WorldWideScience

Sample records for dynamic terahertz photonic

  1. Room temperature broadband coherent terahertz emission induced by dynamical photon drag in graphene

    CERN Document Server

    Maysonnave, J; Wang, F; Maero, S; Berger, C; de Heer, W; Norris, T B; De Vaulchier, L A; Dhillon, S; Tignon, J; Ferreira, R; Mangeney, J

    2015-01-01

    Nonlinear couplings between photons and electrons in new materials give rise to a wealth of interesting nonlinear phenomena. This includes frequency mixing, optical rectification or nonlinear current generation, which are of particular interest for generating radiation in spectral regions that are difficult to access, such as the terahertz gap. Owing to its specific linear dispersion and high electron mobility at room temperature, graphene is particularly attractive for realizing strong nonlinear effects. However, since graphene is a centrosymmetric material, second-order nonlinearities a priori cancel, which imposes to rely on less attractive third-order nonlinearities. It was nevertheless recently demonstrated that dc-second-order nonlinear currents as well as ultrafast ac-currents can be generated in graphene under optical excitation. The asymmetry is introduced by the excitation at oblique incidence, resulting in the transfer of photon momentum to the electron system, known as the photon drag effect. Here...

  2. EDITORIAL: Photonic terahertz technology

    Science.gov (United States)

    Lisauskas, Alvydas; Löffler, Torsten; Roskos, Hartmut G.

    2005-07-01

    In recent years, when reading newspapers and journals or watching TV, one has been able to find feature presentations dealing with the prospects of terahertz (THz) technology and its potential impact on market applications. THz technology aims to fill the THz gap in the electro-magnetic spectrum in order to make the THz frequency regime, which spans the two orders of magnitude from 100 GHz to 10 THz, accessible for applications. From the lower-frequency side, electronics keeps pushing upwards, while photonic approaches gradually improve our technological options at higher frequencies. The popular interest reflects the considerable advances in research in the THz field, and it is mainly advances in the photonic branch, with the highlight being the development of the THz quantum cascade laser, which in recent years have caught the imagination of the public, and of potential users and investors. This special issue of Semiconductor Science and Technology provides an overview of key scientific developments which currently represent the cutting edge of THz photonic technology. In order to be clear about the implications, we should define exactly what we mean by 'THz photonic technology', or synonymously 'THz photonics'. It is characterized by the way in which THz radiation (or a guided THz wave) is generated, namely by the use of lasers. This may be done in one of two fundamentally different schemes: (i) by laser action in the terahertz frequency range itself (THz lasers), or (ii) by down-conversion processes (photomixing) involving the radiation of lasers which operate in the visible, near-infrared or infrared spectral ranges, either in pulsed or continuous-wave mode. The field of THz photonics has grown so considerably that it is out of the question to cover all its aspects in a single special issue of a journal. We have elected, instead, to focus our attention on two types of development with a potentially strong impact on the THz field: first, on significant advances

  3. Coherent terahertz photonics.

    Science.gov (United States)

    Seeds, Alwyn J; Fice, Martyn J; Balakier, Katarzyna; Natrella, Michele; Mitrofanov, Oleg; Lamponi, Marco; Chtioui, Mourad; van Dijk, Frederic; Pepper, Michael; Aeppli, Gabriel; Davies, A Giles; Dean, Paul; Linfield, Edmund; Renaud, Cyril C

    2013-09-23

    We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance of key components, show recent demonstrations of integrated platforms, and give examples of applications.

  4. Dynamic control of the flow of terahertz light

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    Guided propagation of THz light has been intensely developed recently. We describe our efforts towards dynamic, optical control of the flow of light in waveguide structures, enabling reconfigurable photonic components for the terahertz frequency range.......Guided propagation of THz light has been intensely developed recently. We describe our efforts towards dynamic, optical control of the flow of light in waveguide structures, enabling reconfigurable photonic components for the terahertz frequency range....

  5. Terahertz wireless communications based on photonics technologies.

    Science.gov (United States)

    Nagatsuma, Tadao; Horiguchi, Shogo; Minamikata, Yusuke; Yoshimizu, Yasuyuki; Hisatake, Shintaro; Kuwano, Shigeru; Yoshimoto, Naoto; Terada, Jun; Takahashi, Hiroyuki

    2013-10-07

    There has been an increasing interest in the application of terahertz (THz) waves to broadband wireless communications. In particular, use of frequencies above 275 GHz is one of the strong concerns among radio scientists and engineers, because these frequency bands have not yet been allocated at specific active services, and there is a possibility to employ extremely large bandwidths for ultra-broadband wireless communications. Introduction of photonics technologies for signal generation, modulation and detection is effective not only to enhance the bandwidth and/or the data rate, but also to combine fiber-optic (wired) and wireless networks. This paper reviews recent progress in THz wireless communications using telecom-based photonics technologies towards 100 Gbit/s.

  6. Convergence of Photonics and Electronics for Terahertz Wireless Communications

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, E.

    2016-01-01

    Terahertz wireless communications are expected to offer the required high capacity and low latency performance necessary for short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: Convergence o...... of Electronics and Photonics Technologies Enabling Terahertz Applications....

  7. Photonic techniques for sub-Terahertz wireless data transmission

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2015-01-01

    Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA.......Wireless data communication links with capacities beyond 100 Gbit/s will require operating at sub-Terahertz frequencies using a large bandpass bandwidth facing new engineering challenges. We review several implementation aspects by using photonic technologies. © 2015 OSA....

  8. Photonic-crystal slab for terahertz-wave technology platform

    Science.gov (United States)

    Fujita, Masayuki

    2016-03-01

    Photonic crystals manipulate photons in a manner analogous to solid-state crystals, and are composed of a dielectric material with a periodic refractive index distribution. In particular, two-dimensional photonic-crystal slabs with high index contrasts (semiconductor/air) are promising for practical applications, owing to the strong optical confinement in simple, thin planar structures. This paper presents the recent progress on a silicon photonic-crystal slab as a technology platform in the terahertz-wave region, which is located between the radio and light wave regions (0.1-10 THz). Extremely low-loss (edge effect are demonstrated. Terahertz photonic-crystal slabs hold the potential for developing ultralow-loss, compact terahertz components and integrated devices used in applications including wireless communication, spectroscopic sensing, and imaging.

  9. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase

    CERN Document Server

    Lu, Jian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-01-01

    Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  10. Photonic crystals at visible, x-ray, and terahertz frequencies

    Science.gov (United States)

    Prasad, Tushar

    Photonic crystals are artificial structures with a periodically varying refractive index. This property allows photonic crystals to control the propagation of photons, making them desirable components for novel photonic devices. Photonic crystals are also termed as "semiconductors of light", since they control the flow of electromagnetic radiation similar to the way electrons are excited in a semiconductor crystal. The scale of periodicity in the refractive index determines the frequency (or wavelength) of the electromagnetic waves that can be manipulated. This thesis presents a detailed analysis of photonic crystals at visible, x-ray, and terahertz frequencies. Self-assembly and spin-coating methods are used to fabricate colloidal photonic crystals at visible frequencies. Their dispersion characteristics are examined through theoretical as well as experimental studies. Based on their peculiar dispersion property called the superprism effect, a sensor that can detect small quantities of chemical substances is designed. A photonic crystal that can manipulate x-rays is fabricated by using crystals of a non-toxic plant virus as templates. Calculations show that these metallized three-dimensional crystals can find utility in x-ray optical systems. Terahertz photonic crystal slabs are fabricated by standard lithographic and etching techniques. In-plane superprism effect and out-of-plane guided resonances are studied by terahertz time-domain spectroscopy, and verified by numerical simulations.

  11. Low Loss Plastic Terahertz Photonic Band-Gap Fibres

    Institute of Scientific and Technical Information of China (English)

    GENG You-Fu; TAN Xiao-Ling; ZHONG Kai; WANG Peng; YAO Jian-Quan

    2008-01-01

    We report a numerical investigation on terahertz wave propagation in plastic photonic band-gap fibres which are characterized by a 19-unit-cell air core and hexagonal air holes with rounded corners in cladding. Using the finite element method, the leakage loss and absorption loss are calculated and the transmission properties are analysed.The lowest loss of 0.268 dB/m is obtained. Numerical results show that the fibres could liberate the constraints of background materials beyond the transparency region in terahertz wave band, and efficiently minimize the effect of absorption by background materials, which present great advantage of plastic photonic band-gap fibres in long distance terahertz delivery.

