WorldWideScience

Sample records for dynamical electroweak symmetry

  1. Flavor universal dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Burdman, G.; Evans, N.

    1999-01-01

    The top condensate seesaw mechanism of Dobrescu and Hill allows electroweak symmetry to be broken while deferring the problem of flavor to an electroweak singlet, massive sector. We provide an extended version of the singlet sector that naturally accommodates realistic masses for all the standard model fermions, which play an equal role in breaking electroweak symmetry. The models result in a relatively light composite Higgs sector with masses typically in the range of (400 - 700) GeV. In more complete models the dynamics will presumably be driven by a broken gauged family or flavor symmetry group. As an example of the higher scale dynamics a fully dynamical model of the quark sector with a GIM mechanism is presented, based on an earlier top condensation model of King using broken family gauge symmetry interactions (that model was itself based on a technicolor model of Georgi). The crucial extra ingredient is a reinterpretation of the condensates that form when several gauge groups become strong close to the same scale. A related technicolor model of Randall which naturally includes the leptons too may also be adapted to this scenario. We discuss the low energy constraints on the massive gauge bosons and scalars of these models as well as their phenomenology at the TeV scale. copyright 1999 The American Physical Society

  2. Electroweak symmetry breaking: Unitarity, dynamics, and experimental prospects

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1988-01-01

    A review of what is known about the unexplained mechanism that breaks the electroweak symmetry and thereby gives mass to the W and Z gauge bosons while leaving the photon massless is given. Symmetry, unitarity, technicolor, supersymmetry, higgs sector dynamics, and experimental status and prospects are discussed

  3. EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING

    International Nuclear Information System (INIS)

    CARENA, M.; GERDES, D.W.; HABER, H.E.; TURCOT, A.S.; ZERWAS, P.M.

    2001-01-01

    In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e + e - linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ + μ - collider and VLHC for further elucidating the physics of electroweak symmetry breaking

  4. Conformal dynamics for electroweak symmetry breaking, from LHC to cosmology

    International Nuclear Information System (INIS)

    Sannino, Francesco

    2009-01-01

    Full text. I will first introduce dynamical electroweak symmetry breaking and then present how to resolve some of the long-standing problems using (near) conformal dynamics. In order to construct sensible extension of DEWSB I will then review the state-of-the-art of the phase diagram of gauge theories of fundamental interactions as function of the number of colors, flavors and matter representation. Finally I will introduce recent models known as minimal walking models and show how they lead to natural candidates of dark matter. (author)

  5. Supplies in gravitational dynamics and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Soldate, M.

    1988-01-01

    During the past few years, my research interests have centered on physics associated with the Planck and electroweak scales. In each instance there is a physical issue which has motivated my work. The first is the dynamical determination of the observed geometry of spacetime. Typically, in a theory of quantum gravity, the topology and long-distance geometry of spacetime are not fixed uniquely by the field equations. One would like to be able to determine them through a dynamical principle for predictive power. The matter is of particular relevance to superstring theories, as they are most simply formulated in 10-dimensional Minkowski space. The second topic is the origin of electroweak symmetry breaking (EWSB). My work here has tended to be more phenomenological; it appears unlikely that a complete understanding of the gauge hierarchy problem can be obtained without some experimental knowledge of particles rather directly related to EWSB. I feel that both of these issues are of broad interest. In this paper, I will describe my future research plans in these areas after motivating and summarizing my previous work on them. 22 refs

  6. Holographic theories of electroweak symmetry breaking without a Higgs Boson

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Nomura, Yasunori

    2003-01-01

    Recently, realistic theories of electroweak symmetry breaking have been constructed in which the electroweak symmetry is broken by boundary conditions imposed at a boundary of higher dimensional spacetime. These theories have equivalent 4D dual descriptions, in which the electroweak symmetry is dynamically broken by non-trivial infrared dynamics of some gauge interaction, whose gauge coupling (tilde g) and size N satisfy (tilde g) 2 N ∼> 16π 2 . Such theories allow one to calculate electroweak radiative corrections, including the oblique parameters S, T and U, as long as (tilde g) 2 N/16π 2 and N are sufficiently larger than unity. We study how the duality between the 4D and 5D theories manifests itself in the computation of various physical quantities. In particular, we calculate the electroweak oblique parameters in a warped 5D theory where the electroweak symmetry is broken by boundary conditions at the infrared brane. We show that the value of S obtained in the minimal theory exceeds the experimental bound if the theory is in a weakly coupled regime. This requires either an extension of the minimal model or departure from weak coupling. A particularly interesting scenario is obtained if the gauge couplings in the 5D theory take the largest possible values--the value suggested by naive dimensional analysis. We argue that such a theory can provide a potentially consistent picture for dynamical electroweak symmetry breaking: corrections to the electroweak observables are sufficiently small while realistic fermion masses are obtained without conflicting with bounds from flavor violation. The theory contains only the standard model quarks, leptons and gauge bosons below ≅2 TeV, except for a possible light scalar associated with the radius of the extra dimension. At ≅2 TeV increasingly broad string resonances appear. An analysis of top-quark phenomenology and flavor violation is also presented, which is applicable to both the weakly-coupled and strongly

  7. Breaking of electroweak symmetry: origin and effects

    International Nuclear Information System (INIS)

    Delaunay, C.

    2008-10-01

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A 4 non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  8. On the Possible Links Between Electroweak Symmetry Breaking and Dark Matter

    International Nuclear Information System (INIS)

    Hambye, Thomas; Tytgat, Michel H. G.

    2009-01-01

    The mechanism behind electroweak symmetry breaking (EWSB) and the nature of dark matter (DM) are currently very important issues in particle physics. Usually, in most models, these two issues are not or poorly connected. However, since a natural dark matter candidate is a weakly interacting massive particle or WIMP, with mass around the electroweak scale, it is clearly of interest to investigate the possibility that DM and EWSB are closely related. In the context of a very simple extension of the Standard Model, the Inert Doublet Model, we show that dark matter could play a crucial role in the breaking of the electroweak symmetry. In this model, dark matter is the lightest component of an inert scalar doublet which can induce dynamically electroweak symmetry breaking at one loop level. Moreover, in a large fraction of the parameter space of this model, the mass of the dark matter particle is essentially determined by the electroweak scale, so that the fact that the WIMP DM mass is around the electroweak scale is not a coincidence.

  9. A (critical) overview of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Csaki, Csaba

    2010-01-01

    This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these

  10. Emergent Electroweak Symmetry Breaking with Composite W, Z Bosons

    CERN Document Server

    Cui, Yanou; Wells, James D

    2009-01-01

    We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electroweak gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.

  11. Dynamical symmetry breaking of the electroweak interactions and the renormalization group

    International Nuclear Information System (INIS)

    Hill, C.T.

    1990-08-01

    We discuss dynamical symmetry breaking with an emphasis on the renormalization group as the key tool to obtaining reliable predictions. In particular we discuss the mechanism for breaking the electroweak interactions which relies upon the formation of condensates involving the conventional quarks and leptons. Such a scheme indicates that the top quark is heavy, greater than or of order 200 GeV, and gives further predictions for the Higgs boson mass. We also briefly describe recent attempts to incorporate a 4th generation in a more natural scheme. 13 refs., 3 figs., 1 tab

  12. Workshop on electroweak symmetry breaking: proceedings

    International Nuclear Information System (INIS)

    Hinchliffe, I.

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented

  13. Workshop on electroweak symmetry breaking: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hinchliffe, I. (ed.)

    1984-10-01

    A theoretical workshop on electroweak symmetry breaking at the Superconducting Supercollider was held at Lawrence Berkeley Laboratory, June 4-22, 1984. The purpose of the workshop was to focus theoretical attention on the ways in which experimentation at the SSC could reveal manifestations of the phenomenon responsible for electroweak symmetry breaking. This issue represents, at present, the most compelling scientific argument for the need to explore the energy region to be made accessible by the SSC, and a major aim of the workshop was to involve a broad cross section of particle theorists in the ongoing process of sharpening the requirements for both accelerator and detector design that will ensure detection and identification of meaningful signals, whatever form the electroweak symmetry breaking phenomenon should actually take. Separate entries were prepared for the data base for the papers presented.

  14. Hyperscaling violation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Daniel, E-mail: pelander@purdue.edu [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Lawrance, Robert; Piai, Maurizio [Department of Physics, College of Science, Swansea University, Singleton Park, Swansea, Wales (United Kingdom)

    2015-08-15

    We consider a class of simplified models of dynamical electroweak symmetry breaking built in terms of their five-dimensional weakly-coupled gravity duals, in the spirit of bottom-up holography. The sigma-model consists of two abelian gauge bosons and one real, non-charged scalar field coupled to gravity in five dimensions. The scalar potential is a simple exponential function of the scalar field. The background metric resulting from solving the classical equations of motion exhibits hyperscaling violation, at least at asymptotically large values of the radial direction. We study the spectrum of scalar composite states of the putative dual field theory by fluctuating the sigma-model scalars and gravity, and discuss in which cases we find a parametrically light scalar state in the spectrum. We model the spontaneous breaking of the (weakly coupled) gauge symmetry to the diagonal subgroup by the choice of IR boundary conditions. We compute the mass spectrum of spin-1 states, and the precision electroweak parameter S as a function of the hyperscaling coefficient. We find a general bound on the mass of the lightest spin-1 resonance, by requiring that the indirect bounds on the precision parameters be satisfied, that implies that precision electroweak physics excludes the possibility of a techni-rho meson with mass lighter than several TeV.

  15. Constraints of dynamical symmetry breaking mechanisms from electroweak data

    International Nuclear Information System (INIS)

    Ali, A.; Degrassi, G.

    1991-04-01

    Consistency of the Salam-Weinberg theory, including quantum corrections, with high precision data from LEP and elsewhere imposes non-trivial bounds on the parameters of this theory, in particular the top quark mass. We take stock of the available experimental information in the electroweak sector with the view of constraining possible additional interactions, such as present in dynamical symmetry breaking scenarios. Using the Peskin-Takeuchi isospin conserving, S and -violating, T, parametrization of new physics contribution to vacuum polarization corrections, we show here that the full one family technicolor models are ruled out at the 95% C.L. from the LEP data and m W -measurements alone. We stress the role of improved precision measurements of the W-boson mass and the decay width Γ(Z→banti b) in the enhanced sensitivity gained on such interactions. (orig.)

  16. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  17. Concepts of electroweak symmetry breaking and Higgs physics

    International Nuclear Information System (INIS)

    Gomez-Bock, M.; Zerwas, P.M.; RWTH Aachen; Univ. Paris- Sud, Orsay

    2007-12-01

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e + e - linear colliders are discussed. (orig.)

  18. Concepts of electroweak symmetry breaking and Higgs physics

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Bock, M. [Benemerita Univ., Puebla (Mexico). Inst. de Fisica; Mondragon, M. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Muehlleitner, M. [Laboratoire d' Annecy-Le-Vieux de Physique Theorique, 74 (France)]|[CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Spira, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[RWTH Aachen (Germany). Inst. Theor. Physik E]|[Univ. Paris- Sud, Orsay (France). Laboratoire de Physique Theorique

    2007-12-15

    We present an introduction to the basic concepts of electroweak symmetry breaking and Higgs physics within the Standard Model and its supersymmetric extensions. A brief overview will also be given on alternative mechanisms of electroweak symmetry breaking. In addition to the theoretical basis, the present experimental status of Higgs physics and prospects at the Tevatron, the LHC and e{sup +}e{sup -} linear colliders are discussed. (orig.)

  19. Higgsless theory of electroweak symmetry breaking from warped space

    International Nuclear Information System (INIS)

    Nomura, Yasunori

    2003-01-01

    We study a theory of electroweak symmetry breaking without a Higgs boson, recently suggested by Csaki et al. The theory is formulated in 5D warped space with the gauge bosons and matter fields propagating in the bulk. In the 4D dual picture, the theory appears as the standard model without a Higgs field, but with an extra gauge group G which becomes strong at the TeV scale. The strong dynamics of G breaks the electroweak symmetry, giving the masses for the W and Z bosons and the quarks and leptons. We study corrections in 5D which are logarithmically enhanced by the large mass ratio between the Planck and weak scales, and show that they do not destroy the structure of the electroweak gauge sector at the leading order. We introduce a new parameter, the ratio between the two bulk gauge couplings, into the theory and find that it allows us to control the scale of new physics. We also present a potentially realistic theory accommodating quarks and leptons and discuss its implications, including the violation of universality in the W and Z boson couplings to matter and the spectrum of the Kaluza-Klein excitations of the gauge bosons. The theory reproduces many successful features of the standard model, although some cancellations may still be needed to satisfy constraints from the precision electroweak data. (author)

  20. Electroweak and flavor dynamics at hadron colliders - I

    International Nuclear Information System (INIS)

    Elchtent, E.; Lane, K.

    1998-02-01

    This is the first of two reports cataloging the principal signatures of electroweak and flavor dynamics at anti pp and pp colliders. Here, we discuss some of the signatures of dynamical electroweak and flavor symmetry breaking. The framework for dynamical symmetry breaking we assume is technicolor, with a walking coupling α TC , and extended technicolor. The reactions discussed occur mainly at subprocess energies √s approx-lt 1 TeV. They include production of color-singlet and octet technirhos and their decay into pairs of technipions, longitudinal weak bosons, or jets. Technipions, in turn, decay predominantly into heavy fermions. This report will appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics (Snowmass 96)

  1. Is radiative electroweak symmetry breaking consistent with a 125 GeV Higgs mass?

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei

    2013-04-12

    The mechanism of radiative electroweak symmetry breaking occurs through loop corrections, and unlike conventional symmetry breaking where the Higgs mass is a parameter, the radiatively generated Higgs mass is dynamically predicted. Padé approximations and an averaging method are developed to extend the Higgs mass predictions in radiative electroweak symmetry breaking from five- to nine-loop order in the scalar sector of the standard model, resulting in an upper bound on the Higgs mass of 141 GeV. The mass predictions are well described by a geometric series behavior, converging to an asymptotic Higgs mass of 124 GeV consistent with the recent ATLAS and CMS Collaborations observations. Similarly, we find that the Higgs self-coupling converges to λ=0.23, which is significantly larger than its conventional symmetry breaking counterpart for a 124 GeV Higgs mass. In addition to this significant enhancement of the Higgs self-coupling and HH→HH scattering, we find that Higgs decays to gauge bosons are unaltered and the scattering processes WL(+)WL(+)→HH, ZLZL→HH are also enhanced, providing signals to distinguish conventional and radiative electroweak symmetry breaking mechanisms.

  2. Strong Electroweak Symmetry Breaking and Spin-0 Resonances

    International Nuclear Information System (INIS)

    Evans, Jared; Luty, Markus A.

    2009-01-01

    We argue that theories of the strong electroweak symmetry breaking sector necessarily contain new spin 0 states at the TeV scale in the tt and tb/bt channels, even if the third generation quarks are not composite at the TeV scale. These states couple sufficiently strongly to third generation quarks to have significant production at LHC via gg→φ 0 or gb→tφ - . The existence of narrow resonances in QCD suggests that the strong electroweak breaking sector contains narrow resonances that decay to tt or tb/bt, with potentially significant branching fractions to 3 or more longitudinal W and Z bosons. These may give new 'smoking gun' signals of strong electroweak symmetry breaking.

  3. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  4. Electroweak symmetry breaking from a holographic fourth generation

    International Nuclear Information System (INIS)

    Burdman, Gustavo; Rold, Leandro Da

    2007-01-01

    We consider a model with four generations of standard model fermions propagating in an extra dimension with an AdS background metric. We show that if the zero modes of the fourth generation are highly localized towards the infrared brane, it is possible to break the electroweak symmetry via their condensation, partly driven by their interactions with the Kaluza-Klein excitations of the gauge bosons, as well as by the presence of bulk higher-dimensional operators. This dynamical mechanism results in a composite Higgs, which is highly localized and generally heavy. The localization of fermions in the five-dimensional bulk naturally leads to the standard model Yukawa couplings via the action of the bulk higher-dimensional operators, which are suppressed by the Planck scale. We obtain the spectrum of the model and explore some of its phenomenological consequences, both for electroweak precision constraints as well as at the Large Hadron Collider

  5. Breaking of electroweak symmetry: origin and effects; Brisure de symetrie electrobaible: origine et consequence

    Energy Technology Data Exchange (ETDEWEB)

    Delaunay, C

    2008-10-15

    The Higgs boson appears as the corner stone of high energy physics, it might be the cause of the excess of matter that led to the formation of the structures of the universe and it seems that it drives the breaking of the electroweak symmetry. Moreover, when the stability at low energies of the Higgs boson is assured by an extra space dimension, it appears that this extra dimension can explain most issues in the flavor physics that are not understood by the standard model. The first chapter presents the main tools of effective field theories, the role of experimental data in the construction of theories valid beyond the standard model is discussed. The second chapter focuses on the electroweak baryogenesis that allows the testing of new physics via the electroweak phase transition. We detail the calculation of a Higgs potential at finite temperature. We follow the dynamics of the phase transition including nucleation an supercooling. Finally we investigate the prospects of gravity wave detection to see the effects of a strong electroweak phase transition. The 2 last chapters are dedicated to the physics of extra-dimension. The properties of the dynamics of scalar, vector fields with a 1/2 spin plunged in a 5 d. Anti de Sitter geometry are reviewed. We present a model of lepton masses and mixings based on the A{sub 4} non-Abelian discrete symmetry. It is shown that this model does not contradict the tests of electroweak precision. (A.C.)

  6. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, I.; Tsulaya, M.

    2000-01-01

    A new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model is suggested. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the corresponding Fayet-Illiopoulos ξ-term

  7. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  8. Strong coupling electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models

  9. Anomalous U(1)A and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Gogoladze, Ilia

    2000-10-01

    We suggest a mechanism for electroweak symmetry breaking in the Supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U(1) A gauge symmetry, which naturally arises in the four dimensional superstring theory, and heavily relies on the value of the corresponding Fayet-Illiopoulos ξ-term. (author)

  10. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Servant, Géraldine

    2011-01-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only

  11. Dynamical Electroweak Symmetry Breaking with a Heavy Fermion in Light of Recent LHC Results

    Directory of Open Access Journals (Sweden)

    Pham Q. Hung

    2013-01-01

    Full Text Available The recent announcement of a discovery of a possible Higgs-like particle—its spin and parity are yet to be determined—at the LHC with a mass of 126 GeV necessitates a fresh look at the nature of the electroweak symmetry breaking, in particular if this newly-discovered particle will turn out to have the quantum numbers of a Standard Model Higgs boson. Even if it were a 0+ scalar with the properties expected for a SM Higgs boson, there is still the quintessential hierarchy problem that one has to deal with and which, by itself, suggests a new physics energy scale around 1 TeV. This paper presents a minireview of one possible scenario: the formation of a fermion-antifermion condensate coming from a very heavy fourth generation, carrying the quantum number of the SM Higgs field, and thus breaking the electroweak symmetry.

  12. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  13. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1989-01-01

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs

  14. Natural cold baryogenesis from strongly interacting electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Thomas; Servant, Géraldine, E-mail: tkonstan@cern.ch, E-mail: geraldine.servant@cern.ch [CERN Physics Department, Theory Division, CH-1211 Geneva 23 (Switzerland)

    2011-07-01

    The mechanism of ''cold electroweak baryogenesis'' has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on any particular UV completion but only on a stage of supercooling ended by a first-order phase transition in the evolution of the universe, which can be natural if there is nearly conformal dynamics at the TeV scale. Besides, baryon-number violation originates from the Standard Model only.

  15. Symmetries and symmetry breaking beyond the electroweak theory

    International Nuclear Information System (INIS)

    Grojean, Ch.

    1999-01-01

    The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)

  16. Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking

    Directory of Open Access Journals (Sweden)

    Katsuya Hashino

    2016-01-01

    Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.

  17. Higgs Bosons, Electroweak Symmetry Breaking, and the Physics of the Large Hadron Collider

    CERN Document Server

    Quigg, Chris

    2007-01-01

    The Large Hadron Collider, a 7 + 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  18. Electroweak symmetry breaking: Higgs/whatever

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1990-01-01

    In these two lectures the author discusses electroweak symmetry breaking from a general perspective, stressing properties that are model independent and follow just from the assumption that the electroweak interactions are described by a spontaneously broken gauge theory. This means he assumes the Higgs mechanism though not necessarily the existence of Higgs bosons. The first lecture presents the general framework of a spontaneously broken gauge theory: (1) the Higgs mechanism sui generis, with or without Higgs boson(s) and (2) the implications of symmetry and unitarity for the mass scale and interaction strength of the new physics that the Higgs mechanism requires. In addition he reviews a softer theoretical argument based on the naturalness problem which leads to a prejudice against Higgs bosons unless they are supersymmetric. This is a prejudice, not a theorem, and it could be overturned in the future by a clever new idea. In the second lecture he illustrates the general framework by reviewing some specific models: (1) the Weinberg-Salam model of the Higgs sector; (2) the minimal supersymmetric extension of the Weinberg-Salam model; and (3) technicolor as an example of the Higgs mechanism without Higgs bosons. He concludes the second lecture with a discussion of strong WW scattering that must occur if L SB lives above 1 TeV. In particular he describes some of the experimental signals and backgrounds at the SSC. 57 refs., 12 figs

  19. Electroweak Symmetry Breaking (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  20. Electroweak Symmetry Breaking (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  1. Electroweak Symmetry Breaking (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The focus of the lectures will be on the role of the Higgs boson in the mechanism of electroweak symmetry breaking, both in the Standard Model and in models of New Physics. In particular, I will discuss how a determination of its couplings to matter and gauge fields can give important information on the nature and origin of the Higgs boson. I will thus review the picture on Higgs couplings implied by the current experimental data and examine further interesting processes that can be measured in the future.

  2. Natural Cold Baryogenesis from Strongly Interacting Electroweak Symmetry Breaking

    CERN Document Server

    Konstandin, Thomas

    2011-01-01

    The mechanism of "cold electroweak baryogenesis" has been so far unpopular because its proposal has relied on the ad-hoc assumption of a period of hybrid inflation at the electroweak scale with the Higgs acting as the waterfall field. We argue here that cold baryogenesis can be naturally realized without the need to introduce any slow-roll potential. Our point is that composite Higgs models where electroweak symmetry breaking arises via a strongly first-order phase transition provide a well-motivated framework for cold baryogenesis. In this case, reheating proceeds by bubble collisions and we argue that this can induce changes in Chern-Simons number, which in the presence of new sources of CP violation commonly lead to baryogenesis. We illustrate this mechanism using as a source of CP violation an effective dimension-six operator which is free from EDM constraints, another advantage of cold baryogenesis compared to the standard theory of electroweak baryogenesis. Our results are general as they do not rely on...

  3. Enhancement of neutral tc transitions in the model of dynamical breaking of electroweak symmetry

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Osipov, M.Yu.

    1999-01-01

    The problem of possible deviations from the standard model is considered in the framework of a variant of dynamical electroweak symmetry breaking. It comes clear, that the parameters of the theory, being obtained earlier and describing deviations from standard model in Z → b-barb decay, are also consistent with the existence of a nontrivial solution for vertex t-bar (Z, γ)c. The occurrence of this solution leads to a significant enhancement in neutral flavor changing transition t → c. The intensity of this transition is connected with the c-quark mass, that leads to estimates of probabilities of exotic decays t → c(Z, γ) and of the cross section of a single t-quark production in process e + e - → tc-bar, which threshold is already overcome at LEP2. The model is shown to be consistent with the totality of the existing data, the predictions allow its unambiguous check [ru

  4. Freedom in electroweak symmetry breaking and mass matrix of fermions in dimensional deconstruction model

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.; Sugamoto, Akio

    2004-01-01

    There exists a freedom in a class of four-dimensional electroweak theories proposed by Arkani-Hamed et al. relying on deconstruction and Coleman-Weinberg mechanism. The freedom comes from the winding modes of the link variable (Wilson operator) connecting non-nearest neighbours in the discrete fifth dimension. Using this freedom, dynamical breaking of SU(2) gauge symmetry, mass hierarchy patterns of fermions and Cabbibo-Kobayashi-Maskawa matrix may be obtained

  5. History of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)

  6. Electroweak symmetry breaking: to Higgs or not to Higgs” (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  7. Electroweak symmetry breaking: to Higgs or not to Higgs” (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  8. Electroweak symmetry breaking: to Higgs or not to Higgs” (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    How do elementary particles acquire their mass? What is making the photon different from the Z boson? In a word: How is electroweak symmetry broken? This is one of the pressing questions in particle physics that the LHC will answer soon. The aim of this lectures is, after briefly introducing SM physics and the conventional Higgs mechanism, to give a survey of recent attempts to go beyond a simple elementary Higgs. In particular, I will describe composite models (where the Higgs boson emerges from a strongly-interacting sector) and Higsless models. Distinctive signatures at the LHC are expected and will reveal the true nature of the electroweak symmetry sector.

  9. Z → bb-bar probability and asymmetry in a model of dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Arbuzov, B.A.; Osipov, M.Yu.

    1997-01-01

    The deviations from the standard model in the probability of Z → bb-bar decay and in the forward-backward asymmetry in the reaction e + e - → bb-bar are studied in the framework of the model of dynamical electroweak symmetry breaking, the basic point of which is the existence of a triple anomalous W-boson vertex in a region of momenta restricted by a cutoff. A set of equations for additional terms in the W b t-bar vertex is obtained and its solution to the process Z → bb-bar is applied. It is shown that it is possible to obtain a consistent description of both deviations, which is quite nontrivial because these effects are not simply correlated. The necessary value of the anomalous W interaction coupling, λ = -0.22 ± 0.01, is consistent with existing limitations and leads to definite predictions, e.g., for pair W production in e + e - collisions at LEP 200

  10. Towards a natural theory of electroweak interactions

    Science.gov (United States)

    Dobrescu, Bogdan A.

    1998-01-01

    I study theories of electroweak symmetry breaking that may describe naturally the electromagnetic and weak interactions of the elementary particles observed so far (quarks, leptons and gauge bosons). These theories should explain why the energy scale at which the electroweak symmetry is spontaneously broken (246 GeV), called the 'electroweak scale', is seventeen orders of magnitude smaller than the 'Planck scale', which is associated with the quantum origin of gravity. I discuss first theories where the electroweak symmetry is broken by the dynamics of new strong interactions, naturally producing the hierarchy between the Planck scale and the electroweak scale. I show that in a realistic class of models of this type, the new gauge bosons needed for generating the mass of the heaviest quark have couplings which require a careful adjustment in order to be compatible with experimental data. In the case where the strong dynamics produces a composite spinless particle ('Higgs boson') whose interactions break the electroweak symmetry, I derive an upper bound of 460 GeV on the Higgs boson mass from experimental constraints on processes sensitive to new physics. I also discuss a different type of theory that explains the hierarchy of energy scales, based on a special symmetry, called supersymmetry, which requires the existence of new particles ('superpartners'). No superpartners have been seen in experiments. Therefore, if they exist, they must have masses larger than the particles known so far, implying that supersymmetry is not exact. In the simplest models, supersymmetry breaking is transmitted to the superpartners by standard gauge interactions. I show that all known models of this type are likely to be unacceptable because they do not admit a stable and phenomenologically viable ground state of the universe ('vacuum'). I then construct modified versions of these models that permit viable stable vacua. Also, I present a new model in which supersymmetry breaking is

  11. Electroweak symmetry breaking beyond the Standard Model

    International Nuclear Information System (INIS)

    Bhattacharyya, Gautam

    2012-01-01

    In this paper, two key issues related to electroweak symmetry breaking are addressed. First, how fine-tuned different models are that trigger this phenomenon? Second, even if a light Higgs boson exists, does it have to be necessarily elementary? After a brief introduction, the fine-tuning aspects of the MSSM, NMSSM, generalized NMSSM and GMSB scenarios shall be reviewed, then the little Higgs, composite Higgs and the Higgsless models shall be compared. Finally, a broad overview will be given on where we stand at the end of 2011. (author)

  12. Phenomenology of induced electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Chang, Spencer; Galloway, Jamison; Luty, Markus A.; Salvioni, Ennio; Tsai, Yuhsin

    2015-01-01

    We study the phenomenology of models of electroweak symmetry breaking where the Higgs potential is destabilized by a tadpole arising from the coupling to an “auxiliary” Higgs sector. The auxiliary Higgs sector can be either perturbative or strongly coupled, similar to technicolor models. Since electroweak symmetry breaking is driven by a tadpole, the cubic and quartic Higgs couplings can naturally be significantly smaller than their values in the standard model. The theoretical motivation for these models is that they can explain the 125 GeV Higgs mass in supersymmetry without fine-tuning. The auxiliary Higgs sector contains additional Higgs states that cannot decouple from standard model particles, so these models predict a rich phenomenology of Higgs physics beyond the standard model. In this paper we analyze a large number of direct and indirect constraints on these models. We present the current constraints after the 8 TeV run of the LHC, and give projections for the sensitivity of the upcoming 14 TeV run. We find that the strongest constraints come from the direct searches A 0 →Zh, A 0 →tt-bar, with weaker constraints from Higgs coupling fits. For strongly-coupled models, additional constraints come from ρ + →WZ where ρ + is a vector resonance. Our overall conclusion is that a significant parameter space for such models is currently open, allowing values of the Higgs cubic coupling down to 0.4 times the standard model value for weakly coupled models and vanishing cubic coupling for strongly coupled models. The upcoming 14 TeV run of the LHC will stringently test this scenario and we identify several new searches with discovery potential for this class of models.

  13. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Knochel, Alexander Karl

    2009-05-11

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m{sub {chi}{sup +}}{approx}100.. 110 GeV, the dark matter relic density points to LSP masses of around m{sub {chi}}{approx}90 GeV. At the LHC, the

  14. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Knochel, Alexander Karl

    2009-01-01

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m χ + ∼100.. 110 GeV, the dark matter relic density points to LSP masses of around m χ ∼90 GeV. At the LHC, the standard particle content of our

  15. Golden Probe of Electroweak Symmetry Breaking

    CERN Document Server

    Chen, Yi; Spiropulu, Maria; Stolarski, Daniel; Vega-Morales, Roberto

    2016-12-09

    The ratio of the Higgs couplings to $WW$ and $ZZ$ pairs, $\\lambda_{WZ}$, is a fundamental parameter in electroweak symmetry breaking as well as a measure of the (approximate) custodial symmetry possessed by the gauge boson mass matrix. We show that Higgs decays to four leptons are sensitive, via tree level/1-loop interference effects, to both the magnitude and, in particular, overall sign of $\\lambda_{WZ}$. Determining this sign requires interference effects, as it is nearly impossible to measure with rate information. Furthermore, simply determining the sign effectively establishes the custodial representation of the Higgs boson. We find that $h\\to4\\ell$ ($4\\ell \\equiv 2e2\\mu, 4e, 4\\mu$) decays have excellent prospects of directly establishing the overall sign at a high luminosity 13 TeV LHC. We also examine the ultimate LHC sensitivity in $h\\to4\\ell$ to the magnitude of $\\lambda_{WZ}$. Our results are independent of other measurements of the Higgs boson couplings and, in particular, largely free of assumpti...

  16. Probing electroweak symmetry breaking at multi-TeV colliders

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1987-01-01

    Low energy theorems are derived for scattering of longitudinally polarized W and Z's, providing the basis for an estimate of the observable signal if electroweak symmetry breaking is due to new physics at the TeV scale. A pp collider with L, √s = 40 TeV, 10 33 cm. -2 s -1 is just sufficient to observe the signal while pp colliders with 40, 10 32 or 20, 10 33 are not. A collider that is sensitive to the TeV-scale signal provides valuable information about symmetry breaking whether the masses of the associated new particles are below, within, or above the 1-2 TeV region. 6 refs., 6 figs., 2 tabs

  17. Fundamental composite electroweak dynamics

    DEFF Research Database (Denmark)

    Arbey, Alexandre; Cacciapaglia, Giacomo; Cai, Haiying

    2017-01-01

    Using the recent joint results from the ATLAS and CMS collaborations on the Higgs boson, we determine the current status of composite electroweak dynamics models based on the expected scalar sector. Our analysis can be used as a minimal template for a wider class of models between the two limitin...... space at the effective Lagrangian level. We show that a wide class of models of fundamental composite electroweak dynamics are still compatible with the present constraints. The results are relevant for the ongoing and future searches at the Large Hadron Collider....

  18. Dynamical symmetry breaking with hypercolour and high colour representations

    International Nuclear Information System (INIS)

    Zoupanos, G.

    1985-01-01

    A model is presented in which the electroweak gauge group is spontaneously broken according to a dynamical scenario based on the existence of high colour representations. An unattractive feature of this scenario was the necessity to introduce elementary Higgs fields in order to obtain the spontaneous symmetry breaking of part of the theory. In the present model, this breaking can also be understood dynamically with the introduction of hypercolour interactions. (author)

  19. Introduction to the workshop: Electroweak symmetry breaking at the TeV scale

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1984-01-01

    As viewed from today's perspective, electroweak symmetry breaking is both the central issue to be addressed by physics in the TeV region, and the most compelling argument for the need to explore that region. While the picture may change considerably over the next decade, it seems reasonable to focus theoretical attention on this issue which is in fact very broad in terms of its possible ramifications. Such a concerted effort can help to sharpen the scientific case for the SSC and provide fresh theoretical input to the ongoing series of workshops and studies aimed at forming a consensus on a choice of SSC design parameters. To set the mood of the workshop the author reviews briefly the physics to be explored prior to the SSC as well as the motivations for exploration of the TeV region for hard collisions. He follows with an example of a possible scenario for the first manifestation of electroweak symmetry breaking at the SSC

  20. Probing electroweak symmetry braking mechanism at the LHC: A guideline from power counting analysis

    International Nuclear Information System (INIS)

    He Hongjian; Virginia Polytechnic Inst. and State Univ., Blacksburg, VA; Virginia Polytechnic Inst. and State Univ., Blacksburg, VA; Kuang, Y.P.; Tsinghua Univ., Beijing, BJ; Yuan, C.P.

    1996-01-01

    We formulate the equivalence theorem as a criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting rule for chiral Lagrangian formulated electroweak theories (CLEWT). With these we give a systematic analysis on the sensitivities of the scattering processes W ± W ± →W ± W ± and q anti q'→W ± Z to probing all possible effective bosonic operators in the CLEWT at the CERN Large Hadron Collider (LHC). (orig.)

  1. Top and Higgs masses from dynamical electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kahana, D.E.

    1993-01-01

    The standard model of electroweak interactions, with the gauge and Higgs bosons appearing as composites, is derived from a Nambu-Jona-Lasinio-type four-fermion interaction, assumed to be valid above a high scale μ. Simple relationships are found for the composite boson top quark mass ratios and for the weak angle. Assuming three generations and a 'desert' hypothesis, these relationships are evolved with the full renormalization group down to present experimental energies, yielding predictions for the top quark and Higgs-boson masses, near 155 GeV for the former and near 140 GeV for the latter. In this fashion, fermion-antifermion condensates can be shown to yield a top mass consistent with that indicated from electroweak loop corrections for LEP data. (author) 23 refs

  2. Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

    International Nuclear Information System (INIS)

    Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub

    2004-01-01

    We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV

  3. Electroweak symmetry breaking and mass spectra in six-dimensional gauge-Higgs grand unification

    Science.gov (United States)

    Hosotani, Yutaka; Yamatsu, Naoki

    2018-02-01

    The mass spectra of the standard model particles are reproduced in the SO(11) gauge-Higgs grand unification in six-dimensional warped space without introducing exotic light fermions. Light neutrino masses are explained by the gauge-Higgs seesaw mechanism. We evaluate the effective potential of the four-dimensional Higgs boson appearing as a fluctuation mode of the Aharonov-Bohm phase θ_H in the extra-dimensional space, and show that the dynamical electroweak symmetry breaking takes place with the Higgs boson mass m_H ˜ 125 GeV and θ_H ˜ 0.1. The Kaluza-Klein mass scale in the fifth dimension is approximately given by m_KK ˜ 1.230 TeV/sin θ_H.

  4. Unanswered Questions in the Electroweak Theory

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2009-11-01

    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.

  5. Unanswered Questions in the Electroweak Theory

    International Nuclear Information System (INIS)

    Quigg, Chris

    2009-01-01

    This article is devoted to the status of the electroweak theory on the eve of experimentation at CERN's Large Hadron Collider. A compact summary of the logic and structure of the electroweak theory precedes an examination of what experimental tests have established so far. The outstanding unconfirmed prediction of the electroweak theory is the existence of the Higgs boson, a weakly interacting spin-zero particle that is the agent of electroweak symmetry breaking, the giver of mass to the weak gauge bosons, the quarks, and the leptons. General arguments imply that the Higgs boson or other new physics is required on the TeV energy scale. Indirect constraints from global analyses of electroweak measurements suggest that the mass of the standard-model Higgs boson is less than 200 GeV. Once its mass is assumed, the properties of the Higgs boson follow from the electroweak theory, and these inform the search for the Higgs boson. Alternative mechanisms for electroweak symmetry breaking are reviewed, and the importance of electroweak symmetry breaking is illuminated by considering a world without a specific mechanism to hide the electroweak symmetry. For all its triumphs, the electroweak theory has many shortcomings.

  6. Integrating out resonances in strongly-coupled electroweak scenarios

    Directory of Open Access Journals (Sweden)

    Rosell Ignasi

    2017-01-01

    Full Text Available Accepting that there is a mass gap above the electroweak scale, the Electroweak Effective Theory (EWET is an appropriate tool to describe this situation. Since the EWET couplings contain information on the unknown high-energy dynamics, we consider a generic strongly-coupled scenario of electroweak symmetry breaking, where the known particle fields are coupled to heavier states. Then, and by integrating out these heavy fields, we study the tracks of the lightest resonances into the couplings. The determination of the low-energy couplings (LECs in terms of resonance parameters can be made more precise by considering a proper short-distance behaviour on the Lagrangian with heavy states, since the number of resonance couplings is then reduced. Notice that we adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs.

