networks of protein interactions through machine learning algorithms. The network reconstruction (NR) problem has been well-studied by the machine learning community. However, the potentials of available methods remain largely unknown to the cytometry community, mainly due to their intrinsic complexity and the lack of comprehensive, powerful and easy-to-use NR software implementations specific for cytometry data. To bridge this gap, we present Single CEll NEtwork Reconstruction sYstem (SCENERY), a web server featuring several standard and advanced cytometry data analysis methods coupled with NR algorithms in a user-friendly, on-line environment. In SCENERY, users may upload their data and set their own study design. The server offers several data analysis options categorized into three classes of methods: data (pre)processing, statistical analysis and NR. The server also provides interactive visualization and download of results as ready-to-publish images or multimedia reports. Its core is modular and based on the widely-used and robust R platform allowing power users to extend its functionalities by submitting their own NR methods. SCENERY is available at scenery.csd.uoc.gr or http://mensxmachina.org/en/software/.

  16. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  17. Motion estimation and compensation in dynamic spiral CT reconstruction; Estimation et compensation de mouvement en reconstruction dynamique de tomodensitometrie helicoidale

    Energy Technology Data Exchange (ETDEWEB)

    Kimdon, J.; Grangeat, P.; Koenig, A.; Bonnet, St

    2004-07-01

    Respiratory and cardiac motion causes blurring in dynamic X-ray Computed Tomography (CT). Fast scans reduce this problem, but they require a higher radiation dose per time period to maintain the signal to noise ratio of the resulting images, thereby magnifying the health risk to the patient. As an alternative to increased radiation, our team has already developed a cone-beam reconstruction algorithm based on a dynamic particle model that estimates, predicts, and compensates for respiratory motion in circular X-ray CT. The current paper presents an extension of this method to spiral CT, applicable to modern multi-slice scanners that take advantage of the speed and dose benefits of helical trajectories. We adapted all three main areas of the algorithm: backprojection, prediction, and compensation/accumulation. In backprojection, we changed the longitudinal re-binning technique, filter direction, and the method of enforcing the data sufficiency requirements. For prediction, we had to be careful of objects appearing and disappearing as the scanner bed advanced. For compensation/accumulation, we controlled the reconstruction time and combined images to cover a greater longitudinal extent for each phase in the respiratory or cardiac cycle. Tests with moving numerical phantoms demonstrate that the algorithm successfully improves the temporal resolution of the images without increasing the dose or reducing the signal-to-noise ratio. (authors)

  18. Innovation networking between stability and political dynamics

    DEFF Research Database (Denmark)

    Koch, Christian

    2004-01-01

    This contribution views innovation as a social activity of building networks, using software product development in multicompany alliances and networks as example. Innovation networks are frequently understood as quite stable arrangements characterised by high trust among the participants. The aim...

  19. A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds

    Directory of Open Access Journals (Sweden)

    N. Keshta

    2008-06-01

    Full Text Available The mining of oil sands in northern Alberta, Canada, involves the stripping and salvage of surface soil layers to gain access to the oil mines. The oil sands industry has committed to reconstructing these disturbed watersheds to replicate the performance of the natural soil horizons and to reproduce the various functions of natural watersheds. The selection of the texture and thickness of the reconstructed soil cover layers is based primarily on the concept that all covers must have sufficient moisture for vegetation over the growing season. Assessment of the hydrological performance of the reconstructed soil covers is crucial to select the best cover alternative. A generic system dynamics watershed (GSDW model is developed, based on the existing site-specific SDW model, and applied to five reconstructed watersheds located in the Athabasca mining basin, Alberta, Canada; and one natural watershed (boreal forest located in Saskatchewan, Canada; to simulate the various hydrological processes; in particular, soil moisture patterns and actual evapotranspiration, in reconstructed and natural watersheds. The model is capable of capturing the dynamics of the water balance components in both reconstructed and natural watersheds. The developed GSDW model provides a vital tool, which enables the investigation of the utility of different soil cover alternative designs and evaluation of their performance. Moreover, the model can be used to conduct short- and long- term predictions under different climate scenarios.

  20. Fast paths in large-scale dynamic road networks

    CERN Document Server

    Nannicini, Giacomo; Barbier, Gilles; Krob, Daniel; Liberti, Leo

    2007-01-01

    Efficiently computing fast paths in large scale dynamic road networks (where dynamic traffic information is known over a part of the network) is a practical problem faced by several traffic information service providers who wish to offer a realistic fast path computation to GPS terminal enabled vehicles. The heuristic solution method we propose is based on a highway hierarchy-based shortest path algorithm for static large-scale networks; we maintain a static highway hierarchy and perform each query on the dynamically evaluated network.

  1. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49

  2. Dynamic Mobile IP routers in ad hoc networks

    NARCIS (Netherlands)

    Kock, B.A.; Schmidt, J.R.

    2005-01-01

    This paper describes a concept combining mobile IP and ad hoc routing to create a robust mobile network. In this network all nodes are mobile and globally and locally reachable under the same IP address. Essential for implementing this network are the dynamic mobile IP routers. They act as gateways

  3. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  4. Inferring slowly-changing dynamic gene-regulatory networks

    NARCIS (Netherlands)

    Wit, Ernst C.; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a cla

  5. Dynamic Mobile IP routers in ad hoc networks

    NARCIS (Netherlands)

    Kock, B.A.; Schmidt, J.R.

    2005-01-01

    This paper describes a concept combining mobile IP and ad hoc routing to create a robust mobile network. In this network all nodes are mobile and globally and locally reachable under the same IP address. Essential for implementing this network are the dynamic mobile IP routers. They act as gateways

  6. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, Rajeev

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  7. Stochastic simulation of HIV population dynamics through complex network modelling

    NARCIS (Netherlands)

    Sloot, P.M.A.; Ivanov, S.V.; Boukhanovsky, A.V.; van de Vijver, D.A.M.C.; Boucher, C.A.B.

    2008-01-01

    We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and

  8. Stochastic simulation of HIV population dynamics through complex network modelling

    NARCIS (Netherlands)

    Sloot, P. M. A.; Ivanov, S. V.; Boukhanovsky, A. V.; van de Vijver, D. A. M. C.; Boucher, C. A. B.

    We propose a new way to model HIV infection spreading through the use of dynamic complex networks. The heterogeneous population of HIV exposure groups is described through a unique network degree probability distribution. The time evolution of the network nodes is modelled by a Markov process and

  9. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the

  10. Study on Reverse Reconstruction Method of Vehicle Group Situation in Urban Road Network Based on Driver-Vehicle Feature Evolution

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Wang

    2017-01-01

    Full Text Available Vehicle group situation is the status and situation of dynamic permutation which is composed of target vehicle and neighboring traffic entities. It is a concept which is frequently involved in the research of traffic flow theory, especially the active vehicle security. Studying vehicle group situation in depth is of great significance for traffic safety. Three-lane condition was taken as an example; the characteristics of target vehicle and its neighboring vehicles were synthetically considered to restructure the vehicle group situation in this paper. The Gamma distribution theory was used to identify the vehicle group situation when target vehicle arrived at the end of the study area. From the perspective of driver-vehicle feature evolution, the reverse reconstruction method of vehicle group situation in the urban road network was proposed. Results of actual driving, virtual driving, and simulation experiments showed that the model established in this paper was reasonable and feasible.