  12. Ultrafast terahertz electrodynamics of photonic and electronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Liang [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis summarizes my work on using ultrafast laser pulses to study Terahertz (THz) electrodynamics of photonic and electronic nanostructures and microstructures. Ultrafast timeresolved (optical, NIR, MIR, THz) pump-probe spectroscopy setup has been successfully built, which enables me to perform a series of relevant experiments. Firstly, a novel high e ciency and compact THz wave emitter based on split-ring-resonators has been developed and characterized. The emitter can be pumped at any wavelength by tailoring the magnetic resonance and could generate gapless THz waves covering the entire THz band. Secondly, two kinds of new photonic structures for THz wave manipulation have been successfully designed and characterized. One is based on the 1D and 2D photo-imprinted di ractive elements. The other is based on the photoexcited double-split-ring-resonator metamaterials. Both structures are exible and can modulate THz waves with large tunability. Thirdly, the dark excitons in semiconducting singlewalled carbon nanotubes are studied by optical pump and THz probe spectroscopy, which provides the rst insights into the THz responses of nonequilibrium excitonic correlations and dynamics from the dark ground states in carbon nanotubes. Next, several on-going projects are brie y presented such as the study of ultrafast THz dynamics of Dirac fermions in topological insulator Bi2Se3 with Mid-infrared excitation. Finally, the thesis ends with a summary of the completed experiments and an outlook of the future plan.

  13. Magneto-photonic phenomena at terahertz frequencies

    CERN Document Server

    Shalaby, Mostafa

    2014-01-01

    Magneto-terahertz phenomena are the main focus of the thesis. This work started as supporting research for the science of an X-ray laser (SwissFEL). X-ray lasers have recently drawn great attention as an unprecedented tool for scientific research on the ultrafast scale..... To answer this fundamental question, we performed original numerical simulations using a coupled Landau- Lifshitz-Gilbert Maxwell model. ... Those requirements were the motivations for the experiments performed in the second part of the thesis. To shape the terahertz pulses, .... Regarding the field intensities, we followed two approaches. The first deals with field enhancement in nanoslits arrays. We designed a subwavelength structure characterized by simultaneous high field enhancement and high transmission at terahertz frequencies to suit nonlinear sources. The second approach depended on up-scaling the generation from laser-induced plasma by increasing the pump wavelengths. Numerical calculations have also brought to our attention the ...

  14. Multiband Terahertz Photonic Band Gaps of Subwavelength Planar Fractals

    Institute of Scientific and Technical Information of China (English)

    ZHAO Guo-Zhong; TIAN Yan; SUN Hong-Qi; ZHANG Cun-Lin; YANG Guo-Zhen

    2006-01-01

    Optical transmission properties of subwavelength planar fractals in terahertz (THz) frequency regime are studied by means of time-domain spectroscopy. The transmission spectra with multiple pass bands and stop bands are observed. The tunable photonic band gaps are realized by changing the angle between the principle axis of planar fractal and the polarization of THz wave. The possible application of the subwavelength optical component is discussed. We attribute the detected transmittance from subwavelength fractals to localized resonances.

  15. Terahertz transport dynamics of graphene charge carriers

    DEFF Research Database (Denmark)

    Buron, Jonas Christian Due

    The electronic transport dynamics of graphene charge carriers at femtosecond (10-15 s) to picosecond (10-12 s) time scales are investigated using terahertz (1012 Hz) time-domain spectroscopy (THz-TDS). The technique uses sub-picosecond pulses of electromagnetic radiation to gauge the electrodynamic...... response of thin conducting films at up to multi-terahertz frequencies. In this thesis THz-TDS is applied towards two main goals; (1) investigation of the fundamental carrier transport dynamics in graphene at femtosecond to picosecond timescales and (2) application of terahertz time-domain spectroscopy...... to rapid and non-contact electrical characterization of large-area graphene, relevant for industrial integration. We show that THz-TDS is an accurate and reliable probe of graphene sheet conductance, and that the technique provides insight into fundamental aspects of the nanoscopic nature of conduction...

  16. A Novel Woodpile Three-Dimensional Terahertz Photonic Crystal

    Institute of Scientific and Technical Information of China (English)

    LIU Huan; YAO Jian-Quan; ZHENG Fang-Hua; XU De-Gang; WANG Peng

    2007-01-01

    A novel woodpile lattice structure is proposed. Based on plane wave expansion (PWE) method, the complete photonic band gaps (PBGs) of the novel woodpile three-dimensional (3D) terahertz (THz) photonic crystal (PC) with a decreasing symmetry relative to a face-centred-tetragonal (fct) symmetry are optimized by varying some structural parameters and the highest band gap ratio can reach 27.61%. Compared to the traditional woodpile lattice, the novel woodpile lattice has a wider range of the Riling ratios to gain high quality PBGs, which provides greater convenience for the manufacturing process. The novel woodpile 3D PC will be very promising for materials of THz functional components.

  17. Dynamic control of metamaterials at terahertz frequencies

    Science.gov (United States)

    Shrekenhamer, David

    Progress in the field of metamaterials has started coming to a point where the field may finally begin to emerge as a viable solution to many electromagnetic challenges facing the community. No where is that more true then at terahertz frequencies where there lies an immense opportunity for growth. The development of mature technologies within this region of the electromagnetic spectrum would provide a valuable resource to become available for a multitude of applications. In order to achieve this, the necessary first steps of identifying viable materials and paths to integrate these with metamaterials will need to be completed. In this dissertation, we examine several different paths to achieve dynamic metamaterial electromagnetic response at terahertz frequencies, and demonstrate several paths to package these devices into imaging systems. In Chapter 1, we introduce the basic theory and design principles of metamaterials. We also describe the experimental techniques involved in the study of terahertz metamaterials. Chapter 2 presents a computational and experimental study investigating the integration of high electron mobility transistors with metamaterials allowing for high speed modulation of incident terahertz radiation. In Chapters 3 and 4, we investigate several different paths to create tunable terahertz metamaterial absorbers. Chapter 3 presents an investigation where we encapsulate a metametarial absorber unit cell with liquid crystals. We study both computationally and experimentally the tuning mechanism of the absorber as the liquid crystal refractive index is controlled as a function of the applied electric field strength and modulation frequency. In Chapter 4, we form a doped semiconducting metamaterial spatial light modulator with multi-color super-pixels composed of arrays of electronically controlled terahertz metamaterial absorbers. We computationally and experimentally study the independent tunability of each pixel in the spatial array and

  18. Photonic Crystal Waveguides in Terahertz Regime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huaiwu, E-mail: hwzhang@uestc.edu.cn [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2011-02-01

    Using the finite difference time domain method, the electromagnetic field distribution of THz waves in photonic crystals (PCs) T-splitters and Y-splitters had been simulated. The simulation results show that those different T-splitters and Y-splitters can divide the power in an input wave guide equally between two output waveguides. By the improved T-splitter with a rod in the junction, we achieved the 84% amplitude- frequency characteristics consistency of pass-band from 1.12 THz to 1.22 THz, and surpass the 76% consistency of common T-splitter. The improved Y-splitter with a rod in the junction and without rod in the corners has widest -3db bandwidth 0.224 THz, and the amplitude reaches 1655.727. The improved Y-splitter has better performance than other Y-splitters. Introducing the photonic band gap structure with L-type defect composed of three defects. Three high-Q resonant frequencies appeared simultaneously in some monitor coordinates. The wavelength-add-drop properties of L-type defects may be used in multi-carrier communication and multi-frequency-monitoring for the THz regime. Also, a carefully designed PCs can be used as high Q narrowband filter in THz band. These results provide a useful guide and a theoretical basis for the developments of THz functional components.

  19. An Efficient Photon Conversion Efficiency Ammonia Terahertz Cavity Laser

    Institute of Scientific and Technical Information of China (English)

    QI Chun-Chao; ZUO Du-Luo; Lu Yan-Zhao; TANG Jian; YANG Chen-Guang; KE Lin-Da; CHENG Zu-Hai

    2009-01-01

    An efficient ammonia terahertz(THz)cavity laser is reported experimentally.Unlike the past design schemes such as hole couplers and freestanding mesh couplers,in our systems the input and output couplers are fabricated by depositing nickel capacitive metallic meshes on ZnSe and high-resistivity silicon substrates.Thus the couplers not only can be constructed as an F-P oscillator but also can be used as sealed windows that are easier to perform the adjustment of alignment with.To enhance THz laser output energy and photon conversion efficiency,the dominant factors such as pump intensity and gas pressure are investigated experimentally.Finally,a 1.35 mJ terahertz radiation of ammonia laser with 90μm wavelength(3.33THz)operating at 1.09kPa pumped by a 402mJ TEA CO_2 laser with 9R(16)line is generated,and photon conversion efficiencies of 6.5% are achieved.