  7. Minimal flavour violation in the quark and lepton sector and the impact of extra dimensions on flavour changing neutral currents and electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Weiler, A.

    2007-01-01

    We study flavor-changing decays of hadrons and leptons and an extra-dimensional approach to electroweak symmetry breaking. Specifically we study the framework of Minimal Flavour Violation (MFV) as an explanation of the flavour problem. We discuss the impact of a specific extra-dimensional model of the MFV class on flavour changing neutral currents. We derive model-independent upper bounds on rare decays. -We discuss the extension of the MFV framework from the quark to the lepton sector and show how baryogenesis through leptogenesis can be achieved and examine if possible correlations with charged lepton flavour violation exist. We discuss the dynamical breaking of the electroweak symmetry in extra dimensions by unifying gauge and Higgs fields and we show that realistic models are possible once the extra dimension is strongly curved. (orig.)

  8. Minimal flavour violation in the quark and lepton sector and the impact of extra dimensions on flavour changing neutral currents and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, A.

    2007-01-16

    We study flavor-changing decays of hadrons and leptons and an extra-dimensional approach to electroweak symmetry breaking. Specifically we study the framework of Minimal Flavour Violation (MFV) as an explanation of the flavour problem. We discuss the impact of a specific extra-dimensional model of the MFV class on flavour changing neutral currents. We derive model-independent upper bounds on rare decays. -We discuss the extension of the MFV framework from the quark to the lepton sector and show how baryogenesis through leptogenesis can be achieved and examine if possible correlations with charged lepton flavour violation exist. We discuss the dynamical breaking of the electroweak symmetry in extra dimensions by unifying gauge and Higgs fields and we show that realistic models are possible once the extra dimension is strongly curved. (orig.)

  9. Probing electroweak symmetry breaking at the SSC [Superconducting Super Collider]: A no-lose corollary

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1987-01-01

    Low energy theorems are derived for scattering of longitudinally polarized W and Z's, providing the basis for an estimate of the observable signal at the SSC if electroweak symmetry breaking is due to new physics at the TeV scale

  10. Recent Results from CMS and ATLAS: Electroweak Symmetry, Breaking and Beyond

    CERN Document Server

    Azzurri, Paolo

    2016-01-01

    The discovery of the Higgs boson, announced by the CMS and ATLAS collaborations in 2012, unearthed the final cornerstone of the standard electroweak model of particle physics, and repre- sents the main legacy of the LHC Run 1. With Run 1 data the mass of the Higgs boson has been determined with 0.2pct precision, while coupling properties are only established at the 10pct level or worse. As the picture of the minimal standard model is now complete, unsettled difficulties and open questions remain on its stage. The LHC Run 2 has successfully started in 2015, opening a new period of particle physics exploration, at higher energy and intensity it will undoubtedly de- liver more insight on the electroweak model, its symmetry breaking mechanism, and on possible solutions to its difficulties.

  11. Tadpole-induced electroweak symmetry breaking and pNGB Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Howe, Kiel; Kearney, John [Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2017-03-22

    We investigate induced electroweak symmetry breaking (EWSB) in models in which the Higgs is a pseudo-Nambu-Goldstone boson (pNGB). In pNGB Higgs models, Higgs properties and precision electroweak measurements imply a hierarchy between the EWSB and global symmetry-breaking scales, v{sub H}≪f{sub H}. When the pNGB potential is generated radiatively, this hierarchy requires fine-tuning to a degree of at least ∼v{sub H}{sup 2}/f{sub H}{sup 2}. We show that if Higgs EWSB is induced by a tadpole arising from an auxiliary sector at scale f{sub Σ}≪v{sub H}, this tuning is significantly ameliorated or can even be removed. We present explicit examples both in Composite Higgs models based on SO(5)/SO(4) and in Twin Higgs models. For the Twin case, the result is a fully natural model with f{sub H}∼1 TeV and the lightest colored top partners at 2 TeV. These models also have an appealing mechanism to generate the scales of the auxiliary sector and Higgs EWSB directly from the scale f{sub H}, with a natural hierarchy f{sub Σ}≪v{sub H}≪f{sub H}∼TeV. The framework predicts modified Higgs coupling as well as new Higgs and vector states at LHC13.

  12. Pursuing the origin of electroweak symmetry breaking: a 'Bayesian Physics' argument for a √s ∼+e- collider

    International Nuclear Information System (INIS)

    Kane, G.L.; Wells, James D.

    2000-01-01

    High-energy data has been accumulating over the last ten years, and it should not be ignored when making decisions about the future experimental program. In particular, we argue that the electroweak data collected at LEP, SLC and Tevatron indicate a light scalar particle with mass less than 500 GeV. This result is based on considering a wide variety of theories including the Standard Model, supersymmetry, large extra dimensions, and composite models. We argue that a high luminosity, 600 GeV e + e - collider would then be the natural choice to feel confident about finding and studying states connected to electroweak symmetry breaking. We also argue from the data that worrying about resonances at multi-TeV energies as the only signal for electroweak symmetry breaking is not as important a discovery issue for the next generation of colliders. Such concerns should perhaps be replaced with more relevant discovery issues such as a Higgs boson that decays invisibly, and ''new physics'' that could conspire with a heavier Higgs boson to accommodate precision electroweak data. An e + e - collider with √s ∼< 600 GeV is ideally suited to cover these possibilities

  13. Minimal but non-minimal inflation and electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Racioppi, Antonio [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2016-10-07

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r≈10{sup −3}, typical of Higgs-inflation models, but in contrast yields a scalar spectral index n{sub s}≃0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  14. Spontaneous symmetry breakdown in gauge theories

    International Nuclear Information System (INIS)

    Scadron, M.D.

    1982-01-01

    The dynamical theory of spontaneous breakdown correctly predicts the bound states and relates the order parameters of electron-photon superconductivity and quark-gluon chiral symmetry. A similar statement cannot be made for the standard electro-weak gauge symmetry. (author)

  15. Recent progress for Linear Collider SM/BSM Higgs/electroweak symmetry breaking calculations

    International Nuclear Information System (INIS)

    Reuter, Juergen

    2012-01-01

    In this paper I review the calculations (and partially simulations and theoretical studies) that have been made and published during the last two to three years focusing on the electroweak symmetry breaking sector and the Higgs boson(s) within the Standard Model and models beyond the Standard Model (BSM) at or relevant for either the International Linear Collider (ILC) or the Compact Linear Collider (CLIC), commonly abbreviated as Linear Collider (LC). (orig.)

  16. Ten dimensional SO(10) G.U.T. models with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Hanlon, B.E.; Joshi, G.C.

    1993-01-01

    To date, considerations on SO (10) models within Coset Space Dimensional Reduction (CSDR) have been diagonalized to the standard model or rely upon imaginative applications of Wilson lines so as to avoid the problem of the nonexistence of an intermediate Higgs mechanism. However, there is an alternative approach involving four fermion condensates, breaking symmetries by a dynamical mechanism. Indeed, dynamical symmetry breaking has been the direction taken in some SU(5) models within this framework in order to avoid the problems of electroweak symmetry breaking at the compactification scale. This paper presents realistic models which utilize this mechanism. It is shown that the appropriate fermionic representations can emerge from CSDR and the construction of such condensates within the constraints of this scheme is presented. By introducing discrete symmetries onto the internal manifold a strong breaking of the SO(10) G.U.T. is produced and, more importantly, eliminate Higgs fields of geometrical origin. 31 refs

  17. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe

    Science.gov (United States)

    Iso, Satoshi; Serpico, Pasquale D.; Shimada, Kengo

    2017-10-01

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that—contrarily to the standard model case—a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B -L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  18. QCD-Electroweak First-Order Phase Transition in a Supercooled Universe.

    Science.gov (United States)

    Iso, Satoshi; Serpico, Pasquale D; Shimada, Kengo

    2017-10-06

    If the electroweak sector of the standard model is described by classically conformal dynamics, the early Universe evolution can be substantially altered. It is already known that-contrarily to the standard model case-a first-order electroweak phase transition may occur. Here we show that, depending on the model parameters, a dramatically different scenario may happen: A first-order, six massless quark QCD phase transition occurs first, which then triggers the electroweak symmetry breaking. We derive the necessary conditions for this dynamics to occur, using the specific example of the classically conformal B-L model. In particular, relatively light weakly coupled particles are predicted, with implications for collider searches. This scenario is also potentially rich in cosmological consequences, such as renewed possibilities for electroweak baryogenesis, altered dark matter production, and gravitational wave production, as we briefly comment upon.

  19. Symmetries and composite dynamics for the 750 GeV diphoton excess

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Frandsen, Mads T.

    2018-01-01

    of a pseudo-scalar via gluon or photon fusion or via decay of a parent particle together with soft additional final states. We discuss possible underlying realizations of the scenarios motivated by dynamical models of electroweak symmetry breaking (without new coloured states) and fermion masses.......The ATLAS and CMS experiments at LHC observe small excesses of diphoton events with invariant mass around 750 GeV. Here we study the possibility of nearly parity degenerate and vector-scalar degenerate spectra as well as composite dynamics in 2 scenarios for explaining the excess: Production...

  20. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  1. Symmetries and symmetry breaking beyond the electroweak theory; Symetries et brisures de symetries au-dela de la theorie electrofaible

    Energy Technology Data Exchange (ETDEWEB)

    Grojean, Ch

    1999-05-04

    The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)

  2. Closing the SU(3)LxU(1)X symmetry at the electroweak scale

    International Nuclear Information System (INIS)

    Dias, Alex G.; Montero, J. C.; Pleitez, V.

    2006-01-01

    We show that some models with SU(3) C xSU(3) L xU(1) X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2) L+R symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1) X 's coupling constant, g X , the sine of the weak mixing angle sinθ W , and the mass of the W boson, M W . In the limit in which this symmetry is valid it avoids the tree level mixing of the Z boson of the standard model with the extra Z ' boson. We have verified that the oblique T parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3) L+R custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, since the seesaw mechanism is mandatory to obtain light active neutrinos. Moreover, the approximate SU(2) L+R subset of SU(3) L+R symmetry implies that the extra nonstandard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner

  3. Dynamical Symmetry Breaking of Extended Gauge Symmetries

    OpenAIRE

    Appelquist, Thomas; Shrock, Robert

    2003-01-01

    We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...

  4. Theories of Electroweak Symmetry Breaking : A Post LHC Run-I Perspective (1/3)

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Lecture 1 : The Brout-Englert-Higgs Theory of Electroweak Symmetry Breaking The goal of this lecture is to put the discovery of the Higgs boson in historical context and qualitatively discuss the importance and meaning of its discovery. Claims that the BEH theory has its roots in the theory developments of superconductivity will be considered. Viability of the theory from several points of view will be assessed. First, has the theory been established yet as correct? Second, is the theory stable to vacuum fluctuations? And finally, is the theory natural?

  5. Constraints on the minimal N=1 supergravity theory from electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Giudice, G.F.; Ridolfi, G.

    1988-01-01

    We reanalyze the constraints on the minimal N=1 supergravity extension of the standard model arising from the requirement of a correct spontaneous breakdown of the electroweak symmetry. Driven by recent experimental results, we devote special attention to the case of a top quark much heavier than the conventional choice of 40 GeV, used in previous analyses. Our results are stated in a space of phenomenologically meaningful parameters, providing a direct comparison between the constraints from SU(2) x U(1) breaking and the predictions for supersymmetric particle production. Moreover, an upper bound for the ratio of the two Higgs vacuum expectation values is given, for any value of the top quark mass. (orig.)

  6. Electroweak symmetry breaking studies at the pp colliders of the 1990's and beyond

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1989-01-01

    Within the conventional framework of a spontaneously broken gauge theory, general principles establish that the electroweak symmetry is broken by a new force that may be weak with associated new quanta below 1 TeV or strong with quanta above 1 TeV. The SSC parameters, √s = 40 TeV and L = 10 33 cm/sup /minus/2/s/sup /minus/1/, define a minimal facility with assured capability to observe the signals of symmetry breaking by a strong force above 1 TeV. Foreseeable luminosity upgrades would not be able to compensate a much lower collider energy for these physics signals. If the strong WW scattering signal were seen at the SSC in the 1990's it would provide a clear imperative for a collider with the physics reach of the ELOISATRON to begin detailed studies of the new force and quanta early in the next century. 35 refs., 7 figs., 4 tabs

  7. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    Science.gov (United States)

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeVdark matter mass. The dynamical approach also predicts a small scalar-singlet self-coupling, providing a natural explanation for the astrophysical observations that place upper bounds on dark matter self-interaction. The predictions in all three approaches are within the M(s)>80 GeV detection region of the next generation XENON experiment.

  8. Academic Training Lectures | Theories of Electroweak Symmetry Breaking: A Post LHC Run-I Perspective | 26, 27 and 29 May

    CERN Multimedia

    2015-01-01

    Please note that our next series of Academic Training Lectures will take place on the 26, 27 and 29 May 2015.   Theories of Electroweak Symmetry Breaking: A Post LHC Run-I Perspective, by James Daniel Wells (University of Michigan (US)) from 11.00 a.m. to 12.00 p.m. in the Council Chamber (503-1-001) https://indico.cern.ch/event/383514/

  9. Dynamical origin of the electroweak scale and the 125 GeV scalar

    Directory of Open Access Journals (Sweden)

    Stefano Di Chiara

    2015-11-01

    Full Text Available We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state implies that the mass originating solely from new strong dynamics can be much heavier, i.e. of the order of 1 TeV. In addition to reducing the mass of the scalar resonance, we show that the four-fermion interactions allow for contributions to the oblique corrections in agreement with the experimental constraints. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results. Additional new resonances are expected to be heavy, with masses of the order of a few TeVs, and hence accessible in future experiments.

  10. Dynamical origin of the electroweak scale and the 125 GeV scalar

    International Nuclear Information System (INIS)

    Di Chiara, Stefano; Foadi, Roshan; Tuominen, Kimmo; Tähtinen, Sara

    2015-01-01

    We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state implies that the mass originating solely from new strong dynamics can be much heavier, i.e. of the order of 1 TeV. In addition to reducing the mass of the scalar resonance, we show that the four-fermion interactions allow for contributions to the oblique corrections in agreement with the experimental constraints. The couplings of the scalar resonance with the Standard Model gauge bosons and fermions are evaluated, and found to be compatible with the current LHC results. Additional new resonances are expected to be heavy, with masses of the order of a few TeVs, and hence accessible in future experiments.

  11. Electroweak monopoles and the electroweak phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Arunasalam, Suntharan; Kobakhidze, Archil [The University of Sydney, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Sydney, NSW (Australia)

    2017-07-15

    We consider an isolated electroweak monopole solution within the Standard Model with a nonlinear Born-Infeld extension of the hypercharge gauge field. Monopole (and dyon) solutions in such an extension are regular and their masses are predicted to be proportional to the Born-Infeld mass parameter. We argue that cosmological production of electroweak monopoles may delay the electroweak phase transition and make it more strongly first order for monopole masses M >or similar 9.3 . 10{sup 3} TeV, while the nucleosynthesis constraints on the abundance of relic monopoles impose the bound M dynamical generation of the matter-antimatter asymmetry during the electroweak phase transition. (orig.)

  12. Fingerprints of heavy scales in electroweak effective Lagrangians

    Science.gov (United States)

    Pich, Antonio; Rosell, Ignasi; Santos, Joaquín; Sanz-Cillero, Juan José

    2017-04-01

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2) L ⊗ SU(2) R → SU(2) L+ R , which couples the known particle fields to heavier states with bosonic quantum numbers J P = 0± and 1±. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  13. Fingerprints of heavy scales in electroweak effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Pich, Antonio [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, Ignasi [Departamento de Matemáticas, Física y Ciencias Tecnológicas,Universidad CEU Cardenal Herrera, E-46115 Alfara del Patriarca, València (Spain); Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica I, Universidad Complutense de Madrid,E-28040 Madrid (Spain)

    2017-04-04

    The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, which couples the known particle fields to heavier states with bosonic quantum numbers J{sup P}=0{sup ±} and 1{sup ±}. We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.

  14. Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, L. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Racioppi, A. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Raidal, M. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Laboratory of Theoretical Physics, Institute of Physics, University of Tartu,Ravila 14c, 50411 Tartu (Estonia); Urban, F.R.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2016-03-29

    We study whether the hinted 750 GeV resonance at the LHC can be a Coleman-Weinberg inflaton which is non-minimally coupled to gravity. Since the inflaton must couple to new charged and coloured states to reproduce the LHC diphoton signature, the same interaction can generate its effective potential and trigger the electroweak symmetry breaking via the portal coupling to the Higgs boson. This inflationary scenario predicts a lower bound on the tensor-to-scalar ratio of r≳0.006, where the minimal value corresponds to the measured spectral index n{sub s}≃0.97. However, we find that the compatibility with the LHC diphoton signal requires exotic new physics at energy scales accessible at the LHC. We study and quantify the properties of the predicted exotic particles.

  15. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  16. O(5) x U(1) electroweak theory

    International Nuclear Information System (INIS)

    Mukku, C.; Sayed, W.A.

    1980-12-01

    An anomaly free O(5) x U(1) theory of electroweak interactions is described which provides a unified description of electroweak phenomena for two families of standard leptons and quarks. No ''new'' non-sequential type fermions of the standard model are introduced as has been the case for all past studies based on this group. The present scheme requires the introduction of two further charged and three more neutral gauge fields over and above the Wsup(+-), Z and photon fields of SU(2) x U(1) giving rise to new neutral and charged currents. In this note we outline our reasons for proposing the present electroweak scheme, give the basic structure of the model, discuss the symmetry breaking pattern which ensures that SU(2)sub(L) x U(1) is the low energy symmetry, point out the new interactions present in the extended framework and obtain limits on the masses of all the gauge fields. (author)

  17. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Science.gov (United States)

    Niehoff, Christoph; Stangl, Peter; Straub, David M.

    2017-04-01

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5) ≅ SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current exper-imental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, CP violation in B s mixing, and the electric dipole moment of the neutron.

  18. Heavy axions from strong broken horizontal gauge symmetry

    International Nuclear Information System (INIS)

    Elliott, T.; King, S.F.

    1993-01-01

    We study the consequences of the existence and breaking of a Peccei-Quinn symmetry within the context of a dynamical model of electroweak symmetry breaking based on broken gauged flavour symmetries. We perform an estimate of the axion mass by including flavour instanton effects and show that, for low cut-offs, the axion is sufficiently massive to prevent it from being phenomenologically unacceptable. We conclude with an examination of the strong CP problem and show that our axion cannot solve the problem, though we indicate ways in which the model can be extended so that the strong CP problem is solved. (orig.)

  19. Formulation of the low-energy effective theory of electroweak symmetry-breaking without a Higgs particle

    International Nuclear Information System (INIS)

    Hirn, J.

    2004-07-01

    The low-energy effective theory of electroweak symmetry-breaking without a Higgs particle is constructed using the methods of Chiral Perturbation Theory. Weinberg's power-counting formula demonstrates the consistency of the loop expansion, with the corresponding renormalization. We find that the suppression of effective operators by a mass scale, which was automatic in the case of the Standard Model, no longer holds in the Higgs-less case. Moreover, the incriminated operators appear at leading order in the chiral expansion, at variance with experiments. To account for their suppression, invariance under a larger symmetry is required, corresponding to the composite sector (which produces the three Goldstone modes) being decoupled from the elementary sector (quarks, leptons and Yang-Mills fields). The couplings are introduced via spurions: this reduces the symmetry to SU(2) x U(1). In the simultaneous expansion in powers of momenta and spurions, the aforementioned operators are relegated to higher orders. In addition, the method allows for a systematic treatment of weak isospin breaking. The Weinberg power-counting formula can be recovered, and small neutrino masses accounted for. The three right-handed neutrinos (lighter than the TeV), which are introduced in connection with the custodial symmetry, are quasi-sterile and stable. A constraint on the underlying theory is obtained by studying the anomaly-matching in the composite sector and generalizing the Wess-Zumino construction. The spurion formalism is also applied to open linear moose models, for which generalized Weinberg sum rules are derived. (author)

  20. On-shell gauge-parameter independence of contributions to electroweak quark self-energies

    International Nuclear Information System (INIS)

    Ahmady, M.R.; Elias, V.; Mendel, R.R.; Scadron, M.D.; Steele, T.

    1989-01-01

    We allow an external condensate to enter standard SU(2) x U(1) electroweak theory via the vacuum expectation value , as in QCD sum-rule applications. For a given flavor, we then find that any gauge-parameter dependence of quark self-energies on the ''mass shell'' is eliminated provided that the mass shell is made to coincide with both the expansion-parameter mass occurring in the operator-product expansion of and the standard electroweak mass acquired via the Yukawa coupling to the usual scalar vacuum expectation value of spontaneous symmetry breaking. This result indicates that if the QCD-generated order parameter and associated dynamical mass(es) m/sub q//sup dyn/ are utilized as external input parameters in electroweak calculations involving hadrons, then new corrections must be introduced into the q-barqW and q-barqZ vertices in order to preserve SU(2) x U(1) Ward identities

  1. Production Cross-Section Estimates for Strongly-Interacting Electroweak-Symmetry Breaking Sector Resonances at Particle Colliders

    Science.gov (United States)

    Dobado, Antonio; Guo, Feng-Kun; Llanes-Estrada, Felipe J.

    2015-12-01

    We are exploring a generic strongly-interacting Electroweak Symmetry Breaking Sector (EWSBS) with the low-energy effective field theory for the four experimentally known particles (W±L, ZL, h) and its dispersion-relation based unitary extension. In this contribution we provide simple estimates for the production cross-section of pairs of the EWSBS bosons and their resonances at proton-proton colliders as well as in a future e-e+ (or potentially a μ-μ+) collider with a typical few-TeV energy. We examine the simplest production mechanisms, tree-level production through a W (dominant when quantum numbers allow) and the simple effective boson approximation (in which the electroweak bosons are considered as collinear partons of the colliding fermions). We exemplify with custodial isovector and isotensor resonances at 2 TeV, the energy currently being discussed because of a slight excess in the ATLAS 2-jet data. We find it hard, though not unthinkable, to ascribe this excess to one of these WLWL rescattering resonances. An isovector resonance could be produced at a rate smaller than, but close to earlier CMS exclusion bounds, depending on the parameters of the effective theory. The ZZ excess is then problematic and requires additional physics (such as an additional scalar resonance). The isotensor one (that would describe all charge combinations) has smaller cross-section. Supported by the Spanish Excellence Network on Hadronic Physics FIS2014-57026-REDT, by Spanish Grants Universidad Complutense UCM:910309 and Ministerio de Economia y Competitividad MINECO:FPA2011-27853-C02-01, MINECO:FPA2014-53375-C2-1-P, by the Deutsche Forschungsgemeinschaft and National Natural Science Foundation of China through Funds Provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD” (NSFC Grant No. 11261130311) and by NSFC (Grant No. 11165005)

  2. Electroweak interactions on the lattice

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-07-01

    It is shown that the lattice fermion doubling phenomenon is connected to the chiral anomaly which is unique to the electroweak interactions. The chiral anomaly is the breaking of chiral gauge symmetry at the quantum level due to the quantum fluctuations. Such breaking, however, is undesirable and to be avoided. The preservation of gauge symmetry imposes stringent constraints on acceptable chiral gauge theory. It is argued that the constraints are unnecessary because the conventional quantization of chiral gauge theory has missed out some crucial contributions of the chiral interactions. The corrected quantization yields consistent theory in which there is no gauge anomaly and in which various mass terms can be introduced with neither the loss of gauge invariance nor the need for the Higgs mechanism. The new quantization also provide a solution to the difficulty of how to model the electroweak interactions on the lattice. 9 refs. 1 fig

  3. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  4. Electroweak symmetry breaking and collider signatures in the next-to-minimal composite Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Niehoff, Christoph; Stangl, Peter; Straub, David M. [Excellence Cluster Universe, TUM,Boltzmannstr. 2, 85748 Garching (Germany)

    2017-04-20

    We conduct a detailed numerical analysis of the composite pseudo-Nambu-Goldstone Higgs model based on the next-to-minimal coset SO(6)/SO(5)≅SU(4)/Sp(4), featuring an additional SM singlet scalar in the spectrum, which we allow to mix with the Higgs boson. We identify regions in parameter space compatible with all current experimental constraints, including radiative electroweak symmetry breaking, flavour physics, and direct searches at colliders. We find the additional scalar, with a mass predicted to be below a TeV, to be virtually unconstrained by current LHC data, but potentially in reach of run 2 searches. Promising indirect searches include rare semi-leptonic B decays, C P violation in B{sub s} mixing, and the electric dipole moment of the neutron.

  5. New strong interactions above the electroweak scale

    International Nuclear Information System (INIS)

    White, A.R.

    1994-01-01

    Theoretical arguments for a new higher-color quark sector, based on Pomeron physics in QCD, are briefly described. The electroweak symmetry-breaking, Strong CP conservation, and electroweak scale CP violation, that is naturally produced by this sector is also outlined. A further consequence is that above the electroweak scale there will be a radical change in the strong interaction. Electroweak states, in particular multiple W's and Z's, and new, semi-stable, very massive, baryons, will be commonly produced. The possible correlation of expected phenomena with a wide range of observed Cosmic Ray effects at and above the primary spectrum knee is described. Related phenomena that might be seen in the highest energy hard scattering events at the Fermilab Tevatron, some of which could be confused with top production, are also briefly discussed

  6. The hierarchy problem of the electroweak standard model revisited

    International Nuclear Information System (INIS)

    Jegerlehner, Fred

    2013-05-01

    A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.

  7. The hierarchy problem of the electroweak standard model revisited

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2013-05-15

    A careful renormalization group analysis of the electroweak Standard Model reveals that there is no hierarchy problem in the SM. In the broken phase a light Higgs turns out to be natural as it is self-protected and self-tuned by the Higgs mechanism. It means that the scalar Higgs needs not be protected by any extra symmetry, specifically super symmetry, in order not to be much heavier than the other SM particles which are protected by gauge- or chiral-symmetry. Thus the existence of quadratic cutoff effects in the SM cannot motivate the need for a super symmetric extensions of the SM, but in contrast plays an important role in triggering the electroweak phase transition and in shaping the Higgs potential in the early universe to drive inflation as supported by observation.

  8. Theoretical aspects of electroweak and other interactions in medium energy nuclear physics

    International Nuclear Information System (INIS)

    Mukhopadhyay, N.C.

    1991-01-01

    In the project under review, progress has been made on the problem of dynamic symmetries exhibited by mesons as color strings. A novel property of the vibrational states of heavy mesons, that of an approximate saturation of a particular spectroscopic interval, has been found as a ''fingerprint'' for linear quark confinement potentials. Progress has been continued in the study of electroweak excitation of the baryon resonances, including the use of Compton scattering

  9. 3-3-1 models at electroweak scale

    International Nuclear Information System (INIS)

    Dias, Alex G.; Montero, J.C.; Pleitez, V.

    2006-01-01

    We show that in 3-3-1 models there exist a natural relation among the SU(3) L coupling constant g, the electroweak mixing angle θ W , the mass of the W, and one of the vacuum expectation values, which implies that those models can be realized at low energy scales and, in particular, even at the electroweak scale. So that, being that symmetries realized in Nature, new physics may be really just around the corner

  10. Nambu mechanism of dynamical symmetry breaking by the top quark

    Science.gov (United States)

    Pham, Xuan-Yem

    1990-05-01

    It may be possible that the gauge symmetry breaking of the standard electroweak interactions is not due to the elementary scalar Higgs fields but has a dynamic origin intimately involving the top quark. A prototype of this dynamical scenario is the Nambu and Jona-Lasinio model in which both the top quark and the gauge bosons become massive by some strong attractive nonlinear interactions similar to the gap energy produced in BCS superconductivity. Self-consistent equations for the charged Goldstone boson and for the vector meson are used to get an upper bound for the top quark mass. In the bubble approximation of keeping only fermion loops, we obtain an equation relating the top quark mass to the W boson one; from the top mass is found to be around 84 GeV. Its typical dominant decay mode t→W+s then follows. Also discussed are distinctive signatures of the scalar overlinett bound state identified as the physical Higgs particle whose mass is twice that of the top quark.

  11. Spontaneous symmetry breaking as a basis of particle mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions-so different in their manifestations-to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the 'standard model' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert and by Guralnik, Hagen, and Kibble: the agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story-though an incomplete story-and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some 'big questions' that will guide our explorations

  12. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout and Englert, and by Guralnik, Hagen, and Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W ± and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations

  13. Spontaneous Symmetry Breaking as a Basis of Particle Mass

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2007-04-01

    Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leaving a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.

  14. Symmetries of dynamically equivalent theories

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Tyutin, I.V. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Lebedev Physics Institute, Moscow (Russian Federation)

    2006-03-15

    A natural and very important development of constrained system theory is a detail study of the relation between the constraint structure in the Hamiltonian formulation with specific features of the theory in the Lagrangian formulation, especially the relation between the constraint structure with the symmetries of the Lagrangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter problem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article, we consider from the very beginning a more general problem: how the symmetry structures of dynamically equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions. (author)

  15. Operational symmetries basic operations in physics

    CERN Document Server

    Saller, Heinrich

    2017-01-01

    This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups an...

  16. Flavor cosmology. Dynamical Yukawas in the Froggatt-Nielsen mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Servant, Geraldine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-12-02

    Can the cosmological dynamics responsible for settling down the present values of the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry breaking? If the Standard Model Yukawa couplings varied in the early universe and started with order one values before electroweak symmetry breaking, the CP violation associated with the CKM matrix could be the origin of the matter-antimatter asymmetry. The large effective Yukawa couplings which lead to the enhanced CP violation can also help in achieving a strong first-order electroweak phase transition. We study in detail the feasibility of this idea by implementing dynamical Yukawa couplings in the context of the Froggatt-Nielsen mechanism. We discuss two main realizations of such a mechanism, related phenomenology, cosmological and collider bounds, and provide an estimate of the baryonic yield. A generic prediction is that this scenario always features a new scalar field below the electroweak scale. We point out ways to get around this conclusion.

  17. Flavor cosmology: dynamical yukawas in the Froggatt-Nielsen mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Baldes, Iason; Konstandin, Thomas [DESY,Notkestraße 85, Hamburg, D-22607 (Germany); Servant, Géraldine [DESY,Notkestraße 85, Hamburg, D-22607 (Germany); II. Institute for Theoretical Physics, University of Hamburg,Luruper Chaussee 149, Hamburg, D-22761 (Germany)

    2016-12-15

    Can the cosmological dynamics responsible for settling down the present values of the Cabibbo-Kobayashi-Maskawa matrix be related to electroweak symmetry breaking? If the Standard Model Yukawa couplings varied in the early universe and started with order one values before electroweak symmetry breaking, the CP violation associated with the CKM matrix could be the origin of the matter-antimatter asymmetry. The large effective Yukawa couplings which lead to the enhanced CP violation can also help in achieving a strong first-order electroweak phase transition. We study in detail the feasibility of this idea by implementing dynamical Yukawa couplings in the context of the Froggatt-Nielsen mechanism. We discuss two main realizations of such a mechanism, related phenomenology, cosmological and collider bounds, and provide an estimate of the baryonic yield. A generic prediction is that this scenario always features a new scalar field below the electroweak scale. We point out ways to get around this conclusion.

  18. Electroweak breaking in supersymmetric models

    CERN Document Server

    Ibáñez, L E

    1992-01-01

    We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)

  19. Electroweak Baryogenesis in R-symmetric Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Fok, R.; Kribs, Graham D.; Martin, Adam; Tsai, Yuhsin

    2013-03-01

    We demonstrate that electroweak baryogenesis can occur in a supersymmetric model with an exact R-symmetry. The minimal R-symmetric supersymmetric model contains chiral superfields in the adjoint representation, giving Dirac gaugino masses, and an additional set of "R-partner" Higgs superfields, giving R-symmetric \\mu-terms. New superpotential couplings between the adjoints and the Higgs fields can simultaneously increase the strength of the electroweak phase transition and provide additional tree-level contributions to the lightest Higgs mass. Notably, no light stop is present in this framework, and in fact, we require both stops to be above a few TeV to provide sufficient radiative corrections to the lightest Higgs mass to bring it up to 125 GeV. Large CP-violating phases in the gaugino/higgsino sector allow us to match the baryon asymmetry of the Universe with no constraints from electric dipole moments due to R-symmetry. We briefly discuss some of the more interesting phenomenology, particularly of the of the lightest CP-odd scalar.

  20. Dynamical symmetry breaking in barium isotopes

    International Nuclear Information System (INIS)

    Rawat, Bir Singh; Chattopadhyay, P.K.

    1997-01-01

    The isotopes of Xe with mass numbers 124, 126, 128, 130 and the isotopes of barium with mass numbers 128, 130, 132, 134 were shown to correspond to the O(6) dynamical symmetry of IBM. In the investigation of the dynamical symmetry breaking in this region, the barium isotopes for departures from O(6) symmetry have been studied

  1. The Ward-Takahashi identities to describe nucleon and pion electroweak transitions

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    2008-01-01

    For nucleons and pions, the relations among the propagators and vertex functions to describe the vector electroweak transitions are acquired as immediate corollary of symmetries of the hadron strong and electroweak interactions. A point of value is that the considered system comprises strongly interacting hadrons of different sorts. The electromagnetic corrections to hadron vertex functions and propagators are taken into account up to e 2 order. The sequels are discussed in the light of calculation of the radiative corrections in describing the nucleon and pion electroweak transitions

  2. Symmetry of quantum molecular dynamics

    International Nuclear Information System (INIS)

    Burenin, A.V.

    2002-01-01

    The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru

  3. Effects of isodoublet colour-octet scalar bosons on oblique electroweak parameters

    International Nuclear Information System (INIS)

    Bhattacharyya, G.; Kundu, A.; De, T.; Dutta-Roy, B.

    1995-01-01

    Isodoublet colour-octet scalar bosons appear in a natural extension of the minimal dynamical symmetry breaking model triggered by a tt condensate, which is geared to yield the top mass in the phenomenologically expected region. We study the effect of these bosons on oblique electroweak parameters S and T, and constrain the mass splitting between the neutral and the charged member of the colour octet. It is also shown that S can be substantially negative, depending on the way the masses in the coloured doublet are split. (author)

  4. The electroweak polarization asymmetry: A guided tour

    International Nuclear Information System (INIS)

    Kennedy, D.C.

    1988-10-01

    A comprehensive review is provided of the electroweak polarization asymmetry at the Z 0 , a highly accurate measure of the Z 0 coupling to fermions. Its significance as a precision test of the Standard Model is explored in detail. Emphasized are the role of electroweak symmetry-breaking and radiative corrections; the non-decoupling of new physics beyond the Z 0 ; and the testing of extensions of the Standard Model, such as supersymmetry, technicolor, new generations of fermions, grand unification, and new gauge forces. Also discussed are the relationship of the polarization asymmetry to other electroweak observables and its superiority to other Z 0 asymmetries. Experimental issues are briefly presented, stressing the importance of polarization at the SLC and LEP e + e - colliders. 42 refs., 13 figs., 2 tabs

  5. Symmetry of quantum intramolecular dynamics

    International Nuclear Information System (INIS)

    Burenin, Alexander V

    2002-01-01

    The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)

  6. First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model

    DEFF Research Database (Denmark)

    Sannino, Francesco; Virkajärvi, Jussi

    2015-01-01

    We analyse and compare the finite-temperature electroweak phase transition properties of classically (non)conformal extensions of the Standard Model. In the classically conformal scenarios the breaking of the electroweak symmetry is generated radiatively. The models feature new scalars coupled co...... the associated models are testable at the upcoming Large Hadron Collider run two experiments....

  7. Superdeformations and fermion dynamical symmetries

    International Nuclear Information System (INIS)

    Wu, Cheng-Li

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs

  8. Dynamical breakdown of the electroweak gauge symmetry

    International Nuclear Information System (INIS)

    Khosek, I.

    1983-01-01

    Fermion and gauge boson masses are calculated dynamically in the higgs-less Galshow-Weinberg-Salam model supplemented with a heavy neutral vector boson C. Fermion masses are determined by C-hypercharges of the left- and right-handed fermion fields. The W and Z-boson masses are related to the ferion masses and to the calculated fermion-would-be-Goldstone boson coupling constants by sum rules. Small deviation from the canonical relation msub(W)sup(2)/msub(Z)sup(2)cossup(2)thetasub(W)=1 is predicted. Fermion mixing is briefly discussed. Its necessary consequence is that the physical neutral current coupled to the C boson is nonuniversal and flavour changing

  9. Electroweak vacuum stability in classically conformal B - L extension of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Das, Arindam; Okada, Nobuchika; Papapietro, Nathan [University of Alabama, Department of Physics and Astronomy, Alabama (United States)

    2017-02-15

    We consider the minimal U(1){sub B-L} extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1){sub B-L} gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1){sub B-L} Higgs field. Because of the classically conformal symmetry, all dimensional parameters are forbidden. The B - L gauge symmetry is radiatively broken through the Coleman-Weinberg mechanism, generating the mass for the U(1){sub B-L} gauge boson (Z{sup '} boson) and the right-handed neutrinos. Through a small negative coupling between the SM Higgs doublet and the B - L Higgs field, the negative mass term for the SM Higgs doublet is generated and the electroweak symmetry is broken. In this model context, we investigate the electroweak vacuum instability problem in the SM. It is well known that in the classically conformal U(1){sub B-L} extension of the SM, the electroweak vacuum remains unstable in the renormalization group analysis at the one-loop level. In this paper, we extend the analysis to the two-loop level, and perform parameter scans. We identify a parameter region which not only solve the vacuum instability problem, but also satisfy the recent ATLAS and CMS bounds from search for Z{sup '} boson resonance at the LHC Run-2. Considering self-energy corrections to the SM Higgs doublet through the right-handed neutrinos and the Z{sup '} boson, we derive the naturalness bound on the model parameters to realize the electroweak scale without fine-tunings. (orig.)