  11. PROVIDING OF SAFETY AT WORKS IMPLEMENTATION ON RECONSTRUCTION OF PLUMBINGS NETWORKS IN THE STRAITENED TERMS

    Directory of Open Access Journals (Sweden)

    DIDENKO L. M.

    2016-07-01

    Full Text Available Summary. Raising of problem. In all regions of our country plumbings networks have a considerable physical and moral wear, because in the majority they were laid in the middle of the last century. It is known that more than 50 % on-the-road pipelines are made from steel, here middle tenure of employment of metallic pipes for plumbings networks makes 30. [1]. Statistical data testify that more than 34 % plumbings and sewage networks are in the emergency state. Thus, a large enough stake in building industry of Ukraine is on works on the reconstruction of this type of engineering networks. Thus complete replacement of all pipes requires heavy material tolls, a reconstruction and major repairs of separate emergency areas are mainly produced on this account. Logically to assert that providing of safe production of the examined type of works becomes complicated by the presence of harmful and dangerous productive factors arising up due to the complex factor of straitened. This factor is stipulated by that plumbings networks are laid within the limits of folded municipal building and on territory of operating industrial enterprises. About the danger of production of works on a reconstruction the high level of traumatism testifies at their production. According to the law of Ukraine "On a labour (item 13 protection", an employer is under an obligation to create in the workplace the terms of labour accordingly normatively - to the legal acts, requirements of legislation on the observance of rights of workers in area of labour protection. [2] Providing of safety at implementation of works on the reconstruction of plumbings networks, maybe only at the complex going near the study of this problem, that plugs in itself: research of influence of factors of straitened; exposure of features of technology of production building, assembling, breaking-down, earthen and other types of works executable on a site area at a reconstruction; perfection of existent

  12. Adaptive Synchronization in Small-World Dynamical Networks

    Institute of Scientific and Technical Information of China (English)

    ZOU Yan-li; ZHU Jie; LUO Xiao-shu

    2007-01-01

    Adaptive synchronization in NW small-world dynamical networks was studied. Firstly, an adaptive synchronization method is presented and explained. Then, it is applied to two different classes of dynamical networks,one is a class-B network, small-world connected R(o)ssler oscillators, the other is a class-A network, small-world connected Chua's circuits. The simulation verifies the validity of the presented method. It also shows that the adaptive synchronization method is robust to the variations of the node systems parameters. So the presented method can be used in networks whose node systems have unknown or time-varying parameters.

  13. NetworkPainter: dynamic intracellular pathway animation in Cytobank.

    Science.gov (United States)

    Karr, Jonathan R; Guturu, Harendra; Chen, Edward Y; Blair, Stuart L; Irish, Jonathan M; Kotecha, Nikesh; Covert, Markus W

    2015-05-25

    High-throughput technologies such as flow and mass cytometry have the potential to illuminate cellular networks. However, analyzing the data produced by these technologies is challenging. Visualization is needed to help researchers explore this data. We developed a web-based software program, NetworkPainter, to enable researchers to analyze dynamic cytometry data in the context of pathway diagrams. NetworkPainter provides researchers a graphical interface to draw and "paint" pathway diagrams with experimental data, producing animated diagrams which display the activity of each network node at each time point. NetworkPainter enables researchers to more fully explore multi-parameter, dynamical cytometry data.

  14. Topology Identification of General Dynamical Network with Distributed Time Delays

    Institute of Scientific and Technical Information of China (English)

    WU Zhao-Yan; FU Xin-Chu

    2009-01-01

    General dynamical networks with distributed time delays are studied. The topology of the networks are viewed as unknown parameters, which need to be identified. Some auxiliary systems (also called the network estimators)are designed to achieve this goal. Both linear feedback control and adaptive strategy are applied in designing these network estimators. Based on linear matrix inequalities and the Lyapunov function method, the sufficient condition for the achievement of topology identification is obtained. This method can also better monitor the switching topology of dynamical networks. Illustrative examples are provided to show the effectiveness of this method.

  15. HYPR: constrained reconstruction for enhanced SNR in dynamic medical imaging

    Science.gov (United States)

    Mistretta, C.; Wieben, O.; Velikina, J.; Wu, Y.; Johnson, K.; Korosec, F.; Unal, O.; Chen, G.; Fain, S.; Christian, B.; Nalcioglu, O.; Kruger, R. A.; Block, W.; Samsonov, A.; Speidel, M.; Van Lysel, M.; Rowley, H.; Supanich, M.; Turski, P.; Wu, Yan; Holmes, J.; Kecskemeti, S.; Moran, C.; O'Halloran, R.; Keith, L.; Alexander, A.; Brodsky, E.; Lee, J. E.; Hall, T.; Zagzebski, J.

    2008-03-01

    During the last eight years our group has developed radial acquisitions with angular undersampling factors of several hundred that accelerate MRI in selected applications. As with all previous acceleration techniques, SNR typically falls as least as fast as the inverse square root of the undersampling factor. This limits the SNR available to support the small voxels that these methods can image over short time intervals in applications like time-resolved contrast-enhanced MR angiography (CE-MRA). Instead of processing each time interval independently, we have developed constrained reconstruction methods that exploit the significant correlation between temporal sampling points. A broad class of methods, termed HighlY Constrained Back PRojection (HYPR), generalizes this concept to other modalities and sampling dimensions.

  16. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Novichkov, Pavel; Stavrovskaya, Elena D.; Rodionova, Irina A.; Li, Xiaoqing; Kazanov, Marat D.; Ravcheev, Dmitry A.; Gerasimova, Anna V.; Kazakov, Alexey E.; Kovaleva, Galina Y.; Permina, Elizabeth A.; Laikova, Olga N.; Overbeek, Ross; Romine, Margaret F.; Fredrickson, Jim K.; Arkin, Adam P.; Dubchak, Inna; Osterman, Andrei L.; Gelfand, Mikhail S.

    2011-06-15

    Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. Despite the growing number of genome-scale gene expression studies, our abilities to convert the results of these studies into accurate regulatory annotations and to project them from model to other organisms are extremely limited. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. However, even orthologous regulators with conserved DNA-binding motifs may control substantially different gene sets, revealing striking differences in regulatory strategies between the Shewanella spp. and E. coli. Multiple examples of regulatory network rewiring include regulon contraction and expansion (as in the case of PdhR, HexR, FadR), and numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. NagR for N-acetylglucosamine catabolism and PsrA for fatty acid degradation) and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp).

  17. Arresting Strategy Based on Dynamic Criminal Networks Changing over Time

    Directory of Open Access Journals (Sweden)

    Junqing Yuan

    2013-01-01

    Full Text Available We investigate a sequence of dynamic criminal networks on a time series based on the dynamic network analysis (DNA. According to the change of networks’ structure, networks’ variation trend is analyzed to forecast its future structure. Finally, an optimal arresting time and priority list are designed based on our analysis. Better results can be expected than that based on social network analysis (SNA.