  20. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence...... of electronics and photonics technologies enabling Terahertz applications...

  1. Convergence of photonics and electronics for Terahertz wireless communications – the ITN CELTA project

    DEFF Research Database (Denmark)

    Tafur Monroy, Idelfonso

    2016-01-01

    Terahertz wireless communications is expected to offer the required high capacity and low latency performance required from short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: convergence of...... of electronics and photonics technologies enabling Terahertz applications...

  2. Fabrication of Terahertz Wave Resonators with Alumina Diamond Photonic Crystals for Frequency Amplification in Water Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, N; Niki, T; Kirihara, S, E-mail: n-ohta@jwri.osaka-u.ac.jp [Smart Processing Research Center, Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka, 567-0047 (Japan)

    2011-05-15

    Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.

  3. Polarised two-photon excitation of quantum well excitons for manipulation of optically pumped terahertz lasers

    Energy Technology Data Exchange (ETDEWEB)

    Slavcheva, G., E-mail: gsk23@bath.ac.uk [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Kavokin, A.V., E-mail: A.Kavokin@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Spin Optics Laboratory, St. Petersburg State University, 1, Ulyanovskaya 198504 (Russian Federation)

    2014-11-15

    Optical pumping of excited exciton states in a semiconductor quantum well embedded in a microcavity is a tool for realisation of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited (2p) and ground (1s) exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarisation of both pumping photons. Five-fold variation of the threshold power for terahertz lasing by switching from circular to co-linear pumping is predicted. We identify photon polarisation configurations for achieving maximum THz photon generation quantum efficiency.

  4. Differences of Band Gap Characteristics of Square and Triangular Lattice Photonic Crystals in Terahertz Range

    Institute of Scientific and Technical Information of China (English)

    Jie Zha; Zhi-Yong Zhong; Huai-Wu Zhang; Qi-Ye Wen; Yuan-Xun Li

    2009-01-01

    Band gap characteristics of the photonic crystals in terahertz range with square lattice and triangular lattice of GaAs cylinders are comparatively studied by means of plane wave method (PWM). The influence of the radius on the band gap width is analyzed and the critical values where the band gap appears are put forward. The results show that themaximum band gap width of photonic crystal with triangular lattice of GaAs cylinders is much wider than that of photonic crystal with square lattice. The research provides a theoretic basis for the development of terahertz (THz) devices.

  5. Terahertz-visible two-photon rotational spectroscopy of cold OD-

    CERN Document Server

    Lee, Seunghyun; Lakhmanskaya, Olga; Spieler, Steffen; Endres, Eric S; Geistlinger, Katharina; Kumar, Sunil S; Wester, Roland

    2016-01-01

    We present a method to measure rotational transitions of molecular anions in the terahertz domain by sequential two-photon absorption. Ion excitation by bound-bound terahertz absorption is probed by absorption in the visible on a bound-free transition. The visible frequency is tuned to a state-selective photodetachment transition of the excited anions. This provides a terahertz action spectrum for just few hundred molecular ions. To demonstrate this we measure the two lowest rotational transitions, J=1<-0 and J =2<-1 of OD- anions in a cryogenic 22-pole trap. We obtain rotational transition frequencies of 598596.08(19) MHz for J=1<-0 and 1196791.57(27) MHz for J=2<-1 of OD-, in good agreement with their only previous measurement. This two-photon scheme opens up terahertz rovibrational spectroscopy for a range of molecular anions, in particular for polyatomic and cluster anions.

  6. Terahertz Active Photonic Crystals for Condensed Gas Sensing

    Directory of Open Access Journals (Sweden)

    Karl Unterrainer

    2011-06-01

    Full Text Available The terahertz (THz spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active photonic crystals (PhCs, i.e., the pillars are fabricated directly from an active THz quantum-cascade laser medium. The individual pillars are pumped electrically leading to laser emission at cryogenic temperatures. There is no need to couple light into the resonant structure because the PhC itself is used as the light source. An injected gas changes the resonance condition of the PhC and thereby the laser emission frequency. We achieve an experimental frequency shift of 10−3 times the center lasing frequency. The minimum detectable refractive index change is 1.6 × 10−5 RIU.

  7. Carrier dynamics and terahertz photoconductivity of doped silicon measured by femtosecond pump-terahertz probe spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The carrier dynamics and terahertz photoconductivity in the n-type silicon (n-Si) as well as in the p-type Silicon (p-Si) have been investigated by using femtosecond pump-terahertz probe technique. The measurements show that the relative change of terahertz transmission of p-Si at low pump power is slightly smaller than that of n-Si,due to the lower carrier density induced by the recombination of original holes in the p-type material and the photogenerated electrons. At high pump power,the bigger change of terahertz transmission of p-Si originates from the greater mobility of the carriers compared to n-Si. The transient photoconductivities are calculated and fit well with the Drude-Smith model,showing that the mobility of the photogenerated carriers decreases with the increasing pump power. The obtained results indicate that femtosecond pump-terahertz probe technique is a promising method to investigate the carrier dynamics of semiconductors.

  8. Carrier dynamics and terahertz photoconductivity of doped silicon measured by femtosecond pump-terahertz probe spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHOU QingLi; SHI YuLei; LI Tong; JIN Bin; ZHAO DongMei; ZHANG CunLin

    2009-01-01

    The carrier dynamics and terahertz photoconductivity in the n-type silicon (n-Si) as well as in the p-type Silicon (pSi) have been investigated by using femtoaecond pump-terahertz probe technique. The measurements show that the relative change of terahertz transmission of p-Si at low pump power is slightly smaller than that of n-Si, due to the lower carrier density induced by the recombination of original holes in the p-type material and the photogenerated electrons. At high pump power, the bigger change of terahertz transmission of p-Si originates from the greater mobility of the carriers compared to n-Si. The transient photoconductivities are calculated and fit well with the Drude-Smith model, showing that the mobility of the photogenerated carriers decreases with the increasing pump power. The obtained results indicate that femtosecond pump-terahertz probe technique is a promising method to investigate the carrier dynamics of semiconductors.

  9. DNA Breathing Dynamics in the Presence of a Terahertz Field

    CERN Document Server

    Alexandrov, B S; Bishop, A R; Usheva, A; Rasmussen, K O

    2009-01-01

    We consider the influence of a terahertz field on the breathing dynamics of double-stranded DNA. We model the spontaneous formation of spatially localized openings of a damped and driven DNA chain, and find that linear instabilities lead to dynamic dimerization, while true local strand separations require a threshold amplitude mechanism. Based on our results we argue that a specific terahertz radiation exposure may significantly affect the natural dynamics of DNA, and thereby influence intricate molecular processes involved in gene expression and DNA replication.

  10. Extremely low-loss single-mode photonic crystal fiber in the terahertz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G. K M; Sadath, Md Anwar;

    2015-01-01

    This paper presents an updated design and numerical characterization of a rotated porous-core hexagonal photonic crystal fiber (PCF) for single-mode terahertz (THz) wave guidance. The simulation results are found using an efficient finite element method (FEM) which show a better and ultra-low eff...

  11. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    CERN Document Server

    Williamson, Ian A D; Wang, Zheng

    2015-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100x wavelength reduction and excellent out-of-plane confinement. The graphene-cladded photonic crystal slabs exhibit band structures closely resembling those of ideal two-dimensional photonic crystals, with broad two-dimensional photonic band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crys...

  12. Out-of-plane resonances in terahertz photonic crystal slabs modulated by optical pumping.

    Science.gov (United States)

    Shi, Yulei; Zhou, Qing-Li; Liu, Wei; Zhang, Cunlin

    2011-10-10

    This paper describes detailed optical-pump-terahertz-probe studies of two-dimensional photonic crystal slabs for propagation perpendicular to the slabs. When the slabs are excited by an 800 nm pump pulse and the effect of shielding by photocarriers is removed, we find that the decaying tail in the transmitted terahertz radiation is strikingly enhanced. The photocarriers weaken guided resonances, but they also greatly enhance the excitation efficiency of guided resonances and the ability of the guided resonances to transfer energy back to the radiation field. This increases the resonance-assisted contribution to transmitted field. The photoinduced resonant extremes agree well with the Fano model.

  13. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs.

    Science.gov (United States)

    Williamson, Ian A D; Mousavi, S Hossein; Wang, Zheng

    2016-05-04

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene's large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude.