  10. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    Intended as a lecture for physicists who are not familiar with the sophisticated theoretical models in particle physics. Starting with the standard gauge model of electromagnetic, weak and strong interactions the recent developments of a unified gauge theory of electroweak interactions are shown. Shortcomings in the unitarity problem of the V-A fermi theory of charged intermediate vector bosons. Presented are the spontaneous symmetry breaking in quantum mechanics, the abelian higgs model as an example of a spontaneously broken gauge field theory, the minimal gauge group of electroweak interactions, the fermion mass generation. Further on the anomalies in quantum field theory are discussed and the radiative corrections to the vector boson masses are considered. (H.B.)

  11. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  12. Invisible axionlike dark matter from the electroweak bosonic seesaw mechanism

    Science.gov (United States)

    Ishida, Hiroyuki; Matsuzaki, Shinya; Yamaguchi, Yuya

    2016-11-01

    We explore a model based on the classically scale-invariant standard model (SM) with a strongly coupled vectorlike dynamics, which is called hypercolor (HC). The scale symmetry is dynamically broken by the vectorlike condensation at the TeV scale, so that the SM Higgs acquires the negative mass squared by the bosonic seesaw mechanism to realize the electroweak symmetry breaking. An elementary pseudoscalar S is introduced to give masses for the composite Nambu-Goldstone bosons (HC pions): The HC pion can be a good target to explore through a diphoton channel at the LHC. As a consequence of the bosonic seesaw, the fluctuating mode of S , which we call s , develops tiny couplings to the SM particles and is predicted to be very light. The s predominantly decays to a diphoton and can behave as invisible axionlike dark matter. The mass of the s dark matter is constrained by currently available cosmological and astrophysical limits to be 10-4 eV ≲ms≲1 eV . We find that a sufficient amount of relic abundance for the s dark matter can be accumulated via the coherent oscillation. The detection potential in microwave cavity experiments is also addressed.

  13. Electroweak baryogenesis with primordial hypermagnetic fields

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Pallares, Gabriel; Besprosvany, Jaime; Piccinelli, Gabriella

    2002-01-01

    Primordial magnetic fields, independently of their origin, could have had a significant influence over several physical processes that took place during the evolution of the early universe, in particular baryogenesis. Recall that for temperatures above the electroweak phase transition (T > 100 GeV), the symmetry of the standard model corresponded to the U(1)y hypercharge group, instead of the U(1)em electromagnetic group and are therefore properly called hypermagnetic fields. In this work, we show that during a first order electroweak phase transition, the presence of hypermagnetic fields produces an axial charge segregation in the reflection and transmission of fermions off the true vacuum bubbles. We also comment on the possible consequences that these processes have for the generation of baryon number during the phase transition

  14. Early space symmetry restoration and neutrino experiments

    International Nuclear Information System (INIS)

    Volkov, G.G.; Liparteliani, A.G.; Monich, V.A.

    1986-01-01

    The problem of early space symmetry restoration on the left-right symmetry models and the models with the extended (due to mirror quarks and leptons) fermion sector is being discussed. The experiments in which the derivations from the standard model of electroweak interactions should be studied are presented

  15. An electroweak basis for neutrinoless double β decay

    Science.gov (United States)

    Graesser, Michael L.

    2017-08-01

    A discovery of neutrinoless double- β decay would be profound, providing the first direct experimental evidence of Δ L = 2 lepton number violating processes. While a natural explanation is provided by an effective Majorana neutrino mass, other new physics interpretations should be carefully evaluated. At low-energies such new physics could man-ifest itself in the form of color and SU(2) L × U(1) Y invariant higher dimension operators. Here we determine a complete set of electroweak invariant dimension-9 operators, and our analysis supersedes those that only impose U(1) em invariance. Imposing electroweak invariance implies: 1) a significantly reduced set of leading order operators compared to only imposing U(1) em invariance; and 2) other collider signatures. Prior to imposing electroweak invariance we find a minimal basis of 24 dimension-9 operators, which is reduced to 11 electroweak invariant operators at leading order in the expansion in the Higgs vacuum expectation value. We set up a systematic analysis of the hadronic realization of the 4-quark operators using chiral perturbation theory, and apply it to determine which of these operators have long-distance pion enhancements at leading order in the chiral expansion. We also find at dimension-11 and dimension-13 the electroweak invariant operators that after electroweak symmetry breaking produce the remaining Δ L = 2 operators that would appear at dimension-9 if only U(1) em is imposed.

  16. Implications of the discovery of a Higgs triplet on electroweak right-handed neutrinos

    International Nuclear Information System (INIS)

    Aranda, Alfredo; Hernandez-Sanchez, J.; Hung, P.Q.

    2008-01-01

    Electroweak scale active right-handed neutrinos such as those proposed in a recent model necessitate the enlargement of the SM Higgs sector to include Higgs triplets with doubly charged scalars. The search for and constraints on such Higgs sector has implications not only on the nature of the electroweak symmetry breaking but also on the possibility of testing the seesaw mechanism at colliders such as the LHC and the ILC.

  17. Electroweak theory and the Standard Model

    CERN Multimedia

    CERN. Geneva; Giudice, Gian Francesco

    2004-01-01

    There is a natural splitting in four sectors of the theory of the ElectroWeak (EW) Interactions, at pretty different levels of development/test. Accordingly, the 5 lectures are organized as follows, with an eye to the future: Lecture 1: The basic structure of the theory; Lecture 2: The gauge sector; Lecture 3: The flavor sector; Lecture 4: The neutrino sector; Lecture 5: The EW symmetry breaking sector.

  18. String-mediated electroweak baryogenesis a critical analysis

    CERN Document Server

    Cline, J M; Moore, G D; Riotto, Antonio; Cline, Jim; Espinosa, Jose; Moore, Guy D.; Riotto, Antonio

    1999-01-01

    We study the scenario of electroweak baryogenesis mediated by nonsuperconducting cosmic strings. This idea relies upon electroweak symmetry being restored in a region around the core of the topological defect so that, within this region, the rate of baryon number violation is enhanced. We compute numerically how effectively baryon number is violated along a cosmic string, at an epoch when the baryon number violation rate elsewhere is negligible. We show that B-violation along nonsuperconducting strings is quite inefficient. When proper accounting is taken of the velocity dependence of the baryon number production by strings, it proves too small to explain the observed abundance by at least ten orders of magnitude, whether the strings are in the friction dominated or the scaling regime.

  19. Radiatively Generating the Higgs Potential and Electroweak Scale via the Seesaw Mechanism.

    Science.gov (United States)

    Brivio, Ilaria; Trott, Michael

    2017-10-06

    The minimal seesaw scenario can radiatively generate the Higgs potential to induce electroweak symmetry breaking while supplying an origin of the Higgs vacuum expectation value from an underlying Majorana scale. If the Higgs potential and (derived) electroweak scale have this origin, the heavy SU(3)×SU(2)×U(1)_{Y} singlet states are expected to reside at m_{N}∼10-500  PeV for couplings |ω|∼10^{-4.5}-10^{-6} between the Majorana sector and the standard model. In this framework, the usual challenge of the electroweak scale hierarchy problem with a classically assumed potential is absent as the electroweak scale is not a fundamental scale. The new challenge is the need to generate or accommodate PeV Majorana mass scales while simultaneously suppressing tree-level contributions to the potential in ultraviolet models.

  20. Probing strongly interacting electroweak dynamics through W+W-/ZZ ratios at future e+e- colliders

    International Nuclear Information System (INIS)

    Barger, V.; Cheung, K.; Han, T.; Phillips, R.J.N.

    1995-01-01

    We point out that the ratio of W + W - →W + W - and W + W - →ZZ cross sections is a sensitive probe of the dynamics of electroweak symmetry breaking, in the c.m. energy region √s WW approx-gt 1 TeV where vector boson scattering may well become strong. We suggest ways in which this ratio can be extracted at a 1.5 TeV e + e - linear collider, using W ± ,Z→jj hadronic decays and relying on dijet mass resolution to provid statistical discrimination between W ± and Z. WW fusion processes studied here are unique for exploring scalar resonances of mass of about 1 TeV and are complementary to studies via the direct channel e + e - →W + W - for the vector and nonresonant cases. With an integrated luminosity of 200 fb -1 , the signals obtained are statistically significant. A comparision with a study of the e - e - →ννW - W - process is made. Enhancements of the signal rate from using a polarized electron beam, or at a 2 TeV e + e - linear colider and possible higher energy μ + μ - colliders, are also presented

  1. Probing strongly-interacting electroweak dynamics through W+W-/ZZ ratios at future e+e- colliders

    International Nuclear Information System (INIS)

    Barger, V.

    1995-01-01

    The authors point out that the ratio of W + W - → W + W - and W + W - → ZZ cross sections is a sensitive probe of the dynamics of electroweak symmetry breaking, in the CM energy region √s ww approx-gt 1 TeV where vector boson scattering may well become strong. They suggest ways in which this ratio can be extracted at a 1.5 TeV e + e - linear collider, using W ± , Z → jj hadronic decays and relying on dijet mass resolution to provide statistical discrimination between W ± and Z. WW fusion processes studied here are unique for exploring scalar resonances of mass about 1 TeV and are complementary to studies via the direct channel e + e - → W + W - for the vector and non-resonant cases. With an integrated luminosity of 200 fb -1 , the signals obtained are statistically significant. Comparison with a study of e - e - → ννW - W - process is made. Enhancements of the signal rate from using a polarized electron beam, or at a 2 TeV e + e - linear collider and possible higher energy μ + μ - colliders, are also presented

  2. Jumping Dynamics

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2013-01-01

    paradigm the physical scale and henceforth also the massive spectrum of the theory jump at the lower boundary of the conformal window. In particular we propose that a theory can suddenly jump from a Quantum Chromodynamics type spectrum, at the lower boundary of the conformal window, to a conformal one...... without particle interpretation. The jumping scenario, therefore, does not support a near-conformal dynamics of walking type. We will also discuss the impact of jumping dynamics on the construction of models of dynamical electroweak symmetry breaking....

  3. Fermion dynamical symmetry and identical bands

    International Nuclear Information System (INIS)

    Guidry, M.

    1994-01-01

    Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basic principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation

  4. On the nature of the electroweak phase sition and its cosmological consequences

    International Nuclear Information System (INIS)

    Servant, Geraldine

    2011-01-01

    Full text: The Large Hadron Collider will take experiments into a new energy domain beyond the standard model of strong and electroweak interactions. As the LHC will unveil the mysteries of the electroweak symmetry breaking, this will also have far-reaching implications for cosmology. This concerns in particular the fundamental question of the matter-antimatter asymmetry of the Universe. One of the best-motivated mechanism for generating the baryon asymmetry of the universe relies on a first-order electroweak phase transition. I will present some well-motivated extensions of the standard model that naturally lead to a first-order phase transition. Interestingly, this has strong implications for gravity wave physics. I will discuss how a gravity wave detector and space interferometer such as Lisa, which would turn out to be a completely independent window on the electroweak scale, could complement the information provided by the LHC. (author)

  5. Symmetry breaking and generational mixing in top-color-assisted technicolor

    International Nuclear Information System (INIS)

    Lane, K.

    1996-01-01

    Top-color-assisted technicolor provides a dynanamical explanation for electroweak and flavor symmetry breaking and for the large mass of the top quark without unnatural fine-tuning. A major challenge is to generate the observed mixing between heavy and light generations while breaking the strong top-color interactions near 1 TeV. I argue that these phenomena, as well as electroweak symmetry breaking, are intimately connected and I present a scenario for them based on nontrivial patterns of technifermion condensation. I also exhibit a class of models realizing this scenario. This picture leads to a rich phenomenology, especially in hadron and lepton collider experiments in the few hundred GeV to few TeV region and in precision electroweak tests at the Z 0 , atomic parity violation, and polarized Mo/ller scattering. copyright 1996 The American Physical Society

  6. Radiative breaking scenario for the GUT gauge symmetry

    International Nuclear Information System (INIS)

    Fukuyama, T.; Kikuchi, T.

    2006-01-01

    The origin of the grand unified theory (GUT) scale from the top-down perspective is explored. The GUT gauge symmetry is broken by the renormalization group effects, which is an extension of the radiative electroweak symmetry breaking scenario to the GUT models. That is, in the same way as the origin of the electroweak scale, the GUT scale is generated from the Planck scale through the radiative corrections to the soft supersymmetry breaking mass parameters. This mechanism is applied to a perturbative SO(10) GUT model, recently proposed by us. In the SO(10) model, the relation between the GUT scale and the Planck scale can naturally be realized by using order-one coupling constants. (orig.)

  7. Dynamical symmetry breakdown in SU(5) and SO(10)

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1983-09-01

    Some restrictions imposed upon Grand Unified Theories by dynamical symmetry breakdown are examined. It is observed in particular, that theories with SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt

  8. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  9. Supersymmetric contribution to the electroweak ρ parameter

    International Nuclear Information System (INIS)

    Drees, M.; Hagiwara, K.

    1990-01-01

    Contributions to the electroweak ρ parameter, the ratio of the neutral- and charged-current strengths at zero-momentum transfer, are studied in the minimal extension of the standard model (SM) with softly broken supersymmetry. The effects of the extended Higgs sector, the gaugino-Higgsino sector, the light-squark--slepton sector and that of the stop-sbottom sector are studied separately, and the role of the custodial SU(2) V symmetry in each sector is clarified. The stop-sbottom sector is found to give potentially a most significant contribution to δρ which can double the standard-model contribution from the top-bottom sector, whereas all the remaining sectors contribute to δρ at the level of at most a few x10 -3 . In the supergravity model with radiative electroweak gauge symmetry breaking there are no extra sources of the SU(2) V breaking at the grand unification scale other than those present already in the SM, and the resulting δρ is found to be significantly smaller than in the general case. Constraints on the allowed range of δρ in the supergravity models are given by taking account of existing and prospective experimental mass limits of additional particles at CERN LEP and Sp bar pS and Fermilab Tevatron

  10. Measurements of Properties of the Strong and Electroweak forces with the ATLAS detector at the LHC

    CERN Document Server

    Gregersen, Kristian; The ATLAS collaboration

    2015-01-01

    The Standard Model of particle physics is built around the idea of local gauge symmetries, leading to the existence of vector bosons, mediators of the strong and electroweak forces. The production of single and multiple electroweak vector bosons in p-p collisions in LHC Run-1 has been extensively studied by the ATLAS Collaboration. The production of charged and neutral weak gauge bosons via the Drell Yan process, is sensitive to high-order effects in the strong force, the proton structure and electroweak corrections. Cross section measurements of a W or Z boson in association with up to seven jets are reported. Interference effects between the exchange of photons and Z bosons can be used for the measurements of Standard Model parameters with high precision, such as the weak mixing angle from the forward-backward asymmetry. The Standard Model makes detailed predictions on the production of multiple W, Z and isolated photons, which are fixed by the gauge symmetry. Measurements involving two or three bosons in t...

  11. Measurements of Properties of the Strong and Electroweak forces with the ATLAS detector at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236292; The ATLAS collaboration

    2016-01-01

    The Standard Model of particle physics is built around the idea of local gauge symmetries, leading to the existence of vector bosons, mediators of the strong and electroweak forces. The production of single and multiple electroweak vector bosons in p-p collisions in LHC Run-1 has been extensively studied by the ATLAS Collaboration. The production of charged and neutral weak gauge bosons via the Drell Yan process, is sensitive to high-order effects in the strong force, the proton structure and electroweak corrections. Cross section measurements of a W or Z boson in association with up to seven jets are reported. Interference effects between the exchange of photons and Z bosons can be used for the measurements of Standard Model parameters with high precision, such as the weak mixing angle from the forward-backward asymmetry. The Standard Model makes detailed predictions on the production of multiple W, Z and isolated photons, which are fixed by the gauge symmetry. Measurements involving two or three bosons in t...

  12. Fermion dynamical symmetry and identical bands

    International Nuclear Information System (INIS)

    Guidry, M.

    1995-01-01

    Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basis principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation. (author). 9 refs., 11 figs., 1 tab

  13. Properties of high-density matter in the electroweak symmetric phase

    International Nuclear Information System (INIS)

    Chandra, D.; Goyal, A.

    1992-01-01

    We examine the bulk properties of matter at high densities and finite temperatures in the phase where electroweak symmetry is exact and fermions are massless, by taking the strong interactions into account perturbatively to lowest order in the quark-gluon chromodynamic coupling constant α c . We also discuss the possibility of a phase transition of strange quark matter into this high-density matter in the electroweak symmetric phase at densities likely to be present in the core of dense neutron stars or collapsing stars. Finally, we study the properties of finite-size chunks of this matter by taking surface effects into account and give an estimate of the surface tension

  14. From symmetries to dynamics

    International Nuclear Information System (INIS)

    Stern, J.

    2000-01-01

    The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)

  15. Dynamical symmetries of the shell model

    International Nuclear Information System (INIS)

    Van Isacker, P.

    2000-01-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  16. Dynamical study of symmetries: breaking and restauration

    International Nuclear Information System (INIS)

    Schuck, P.

    1986-09-01

    First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr

  17. Conformal Dynamics for TeV Physics and Cosmology

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We introduce the topic of dynamical breaking of the electroweak symmetry and its link to unparticle physics and cosmology. The knowledge of the phase diagram of strongly coupled theories plays a fundamental role when trying to construct viable extensions of the standard model (SM). Therefore we p...

  18. Electroweak symmetry breaking beyond the Standard Model

    Indian Academy of Sciences (India)

    words, now that the gauge symmetry is established with a significant ..... picture, the Higgs is some kind of a composite bound state emerging from a strongly .... (i) Little Higgs vs. composite: Little Higgs models were introduced to solve the little ...

  19. Electroweak baryogenesis and the standard model

    International Nuclear Information System (INIS)

    Huet, P.

    1994-01-01

    Electroweak baryogenesis is addressed within the context of the standard model of particle physics. Although the minimal standard model has the means of fulfilling the three Sakharov's conditions, it falls short to explaining the making of the baryon asymmetry of the universe. In particular, it is demonstrated that the phase of the CKM mixing matrix is an, insufficient source of CP violation. The shortcomings of the standard model could be bypassed by enlarging the symmetry breaking sector and adding a new source of CP violation

  20. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated

  1. Dynamical symmetries of the Klein-Gordon equation

    International Nuclear Information System (INIS)

    Zhang Fulin; Chen Jingling

    2009-01-01

    The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVPs) are studied. The dynamical symmetries are considered in the plane and the sphere, respectively. The generators of the SO(3) group corresponding to the Coulomb potential and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally

  2. Fundamental Composite (Goldstone) Higgs Dynamics

    DEFF Research Database (Denmark)

    Cacciapaglia, G.; Sannino, Francesco

    2014-01-01

    We provide a unified description, both at the effective and fundamental Lagrangian level, of models of composite Higgs dynamics where the Higgs itself can emerge, depending on the way the electroweak symmetry is embedded, either as a pseudo-Goldstone boson or as a massive excitation of the conden...... searches of new physics at the Large Hadron Collider....

  3. On some dynamical properties of the subconstituent models of electroweak interactions

    International Nuclear Information System (INIS)

    Narison, S.

    1982-01-01

    We determine the order of magnitude value of the haplon vacuum condensate and the W-W' level spacing using spectral function sum rules for the electroweak constituent models of quantum haplo-dynamics (QHD). We also discuss some consequences of the QHD model with massive haplons. We conclude that the haplons of QHD which bind the W-boson are very similar to the u,d quarks of QCD. The models with massive haplons would imply the existence of exotic light pseudoscalar bosons. Some implications of these exotic particles for low-energy phenomenology are discussed

  4. RG analysis of magnetic catalysis in dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Hong, Deog Ki; Kim, Youngman

    1996-01-01

    We perform the renormalization group analysis on the dynamical symmetry breaking under strong external magnetic field, studied recently by Gusynin, Miransky and Shovkovy. We find that any attractive four-Fermi interaction becomes strong in the low energy, thus leading to dynamical symmetry breaking. When the four-Fermi interaction is absent, the β-function for the electromagnetic coupling vanishes in the leading order in 1/N. By solving the Schwinger-Dyson equation for the fermion propagator, we show that in 1/N expansion, for any electromagnetic coupling, dynamical symmetry breaking occurs due to the presence of Landau energy gap by the external magnetic field. 5 refs

  5. Dynamics of symmetry breaking in strongly coupled QED

    International Nuclear Information System (INIS)

    Bardeen, W.A.

    1988-10-01

    I review the dynamical structure of strong coupled QED in the quenched planar limit. The symmetry structure of this theory is examined with reference to the nature of both chiral and scale symmetry breaking. The renormalization structure of the strong coupled phase is analysed. The compatibility of spontaneous scale and chiral symmetry breaking is studied using effective lagrangian methods. 14 refs., 3 figs

  6. Gravitational waves from the first order electroweak phase transition in the Z3 symmetric singlet scalar model*

    Directory of Open Access Journals (Sweden)

    Matsui Toshinori

    2018-01-01

    Full Text Available Among various scenarios of baryon asymmetry of the Universe, electroweak baryogenesis is directly connected with physics of the Higgs sector. We discuss spectra of gravitational waves which are originated by the strongly first order phase transition at the electroweak symmetry breaking, which is required for a successful scenario of electroweak baryogenesis. In the Z3 symmetric singlet scalar model, the significant gravitational waves are caused by the multi-step phase transition. We show that the model can be tested by measuring the characteristic spectra of the gravitational waves at future interferometers such as LISA and DECIGO.

  7. Light asymmetric dark matter from new strong dynamics

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sarkar, Subir; Schmidt-Hoberg, Kai

    2011-01-01

    A ~5 GeV `dark baryon' with a cosmic asymmetry similar to that of baryons is a natural candidate for the dark matter. We study the possibility of generating such a state through dynamical electroweak symmetry breaking, and show that it can share the relic baryon asymmetry via sphaleron interactions...

  8. Electroweak Physics

    OpenAIRE

    Erler, Jens; Langacker, Paul

    2008-01-01

    The results of high precision weak neutral current (WNC), Z-pole, and high energy collider electroweak experiments have been the primary prediction and test of electroweak unification. The electroweak program is briefly reviewed from a historical perspective. The current status and the implications for the standard model and beyond are discussed.

  9. Large hierarchies from approximate R symmetries

    International Nuclear Information System (INIS)

    Kappl, Rolf; Ratz, Michael; Vaudrevange, Patrick K.S.

    2008-12-01

    We show that hierarchically small vacuum expectation values of the superpotential in supersymmetric theories can be a consequence of an approximate R symmetry. We briefly discuss the role of such small constants in moduli stabilization and understanding the huge hierarchy between the Planck and electroweak scales. (orig.)

  10. A few words about resonances in the electroweak effective Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Rosell, Ignasi [Departamento de Ciencias Físicas, Matemáticas y de la Computación, Universidad CEU Cardenal Herrera, c/ Sant Bartomeu 55, 46115 Alfara del Patriarca, València (Spain); Pich, Antonio; Santos, Joaquín [Departament de Física Teòrica, IFIC, Universitat de València – CSIC, Apt. Correus 22085, 46071 València (Spain); Sanz-Cillero, Juan José [Departamento de Física Teórica and Instituto Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2016-01-22

    Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models including both a light Higgs-like boson and massive spin-1 resonances are not in conflict with experimental constraints on the oblique S and T parameters. We use an effective Lagrangian implementing the chiral symmetry breaking SU (2){sub L} ⊗ SU (2){sub R} → SU (2){sub L+R} that contains the Standard Model gauge bosons coupled to the electroweak Goldstones, one Higgs-like scalar state h with mass m{sub h} = 126 GeV and the lightest vector and axial-vector resonance multiplets V and A. We have considered the one-loop calculation of S and T in order to study the viability of these strongly-coupled scenarios, being short-distance constraints and dispersive relations the main ingredients of the calculation. Once we have constrained the resonance parameters, we do a first approach to the determination of the low energy constants of the electroweak effective theory at low energies (without resonances). We show this determination in the case of the purely Higgsless bosonic Lagrangian.

  11. Signatures of CP-Violating Electroweak Penguins in K and B Decays

    International Nuclear Information System (INIS)

    Schwab, Felix

    2007-01-01

    The B->πK decays with significant electroweak penguin contributions show a puzzling pattern. We explore this ''B->πK puzzle'' through a systematic strategy. The starting point, which is essentially unaffected by electroweak penguins, is the determination of the angle γ of the unitarity triangle through the CP-violating B d 0 ->π + π - , B d 0 ->π - K + asymmetries, yielding γ=(73.9 -6.5 +5.8 ) o , and the extraction of hadronic parameters through the measured B->ππ branching ratios. Using arguments related to the SU(3) flavor symmetry, we convert the hadronic B->ππ parameters into their B->πK counterparts, allowing us to predict the B->πK observables in the Standard Model. We find agreement with the data for those quantities that are only marginally affected by electroweak penguins, while this is not the case for the observables with sizeable electroweak penguin contributions. Since we may also perform a couple of internal consistency checks of our working assumptions, which are nicely satisfied for the current data, and find a small sensitivity of our results to large non-factorizable SU(3)-breaking corrections, the ''B->πK'' puzzle may be due to new physics in the electroweak penguin sector. We show that it can indeed be resolved through such a kind of new physics with a large CP-violating phase. Further insights into the electroweak penguins are provided by the B + ->π 0 K + and B d 0 ->π 0 K S CP asymmetries, and in particular through correlations with various rare K and B decays

  12. The minimal extension of the Standard Model with S3 symmetry

    International Nuclear Information System (INIS)

    Lee, C.E.; Lin, C.; Yang, Y.W.

    1991-01-01

    In this paper the two Higgs-doublet extension of the standard electroweak model with S 3 symmetry is presented. The flavour changing neutral Higgs interaction are automatically absent. A permutation symmetry breaking scheme is discussed. The correction to the Bjorken's approximation and the CP-violation factor J are given within this scheme

  13. Broken dynamical symmetries in quantum mechanics and phase transition phenomena

    International Nuclear Information System (INIS)

    Guenther, N.J.

    1979-12-01

    This thesis describes applications of dynamical symmetries to problems in quantum mechanics and many-body physics where the latter is formulated as a Euclidean scalar field theory in d-space dimensions. By invoking the concept of a dynamical symmetry group a unified understanding of apparently disparate results is achieved. (author)

  14. Determination of new electroweak parameters at the ILC. Sensitivity to new physics

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M.; Schmidt, E.; Schroeder, H. [Rostock Univ. (Germany). Inst. fuer Physik; Kilian, W. [Siegen Univ. (Gesamthochschule) (Germany). Fach Physik]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Krstonosic, P.; Reuter, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Moenig, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2006-04-15

    We present a study of the sensitivity of an International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multidimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel. (Orig.)

  15. Determination of new electroweak parameters at the ILC. Sensitivity to new physics

    International Nuclear Information System (INIS)

    Beyer, M.; Schmidt, E.; Schroeder, H.; Krstonosic, P.; Reuter, J.; Moenig, K.

    2006-04-01

    We present a study of the sensitivity of an International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multidimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel. (Orig.)

  16. Strongly first-order electroweak phase transition and classical scale invariance

    Science.gov (United States)

    Farzinnia, Arsham; Ren, Jing

    2014-10-01

    In this work, we examine the possibility of realizing a strongly first-order electroweak phase transition within the minimal classically scale-invariant extension of the standard model (SM), previously proposed and analyzed as a potential solution to the hierarchy problem. By introducing one complex gauge-singlet scalar and three (weak scale) right-handed Majorana neutrinos, the scenario was successfully rendered capable of achieving a radiative breaking of the electroweak symmetry (by means of the Coleman-Weinberg mechanism), inducing nonzero masses for the SM neutrinos (via the seesaw mechanism), presenting a pseudoscalar dark matter candidate (protected by the CP symmetry of the potential), and predicting the existence of a second CP-even boson (with suppressed couplings to the SM content) in addition to the 125 GeV scalar. In the present treatment, we construct the full finite-temperature one-loop effective potential of the model, including the resummed thermal daisy loops, and demonstrate that finite-temperature effects induce a first-order electroweak phase transition. Requiring the thermally driven first-order phase transition to be sufficiently strong at the onset of the bubble nucleation (corresponding to nucleation temperatures TN˜100-200 GeV) further constrains the model's parameter space; in particular, an O(0.01) fraction of the dark matter in the Universe may be simultaneously accommodated with a strongly first-order electroweak phase transition. Moreover, such a phase transition disfavors right-handed Majorana neutrino masses above several hundreds of GeV, confines the pseudoscalar dark matter masses to ˜1-2 TeV, predicts the mass of the second CP-even scalar to be ˜100-300 GeV, and requires the mixing angle between the CP-even components of the SM doublet and the complex singlet to lie within the range 0.2≲sinω ≲0.4. The obtained results are displayed in comprehensive exclusion plots, identifying the viable regions of the parameter space

  17. Dynamical symmetries for odd-odd nuclei

    International Nuclear Information System (INIS)

    Balantekin, A.B.

    1986-01-01

    Recent work for developing dynamical symmetries and supersymmetries is reviewed. An accurate description of odd-odd nuclei requires inclusion of the fermion-fermion force (the residual interaction) and the distinguishing of fermion configurations which are particle like and those which are hole like. A parabolic dependence of the proton-neutron multiplet in odd-odd nuclei is demonstrated. It is shown that a group structure for Bose-Fermi symmetries can be embedded in a supergroup. These methods are used to predict level schemes for Au-196 and Au-198. 11 refs., 3 figs

  18. Dual realizations of dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Dudas, Emilian; Papineau, Chloe

    2006-01-01

    We show the infrared equivalence between a recently proposed model containing a six dimensional scalar field with a four-dimensional localized Higgs type potential and the four-dimensional Nambu-Jona-Lasinio (NJL) model. In the dual NJL description, the fermions are localized at the origin of a large two-dimensional compact space. Due to a classical running effect above the compactification scale, the four-fermion coupling of the NJL model increases from the cutoff scale down to the compactification scale, providing the large Fermi coupling needed for the dynamical symmetry breaking. We also present a string theory embedding of our field-theory construction. On more general grounds, our results suggest that 4d models with dynamical symmetry breaking can be given a higher dimensional description in terms of field theories with nontrivial boundary conditions in the internal space

  19. Signals of composite electroweak-neutral Dark Matter: LHC/direct detection interplay

    International Nuclear Information System (INIS)

    Barbieri, Riccardo; Rychkov, Slava; Torre, Riccardo

    2010-01-01

    In a strong-coupling picture of ElectroWeak Symmetry Breaking, a composite electroweak-neutral state in the TeV mass range, carrying a global (quasi-)conserved charge, makes a plausible Dark Matter (DM) candidate, with the ongoing direct DM searches being precisely sensitive to the expected signals. To exploit the crucial interplay between direct DM searches and the LHC, we consider a composite iso-singlet vector V, mixed with the hypercharge gauge field, as the essential mediator of the interaction between the DM particle and the nucleus. Based on a suitable effective chiral Lagrangian, we give the expected properties and production rates of V, showing its possible discovery at the maximal LHC energy with about 100 fb -1 of integrated luminosity.

  20. Lepton-mediated electroweak baryogenesis

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Garbrecht, Bjorn; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We investigate the impact of the tau and bottom Yukawa couplings on the transport dynamics for electroweak baryogenesis in supersymmetric extensions of the standard model. Although it has generally been assumed in the literature that all Yukawa interactions except those involving the top quark are negligible, we find that the tau and bottom Yukawa interaction rates are too fast to be neglected. We identify an illustrative 'lepton-mediated electroweak baryogenesis' scenario in which the baryon asymmetry is induced mainly through the presence of a left-handed leptonic charge. We derive analytic formulas for the computation of the baryon asymmetry that, in light of these effects, are qualitatively different from those in the established literature. In this scenario, for fixed CP-violating phases, the baryon asymmetry has opposite sign compared to that calculated using established formulas.

  1. Spin polarized atom traps and fundamental symmetries

    International Nuclear Information System (INIS)

    Haeusser, O.

    1994-10-01

    Plans are described to couple a neutral atom trap to an upgraded version of TRIUMF's TISOL on-line mass separator. The unique properties of trapped and cooled atoms promise improvements of some symmetry tests of the Standard Model of the electroweak and strong interactions. (author). 33 refs., 3 figs

  2. Probing electroweak gauge boson scattering with the ATLAS detector at the large hadron collider

    International Nuclear Information System (INIS)

    Anger, Philipp

    2014-01-01

    Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3 fb -1 at a center-of-mass energy of √(s)=8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying W ± W ± jj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak W ± W ± jj production with same electric charge of the W bosons, inseparably comprising W ± W ± →W ± W ± electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard Model electroweak gauge bosons: W

  3. Evidence for dynamic SU(5) symmetry breaking in meson mass multiplets

    International Nuclear Information System (INIS)

    Frikkee, E.

    1994-07-01

    It is shown that the mass differences and multiplet pattern for pseudoscalar and vector mesons correspond to a chain of dynamic symmetry reductions SU(n) contains SU(n-1)xU(1). In this symmetry-reduction model, the differences between the masses of the quark flavours are the result of intra-hadronic interactions. Quark confinement is explained as a consequence of the fact that this symmetry breaking chain only occurs in hadrons. The results of a quantitative analysis of mass splittings in meson multiplets indicate that SU(5) is probably the highest symmetry for hadron states. In the proposed dynamic symmetry breaking scheme with five quark flavours there is no one-to-one correspondence between lepton and quark generations. (orig.)

  4. Strong dynamics at the muon collider: Working group report

    International Nuclear Information System (INIS)

    Bhat, P.C.; Eichten, E.

    1998-03-01

    New strong dynamics at the energy scale ∼ 1 TeV is an attractive and elegant theoretical ansatz for the origin of electroweak symmetry breaking. We review here, the theoretical models for strong dynamics, particularly, technicolor theories and their low energy signatures. We emphasize that the fantastic beam energy resolution (σ E /E ∼ 10 -4 ) expected at the first muon collider (√s=100-500 GeV) allows the possibility of resolving some extraordinarily narrow technihadron resonances and, Higgs-like techniscalars produced in the s-channel. Investigating indirect probes for strong dynamics such as search for muon compositeness, we find that the muon colliders provide unparalleled reaches. A big muon collider (√s=3-4 TeV) would be a remarkable facility to study heavy technicolor particles such as the topcolor Z', to probe the dynamics underlying fermion masses and mixings and to fully explore the strongly interacting electroweak sector

  5. Dynamical symmetry as a tool to understanding properties of supersymmetric partner potentials. Example of so(2,1) symmetry

    International Nuclear Information System (INIS)

    Wehrhahn, R.F.; Cooper, I.L.

    1992-05-01

    Analysis of the dynamical symmetry of a system is used to predict properties arising from its supersymmetric quantum mechanical treatment. Two applications of the so(2,1) algebra, the Coulomb potential and Morse oscillator potential which display different structure with respect to the dynamical symmetry, are studied. This difference is shown to be responsible for the behaviour of the respective supersymmetric partner potentials. (orig.)

  6. Low temperature electroweak phase transition in the Standard Model with hidden scale invariance

    Directory of Open Access Journals (Sweden)

    Suntharan Arunasalam

    2018-01-01

    Full Text Available We discuss a cosmological phase transition within the Standard Model which incorporates spontaneously broken scale invariance as a low-energy theory. In addition to the Standard Model fields, the minimal model involves a light dilaton, which acquires a large vacuum expectation value (VEV through the mechanism of dimensional transmutation. Under the assumption of the cancellation of the vacuum energy, the dilaton develops a very small mass at 2-loop order. As a result, a flat direction is present in the classical dilaton-Higgs potential at zero temperature while the quantum potential admits two (almost degenerate local minima with unbroken and broken electroweak symmetry. We found that the cosmological electroweak phase transition in this model can only be triggered by a QCD chiral symmetry breaking phase transition at low temperatures, T≲132 MeV. Furthermore, unlike the standard case, the universe settles into the chiral symmetry breaking vacuum via a first-order phase transition which gives rise to a stochastic gravitational background with a peak frequency ∼10−8 Hz as well as triggers the production of approximately solar mass primordial black holes. The observation of these signatures of cosmological phase transitions together with the detection of a light dilaton would provide a strong hint of the fundamental role of scale invariance in particle physics.