  18. Reconstruction of the temporal signaling network in Salmonella-infected human cells

    Directory of Open Access Journals (Sweden)

    Gungor eBudak

    2015-07-01

    Full Text Available Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Using high-throughput ‘omic’ technologies, changes in the signaling components can be quantified at different levels; however, experimental hits are usually incomplete to represent the whole signaling system as some driver proteins stay hidden within the experimental data. Given that the bacterial infection modifies the response network of the host, more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles in which a confident region from the protein interactome is found by inferring hits from the omic experiments. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic datasets. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF approach and the Integer Linear Programming (ILP based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches have a high potential for the identification of clinical targets in infectious diseases, especially in the

  19. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data

    Science.gov (United States)

    Faria, José P.; Overbeek, Ross; Taylor, Ronald C.; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.

    2016-01-01

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental

  20. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Faria, José P.; Overbeek, Ross; Taylor, Ronald C.; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.

    2016-03-18

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of B. subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches and small regulatory RNAs. Overall, regulatory information is included in the model for approximately 2500 of the ~4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how atomic regulons for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how atomic regulons can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata

  1. High-performance computing and networking as tools for accurate emission computed tomography reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, A. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Formiconi, A.R. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); De Cristofaro, M.T.E.R. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Pupi, A. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy); Meldolesi, U. [Dipartimento di Fisiopatologia Clinica - Sezione di Medicina Nucleare, Universita` di Firenze (Italy)

    1997-04-01

    It is well known that the quantitative potential of emission computed tomography (ECT) relies on the ability to compensate for resolution, attenuation and scatter effects. Reconstruction algorithms which are able to take these effects into account are highly demanding in terms of computing resources. The reported work aimed to investigate the use of a parallel high-performance computing platform for ECT reconstruction taking into account an accurate model of the acquisition of single-photon emission tomographic (SPET) data. An iterative algorithm with an accurate model of the variable system response was ported on the MIMD (Multiple Instruction Multiple Data) parallel architecture of a 64-node Cray T3D massively parallel computer. The system was organized to make it easily accessible even from low-cost PC-based workstations through standard TCP/IP networking. A complete brain study of 30 (64 x 64) slices could be reconstructed from a set of 90 (64 x 64) projections with ten iterations of the conjugate gradients algorithm in 9 s, corresponding to an actual speed-up factor of 135. This work demonstrated the possibility of exploiting remote high-performance computing and networking resources from hospital sites by means of low-cost workstations using standard communication protocols without particular problems for routine use. The achievable speed-up factors allow the assessment of the clinical benefit of advanced reconstruction techniques which require a heavy computational burden for the compensation effects such as variable spatial resolution, scatter and attenuation. The possibility of using the same software on the same hardware platform with data acquired in different laboratories with various kinds of SPET instrumentation is appealing for software quality control and for the evaluation of the clinical impact of the reconstruction methods. (orig.). With 4 figs., 1 tab.

  2. Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor

    Directory of Open Access Journals (Sweden)

    Christian eBrandli

    2014-01-01

    Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.

  3. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies

    Science.gov (United States)

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans—each containing 1/8th of the total number of events—were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other

  4. Major component analysis of dynamic networks of physiologic organ interactions

    Science.gov (United States)

    Liu, Kang K. L.; Bartsch, Ronny P.; Ma, Qianli D. Y.; Ivanov, Plamen Ch

    2015-09-01

    The human organism is a complex network of interconnected organ systems, where the behavior of one system affects the dynamics of other systems. Identifying and quantifying dynamical networks of diverse physiologic systems under varied conditions is a challenge due to the complexity in the output dynamics of the individual systems and the transient and nonlinear characteristics of their coupling. We introduce a novel computational method based on the concept of time delay stability and major component analysis to investigate how organ systems interact as a network to coordinate their functions. We analyze a large database of continuously recorded multi-channel physiologic signals from healthy young subjects during night-time sleep. We identify a network of dynamic interactions between key physiologic systems in the human organism. Further, we find that each physiologic state is characterized by a distinct network structure with different relative contribution from individual organ systems to the global network dynamics. Specifically, we observe a gradual decrease in the strength of coupling of heart and respiration to the rest of the network with transition from wake to deep sleep, and in contrast, an increased relative contribution to network dynamics from chin and leg muscle tone and eye movement, demonstrating a robust association between network topology and physiologic function.

  5. Comparison study of temporal regularization methods for fully 5D reconstruction of cardiac gated dynamic SPECT

    Science.gov (United States)

    Niu, Xiaofeng; Yang, Yongyi; King, Michael A.

    2012-09-01

    Temporal regularization plays a critical role in cardiac gated dynamic SPECT reconstruction, of which the goal is to obtain an image sequence from a single acquisition which simultaneously shows both cardiac motion and tracer distribution change over the course of imaging (termed 5D). In our recent work, we explored two different approaches for temporal regularization of the dynamic activities in gated dynamic reconstruction without the use of fast camera rotation: one is the dynamic EM (dEM) approach which is imposed on the temporal trend of the time activity of each voxel, and the other is a B-spline modeling approach in which the time activity is regulated by a set of B-spline basis functions. In this work, we extend the B-spline approach to fully 5D reconstruction and conduct a thorough quantitative comparison with the dEM approach. In the evaluation of the reconstruction results, we apply a number of quantitative measures on two major aspects of the reconstructed dynamic images: (1) the accuracy of the reconstructed activity distribution in the myocardium and (2) the ability of the reconstructed dynamic activities to differentiate perfusion defects from normal myocardial wall uptake. These measures include the mean square error (MSE), bias-variance analysis, accuracy of time-activity curves (TAC), contrast-to-noise ratio of a defect, composite kinetic map of the left ventricle wall and perfusion defect detectability with channelized Hotelling observer. In experiments, we simulated cardiac gated imaging with the NURBS-based cardiac-torso phantom and Tc99m-Teboroxime as the imaging agent, where acquisition with the equivalent of only three full camera rotations was used during the imaging period. The results show that both dEM and B-spline 5D could achieve similar overall accuracy in the myocardium in terms of MSE. However, compared to dEM 5D, the B-spline approach could achieve a more accurate reconstruction of the voxel TACs; in particular, B-spline 5D could

  6. Identify Dynamic Network Modules with Temporal and Spatial Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J

    2007-09-24

    Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.

  7. Temporal Dynamics of Connectivity and Epidemic Properties of Growing Networks

    CERN Document Server

    Fotouhi, Babak

    2015-01-01

    Traditional mathematical models of epidemic disease had for decades conventionally considered static structure for contacts. Recently, an upsurge of theoretical inquiry has strived towards rendering the models more realistic by incorporating the temporal aspects of networks of contacts, societal and online, that are of interest in the study of epidemics (and other similar diffusion processes). However, temporal dynamics have predominantly focused on link fluctuations and nodal activities, and less attention has been paid to the growth of the underlying network. Many real networks grow: online networks are evidently in constant growth, and societal networks can grow due to migration flux and reproduction. The effect of network growth on the epidemic properties of networks is hitherto unknown---mainly due to the predominant focus of the network growth literature on the so-called steady-state. This paper takes a step towards alleviating this gap. We analytically study the degree dynamics of a given arbitrary net...