  14. Convergence of Photonics and Electronics for Terahertz Wireless Communications

    DEFF Research Database (Denmark)

    Salazar, Adrian Ruiz; Rommel, Simon; Anufriyev, E.

    2016-01-01

    Terahertz wireless communications are expected to offer the required high capacity and low latency performance necessary for short-range wireless access and control applications. We present an overview of some the activities in this area in the newly started H2020 ITN project CELTA: Convergence...

  15. Dynamic optically induced planar terahertz quasioptics

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    that photoexcitations with sufficient conductivity can induce a partial reflection, capable of steering the pulse inside the two-dimensional waveguide. A beamsplitter is demonstrated as proof of principle and is used to delay the arrival of the reflected terahertz pulse at the detector by several picoseconds by moving...

  16. Spatial-temporal dynamics of broadband terahertz Bessel beam propagation

    Science.gov (United States)

    Semenova, V. A.; Kulya, M. S.; Bespalov, V. G.

    2016-08-01

    The unique properties of narrowband and broadband terahertz Bessel beams have led to a number of their applications in different fields, for example, for the depth of focusing and resolution enhancement in terahertz imaging. However, broadband terahertz Bessel beams can probably be also used for the diffraction minimization in the short-range broadband terahertz communications. For this purpose, the study of spatial-temporal dynamics of the broadband terahertz Bessel beams is needed. Here we present a simulation-based study of the propagating in non-dispersive medium broadband Bessel beams generated by a conical axicon lens. The algorithm based on scalar diffraction theory was used to obtain the spatial amplitude and phase distributions of the Bessel beam in the frequency range from 0.1 to 3 THz at the distances 10-200 mm from the axicon. Bessel beam field is studied for the different spectral components of the initial pulse. The simulation results show that for the given parameters of the axicon lens one can obtain the Gauss-Bessel beam generation in the spectral range from 0.1 to 3 THz. The length of non-diffraction propagation for a different spectral components was measured, and it was shown that for all spectral components of the initial pulse this length is about 130 mm.

  17. Effects of two-photon absorption on terahertz radiation generated by femtosecond-laser excited photoconductive antennas.

    Science.gov (United States)

    Lee, Chao-Kuei; Yang, Chan-Shan; Lin, Sung-Hui; Huang, Shiuan-Hua; Wada, Osamu; Pan, Ci-Ling

    2011-11-21

    Terahertz (THz) radiation can be generated more efficiently from a low-temperature-grown GaAs (LT-GaAs) photoconductive (PC) antenna by considering the two-photon absorption (TPA) induced photo-carrier in the photoconductor. A rate-equation-based approach using the Drude-Lorentz model taking into account the band-diagram of LT-GaAs is used for the theoretical analysis. The use of transform-limited pulses at the PC antenna is critical experimentally. Previously unnoticed THz pulse features and anomalously increasing THz radiation power rather than saturation were observed. These are in good agreement with the theoretical predictions. The interplay of intensity dependence and dynamics of generation of photoexcited carriers by single-photon absorption and TPA for THz emission is discussed.

  18. A novel broadband terahertz filter for photonic crystal

    Science.gov (United States)

    Luo, Yuan; Li, Yanyan; Hu, Zhangfang; Liu, Jinlan

    2016-09-01

    The influence of the change of the radius of point defect cylinders, scattering dielectric cylinders, dielectric cylinders on both sides of line waveguide on S parameter is studied. According to the resonant coupling principle between micro-cavity and waveguide, a novel broadband terahertz filter is designed. The novel filter is formed by introducing scattering dielectric cylinders into the resonant microcavity, and the point defect cylinders are composed of HgTe material and adjusting the radius of dielectric cylinders on both sides of line waveguide. Results show that the 3 dB bandwidth reaches 74.2 GHz, the return loss is less than -12.02 dB, the maximum insertion loss in-band reaches 0.35 dB and its drop efficiency is up to 96.79%. The novel terahertz filter has flat passband, sharp rejections at out-bands and its central frequency is 0.338THz. The good performances show that it can meet the requirements of high speed and broadband in terahertz atmosphere communication I window.

  19. Broadband terahertz dynamics of propylene glycol monomer and oligomers

    Science.gov (United States)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji

    2016-12-01

    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.

  20. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Science.gov (United States)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  1. High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses

    CERN Document Server

    Szwaj, Christophe; Parquier, Marc Le; Roy, Pascale; Manceron, Laurent; Brubach, Jean-Blaise; Tordeux, Marie-Agnès; Bielawski, Serge

    2016-01-01

    Single-shot recording of terahertz electric signals has recently become possible at high repetition rates, by using the photonic time-stretch electro-optic sampling (EOS) technique. However the moderate sensitivity of time-stretch EOS is still a strong limit for a range of applications. Here we present a variant enabling to increase the sensitivity of photonic time-stretch for free-propagating THz signals. A key point is to integrate the idea presented in Ref. [Ahmed et al., Rev. Sci. Instrum. 85, 013114 (2014)], for upgrading classical time-stretch systems. The method is tested using the high repetition rate terahertz coherent synchrotron radiation source (CSR) of the SOLEIL synchrotron radiation facility. The signal-to-noise ratio of our terahertz digitizer could thus be straightforwardly improved by a factor $\\approx 6.5$, leading to a noise-equivalent input electric field below $1.25$~V/cm inside the electro-optic crystal, over the 0-300~GHz band (i.e, 2.3~$\\mu$V/cm/$\\sqrt{\\text{Hz}}$). The sensitivity is...

  2. High sensitivity photonic time-stretch electro-optic sampling of terahertz pulses

    Science.gov (United States)

    Szwaj, C.; Evain, C.; Le Parquier, M.; Roy, P.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Bielawski, S.

    2016-10-01

    Single-shot recording of terahertz electric signals has recently become possible at high repetition rates, by using the photonic time-stretch electro-optic sampling (EOS) technique. However the moderate sensitivity of time-stretch EOS is still a strong limit for a range of applications. Here we present a variant enabling to increase the sensitivity of photonic time-stretch for free-propagating THz signals. The ellipticity of the laser probe is enhanced by adding a set of Brewster plates, as proposed by Ahmed et al. [Rev. Sci. Instrum. 85, 013114 (2014)] in a different context. The method is tested using the high repetition rate terahertz coherent synchrotron radiation source of the SOLEIL synchrotron radiation facility. The signal-to-noise ratio of our terahertz digitizer could thus be straightforwardly improved by a factor ≈6.5, leading to a noise-equivalent input electric field below 1.25 V/cm inside the electro-optic crystal, over the 0-300 GHz band (i.e., 2.3 μ V / cm / √{ Hz } ). The sensitivity is scalable with respect to the available laser power, potentially enabling further sensitivity improvements when needed.

  3. Photonic generation of high quality frequency-tunable millimeter wave and terahertz wave

    Institute of Scientific and Technical Information of China (English)

    Yu Ji; Yah Li; Fangzheng Zhang; Jian Wu; Xiaobing Hong; Kun Xu; Wei Li; Jintong Lin

    2012-01-01

    A scheme for the photonic generation of frequency-tunable millimeter wave and terahertz wave signals based on a highly flat optical frequency comb is proposed and demonstrated experimentally.The frequency comb is generated using two cascaded phase modulators (PMs) and an electro-absorption modulator (EAM).The frequency comb covers a 440-GHz frequency range,with 40-GHz comb spacing and less than 2-dB amplitude variation. By filtering out two of the comb lines with 50 dB out of the band suppression ratio,high frequency-purity and low phase noise millimeter wave or terahertz wave signals are successfully generated,with frequencies ranging from 40 to 440 GHz.

  4. Generation, transmission, and detection of terahertz photons on an electrically driven single chip

    Energy Technology Data Exchange (ETDEWEB)

    Ikushima, Kenji; Ito, Atsushi; Okano, Shun [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2014-02-03

    We demonstrate single photon counting of terahertz (THz) waves transmitted from a local THz point source through a coplanar two-wire waveguide on a GaAs/AlGaAs single heterostructure crystal. In the electrically driven all-in-one chip, quantum Hall edge transport is used to achieve a noiseless injection current for a monochromatic point source of THz fields. The local THz fields are coupled to a coplanar two-wire metal waveguide and transmitted over a macroscopic scale greater than the wavelength (38 μm in GaAs). THz waves propagating on the waveguide are counted as individual photons by a quantum-dot single-electron transistor on the same chip. Photon counting on integrated high-frequency circuits will open the possibilities for on-chip quantum optical experiments.