  7. A Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan

    2005-01-01

    A generalized Yang-Mills model, which contains, besides the vector part V μ , also a scalar part S, is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of Nambu-Jona-Lasinio (NJL) mechanism, that the gauge symmetry breaking can be realized dynamically in the generalized Yang-Mills model. The combination of the generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  8. Dirichlet Higgs in Extra-Dimension Consistent with Electroweak Data

    International Nuclear Information System (INIS)

    Naoyuki Habay; Kin-ya Odaz; Ryo Takahashi

    2011-01-01

    We propose a simple five-dimensional extension of the Standard Model (SM) without any Higgs potential nor any extra fields. A Higgs doublet lives in the bulk of a flat line segment and its boundary condition is Dirichlet at the ends of the line, which causes the electroweak symmetry breaking without Higgs potential. The vacuum expectation value of the Higgs is induced from the Dirichlet boundary condition which is generally allowed in higher dimensional theories. The lightest physical Higgs has non-flat profile in the extra dimension even though the vacuum expectation value is flat. As a consequence, we predict a maximal top Yukawa deviation (no coupling between top and Higgs) for the brane-localized fermion and a small deviation, a multiplication of 2√2/π ≅ 0.9 to the Yukawa coupling, for the bulk fermion. The latter is consistent with the electroweak precision data within 90% C.L. for 430 GeV ≤ m KK ≤ 500 GeV. (authors)

  9. New symmetries in heavy flavor physics

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1990-06-01

    Isgur and Wise have found that the formal limit M b , M c → ∞ leads to very great simplification in the general structure of the electroweak matrix elements of hadrons containing those quarks. In additions, interesting new symmetries appear in this limit. Their results are discussed, as well as some natural extensions to matrix elements of products of currents. 11 refs

  10. A custodial symmetry for $Zb\\overline{\\b}$

    CERN Document Server

    Agashe, K; Rold, L D; Pomarol, A; Agashe, Kaustubh; Contino, Roberto; Rold, Leandro Da; Pomarol, Alex

    2006-01-01

    We show that a subgroup of the custodial symmetry O(3) that protects delta rho from radiative corrections can also protect the Zbb coupling. This allows one to build models of electroweak symmetry breaking, such as Higgsless, Little Higgs or 5D composite Higgs models, that are safe from corrections to Z-> bb. We show that when this symmetry protects Zbb it cannot simultaneously protect Ztt and Wtb. Therefore one can expect to measure sizable deviations from the SM predictions of these couplings at future collider experiments. We also show under what circumstances Zb_R b_R can receive corrections in the right direction to explain the anomaly in the LEP/SLD forward-backward asymmetry A^b_{FB}.

  11. Conformal symmetry and non-relativistic second-order fluid dynamics

    International Nuclear Information System (INIS)

    Chao Jingyi; Schäfer, Thomas

    2012-01-01

    We study the constraints imposed by conformal symmetry on the equations of fluid dynamics at second order in the gradients of the hydrodynamic variables. At zeroth order, conformal symmetry implies a constraint on the equation of state, E 0 =2/3 P, where E 0 is the energy density and P is the pressure. At first order, conformal symmetry implies that the bulk viscosity must vanish. We show that at second order, conformal invariance requires that two-derivative terms in the stress tensor must be traceless, and that it determines the relaxation of dissipative stresses to the Navier–Stokes form. We verify these results by solving the Boltzmann equation at second order in the gradient expansion. We find that only a subset of the terms allowed by conformal symmetry appear. - Highlights: ► We derive conformal constraints for the stress tensor of a scale invariant fluid. ► We determine the relaxation time in kinetic theory. ► We compute the rate of entropy production in second-order fluid dynamics.

  12. Integrability and chaos in quantum systems (as viewed from geometry and dynamical symmetry)

    International Nuclear Information System (INIS)

    Zhang, Wei-Min.

    1989-01-01

    It is known that the development and deep understanding of modern interaction theory and classical mechanics are made through geometry and symmetry. Yet, quantum mechanics which was regarded to be the microscopic theory of classical mechanics and achieved the crowning success in interpreting the entire microscopic world was developed purely from algebraic methods. In this thesis, the author will study the geometry and dynamical symmetry in quantum systems, from which the question of integrability and chaos are explicitly addressed. First of all, the quantum dynamical degrees of freedom and quantum integrability are precisely defined and the inherent geometrical structure of quantum systems is explored from the fundamental structure of quantum theory. Such a geometrical structure can provide a framework to simultaneously build quantum and classical mechanics. The quantum-classical correspondence is then explicitly deduced. The dynamics of quantum system before it reaches the classical limit is formulated. Thus, the classical chaos is proven to be a special limiting phenomena of quantum systems and the dynamics before the system reaches its classical chaos is explored. The latter is the first step to seek the quantum manifestation of chaos. The relationship between integrability and dynamical symmetry are studied and some universal properties are discovered: a dynamical system (both quantum and classical) in integrable if it possesses a dynamical symmetry. Chaos will occur if the system undergoes a dynamical symmetry breaking and is accompanied by a structural phase transition. Thus, the concept of dynamical symmetry can be used to predict the general behaviors of a system. The theoretical underpinnings developed in this thesis are verified by many basic quantum mechanical examples

  13. Coupling-constant flows and dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Yamagishi, H.

    1981-01-01

    The Coleman-Weinberg theory is reformulated in terms of flows in coupling-constant space. It is shown that the existence of dynamical symmetry breaking is governed essentially by the b functions. An application is made to the massless Weinberg-Salam model

  14. Sensitivity of ATLAS to alternative mechanisms of electroweak symmetry breaking in vector boson scattering qq→qqlνlν

    International Nuclear Information System (INIS)

    Schumacher, Jan W.

    2010-10-01

    An analysis of the expected sensitivity of the ATLAS experiment at the Large Hadron Collider at CERN to alternative mechanisms of electroweak symmetry breaking in the dileptonic vector boson scattering channel is presented. With the generalized K-Matrix model of vector boson scattering recently implemented in the event generator Whizard, several additional resonances are investigated. Whizard is validated for ATLAS use and an interface for the Les Houches event format is adapted for the ATLAS software Athena. Systematic model and statistical Monte Carlo uncertainties are reduced with a signal definition using events reweighted in the couplings g of the new resonances. Angular correlations conserved by Whizard are used in the event selection. A multivariate analyzer is trained to take into account correlations between the selection variables and thereby to improve the sensitivity compared to cut analyses. The statistical analysis is implemented with a profile likelihood method taking into account systematic uncertainties and statistical uncertainties from Monte Carlo. Ensemble tests are performed to assure the applicability of the method. Expected discovery significances and coupling limits for new additional resonances in vector boson scattering are determined. (orig.)

  15. The renormalization of the electroweak standard model

    International Nuclear Information System (INIS)

    Boehm, M.; Spiesberger, H.; Hollik, W.

    1984-03-01

    A renormalization scheme for the electroweak standard model is presented in which the electric charge and the masses of the gauge bosons, Higgs particle and fermions are used as physical parameters. The photon is treated such that quantum electrodynamics is contained in the usual form. Field renormalization respecting the gauge symmetry gives finite Green functions. The Ward identities between the Green functions of the unphysical sector allow a renormalization that maintains the simple pole structure of the propagators. Explicit results for the renormalization self energies and vertex functions are given. They can be directly used as building blocks for the evaluation of l-loop radiative corrections. (orig.)

  16. Symmetry realization via a dynamical inverse Higgs mechanism

    Science.gov (United States)

    Rothstein, Ira Z.; Shrivastava, Prashant

    2018-05-01

    The Ward identities associated with spontaneously broken symmetries can be saturated by Goldstone bosons. However, when space-time symmetries are broken, the number of Goldstone bosons necessary to non-linearly realize the symmetry can be less than the number of broken generators. The loss of Goldstones may be due to a redundancy or the generation of a gap. In either case the associated Goldstone may be removed from the spectrum. This phenomena is called an Inverse Higgs Mechanism (IHM) and its appearance has a well defined mathematical condition. However, there are cases when a Goldstone boson associated with a broken generator does not appear in the low energy theory despite the lack of the existence of an associated IHM. In this paper we will show that in such cases the relevant broken symmetry can be realized, without the aid of an associated Goldstone, if there exists a proper set of operator constraints, which we call a Dynamical Inverse Higgs Mechanism (DIHM). We consider the spontaneous breaking of boosts, rotations and conformal transformations in the context of Fermi liquids, finding three possible paths to symmetry realization: pure Goldstones, no Goldstones and DIHM, or some mixture thereof. We show that in the two dimensional degenerate electron system the DIHM route is the only consistent way to realize spontaneously broken boosts and dilatations, while in three dimensions these symmetries could just as well be realized via the inclusion of non-derivatively coupled Goldstone bosons. We present the action, including the leading order non-linearities, for the rotational Goldstone (angulon), and discuss the constraint associated with the possible DIHM that would need to be imposed to remove it from the spectrum. Finally we discuss the conditions under which Goldstone bosons are non-derivatively coupled, a necessary condition for the existence of a Dynamical Inverse Higgs Constraint (DIHC), generalizing the results for Vishwanath and Wantanabe.

  17. Irreversible dynamics, Onsager-Casimir symmetry, and an application to turbulence.

    Science.gov (United States)

    Ottinger, Hans Christian

    2014-10-01

    Irreversible contributions to the dynamics of nonequilibrium systems can be formulated in terms of dissipative, or irreversible, brackets. We discuss the structure of such irreversible brackets in view of a degeneracy implied by energy conservation, where we consider different types of symmetries of the bracket corresponding to the Onsager and Casimir symmetries of linear irreversible thermodynamics. Slip and turbulence provide important examples of antisymmetric irreversible brackets and offer guidance for the more general modeling of irreversible dynamics without entropy production. Conversely, turbulence modeling could benefit from elucidating thermodynamic structure. The examples suggest constructing antisymmetric irreversible brackets in terms of completely antisymmetric functions of three indices. Irreversible brackets without well-defined symmetry properties can arise for rare events, causing big configurational changes.

  18. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  19. Self-Similar Symmetry Model and Cosmic Microwave Background

    Directory of Open Access Journals (Sweden)

    Tomohide eSonoda

    2016-05-01

    Full Text Available In this paper, we present the self-similar symmetry (SSS model that describes the hierarchical structure of the universe. The model is based on the concept of self-similarity, which explains the symmetry of the cosmic microwave background (CMB. The approximate length and time scales of the six hierarchies of the universe---grand unification, electroweak unification, the atom, the pulsar, the solar system, and the galactic system---are derived from the SSS model. In addition, the model implies that the electron mass and gravitational constant could vary with the CMB radiation temperature.

  20. Unveiling a spinor field classification with non-Abelian gauge symmetries

    Science.gov (United States)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  1. Partial dynamical symmetries in quantal many-body systems

    International Nuclear Information System (INIS)

    Van Isacker, P.

    2001-01-01

    Partial dynamical symmetries are associated with Hamiltonians that are partially solvable. The determination of the properties of a quantal system of N interacting particles moving in an external potential requires the solution of the eigenvalue equation associated with a second-quantised Hamiltonian. In many situations of interest the Hamiltonian commutes with transformations that constitute a symmetry algebra G sym . This characteristic opens a way to find all analytically solvable Hamiltonians. The author gives a brief review of some recent developments

  2. A demonstration that electroweak theory can violate parity automatically (leptonic case)

    Science.gov (United States)

    Furey, C.

    2018-02-01

    We bring to light an electroweak model which has been reappearing in the literature under various guises.1-5 In this model, weak isospin is shown to act automatically on states of only a single chirality (left). This is achieved by building the model exclusively from the raising and lowering operators of the Clifford algebra ℂl(4). That is, states constructed from these ladder operators mimic the behaviour of left- and right-handed electrons and neutrinos under unitary ladder operator symmetry. This ladder operator symmetry is found to be generated uniquely by su(2)L and u(1)Y. Crucially, the model demonstrates how parity can be maximally violated, without the usual step of introducing extra gauge and extra Higgs bosons, or ad hoc projectors.

  3. Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders

    Science.gov (United States)

    Dittmaier, Stefan; Huss, Alexander; Knippen, Gernot

    2017-09-01

    Triple-W-boson production in proton-proton collisions allows for a direct access to the triple and quartic gauge couplings and provides a window to the mechanism of electroweak symmetry breaking. It is an important process to test the Standard Model (SM) and might be background to physics beyond the SM. We present a calculation of the next-to-leading order (NLO) electroweak corrections to the production of WWW final states at proton-proton colliders with on-shell W bosons and combine the electroweak with the NLO QCD corrections. We study the impact of the corrections to the integrated cross sections and to kinematic distributions of the W bosons. The electroweak corrections are generically of the size of 5-10% for integrated cross sections and become more pronounced in specific phase-space regions. The real corrections induced by quark-photon scattering turn out to be as important as electroweak loops and photon bremsstrahlung corrections, but can be reduced by phase-space cuts. Considering that prior determinations of the photon parton distribution function (PDF) involve rather large uncertainties, we compare the results obtained with different photon PDFs and discuss the corresponding uncertainties in the NLO predictions. Moreover, we determine the scale and total PDF uncertainties at the LHC and a possible future 100 TeV pp collider.

  4. Overview: Parity Violation and Fundamental Symmetries

    Science.gov (United States)

    Carlini, Roger

    2017-09-01

    The fields of nuclear and particle physics have undertaken extensive programs of research to search for evidence of new phenomena via the precision measurement of observables that are well predicted within the standard model of electroweak interaction. It is already known that the standard model is incomplete as it does not include gravity and dark matter/energy and therefore likely the low energy approximation of a more complex theory. This talk will be an overview of the motivation, experimental methods and status of some of these efforts (past and future) related to precision in-direct searches that are complementary to the direct searches underway at the Large Hadron Collider. This abstract is for the invited talk associated with the Mini-symposium titled ``Electro-weak Physics and Fundamental Symmetries'' organized by Julie Roche.

  5. Looking hard at the electroweak force

    International Nuclear Information System (INIS)

    Baur, Ulrich; Errede, Steven; Mueller, Thomas

    1995-01-01

    While recent experiments have beautifully confirmed many of the predictions of the electroweak unification of electromagnetism and the weak nuclear force, some direct consequences of the electroweak symmetry involve special properties of the three force carriers - the electrically charged W and neutral Z carrying the weak force and the photon of electromagnetism. These special properties have yet to be measured accurately. In the electroweak picture these force carriers (vector bosons) can interact with each other. These properties are 'non-abelian' - they are dependent on the order in which they are applied. [Most operations can be applied in any order, for example simple arithmetic: 6x(3+2) = (6x3)+(6x2). These are 'abelian'. An example of a non-abelian operator is the logarithm: log(x+y) does not equal log(x) + log(y).] Summarizing the current theoretical and experimental understanding of these self-interactions, and discussing the prospects of measuring them in future experiments, was the purpose of the ''International Symposium on Vector Boson Self-Interactions'' held earlier this year at UCLA, the first meeting entirely devoted to this topic. Progress in measuring the selfcouplings of vector bosons has been fueled recently by the CDF and DO Collaborations at Fermilab's protonantiproton collider. Using data from vector boson pair production, these studies are extracting information on the WW-photon, WWZ and ZZphoton interactions, as well as the magnetic and electric quadrupole moments of the W boson. At UCLA, Hiro Aihara (Berkeley) and Theresa Fuess (Argonne) summarized the CDF and DO results from the 1992-93 run. Information on potential ZZ-gamma interactions can also be gained from single photon production at CERN's LEP electronpositron collider, as detailed by Peter Maettig (Bonn), and from rare B meson decays, reviewed by Steve Playfer (Syracuse)

  6. Electroweak Results from CMS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    We present recent CMS measurements on electroweak boson production including single, double, and triple boson final states. Electroweak processes span many orders of magnitude in production cross section. Measurements of high-rate processes provide stringent tests of the standard model. In addition, rare triboson proceses and final states produced through vector boson scattering are newly accessible with the large integrated luminosity provided by the LHC. If new physics lies just beyond the reach of the LHC, its effects may manifest as enhancements to the high energy kinematics in mulitboson production. We present limits on new physics signatures using an effective field theory which models these modifications as modifications of electroweak gauge couplings. Since electroweak measurements will continue to benefit from the increasing integrated luminosity provided by the LHC, the future prospects of electroweak physics are discussed.

  7. The electroweak theory

    International Nuclear Information System (INIS)

    Chris Quigg

    2001-01-01

    After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2) L (circle-times) U(1) Y electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity

  8. Maximally Generalized Yang-Mills Model and Dynamical Breaking of Gauge Symmetry

    International Nuclear Information System (INIS)

    Wang Dianfu; Song Heshan

    2006-01-01

    A maximally generalized Yang-Mills model, which contains, besides the vector part V μ , also an axial-vector part A μ , a scalar part S, a pseudoscalar part P, and a tensor part T μν , is constructed and the dynamical breaking of gauge symmetry in the model is also discussed. It is shown, in terms of the Nambu-Jona-Lasinio mechanism, that the gauge symmetry breaking can be realized dynamically in the maximally generalized Yang-Mills model. The combination of the maximally generalized Yang-Mills model and the NJL mechanism provides a way to overcome the difficulties related to the Higgs field and the Higgs mechanism in the usual spontaneous symmetry breaking theory.

  9. Sensitivity of ATLAS to alternative mechanisms of electroweak symmetry breaking in vector boson scattering qq{yields}qql{nu}l{nu}

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Jan W

    2010-10-15

    An analysis of the expected sensitivity of the ATLAS experiment at the Large Hadron Collider at CERN to alternative mechanisms of electroweak symmetry breaking in the dileptonic vector boson scattering channel is presented. With the generalized K-Matrix model of vector boson scattering recently implemented in the event generator Whizard, several additional resonances are investigated. Whizard is validated for ATLAS use and an interface for the Les Houches event format is adapted for the ATLAS software Athena. Systematic model and statistical Monte Carlo uncertainties are reduced with a signal definition using events reweighted in the couplings g of the new resonances. Angular correlations conserved by Whizard are used in the event selection. A multivariate analyzer is trained to take into account correlations between the selection variables and thereby to improve the sensitivity compared to cut analyses. The statistical analysis is implemented with a profile likelihood method taking into account systematic uncertainties and statistical uncertainties from Monte Carlo. Ensemble tests are performed to assure the applicability of the method. Expected discovery significances and coupling limits for new additional resonances in vector boson scattering are determined. (orig.)

  10. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L.

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  11. Dynamical Symmetry Breaking of Maximally Generalized Yang-Mills Model and Its Restoration at Finite Temperatures

    International Nuclear Information System (INIS)

    Wang Dianfu

    2008-01-01

    In terms of the Nambu-Jona-Lasinio mechanism, dynamical breaking of gauge symmetry for the maximally generalized Yang-Mills model is investigated. The gauge symmetry behavior at finite temperature is also investigated and it is shown that the gauge symmetry broken dynamically at zero temperature can be restored at finite temperatures

  12. Symmetry breaking patterns of the 3-3-1 model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J.S. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica de Altas Energias, Rio de Janeiro, RJ (Brazil); Ramos, Rudnei O. [Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro, RJ (Brazil)

    2016-06-15

    We consider the minimal version of an extension of the standard electroweak model based on the SU(3){sub c} x SU(3){sub L} x U(1){sub X} gauge symmetry (the 3-3-1 model). We analyze the most general potential constructed from three scalars in the triplet representation of SU(3){sub L}, whose neutral components develop nonzero vacuum expectation values, giving mass for all the model's massive particles. For different choices of parameters, we obtain the particle spectrum for the two symmetry breaking scales: one where the SU(3){sub L} x U(1){sub X} group is broken down to SU(2){sub L} x U(1){sub Y} and a lower scale similar to the standard model one. Within the considerations used, we show that the model encodes two first-order phase transitions, respecting the pattern of symmetry restoration. The last transition, corresponding to the standard electroweak one, is found to be very weak first-order, most likely turning second-order or a crossover in practice. However, the first transition in this model can be strongly first-order, which might happen at a temperature not too high above the second one. We determine the respective critical temperatures for symmetry restoration for the model. (orig.)

  13. Study of electroweak gauge boson scattering in the WZ channel with the ATLAS detector at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Socher, Felix

    2016-01-01

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2)_L x U(1)_Y symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over the past 20 years at various particle accelerator experiments have shed light on the structure of the triple gauge couplings but few results on quartic gauge couplings are available. The electroweak self-couplings are intertwined with the electroweak symmetry breaking and thus the Higgs boson through the scattering of massive electroweak gauge bosons. Both the W and Z boson couple to the Higgs boson and may interact with each other by exchanging it. Theory predictions yield physical results at high energies only if either both the self-couplings and Higgs boson properties are as described by the Standard Model or if they deviate from its predictions and contributions from new physics are present to render the calculations finite. This makes electroweak gauge boson scattering a powerful tool to probe the Standard Model and search for possible effects of new physics. The small cross section of massive electroweak gauge boson scattering necessitates high centre

  14. Study of electroweak gauge boson scattering in the WZ channel with the ATLAS detector at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Socher, Felix

    2016-07-15

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2){sub L} x U(1){sub Y} symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over the past 20 years at various particle accelerator experiments have shed light on the structure of the triple gauge couplings but few results on quartic gauge couplings are available. The electroweak self-couplings are intertwined with the electroweak symmetry breaking and thus the Higgs boson through the scattering of massive electroweak gauge bosons. Both the W and Z boson couple to the Higgs boson and may interact with each other by exchanging it. Theory predictions yield physical results at high energies only if either both the self-couplings and Higgs boson properties are as described by the Standard Model or if they deviate from its predictions and contributions from new physics are present to render the calculations finite. This makes electroweak gauge boson scattering a powerful tool to probe the Standard Model and search for possible effects of new physics. The small cross section of massive electroweak gauge boson scattering necessitates

  15. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    International Nuclear Information System (INIS)

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  16. Anomalous Abelian symmetry in the standard model

    International Nuclear Information System (INIS)

    Ramond, P.

    1995-01-01

    The observed hierarchy of quark and lepton masses can be parametrized by nonrenormalizable operators with dimensions determined by an anomalous Abelian family symmetry, a gauge extension to the minimal supersymmetric standard model. Such an Abelian symmetry is generic to compactified superstring theories, with its anomalies compensated by the Green-Schwarz mechanism. If we assume these two symmetries to be the same, we find the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, just by setting the ratio of the product of down quark to charged lepton masses equal to one at the string scale. This assumes no GUT structure. The generality of the result suggests a superstring origin for the standard model. We generalize our analysis to massive neutrinos, and mixings in the lepton sector

  17. A unique $Z_4^R$ symmetry for the MSSM

    CERN Document Server

    Lee, Hyun Min; Ratz, Michael; Ross, Graham G; Schieren, Roland; Schmidt-Hoberg, Kai; Vaudrevange, Patrick K S

    2011-01-01

    We consider the possible anomaly free Abelian discrete symmetries of the MSSM that forbid the mu-term at perturbative order. Allowing for anomaly cancellation via the Green-Schwarz mechanism we identify discrete R-symmetries as the only possibility and prove that there is a unique Z_4^R symmetry that commutes with SO(10). We argue that non-perturbative effects will generate a mu-term of electroweak order thus solving the mu-problem. The non-perturbative effects break the Z_4^R symmetry leaving an exact Z_2 matter parity. As a result dimension four baryon- and lepton-number violating operators are absent while, at the non-perturbative level, dimension five baryon- and lepton-number violating operators get induced but are highly suppressed so that the nucleon decay rate is well within present bounds.

  18. Precision electroweak measurements

    International Nuclear Information System (INIS)

    Demarteau, M.

    1996-11-01

    Recent electroweak precision measurements fro e + e - and p anti p colliders are presented. Some emphasis is placed on the recent developments in the heavy flavor sector. The measurements are compared to predictions from the Standard Model of electroweak interactions. All results are found to be consistent with the Standard Model. The indirect constraint on the top quark mass from all measurements is in excellent agreement with the direct m t measurements. Using the world's electroweak data in conjunction with the current measurement of the top quark mass, the constraints on the Higgs' mass are discussed

  19. Dynamical Symmetry Breaking in RN Quantum Gravity

    Directory of Open Access Journals (Sweden)

    A. T. Kotvytskiy

    2011-01-01

    Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.

  20. Dynamical symmetry breaking as an alternative for Higg's mechanics

    International Nuclear Information System (INIS)

    Shellard, R.C.

    1979-01-01

    The effective action of a theory where dynamical symmetry breaking occurs is expanded in terms of loops, producing a Ginzburg-Landau-like Lagrangian reproducing fenomenologically the Higg's potencial. (L.C.) [pt

  1. Facets of confinement and dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Maris, P.; Raya, A.; Roberts, C.D.; Schmidt, S.M.

    2003-01-01

    The gap equation is a cornerstone in understanding dynamical chiral symmetry breaking and may also provide clues to confinement. A symmetry-preserving truncation of its kernel enables proofs of important results and the development of an efficacious phenomenology. We describe a model of the kernel that yields: a momentum-dependent dressed-quark propagator in fair agreement with quenched lattice-QCD results; and chiral limit values, f π 0 =68 MeV and left angle anti q q right angle =-(190 MeV) 3 . It is compared with models inferred from studies of the gauge sector. (orig.)

  2. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  3. Scale gauge symmetry and the standard model

    International Nuclear Information System (INIS)

    Sola, J.

    1990-01-01

    This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework

  4. CP nonconservation in dynamically broken gauge theories

    International Nuclear Information System (INIS)

    Lane, K.

    1981-01-01

    The recent proposal of Eichten, Lane, and Preskill for CP nonconservation in electroweak gauge theories with dynamical symmetry breaking is reviewed. Through the alignment of the vacuum with the explicit chiral symmetry breaking Hamiltonian, these theories provide a natural way to understand the dynamical origin of CP nonconservation. Special attention is paid to the problem of strong CP violation. Even through all vacuum angles are zero, this problem is not automatically avoided. In the absence of strong CP violation, the neutron electric dipole moment is expected to be 10 -24 -10 -26 e-cm. A new class of models is proposed in which both strong CP violation and large /ΔS/ = 2 effects may be avoided. In these models, /ΔC/ = 2 processes such as D/sup o/ D/sup -o/ mixing may be large enough to observe

  5. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    International Nuclear Information System (INIS)

    Ivanov, Igor P.; Vdovin, E.

    2013-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z 4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  6. Electroweak Physics

    OpenAIRE

    Hollik, W.

    2005-01-01

    The status of precision electroweak measurements as of summer 2002 is reviewed. The recent results on the anomalous magnetic moment of the muon and on neutrino-nucleon scattering are discussed. Precision results on the electroweak interaction obtained by the experiments at the SLC, LEP and TEVATRON colliders are presented. The experimental results are compared with the predictions of the minimal Standard Model and are used to constrain its parameters, including the mass of the Higgs boson. Th...

  7. State of electroweak interactions

    International Nuclear Information System (INIS)

    Lane, K.

    1984-01-01

    I assess what we know and what we do not know about the electroweak interactions. In particular, I argue that existing data on the electroweak parameters rho, sin 2 theta/sub w/ and G/sub F/ and on the recently discovered W +- and Z 0 allow us reasonably to conclude that: (1) the W +- and Z 0 truly are the elementary massive gauge bosons of SU(2) x U(1) and not the composite bosons of a new strong interaction, and (2) the electroweak scalar sector consists of weak doublets only. The most important thing we do not know is everything else about the electroweak scalar sector. In the hope of soon shedding light on this issue, a new method of searching for electroweak scalars in existing p-barp colliders is proposed. The basis of this method is that the branching ratio of W +- to decay to a charged plus a neutral scalar (expected in non-minimal SU(2) x U(1) models) can be as large as 1-2%, with detectable rates up to scalar masses of approx.35 GeV

  8. Dynamical Symmetries of Two-Dimensional Dirac Equation with Screened Coulomb and Isotropic Harmonic Oscillator Potentials

    International Nuclear Information System (INIS)

    Wang Qing; Hou Yu-Long; Jing Jian; Long Zheng-Wen

    2014-01-01

    In this paper, we study symmetrical properties of two-dimensional (2D) screened Dirac Hydrogen atom and isotropic harmonic oscillator with scalar and vector potentials of equal magnitude (SVPEM). We find that it is possible for both cases to preserve so(3) and su(2) dynamical symmetries provided certain conditions are satisfied. Interestingly, the conditions for preserving these dynamical symmetries are exactly the same as non-relativistic screened Hydrogen atom and screened isotropic oscillator preserving their dynamical symmetries. Some intuitive explanations are proposed. (general)

  9. Higgs boson from an extended symmetry

    International Nuclear Information System (INIS)

    Barbieri, Riccardo; Bellazzini, Brando; Rychkov, Vyacheslav S.; Varagnolo, Alvise

    2007-01-01

    The variety of ideas put forward in the context of a composite picture for the Higgs boson calls for a simple and effective description of the related phenomenology. Such a description is given here by means of a minimal model and is explicitly applied to the example of a Higgs-top sector from an SO(5) symmetry. We discuss the spectrum, the electroweak precision tests, B-physics, and naturalness. We show the difficulty in complying with the different constraints. The extended gauge sector relative to the standard SU(2)xU(1), if there is any, has little or no impact on these considerations. We also discuss the relation of the minimal model with its 'little Higgs' or holographic extensions based on the same symmetry

  10. Classically conformal radiative neutrino model with gauged B−L symmetry

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2016-09-01

    Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  11. Fundamental Physics with Electroweak Probes of Nuclei

    Science.gov (United States)

    Pastore, Saori

    2018-02-01

    The past decade has witnessed tremendous progress in the theoretical and computational tools that produce our understanding of nuclei. A number of microscopic calculations of nuclear electroweak structure and reactions have successfully explained the available experimental data, yielding a complex picture of the way nuclei interact with electroweak probes. This achievement is of great interest from the pure nuclear-physics point of view. But it is of much broader interest too, because the level of accuracy and confidence reached by these calculations opens up the concrete possibility of using nuclei to address open questions in other sub-fields of physics, such as, understanding the fundamental properties of neutrinos, or the particle nature of dark matter. In this talk, I will review recent progress in microscopic calculations of electroweak properties of light nuclei, including electromagnetic moments, form factors and transitions in between lowlying nuclear states along with preliminary studies for single- and double-beta decay rates. I will illustrate the key dynamical features required to explain the available experimental data, and, if time permits, present a novel framework to calculate neutrino-nucleus cross sections for A > 12 nuclei.

  12. Invariant renormalization method for nonlinear realizations of dynamical symmetries

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Pervushin, V.N.; Pushkin, S.V.

    1977-01-01

    The structure of ultraviolet divergences is investigated for the field theoretical models with nonlinear realization of the arbitrary semisimple Lie group, with spontaneously broken symmetry of vacuum. An invariant formulation of the background field method of renormalization is proposed which gives the manifest invariant counterterms off mass shell. A simple algorithm for construction of counterterms is developed. It is based on invariants of the group of dynamical symmetry in terms of the Cartan forms. The results of one-loop and two-loop calculations are reported

  13. Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.

    Science.gov (United States)

    Heyl, Markus; Vojta, Matthias

    2014-10-31

    One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.

  14. On the large-N dynamics of gauge symmetry breaking

    International Nuclear Information System (INIS)

    Karchev, N.I.

    1983-07-01

    We consider a Gsub(W)xUsub(TC)(N) gauge theory. A method of colour singlet bilocal collective coordinates is proposed to show, large-N colour dynamics is responsible for the Gsub(W) gauge symmetry breaking if the large-N Schwinger-Dyson equation admits anomalous solutions. The dynamically generated mass matrix is computed through these solutions. The technicolour model is discussed. (author)

  15. Academic Training: An Introduction to the Standard Theory of Electroweak Interactions

    CERN Multimedia

    PH Department

    2011-01-01

    27, 28 and 29 April 2011 An introduction to the standard theory of electroweak interactions by Giovanni Ridolfi (INFN, Genova) 27, 28 and 29 April from 11:00 to 12:00, 28 April from 14:30 to 15:30 at CERN ( 222-R-001 - Filtration Plant )  The construction and experimental foundations of the unified theory of weak and electromagnetic interactions will be reviewed. Special attention will be given to the Standard Model symmetry properties and how symmetries must be broken in order to obtain a realistic theory for the observed pattern of masses and mixing among generations and to accommodate longitudinal degrees of freedom for the vector bosons. A careful discussion of the Higgs sector, both in the perturbative and in the strongly interacting regime, will be presented. Finally, the motivations towards extensions of the standard model will be discussed.

  16. Heavy quark condensates from dynamically borken flavour symmetry

    International Nuclear Information System (INIS)

    Elliott, T.; King, S.F.

    1992-01-01

    We study the dynamics of top quark condensation induced by gauge interactions resulting from a broken flavour symmetry. The gap equation in dressed ladder approximation is solved numerically to obtain directly the top quark mass. The new high energy dynamics reduces the prediction of m t somewhat, but the usual problems of m t being too large and fine tuning remain. In order to solve these problems we extend our discussion to include fourth generation quark condensates. (orig.)

  17. Formulation of the low-energy effective theory of electroweak symmetry-breaking without a Higgs particle; Formulation de la theorie effective a basse energie du secteur electrofaible sans particule de Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, J

    2004-07-01

    The low-energy effective theory of electroweak symmetry-breaking without a Higgs particle is constructed using the methods of Chiral Perturbation Theory. Weinberg's power-counting formula demonstrates the consistency of the loop expansion, with the corresponding renormalization. We find that the suppression of effective operators by a mass scale, which was automatic in the case of the Standard Model, no longer holds in the Higgs-less case. Moreover, the incriminated operators appear at leading order in the chiral expansion, at variance with experiments. To account for their suppression, invariance under a larger symmetry is required, corresponding to the composite sector (which produces the three Goldstone modes) being decoupled from the elementary sector (quarks, leptons and Yang-Mills fields). The couplings are introduced via spurions: this reduces the symmetry to SU(2) x U(1). In the simultaneous expansion in powers of momenta and spurions, the aforementioned operators are relegated to higher orders. In addition, the method allows for a systematic treatment of weak isospin breaking. The Weinberg power-counting formula can be recovered, and small neutrino masses accounted for. The three right-handed neutrinos (lighter than the TeV), which are introduced in connection with the custodial symmetry, are quasi-sterile and stable. A constraint on the underlying theory is obtained by studying the anomaly-matching in the composite sector and generalizing the Wess-Zumino construction. The spurion formalism is also applied to open linear moose models, for which generalized Weinberg sum rules are derived. (author)

  18. Electroweak baryogenesis

    International Nuclear Information System (INIS)

    Trodden, Mark

    1999-01-01

    Contrary to naive cosmological expectations, all evidence suggests that the universe contains an abundance of matter over antimatter. This article reviews the currently popular scenario in which testable physics, present in the standard model of electroweak interactions and its modest extensions, is responsible for this fundamental cosmological datum. A pedagogical explanation of the motivations and physics behind electroweak baryogenesis is provided, and analytical approaches, numerical studies, up to date developments, and open questions in the field are also discussed. (c) 1999 The American Physical Society

  19. Synchronisation and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions

    International Nuclear Information System (INIS)

    Chun-Yu, Zhao; Yi-Min, Zhang; Bang-Chun, Wen

    2010-01-01

    We derive the non-dimensional coupling equation of two exciters, including inertia coupling, stiffness coupling and load coupling. The concept of general dynamic symmetry is proposed to physically explain the synchronisation of the two exciters, which stems from the load coupling that produces the torque of general dynamic symmetry to force the phase difference between the two exciters close to the angle of general dynamic symmetry. The condition of implementing synchronisation is that the torque of general dynamic symmetry is greater than the asymmetric torque of the two motors. A general Lyapunov function is constructed to derive the stability condition of synchronisation that the non-dimensional inertia coupling matrix is positive definite and all its elements are positive. Numeric results show that the structure of the vibrating system can guarantee the stability of synchronisation of the two exciters, and that the greater the distances between the installation positions of the two exciters and the mass centre of the vibrating system are, the stronger the ability of general dynamic symmetry is

  20. Consequences of an Abelian family symmetry

    International Nuclear Information System (INIS)

    Ramond, P.

    1996-01-01

    The addition of an Abelian family symmetry to the Minimal Super-symmetric Standard Model reproduces the observed hierarchies of quark and lepton masses and quark mixing angles, only if it is anomalous. Green-Schwarz compensation of its anomalies requires the electroweak mixing angle to be sin 2 θ ω = 3/8 at the string scale, without any assumed GUT structure, suggesting a superstring origin for the standard model. The analysis is extended to neutrino masses and the lepton mixing matrix

  1. SO(8) fermion dynamical symmetry and strongly correlated quantum Hall states in monolayer graphene

    Science.gov (United States)

    Wu, Lian-Ao; Murphy, Matthew; Guidry, Mike

    2017-03-01

    A formalism is presented for treating strongly correlated graphene quantum Hall states in terms of an SO(8) fermion dynamical symmetry that includes pairing as well as particle-hole generators. The graphene SO(8) algebra is isomorphic to an SO(8) algebra that has found broad application in nuclear physics, albeit with physically very different generators, and exhibits a strong formal similarity to SU(4) symmetries that have been proposed to describe high-temperature superconductors. The well-known SU(4) symmetry of quantum Hall ferromagnetism for single-layer graphene is recovered as one subgroup of SO(8), but the dynamical symmetry structure associated with the full set of SO(8) subgroup chains extends quantum Hall ferromagnetism and allows analytical many-body solutions for a rich set of collective states exhibiting spontaneously broken symmetry that may be important for the low-energy physics of graphene in strong magnetic fields. The SO(8) symmetry permits a natural definition of generalized coherent states that correspond to symmetry-constrained Hartree-Fock-Bogoliubov solutions, or equivalently a microscopically derived Ginzburg-Landau formalism, exhibiting the interplay between competing spontaneously broken symmetries in determining the ground state.

  2. Semilocal and electroweak strings

    NARCIS (Netherlands)

    Achucarro, A; Vachaspati, T

    We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without

  3. Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2009-01-01

    Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.