  8. Higher-order structure and epidemic dynamics in clustered networks

    CERN Document Server

    Ritchie, Martin; House, Thomas; Kiss, Istvan Z

    2013-01-01

    Clustering is typically measured by the ratio of triangles to all triples, open or closed. Generating clustered networks, and how clustering affects dynamics on networks, is reasonably well understood for certain classes of networks \\cite{vmclust, karrerclust2010}, e.g., networks composed of lines and non-overlapping triangles. In this paper we show that it is possible to generate networks which, despite having the same degree distribution and equal clustering, exhibit different higher-order structure, specifically, overlapping triangles and other order-four (a closed network motif composed of four nodes) structures. To distinguish and quantify these additional structural features, we develop a new network metric capable of measuring order-four structure which, when used alongside traditional network metrics, allows us to more accurately describe a network's topology. Three network generation algorithms are considered: a modified configuration model and two rewiring algorithms. By generating homogeneous netwo...

  9. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  10. Adaptive Dynamics of Regulatory Networks: Size Matters

    Directory of Open Access Journals (Sweden)

    Martinetz Thomas

    2009-01-01

    Full Text Available To accomplish adaptability, all living organisms are constructed of regulatory networks on different levels which are capable to differentially respond to a variety of environmental inputs. Structure of regulatory networks determines their phenotypical plasticity, that is, the degree of detail and appropriateness of regulatory replies to environmental or developmental challenges. This regulatory network structure is encoded within the genotype. Our conceptual simulation study investigates how network structure constrains the evolution of networks and their adaptive abilities. The focus is on the structural parameter network size. We show that small regulatory networks adapt fast, but not as good as larger networks in the longer perspective. Selection leads to an optimal network size dependent on heterogeneity of the environment and time pressure of adaptation. Optimal mutation rates are higher for smaller networks. We put special emphasis on discussing our simulation results on the background of functional observations from experimental and evolutionary biology.

  11. Perspective: network-guided pattern formation of neural dynamics

    OpenAIRE

    Hütt, Marc-Thorsten; Kaiser, Marcus; Claus C Hilgetag

    2014-01-01

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to...

  12. Dynamic Object Identification with SOM-based neural networks

    Directory of Open Access Journals (Sweden)

    Aleksey Averkin

    2014-03-01

    Full Text Available In this article a number of neural networks based on self-organizing maps, that can be successfully used for dynamic object identification, is described. Unique SOM-based modular neural networks with vector quantized associative memory and recurrent self-organizing maps as modules are presented. The structured algorithms of learning and operation of such SOM-based neural networks are described in details, also some experimental results and comparison with some other neural networks are given.

  13. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    Science.gov (United States)

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness.

  14. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    Science.gov (United States)

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  15. Adaptive financial networks with static and dynamic thresholds

    CERN Document Server

    Qiu, Tian; Chen, Guang

    2010-01-01

    Based on the daily data of American and Chinese stock markets, the dynamic behavior of a financial network with static and dynamic thresholds is investigated. Compared with the static threshold, the dynamic threshold suppresses the large fluctuation induced by the cross-correlation of individual stock prices, and leads to a stable topological structure in the dynamic evolution. Long-range time-correlations are revealed for the average clustering coefficient, average degree and cross-correlation of degrees. The dynamic network shows a two-peak behavior in the degree distribution.

  16. Polysaccharides utilization in human gut bacterium Bacteroides thetaiotaomicron: comparative genomics reconstruction of metabolic and regulatory networks.

    Science.gov (United States)

    Ravcheev, Dmitry A; Godzik, Adam; Osterman, Andrei L; Rodionov, Dmitry A

    2013-12-12

    Bacteroides thetaiotaomicron, a predominant member of the human gut microbiota, is characterized by its ability to utilize a wide variety of polysaccharides using the extensive saccharolytic machinery that is controlled by an expanded repertoire of transcription factors (TFs). The availability of genomic sequences for multiple Bacteroides species opens an opportunity for their comparative analysis to enable characterization of their metabolic and regulatory networks. A comparative genomics approach was applied for the reconstruction and functional annotation of the carbohydrate utilization regulatory networks in 11 Bacteroides genomes. Bioinformatics analysis of promoter regions revealed putative DNA-binding motifs and regulons for 31 orthologous TFs in the Bacteroides. Among the analyzed TFs there are 4 SusR-like regulators, 16 AraC-like hybrid two-component systems (HTCSs), and 11 regulators from other families. Novel DNA motifs of HTCSs and SusR-like regulators in the Bacteroides have the common structure of direct repeats with a long spacer between two conserved sites. The inferred regulatory network in B. thetaiotaomicron contains 308 genes encoding polysaccharide and sugar catabolic enzymes, carbohydrate-binding and transport systems, and TFs. The analyzed TFs control pathways for utilization of host and dietary glycans to monosaccharides and their further interconversions to intermediates of the central metabolism. The reconstructed regulatory network allowed us to suggest and refine specific functional assignments for sugar catabolic enzymes and transporters, providing a substantial improvement to the existing metabolic models for B. thetaiotaomicron. The obtained collection of reconstructed TF regulons is available in the RegPrecise database (http://regprecise.lbl.gov).

  17. Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Marwan Wolfgang

    2011-07-01

    Full Text Available Abstract Background Network inference methods reconstruct mathematical models of molecular or genetic networks directly from experimental data sets. We have previously reported a mathematical method which is exclusively data-driven, does not involve any heuristic decisions within the reconstruction process, and deliveres all possible alternative minimal networks in terms of simple place/transition Petri nets that are consistent with a given discrete time series data set. Results We fundamentally extended the previously published algorithm to consider catalysis and inhibition of the reactions that occur in the underlying network. The results of the reconstruction algorithm are encoded in the form of an extended Petri net involving control arcs. This allows the consideration of processes involving mass flow and/or regulatory interactions. As a non-trivial test case, the phosphate regulatory network of enterobacteria was reconstructed using in silico-generated time-series data sets on wild-type and in silico mutants. Conclusions The new exact algorithm reconstructs extended Petri nets from time series data sets by finding all alternative minimal networks that are consistent with the data. It suggested alternative molecular mechanisms for certain reactions in the network. The algorithm is useful to combine data from wild-type and mutant cells and may potentially integrate physiological, biochemical, pharmacological, and genetic data in the form of a single model.

  18. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    Institute of Scientific and Technical Information of China (English)

    Lü Yong-Bing; Shi Xia; Zheng Yan-Hong

    2013-01-01

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper.A quantitative characteristic,the width factor,is introduced to describe the rhythm dynamics of an individual neuron,and the average width factor is used to characterize the rhythm dynamics of a neuronal network.An r parameter is introduced to denote the ratio of the short bursting neurons in the network.Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network.The critical value of r is derived,and the neurons in the network always remain short bursting when the r ratio is larger than the critical value.

  19. Synthesis of recurrent neural networks for dynamical system simulation.

    Science.gov (United States)

    Trischler, Adam P; D'Eleuterio, Gabriele M T

    2016-08-01

    We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time.

  20. Dale's Principle is necessary for an optimal neuronal network's dynamics

    CERN Document Server

    Catsigeras, Eleonora

    2013-01-01

    We study a mathematical model of biological neuronal networks composed by any finite number $N \\geq 2$ of non necessarily identical cells. The model is a deterministic dynamical system governed by finite-dimensional impulsive differential equations. The statical structure of the network is described by a directed and weighted graph whose nodes are certain subsets of neurons, and whose edges are the groups of synaptical connections among those subsets. First, we prove that among all the possible networks such that their respective graphs are mutually isomorphic, there exists a dynamical optimum. This optimal network exhibits the richest dynamics: namely, it is capable to show the most diverse set of responses (i.e. orbits in the future) under external stimulus or signals. Second, we prove that all the neurons of a dynamically optimal neuronal network necessarily satisfy Dale's Principle, i.e. each neuron must be either excitatory or inhibitory, but not mixed. So, Dale's Principle is a mathematical necessary co...