  5. High dynamic range, hyper-terahertz detection with silicon photoconductors

    Science.gov (United States)

    Muir, A. C.; Hussain, A.; Andrews, S. R.

    2016-06-01

    The frequency response of ion implanted silicon photoconductive devices designed for coherent detection in time domain terahertz spectroscopy has been studied between 0.2 and 30 THz. Unlike devices using polar photoconductors or ones having polar substrates, which have a complicated response spectrum in the region of their reststrahlen bands, the response of silicon detectors fabricated on silicon substrates is relatively featureless. When used with amplified laser systems, the dynamic range of Si detectors is shown to be very similar to that of GaAs devices with the same geometry over a 20 THz range, superior to air-biased coherent detection (ABCD) at frequencies below ˜7 THz and comparable with both ABCD and electro-optic sampling in thin ZnTe crystals between 7 and 20 THz. Together with their ease of use and linear response in terahertz fields approaching 1 MV/cm, this suggests that Si photoconductors could be a competitive choice for sensitive detection in nonlinear hyper-terahertz spectroscopy.

  6. Ultra low bending loss equiangular spiral photonic crystal fibers in the terahertz regime

    Directory of Open Access Journals (Sweden)

    Arti Agrawal

    2012-06-01

    Full Text Available An Equiangular Spiral Photonic Crystal Fiber (ES-PCF design in Topas® for use in the Terahertz regime is presented. The design shows ultra low bending loss and very low confinement loss compared to conventional Hexagonal PCF (H-PCF. The ES-PCF has excellent modal confinement properties, together with several parameters to allow the optimization of the performance over a range of important characteristics. A full vector Finite Element simulation has been used to characterize the design which can be fabricated by a range of techniques including extrusion and drilling.

  7. Plasmon-terahertz photon interaction in high-electron-mobility heterostructures

    Science.gov (United States)

    Łusakowski, Jerzy

    2017-01-01

    Terahertz (THz) radiation couples to a two-dimensional electron plasma in high-electron-mobility heterostructures which allows one to study fundamental properties of this electron system and construct plasma-based devices. This article reviews some of the recent results of theoretical and experimental studies on plasmon-THz photon interaction. In particular, plasma dispersion relations, mechanisms of THz-field rectification and ultrastrong light-matter coupling are discussed in conventional structures based on GaAs and CdTe and new materials—graphene and black phosphorus.

  8. Generation of terahertz hollow beams by a photonic quasi-crystal flat lens

    Science.gov (United States)

    Feng, Bo; Liu, Exian; Wang, Ziming; Cai, Weicheng; Liu, Hongfei; Wang, Shuo; Liang, Taiyuan; Xiao, Wei; Liu, Jianjun

    2016-06-01

    We have designed a decagonal photonic quasi-crystal (PQC) flat lens, which turns an incident terahertz (THz) plane wave into a hollow beam easily and flexibly. The features of the THz hollow beam can be controlled by varying the parameters of a point defect in the center of the lens, i.e., the PQC flat lens can be used as a flexible tool for THz optical captivity or optical tweezer. The results showing that an airy disk, whose mean beam width is similar to the incident wavelength and power-in-the-bucket (PIB) is more than 96%, can be generated in the far field.

  9. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    CERN Document Server

    Schubert, O; Langer, F; Urbanek, B; Lange, C; Huttner, U; Golde, D; Meier, T; Kira, M; Koch, S W; Huber, R

    2016-01-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of highspeed electronics, electro-optics, and fundamental solid-state physics. Intense light pulses in the terahertz (THz) spectral range have opened fascinating vistas: Since THz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for THz amplitudes reaching atomic field strengths. We exploit controlled THz waveforms with peak fields of 72 MV/cm to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire THz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and in...

  10. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies

    Science.gov (United States)

    Hanham, S. M.; Watts, C.; Otter, W. J.; Lucyszyn, S.; Klein, N.

    2015-07-01

    We present a highly sensitive technique for determining the complex permittivity of nanoliter liquid samples in the terahertz band based on a photonic crystal resonator and microcapillary. Liquids are characterized by using a capillary tube to introduce a ˜4 nl liquid sample into the electromagnetic field of a resonant mode confined by an L3 resonant cavity in a high-resistivity silicon photonic crystal slab. Monitoring the perturbation of the resonant frequency and unloaded Q-factor of the resonant mode at 100 GHz and ˜5800, respectively, allows a sample's permittivity to be calculated. An analytical model describing the system response based on perturbation theory and quasi-static analysis of the electric field within the capillary is also presented and found to agree well with FEM simulations and experimental measurements of ethanol-water mixtures of various concentrations for low to moderate loss tangents of the liquid samples. We demonstrate the utility of this approach by measuring the complex permittivity of several bioliquids, including suspensions of red and white blood cells. These results represent a step towards a lab-on-a-chip device for the analysis of extremely small quantities of biological, toxic, explosive, and other liquid types at terahertz frequencies.

  11. Photonic Crystal Fano Laser: Terahertz Modulation and Ultrashort Pulse Generation

    DEFF Research Database (Denmark)

    Mørk, Jesper; Chen, Yaohui; Heuck, Mikkel

    2014-01-01

    We suggest and analyze a laser with a mirror realized by Fano interference between a waveguide and a nanocavity. For small-amplitude modulation of the nanocavity resonance, the laser can be modulated at frequencies exceeding 1 THz, not being limited by carrier dynamics as for conventional lasers....

  12. Ultrafast Terahertz Dynamics and Switching in Quantum Dots

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2012-01-01

    carrier release from the QDs with (sub-)picosecond time resolution, using optical pump–THz probe measurements. In the second part of this chapter we investigate the direct manipulation of the quantum confinement potential of the QDs by an electric field of a strong THz pulse. The resulting THz......-driven quantum-confined Stark effect leads to a strong modulation of a ground-state optical absorption in the QDs. Dynamically, such a THz-induced electro-absorption modulation in QDs (near-)instantaneously follows the absolute value of the electric field of the THz pulse, providing the capability for Tbit......In this Chapter we describe the experimental studies of ultrafast carrier dynamics and all-optical switching in semiconductor quantum dots (QDs) using ultrafast terahertz (THz) techniques. In the first part of this chapter we describe the studies of carrier capture into the QDs, and thermionic...

  13. Terahertz dynamic scanning reflectometry of soldier personal protective material

    Science.gov (United States)

    Rahman, Anis; Mentzer, Mark

    2012-02-01

    Ballistic characterization of improved materials for Soldier personal protective equipment is an ever-challenging task, requiring precise measurement of materials during ballistic impact. Current dynamic deformation technologies, such as high-speed digital image correlation, and laser velocimetry and vibrometry, are only able to provide surface measurements. However, there is a need to measure the dynamic delamination and mass loss of composite material, allowing calculation of available kinetic energy remaining in the material. A high sensitivity terahertz dynamic scanning reflectometer may be used to measure dynamic surface deformation and delamination characteristics in real-time. A number of crucial parameters can be extracted from the reflectance measurements such as dynamic deformation, propagation velocity, and final relaxation position. As proof of principle, an acrylic plate was struck with a blunt pendulum impactor and dynamic deformation was captured in real-time. Reflectance kinetics was converted to deformation and the velocity was calculated from the kinetics spectrum. Kinetics of a focused pendulum impactor on a steel plate was also acquired, characterizing plate relaxation from maximum deformation to equilibrium with discernible vibrations before reaching stable equilibrium.

  14. High efficiency terahertz-wave photonic crystal fiber optical parametric oscillator.

    Science.gov (United States)

    Li, Shaopeng; Liu, Hongjun; Huang, Nan; Sun, Qibing; Li, Xuefeng

    2012-08-01

    We theoretically propose phase matched terahertz (THz)-wave generation via degenerate four-wave mixing (FWM) in a fiber optical parametric oscillator (FOPO) with our newly designed photonic crystal fiber (PCF). Perfect phase matching is realized when we locate the pump wavelength in the normal group-velocity dispersion (GVD) regime. The generated THz-wave can be tuned from 4.7578 to 5.9015 THz by varying the pump wavelength. Moreover, peak power of 27.38 W at 5.9015 THz with conversion efficiency of 1.37% is realized when the pump peak power of 2000 W is at 4.675 μm in our FOPO.