  4. Broken symmetry within crystallographic super-spaces: structural and dynamical aspects

    International Nuclear Information System (INIS)

    Mariette, Celine

    2013-01-01

    Aperiodic crystals have the property to possess long range order without translational symmetry. These crystals are described within the formalism of super-space crystallography. In this manuscript, we will focus on symmetry breaking which take place in such crystallographic super-space groups, considering the prototype family of n-alkane/urea. Studies performed by X-ray diffraction using synchrotron sources reveal multiple structural solutions implying or not changes of the dimension of the super-space. Once the characterization of the order parameter and of the symmetry breaking is done, we present the critical pre-transitional phenomena associated to phase transitions of group/subgroup types. Coherent neutron scattering and inelastic X-ray scattering allow a dynamical analysis of different kind of excitations in these materials (phonons, phasons). The inclusion compounds with short guest molecules (alkane C n H 2n+2 , n varying from 7 to 13) show at room temperature unidimensional 'liquid-like' phases. The dynamical disorder along the incommensurate direction of these materials generates new structural solutions at low temperature (inter-modulated monoclinic composite, commensurate lock-in). (author) [fr

  5. Singlet Higgs phenomenology and the electroweak phase transition

    International Nuclear Information System (INIS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Shaughnessy, Gabe

    2007-01-01

    We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. For models that satisfy these constraints and that produce a strong first order phase transition, we discuss the prospective signatures in future Higgs studies at the Large Hadron Collider and a Linear Collider. We argue that such studies will provide powerful probes of phase transition dynamics in models with an extended scalar sector

  6. Strong dynamics and lattice gauge theory

    Science.gov (United States)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses

  7. 2004-2005 Academic Training Programme: Electroweak Theory and the Standard Model

    CERN Multimedia

    Françoise Benz

    2004-01-01

    6, 7, 8, 9 and 10 December LECTURE SERIES 6, 7, 8, 9, 10 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 on 6, 7, 8, 10 December, TH Auditorium, bldg. 4 3-006 on 9 December Electroweak Theory and the Standard Model R. BARBIERI / CERN-PH-TH There is a natural splitting in four sectors of the theory of the ElectroWeak (EW) Interactions, at pretty different levels of development /test. Accordingly, the 5 lectures are organized as follows, with an eye to the future: Lecture 1: The basic structure of the theory; Lecture 2: The gauge sector; Lecture 3: The flavor sector; Lecture 4: The neutrino sector; Lecture 5: The EW symmetry breaking sector. Transparencies available at: http://agenda.cern.ch/fullAgenda.php?ida=a042577 ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please discuss with your supervisor and apply electronically directly from the course description pages that can ...

  8. 2004-2005 Academic Training Programme: Electroweak Theory and the Standard Model

    CERN Multimedia

    Françoise Benz

    2004-01-01

    6, 7, 8, 9 and 10 December LECTURE SERIES 6, 7, 8, 9, 10 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 on 6, 7, 8, 10 December, TH Auditorium, bldg. 4 3-006 on 9 December Electroweak Theory and the Standard Model R. BARBIERI / CERN-PH-TH There is a natural splitting in four sectors of the theory of the ElectroWeak (EW) Interactions, at pretty different levels of development /test. Accordingly, the 5 lectures are organized as follows, with an eye to the future: Lecture 1: The basic structure of the theory; Lecture 2: The gauge sector; Lecture 3: The flavor sector; Lecture 4: The neutrino sector; Lecture 5: The EW symmetry breaking sector. ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch Si vous désirez participer à l'un des cours suivants, veuillez en discuter avec votre superviseur et vous inscrire électroniquement en direct depuis les pages de description des cours dans le Web que vous trouvez &ag...

  9. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  10. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelita Martins

    1995-01-01

    In a Causality Preserving Manifold Formalism (CPMF), which is based on a new model of spacetime, masses are consequences of spacetime structure symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematic term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa couplings etc). After a brief review about this CPMF, the origin and meaning of mass is discussed and then illustrated with the vector boson sector of the SU(2) x U(1) electroweak theory. (author)

  11. Majorana dark matter with B+L gauge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Wei [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,Beijing, 100875 (China); Guo, Huai-Ke [Amherst Center for Fundamental Interactions, Department of Physics,University of Massachusetts-Amherst,Amherst, MA 01003 United States (United States); Zhang, Yongchao [Service de Physique Théorique, Université Libre de Bruxelles,Boulevard du Triomphe, CP225, 1050 Brussels (Belgium)

    2017-04-07

    We present a new model that extends the Standard Model (SM) with the local B+L symmetry, and point out that the lightest new fermion ζ, introduced to cancel anomalies and stabilized automatically by the B+L symmetry, can serve as the cold dark matter candidate. We study constraints on the model from Higgs measurements, electroweak precision measurements as well as the relic density and direct detections of the dark matter. Numerical results reveal that the pseudo-vector coupling of ζ with Z and the Yukawa coupling with the SM Higgs are highly constrained by the latest results of LUX, while there are viable parameter space that could satisfy all the constraints and give testable predictions.

  12. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  13. Gl(2/2)-oscillators and Gl(2/2)-dynamical symmetry

    International Nuclear Information System (INIS)

    Kamupingene, A.H.; Nguyen Anh Ky.

    1991-07-01

    Extending the concept of the dynamical symmetry, we identify the Lie superalgebra Gl(2/2) as a dynamical (super-)algebra of a class of non-canonical quantum systems, whose dynamical variables and quantities can be realized in terms of the Gl(2/2)-generators. In this way, a new class of harmonic oscillators is established. As a consequence of the choice of the dynamical variables the Heisenberg algebra and the Hermitian condition for the Gl(2/2)-representations are also given. (author). 12 refs

  14. Test of the fermion dynamical symmetry model microscopy in the sd shell

    International Nuclear Information System (INIS)

    Halse, P.

    1987-01-01

    The recently formulated fermion dynamical symmetry model treats low-lying collective levels as states classified in a pseudo-orbit pseudo-spin (k-i) basis having either k = 1 and zero i seniority, or i = (3/2) and zero k seniority. The validity of this suggestion, which has not previously been subjected to a microscopic examination, is determined for even-even nuclei in the sd shell, for which the model is phenomenologically successful, by comparing these states with the eigenfunctions of a realistic Hamiltonian. Most low-lying levels are almost orthogonal to the fermion dynamical symmetry model zero seniority subspaces

  15. Finite energy electroweak dyon

    Energy Technology Data Exchange (ETDEWEB)

    Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, College of Natural Sciences, Seoul (Korea, Republic of); Cho, Y.M. [Konkuk University, Administration Building 310-4, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of)

    2015-02-01

    The latest MoEDAL experiment at LHC to detect the electroweak monopole makes the theoretical prediction of the monopole mass an urgent issue. We discuss three different ways to estimate the mass of the electroweak monopole. We first present the dimensional and scaling arguments which indicate the monopole mass to be around 4 to 10 TeV. To justify this we construct finite energy analytic dyon solutions which could be viewed as the regularized Cho-Maison dyon, modifying the coupling strength at short distance. Our result demonstrates that a genuine electroweak monopole whose mass scale is much smaller than the grand unification scale can exist, which can actually be detected at the present LHC. (orig.)

  16. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  17. Electroweak interactions in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1984-06-01

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  18. Electroweak Phase Transition and Baryogenesis in the nMSSM

    CERN Document Server

    Huber, S J; Prokopec, T; Schmidt, M G; Huber, Stephan J.; Konstandin, Thomas; Prokopec, Tomislav; Schmidt, Michael G.

    2006-01-01

    We analyze the nMSSM with CP violation in the singlet sector. We study the static and dynamical properties of the electroweak phase transition. We conclude that electroweak baryogenesis in this model is generic in the sense that if the present limits on the mass spectrum are applied, no severe additional tuning is required to obtain a strong first-order phase transition and to generate a sufficient baryon asymmetry. For this we determine the shape of the nucleating bubbles, including the profiles of CP-violating phases. The baryon asymmetry is calculated using the advanced transport theory to first and second order in gradient expansion presented recently. Still, first and second generation sfermions must be heavy to avoid large electric dipole moments.

  19. Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Pich, A. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Rosell, I. [Departament de Física Teòrica, IFIC, Universitat de València - CSIC,Apt. Correus 22085, E-46071 València (Spain); Departamento de Ciencias Físicas, Matemáticas y de la Computación,Universidad CEU Cardenal Herrera,c/ Sant Bartomeu 55, E-46115 Alfara del Patriarca, València (Spain); Sanz-Ciller, J.J. [Departamento de Física Teórica, Instituto de Física Teórica,Universidad Autónoma de Madrid - CSIC,c/ Nicolás Cabrera 13-15, E-28049 Cantoblanco, Madrid (Spain)

    2014-01-28

    Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2){sub L}⊗SU(2){sub R}→SU(2){sub L+R}, we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W{sup +}W{sup −} and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.

  20. Model for dynamical chiral symmetry breaking and quark condensate

    International Nuclear Information System (INIS)

    Nekrasov, M.L.; Rochev, V.E.

    1986-01-01

    In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one

  1. Dynamical mechanism of symmetry breaking and particle mass generation in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Fomin, P.I.

    1985-01-01

    The dynamics of the spotaneous symmetry breaking and the particle mass generation in gauge theories with no fundamental scalar fields is considered. The emphasis is on the consideration of the symmetry breaking mechanism connected with the dynamics of the supercritical Coulomb-like forces caused by the gauge boson exchange between fermions. This mechanism is applied to different gauge theories, in particular, to the description of the spontaneous chira symmetry breaking in quantum chromodynamics. The mass relations for pseudoscalar meson nonet are obtained and it is shown that this mechanism resuls in the dynamical realisation of the hypothesis of the partial conservation of the axial-vector currents. The qualitative description of scalar mesons is given. The nature of the ultraviolet divergencies in quantum electrodynamics (QED) is investigated from the viewpoint of the dynamics of the fermion mass generation. The mechanism of the appearance of the additional (in comparison with perturbation theory) ultraviolet divergencies in QED with large bare coupling constant is indicated. The physical phenomenon underlying this mechanism is identified as the field theory analogue of the quantum mechanical ''fall into the centre'' (collapse) phenomenon. The similr phenomenon is shown to take place in some two-dimensional quantum field models. The dynamics of the bifermion condensates formation in tumblin gauge theories is briefly discussed

  2. Dynamical breakdown of chiral symmetry and abnormal perturbation expansion

    International Nuclear Information System (INIS)

    Ebert, D.; Pervushin, V.N.

    1976-01-01

    Dynamical breakdown of γ 5 -symmetry is studied in the Abelian gauge theory of massless ''quarks'' interacting with massless vector ''gluons''. For this purpose the path-integral approach with bilocal fields as dynamical variables is used. The classical field equation defined by the stationary point of the generating functional turns out to be identical with the Schwinger-Dyson equation for the quark propagator. After a short discussion of the possible solutions of this equation an abnormal perturbation theory has been worked out

  3. Gravitationally coupled electroweak monopole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M., E-mail: ymcho7@konkuk.ac.kr [Administration Building 310-4, Konkuk University, Seoul 143-701 (Korea, Republic of); School of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kimm, Kyoungtae [Faculty of Liberal Education, Seoul National University, Seoul 151-747 (Korea, Republic of); Yoon, J.H. [Department of Physics, College of Natural Sciences, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2016-10-10

    We present a family of gravitationally coupled electroweak monopole solutions in Einstein–Weinberg–Salam theory. Our result confirms the existence of globally regular gravitating electroweak monopole which changes to the magnetically charged black hole as the Higgs vacuum value approaches to the Planck scale. Moreover, our solutions could provide a more accurate description of the monopole stars and magnetically charged black holes.

  4. On the origin of mass and the electroweak mass spectrum without Higgs

    International Nuclear Information System (INIS)

    Souza, Manoelito Martins de

    1994-01-01

    Full text: In a Causality Preserving Manifold Formalism, (CPMF), which is based on a model of spacetime with geometric and strict implementation of causality, masses are consequences of the spacetime symmetries. The mass spectrum of a set of non Abelian fields is solely determined from its Lagrangian kinematics term, in a way independent of any kind of interactions and without any extra field (no Higgs, no Yukawa coupling). The origin and meaning of mass in this formalism is discussed and then illustrated with the vector boson sector of the standard SU(2)x U(1) electroweak theory. (author)

  5. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the large integrated luminosities recorded at the LHC and the excellent understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. A review of the measurement of the $W$ boson mass by the ATLAS Collaboration as well as a new measurement of the electroweak mixing angle with the CMS detector are presented. Special emphasis is put on a discussion of the modelling uncertainties and the potential of the latest low-$\\mu$ runs, recorded at the end of 2017 by both collaboration. In addition, the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV are summarised. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to Higgs boson production.

  6. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    Science.gov (United States)

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  7. The serendipity of electroweak baryogenesis

    Science.gov (United States)

    Servant, Géraldine

    2018-01-01

    The origin of the matter-antimatter asymmetry of the universe remains unexplained in the Standard Model (SM) of particle physics. The origin of the flavour structure is another major puzzle of the theory. In this article, we report on recent work attempting to link the two themes through the appealing framework of electroweak (EW) baryogenesis. We show that Yukawa couplings of SM fermions can be the source of CP violation for EW baryogenesis if they vary at the same time as the Higgs is acquiring its vacuum expectation value, offering new avenues for EW baryogenesis. The advantage of this approach is that it circumvents the usual severe bounds from electric dipole moments. These ideas apply if the mechanism explaining the flavour structure of the SM is connected to EW symmetry breaking, as motivated for instance in Randall-Sundrum or Composite Higgs models. We compute the resulting baryon asymmetry for different configurations of the Yukawa coupling variation across the bubble wall and show that it can naturally be of the right order. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  8. Flavored gauge mediation with discrete non-Abelian symmetries

    Science.gov (United States)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  9. Schwinger Dyson equations: Dynamical chiral symmetry breaking and confinement

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1992-01-01

    A representative but not exhaustive review of the Schwinger-Dyson equation (SDE) approach to the nonperturbative study of QCD is presented. The main focus is the SDE for the quark self energy but studies of the gluon propagator and quark-gluon vertex are also discussed insofar as they are important to the quark SDE. The scope of this article is the application of these equations to the study of dynamical chiral symmetry breaking, quark confinement and the phenomenology of the spectrum and dynamics of QCD

  10. Dynamical systems with first- and second-class constraints. II. Local-symmetry transformations

    International Nuclear Information System (INIS)

    Chitaia, N.P.; Gogilidze, S.A.; Surovtsev, Y.S.

    1997-01-01

    In the framework of the generalized Hamiltonian formalism by Dirac, local symmetries of dynamical systems with first- and second-class constraints are investigated. The method of constructing the generator of local-symmetry transformations is presented both for theories with an algebra of constraints of a special form (a majority of the physically interesting theories) and in the general case without restrictions on the algebra of constraints. It is proven that second-class constraints do not contribute to the transformation law of the local symmetry entirely stipulated by all the first-class constraints. A mechanism of the occurrence of higher derivatives of coordinates and group parameters in the symmetry transformation law in Noether close-quote s second theorem is elucidated. In the latter case it is shown that the obtained transformations of symmetry are canonical in the extended (by Ostrogradsky) phase space. It is thereby shown that in the general case the degeneracy of theories with first- and second-class constraints is due to their invariance under local-symmetry transformations. copyright 1997 The American Physical Society

  11. Electroweak Physics at the LHC

    CERN Document Server

    Sommer, Philip; The ATLAS collaboration

    2018-01-01

    With the high integrated luminosities recorded at the LHC and the very good understanding of the LHC detectors, it is possible to measure electroweak observables to the highest precision. In this talk, we review the measurement of the W boson mass by the ATLAS Collaboration as well as the new measurement of the electroweak mixing angle with the CMS detector. Special focus is drawn on a discussion of the modeling uncertainties and the physics potential of the latest low-mu runs, recorded at the end of 2017 by both collaboration. In addition, we will present the latest measurements of multi-boson final states as well as the electroweak production of single gauge bosons at 13 TeV. The study of these processes can be used to constrain anomalous gauge couplings in an effective field theory approach, allowing to bridge tests of the electroweak sector of the Standard Models also to the Higgs-boson production.

  12. Indirect probe of electroweak-interacting particles at future lepton colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke; Ichikawa, Koji; Kundu, Anirban; Matsumoto, Shigeki; Shirai, Satoshi

    2015-01-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2)_L×U(1)_Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100–1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  13. Indirect Probe of Electroweak-Interacting Particles at Future Lepton Colliders

    International Nuclear Information System (INIS)

    Harigaya, Keisuke

    2015-04-01

    Various types of electroweak-interacting particles, which have non-trivial charges under the SU(2) L x U(1) Y gauge symmetry, appear in various extensions of the Standard Model. These particles are good targets of future lepton colliders, such as the International Linear Collider (ILC), the Compact LInear Collider (CLIC) and the Future Circular Collider of electrons and positrons (FCC-ee). An advantage of the experiments is that, even if their beam energies are below the threshold of the production of the new particles, quantum effects of the particles can be detected through high precision measurements. We estimate the capability of future lepton colliders to probe electroweak-interacting particles through the quantum effects, with particular focus on the wino, the Higgsino and the so-called minimal dark matters, and found that a particle whose mass is greater than the beam energy by 100-1000 GeV is detectable by measuring di-fermion production cross sections with O(0.1)% accuracy. In addition, with the use of the same analysis, we also discuss the sensitivity of the future colliders to model independent higher dimensional operators, and found that the cutoff scales corresponding to the operators can be probed up to a few ten TeV.

  14. Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry

    Science.gov (United States)

    Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping

    2018-05-01

    We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.

  15. Is the standard model saved asymptotically by conformal symmetry?

    Science.gov (United States)

    Gorsky, A.; Mironov, A.; Morozov, A.; Tomaras, T. N.

    2015-03-01

    It is pointed out that the top-quark and Higgs masses and the Higgs VEV with great accuracy satisfy the relations 4 m {/H 2} = 2 m {/T 2} = v 2, which are very special and reminiscent of analogous ones at Argyres-Douglas points with enhanced conformal symmetry. Furthermore, the RG evolution of the corresponding Higgs self-interaction and Yukawa couplings λ(0) = 1/8 and y(0) = 1 leads to the free-field stable point in the pure scalar sector at the Planck scale, also suggesting enhanced conformal symmetry. Thus, it is conceivable that the Standard Model is the low-energy limit of a distinct special theory with (super?) conformal symmetry at the Planck scale. In the context of such a "scenario," one may further speculate that the Higgs particle is the Goldstone boson of (partly) spontaneously broken conformal symmetry. This would simultaneously resolve the hierarchy and Landau pole problems in the scalar sector and would provide a nearly flat potential with two almost degenerate minima at the electroweak and Planck scales.

  16. Aspects of radiative electroweak breaking in supergravity models

    International Nuclear Information System (INIS)

    Kelley, S.; Lopez, J.L.; Nanopoulos, D.V.; Pois, H.; Yuan, K.

    1993-01-01

    We discuss several aspects of state-of-the-art calculations of radiative electroweak symmetry breaking in supergravity models. These models have a five-dimensional parameter space in contrast with the 21-dimensional one of the MSSM. We examine the Higgs one-loop effective potential V 1 =V 0 +ΔV, in particular how its renormalization-scale (Q) independence is affected by the approximation used to calculate ΔV and by the presence of a Higgs-field-independent term which makes V 1 (0)≠0. We show that the latter must be subtracted out to achieve Q-independence. We also discuss our own approach to the exploration of the five-dimensional parameter space and the fine-tuning constraints within this approach. We apply our methods to the determination of the allowed region in parameter space of two models which we argue to be the prototypes for conventional (SSM) and string (SISM) unified models. To this end we impose the electroweak breaking constraint by minimizing the one-loop effective potential and study the shifts in μ and B relative to the values obtained using the tree-level potential. These shifts are most significant for small values of μ and B, and induce corresponding shifts on the lightest μ- and/or B-dependent particle masses, i.e., those of the lightest stau, neutralino, chargino, and Higgs boson states. Finally, we discuss the predictions for the squark, slepton, and one-loop corrected Higgs boson masses. (orig.)

  17. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  18. Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    Sakuma, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  19. Review of Minimal Flavor Constraints for Technicolor

    DEFF Research Database (Denmark)

    S. Fukano, Hidenori; Sannino, Francesco

    2010-01-01

    We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...

  20. Electroweak penguins at LHCb

    CERN Document Server

    AUTHOR|(CDS)2073177

    2016-01-01

    Electroweak penguin decays are flavour-changing neutral current processes, and are highly suppressed in the Stan- dard Model. They can only proceed via loop diagrams. Such decays may receive contributions from New Physics and change their decay behaviours like decay rate and angular distribution. Studying the properties of these decays thus provides a powerful method to probe for New Physics. In this contribution the most recent LHCb results on electroweak penguin decays are reported.

  1. Electroweak penguins at LHCb

    Science.gov (United States)

    He, Jibo; LHCb Collaboration

    2016-04-01

    Electroweak penguin decays are flavour-changing neutral current processes, and are highly suppressed in the Standard Model. They can only proceed via loop diagrams. Such decays may receive contributions from New Physics and change their decay behaviours like decay rate and angular distribution. Studying the properties of these decays thus provides a powerful method to probe for New Physics. In this contribution the most recent LHCb results on electroweak penguin decays are reported.

  2. B-L mediated SUSY breaking with radiative B-L symmetry breaking

    International Nuclear Information System (INIS)

    Kikuchi, Tatsuru; Kubo, Takayuki

    2008-01-01

    We explore a mechanism of radiative B-L symmetry breaking in analogous to the radiative electroweak symmetry breaking. The breaking scale of B-L symmetry is related to the neutrino masses through the see-saw mechanism. Once we incorporate the U(1) B-L gauge symmetry in SUSY models, the U(1) B-L gaugino, Z-tilde B-L appears, and it can mediate the SUSY breaking (Z-prime mediated SUSY breaking) at around the scale of 10 6 GeV. Then we find a links between the neutrino mass (more precisly the see-saw or B-L scale of order 10 6 GeV) and the Z-prime mediated SUSY breaking scale. It is also very interesting that the gluino at the weak scale becomes relatively light, and almost compressed mass spectra for the gaugino sector can be realized in this scenario, which is very interesting in scope of the LHC.

  3. Partially composite Goldstone Higgs boson

    DEFF Research Database (Denmark)

    Alanne, Tommi; Franzosi, Diogo Buarque; Frandsen, Mads T.

    2017-01-01

    We consider a model of dynamical electroweak symmetry breaking with a partially composite Goldstone Higgs boson. The model is based on a strongly interacting fermionic sector coupled to a fundamental scalar sector via Yukawa interactions. The SU(4)×SU(4) global symmetry of these two sectors...... is broken to a single SU(4) via Yukawa interactions. Electroweak symmetry breaking is dynamically induced by condensation due to the strong interactions in the new fermionic sector which further breaks the global symmetry SU(4)→Sp(4). The Higgs boson arises as a partially composite state which is an exact...... Goldstone boson in the limit where SM interactions are turned off. Terms breaking the SU(4) global symmetry explicitly generate a mass for the Goldstone Higgs boson. The model realizes in different limits both (partially) composite Higgs and (bosonic) technicolor models, thereby providing a convenient...

  4. Survey of composite particle models of electroweak interaction

    International Nuclear Information System (INIS)

    Suzuki, Mahiko.

    1992-05-01

    Models of composite weak bosons, the top-condensate model of electroweak interaction and related models we surveyed. Composite weak bosons must be tightly bound with a high compositeness scale in order to generate approximate puge symmetry dynamically. However, naturalness argument suggests that the compositeness scale is low at least in toy models. In the top-condensate model, where a composite Higgs doublet is formed with a very high scale, the prediction of the model is insensitive to details of the model and almost model-independent Actually, the numerical prediction of the t-quark and Higgs boson masses does not test compositeness of the Higgs boson nor condensation of the t-quark field. To illustrate the point, a composite t R -quark model is discussed which leads to the same numerical prediction as the top-condensate model. However, different constraints an imposed on the structure of the Higgs sector, depending on which particles are composite. The attempt to account the large t-b mass splitting by the high compositeness scale of the top-condensate model is reinterpreted in terms of fine tuning of more than one vacuum expectation value. It is difficult to lower, without a fourth generation, the t-quark mass in the composite particle models in general because the Yukawa coupling of the i-quark to the Higgs boson, t2 /4π = 0.1 for m t = 200 GeV, is too small for a coupling of a composite particle

  5. Precision electroweak physics at the Tevatron

    International Nuclear Information System (INIS)

    James, Eric B.

    2006-01-01

    An overview of Tevatron electroweak measurements performed by the CDF and Dφ experiments is presented. The current status and future prospects for high precision measurements of electroweak parameters and detailed studies of boson production are highlighted. (author)

  6. Technicolor and Beyond: Unification in Theory Space

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enh......The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount...... supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle...

  7. Electro-weak theory

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1980-01-01

    By electro-weak theory is meant the unified field theory that describes both weak and electro-magnetic interactions. The development of a unified electro-weak theory is certainly the most dramatic achievement in theoretical physics to occur in the second half of this century. It puts weak interactions on the same sound theoretical footing as quantum elecrodynamics. Many theorists have contributed to this development, which culminated in the works of Glashow, Weinberg and Salam, who were jointly awarded the 1979 Nobel Prize in physics. Some of the important ideas that contributed to this development are the theory of beta decay formulated by Fermi, Parity violation suggested by Lee and Yang, and incorporated into immensely successful V-A theory of weak interactions by Sudarshan and Marshak. At the same time ideas of gauge invariance were applied to weak interaction by Schwinger, Bludman and Glashow. Weinberg and Salam then went one step further and wrote a theory that is renormalizable, i.e., all higher order corrections are finite, no mean feat for a quantum field theory. The theory had to await the development of the quark model of hadrons for its completion. A description of the electro-weak theory is given

  8. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  9. Electroweak baryogenesis and low energy supersymmetry

    CERN Document Server

    Carena, M S; Riotto, Antonio; Vilja, I; Wagner, C E M

    1997-01-01

    Electroweak baryogenesis is an interesting theoretical scenario, which demands physics beyond the Standard Model at energy scales of the order of the weak boson masses. It has been recently emphasized that, in the presence of light stops, the electroweak phase transition can be strongly first order, opening the window for electroweak baryogenesis in the MSSM. For the realization of this scenario, the Higgs boson must be light, at the reach of the LEP2 collider. In this article, we compute the baryon asymmetry assuming the presence of non-trivial CP violating phases in the parameters associated with the left-right stop mixing term and the Higgsino mass $\\mu$. We conclude that a phase $|\\sin \\phi_{\\mu}| > 0.01$ and Higgsino and gaugino mass parameters $|\\mu| \\simeq M_2$, and of the order of the electroweak scale, are necessary in order to generate the observed baryon asymmetry.

  10. The serendipity of electroweak baryogenesis.

    Science.gov (United States)

    Servant, Géraldine

    2018-03-06

    The origin of the matter-antimatter asymmetry of the universe remains unexplained in the Standard Model (SM) of particle physics. The origin of the flavour structure is another major puzzle of the theory. In this article, we report on recent work attempting to link the two themes through the appealing framework of electroweak (EW) baryogenesis. We show that Yukawa couplings of SM fermions can be the source of CP violation for EW baryogenesis if they vary at the same time as the Higgs is acquiring its vacuum expectation value, offering new avenues for EW baryogenesis. The advantage of this approach is that it circumvents the usual severe bounds from electric dipole moments. These ideas apply if the mechanism explaining the flavour structure of the SM is connected to EW symmetry breaking, as motivated for instance in Randall-Sundrum or Composite Higgs models. We compute the resulting baryon asymmetry for different configurations of the Yukawa coupling variation across the bubble wall and show that it can naturally be of the right order.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  11. V A Fock and gauge symmetry

    International Nuclear Information System (INIS)

    Okun, Lev B

    2010-01-01

    V A Fock, in 1926, was the first to have the idea of an Abelian gradient transformation and to discover that the electromagnetic interaction of charged particles has a gradient invariance in the framework of quantum mechanics. These transformation and invariance were respectively named Eichtransformation and Eichinvarianz by H Weyl in 1929 (the German verb zu eichen means to gauge). The first non-Abelian gauge theory was suggested by O Klein in 1938; and in 1954, C N Yang and R L Mills rediscovered the non-Abelian gauge symmetry. Gauge invariance is the underlying principle of the current Standard Model of strong and electroweak interactions. (from the history of physics)

  12. Electroweak results from the tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D. [Fermi National Accelerator Laboratory, Batavia, IL (United States)

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings.

  13. Electroweak results from the tevatron

    International Nuclear Information System (INIS)

    Wood, D.

    1997-01-01

    Electroweak results are presented from the CDF and DO experiments based on data collected in recent runs of the Fermilab Tevatron Collider. The measurements include the mass and width of the W boson, the production cross sections of the W and Z bosons, and the W charge asymmetry. Additional results come from studies of events with pairs of electroweak gauge bosons and include limits on anomalous couplings

  14. Non-negligible electroweak penguin effects

    International Nuclear Information System (INIS)

    Guo Libo; Li Xingyi

    1999-01-01

    Starting from the leading logarithmic low energy effective Hamiltonian and the Bauer-Stech-Wirbe (BSW) model, the authors calculate the electroweak penguin effects in the two-body hadronic pure penguin processes of B-meson. In the case of B→PP and PV decay, the authors find that the processes involving external penguin diagrams receive large contribution from electroweak penguin effects which can even play dominant role

  15. Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingchuan [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: yli@physics.wisc.edu; Profumo, Stefano [Department of Physics and Santa Cruz Institute for Particle Physics, University of California, 1156 High St., Santa Cruz, CA 95064 (United States)], E-mail: profumo@scipp.ucsc.edu; Ramsey-Musolf, Michael [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)], E-mail: mjrm@physics.wisc.edu

    2009-03-09

    It is conventional wisdom that successful electroweak baryogenesis in the Minimal Supersymmetric extension of the Standard Model (MSSM) is in tension with the non-observation of electric dipole moments (EDMs), since the level of CP-violation responsible for electroweak baryogenesis is believed to generate unavoidably large EDMs. We show that CP-violation in the bino-Higgsino sector of the MSSM can account for successful electroweak baryogenesis without inducing large EDMs. This observation weakens the correlation between electroweak baryogenesis and EDMs, and makes the bino-driven electroweak baryogenesis scenario the least constrained by EDM limits. Taking this observation together with the requirement of a strongly first-order electroweak phase transition, we argue that a bino-driven scenario with a light stop is the most phenomenologically viable MSSM electroweak baryogenesis scenario.

  16. Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments

    International Nuclear Information System (INIS)

    Li Yingchuan; Profumo, Stefano; Ramsey-Musolf, Michael

    2009-01-01

    It is conventional wisdom that successful electroweak baryogenesis in the Minimal Supersymmetric extension of the Standard Model (MSSM) is in tension with the non-observation of electric dipole moments (EDMs), since the level of CP-violation responsible for electroweak baryogenesis is believed to generate unavoidably large EDMs. We show that CP-violation in the bino-Higgsino sector of the MSSM can account for successful electroweak baryogenesis without inducing large EDMs. This observation weakens the correlation between electroweak baryogenesis and EDMs, and makes the bino-driven electroweak baryogenesis scenario the least constrained by EDM limits. Taking this observation together with the requirement of a strongly first-order electroweak phase transition, we argue that a bino-driven scenario with a light stop is the most phenomenologically viable MSSM electroweak baryogenesis scenario

  17. Higgs Discovery: Impact on Composite Dynamics Technicolor & eXtreme Compositeness Thinking Fast and Slow

    Science.gov (United States)

    Sannino, Francesco

    I discuss the impact of the discovery of a Higgs-like state on composite dynamics starting by critically examining the reasons in favour of either an elementary or composite nature of this state. Accepting the standard model interpretation I re-address the standard model vacuum stability within a Weyl-consistent computation. I will carefully examine the fundamental reasons why what has been discovered might not be the standard model Higgs. Dynamical electroweak breaking naturally addresses a number of the fundamental issues unsolved by the standard model interpretation. However this paradigm has been challenged by the discovery of a not-so-heavy Higgs-like state. I will therefore review the recent discovery1 that the standard model top-induced radiative corrections naturally reduce the intrinsic non-perturbative mass of the composite Higgs state towards the desired experimental value. Not only we have a natural and testable working framework but we have also suggested specic gauge theories that can realise, at the fundamental level, these minimal models of dynamical electroweak symmetry breaking. These strongly coupled gauge theories are now being heavily investigated via first principle lattice simulations with encouraging results. The new findings show that the recent naive claims made about new strong dynamics at the electroweak scale being disfavoured by the discovery of a not-so-heavy composite Higgs are unwarranted. I will then introduce the more speculative idea of extreme compositeness according to which not only the Higgs sector of the standard model is composite but also quarks and leptons, and provide a toy example in the form of gauge-gauge duality.

  18. Quantum transport and electroweak baryogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Konstandin, Thomas

    2013-02-15

    We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.

  19. Quantum transport and electroweak baryogenesis

    International Nuclear Information System (INIS)

    Konstandin, Thomas

    2013-02-01

    We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.

  20. Local conformal symmetry in non-Riemannian geometry and the origin of physical scales

    Energy Technology Data Exchange (ETDEWEB)

    De Cesare, Marco [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Moffat, John W. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Sakellariadou, Mairi [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2017-09-15

    We introduce an extension of the Standard Model and General Relativity built upon the principle of local conformal invariance, which represents a generalization of a previous work by Bars, Steinhardt and Turok. This is naturally realized by adopting as a geometric framework a particular class of non-Riemannian geometries, first studied by Weyl. The gravitational sector is enriched by a scalar and a vector field. The latter has a geometric origin and represents the novel feature of our approach. We argue that physical scales could emerge from a theory with no dimensionful parameters, as a result of the spontaneous breakdown of conformal and electroweak symmetries. We study the dynamics of matter fields in this modified gravity theory and show that test particles follow geodesics of the Levi-Civita connection, thus resolving an old criticism raised by Einstein against Weyl's original proposal. (orig.)

  1. Gauge symmetry breaking

    International Nuclear Information System (INIS)

    Weinberg, S.

    1976-01-01

    The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy

  2. Confinement and dynamical chiral symmetry breaking in QED3

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.; Cloeet, I. C.; Roberts, C. D.

    2008-01-01

    We establish that QED3 can possess a critical number of flavors, N f c , associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and fermion-photon vertex are used to illustrate these observations. The existence and value of N f c are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable

  3. Electroweak Supersymmetry with an Approximate U(1)_PQ

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.; Watari, T.

    2004-05-12

    A predictive framework for supersymmetry at the TeV scale is presented, which incorporates the Ciafaloni-Pomarol mechanism for the dynamical determination of the \\mu parameter of the MSSM. It is replaced by (\\lambda S), where S is a singlet field, and the axion becomes a heavy pseudoscalar, G, by adding a mass, m_G, by hand. The explicit breaking of Peccei-Quinn (PQ) symmetry is assumed to be sufficiently weak at the TeV scale that the only observable consequence is the mass m_G. Three models for the explicit PQ breaking are given; but the utility of this framework is that the predictions for all physics at the electroweak scale are independent of the particular model for PQ breaking. Our framework leads to a theory similar to the MSSM, except that \\mu is predicted by the Ciafaloni-Pomarol relation, and there are light, weakly-coupled states in the spectrum. The production and cascade decay of superpartners at colliders occurs as in the MSSM, except that there is one extra stage of the cascade chain, with the next-to-LSP decaying to its"superpartner" and \\tilde{s}, dramatically altering the collider signatures for supersymmetry. The framework is compatible with terrestrial experiments and astrophysical observations for a wide range of m_G and. If G is as light as possible, 300 keV< m_G< 3 MeV, it can have interesting effects on the radiation energy density during the cosmological eras of nucleosynthesis and acoustic oscillation, leading to predictions for N_{\

  4. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  5. Finite-temperature symmetry restoration in the four-dimensional Φ4 model with four components

    International Nuclear Information System (INIS)

    Jansen, K.

    1990-01-01

    The finite-temperature symmetry restoration in the four-dimensional φ 4 theory with four components and with an infinite self-coupling is studied by means of Monte Carlo simulations on lattices with time extensions L t =4,5,6 and space extensions 12 3 -28 3 . The numerical calculations are done by means of the Wolff cluster algorithm which is very efficient for simulations near a phase transition. The numerical results are in good agreement with an improved one-loop expansion and with the 1/N-expansion, indicating that in the electroweak theory the symmetry restoration temperature T sr is about 350 GeV. (orig.)

  6. Electroweak physics at LEP2

    CERN Document Server

    Hemingway, Richard J

    2002-01-01

    On 2 November 2000 the LEP machine was finally closed after 12 years of glorious running. With the 4 operating detectors, ALEPH, DELPHI, L3, and OPAL, an enormous wealth of new data at the highest centre- of-mass energies has been recorded. These lectures will focus on aspects of electroweak physics within the energy span of LEP2, namely 130-209 GeV. All current data are in very good agreement with the electroweak standard model. (50 refs).

  7. Dynamical instability induced by the zero mode under symmetry breaking external perturbation

    International Nuclear Information System (INIS)

    Takahashi, J.; Nakamura, Y.; Yamanaka, Y.

    2014-01-01

    A complex eigenvalue in the Bogoliubov–de Gennes equations for a stationary Bose-Einstein condensate in the ultracold atomic system indicates the dynamical instability of the system. We also have the modes with zero eigenvalues for the condensate, called the zero modes, which originate from the spontaneous breakdown of symmetries. Although the zero modes are suppressed in many theoretical analyses, we take account of them in this paper and argue that a zero mode can change into one with a pure imaginary eigenvalue by applying a symmetry breaking external perturbation potential. This emergence of a pure imaginary mode adds a new type of scenario of dynamical instability to that characterized by the complex eigenvalue of the usual excitation modes. For illustration, we deal with two one-dimensional homogeneous Bose–Einstein condensate systems with a single dark soliton under a respective perturbation potential, breaking the invariance under translation, to derive pure imaginary modes. - Highlights: • Zero modes are important but ignored in many theories for the cold atomic system. • We discuss the zero mode under symmetry breaking potential in this system. • We consider the zero mode of translational invariance for a single dark soliton. • We show that it turns into an anomalous or pure imaginary mode

  8. Electroweak splitting functions and high energy showering

    Science.gov (United States)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  9. TRISTAN electroweak working group report

    International Nuclear Information System (INIS)

    Hagiwara, K.