  1. Synchronization criteria based on a general complex dynamical network model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-lin; WANG Chang-jian; XU Cong-fu

    2008-01-01

    Many complex dynamical networks display synchronization phenomena. We introduce a general complex dynamical network model. The model is equivalent to a simple vector model of adopting the Kronecker product. Some synchronization criteria, including time-variant networks and time-varying networks, are deduced based on Lyapunov's stability theory, and they are proven on the condition of obtaining a certain synchronous solution of an isolated cell. In particular, the inner-coupling matrix directly determines the synchronization of the time-invariant network; while for a time-varying periodic dynamical network, the asymptotic stability of a synchronous solution is determined by a constant matrix which is related to the fundamental solution matrices of the linearization system. Finally, illustrative examples are given to validate the results.

  2. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  3. Identifying communities by influence dynamics in social networks

    CERN Document Server

    Stanoev, Angel; Kocarev, Ljupco

    2011-01-01

    Communities are not static; they evolve, split and merge, appear and disappear, i.e. they are product of dynamical processes that govern the evolution of the network. A good algorithm for community detection should not only quantify the topology of the network, but incorporate the dynamical processes that take place on the network. We present a novel algorithm for community detection that combines network structure with processes that support creation and/or evolution of communities. The algorithm does not embrace the universal approach but instead tries to focus on social networks and model dynamic social interactions that occur on those networks. It identifies leaders, and communities that form around those leaders. It naturally supports overlapping communities by associating each node with a membership vector that describes node's involvement in each community. This way, in addition to overlapping communities, we can identify nodes that are good followers to their leader, and also nodes with no clear commu...

  4. How memory generates heterogeneous dynamics in temporal networks

    CERN Document Server

    Vestergaard, Christian L; Barrat, Alain

    2014-01-01

    Empirical temporal networks display strong heterogeneities in their dynamics, which profoundly affect processes taking place on these networks, such as rumor and epidemic spreading. Despite the recent wealth of data on temporal networks, little work has been devoted to the understanding of how such heterogeneities can emerge from microscopic mechanisms at the level of nodes and links. Here we show that long-term memory effects are present in the creation and disappearance of links in empirical networks. We thus consider a simple generative modeling framework for temporal networks able to incorporate these memory mechanisms. This allows us to study separately the role of each of these mechanisms in the emergence of heterogeneous network dynamics. In particular, we show analytically and numerically how heterogeneous distributions of contact durations, of inter-contact durations and of numbers of contacts per link emerge. We also study the individual effect of heterogeneities on dynamical processes, such as the ...

  5. Predicting the evolution of complex networks via similarity dynamics

    Science.gov (United States)

    Wu, Tao; Chen, Leiting; Zhong, Linfeng; Xian, Xingping

    2017-01-01

    Almost all real-world networks are subject to constant evolution, and plenty of them have been investigated empirically to uncover the underlying evolution mechanism. However, the evolution prediction of dynamic networks still remains a challenging problem. The crux of this matter is to estimate the future network links of dynamic networks. This paper studies the evolution prediction of dynamic networks with link prediction paradigm. To estimate the likelihood of the existence of links more accurate, an effective and robust similarity index is presented by exploiting network structure adaptively. Moreover, most of the existing link prediction methods do not make a clear distinction between future links and missing links. In order to predict the future links, the networks are regarded as dynamic systems in this paper, and a similarity updating method, spatial-temporal position drift model, is developed to simulate the evolutionary dynamics of node similarity. Then the updated similarities are used as input information for the future links' likelihood estimation. Extensive experiments on real-world networks suggest that the proposed similarity index performs better than baseline methods and the position drift model performs well for evolution prediction in real-world evolving networks.

  6. Perspective: network-guided pattern formation of neural dynamics.

    Science.gov (United States)

    Hütt, Marc-Thorsten; Kaiser, Marcus; Hilgetag, Claus C

    2014-10-05

    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Correlated dynamics in egocentric communication networks

    CERN Document Server

    Karsai, Márton; Kertész, János

    2012-01-01

    We investigate the communication sequences of millions of people through two different channels and analyze the fine grained temporal structure of correlated event trains induced by single individuals. By focusing on correlations between the heterogeneous dynamics and the topology of egocentric networks we find that the bursty trains usually evolve for pairs of individuals rather than for the ego and his/her several neighbors thus burstiness is a property of the links rather than of the nodes. We compare the directional balance of calls and short messages within bursty trains to the average on the actual link and show that for the trains of voice calls the imbalance is significantly enhanced, while for short messages the balance within the trains increases. These effects can be partly traced back to the technological constrains (for short messages) and partly to the human behavioral features (voice calls). We define a model that is able to reproduce the empirical results and may help us to understand better t...

  8. Dynamical Networks for Smog Pattern Analysis

    CERN Document Server

    Zong, Linqi; Zhu, Jia

    2015-01-01

    Smog, as a form of air pollution, poses as a serious problem to the environment, health, and economy of the world[1-4] . Previous studies on smog mostly focused on the components and the effects of smog [5-10]. However, as the smog happens with increased frequency and duration, the smog pattern which is critical for smog forecast and control, is rarely investigated, mainly due to the complexity of the components, the causes, and the spreading processes of smog. Here we report the first analysis on smog pattern applying the model of dynamical networks with spontaneous recovery. We show that many phenomena such as the sudden outbreak and dissipation of smog and the long duration smog can be revealed with the mathematical mechanism under a random walk simulation. We present real-world air quality index data in accord with the predictions of the model. Also we found that compared to external causes such as pollution spreading from nearby, internal causes such as industrial pollution and vehicle emission generated...

  9. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  10. Application of dynamic recurrent neural networks in nonlinear system identification

    Science.gov (United States)

    Du, Yun; Wu, Xueli; Sun, Huiqin; Zhang, Suying; Tian, Qiang

    2006-11-01

    An adaptive identification method of simple dynamic recurrent neural network (SRNN) for nonlinear dynamic systems is presented in this paper. This method based on the theory that by using the inner-states feed-back of dynamic network to describe the nonlinear kinetic characteristics of system can reflect the dynamic characteristics more directly, deduces the recursive prediction error (RPE) learning algorithm of SRNN, and improves the algorithm by studying topological structure on recursion layer without the weight values. The simulation results indicate that this kind of neural network can be used in real-time control, due to its less weight values, simpler learning algorithm, higher identification speed, and higher precision of model. It solves the problems of intricate in training algorithm and slow rate in convergence caused by the complicate topological structure in usual dynamic recurrent neural network.

  11. Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide.