  15. Compact and high-power broadband terahertz source based on femtosecond photonic crystal fiber amplifier

    Institute of Scientific and Technical Information of China (English)

    Feng Liu; Lu Chai; Qirong Xing; Chingyue Wang; Weili Zhang; Xiaokun Hu; Jiang Li; Changlei Wang; Yi Li; Yanfeng Li; YoujianSong; Bowen Liu; Minglie Hu

    2011-01-01

    Terahertz (THz) waves,generally defined in the 0.1-10 THz range are finding growing applications in various important fields[1-4] such as imaging,food and pharmaceutical quality coutrol,security screening,and standoff detection of bio-threat species,among which THz timedomain spectroscopy (THz-TDS)[5] is particularly appealing.However,the low conversion efficiency and low power of typical broadband THz sources severely hinder the utility and realization of the full potential of THzTDS.Recently,there have been efforts to generate THz pulses using compact pump sources in fiber format[6,7].%We present a review of the development of a compact and high-power broadband terahertz (THz) source optically excited by a femtosecond photonic crystal fiber (PCF) amplifier. The large mode area of the PCF and the stretcher-free configuration make the pump source compact and very efficient. Broadband THz pulseg of 150 μW extending from 0.1 to 3.5 TH2 are generated from a 3-mm-thick GaP crystal through optical rectification of 12-W pump pulses with duration of 66 & and a repetition rate of 52 MHz. A strong saturation effect is observed, which is attributed to pump pulse absorption; a Z-scan measurement shows that three-photon absorption dominates the nonlinear absorption when the crystal is pumped by femtosecond pulses at 1040 run. A further scale-up of the THz source power is expected to find important applications in THz nonlinear optics and nonlinear THz spectroscope

  16. Mobile charge generation dynamics in P3HT: PCBM observed by time-resolved terahertz spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  17. A survey on GaN- based devices for terahertz photonics

    Science.gov (United States)

    Ahi, Kiarash; Anwar, Mehdi

    2016-09-01

    With fast growing of the photonics and power electronic systems, the need for high power- high frequency semiconductor devices is sensed tremendously. GaN provides the highest electron saturation velocity, breakdown voltage and operation temperature, and thus combined frequency-power performance among commonly used semiconductors. With achieving the first THz image in just two decades ago, generation and detection of terahertz (THz) radiation is one of the most emerging photonic areas. The industrial needs for compact, economical, high resolution and high power THz imaging and spectroscopy systems are fueling the utilization of GaN for the realizing of the next generation of THz systems. As it is reviewed in this paper, the mentioned characteristics of GaN together with its capabilities of providing high 2-dimentional election densities and large longitudinal-optical phonon of 90 meV, make it one of the most promising semiconductor materials for the future of the THz generation, detection, mixing, and frequency multiplication. GaN- based devices have shown capabilities of operating in the upper THz frequency band of 5- 12 THz with relatively high photon densities and in room temperature. As a result, THz imaging and spectroscopy systems with high resolutions and depths of penetrations can be realized via utilizing GaN- based devices. In this paper, a comprehensive review on the history and state of the art of the GaN- based electronic devices, including plasma HFETs, NDRs, HDSDs, IMPATTs, QCLs, HEMTs, Gunn diodes and TeraFETs together with their impact on the future of THz imaging and spectroscopy systems is provided.

  18. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    imaging systems are reviewed in terms of the employed architecture and data processing strategies. Active multichannel measurement method is found to be promising for real-time applications among the various terahertz imaging techniques and is chosen as a basis for the imaging instruments presented......This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...... in this paper. An active system operation allows for a wide dynamic range, which is important for image quality. The described instruments employ a multichannel high-sensitivity heterodyne architecture and aperture filling techniques, with close to real-time image acquisition time. In the case of the photonic...

  19. Low frequency piezoresonance defined dynamic control of terahertz wave propagation

    Science.gov (United States)

    Dutta, Moumita; Betal, Soutik; Peralta, Xomalin G.; Bhalla, Amar S.; Guo, Ruyan

    2016-11-01

    Phase modulators are one of the key components of many applications in electromagnetic and opto-electric wave propagations. Phase-shifters play an integral role in communications, imaging and in coherent material excitations. In order to realize the terahertz (THz) electromagnetic spectrum as a fully-functional bandwidth, the development of a family of efficient THz phase modulators is needed. Although there have been quite a few attempts to implement THz phase modulators based on quantum-well structures, liquid crystals, or meta-materials, significantly improved sensitivity and dynamic control for phase modulation, as we believe can be enabled by piezoelectric-resonance devices, is yet to be investigated. In this article we provide an experimental demonstration of phase modulation of THz beam by operating a ferroelectric single crystal LiNbO3 film device at the piezo-resonance. The piezo-resonance, excited by an external a.c. electric field, develops a coupling between electromagnetic and lattice-wave and this coupling governs the wave propagation of the incident THz beam by modulating its phase transfer function. We report the understanding developed in this work can facilitate the design and fabrication of a family of resonance-defined highly sensitive and extremely low energy sub-millimeter wave sensors and modulators.

  20. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue [Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Chai, Lu, E-mail: lu-chai@tju.edu.cn, E-mail: yanfengli@tju.edu.cn; Liu, Bowen; Hu, Minglie; Li, Yanfeng, E-mail: lu-chai@tju.edu.cn, E-mail: yanfengli@tju.edu.cn [Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); MOEMS Key Laboratory (Ministry of Education), Tianjin University, Tianjin 300072 (China); Fedotov, Andrey B. [Physics Department, Russian Quantum Center, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Zheltikov, Aleksei M. [Physics Department, Russian Quantum Center, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States)

    2014-01-20

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.

  1. Collective, Coherent, and Ultrastrong Coupling of 2D Electrons with Terahertz Cavity Photons

    CERN Document Server

    Zhang, Qi; Li, Xinwei; Reno, John L; Pan, Wei; Watson, John D; Manfra, Michael J; Kono, Junichiro

    2016-01-01

    Nonperturbative coupling of light with condensed matter in an optical cavity is expected to reveal a host of coherent many-body phenomena and states. In addition, strong coherent light-matter interaction in a solid-state environment is of great interest to emerging quantum-based technologies. However, creating a system that combines a long electronic coherence time, a large dipole moment, and a high cavity quality ($Q$) factor has been a challenging goal. Here, we report collective ultrastrong light-matter coupling in an ultrahigh-mobility two-dimensional electron gas in a high-$Q$ terahertz photonic-crystal cavity in a quantizing magnetic field, demonstrating a cooperativity of $\\sim$360. The splitting of cyclotron resonance (CR) into the lower and upper polariton branches exhibited a $\\sqrt{n_\\mathrm{e}}$-dependence on the electron density ($n_\\mathrm{e}$), a hallmark of collective vacuum Rabi splitting. Furthermore, a small but definite blue shift was observed for the polariton frequencies due to the norma...

  2. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth

    Science.gov (United States)

    Pelusi, Mark; Luan, Feng; Vo, Trung D.; Lamont, Michael R. E.; Madden, Steven J.; Bulla, Douglas A.; Choi, Duk-Yong; Luther-Davies, Barry; Eggleton, Benjamin J.

    2009-03-01

    Signal processing at terahertz speeds calls for an enormous leap in bandwidth beyond the current capabilities of electronics, for which practical operation is currently limited to tens of gigahertz. This can be achieved through all-optical schemes making use of the ultrafast response of χ(3) nonlinear waveguides. Towards this objective, we have developed compact planar rib waveguides based on As2S3 glass, providing a virtual `lumped' high nonlinearity in a monolithic platform capable of integrating multiple functions. Here, we apply it to demonstrate, for the first time, a photonic-chip-based, all-optical, radio-frequency spectrum analyser with the performance advantages of distortion-free, broad measurement bandwidth (>2.5 THz) and flexible wavelength operation (that is, colourless). The key to this is the waveguide's high optical nonlinearity and dispersion-shifted design. Using the device, we characterize high-bit-rate (320 Gb s-1) optical signals impaired by various distortions. The demonstrated ultrafast, broadband capability highlights the potential for integrated chip-based signal processing at bit rates approaching and beyond Tb s-1.