    1995-01-01

    Model-independent measurements of quantities sensitive to the electroweak physics at TRISTAN energies are proposed for the processes e + e - → e + e - , μ + μ - , τ + τ - , hadrons and heavy-quark (charm- and bottom-quark) jets. Factorization of the scattering amplitudes into the part which is sensitive to short-distance electroweak physics and the rest which is sensitive to long-distance QED and QCD corrections is made, and uncertainties in the latter are studied quantitatively by using existing programs. Electroweak observables are then chosen for each processes such that the uncertainty from the long-distance physics is small and that they can be updated when we reach a better understanding of the QED and QCD corrections. The new scheme will make the data from high luminosity TRISTAN experiments useful for particle physicists of the present as well as those of the future generation. (author)

  10. Electroweak form factors

    International Nuclear Information System (INIS)

    Singh, S.K.

    2002-01-01

    The present status of electroweak nucleon form factors and the N - Δ transition form factors is reviewed. Particularly the determination of dipole mass M A in the axial vector form factor is discussed

  11. Dynamical symmetry restoration for a higher-derivative four-fermion model in an external electromagnetic field

    International Nuclear Information System (INIS)

    Elizalde, E.; Gavrilov, S.P.; Shil'nov, Yu.I.

    2000-01-01

    A four-fermion model with additional higher-derivative terms is investigated in an external electromagnetic field. The effective potential in the leading order of large-N expansion is calculated in external constant magnetic and electric fields. It is shown that, in contrast to the former results concerning the universal character of 'magnetic catalysis' in dynamical symmetry breaking, in the present higher-derivative model the magnetic field restores chiral symmetry broken initially on the tree level. Numerical results describing a second-order phase transition that accompanies the symmetry restoration at the quantum level are presented. (author)

  12. How to fix a broken symmetry: quantum dynamics of symmetry restoration in a ferromagnetic Bose-Einstein condensate

    International Nuclear Information System (INIS)

    Damski, Bogdan; Zurek, Wojciech H

    2008-01-01

    We discuss the dynamics of a quantum phase transition in a spin-1 Bose-Einstein condensate when it is driven from the magnetized broken-symmetry phase to the unmagnetized 'symmetric' polar phase. We determine where the condensate goes out of equilibrium as it approaches the critical point, and compute the condensate magnetization at the critical point. This is done within a quantum Kibble-Zurek scheme traditionally employed in the context of symmetry-breaking quantum phase transitions. Then we study the influence of the non-equilibrium dynamics near a critical point on the condensate magnetization. In particular, when the quench stops at the critical point, nonlinear oscillations of magnetization occur. They are characterized by a period and an amplitude that are inversely proportional. If we keep driving the condensate far away from the critical point through the unmagnetized 'symmetric' polar phase, the amplitude of magnetization oscillations slowly decreases reaching a nonzero asymptotic value. That process is described by an equation that can be mapped onto the classical mechanical problem of a particle moving under the influence of harmonic and 'anti-friction' forces whose interplay leads to surprisingly simple fixed-amplitude oscillations. We obtain several scaling results relating the condensate magnetization to the quench rate, and verify numerically all analytical predictions

  13. ((ε')/(ε)) and the electroweak penguin contribution

    International Nuclear Information System (INIS)

    Cirigliano, V.; Donoghue, J.F.; Golowich, E.; Maltman, K.

    2003-01-01

    Our dispersive sum rule calculation of the electroweak penguin contribution to ((ε')/(ε)) is reviewed. A more recent analysis based on the finite-energy sum rule approach is described. Finally, a new determination of the electroweak penguin contribution to ((ε')/(ε)) is presented

  14. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Schröck, M.

    2013-01-01

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author) [de

  15. Cosmological consequences of nearly conformal dynamics at the TeV scale

    International Nuclear Information System (INIS)

    Konstandin, Thomas; Servant, Géraldine

    2011-01-01

    Nearly conformal dynamics at the TeV scale as motivated by the hierarchy problem can be characterized by a stage of significant supercooling at the electroweak epoch. This has important cosmological consequences. In particular, a common assumption about the history of the universe is that the reheating temperature is high, at least high enough to assume that TeV-mass particles were once in thermal equilibrium. However, as we discuss in this paper, this assumption is not well justified in some models of strong dynamics at the TeV scale. We then need to reexamine how to achieve baryogenesis in these theories as well as reconsider how the dark matter abundance is inherited. We argue that baryonic and dark matter abundances can be explained naturally in these setups where reheating takes place by bubble collisions at the end of the strongly first-order phase transition characterizing conformal symmetry breaking, even if the reheating temperature is below the electroweak scale ∼ 100 GeV. In particular, non-thermal production of heavy WIMPs during bubble collisions becomes a well-motivated possibility. We also discuss inflation as well as gravity wave smoking gun signatures of this class of models

  16. Inflation and cosmic strings in models with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Matheson, A.M.; Brandenberger, R.H.

    1989-01-01

    We derive the effective action for the composite field which in dynamical symmetry breaking plays the role of the Higgs field. We show that this effective action does not give rise to inflation. It is, however, possible to obtain topological defects such as cosmic strings. There will be fermionic zero modes trapped on the strings, and the strings will therefore be superconducting in a generalized sense. (orig.)

  17. The heavy top quark and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States)

    1997-01-01

    Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed.

  18. The heavy top quark and supersymmetry

    International Nuclear Information System (INIS)

    Hall, L.J.; Univ. of California, Berkeley, CA

    1996-01-01

    Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the standard model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the standard model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed

  19. The heavy top quark and supersymmetry

    International Nuclear Information System (INIS)

    Hall, L.J.

    1997-01-01

    Three aspects of supersymmetric theories are discussed: electroweak symmetry breaking, the issues of flavor, and gauge unification. The heavy top quark plays an important, sometimes dominant, role in each case. Additional symmetries lead to extensions of the Standard Model which can provide an understanding for many of the outstanding problems of particle physics. A broken supersymmetric extension of spacetime allows electroweak symmetry breaking to follow from the dynamics of the heavy top quark; an extension of isospin provides a constrained framework for understanding the pattern of quark and lepton masses; and a grand unified extension of the Standard Model gauge group provides an elegant understanding of the gauge quantum numbers of the components of a generation. Experimental signatures for each of these additional symmetries are discussed

  20. Electroweak measurements with the ATLAS detector

    CERN Document Server

    Krasnopevtsev, Dimitriy; The ATLAS collaboration

    2015-01-01

    Electroweak measurements with the ATLAS detector -First Run 2 measurements of electroweak processes -Run 1 measurements of SM parameters, i.e. W mass and weak mixing angle -Recent Run 1 measurements of di- and multi-boson production cross-sections as well as vector boson fusion and scattering processes at 8 TeV -Recent Run 1 measurements of exclusive di-lepton and WW production

  1. Baryogenesis at the electroweak scale

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, A [Saha Inst. of Nuclear Physics, Calcutta (India); Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-10-01

    The generation of the baryon asymmetry of the universe is considered in the standard model of the electroweak theory with simple extensions of the Higgs sector. The propagation of quarks of masses up to about 5 GeV are considered, taking into account their markedly different dispersion relations due to propagation through the hot electroweak plasma. It is shown that the contribution of the b quark to the baryon asymmetry can be comparable to that for the t quark considered earlier. (orig.)

  2. Baryogenesis at the electroweak scale

    International Nuclear Information System (INIS)

    Kundu, A.; Mallik, S.

    1995-01-01

    The generation of the baryon asymmetry of the universe is considered in the standard model of the electroweak theory with simple extensions of the Higgs sector. The propagation of quarks of masses up to about 5 GeV are considered, taking into account their markedly different dispersion relations due to propagation through the hot electroweak plasma. It is shown that the contribution of the b quark to the baryon asymmetry can be comparable to that for the t quark considered earlier. (orig.)

  3. Electroweak boson production at LHCb

    CERN Document Server

    Sestini, Lorenzo

    2018-01-01

    The LHCb experiment offers a complementary phase space to ATLAS and CMS to study electroweak processes, thanks to the forward acceptance and the large bandwidth of the trigger allowing low energy thresholds. For this reason electroweak measurements at LHCb can provide unique constraints to the Parton Distribution Functions. Moreover these measurements can be used to validate reconstruction techniques. In these proceedings the latest measurements on W and Z bosons production performed during the LHC Run I and Run II data taking are presented.

  4. Spontaneous mirror left-right symmetry breaking for leptogenesis parametrized by Majorana neutrino mass matrix

    Science.gov (United States)

    Gu, Pei-Hong

    2017-10-01

    We introduce a mirror copy of the ordinary fermions and Higgs scalars for embedding the SU(2) L × U(1) Y electroweak gauge symmetry into an SU(2) L × SU(2) R × U(1) B-L left-right gauge symmetry. We then show the spontaneous left-right symmetry breaking can automatically break the parity symmetry motivated by solving the strong CP problem. Through the SU(2) R gauge interactions, a mirror Majorana neutrino can decay into a mirror charged lepton and two mirror quarks. Consequently we can obtain a lepton asymmetry stored in the mirror charged leptons. The Yukawa couplings of the mirror and ordinary charged fermions to a dark matter scalar then can transfer the mirror lepton asymmetry to an ordinary lepton asymmetry which provides a solution to the cosmic baryon asymmetry in association with the SU(2) L sphaleron processes. In this scenario, the baryon asymmetry can be well described by the neutrino mass matrix up to an overall factor.

  5. Spontaneous emergence of gauge symmetry

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1987-05-01

    Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)

  6. Dynamical breakdown of chiral symmetry in vectorial theories: QED and QCD

    International Nuclear Information System (INIS)

    Garcia, J.C.M.

    1987-01-01

    Using a variational approach for the Effective Potential for composite operators we dicuss the dynamical breakdown of chiral symmetry in two vectorial theories: Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). We study the energetic aspects of the problem calculating the Effective Potential with the asymptotic nonperturbative solutions of the Schwinger-Dyson equation for the fermion selfenergy. (author) [pt

  7. Connections between the dynamical symmetries in the microscopic shell model

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, A. I., E-mail: anageorg@issp.bas.bg [Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Drumev, K. P. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria)

    2016-03-25

    The dynamical symmetries of the microscopic shell model appear as the limiting cases of a symmetry adapted Pairing-Plus-Quadrupole Model /PQM/, with a Hamiltonian containing isoscalar and isovector pairing and quadrupole interactions. We establish a correspondence between each of the three types of pairing bases and Elliott’s SU(3) basis, that describes collective rotation of nuclear systems with quadrupole deformation. It is derived from their complementarity to the same LS coupling chain of the shell model number conserving algebra. The probability distribution of the S U(3) basis states within the pairing eigenstates is also obtained through a numerical diagonalization of the PQM Hamiltonian in each limit. We introduce control parameters, which define the phase diagram of the model and determine the role of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  8. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    International Nuclear Information System (INIS)

    Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang

    2015-01-01

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions

  9. Orthogonal Technicolor with Isotriplet Dark Matter on the Lattice

    DEFF Research Database (Denmark)

    Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2013-01-01

    results for the spectrum of the theory. In particular we measure the pseudoscalar, vector and axial meson masses. The data are consistent with a chiral symmetry breaking scenario rather than a conformal one. When used to break the electroweak symmetry dynamically the model leads to a natural dark matter...

  10. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi [Kanazawa Univ., Inst. for Theoretical Physics, Kanazawa, Ishikawa (Japan)

    2000-04-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  11. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi

    2000-01-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  12. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .

  13. An electroweak enigma: Hyperon radiative decays

    Energy Technology Data Exchange (ETDEWEB)

    Vorobyov, A., (spokesperson); /St. Petersburg, INP; Jastrzembski, E.; Lach, J.; Marriner, J.; /Fermilab; Golovtsov, V.; Krivshich, A.; Schegelsky, V.; Smirnov, N.; Terentiev, N.K.; Uvarov, L.; /St. Petersburg, INP; McCliment, E.; Newsom, C.; Norbeck, E.; /Iowa U.; Cooper, P.S.; /Yale U.

    1985-04-03

    The main thrust of this experiment will be to measure the asymmetry parameter for the electroweak decay {Sigma}{sup +} {yields} p{gamma} and verify its branching ratio. As a secondary goal they will measure, or set new upper limits for, the branching ratio of the electroweak decay {Xi}{sup -} {yields} {Sigma}{sup -}{gamma}. Since the {Xi}{sup -} are expected to be polarized, information on the asymmetry parameter may also be available.

  14. Dynamical chiral-symmetry breaking in dual QCD

    International Nuclear Information System (INIS)

    Krein, G.; Williams, A.G.

    1991-01-01

    We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ

  15. Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices

    International Nuclear Information System (INIS)

    Zhao Gang-Ling; Chen Li-Qun; Fu Jing-Li; Hong Fang-Yu

    2013-01-01

    In this paper, Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated. Firstly, the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices. Secondly, for cases of the two lattices, based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates, we present the quasi-extremal equation, the discrete analogues of Noether identity, Noether theorems, and the Noether conservation laws of the systems. Thirdly, in cases of the two lattices, we study the Mei symmetry in which we give the discrete analogues of the criterion, the theorem, and the conservative laws of Mei symmetry for the systems. Finally, an example is discussed for the application of the results

  16. Opening the window for electroweak baryogenesis

    CERN Document Server

    Carena, M S; Wagner, C E M

    1996-01-01

    We perform an analysis of the behaviour of the electroweak phase transition in the Minimal Supersymmetric Standard Model, in the presence of light stops. We show that, in previously unexplored regions of parameter space, the order parameter v(T_c)/T_c can become significantly larger than one, for values of the Higgs and supersymmetric particle masses consistent with the present experimental bounds. This implies that baryon number can be efficiently generated at the electroweak phase transition. As a by-product of this study, we present an analysis of the problem of colour breaking minima at zero and finite temperature, and we use it to investigate the region of parameter space preferred by the best fit to the present precision electroweak measurement data, in which the left-handed stops are much heavier than the right-handed ones.

  17. Littlest Higgs model and W pair production at international linear ...

    Indian Academy of Sciences (India)

    gauge sector of the theory. An appealing aspect of the scenario is that the scalars are not introduced ad hoc-ly, and the symmetry breaking is generated dynamically. Although LHC is expected to investigate the electroweak symmetry breaking. (EWSB) mechanism, it will require the clean environment of the proposed inter-.

  18. Test of Symmetries with Neutrons and Nuclei

    International Nuclear Information System (INIS)

    Paul, Stephan

    2009-01-01

    Precision experiments at low energies probing weak interaction are a very promising and complementary tool for investigating the structure of the electro-weak sector of the standard model, and for searching for new phenomena revealing signs for an underlaying new symmetry. With the advent of new technologies in particle trapping and production of beams for exotic nuclei as well as ultracold neutrons, we expect one or two orders of magnitude gain in precision. This corresponds to the progress expected by new high luminosity B-factories or the LHC. Domains studied are β-decays where decay correlations, partial or total decay rates may reveal the nature of the left-right structure of the interaction and the investigation of discrete symmetries. Here the search for a finite electric dipole moment which, due to its CP-violating nature were sensational by itself, could shed light on the structure of the vacuum at very small distances. Last but not least ideas of a mirror world can be extended to the sector of baryons which can be studied with neutrons.

  19. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  20. Coupling of tt̄ and γγ with a strongly interacting Electroweak Symmetry Breaking Sector

    Directory of Open Access Journals (Sweden)

    Delgado Rafael L.

    2017-01-01

    Full Text Available We report the coupling of an external γγ or tt̄ state to a strongly interacting EWSBS satisfying unitarity. We exploit perturbation theory for those coupling of the external state, whereas the EWSBS is taken as strongly interacting. We use a modified version of the IAM unitarization procedure to model such a strongly interacting regime. The matrix elements VLVL → VLVL, VLVL ↔ hh, hh → hh, VLVL ↔ {γγ, tt̄}, hh ↔ {γγ, tt̄} are all computed to NLO in perturbation theory with the Nonlinear Effective Field Theory of the EWSBS, within the Equivalence Theorem. This allows us to describe resonances of the electroweak sector that may be found at the LHC and their effect on other channels such as γγ or tt̄ where they may be discovered.

  1. Algebra of strong and electroweak interactions

    International Nuclear Information System (INIS)

    Bolokhov, S.V.; Vladimirov, Yu.S.

    2004-01-01

    The algebraic approach to describing the electroweak and strong interactions is considered within the frames of the binary geometrophysics, based on the principles of the Fokker-Feynman direct interparticle interaction theories of the Kaluza-Klein multidimensional geometrical models and the physical structures theory. It is shown that in this approach the electroweak and strong elementary particles interaction through the intermediate vector bosons, are characterized by the subtypes of the algebraic classification of the complex 3 x 3-matrices [ru

  2. Can a pseudo-Nambu-Goldstone Higgs lead to symmetry non-restoration?

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Can; Swaminathan, Sivaramakrishnan [Weinberg Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin,2515 Speedway Stop C1608, Austin, TX, 78712-1197 (United States)

    2016-01-04

    The calculation of finite temperature contributions to the scalar potential in a quantum field theory is similar to the calculation of loop corrections at zero temperature. In natural extensions of the Standard Model where loop corrections to the Higgs potential cancel between Standard Model degrees of freedom and their symmetry partners, it is interesting to contemplate whether finite temperature corrections also cancel, raising the question of whether a broken phase of electroweak symmetry may persist at high temperature. It is well known that this does not happen in supersymmetric theories because the thermal contributions of bosons and fermions do not cancel each other. However, for theories with same spin partners, the answer is less obvious. Using the Twin Higgs model as a benchmark, we show that although thermal corrections do cancel at the level of quadratic divergences, subleading corrections still drive the system to a restored phase. We further argue that our conclusions generalize to other well-known extensions of the Standard Model where the Higgs is rendered natural by being the pseudo-Nambu-Goldstone mode of an approximate global symmetry.

  3. Model with a gauged lepton flavor SU(2) symmetry

    Science.gov (United States)

    Chiang, Cheng-Wei; Tsumura, Koji

    2018-05-01

    We propose a model having a gauged SU(2) symmetry associated with the second and third generations of leptons, dubbed SU(2) μτ , of which U{(1)}_{L_{μ }-L_{τ }} is an Abelian subgroup. In addition to the Standard Model fields, we introduce two types of scalar fields. One exotic scalar field is an SU(2) μτ doublet and SM singlet that develops a nonzero vacuum expectation value at presumably multi-TeV scale to completely break the SU(2) μτ symmetry, rendering three massive gauge bosons. At the same time, the other exotic scalar field, carrying electroweak as well as SU(2) μτ charges, is induced to have a nonzero vacuum expectation value as well and breaks mass degeneracy between the muon and tau. We examine how the new particles in the model contribute to the muon anomalous magnetic moment in the parameter space compliant with the Michel decays of tau.

  4. Implementation of electroweak corrections in the POWHEG BOX: single W production

    CERN Document Server

    Barzè, L; Nason, P; Nicrosini, O; Piccinini, F

    2012-01-01

    We present a fully consistent implementation of electroweak and strong radiative corrections to single W hadroproduction in the POWHEG BOX framework, treating soft and collinear photon emissions on the same ground as coloured parton emissions. This framework can be easily extended to more complex electroweak processes. We describe how next-to-leading order (NLO) electroweak corrections are combined with the NLO QCD calculation, and show how they are interfaced to QCD and QED shower Monte Carlo. The resulting tool fills a gap in the literature and allows to study comprehensively the interplay of QCD and electroweak effects to W production using a single computational framework. Numerical comparisons with the predictions of the electroweak generator HORACE, as well as with existing results on the combination of electroweak and QCD corrections to W production, are shown for the LHC energies, to validate the reliability and accuracy of the approach

  5. Searches for Electroweak SUSY by ATLAS and CMS

    CERN Document Server

    Khoo, Teng Jian; The ATLAS collaboration

    2018-01-01

    While strongly-produced SUSY and third-generation squark searches have already breached the TeV mass range, direct production of electroweak gauginos is less tightly constrained. New searches are presented, showcasing novel strategies for filling in the gaps in sensitivity to electroweak SUSY at ATLAS and CMS.

  6. The significance of the heavy top quark

    International Nuclear Information System (INIS)

    Simmons, Elizabeth H.

    1997-01-01

    Experiment shows that the top quark is far heavier than the other elementary fermions. This finding has stimulated research on theories of electroweak and flavor symmetry breaking that include physics beyond the standard model. Efforts to accommodate a heavy top quark within existing frameworks have revealed constraints on model-building. Other investigations have started from the premise that a large top quark mass could signal a qualitative difference between the top quark and other fermions, perhaps in the form of new interactions peculiar to the top quark. Such new dynamics may also help answer existing questions about electroweak and flavor physics. This talk explores the implications of the heavy top quark in the context of weakly-coupled (e.g., SUSY) and strongly-coupled (e.g., technicolor) theories of electroweak symmetry breaking

  7. Electroweak boson production in Pb+Pb

    CERN Document Server

    Balestri, T; The ATLAS collaboration

    2013-01-01

    Lead-lead collisions at the LHC are capable of producing a system of deconfined quarks and gluons at unprecedented energy density and temperature. Partonic-level interactions and energy-loss mechanisms in the medium can be studied with the aid of electroweak bosons which carry important information about the properties of the medium. Electroweak bosons form a class of unique high-$p_{T}$ probes because their decay products do not interact with the strongly-coupled medium, providing a benchmark for a variety of other phenomena measured with strongly interacting particles. The ATLAS experiment measures isolated high-$p_{T}$ photons, W and Z bosons via different decay channels. New analyses of experimental data obtained at the LHC with lead-lead beams at $\\sqrt{s_{NN}}$ = 2.76 TeV. This talk will present a comprehensive study of the scaling properties of electroweak bosons showing linear proportionality of production rates to the nuclear thickness function; rapidity distributions W-decays directly sensitivity to...

  8. Electroweak symmetry breaking in the light of LHC

    International Nuclear Information System (INIS)

    Kubik, B.

    2012-10-01

    The extra-dimensional extensions of the Standard Model (SM) of particles are now in a very active epoch of development. The motivations of introducing extra dimensions are based on one hand on string theories that require the existence of new dimensions to be consistent. On the other hand such theories can potentially explain the hierarchy problem, number of fermion generations, proton stability and other enigmas of the Standard Model. The common feature of these models is that they provide a new neutral weakly interacting particle - perfect candidate to the Dark Matter (DM). Its stability is preserved by the so-called KK parity which prohibits the decays of the the lightest Kaluza-Klein particle (LKP) into SM particles. The geometry of the underlying space determines the particle spectrum of the model, thus the mass and the spin of the DM candidate, which in turn plays the key role in the phenomenological studies We present a model with two universal extra dimensions compactified on a real projective plane. This particular geometry is chosen because chiral fermions can be defined on such orbifold and the stability of the neutral dark matter candidate arise naturally from the intrinsic geometrical properties of the space without adding any new symmetries ad hoc. We present the particle spectrum at loop order up to the second level in Kaluza-Klein expansion. The particularity of the spectrum is that the mass splittings within each KK level are highly degenerated providing a very interesting potential signatures in the LHC. We study the dark matter phenomenology in our model and constrain the parameter space by comparing our results with WMAP (Wilkinson Microwave Anisotropy Probe) data and direct detection experiments. Using the obtained bounds we focus on the collider phenomenology of our model. (author)

  9. Conformal Symmetry as a Template for QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2004-08-04

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero {beta} function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as {tau} decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized.

  10. Conformal Symmetry as a Template for QCD

    International Nuclear Information System (INIS)

    Brodsky, S

    2004-01-01

    Conformal symmetry is broken in physical QCD; nevertheless, one can use conformal symmetry as a template, systematically correcting for its nonzero β function as well as higher-twist effects. For example, commensurate scale relations which relate QCD observables to each other, such as the generalized Crewther relation, have no renormalization scale or scheme ambiguity and retain a convergent perturbative structure which reflects the underlying conformal symmetry of the classical theory. The ''conformal correspondence principle'' also dictates the form of the expansion basis for hadronic distribution amplitudes. The AdS/CFT correspondence connecting superstring theory to superconformal gauge theory has important implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for hard exclusive processes as well as determining essential aspects of hadronic light-front wavefunctions. Theoretical and phenomenological evidence is now accumulating that QCD couplings based on physical observables such as τ decay become constant at small virtuality; i.e., effective charges develop an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. The near-constant behavior of effective couplings also suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer. The importance of using an analytic effective charge such as the pinch scheme for unifying the electroweak and strong couplings and forces is also emphasized

  11. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.

    1994-06-01

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)

  12. Dynamical chiral symmetry breaking and pion decay constant

    International Nuclear Information System (INIS)

    Gogohia, V.Sh.; Kluge, Gy.

    1991-08-01

    Flavour non-singlet, chiral axial-vector Ward-Takahashi identity is investigated in the framework of dynamical chiral symmetry breaking. The use of the condition of stationarity for the bound-state amplitude is proposed in order to fully determine this quantity and the regular piece of the corresponding axial vertex. This makes it possible to express the pion decay constant in terms of the quark propagator variables only. An exact expression was found for the pion decay constant in current algebra and in Jackiw-Johnson representation as well. We also find a new expression for the pion decay constant in the Pagels-Stokar-Cornwall variables within the framework of Jackiw-Johnson representation. (author) 22 refs.; 2 figs

  13. Framework for an asymptotically safe standard model via dynamical breaking

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters...... with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings....

  14. Phenomenology of symmetry breaking from extra dimensions

    International Nuclear Information System (INIS)

    Alfaro, Jorge; Broncano, Alicia; Belen Gavela, Maria; Rigolin, Stefano; Salvatori, Matteo

    2007-01-01

    Motivated by the electroweak hierarchy problem, we consider theories with two extra dimensions in which the four-dimensional scalar fields are components of gauge boson in full space. We explore the Nielsen-Olesen instability for SU(N) on a torus, in the presence of a magnetic background. A field theory approach is developed, computing explicitly the minimum of the complete effective potential, including tri-linear and quartic couplings and determining the symmetries of the stable vacua. We also develop appropriate gauge-fixing terms when both Kaluza-Klein and Landau levels are present and interacting, discussing the interplay between the possible six and four dimensional choices. The equivalence between coordinate dependent and constant Scherk-Schwarz boundary conditions - associated to either continuous or discrete Wilson lines - is analyzed

  15. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  16. An extended technicolor model

    International Nuclear Information System (INIS)

    Appelquist, T.; Terning, J.

    1994-01-01

    An extended technicolor model is constructed. Quark and lepton masses, spontaneous CP violation, and precision electroweak measurements are discussed. Dynamical symmetry breaking is analyzed using the concept of the big MAC (most attractive channel)

  17. Combined QCD and electroweak analysis of HERA data

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science; Collaboration: ZEUS Collaboration; and others

    2016-03-15

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  18. Combined QCD and electroweak analysis of HERA data

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2016-03-01

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  19. Combined QCD and electroweak analysis of HERA data

    CERN Document Server

    Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A

    2016-05-03

    A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.

  20. Electroweak bubble wall speed limit

    Energy Technology Data Exchange (ETDEWEB)

    Bödeker, Dietrich [Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld (Germany); Moore, Guy D., E-mail: bodeker@physik.uni-bielefeld.de, E-mail: guymoore@ikp.physik.tu-darmstadt.de [Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64289 Darmstadt (Germany)

    2017-05-01

    In extensions of the Standard Model with extra scalars, the electroweak phase transition can be very strong, and the bubble walls can be highly relativistic. We revisit our previous argument that electroweak bubble walls can 'run away,' that is, achieve extreme ultrarelativistic velocities γ ∼ 10{sup 14}. We show that, when particles cross the bubble wall, they can emit transition radiation. Wall-frame soft processes, though suppressed by a power of the coupling α, have a significance enhanced by the γ-factor of the wall, limiting wall velocities to γ ∼ 1/α. Though the bubble walls can move at almost the speed of light, they carry an infinitesimal share of the plasma's energy.

  1. Dark matter from unification

    DEFF Research Database (Denmark)

    Kainulainen, Kimmo; Tuominen, Kimmo; Virkajärvi, Jussi Tuomas

    2013-01-01

    We consider a minimal extension of the Standard Model (SM), which leads to unification of the SM coupling constants, breaks electroweak symmetry dynamically by a new strongly coupled sector and leads to novel dark matter candidates. In this model, the coupling constant unification requires...... eigenstates of this sector and determine the resulting relic density. The results are constrained by available data from colliders and direct and indirect dark matter experiments. We find the model viable and outline briefly future research directions....... the existence of electroweak triplet and doublet fermions singlet under QCD and new strong dynamics underlying the Higgs sector. Among these new matter fields and a new right handed neutrino, we consider the mass and mixing patterns of the neutral states. We argue for a symmetry stabilizing the lightest mass...

  2. The η6 at LEP and TRISTAN

    International Nuclear Information System (INIS)

    Kang, K.

    1993-01-01

    The η 6 is a open-quotes heavy axionclose quotes remnant of dynamical electroweak symmetry breaking by a color sextet quark condensate. Electroweak scale color instanton interactions allow it to be both very massive and yet be responsible for Strong CP conservation in the color triplet quark sector. It may have been seen at LEP via its two-photon decay mode and at TRISTAN via its hadronic decay modes

  3. Approximate P-wave ray tracing and dynamic ray tracing in weakly orthorhombic media of varying symmetry orientation

    KAUST Repository

    Masmoudi, Nabil; Pšenčí k, Ivan

    2014-01-01

    We present an approximate, but efficient and sufficiently accurate P-wave ray tracing and dynamic ray tracing procedure for 3D inhomogeneous, weakly orthorhombic media with varying orientation of symmetry planes. In contrast to commonly used approaches, the orthorhombic symmetry is preserved at any point of the model. The model is described by six weak-anisotropy parameters and three Euler angles, which may vary arbitrarily, but smoothly, throughout the model. We use the procedure for the calculation of rays and corresponding two-point traveltimes in a VSP experiment in a part of the BP benchmark model generalized to orthorhombic symmetry.

  4. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    Science.gov (United States)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  5. Energy helps accuracy: electroweak precision tests at hadron colliders

    CERN Document Server

    Farina, Marco

    2017-09-10

    We show that high energy measurements of Drell-Yan at the LHC can serve as electroweak precision tests. Dimension-6 operators, from the Standard Model Effective Field Theory, modify the high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton invariant mass spectrum, from neutral current Drell-Yan at 8 TeV, have comparable sensitivity to LEP. We propose measuring the transverse mass spectrum of charged current Drell-Yan, which can surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new precision frontier.

  6. Energy helps accuracy: Electroweak precision tests at hadron colliders

    Directory of Open Access Journals (Sweden)

    Marco Farina

    2017-09-01

    Full Text Available We show that high energy measurements of Drell–Yan at the LHC can serve as electroweak precision tests. Dimension-6 operators, from the Standard Model Effective Field Theory, modify the high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton invariant mass spectrum, from neutral current Drell–Yan at 8 TeV, have comparable sensitivity to LEP. We propose measuring the transverse mass spectrum of charged current Drell–Yan, which can surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new precision frontier.

  7. A practical introduction to electroweak radiative corrections

    International Nuclear Information System (INIS)

    Drees, M.

    1991-05-01

    This is a brief introduction into electroweak radiative corrections within the Standard Model, with the emphasis on performing actual calculations. To this end, a complete set of expressions is given that allows the computation of the ρ parameter, the W mass, and Z→fanti f decays for massless fermions, where the anti Manti S scheme has been used. I conclude with an assessment of what we have learned so far from electroweak precision experiments, and a brief outlook. (orig.)

  8. Electroweak boson production with jets at CMS

    CERN Document Server

    Hortiangtham, Apichart

    2017-01-01

    The production of electroweak bosons (W, Z or gamma) in association with jets is a stringent test of perturbative QCD and is a background process in searches for new physics. Total and differential cross-section measurements of electroweak bosons produced in association with jets (and heavy flavour quarks) in proton-proton collisions are presented. The data have been recorded with the CMS detector at the LHC and are compared to the predictions of event generators and theoretical calculations.

  9. Electroweak penguin B decays

    CERN Document Server

    Nikodem, Thomas

    2016-01-01

    Flavour Changing Neutral Currents (FCNC) are sensitive probes for physics beyond the Standard Model (SM), so-called New Physics. An example of a FCNC is the $b \\to s$ quark transition described by the electroweak penguin Feynman diagram shown in Figure 1. In the SM such FCNC are only allowed with a loop structure (as e:g: shown in the figure) and not by tree level processes. In the loops heavy particles appear virtually and do not need to be on shell. Therefore also not yet discovered heavy particles with up to a mass $\\mathcal{O}$(TeV) could virtually contribute significantly to observables. Several recent measurements of electroweak penguin B decays exhibit interesting tensions with SM predictions, most prominently in the angular observable $P'_5$ 5 of the decay $B^0 \\to K^{*0} \\mu^+ \\mu^1$[1], which triggered a lot of discussion in the theory community [2]-[14].

  10. Supersymmetric electro-weak effects on gsub(μ)-2

    International Nuclear Information System (INIS)

    Yuan, T.C.; Arnowitt, R.; Chamseddine, A.H.; Nath, P.

    1984-01-01

    A model independent analysis of the supersymmetric electroweak contribution to gsub(μ)-2 is discussed within the framework of N=1 Supergravity unified theory. A detailed comparison with existing experiment of two models (R.G. and T.B.) is carried out. The supersymmetric electro-weak contributions are found to be characteristically different and generally larger than the electro-weak contributions of the standard theory, and in many cases significantly larger. Effects of the hidden sector and the photino mass dependence of gsub(μ)-2 are also investigated. Present data already eliminates some choices of parameters. Reduction of existing experimental errors by a factor of 3 will make contact with most R.G. models and by a factor of 10 with most T.B. models. (orig.)

  11. Geometric mechanics of ray optics as particle dynamics: refraction index with cylindrical symmetry

    Science.gov (United States)

    Cortés, Emilio; Ruiz, Melina

    2017-09-01

    Starting from the Fermat principle of geometrical optics, we analyse the ray dynamics in a graded refractive index system device with cylindrical symmetry and a refractive index that decreases parabolically with the radial coordinate. By applying Hamiltonian dynamics to the study of the ray path we obtain the strict equivalence of this optical system with the dynamics of a particle with an equivalent mass moving in a potential function that may exhibit a well, depending on the value of some associated parameters. We analyse the features of this potential function as well as the energy values and the symmetries of the system and see that both the azimuthal and axial components of the optical conjugate momentum are two constants of motion. The phase space relation for the momentum radial component is obtained analytically, and then we can obtain the components of the momentum vector at any point, given the value of the radial coordinate, and from this we have the direction of the ray. We discuss the optical path length as an action functional and we can evaluate this stationary path, with initial and final arbitrary points, as a line integral of the optical momentum, by showing that this momentum is a conservative vector field. We integrate the equations of motion numerically and obtain different ray paths which depend on the initial conditions. We believe that with this work the physics student will appreciate very clearly the close connection between geometrical optics and particle Hamiltonian dynamics.

  12. Reformulation od spontaneous symmetry breaking and the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Rawat, A.S.; Rawat, S.; Negi, O.P.S.

    1999-01-01

    Spontaneous symmetry breaking and the Weinberg-Salam model have been reformulated in terms of quaternion-valued field variables. The quaternion-valued scalar Lagrangian reduces to four different field equations associated with the scalar quartet of a quaternion field φ φ 0 +e 1φ1 +e 2φ2 +e 3φ3 . It has been shown that the quaternion gauge group SO(4) is spontaneously broken to two gauge groups of SU(2) non Abelian gauge fields. The Weinberg-Salam model of electroweak interaction has been extensively studied to enlarge the gauge group structure SU(2) L xSU(2) R xU(1)

  13. arXiv Framework for an asymptotically safe Standard Model via dynamical breaking

    CERN Document Server

    Abel, Steven

    2017-09-15

    We present a consistent embedding of the matter and gauge content of the Standard Model into an underlying asymptotically safe theory that has a well-determined interacting UV fixed point in the large color/flavor limit. The scales of symmetry breaking are determined by two mass-squared parameters with the breaking of electroweak symmetry being driven radiatively. There are no other free parameters in the theory apart from gauge couplings.

  14. O(5) x U(1) electroweak theory

    International Nuclear Information System (INIS)

    Mukku, C.; Sayed, W.A.

    1981-01-01

    An anomaly-free O(5) x U(1) theory of electroweak interactions is described which provides a unified description of electroweak phenomena for two families of standard leptons and quarks. No ''new'' nonsequential-type fermions are introduced, unlike the case for all past studies based on this group. The present scheme requires the introduction of two further charged and three more neutral gauge fields over and above those of SU(2) x U(1) giving rise to new neutral and charged currents

  15. Dynamical generation of a composite quark-lepton symmetry

    International Nuclear Information System (INIS)

    Yasue, Masaki.

    1981-05-01

    We demonstrate the possibility that a basic [SU(2)]sup(N) symmetry of N subconstituents, which describes particle and antiparticle transitions, generates at most an ''effective'' SO(2N) symmetry and at least an ''effective'' SU(N) x U(1) symmetry of composite quarks and leptons whose states are specified by the N different kinds of subconstituents. The generators of the ''effective'' symmetry, are identified by the correct algebraic properties specific to SO(2N) of composite operators constructed from the [SU(2)]sup(N)-operators acting on the composite quark-lepton states. The composite quarks and leptons are found to respect SO(4) x SO(6) or SU(2)sub(L) x U(1)sub(R) x SU(3)sub(c) x U(1)sub(B-L) according to a new selection rule, which are generated by the bilinear products of the raising and lowering operators of [SU(2)] 5 . This construction of the SO(4) x SO(6) generators allows us to uniquely define the five quantum numbers of that symmetry even at the subconstituent level. The full SO(10) generators can be also constructed; however, one needs a newly arranged [SU(2)] 5 symmetry only defined at the composite level, the generators of which turn out to be at most N body operators of the original [SU(2)] 5 . (author)

  16. Instability of hot electroweak theory: Bounds on mH and mt

    International Nuclear Information System (INIS)

    Arnold, P.; Vokos, S.