    Science.gov (United States)

    Orth, Jeffrey D; Fleming, R M T; Palsson, Bernhard Ø

    2010-09-01

    Biochemical network reconstructions have become popular tools in systems biology. Metabolicnetwork reconstructions are biochemically, genetically, and genomically (BiGG) structured databases of biochemical reactions and metabolites. They contain information such as exact reaction stoichiometry, reaction reversibility, and the relationships between genes, proteins, and reactions. Network reconstructions have been used extensively to study the phenotypic behavior of wild-type and mutant stains under a variety of conditions, linking genotypes with phenotypes. Such phenotypic simulations have allowed for the prediction of growth after genetic manipulations, prediction of growth phenotypes after adaptive evolution, and prediction of essential genes. Additionally, because network reconstructions are organism specific, they can be used to understand differences between organisms of species in a functional context.There are different types of reconstructions representing various types of biological networks (metabolic, regulatory, transcription/translation). This chapter serves as an introduction to metabolic and regulatory network reconstructions and models and gives a complete description of the core Escherichia coli metabolic model. This model can be analyzed in any computational format (such as MATLAB or Mathematica) based on the information given in this chapter. The core E. coli model is a small-scale model that can be used for educational purposes. It is meant to be used by senior undergraduate and first-year graduate students learning about constraint-based modeling and systems biology. This model has enough reactions and pathways to enable interesting and insightful calculations, but it is also simple enough that the results of such calculations can be understoodeasily.

  12. Dynamic spreading behavior of homogeneous and heterogeneous networks

    Institute of Scientific and Technical Information of China (English)

    XIA Chengyi; LIU Zhongxin; CHEN Zengqiang; YUAN Zhuzhi

    2007-01-01

    The detailed investigation of the dynamic epidemic spreading on homogeneous and heterogeneous networks was carried out. After the analysis of the basic epidemic models, the susceptible-infected-susceptible (SIS) model on homogenous and heterogeneous networks is established, and the dynamical evolution of the density of the infected individuals in these two different kinds of networks is analyzed theoretically. It indicates that heterogeneous networks are easier to propagate for the epidemics and the leading spreading behavior is dictated by the exponential increasing in the initial outbreaks. Large-scale simulations display that the infection is much faster on heterogeneous networks than that on homogeneous ones. It means that the network topology can have a significant effect on the epidemics taking place on complex networks. Some containment strategies of epidemic outbreaks are presented according to the theoretical analyses and numerical simulations.

  13. Complex brain networks: From topological communities to clustered dynamics

    Indian Academy of Sciences (India)

    Lucia Zemanová; Gorka Zamora-López; Changsong Zhou; Jürgen Kurths

    2008-06-01

    Recent research has revealed a rich and complicated network topology in the cortical connectivity of mammalian brains. A challenging task is to understand the implications of such network structures on the functional organisation of the brain activities. We investigate synchronisation dynamics on the corticocortical network of the cat by modelling each node of the network (cortical area) with a subnetwork of interacting excitable neurons. We find that this network of networks displays clustered synchronisation behaviour and the dynamical clusters closely coincide with the topological community structures observed in the anatomical network. The correlation between the firing rate of the areas and the areal intensity is additionally examined. Our results provide insights into the relationship between the global organisation and the functional specialisation of the brain cortex.

  14. Dynamics of epidemic diseases on a growing adaptive network

    Science.gov (United States)

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  15. Pinning impulsive directed coupled delayed dynamical network and its applications

    Science.gov (United States)

    Lin, Chunnan; Wu, Quanjun; Xiang, Lan; Zhou, Jin

    2015-01-01

    The main objective of the present paper is to further investigate pinning synchronisation of a complex delayed dynamical network with directionally coupling by a single impulsive controller. By developing the analysis procedure of pinning impulsive stability for undirected coupled dynamical network previously, some simple yet general criteria of pinning impulsive synchronisation for such directed coupled network are derived analytically. It is shown that a single impulsive controller can always pin a given directed coupled network to a desired homogenous solution, including an equilibrium point, a periodic orbit, or a chaotic orbit. Subsequently, the theoretical results are illustrated by a directed small-world complex network which is a cellular neural network (CNN) and a directed scale-free complex network with the well-known Hodgkin-Huxley neuron oscillators. Numerical simulations are finally given to demonstrate the effectiveness of the proposed control methodology.

  16. Field Reconstruction in Sensor Networks with Coverage Holes and Packet Losses

    CERN Document Server

    Nordio, Alessandro

    2010-01-01

    Environmental monitoring is often performed through a wireless sensor network, whose nodes are randomly deployed over the geographical region of interest. Sensors sample a physical phenomenon (the so-called field) and send their measurements to a {\\em sink} node, which is in charge of reconstructing the field from such irregular samples. In this work, we focus on scenarios of practical interest where the sensor deployment is unfeasible in certain areas of the geographical region, e.g., due to terrain asperities, and the delivery of sensor measurements to the sink may fail due to fading or to transmission collisions among sensors simultaneously accessing the wireless medium. Under these conditions, we carry out an asymptotic analysis and evaluate the quality of the estimation of a d-dimensional field when the sink uses linear filtering as a reconstruction technique. Specifically, given the matrix representing the sampling system, V, we derive both the moments and an expression of the limiting spectral distribu...

  17. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN

    Directory of Open Access Journals (Sweden)

    U. Feister

    2008-01-01

    Full Text Available Artificial Neural Networks (ANN are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980–1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  18. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    Science.gov (United States)

    Feister, U.; Junk, J.; Woldt, M.

    2008-01-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  19. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging

    Science.gov (United States)

    2015-01-01

    For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT) imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT) reconstruction is proposed. For this new method, the tube’s voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components. PMID:26544723

  20. High-Dynamic-Range CT Reconstruction Based on Varying Tube-Voltage Imaging.

    Directory of Open Access Journals (Sweden)

    Ping Chen

    Full Text Available For complicated structural components characterized by wide X-ray attenuation ranges, the conventional computed tomography (CT imaging using a single tube-voltage at each rotation angle cannot obtain all structural information. This limitation results in a shortage of CT information, because the effective thickness of the components along the direction of X-ray penetration exceeds the limitation of the dynamic range of the X-ray imaging system. To address this problem, high-dynamic-range CT (HDR-CT reconstruction is proposed. For this new method, the tube's voltage is adjusted several times to match the corresponding effective thickness about the local information from an object. Then, HDR fusion and HDR-CT are applied to obtain the full reconstruction information. An accompanying experiment demonstrates that this new technology can extend the dynamic range of X-ray imaging systems and provide the complete internal structures of complicated structural components.

  1. Anomalous Contagion and Renormalization in Dynamical Networks with Nodal Mobility

    CERN Document Server

    Manrique, Pedro D; Zheng, Minzhang; Xu, Chen; Hui, Pak Ming; Johnson, Neil F

    2015-01-01

    The common real-world feature of individuals migrating through a network -- either in real space or online -- significantly complicates understanding of network processes. Here we show that even though a network may appear static on average, underlying nodal mobility can dramatically distort outbreak profiles. Highly nonlinear dynamical regimes emerge in which increasing mobility either amplifies or suppresses outbreak severity. Predicted profiles mimic recent outbreaks of real-space contagion (social unrest) and online contagion (pro-ISIS support). We show that this nodal mobility can be renormalized in a precise way for a particular class of dynamical networks.