  3. Design of tunable devices using one-dimensional Fibonacci photonic crystals incorporating graphene at terahertz frequencies

    Science.gov (United States)

    Bian, Li-an; Liu, Peiguo; Li, Gaosheng

    2016-10-01

    For the one-dimensional generalized Fibonacci photonic crystals incorporating graphene, we present many valuable properties and design the tunable devices accordingly with the help of the transfer matrix method in the frequency range of terahertz. For the common structure, all of dielectric layers are cladded by graphene, we design the high-Q tunable filter with double peaks by changing the Fibonacci distribution and chemical potential. In order to reduce the crosstalk of signals through this filter, a heterostructure based on the current structure and the one without graphene is utilized to separate the two peaks. Also, we fabricate the tunable switch by altering the parity of periodic number. Besides, through cladding the graphene on the one of the dielectrics only, we obtain other two kinds of cells. Combining these cells arbitrarily as the supercell to develop the periodic structure, the number of forbidden bands is increased in accordance with certain rules so that this structure with supercell is suitable as the multi-stop filter. If the active medium is introduced, the imaginary part of the complex permittivity of the material would be negative, which means the energy amplification. For our quasi-periodic structures with active medium, the functions of chemical potential, damping constant and reference wavelength are investigated.

  4. Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field

    CERN Document Server

    Mukai, Y; Yamamoto, T; Kageyama, H; Tanaka, K

    2016-01-01

    We report on the nonlinear magnetization dynamics of a HoFeO3 crystal induced by a strong terahertz magnetic field resonantly enhanced with a split ring resonator and measured with magneto-optical Kerr effect microscopy. The terahertz magnetic field induces a large change (~40%) in the spontaneous magnetization. The frequency of the antiferromagnetic resonance decreases in proportion to the square of the magnetization change. A modified Landau-Lifshitz-Gilbert equation with a phenomenological nonlinear damping term quantitatively reproduced the nonlinear dynamics.

  5. Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

    DEFF Research Database (Denmark)

    Chen, T.; Han, Z. H.; Liu, J. J.

    2014-01-01

    exhibits high-quality factors, facilitating the realization of high sensitivity in the gas refractive index sensing. In our experiment, 6% of the change of hydrogen concentration in air, which corresponds to a refractive index change of 1.4 x 10(-5), can be steadily detected, and different gas samples can......We report in this paper terahertz gas sensing using a simple 1D photonic crystal cavity. The resonant frequencies of the cavity depend linearly on the refractive index of the ambient gas, which can then be measured by monitoring the resonance shift. Although quite easy to manufacture, this cavity...

  6. Terahertz study of ultrafast carrier dynamics in InGaN/GaN multiple quantum wells

    Science.gov (United States)

    Porte, H. P.; Turchinovich, D.; Cooke, D. G.; Jepsen, P. Uhd

    2009-11-01

    Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well fitted by the Drude-Smith model.

  7. Terahertz study of ultrafast carrier dynamics in InGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Porte, H P; Turchinovich, D; Cooke, D G; Jepsen, P Uhd, E-mail: hpor@fotonik.dtu.d [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, Oersteds Plads 343, DK 2800 Kongens Lyngby (Denmark)

    2009-11-15

    Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well fitted by the Drude-Smith model.

  8. Terahertz study of ultrafast carrier dynamics in InGa/GaN multiple quantum wells

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Cooke, David

    2009-01-01

    Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay...

  9. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.;

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...... coherent detection, respectively. We find that the measured frequency dependent conductivity can be well described by a Drude-Smith model, supplemented by a Lorentz model oscillating near 5 THz....

  10. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.;

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  11. Probe conformational dynamics of proteins in aqueous solutions by terahertz spectroscopy

    Science.gov (United States)

    Vinh, Nguyen Q.

    2016-10-01

    Proteins solvated in their biologically milieu are expected to exhibit strong absorption in the terahertz frequencies, that contain information on their global and sub-global collective vibrational modes (conformational dynamics) and global dynamic correlations among solvent water and proteins. The dynamics play an important role in enzymatic activities of proteins, but obtaining an accurate and quantitative pictures of these activities, however, is challenging due to the strong absorption of water. In response, we have developed the world's highest precision, highest sensitivity terahertz-frequency domain spectrometer and a standard terahertz-time domain system to probe the collective dynamics of proteins in aqueous solutions. Operating over the frequency range from 5 GHz up to 3 THz, our spectrometers provide an unparalleled ability to probe directly such questions as the hydration level, the dynamics of water and hydrated proteins over the 100 fs to 1 ns timescale. Employing an effective medium approximation to describe the complex dielectric response of the solvated proteins in solution we find that proteins are surrounded by a loosely and tightly held layers of water molecules that behave as if they are an integral part of the protein. The number of water molecules in the protein hydration shells varies with proteins, which can tell us the average surface structure of proteins. These measurements shed light on the macromolecular motions of proteins in their biologically relevant environment.

  12. Photoexcited terahertz conductivity dynamics of graphene tuned by oxygen-adsorption

    Science.gov (United States)

    Zhang, Zeyu; Lin, Tie; Xing, Xiao; Lin, Xian; Meng, Xiangjian; Cheng, Zhenxiang; Jin, Zuanming; Ma, Guohong

    2017-03-01

    By using optical pump-terahertz (THz) probe spectroscopy, the photoexcited terahertz conductivity dynamics of chemical vapor deposition grown graphene is investigated in different atmospheric environments. It is shown that the Fermi energy of doped graphene is engineered by oxygen adsorption and desorption, which is probed by transient THz conductivity measurement. We show that the ultrafast energy relaxation processes depend on Fermi energy (changed by environmental gas) and the density of excited carriers (changed by photo-excitation fluence). The rise process of the negative conductivity dynamics becomes less efficient upon decreasing the Fermi energy and/or increasing the pump fluence. All findings show that the Fermi energy of graphene engineered by environmental gas allows us to tune the ultrafast energy relaxation pathways in photoexcited graphene.

  13. High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing.

    Science.gov (United States)

    Wu, Huihui; Liu, Hongjun; Huang, Nan; Sun, Qibing; Wen, Jin

    2011-09-20

    We demonstrate picosecond terahertz (THz)-wave generation via four-wave mixing in an octagonal photonic crystal fiber (O-PCF). Perfect phase-matching is obtained at the pump wavelength of 1.55 μm and a generation scheme is proposed. Using this method, THz waves can be generated in the frequency range of 7.07-7.74 THz. Moreover, peak power of 2.55 W, average power of 1.53 mW, and peak conversion efficiency of more than -66.65 dB at 7.42 THz in a 6.25 cm long fiber are realized with a pump peak power of 2 kW.

  14. Dynamic Stimulation of Superconductivity With Resonant Terahertz Ultrasonic Waves

    CERN Document Server

    Kadin, Alan M

    2016-01-01

    An experiment is proposed to stimulate a superconducting thin film with terahertz (THz) acoustic waves, which is a regime not previously tested. For a thin film on a piezoelectric substrate, this can be achieved by coupling the substrate to a tunable coherent THz electromagnetic source. Suggested materials for initial tests are a niobium film on a quartz substrate, with a BSCCO intrinsic Josephson junction (IJJ) stack. This will create acoustic standing waves on the nm scale in the thin film. A properly tuned standing wave will enable electron diffraction across the Fermi surface, leading to electron localization perpendicular to the substrate. This is expected to reduce the effective dimensionality, and enhance the tendency for superconducting order parallel to the substrate, even well above the superconducting critical temperature. This enhancement can be observed by measuring the in-plane critical current and the perpendicular tunneling gap. A similar experiment may be carried out for a cuprate thin film, ...

  15. Photon dynamics in tissue imaging

    Science.gov (United States)

    Chance, Britton; Haselgrove, John C.; Wang, NaiGuang; Maris, Michael B.; Sevick-Muraca, Eva M.

    1991-11-01

    The emerging need for a fast, safe economical approach to global and localized measures of desaturation of hemoglobin with oxygen (HbO2) in the human brain motivates further research on time-resolved spectroscopy in four areas of study. (1) To afford quantization of hemoglobin saturation through time-resolved spectroscopy in the time domain (TD) and in the frequency domain (FD). Evaluation of dual-wavelength TD and FD spectrometers for determining quantitatively hemoglobin desaturation and blood-volume changes by calculations that are insensitive to mutual interference is proposed. The diffusion equation, as it applies especially to TD studies, and the absorption ((mu) a) and scattering ((mu) s) coefficients provide their independent determination from the late and early respective portions of the kinetics of the emergent photons in response to a short input pulse (50-100 psec). (2) The identification of the photon-pathlength change due to the arterial pulse in the brain tissue by FD methods with Fourier transformation affords an opportunity to employ principles of pulse oximetry to vessels localized deep within the brain tissue. (3) Localization of desaturation of hemoglobin in portions of the brain can be achieved through dual-wavelength scanning of the input/output optical fibers across the head for an X-Y coordinate and varying the distance between input and output ((rho) ) or the time delay in data acquisition to afford an in-depth Z scan. Localizations of shed blood, which have an effective concentration of over 10 times that of capillary-bed blood, are identified by X, Y, Z scans using only a single wavelength. (4) Independent measurements of absorption ((mu) a) and scattering ((mu) s) coefficients, particularly by TD techniques, affords structural mapping of the brain, which can be used to diagnose brain tumor and neuronal degeneration. Two experimental systems are used to critically evaluate these studies; the first, a hemoglobin/lipid/yeast model in which

  16. Mobile Charge Generation Dynamics in P3HT:PCBM Observed by Time-Resolved Terahertz Spectroscopy

    DEFF Research Database (Denmark)

    Cooke, D. G.; Krebs, Frederik C; Jepsen, Peter Uhd

    2012-01-01

    Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale.......Ultra-broadband time-resolved terahertz spectroscopy is used to examine the sub-ps conductivity dynamics of a conjugated polymer bulk heterojunction film P3HT:PCBM. We directly observe mobile charge generation dynamics on a sub-100 fs time scale....