    1991-01-01

    The electroweak vacuum need not be absolutely stable. For certain top-quark and Higgs-boson masses in the minimal standard model, it is instead metastable with a lifetime exceeding the present age of the Universe. The decay of our vacuum may be nucleated at low temperature by quantum tunneling or at high temperature by thermal excitation. We show that the requirement that the vacuum survive the high temperatures of the early Universe places the strongest constraints from vacuum stability on the top-quark and Higgs-boson masses in the minimal standard model. If a single Higgs boson is found experimentally, these constraints may place an upper bound on the scale of new physics beyond the minimal standard model. In contrast with other work, we examine temperatures very large compared to the scale of weak symmetry restoration and find much stronger bounds. We also present a simple analytic approximation that directly relates the bounds to the running coupling constants of the minimal standard model

  17. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    Science.gov (United States)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  18. Dynamical relaxation in 2HDM models

    Science.gov (United States)

    Lalak, Zygmunt; Markiewicz, Adam

    2018-03-01

    Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.

  19. Study of Electroweak Gauge Boson Scattering in the WZ Channel with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00355153; Kobel, Michael; Petridou, Chariclia; Kobel, Michael; Zur Nedden, Martin

    The Standard Model of particle physics is a very well tested gauge theory describing the strong, weak and electromagnetic interactions between elementary particles through the exchange of force carriers called gauge bosons. Its high predictive power stems from its ability to derive the properties of the interactions it describes from fundamental symmetries of nature. Yet, it is not a final theory as there are several phenomena it cannot explain. Furthermore, not all of its predictions have been studied with sufficient precision, e.g. the properties of the newly discovered Higgs boson. Therefore, further probing of the Standard Model is necessary and may result in finding possible indications for new physics. The non-abelian SU(2)L×U(1)Y symmetry group determines the properties of the electromagnetic and weak interactions giving rise to self-couplings between the electroweak gauge bosons, i.e. the massive W and Z boson, and the massless photon, via triple and quartic gauge couplings. Studies carried out over ...

  20. Dynamic generation of light states with discrete symmetries

    Science.gov (United States)

    Cordero, S.; Nahmad-Achar, E.; Castaños, O.; López-Peña, R.

    2018-01-01

    A dynamic procedure is established within the generalized Tavis-Cummings model to generate light states with discrete point symmetries, given by the cyclic group Cn. We consider arbitrary dipolar coupling strengths of the atoms with a one-mode electromagnetic field in a cavity. The method uses mainly the matter-field entanglement properties of the system, which can be extended to any number of three-level atoms. An initial state constituted by the superposition of two states with definite total excitation numbers, |ψ〉 M1,and |ψ〉 M 2, is considered. It can be generated by the proper selection of the time of flight of an atom passing through the cavity. We demonstrate that the resulting Husimi function of the light is invariant under cyclic point transformations of order n =| M1-M2| .

  1. Current-Current Interactions, Dynamical Symmetry - and Quantum Chromodynamics.

    Science.gov (United States)

    Neuenschwander, Dwight Edward, Jr.

    Quantum Chromodynamics with massive gluons (gluon mass (TBOND) xm(,p)) in a contact-interaction limit called CQCD (strong coupling g (--->) (INFIN); x (--->) (INFIN)), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. (1) Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x('2) slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g('2)/x('2) << 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry -breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed.

  2. Explaining the Higgs decays at the LHC with an extended electroweak model

    International Nuclear Information System (INIS)

    Alves, Alexandre; Ramirez Barreto, E.; Dias, A.G.; Pires, S.C.A. de; Rodrigues da Silva, P.S.; Queiroz, Farinaldo S.

    2013-01-01

    We show that the observed enhancement in the diphoton decays of the recently discovered new boson at the LHC, which we assume to be a Higgs boson, can be naturally explained by a new doublet of charged vector bosons from extended electroweak models with SU(3) C x SU(3) L x U(1) X symmetry. These models are also rather economical in explaining the measured signal strengths, within the current experimental errors, demanding fewer assumptions and less parameters tuning. Our results show a good agreement between the theoretical expected sensitivity to a 126-125 GeV Higgs boson, and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZ * , WW * , bottom quarks, and tau leptons. (orig.)

  3. Electroweak interactions at LEP

    International Nuclear Information System (INIS)

    Borgia, B.

    1991-01-01

    Electroweak interaction at LEP are a subject based on a wealth of data, given the success of the CERN e + e - storage ring. The author will report on the results from the four experiments, ALEPH, DELPHI, L3 and OPAL after the analysis of about 1/2 of the data collected in 1989 and 1990. The review will cover the electroweak aspects of the process e + e - → Z* → f bar f where the fermions can be either quarks or leptons. The analysis of experimental data is based on the determination of the cross section integrated on the solid angle and on the asymmetry of forward-backward leptons in the final state. In this game the knowledge of the center mass energy is fundamental as the determination of the luminosity by which the event rate is normalized to compute the absolute cross section. Therefore a specific attention is given to these subjects

  4. Electroweak probes with ATLAS

    CERN Document Server

    Milov, Alexander; The ATLAS collaboration

    2018-01-01

    Measuring electroweak bosons in relativistic heavy ion collisions at high energy provide an opportunity to understand temporal evolution of the quark-gluon plasma created in such collisions by constraining the initial state of the interaction. Due to lack of colour charges the bosons and or particles produced in their leptonic decays are unaffected by the quark-gluon plasma and therefore preserve the information about the very early stage of the collision when they were born. This singles EW bosons as a unique and very interesting class of observables in HI collisions. The ATLAS experiment at LHC measures production of electroweak bosons in $pp$, $p$+Pb and Pb+Pb collisions systems. A review of the existing results is given in this proceeding that includes studies made with isolated photons to constraint kinematic properties and flavour composition of associated jets, measurements of $W$ and $Z$ bosons used to estimate nuclear modification of PDF and the production rates of the bosons used to verify geometric...

  5. Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, Agostino, E-mail: agostino.devastato@na.infn.it; Martinetti, Pierre, E-mail: martinetti@dima.unige.it [Università di Napoli Federico II, Dipartimento di Fisica (Italy)

    2017-03-15

    Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.

  6. What's new with the electroweak phase transition?

    CERN Document Server

    Laine, M.

    1999-01-01

    We review the status of non-perturbative lattice studies of the electroweak phase transition. In the Standard Model, the complete phase diagram has been reliably determined, and the conclusion is that there is no phase transition at all for the experimentally allowed Higgs masses. In the Minimal Supersymmetric Standard Model (MSSM), in contrast, there can be a strong first order transition allowing for baryogenesis. Finally, we point out possibilities for future simulations, such as the problem of CP-violation at the MSSM electroweak phase boundary.

  7. Comments on the electroweak phase transition

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; Huet, P.; Linde, A.; Linde, D.

    1992-01-01

    We report on an investigation of various problems related to the theory of the electroweak phase transition. This includes a determination of the nature of the phase transition, a discussion of the possible role of higher order radiative corrections and the theory of the formation and evolution of the bubbles of the new phase. We find in particular that no dangerous linear terms appear in the effective potential. However, the strength of the first-order phase transition is 2/3 times less than what follows from the one-loop approximation. This rules out baryogenesis in the minimal version of the electroweak theory with light Higgs bosons. (orig.)

  8. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  9. Theory Overview of Electroweak Physics at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M. [Fermilab

    2016-09-03

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  10. Patterns of symmetry breaking in chiral QCD

    Science.gov (United States)

    Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail

    2018-05-01

    We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.

  11. Precision electroweak heavy flavor results from LEP and SLC

    International Nuclear Information System (INIS)

    Brown, D.

    1993-11-01

    The traditional Electroweak measurements made at Z factories using undifferentiated hadronic and leptonic Z decays will soon be reaching their asymptotic limits in precision. Consequently, much attention has recently been focused on extracting electroweak parameters from hadronic decays differentiated through heavy flavor tagging. This paper gives an overview of the various techniques used at LEP and SLC to tag heavy flavors. The measurements of the forward backward asymmetries and the partial widths for Z→b anti b and Z→c anti c decays are briefly described. The most recent results for these are presented, and are interpreted within the framework of the Standard Model. The precision of the electroweak parameters extracted from these measurements is shown to be comparable to that from other techniques. Assembling all the LEP electroweak data, constraints on the top and Higgs masses are found. The heavy flavor results, and in particular the new, very accurate Z→b anti b partial width measurements, are shown to play a key role in these limits. (orig.)

  12. Hadron spectroscopy and dynamics from light-front holography and conformal symmetry

    Directory of Open Access Journals (Sweden)

    de Téramond Guy F.

    2014-06-01

    Full Text Available To a first semiclassical approximation one can reduce the multi-parton light-front problem in QCD to an effective one-dimensional quantum field theory, which encodes the fundamental conformal symmetry of the classical QCD Lagrangian. This procedure leads to a relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and non-perturbative dynamical features of hadron physics. The mass scale for confinement and higher dimensional holographic mapping to AdS space are also emergent properties of this framework.

  13. Using dynamic software in mathematics: the case of reflection symmetry

    Science.gov (United States)

    Tatar, Enver; Akkaya, Adnan; Berrin Kağizmanli, Türkan

    2014-10-01

    This study was carried out to examine the effects of computer-assisted instruction (CAI) using dynamic software on the achievement of students in mathematics in the topic of reflection symmetry. The study also aimed to ascertain the pre-service mathematics teachers' opinions on the use of CAI in mathematics lessons. In the study, a mixed research method was used. The study group of this research consists of 30 pre-service mathematics teachers. The data collection tools used include a reflection knowledge test, a survey and observations. Based on the analysis of the data obtained from the study, the use of CAI had a positive effect on achievement in the topic of reflection symmetry of the pre-service mathematics teachers. The pre-service mathematics teachers were found to largely consider that a mathematics education which is carried out utilizing CAI will be more beneficial in terms of 'visualization', 'saving of time' and 'increasing interest/attention in the lesson'. In addition, it was found that the vast majority of them considered using computers in their teaching on the condition that the learning environment in which they would be operating has the appropriate technological equipment.

  14. Topcolor and the First Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Hill, C.T. [Fermi National Accelerator Lab., Batavia, IL (United States)][Chicago Univ., IL (United States)

    1998-04-01

    We describe a class of models of electroweak symmetry breaking that involve strong dynamics and top quark condensation. A new scheme based upon a seesaw mechanism appears particularly promising. Various implications for the first-stage muon collider are discussed.

  15. Topcolor and the First Muon Collider

    International Nuclear Information System (INIS)

    Hill, C.T.

    1998-04-01

    We describe a class of models of electroweak symmetry breaking that involve strong dynamics and top quark condensation. A new scheme based upon a seesaw mechanism appears particularly promising. Various implications for the first-stage muon collider are discussed

  16. Possibility of a large electroweak penguin contribution in B→Kπ modes

    International Nuclear Information System (INIS)

    Yoshikawa, Tadashi

    2003-01-01

    We discuss the possibility of a large electroweak penguin contribution in B→Kπ from recent experimental data. The several relations among the branching ratios which realize when the contributions from tree type and electroweak penguin contributions are small compared with the gluon penguin can be treated as the expansion parameters do not satisfy the data. The difference comes from the r 2 term which is the square of the ratio with the gluon penguin diagram and the main contribution comes from the electroweak penguin diagram. We find that the electroweak penguin contribution may be too large to explain the experimental data. If the magnitude estimated from experiment is quite large compared with the theoretical estimation, then it may be including some new physics effects

  17. The global electroweak Standard Model fit after the Higgs discovery

    CERN Document Server

    Baak, Max

    2013-01-01

    We present an update of the global Standard Model (SM) fit to electroweak precision data under the assumption that the new particle discovered at the LHC is the SM Higgs boson. In this scenario all parameters entering the calculations of electroweak precision observalbes are known, allowing, for the first time, to over-constrain the SM at the electroweak scale and assert its validity. Within the SM the W boson mass and the effective weak mixing angle can be accurately predicted from the global fit. The results are compatible with, and exceed in precision, the direct measurements. An updated determination of the S, T and U parameters, which parametrize the oblique vacuum corrections, is given. The obtained values show good consistency with the SM expectation and no direct signs of new physics are seen. We conclude with an outlook to the global electroweak fit for a future e+e- collider.

  18. Studying the Electroweak Sector with the ATLAS Detector

    CERN Document Server

    Bittrich, Carsten; The ATLAS collaboration

    2018-01-01

    The large integrated luminosities that are available at the LHC, allow to test the gauge structure of the electroweak sector of the Standard Model to highest precision. In this talk, we review the latest results of the ATLAS collaboration involving di-boson and multiboson final states as well as the corresponding limits on anomalous gauge couplings. Moreover, we discuss the electroweak production of vector boson at 13 TeV. Another approach to test the consistency of the electroweak sector is via precision measurements. ATLAS has recently published a measurement of the tau-polarization in Z events as well as a three dimensional cross-section measurement of the Drell-Yan process. The latter allows for the extraction of the forward-backward asymmetry that can be interpreted as a measurement of the weak mixing angle. Both results will be presented and discussed.

  19. Electroweak penguin diagrams and two-body B decays

    International Nuclear Information System (INIS)

    Gronau, M.; Hernandez, O.F.; London, D.; Rosner, J.L.

    1995-01-01

    We discuss the role of electroweak penguin diagrams in B decays to two light pseudoscalar mesons. We confirm that the extraction of the weak phase α through the isospin analysis involving B→ππ decays is largely unaffected by such operators. However, the methods proposed to obtain weak and strong phases by relating B→ππ, B→πK, and B→K bar K decays through flavor SU(3) will be invalidated if eletroweak penguin diagrams are large. We show that, although the introduction of electroweak penguin contributions introduces no new amplitudes of flavor SU(3), there are a number of ways to experimentally measure the size of such effects. Finally, using SU(3) amplitude relations we present a new way of measuring the weak angle γ which holds even in the presence of electroweak penguin diagrams

  20. Electroweak corrections

    International Nuclear Information System (INIS)

    Beenakker, W.J.P.

    1989-01-01

    The prospect of high accuracy measurements investigating the weak interactions, which are expected to take place at the electron-positron storage ring LEP at CERN and the linear collider SCL at SLAC, offers the possibility to study also the weak quantum effects. In order to distinguish if the measured weak quantum effects lie within the margins set by the standard model and those bearing traces of new physics one had to go beyond the lowest order and also include electroweak radiative corrections (EWRC) in theoretical calculations. These higher-order corrections also can offer the possibility of getting information about two particles present in the Glashow-Salam-Weinberg model (GSW), but not discovered up till now, the top quark and the Higgs boson. In ch. 2 the GSW standard model of electroweak interactions is described. In ch. 3 some special techniques are described for determination of integrals which are responsible for numerical instabilities caused by large canceling terms encountered in the calculation of EWRC effects, and methods necessary to get hold of the extensive algebra typical for EWRC. In ch. 4 various aspects related to EWRC effects are discussed, in particular the dependence of the unknown model parameters which are the masses of the top quark and the Higgs boson. The processes which are discussed are production of heavy fermions from electron-positron annihilation and those of the fermionic decay of the Z gauge boson. (H.W.). 106 refs.; 30 figs.; 6 tabs.; schemes

  1. Electroweak physics and electron scattering

    International Nuclear Information System (INIS)

    Henley, E.M.; Hwang, W.Y.P.

    1988-01-01

    The electroweak theory is developed and applied to electron scattering from nucleons and light nuclei. It is shown that these scatterings can be used to test the standard theory and probe structure effects. 33 refs., 5 figs

  2. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D., E-mail: megevand@mdp.edu.ar, E-mail: membiela@mdp.edu.ar, E-mail: sanchez@mdp.edu.ar [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  3. Lower bound on the electroweak wall velocity from hydrodynamic instability

    International Nuclear Information System (INIS)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D.

    2015-01-01

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis

  4. Lower bound on the electroweak wall velocity from hydrodynamic instability

    Energy Technology Data Exchange (ETDEWEB)

    Mégevand, Ariel; Membiela, Federico Agustín; Sánchez, Alejandro D. [IFIMAR (CONICET-UNMdP), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Deán Funes (7600) 3350 Mar del Plata (Argentina)

    2015-03-27

    The subsonic expansion of bubbles in a strongly first-order electroweak phase transition is a convenient scenario for electroweak baryogenesis. For most extensions of the Standard Model, stationary subsonic solutions (i.e., deflagrations) exist for the propagation of phase transition fronts. However, deflagrations are known to be hydrodynamically unstable for wall velocities below a certain critical value. We calculate this critical velocity for several extensions of the Standard Model and compare with an estimation of the wall velocity. In general, we find a region in parameter space which gives stable deflagrations as well as favorable conditions for electroweak baryogenesis.

  5. Dynamics of the universe and spontaneous symmetry breaking

    Science.gov (United States)

    Kazanas, D.

    1980-01-01

    It is shown that the presence of a phase transition early in the history of the universe, associated with spontaneous symmetry breaking (believed to take place at very high temperatures at which the various fundamental interactions unify), significantly modifies its dynamics and evolution. This is due to the energy 'pumping' during the phase transition from the vacuum to the substance, rather than the gravitating effects of the vacuum. The expansion law of the universe then differs substantially from the relation considered so far for the very early time expansion. In particular it is shown that under certain conditions this expansion law is exponential. It is further argued that under reasonable assumptions for the mass of the associated Higgs boson this expansion stage could last long enough to potentially account for the observed isotropy of the universe.

  6. Linking partial and quasi dynamical symmetries in rotational nuclei and shell evolution in {sup 96}Zr

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Christoph

    2016-01-27

    The first part of this thesis revolves around symmetries in the sd-IBA-1. A region of approximate O(6) symmetry for the ground-state band, a partial dynamical symmetry (PDS) of type III, in the parameter space of the extended consistent-Q formalism is identified through quantum number fluctuations. The simultaneous occurrence of a SU(3) quasi dynamical symmetry for nuclei in the region of O(6) PDS is explained via the β=1, γ=0 intrinsic state underlying the ground-state band. The previously unrelated concepts of PDS and QDS are connected for the first time and many nuclei in the rare earth region that approximately satisfy both symmetry requirements are identified. Ground-state to ground-state (p, t) transfer reactions are presented as an experimental signature to identify pairs of nuclei that both exhibit O(6) PDS. In the second part of this thesis inelastic electron scattering off {sup 96}Zr is studied. The experiment was performed at the high resolution Lintott spectrometer at the S-DALINAC and covered a momentum-transfer range of 0.28 - 0.59 fm{sup -1}. Through a relative analysis using Plane Wave Born Approximation (PWBA) the B(E2;2{sup +}{sub 2}→0{sup +}{sub 1}) value is extracted without incurring the additional model dependence of a Distorted Wave Born Approximation (DWBA). By combining this result with known multipole mixing ratios and branching ratios all decay strengths of the 2{sup +}{sub 2} state are determined. A mixing calculation establishes very weak mixing (V{sub mix}=76 keV) between states of the ground-state band and those of the band build on top of the 0{sup +}{sub 2} state which includes the 2{sup +}{sub 2} state. The occurrence of these two isolated bands is interpreted within the shell model in terms of type II shell evolution.

  7. Measurement of Electroweak Gauge Boson Scattering in the Channel $pp \\rightarrow W^{\\pm}W^{\\pm}jj$ with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2080413; Kobel, Michael; Heinemann, Beate; Klein, Uta

    Particle physics deals with the elementary constituents of our universe and their interactions. The electroweak symmetry breaking mechanism in the Standard Model of Particle Physics is of paramount importance and it plays a central role in the physics programmes of current high-energy physics experiments at the Large Hadron Collider. The study of scattering processes of massive electroweak gauge bosons provides an approach complementary to the precise measurement of the properties of the recently discovered Higgs boson. Owing to the unprecedented energies achieved in proton-proton collisions at the Large Hadron Collider and the large amount of data collected, experimental studies of these processes become feasible for the first time. Especially the scattering of two $W^{\\pm}$ bosons of identical electric charge is considered a promising process for an initial study due to its distinct experimental signature. In the course of this work, $20.3 \\, \\mathrm{fb}^{−1}$ of proton-proton collision data recorded by t...

  8. Precision electroweak physics at LEP

    Energy Technology Data Exchange (ETDEWEB)

    Mannelli, M.

    1994-12-01

    Copious event statistics, a precise understanding of the LEP energy scale, and a favorable experimental situation at the Z{sup 0} resonance have allowed the LEP experiments to provide both dramatic confirmation of the Standard Model of strong and electroweak interactions and to place substantially improved constraints on the parameters of the model. The author concentrates on those measurements relevant to the electroweak sector. It will be seen that the precision of these measurements probes sensitively the structure of the Standard Model at the one-loop level, where the calculation of the observables measured at LEP is affected by the value chosen for the top quark mass. One finds that the LEP measurements are consistent with the Standard Model, but only if the mass of the top quark is measured to be within a restricted range of about 20 GeV.

  9. From Quantum Deformations of Relativistic Symmetries to Modified Kinematics and Dynamics

    International Nuclear Information System (INIS)

    Lukierski, J.

    2010-01-01

    We present a short review describing the use of noncommutative spacetime in quantum-deformed dynamical theories: classical and quantum mechanics as well as classical and quantum field theory. We expose the role of Hopf algebras and their realizations (noncommutative modules) as important mathematical tool describing quantum-deformed symmetries: quantum Lie groups and quantum Lie algebras. We consider in some detail the most studied examples of noncommutative space-time geometry: the canonical and κ-deformed cases. Finally, we briefly describe the modifications of Einstein gravity obtained by introduction of noncommutative space-time coordinates. (author)

  10. Particle dynamics around time conformal regular black holes via Noether symmetries

    Science.gov (United States)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  11. Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.

    Science.gov (United States)

    Pillai, Ajay S; Jirsa, Viktor K

    2017-06-07

    In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Electroweak Physics at the Tevatron and LHC: Theoretical Status and Perspectives

    OpenAIRE

    Baur, U.

    2005-01-01

    I review the status of theoretical calculations relevant for electroweak physics at the Tevatron and LHC and discuss future directions. I also give a brief overview of current electroweak data and discuss future expectations.

  13. The Nature of the Chemical Process. 1. Symmetry Evolution – Revised Information Theory, Similarity Principle and Ugly Symmetry

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2001-03-01

    Full Text Available Abstract: Symmetry is a measure of indistinguishability. Similarity is a continuous measure of imperfect symmetry. Lewis' remark that “gain of entropy means loss of information” defines the relationship of entropy and information. Three laws of information theory have been proposed. Labeling by introducing nonsymmetry and formatting by introducing symmetry are defined. The function L ( L=lnw, w is the number of microstates, or the sum of entropy and information, L=S+I of the universe is a constant (the first law of information theory. The entropy S of the universe tends toward a maximum (the second law law of information theory. For a perfect symmetric static structure, the information is zero and the static entropy is the maximum (the third law law of information theory. Based on the Gibbs inequality and the second law of the revised information theory we have proved the similarity principle (a continuous higher similarity−higher entropy relation after the rejection of the Gibbs paradox and proved the Curie-Rosen symmetry principle (a higher symmetry−higher stability relation as a special case of the similarity principle. The principles of information minimization and potential energy minimization are compared. Entropy is the degree of symmetry and information is the degree of nonsymmetry. There are two kinds of symmetries: dynamic and static symmetries. Any kind of symmetry will define an entropy and, corresponding to the dynamic and static symmetries, there are static entropy and dynamic entropy. Entropy in thermodynamics is a special kind of dynamic entropy. Any spontaneous process will evolve towards the highest possible symmetry, either dynamic or static or both. Therefore the revised information theory can be applied to characterizing all kinds of structural stability and process spontaneity. Some examples in chemical physics have been given. Spontaneous processes of all kinds of molecular

  14. ASYMPTOTIC REALIZATION OF THE CRITERION FOR QUANTUM INTEGRABILITY OF A BOSON SYSTEM WITH DYNAMIC SYMMETRY

    NARCIS (Netherlands)

    PAAR, [No Value; VORKAPIC, D; DIEPERINK, AEL

    1991-01-01

    We investigate the energy-level statistics in dependence on the boson number and the underlying classical motion for a system or collective states of zero angular momentum in gamma-soft nuclei described in the framework of the O(6) dynamical symmetry of the interacting boson model. This presents a

  15. Vector boson scattering and electroweak production of two like-charge W bosons and two jets at the current and future ATLAS detector

    International Nuclear Information System (INIS)

    Schnoor, Ulrike

    2015-01-01

    The scattering of electroweak gauge bosons is closely connected to the electroweak gauge symmetry and its spontaneous breaking through the Brout-Englert-Higgs mechanism. Since it contains triple and quartic gauge boson vertices, the measurement of this scattering process allows to probe the self-interactions of weak bosons. The contribution of the Higgs boson to the weak boson scattering amplitude ensures unitarity of the scattering matrix. Therefore, the scattering of massive electroweak gauge bosons is sensitive to deviations from the Standard Model prescription of the electroweak interaction and of the properties of the Higgs boson. At the Large Hadron Collider (LHC), the scattering of massive electroweak gauge bosons is accessible through the measurement of purely electroweak production of two jets and two gauge bosons. No such process has been observed before. Being the channel with the least amount of background from QCD-mediated production of the same final state, the most promising channel for the first measurement of a process containing massive electroweak gauge boson scattering is the one with two like-charge W bosons and two jets in the final state. This thesis presents the first measurement of electroweak production of two jets and two identically charged W bosons, which yields the first observation of a process with contributions from quartic gauge interactions of massive electroweak gauge bosons. An overview of the most important issues in Monte Carlo simulation of vector boson scattering processes with current Monte Carlo generators is given in this work. The measurement of the final state of two jets and two leptonically decaying same-charge W bosons is conducted based on proton-proton collision data with a center-of-mass energy of √(s)=8 TeV, taken in 2012 with the ATLAS experiment at the LHC. The cross section of electroweak production of two jets and two like-charge W bosons is measured with a significance of 3.6 standard deviations to be

  16. Symmetry breaking: The standard model and superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1988-01-01

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs

  17. Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography

    Science.gov (United States)

    Grozdanov, Sašo; Poovuttikul, Napat

    2018-05-01

    In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.

  18. Recent results on Electroweak measurements from ATLAS

    Directory of Open Access Journals (Sweden)

    Benekos Nektarios Chr.

    2015-01-01

    Full Text Available ATLAS measurements of multiboson production processes involving combinations of W,Z and isolated photons are summarized. Measurements using data at 7 TeV and at 8 TeV are presented. The measurements are performed using leptonic decay modes, including the invisible decay Z → v v̅, as well as semileptonic channels. Measurements of single and diboson production in association with two forward jets is sensitive to electroweak vector boson fusion and scattering processes. An observation of the electroweak production of the Z boson and an evidence of same sign WW production are reported.

  19. Top and Electroweak Measurements at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, P. [Comenius U.

    2016-01-01

    In this report, we summarize the latest results of the top-quark mass and electroweak measurements from the Tevatron. Since the world combination of top-quark mass measurements was done, CDF and D0 experiments improved the precision of several results. Some of them reach the relative precition below 1% for a single measurement. From the electroweak results, we report on the WW and WZ production cross section, measurements of the weak mixing angle and indirect measurements of W boson mass. The Tevatron results of the weak mixing angle are still the most precise ones of hadron colliders.

  20. Non-Noetherian symmetries

    International Nuclear Information System (INIS)

    Hojman, Sergio A.

    1996-01-01

    The purpose of these lectures is to present some of the ways in which non-Noetherian symmetries are used in contemporary mathematical physics. These include, among others, obtaining conservation laws for dynamical systems, solving non-linear problems, getting alternative Lagrangians for systems of differential equations and constructing symplectic structures and Hamiltonians for dynamical systems starting from scratch

  1. Conformal coupling associated with the Noether symmetry and its connection with the ΛCDM dynamics

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2013-01-01

    The aim of this work is to investigate a non-minimally coupled scalar field model through the Noether symmetry approach, with the radiation, matter and cosmological constant eras being analyzed. The Noether symmetry condition allows a conformal coupling and by means of a change of coordinates in the configuration space the field equations can be reduced to a single equation, which is of the form of the Friedmann equation for the ΛCDM model. In this way, it is formally shown that the dynamical system can furnish solutions with the same form as those of the ΛCDM model, although the theory here considered is physically different from the former. The conserved quantity associated with the Noether symmetry can be related to the kinetic term of the scalar field and could constrain the possible deviations of the model from the ΛCDM picture. Observational constraints on the variation of the gravitational constant can be imposed on the model through the initial condition of the scalar field. (paper)

  2. Electroweak physics from D0

    International Nuclear Information System (INIS)

    Roe, N.A.

    1993-05-01

    The D0 detector was recently commissioned at the Tevatron p bar p collider and is presently taking data. Preliminary results from D0 are presented on properties of the W and Z electroweak gauge bosons, using final states containing electrons and muons

  3. Search for supersymmetry in {tau} final states at ATLAS and constraints on new physics using electroweak precision data

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Doerthe

    2012-08-15

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two {tau} leptons using 2 fb{sup -1} of proton-proton collision data recorded at {radical}(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale {Lambda} independent of the ratio of tan{beta}. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  4. Search for supersymmetry in τ final states at ATLAS and constraints on new physics using electroweak precision data

    International Nuclear Information System (INIS)

    Kennedy, Doerthe

    2012-08-01

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two τ leptons using 2 fb -1 of proton-proton collision data recorded at √(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale Λ independent of the ratio of tanβ. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  5. Dynamical symmetry breaking in the Jackiw-Johnson model and the gauge technique

    International Nuclear Information System (INIS)

    Singh, J.P.

    1984-01-01

    The Jackiw-Johnson model of dynamical gauge symmetry breaking has been re-examined in the light of the gauge technique. In the limit where the ratio of the axial to vector coupling constants becomes small, or, consistently, in the limit where the ratio of the axial-vector-boson mass to the fermion mass becomes small, an approximate solution for the fermion spectral function has been derived. This gives an extremely small ratio of the axial-vector-boson mass to the fermion mass. (author)

  6. Studying the Electroweak Sector with the ATLAS Detector

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2018-01-01

    (as received from the Speaker Committee. W mass removed from the presentation later on, as discussed in separate talk.) The large integrated luminosities that are available at the LHC, allow to test the gauge structure of the electroweak sector of the Standard Model to highest precision. In this talk, we review the latest results of the ATLAS collaboration involving di-boson and multiboson final states, the electroweak production of vector bosons as well as their constraints of effective field theory operators. Another approach to test the consistency of the electroweak sector is via precision measurements. ATLAS has published a first high precision measurement of the W boson mass, a first measurement of the tau-polarization in Z events as well as a three dimensional cross-section measurement of the Drell-Yan process. The latter allows for the extraction of the forward-backward asymmetry that can be interpreted as a measurement of the weak mixing angle. These results will be presented and discussed.

  7. The electroweak phase transition in minimal supergravity models

    CERN Document Server

    Nanopoulos, Dimitri V

    1994-01-01

    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to $m_h\\lsim 32\\GeV$ (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak...

  8. A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group

    International Nuclear Information System (INIS)

    Klimov, A B; Romero, J L

    2008-01-01

    We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit

  9. Additional symmetries of supersymmetric KP hierarchies

    International Nuclear Information System (INIS)

    Stanciu, S.

    1994-01-01

    We investigate the additional symmetries of several supersymmetric KP hierarchies: the SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. In all three cases we find that the algebra of symmetries is isomorphic to the algebra of superdifferential operators, or equivalently SW 1+∞ . These results seem to suggest that despite their realization depending on the dynamics, the additional symmetries are kinematical in nature. (orig.)

  10. Cosmological evolution of Yukawa couplings: the 5D perspective

    Energy Technology Data Exchange (ETDEWEB)

    Harling, Benedict von [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Servant, Géraldine [DESY, Notkestrasse 85, 22607 Hamburg (Germany); II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg (Germany)

    2017-05-15

    The cosmological evolution of standard model Yukawa couplings may have major implications for baryogenesis. In particular, as highlighted recently, the CKM matrix alone could be the source of CP-violation during electroweak baryogenesis provided that the Yukawa couplings were large and varied during the electroweak phase transition. We provide a natural realisation of this idea in the context of Randall-Sundrum models and show that the geometrical warped approach to the fermion mass hierarchy may naturally display the desired cosmological dynamics. The key ingredient is the coupling of the Goldberger-Wise scalar, responsible for the IR brane stabilisation, to the bulk fermions, which modifies the fermionic profiles. This also helps alleviating the usually tight constraints from CP-violation in Randall-Sundrum scenarios. We study how the Yukawa couplings vary during the stabilisation of the Randall-Sundrum geometry and can thus induce large CP-violation during the electroweak phase transition. Using holography, we discuss the 4D interpretation of this dynamical interplay between flavour and electroweak symmetry breaking.

  11. Cosmological evolution of Yukawa couplings. The 5D perspective

    Energy Technology Data Exchange (ETDEWEB)

    Harling, Benedict von [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Servant, Geraldine [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2017-02-15

    The cosmological evolution of standard model Yukawa couplings may have major implications for baryogenesis. In particular, as highlighted recently, the CKM matrix alone could be the source of CP-violation during electroweak baryogenesis provided that the Yukawa couplings were large and varied during the electroweak phase transition. We provide a natural realisation of this idea in the context of Randall-Sundrum models and show that the geometrical warped approach to the fermion mass hierarchy may naturally display the desired cosmological dynamics. The key ingredient is the coupling of the Goldberger-Wise scalar, responsible for the IR brane stabilisation, to the bulk fermions, which modifies the fermionic profiles. This also helps alleviating the usually tight constraints from CP-violation in Randall-Sundrum scenarios. We study how the Yukawa couplings vary during the stabilisation of the Randall-Sundrum geometry and can thus induce large CP-violation during the electroweak phase transition. Using holography, we discuss the 4D interpretation of this dynamical interplay between flavour and electroweak symmetry breaking.

  12. Cosmological evolution of Yukawa couplings. The 5D perspective

    International Nuclear Information System (INIS)

    Harling, Benedict von; Servant, Geraldine; Hamburg Univ.

    2017-02-01

    The cosmological evolution of standard model Yukawa couplings may have major implications for baryogenesis. In particular, as highlighted recently, the CKM matrix alone could be the source of CP-violation during electroweak baryogenesis provided that the Yukawa couplings were large and varied during the electroweak phase transition. We provide a natural realisation of this idea in the context of Randall-Sundrum models and show that the geometrical warped approach to the fermion mass hierarchy may naturally display the desired cosmological dynamics. The key ingredient is the coupling of the Goldberger-Wise scalar, responsible for the IR brane stabilisation, to the bulk fermions, which modifies the fermionic profiles. This also helps alleviating the usually tight constraints from CP-violation in Randall-Sundrum scenarios. We study how the Yukawa couplings vary during the stabilisation of the Randall-Sundrum geometry and can thus induce large CP-violation during the electroweak phase transition. Using holography, we discuss the 4D interpretation of this dynamical interplay between flavour and electroweak symmetry breaking.

  13. Symmetry, Wigner functions and particle reactions

    International Nuclear Information System (INIS)

    Chavlejshvili, M.P.

    1994-01-01

    We consider the great principle of physics - symmetry - and some ideas, connected with it, suggested by a great physicist Eugene Wigner. We will discuss the concept of symmetry and spin, study the problem of separation of kinematics and dynamics in particle reactions. Using Wigner rotation functions (reflecting symmetry properties) in helicity amplitude decomposition and crossing-symmetry between helicity amplitudes (which contains the same Wigner functions) we get convenient general formalism for description of reactions between particles with any masses and spins. We also consider some applications of the formalism. 17 refs., 1 tab

  14. The priority of internal symmetries in particle physics

    Science.gov (United States)

    Kantorovich, Aharon

    2003-12-01

    In this paper, I try to decipher the role of internal symmetries in the ontological maze of particle physics. The relationship between internal symmetries and laws of nature is discussed within the framework of ;Platonic realism.; The notion of physical ;structure; is introduced as representing a deeper ontological layer behind the observable world. I argue that an internal symmetry is a structure encompassing laws of nature. The application of internal symmetry groups to particle physics came about in two revolutionary steps. The first was the introduction of the internal symmetries of hadrons in the early 1960s. These global and approximate symmetries served as means of bypassing the dynamics. I argue that the realist could interpret these symmetries as ontologically prior to the hadrons. The second step was the gauge revolution in the 1970s, where symmetries became local and exact and were integrated with the dynamics. I argue that the symmetries of the second generation are fundamental in the following two respects: (1) According to the so-called ;gauge argument,; gauge symmetry dictates the existence of gauge bosons, which determine the nature of the forces. This view, which has been recently criticized by some philosophers, is widely accepted in particle physics at least as a heuristic principle. (2) In view of grand unified theories, the new symmetries can be interpreted as ontologically prior to baryon matter.

  15. Some general constraints on identical band symmetries

    International Nuclear Information System (INIS)

    Guidry, M.W.; Strayer, M.R.; Wu, C.; Feng, D.H.