  2. Energy Efficiency Analysis for Dynamic Routing in Optical Transport Networks

    DEFF Research Database (Denmark)

    Vizcaíno, Jorge López; Ye, Yabin; Tafur Monroy, Idelfonso

    2012-01-01

    The energy efficiency in telecommunication networks is gaining more relevance as the Internet traffic is growing. The introduction of OFDM and dynamic operation opens new horizons in the operation of optical networks, improving the network flexibility and its efficiency. In this paper, we compare...... the performance in terms of energy efficiency of a flexible-grid OFDM-based solution with a fixed-grid WDM network in a dynamic scenario with time-varying connections. We highlight the benefits that the bandwidth elasticity and the flexibility of selecting different modulation formats can offer compared...

  3. Stochastic synchronization for time-varying complex dynamical networks

    Institute of Scientific and Technical Information of China (English)

    Guo Xiao-Yong; Li Jun-Min

    2012-01-01

    This paper studies the stochastic synchronization problem for time-varying complex dynamical networks. This model is totally different from some existing network models. Based on the Lyapunov stability theory, inequality techniques, and the properties of the Weiner process, some controllers and adaptive laws are designed to ensure achieving stochastic synchronization of a complex dynamical network model. A sufficient synchronization condition is given to ensure that the proposed network model is mean-square stable. Theoretical analysis and numerical simulation fully verify the main results.

  4. Extinction dynamics of Lotka-Volterra ecosystems on evolving networks.

    Science.gov (United States)

    Coppex, F; Droz, M; Lipowski, A

    2004-06-01

    We study a model of a multispecies ecosystem described by Lotka-Volterra-like equations. Interactions among species form a network whose evolution is determined by the dynamics of the model. Numerical simulations show power-law distribution of intervals between extinctions, but only for ecosystems with sufficient variability of species and with networks of connectivity above certain threshold that is very close to the percolation threshold of the network. The effect of slow environmental changes on extinction dynamics, degree distribution of the network of interspecies interactions, and some emergent properties of our model are also examined.

  5. Synchronization in a Novel Local-World Dynamical Network Model

    Directory of Open Access Journals (Sweden)

    Jianeng Tang

    2014-01-01

    Full Text Available Advances in complex network research have recently stimulated increasing interests in understanding the relationship between the topology and dynamics of complex networks. In the paper, we study the synchronizability of a class of local-world dynamical networks. Then, we have proposed a local-world synchronization-optimal growth topology model. Compared with the local-world evolving network model, it exhibits a stronger synchronizability. We also investigate the robustness of the synchronizability with respect to random failures and the fragility of the synchronizability with specific removal of nodes.

  6. A User Driven Dynamic Circuit Network Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Guok, Chin; Robertson, David; Chaniotakis, Evangelos; Thompson, Mary; Johnston, William; Tierney, Brian

    2008-10-01

    The requirements for network predictability are becoming increasingly critical to the DoE science community where resources are widely distributed and collaborations are world-wide. To accommodate these emerging requirements, the Energy Sciences Network has established a Science Data Network to provide user driven guaranteed bandwidth allocations. In this paper we outline the design, implementation, and secure coordinated use of such a network, as well as some lessons learned.

  7. DAWN: Dynamic Ad-hoc Wireless Network

    Science.gov (United States)

    2016-06-19

    Wireless Networks, , ( ): . doi: Ning Li, Jennifer C. Hou. Localized Topology Control Algorithms for Heterogeneous Wireless Networks, IEEE ...Multi-User Diversity in Single-Radio OFDMA AdHoc Networks Based on Gibbs Sampling, IEEE Milcom . 03-NOV-10, . : , TOTAL: 1 Number of Peer-Reviewed...Networks, ( ) Hui Xu, , Xianren Wu, , Hamid R. Sadjadpour, , J.J. Garcia-Luna-Aceves, . A Unified Analysis of Routing Protocols inMANETs, IEEE

  8. Evolving networks:from topology to dynamics

    Institute of Scientific and Technical Information of China (English)

    Zhengping FAN; Guanrong CHEN; King Tim KO

    2004-01-01

    A multi-local-world model is introduced to describe the evolving networks that have a localization property such as the Intemet. Based on this model, we show that the traffic load defined by "betweenness centrality" on the multi-local-world scale-free networks' model also follows a power law form. In this kind of network, a few vertices have heavier loads and so play more important roles than the others in the network.

  9. Structure Properties of Koch Networks Based on Networks Dynamical Systems

    CERN Document Server

    Zhai, Yinhu; Wang, Shaohui

    2016-01-01

    We introduce an informative labeling algorithm for the vertices of a family of Koch networks. Each of the labels is consisted of two parts, the precise position and the time adding to Koch networks. The shortest path routing between any two vertices is determined only on the basis of their labels, and the routing is calculated only by few computations. The rigorous solutions of betweenness centrality for every node and edge are also derived by the help of their labels. Furthermore, the community structure in Koch networks is studied by the current and voltage characteristics of its resistor networks.

  10. Dynamics and control of diseases in networks with community structure.

    Directory of Open Access Journals (Sweden)

    Marcel Salathé

    2010-04-01

    Full Text Available The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc. depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  11. Minimal model for dynamic bonding in colloidal transient networks

    Science.gov (United States)

    Krinninger, Philip; Fortini, Andrea; Schmidt, Matthias

    2016-04-01

    We investigate a model for colloidal network formation using Brownian dynamics computer simulations. Hysteretic springs establish transient bonds between particles with repulsive cores. If a bonded pair of particles is separated by a cutoff distance, the spring vanishes and reappears only if the two particles contact each other. We present results for the bond lifetime distribution and investigate the properties of the van Hove dynamical two-body correlation function. The model displays crossover from fluidlike dynamics, via transient network formation, to arrested quasistatic network behavior.

  12. Blending geological observations and convection models to reconstruct mantle dynamics

    Science.gov (United States)

    Coltice, Nicolas; Bocher, Marie; Fournier, Alexandre; Tackley, Paul

    2015-04-01

    Knowledge of the state of the Earth mantle and its temporal evolution is fundamental to a variety of disciplines in Earth Sciences, from the internal dynamics to its many expressions in the geological record (postglacial rebound, sea level change, ore deposit, tectonics or geomagnetic reversals). Mantle convection theory is the centerpiece to unravel the present and past state of the mantle. For the past 40 years considerable efforts have been made to improve the quality of numerical models of mantle convection. However, they are still sparsely used to estimate the convective history of the solid Earth, in comparison to ocean or atmospheric models for weather and climate prediction. The main shortcoming is their inability to successfully produce Earth-like seafloor spreading and continental drift self-consistently. Recent convection models have begun to successfully predict these processes. Such breakthrough opens the opportunity to retrieve the recent dynamics of the Earth's mantle by blending convection models together with advanced geological datasets. A proof of concept will be presented, consisting in a synthetic test based on a sequential data assimilation methodology.

  13. Hierarchical Routing over Dynamic Wireless Networks

    CERN Document Server

    Tschopp, Dominique; Grossglauser, Matthias

    2009-01-01

    Wireless network topologies change over time and maintaining routes requires frequent updates. Updates are costly in terms of consuming throughput available for data transmission, which is precious in wireless networks. In this paper, we ask whether there exist low-overhead schemes that produce low-stretch routes. This is studied by using the underlying geometric properties of the connectivity graph in wireless networks.

  14. Validation of a laboratory method for evaluating dynamic properties of reconstructed equine racetrack surfaces.

    Directory of Open Access Journals (Sweden)

    Jacob J Setterbo

    Full Text Available BACKGROUND: Racetrack surface is a risk factor for racehorse injuries and fatalities. Current research indicates that race surface mechanical properties may be influenced by material composition, moisture content, temperature, and maintenance. Race surface mechanical testing in a controlled laboratory setting would allow for objective evaluation of dynamic properties of surface and factors that affect surface behavior. OBJECTIVE: To develop a method for reconstruction of race surfaces in the laboratory and validate the method by comparison with racetrack measurements of dynamic surface properties. METHODS: Track-testing device (TTD impact tests were conducted to simulate equine hoof impact on dirt and synthetic race surfaces; tests were performed both in situ (racetrack and using laboratory reconstructions of harvested surface materials. Clegg Hammer in situ measurements were used to guide surface reconstruction in the laboratory. Dynamic surface properties were compared between in situ and laboratory settings. Relationships between racetrack TTD and Clegg Hammer measurements were analyzed using stepwise multiple linear regression. RESULTS: Most dynamic surface property setting differences (racetrack-laboratory were small relative to surface material type differences (dirt-synthetic. Clegg Hammer measurements were more strongly correlated with TTD measurements on the synthetic surface than the dirt surface. On the dirt surface, Clegg Hammer decelerations were negatively correlated with TTD forces. CONCLUSIONS: Laboratory reconstruction of racetrack surfaces guided by Clegg Hammer measurements yielded TTD impact measurements similar to in situ values. The negative correlation between TTD and Clegg Hammer measurements confirms the importance of instrument mass when drawing conclusions from testing results. Lighter impact devices may be less appropriate for assessing dynamic surface properties compared to testing equipment designed to simulate hoof

  15. 代谢网络的重构%Reconstruction of Metabolic Networks

    Institute of Scientific and Technical Information of China (English)

    邓世果; 吴干华; 杨会杰

    2012-01-01

    A new method was proposed to reconstruct metabolic networks on the basis of the existing method. As an illustration example, the method was used to build the metabolic network for a species of anabaena. By use of the data of organism's biochemical reaction,enzyme and gene in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the preliminary metabolic network for the anabaena was reconstructed. The structural behaviors such as degree distribution, hierarchy, and community were discussed.%在已有的构建代谢网络方法的基础上,提出了构造代谢网络的改进方法.以鱼腥藻作为实例,利用KEGG数据库中生物体的生化反应、酶、基因数据重构出鱼腥藻的初步代谢网络,并对初步代谢网络进行了修正,讨论了该网络的拓扑结构性质.

  16. Reconstruction of Protein-Protein Interaction Network of Insulin Signaling in Homo Sapiens

    Directory of Open Access Journals (Sweden)

    Saliha Durmuş Tekir

    2010-01-01

    Full Text Available Diabetes is one of the most prevalent diseases in the world. Type 1 diabetes is characterized by the failure of synthesizing and secreting of insulin because of destroyed pancreatic β-cells. Type 2 diabetes, on the other hand, is described by the decreased synthesis and secretion of insulin because of the defect in pancreatic β-cells as well as by the failure of responding to insulin because of malfunctioning of insulin signaling. In order to understand the signaling mechanisms of responding to insulin, it is necessary to identify all components in the insulin signaling network. Here, an interaction network consisting of proteins that have statistically high probability of being biologically related to insulin signaling in Homo sapiens was reconstructed by integrating Gene Ontology (GO annotations and interactome data. Furthermore, within this reconstructed network, interacting proteins which mediate the signal from insulin hormone to glucose transportation were identified using linear paths. The identification of key components functioning in insulin action on glucose metabolism is crucial for the efforts of preventing and treating type 2 diabetes mellitus.

  17. High-resolution Image Reconstruction by Neural Network and Its Application in Infrared Imaging

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nan; JIN Wei-qi; SU Bing-hua

    2005-01-01

    As digital image techniques have been widely used, the requirements for high-resolution images become increasingly stringent. Traditional single-frame interpolation techniques cannot add new high frequency information to the expanded images, and cannot improve resolution in deed. Multiframe-based techniques are effective ways for high-resolution image reconstruction, but their computation complexities and the difficulties in achieving image sequences limit their applications. An original method using an artificial neural network is proposed in this paper. Using the inherent merits in neural network, we can establish the mapping between high frequency components in low-resolution images and high-resolution images. Example applications and their results demonstrated the images reconstructed by our method are aesthetically and quantitatively (using the criteria of MSE and MAE) superior to the images acquired by common methods. Even for infrared images this method can give satisfactory results with high definition. In addition, a single-layer linear neural network is used in this paper, the computational complexity is very low, and this method can be realized in real time.

  18. Integrative analysis of time course microarray data and DNA sequence data via log-linear models for identifying dynamic transcriptional regulatory networks.

    Science.gov (United States)

    Choi, Hyung-Seok; Kim, Youngchul; Cho, Kwang-Hyun; Park, Taesung

    2013-01-01

    Since eukaryotic transcription is regulated by sets of Transcription Factors (TFs) having various transcriptional time delays, identification of temporal combinations of activated TFs is important to reconstruct Transcriptional Regulatory Networks (TRNs). Our methods combine time course microarray data, information on physical binding between the TFs and their targets and the regulatory sequences of genes using a log-linear model to reconstruct dynamic functional TRNs of the yeast cell cycle and human apoptosis. In conclusion, our results suggest that the proposed dynamic motif search method is more effective in reconstructing TRNs than the static motif search method.

  19. Modeling the dynamics of the lead bismuth eutectic experimental accelerator driven system by an infinite impulse response locally recurrent neural network

    Energy Technology Data Exchange (ETDEWEB)

    Zio, Enrico; Pedroni, Nicola; Broggi, Matteo; Golea, Lucia Roxana [Polytechnic of Milan, Milan (Italy)

    2009-12-15

    In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships

  20. Reconstructing source-sink dynamics in a population with a pelagic dispersal phase.

    Directory of Open Access Journals (Sweden)

    Kun Chen

    Full Text Available For many organisms, the reconstruction of source-sink dynamics is hampered by limited knowledge of the spatial assemblage of either the source or sink components or lack of information on the strength of the linkage for any source-sink pair. In the case of marine species with a pelagic dispersal phase, these problems may be mitigated through the use of particle drift simulations based on an ocean circulation model. However, when simulated particle trajectories do not intersect sampling sites, the corroboration of model drift simulations with field data is hampered. Here, we apply a new statistical approach for reconstructing source-sink dynamics that overcomes the aforementioned problems. Our research is motivated by the need for understanding observed changes in jellyfish distributions in the eastern Bering Sea since 1990. By contrasting the source-sink dynamics reconstructed with data from the pre-1990 period with that from the post-1990 period, it appears that changes in jellyfish distribution resulted from the combined effects of higher jellyfish productivity and longer dispersal of jellyfish resulting from a shift in the ocean circulation starting in 1991. A sensitivity analysis suggests that the source-sink reconstruction is robust to typical systematic and random errors in the ocean circulation model driving the particle drift simulations. The jellyfish analysis illustrates that new insights can be gained by studying structural changes in source-sink dynamics. The proposed approach is applicable for the spatial source-sink reconstruction of other species and even abiotic processes, such as sediment transport.