    1993-01-01

    We argue on general grounds that nearly identical bands observed for superdeformation and less frequently for normal deformation must be explicable in terms of a symmetry having a microscopic basis. We assume that the unknown symmetry is associated with a Lie algebra generated by terms bilinear in fermion creation and annihilation operators. Observed features of these bands and the general properties of Lie groups are then used to place constraints on acceptable algebras. Additional constraints are placed by assuming that the collective spectrum is associated with a dynamical symmetry, and examining the subgroup structure required by phenomenology. We observe that requisite symmetry cannot be unitary, and that the simplest known group structures consistent with these minimal criteria are associated with the Ginocchio algebras employed in the fermion dynamical symmetry model. However, our arguments are general in nature, and we propose that they imply model-independent constraints on any candidate explanation for identical bands

  16. Dispersion Relations for Electroweak Observables in Composite Higgs Models

    CERN Document Server

    Contino, Roberto

    2015-12-14

    We derive dispersion relations for the electroweak oblique observables measured at LEP in the context of $SO(5)/SO(4)$ composite Higgs models. It is shown how these relations can be used and must be modified when modeling the spectral functions through a low-energy effective description of the strong dynamics. The dispersion relation for the parameter $\\epsilon_3$ is then used to estimate the contribution from spin-1 resonances at the 1-loop level. Finally, it is shown that the sign of the contribution to the $\\hat S$ parameter from the lowest-lying spin-1 states is not necessarily positive definite, but depends on the energy scale at which the asymptotic behavior of current correlators is attained.

  17. Correlations and symmetry of interactions influence collective dynamics of molecular motors

    International Nuclear Information System (INIS)

    Celis-Garza, Daniel; Teimouri, Hamid; Kolomeisky, Anatoly B

    2015-01-01

    Enzymatic molecules that actively support many cellular processes, including transport, cell division and cell motility, are known as motor proteins or molecular motors. Experimental studies indicate that they interact with each other and they frequently work together in large groups. To understand the mechanisms of collective behavior of motor proteins we study the effect of interactions in the transport of molecular motors along linear filaments. It is done by analyzing a recently introduced class of totally asymmetric exclusion processes that takes into account the intermolecular interactions via thermodynamically consistent approach. We develop a new theoretical method that allows us to compute analytically all dynamic properties of the system. Our analysis shows that correlations play important role in dynamics of interacting molecular motors. Surprisingly, we find that the correlations for repulsive interactions are weaker and more short-range than the correlations for the attractive interactions. In addition, it is shown that symmetry of interactions affect dynamic properties of molecular motors. The implications of these findings for motor proteins transport are discussed. Our theoretical predictions are tested by extensive Monte Carlo computer simulations. (paper)

  18. Radiative Symmetry Breaking in Brane Models

    CERN Document Server

    Antoniadis, Ignatios; Quirós, Mariano

    2000-01-01

    We propose a way to generate the electroweak symmetry breaking radiatively in non-supersymmetric type I models with string scale in the TeV region. By identifying the Higgs field with a tree-level massless open string state, we find that a negative squared mass term can be generated at one loop. It is finite, computable and typically a loop factor smaller than the string scale, that acts as an ultraviolet cutoff in the effective field theory. When the Higgs open string has both ends confined on our world brane, its mass is predicted to be around 120 GeV, i.e. that of the lightest Higgs in the minimal supersymmetric model for large $\\tan\\beta$ and $m_A$. Moreover, the string scale turns out to be one to two orders of magnitude higher than the weak scale. We also discuss possible effects of higher order string threshold corrections that might increase the string scale and the Higgs mass.

  19. Production of heavy flavors at the Z0 and electroweak couplings

    International Nuclear Information System (INIS)

    Wagner, S.R.

    1997-09-01

    The LEP experiments and SLD have measured the electroweak couplings of the b and c quarks using various tags of B and D hadron decays. The current status of these measurements is discussed, and is contrasted with other electroweak measurements at the Z 0

  20. Spin and precision electroweak physics

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1993-01-01

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for ''new physics'' is described

  1. CMS results in Electroweak Physics

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    We present the results of electroweak studies performed using data collected in 2010 at a center-of-mass energy of 7 TeV by the CMS experiment at the LHC. Besides their intrinsic interest as unique samples to calibrate and understand the CMS detector response to leptons, jets and missing energy, events containing W and Z bosons appear as dominant components in many Higgs seaches and in most of the searches beyond the Standard Model, either as signal or as background. In addition, the excellent level of theoretical and experimental understanding of these processes allows electroweak tests at the LHC at an unprecendented level of precision. CMS uses a wide range of final states to measure cross sections, asymmetries, polarizations and differential distributions in general. The current integrated luminosity is already sufficient to perform not just inclusive measurements using W and Z decays into muons and electrons, but also precise studies of associated jet production and final states containing taus, as well...

  2. New searches for supersymmetry in electroweak production with CMS

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The large set of proton-proton collision data recorded in 2016 at a centre-of-mass energy of 13 TeV is the basis for first results on electroweak production of supersymmetric particles in LHC Run 2. CMS results on the production of chargino / neutralino pairs are presented based on the analysis of final states with one or more leptons and interpreted under several assumptions for the decay modes of the electroweak gauginos.

  3. Strongly coupled gauge theories: What can lattice calculations teach us?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Electroweak symmetry breaking and the dynamical origin of the Higgs boson are central questions today. Strongly coupled systems predicting the Higgs boson as a bound state of a new gauge-fermion interaction are candidates to describe beyond Standard Model physics. The phenomenologically viable models are strongly coupled, near the conformal boundary, requiring non-perturbative studies to reveal their properties. Lattice studies show that many of the beyond-Standard Model candidates have a relatively light isosinglet scalar state that is well separated from the rest of the spectrum. When the scale is set via the vev of electroweak symmetry breaking, a 2 TeV vector resonance appears to be a general feature of many of these models with several other resonances that are not much heavier.

  4. Fifty years of symmetry operations

    International Nuclear Information System (INIS)

    Wigner, E.P.

    1978-01-01

    The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions

  5. Spin and precision electroweak physics

    Energy Technology Data Exchange (ETDEWEB)

    Marciano, W.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-12-01

    A perspective on fundamental parameters and precision tests of the Standard Model is given. Weak neutral current reactions are discussed with emphasis on those processes involving (polarized) electrons. The role of electroweak radiative corrections in determining the top quark mass and probing for {open_quotes}new physics{close_quotes} is described.

  6. Unnatural Origin of Fermion Masses for Technicolor

    DEFF Research Database (Denmark)

    Antola, M.; Heikinheimo, M.; Sannino, F.

    2010-01-01

    We explore the scenario in which the breaking of the electroweak symmetry is due to the simultaneous presence and interplay of a dynamical sector and an unnatural elementary Higgs. We introduce a low energy effective Lagrangian and constrain the various couplings via direct search limits and elec...

  7. Nambu-Jona-Lasinio model with Wilson fermions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Pica, Claudio

    2017-01-01

    We present a lattice study of a Nambu-Jona-Lasinio (NJL) model using Wilson fermions. Four-fermion interactions are a natural part of several extensions of the Standard Model, appearing as a low-energy description of a more fundamental theory. In models of dynamical electroweak symmetry breaking...

  8. Partially composite two-Higgs doublet model

    Indian Academy of Sciences (India)

    Abstract. In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza–. Klein (KK) gauge bosons can induce Nambu–Jona–Lasinio (NJL) type attractive four- fermion interactions, which can break electroweak symmetry dynamically with accompa- nying composite Higgs fields. We consider a possibility that ...

  9. Strong electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Panico, G.

    2014-01-01

    In the view of the recent LHC discovery of an Higgs-like scalar particle, I review the phenomenological aspects of the Composite Higgs scenarios which can be used to probe this class of models, namely the distortion of the Higgs couplings and the presence of new resonances. (author)

  10. Towards Reviving Electroweak Baryogenesis with a Fourth Generation

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    universe. However, it does not work within the standard model due to two reasons: (1 the strength of CP violation from the Kobayashi-Maskawa mechanism with three generations is too small; (2 the electroweak phase transition is not first order for the experimentally allowed Higgs boson mass. We discuss possibilities to solve these problems by introducing a fourth generation of fermions and how electroweak baryogenesis might be revived. We also discuss briefly the recent observation of a Higgs-like boson with mass around 125 GeV, which puts the fourth generation in a difficult situation, and the possible way out.

  11. From symmetry violation to dynamics: The charm window

    International Nuclear Information System (INIS)

    Appel, J.A.

    1997-12-01

    C.S. Wu observed parity violation in the low energy process of nuclear decay. She was the first to observe this symmetry violation at any energy. Yet, her work taught us about the form and strengths of the couplings of the massive weak boson. Today, we use the same approach. We look for very much higher mass-scale interactions through symmetry violations in the decays of charm quark systems. These charm decays provide a unique window to new physics

  12. Noether symmetry approach in the cosmological alpha-attractors

    Science.gov (United States)

    Kaewkhao, Narakorn; Kanesom, Thanyagamon; Channuie, Phongpichit

    2018-06-01

    In cosmological framework, Noether symmetry technique has revealed a useful tool in order to examine exact solutions. In this work, we first introduce the Jordan-frame Lagrangian and apply the conformal transformation in order to obtain the Lagrangian equivalent to Einstein-frame form. We then analyze the dynamics of the field in the cosmological alpha-attractors using the Noether symmetry approach by focusing on the single field scenario in the Einstein-frame form. We show that with a Noether symmetry the corresponding dynamical system can be completely integrated and the potential exhibited by the symmetry can be exactly obtained. With the proper choice of parameters, the behavior of the scale factor displays an exponential (de Sitter) behavior at the present epoch. Moreover, we discover that the Hubble parameters strongly depends on the initial values of parameters exhibited by the Noether symmetry. Interestingly, it can retardedly evolve and becomes a constant in the present epoch in all cases.

  13. Flavour from accidental symmetries

    International Nuclear Information System (INIS)

    Ferretti, Luca; King, Stephen F.; Romanino, Andrea

    2006-01-01

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries

  14. Seesaw induced electroweak scale, the hierarchy problem and sub-eV neutrino masses

    International Nuclear Information System (INIS)

    Atwood, D.; Bar-Shalom, S.; Soni, A.

    2006-01-01

    We describe a model for the scalar sector where all interactions occur either at an ultra-high scale, Λ U ∝10 16 -10 19 GeV, or at an intermediate scale, Λ I =10 9 -10 11 GeV. The interaction of physics on these two scales results in an SU(2) Higgs condensate at the electroweak (EW) scale, Λ EW , through a seesaw-like Higgs mechanism, Λ EW ∝Λ I 2 /Λ U , while the breaking of the SM SU(2) x U(1) gauge symmetry occurs at the intermediate scale Λ I . The EW scale is, therefore, not fundamental but is naturally generated in terms of ultra-high energy phenomena and so the hierarchy problem is alleviated. We show that the class of such ''seesaw Higgs'' models predict the existence of sub-eV neutrino masses which are generated through a ''two-step'' seesaw mechanism in terms of the same two ultra-high scales: m ν ∝Λ I 4 /Λ U 3 ∝Λ EW 2 /Λ U . The neutrinos can be either Dirac or Majorana, depending on the structure of the scalar potential. We also show that our seesaw Higgs model can be naturally embedded in theories with tiny extra dimensions of size R∝Λ U -1 ∝10 -16 fm, where the seesaw induced EW scale arises from a violation of a symmetry at a distant brane; in particular, in the scenario presented there are seven tiny extra dimensions. (orig.)

  15. Vector resonances at LHC Run II in composite 2HDM

    Energy Technology Data Exchange (ETDEWEB)

    Chiara, Stefano Di [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia); Heikinheimo, Matti; Tuominen, Kimmo [Helsinki Institute of Physics, University of Helsinki,P.O. Box 64, FI-000140, Helsinki (Finland); Department of Physics, University of Helsinki,P.O. Box 64, FI-000140, Helsinki (Finland)

    2017-03-02

    We consider a model where the electroweak symmetry breaking is driven by strong dynamics, resulting in an electroweak doublet scalar condensate, and transmitted to the standard model matter fields via another electroweak doublet scalar. At low energies the effective theory therefore shares features with a type-I two Higgs doublet model. However, important differences arise due to the rich composite spectrum expected to contain new vector resonances accessible at the LHC. We carry out a systematic analysis of the vector resonance signals at LHC and find that the model remains viable, but will be tightly constrained by direct searches as the projected integrated luminosity, around 200 fb{sup −1}, of the current run becomes available.

  16. Electroweak unification and tree unitarity

    International Nuclear Information System (INIS)

    Horejsi, J.

    1993-01-01

    The monograph is an unconventional introduction into the theory of unification of weak and electromagnetic interactions, which is conceptually different from the exposition presented in standard textbooks. A detailed explanation is given of the way to the standard model of electroweak interactions which is based on a straightforward application of the requirement of renormalizability of the perturbation series expansion. The procedure to derive the model is interesting as it demonstrates the necessity of introducing vector bosons and Yang-Mills type interactions and at least one elementary scalar boson to obtain a renormalizable theory of weak and electromagnetic interactions. The book is divided into 5 chapters: introduction, problems encountered in a Fermi type theory, the intermediate vector boson, electrodynamics of vector bosons, tree unitarity, and electroweak interactions. Each chapter is completed with exercise problems to be solved by the reader. The text is supplemented with a number of appendices. The monograph is aimed at undergraduate and postgraduate students as well as at physicists interested in the theory of elementary particles. (Z.J.)

  17. Symmetry aspects in emergent quantum mechanics

    Science.gov (United States)

    Elze, Hans-Thomas

    2009-06-01

    We discuss an explicit realization of the dissipative dynamics anticipated in the proof of 't Hooft's existence theorem, which states that 'For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization'. - There is an energy-parity symmetry hidden in the Liouville equation, which mimics the Kaplan-Sundrum protective symmetry for the cosmological constant. This symmetry may be broken by the coarse-graining inherent in physics at scales much larger than the Planck length. We correspondingly modify classical ensemble theory by incorporating dissipative fluctuations (information loss) - which are caused by discrete spacetime continually 'measuring' matter. In this way, aspects of quantum mechanics, such as the von Neumann equation, including a Lindblad term, arise dynamically and expectations of observables agree with the Born rule. However, the resulting quantum coherence is accompanied by an intrinsic decoherence and continuous localization mechanism. Our proposal leads towards a theory that is linear and local at the quantum mechanical level, but the relation to the underlying classical degrees of freedom is nonlocal.

  18. Symmetries and conservation laws of the damped harmonic oscillator

    Indian Academy of Sciences (India)

    We work with a formulation of Noether-symmetry analysis which uses the properties of infinitesimal point transformations in the space-time variables to establish the association between symmetries and conservation laws of a dynamical system. Here symmetries are expressed in the form of generators. We have studied the ...

  19. A determination of electroweak parameters at HERA

    Science.gov (United States)

    H1 Collaboration; Aktas, A.; Andreev, V.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; de Roeck, A.; Desch, K.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kückens, J.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sedlák, K.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, M.; Usik, A.; Utkin, D.; Valkár, S.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    Using the deep inelastic ep and ep charged and neutral current scattering cross sections previously published, a combined electroweak and QCD analysis is performed to determine electroweak parameters accounting for their correlation with parton distributions. The data used have been collected by the H1 experiment in 1994 2000 and correspond to an integrated luminosity of 117.2 pb. A measurement is obtained of the W propagator mass in charged current ep scattering. The weak mixing angle sinθ is determined in the on-mass-shell renormalisation scheme. A first measurement at HERA is made of the light quark weak couplings to the Z boson and a possible contribution of right-handed isospin components to the weak couplings is investigated.

  20. A Determination of Electroweak Parameters at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Keller, N.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    Using the deep inelastic e^+p and e^-p charged and neutral current scattering cross sections previously published, a combined electroweak and QCD analysis is performed to determine electroweak parameters accounting for their correlation with parton distributions. The data used have been collected by the H1 experiment in 1994-2000 and correspond to an integrated luminosity of 117.2 pb^{-1}. A measurement is obtained of the W propagator mass in charged current ep scattering. The weak mixing angle sin^2 theta_W is determined in the on-mass-shell renormalisation scheme. A first measurement at HERA is made of the light quark weak couplings to the Z^0 boson and a possible contribution of right-handed isospin components to the weak couplings is investigated.

  1. Clean test of the electroweak theory by measuring weak boson masses

    International Nuclear Information System (INIS)

    Hioki, Zenro

    1985-01-01

    Role of the weak boson masses in the studies of electroweak higher order effects is surveyed. It is shown that precise measurements of these masses give us quite useful information for performing a clean test of the electroweak theory, and for a heavy fermion search. Effects of supersymmetric particles in these studies are also discussed. (author)

  2. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries

    International Nuclear Information System (INIS)

    Caballar, Roland Cristopher F.; Ocampo, Leonard R.; Galapon, Eric A.

    2010-01-01

    Internal symmetries can be used to classify multiple solutions to the time-energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR possessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.

  3. Dynamical symmetry breaking of λφ4 theory in the two loop effective potential

    International Nuclear Information System (INIS)

    Yang Jifeng; Ruan Jianhong

    2002-01-01

    The two loop effective potential of massless λφ 4 theory is presented in several regularization and renormalization prescriptions and the dynamical symmetry breaking solution is obtained in the strong-coupling situation in several prescriptions except the Coleman-Weinberg prescription. The beta function in the broken phase becomes negative and the UV fixed point turns out to be a strong-coupling one, and its numeric value varies with the renormalization prescriptions, a detail which is different from the asymptotic-free solution in the one loop case. The symmetry-breaking phase is shown to be an entirely strong-coupling phase. The reason for the relevance of the renormalization prescriptions is shown to be due to the nonperturbative nature of the effective potential. We also reanalyze the two loop effective potential by adopting a differential equation approach based on the understanding that all the quantum field theories are ill-defined formulations of the 'low-energy' effective theories of a complete underlying theory. The relevance of the prescriptions of fixing the local ambiguities to physical properties such as symmetry breaking is further emphasized. We also tentatively propose a rescaling insensitivity argument for fixing the quadratic ambiguities. Some detailed properties of the strongly coupled broken phase and related issues are discussed

  4. Gapless Symmetry-Protected Topological Order

    Directory of Open Access Journals (Sweden)

    Thomas Scaffidi

    2017-11-01

    Full Text Available We introduce exactly solvable gapless quantum systems in d dimensions that support symmetry-protected topological (SPT edge modes. Our construction leads to long-range entangled, critical points or phases that can be interpreted as critical condensates of domain walls “decorated” with dimension (d-1 SPT systems. Using a combination of field theory and exact lattice results, we argue that such gapless SPT systems have symmetry-protected topological edge modes that can be either gapless or symmetry broken, leading to unusual surface critical properties. Despite the absence of a bulk gap, these edge modes are robust against arbitrary symmetry-preserving local perturbations near the edges. In two dimensions, we construct wave functions that can also be interpreted as unusual quantum critical points with diffusive scaling in the bulk but ballistic edge dynamics.

  5. On systems having Poincaré and Galileo symmetry

    International Nuclear Information System (INIS)

    Holland, Peter

    2014-01-01

    Using the wave equation in d≥1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated with the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics

  6. Electroweak results from hadron colliders

    International Nuclear Information System (INIS)

    Demarteau, Marcel

    1997-01-01

    A review of recent electroweak results from hadron colliders is given. Properties of the W ± and Z 0 gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. The emphasis is placed on the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings

  7. Symmetry remnants in the face of competing interactions in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A., E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Macek, M., E-mail: michal.macek@yale.edu [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, CT 06520-8120 (United States)

    2015-10-15

    Detailed description of nuclei necessitates model Hamiltonians which break most dynamical symmetries. Nevertheless, generalized notions of partial and quasi dynamical symmetries may still be applicable to selected subsets of states, amidst a complicated environment of other states. We examine such scenarios in the context of nuclear shape-phase transitions.

  8. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  9. Peccei-Quinn symmetry for Dirac seesaw and leptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Pei-Hong [Department of Physics and Astronomy, Shanghai Jiao Tong University,800 Dongchuan Road, Shanghai 200240 (China)

    2016-07-04

    We extend the DFSZ invisible axion model to simultaneously explain small Dirac neutrino masses and cosmic matter-antimatter asymmetry. After the Peccei-Quinn and electroweak symmetry breaking, the effective Yukawa couplings of the Dirac neutrinos to the standard model Higgs scalar can be highly suppressed by the ratio of the vacuum expectation value of an iso-triplet Higgs scalar over the masses of some heavy gauge-singlet fermions, iso-doublet Higgs scalars or iso-triplet fermions. The iso-triplet fields can carry a zero or nonzero hypercharge. Through the decays of the heavy gauge-singlet fermions, iso-doublet scalars or iso-triplet fermions, we can obtain a lepton asymmetry in the left-handed leptons and an opposite lepton asymmetry in the right-handed neutrinos. Since the right-handed neutrinos do not participate in the sphaleron processes, the left-handed lepton asymmetry can be partially converted to a baryon asymmetry.

  10. Five-fold local symmetry in metallic liquids and glasses

    International Nuclear Information System (INIS)

    Li M Z; Li F X; Zhang H P; Peng H L; Hu Y C; Wang W H

    2017-01-01

    The structure of metallic glasses has been a long-standing mystery. Owing to the disordered nature of atomic structures in metallic glasses, it is a great challenge to find a simple structural description, such as periodicity for crystals, for establishing the structure–property relationship in amorphous materials. In this paper, we briefly review the recent developments of the five-fold local symmetry in metallic liquids and glasses and the understanding of the structure–property relationship based on this parameter. Experimental evidence demonstrates that five-fold local symmetry is found to be general in metallic liquids and glasses. Comprehensive molecular dynamics simulations show that the temperature evolution of five-fold local symmetry reflects the structural evolution in glass transition in cooling process, and the structure–property relationship such as relaxation dynamics, dynamic crossover phenomena, glass transition, and mechanical deformation in metallic liquids and glasses can be well understood base on the simple and general structure parameter of five-fold local symmetry. (paper)

  11. Statistical symmetries in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs

  12. Gauge Group Contraction of Electroweak Model and its Natural Energy Limits

    Directory of Open Access Journals (Sweden)

    Nikolai A. Gromov

    2015-09-01

    Full Text Available The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interaction is explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.

  13. Natural limits of electroweak model as contraction of its gauge group

    International Nuclear Information System (INIS)

    Gromov, N A

    2015-01-01

    The low and higher energy limits of the electroweak model are obtained from the first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. Very weak neutrino–matter interactions are explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the electroweak model. At the infinite energy all particles lose mass, electroweak interactions become long-range and are mediated by neutral currents. The limit model represents the development of the early Universe from the big bang up to the end of the first second. (paper)

  14. Instantons and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; McDougall, N.A.

    1984-01-01

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)

  15. Instantons and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1984-10-22

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.

  16. Electroweak phase transitions

    International Nuclear Information System (INIS)

    Anderson, G.W.

    1991-01-01

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T . In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field

  17. Vanilla Technicolor at Linear Colliders

    DEFF Research Database (Denmark)

    T. Frandsen, Mads; Jarvinen, Matti; Sannino, Francesco

    2011-01-01

    We analyze the reach of Linear Colliders (LC)s for models of dynamical electroweak symmetry breaking. We show that LCs can efficiently test the compositeness scale, identified with the mass of the new spin-one resonances, till the maximum energy in the center-of-mass of the colliding leptons. In ...

  18. Phenomenology of colour exotic fermions

    International Nuclear Information System (INIS)

    Luest, D.

    1986-01-01

    The authors discuss the phenomenological consequences of a dynamical scenario according to which the electroweak symmetry breaking and generation of fermion masses is due to fermions that transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the spectrum of high colour boundstates. (Auth.)

  19. Electroweak processes in external active media

    CERN Document Server

    Kuznetsov, Alexander

    2013-01-01

    Expanding on the concept of the authors’ previous book “Electroweak Processes in External Electromagnetic Fields,” this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a “cherry stone shooting” mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book...

  20. Precision measurements of electroweak parameters

    CERN Document Server

    Savin, Alexander

    2017-01-01

    A set of selected precise measurements of the SM parameters from the LHC experiments is discussed. Results on W-mass measurement and forward-backward asymmetry in production of the Drell--Yan events in both dielectron and dimuon decay channels are presented together with results on the effective mixing angle measurements. Electroweak production of the vector bosons in association with two jets is discussed.

  1. STANFORD (SLAC): Precision electroweak result

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Precision testing of the electroweak sector of the Standard Model has intensified with the recent publication* of results from the SLD collaboration's 1993 run on the Stanford Linear Collider, SLC. Using a highly polarized electron beam colliding with an unpolarized positron beam, SLD physicists measured the left-right asymmetry at the Z boson resonance with dramatically improved accuracy over 1992

  2. LHCb: Electroweak studies at LHCb

    CERN Multimedia

    Salustino Guimaraes, V

    2012-01-01

    Results on the measurement of the $W^{\\pm}$ and $Z^{0}$ cross-sections are presented using final state leptons with pseudorapidities between 2 and 4.5. Due to its acceptance, LHCb can probe a regime of low low-x electroweak boson production, where parton distribution functions are not well constrained. We summarize the $W^{\\pm}$ measurements performed in the decay $\\mu^{\\pm}\

  3. arXiv Minimal Fundamental Partial Compositeness

    CERN Document Server

    Cacciapaglia, Giacomo; Sannino, Francesco; Thomsen, Anders Eller

    Building upon the fundamental partial compositeness framework we provide consistent and complete composite extensions of the standard model. These are used to determine the effective operators emerging at the electroweak scale in terms of the standard model fields upon consistently integrating out the heavy composite dynamics. We exhibit the first effective field theories matching these complete composite theories of flavour and analyse their physical consequences for the third generation quarks. Relations with other approaches, ranging from effective analyses for partial compositeness to extra dimensions as well as purely fermionic extensions, are briefly discussed. Our methodology is applicable to any composite theory of dynamical electroweak symmetry breaking featuring a complete theory of flavour.

  4. Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Marzola, Luca; Racioppi, Antonio; Vaskonen, Ville [National Institute of Chemical Physics and Biophysics, Tallinn (Estonia)

    2017-07-15

    Thermal corrections in classically conformal models typically induce a strong first-order electroweak phase transition, thereby resulting in a stochastic gravitational background that could be detectable at gravitational wave observatories. After reviewing the basics of classically conformal scenarios, in this paper we investigate the phase transition dynamics in a thermal environment and the related gravitational wave phenomenology within the framework of scalar conformal extensions of the Standard Model. We find that minimal extensions involving only one additional scalar field struggle to reproduce the correct phase transition dynamics once thermal corrections are accounted for. Next-to-minimal models, instead, yield the desired electroweak symmetry breaking and typically result in a very strong gravitational wave signal. (orig.)

  5. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Directory of Open Access Journals (Sweden)

    Osmanaj (Zeqirllari Rudina

    2018-01-01

    Full Text Available Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks – Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss – Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  6. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Science.gov (United States)

    Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina

    2018-03-01

    Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  7. Electroweak precision tests

    International Nuclear Information System (INIS)

    Monteil, St.

    2009-12-01

    This document aims at summarizing a dozen of years of the author's research in High Energy Physics, in particular dealing with precision tests of the electroweak theory. Parity violating asymmetries measurements at LEP with the ALEPH detector together with global consistency checks of the Kobayashi-Maskawa paradigm within the CKM-fitter group are gathered in the first part of the document. The second part deals with the unpublished instrumental work about the design, tests, productions and commissioning of the elements of the Pre-Shower detector of the LHCb spectrometer at LHC. Physics perspectives with LHCb are eventually discussed as a conclusion. (author)

  8. Introduction to gauge theories of electroweak interactions

    International Nuclear Information System (INIS)

    Ecker, G.

    1982-01-01

    The author presents an introduction to electroweak gauge theories. Emphasis is placed on the properties of a general gauge theory. The standard model is discussed as the simplest example to illustrate these properties. (G.T.H.)

  9. Current-current interactions, dynamical symmetry-breaking, and quantum chromodynamics

    International Nuclear Information System (INIS)

    Neuenschwander, D.E. Jr.

    1983-01-01

    Quantum Chromodynamics with massive gluons (gluon mass triple bond xm/sub p/) in a contact-interaction limit called CQCD (strong coupling g→infinity; x→infinity), despite its non-renormalizability and lack of hope of confinement, is nevertheless interesting for at least two reasons. Some authors have suggested a relation between 4-Fermi and Yang-Mills theories. If g/x 2 much less than 1, then CQCD is not merely a 4-Fermi interaction, but includes 4,6,8 etc-Fermi non-Abelian contact interactions. With possibility of infrared slavery, perturbative evaluation of QCD in the infrared is a dubious practice. However, if g 2 /x 2 much less than 1 in CQCD, then the simplest 4-Fermi interaction is dominant, and CQCD admits perturbative treatment, but only in the infrared. With the dominant interaction, a dynamical Nambu-Goldstone realization of chiral symmetry-breaking (XSB) is found. Although in QCD the relation between confinement and XSB is controversial, XSB occurs in CQCD provided confinement is sacrificed

  10. Symmetry-protected coherent relaxation of open quantum systems

    Science.gov (United States)

    van Caspel, Moos; Gritsev, Vladimir

    2018-05-01

    We compute the effect of Markovian bulk dephasing noise on the staggered magnetization of the spin-1/2 XXZ Heisenberg chain, as the system evolves after a Néel quench. For sufficiently weak system-bath coupling, the unitary dynamics are found to be preserved up to a single exponential damping factor. This is a consequence of the interplay between PT symmetry and weak symmetries, which strengthens previous predictions for PT -symmetric Liouvillian dynamics. Requirements are a nondegenerate PT -symmetric generator of time evolution L ̂, a weak parity symmetry, and an observable that is antisymmetric under this parity transformation. The spectrum of L ̂ then splits up into symmetry sectors, yielding the same decay rate for all modes that contribute to the observable's time evolution. This phenomenon may be realized in trapped ion experiments and has possible implications for the control of decoherence in out-of-equilibrium many-body systems.

  11. Dynamical symmetries of atomic nuclei at subshell closures; Dynamische Symmetrien von Atomkernen an Unterschalenabschluessen

    Energy Technology Data Exchange (ETDEWEB)

    Muecher, Dennis

    2009-04-28

    Within this thesis the influence of subshell closures at neutron numbers N=40 and N=56 upon nuclear structure was examined. The work was focussed on the nucleus {sup 70}Zn that has been studied by a series of experiments. Firstly a photon-scattering experiment was performed at the University of Stuttgart in order to revise the lifetime of the 2{sup +}{sub 2} state in {sup 70}Zn. Furthermore {sup 70}Zn was measured using monoenergetic neutrons at the University of Kentucky yielding many decisive corrections to the low-energy level scheme. In addition, magnetic moments of shortlived states were investigated with the method of transient magnetic fields. As a consequnce of these results it was shown that the nucleus {sup 70}Zn can be described within the F spin symmetric dynamical symmetry U(5) of the IBM-2. A new interpretation was given for the inconvenient behavior of the 0{sup +}{sub 2} and 2{sup +}{sub 3} level. The 2{sup +}{sub 3} state was proposed as the mixedsymmetry state 2{sup +}{sub 1,ms}. Furthermore candidates for the mixed-symmetry states of higher phonon order were presented. It was shown that strong mixing of the involved states occurs. The exceptional behavior of the 2{sup +}{sub 1,ms} states in the even-even zinc isotopes was interpreted as a breaking of the F spin symmetry at the transition to an isospin symmetric system. Experiments with radioactive beams of the nuclei {sup 88}Kr and {sup 92}Kr were presented as well. This was done to show how far mixed symmetry states can be studied using radioactive ion beam experiments in the future. (orig.)

  12. Precision experiments in electroweak interactions

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1990-03-01

    The electroweak theory of Glashow, Weinberg, and Salam (GWS) has become one of the twin pillars upon which our understanding of all particle physics phenomena rests. It is a brilliant achievement that qualitatively and quantitatively describes all of the vast quantity of experimental data that have been accumulated over some forty years. Note that the word quantitatively must be qualified. The low energy limiting cases of the GWS theory, Quantum Electrodynamics and the V-A Theory of Weak Interactions, have withstood rigorous testing. The high energy synthesis of these ideas, the GWS theory, has not yet been subjected to comparably precise scrutiny. The recent operation of a new generation of proton-antiproton (p bar p) and electron-positron (e + e - ) colliders has made it possible to produce and study large samples of the electroweak gauge bosons W ± and Z 0 . We expect that these facilities will enable very precise tests of the GWS theory to be performed in the near future. In keeping with the theme of this Institute, Physics at the 100 GeV Mass Scale, these lectures will explore the current status and the near-future prospects of these experiments

  13. A composite model of electroweak interactions and its manifestation at current collider energies

    International Nuclear Information System (INIS)

    Craigie, N.S.

    1984-05-01

    We present a preon model based on an ASF confining gauge theory, which has as a low energy effective Lagrangian, an electroweak gauge theory very close to the standard model. However, it is predicted that there are some specific and necessary deviations from the Glashow-Salam-Weinberg model. In this preon model, we assume a spontaneous breakdown (or an induced breakdown) of the left-right symmetry, which prevents spin-one composites made up of right-handed fermions propagating well below the composite scale of order 1 TeV. A consequence of this assumption is shown to be the existence of a pion-like scalar, in addition to the Higgs particle of the standard model. Such a particle - it is further claimed - can give rise to single photon events, through a large branching ratio into the channel π → Z γ or if lighter than the Z through Z → π(→νν-bar) + γ. The model also predicts a signal very similar to the associated gluino production one of supersymmetric grand unified theories. (author)

  14. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Jansen, Karl

    2009-12-01

    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)

  15. Electroweak chiral Lagrangian from a natural topcolor-assisted technicolor model

    International Nuclear Information System (INIS)

    Lang Junyi; Jiang Shaozhou; Wang Qing

    2009-01-01

    Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T. Hill's schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane's prototype natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively similar to those of Hill's, but Lane's model prefers a smaller technicolor group and the Z ' mass must be smaller than 400 GeV. Furthermore, the S parameter is around the order of +1, mainly due to the existence of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral Lagrangian up to the order p 4 . Apart from large negative four-fermion coupling values, the extended technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self energy, which determines these coefficients, in general receives almost no influence from the extended technicolor induced four-fermion interactions except for its large momentum tail.

  16. Electroweak Physics in the Forward Region

    CERN Multimedia

    Sirendi, Marek

    2015-01-01

    LHCb has an active electroweak physics programme with measurements of inclusive processes such as Z and W production in leptonic final states already published. The EW working group is also branching into jet physics with completed Z+jet and Z+b-jet analyses. Recent results in this field are presented.

  17. Bilocal bosonization of QCD and electroweak properties of light pseudoscalar mesons

    International Nuclear Information System (INIS)

    Belyea, C.I.; McKellar, B.H.J.

    1991-01-01

    Quantum chromodynamic based analysis of the low energy electroweak properties of light pseudo-scalars is studied using an approximate bilocal bosonization technique. Particular attention is given to the problem of maintaining electroweak gauge invariance, and a bilocal Wilson-line technique is introduced to address this problem. The decay constants F K and F π and the π ± charge radius are discussed in detail. 29 refs., 9 figs

  18. Financial Symmetry and Moods in the Market

    Science.gov (United States)

    Savona, Roberto; Soumare, Maxence; Andersen, Jørgen Vitting

    2015-01-01

    This paper studies how certain speculative transitions in financial markets can be ascribed to a symmetry break that happens in the collective decision making. Investors are assumed to be bounded rational, using a limited set of information including past price history and expectation on future dividends. Investment strategies are dynamically changed based on realized returns within a game theoretical scheme with Nash equilibria. In such a setting, markets behave as complex systems whose payoff reflect an intrinsic financial symmetry that guarantees equilibrium in price dynamics (fundamentalist state) until the symmetry is broken leading to bubble or anti-bubble scenarios (speculative state). We model such two-phase transition in a micro-to-macro scheme through a Ginzburg-Landau-based power expansion leading to a market temperature parameter which modulates the state transitions in the market. Via simulations we prove that transitions in the market price dynamics can be phenomenologically explained by the number of traders, the number of strategies and amount of information used by agents, all included in our market temperature parameter. PMID:25856392

  19. Financial symmetry and moods in the market.

    Directory of Open Access Journals (Sweden)

    Roberto Savona

    Full Text Available This paper studies how certain speculative transitions in financial markets can be ascribed to a symmetry break that happens in the collective decision making. Investors are assumed to be bounded rational, using a limited set of information including past price history and expectation on future dividends. Investment strategies are dynamically changed based on realized returns within a game theoretical scheme with Nash equilibria. In such a setting, markets behave as complex systems whose payoff reflect an intrinsic financial symmetry that guarantees equilibrium in price dynamics (fundamentalist state until the symmetry is broken leading to bubble or anti-bubble scenarios (speculative state. We model such two-phase transition in a micro-to-macro scheme through a Ginzburg-Landau-based power expansion leading to a market temperature parameter which modulates the state transitions in the market. Via simulations we prove that transitions in the market price dynamics can be phenomenologically explained by the number of traders, the number of strategies and amount of information used by agents, all included in our market temperature parameter.

  20. Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

    CERN Document Server

    Carra, Sonia; The ATLAS collaboration

    2018-01-01

    Supersymmetry is one of the most motivated Standard Model extensions. Despite the meticulous search during the LHC Run I, there is no evidence supporting this theory. Starting from 2015, LHC is performing a second data taking run with a higher center of mass energy (13 TeV), providing a great occasion for the search of beyond the Standard Model physics. An important sector is the direct production of supersymmetric electroweak particles, such as sleptons and charginos. Electroweak production cross section is lower compared to strong production, but searches performed by the ATLAS and CMS experiments during LHC Run 2 excluded squark and gluinos with masses up to 2 TeV, making electroweak production an increasingly promising probe for SUSY signals at the LHC. Results obtained with the 2015-2016 ATLAS detector data will be presented. Direct production of electroweak particles like sleptons, charginos and neutralinos, with different signatures, will be considered. A good sensitivity is obtained in the signal regi...