  17. Terahertz transport dynamics in the metal-insulator transition of V2O3 thin film

    Science.gov (United States)

    Luo, Y. Y.; Su, F. H.; Zhang, C.; Zhong, L.; Pan, S. S.; Xu, S. C.; Wang, H.; Dai, J. M.; Li, G. H.

    2017-03-01

    The dynamic behavior of thermally-induced metal-insulator transition of V2O3 thin film on Si substrate grown by reactive magnetron sputtering was investigated by the terahertz time-domain spectroscopy. It was found that the THz absorption and optical conductivity of the thin films are temperature-dependent, and the THz amplitude modulation can reach as high as 74.7%. The complex THz optical conductivity in the metallic state of the V2O3 thin films can be well-fitted by the Drude-Smith model, which offer the insight into the electron transport dynamic during the metal-insulator transition of the thin film.

  18. Photonic water dynamically responsive to external stimuli

    Science.gov (United States)

    Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo

    2016-08-01

    Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this `photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli.

  19. Microscopic origins of the terahertz carrier relaxation and cooling dynamics in graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Kadi, Faris; Divin, Charles J.; Winzer, Torben; Lee, Seunghyun; Liu, Che-Hung; Zhong, Zhaohui; Berger, Claire; de Heer, Walt A.; Malic, Ermin; Knorr, Andreas; Norris, Theodore B.

    2016-01-01

    The ultrafast dynamics of hot carriers in graphene are key to both understanding of fundamental carrier–carrier interactions and carrier–phonon relaxation processes in two-dimensional materials, and understanding of the physics underlying novel high-speed electronic and optoelectronic devices. Many recent experiments on hot carriers using terahertz spectroscopy and related techniques have interpreted the variety of observed signals within phenomenological frameworks, and sometimes invoke extrinsic effects such as disorder. Here, we present an integrated experimental and theoretical programme, using ultrafast time-resolved terahertz spectroscopy combined with microscopic modelling, to systematically investigate the hot-carrier dynamics in a wide array of graphene samples having varying amounts of disorder and with either high or low doping levels. The theory reproduces the observed dynamics quantitatively without the need to invoke any fitting parameters, phenomenological models or extrinsic effects such as disorder. We demonstrate that the dynamics are dominated by the combined effect of efficient carrier–carrier scattering, which maintains a thermalized carrier distribution, and carrier–optical–phonon scattering, which removes energy from the carrier liquid. PMID:27221060

  20. Coupled carrier-phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis

    Science.gov (United States)

    Iotti, Rita C.; Rossi, Fausto

    2013-07-01

    The operation of state-of-the-art optoelectronic quantum devices may be significantly affected by the presence of a nonequilibrium quasiparticle population to which the carrier subsystem is unavoidably coupled. This situation is particularly evident in new-generation semiconductor-heterostructure-based quantum emitters, operating both in the mid-infrared as well as in the terahertz (THz) region of the electromagnetic spectrum. In this paper, we present a Monte Carlo-based global kinetic approach, suitable for the investigation of a combined carrier-phonon nonequilibrium dynamics in realistic devices, and discuss its application with a prototypical resonant-phonon THz emitting quantum cascade laser design.

  1. Applications of time-resolved terahertz spectroscopy in ultrafast carrier dynamics

    Institute of Scientific and Technical Information of China (English)

    Qingli Zhou; Xicheng Zhang

    2011-01-01

    1.Introduction Terahertz time-domain spectroscopy (THz-TDS)[1-3]is a powerful and coherent free-space technique in which nearly single-cycle electromagnetic pulse is generated and detected using femtosecond optical pulses.THz-TDS has been utilized as one of the important methods for material characterization in the past two decades.Because transmission or reflection of THz waves is sensitive to carrier density and mobility,an ultrafast THz-TDS system is required to provide time-resolved capability of material characterization in the THz region[4-6].In the past decade,one of the widely used time-resolved THz spectroscopy methods is optical-pump/THz probe (O/T)spectroscopy[3].%Three time-resolved terahertz (THz) spectroscopy methods (optical-pump/THz-probe spectroscopy, THz-pump/THz-probe spectroscopy, and THz-pump/optical-probe spectroscopy) are reviewed. These are used to characterize ultrafast dynamics in photo- or THz-excited semiconductors, superconductors, nanomateri-als, and other materials. In particular, the optical-pump/THz-probe spectroscopy is utilized to investigate carrier dynamics and the related intervalley scattering phenomena in semiconductors. The recent development of intense pulsed THz sources is expected to affect the research in nonlinear THz responses of various materials.

  2. Correlated Photon Dynamics in Dissipative Rydberg Media

    Science.gov (United States)

    Zeuthen, Emil; Gullans, Michael J.; Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2017-07-01

    Rydberg blockade physics in optically dense atomic media under the conditions of electromagnetically induced transparency (EIT) leads to strong dissipative interactions between single photons. We introduce a new approach to analyzing this challenging many-body problem in the limit of a large optical depth per blockade radius. In our approach, we separate the single-polariton EIT physics from Rydberg-Rydberg interactions in a serialized manner while using a hard-sphere model for the latter, thus capturing the dualistic particle-wave nature of light as it manifests itself in dissipative Rydberg-EIT media. Using this approach, we analyze the saturation behavior of the transmission through one-dimensional Rydberg-EIT media in the regime of nonperturbative dissipative interactions relevant to current experiments. Our model is able to capture the many-body dynamics of bright, coherent pulses through these strongly interacting media. We compare our model with available experimental data in this regime and find good agreement. We also analyze a scheme for generating regular trains of single photons from continuous-wave input and derive its scaling behavior in the presence of imperfect single-photon EIT.

  3. Terahertz Imaging Systems With Aperture Synthesis Techniques

    DEFF Research Database (Denmark)

    Krozer, Viktor; Löffler, Torsten; Dall, Jørgen

    2010-01-01

    This paper presents the research and development of two terahertz imaging systems based on photonic and electronic principles, respectively. As part of this study, a survey of ongoing research in the field of terahertz imaging is provided focusing on security applications. Existing terahertz...

  4. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics

    Science.gov (United States)

    Caldwell, Joshua D.; Vurgaftman, Igor; Tischler, Joseph G.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Reinecke, Thomas L.

    2016-01-01

    The field of nanophotonics focuses on the ability to confine light to nanoscale dimensions, typically much smaller than the wavelength of light. The goal is to develop light-based technologies that are impossible with traditional optics. Subdiffractional confinement can be achieved using either surface plasmon polaritons (SPPs) or surface phonon polaritons (SPhPs). SPPs can provide a gate-tunable, broad-bandwidth response, but suffer from high optical losses; whereas SPhPs offer a relatively low-loss, crystal-dependent optical response, but only over a narrow spectral range, with limited opportunities for active tunability. Here, motivated by the recent results from monolayer graphene and multilayer hexagonal boron nitride heterostructures, we discuss the potential of electromagnetic hybrids -- materials incorporating mixtures of SPPs and SPhPs -- for overcoming the limitations of the individual polaritons. Furthermore, we also propose a new type of atomic-scale hybrid the crystalline hybrid -- where mixtures of two or more atomic-scale (~3 nm or less) polar dielectric materials lead to the creation of a new material resulting from hybridized optic phonon behaviour of the constituents, potentially allowing direct control over the dielectric function. These atomic-scale hybrids expand the toolkit of materials for mid-infrared to terahertz nanophotonics and could enable the creation of novel actively tunable, yet low-loss optics at the nanoscale.

  5. Introduction to the Issue on Current Trends in Terahertz Photonics and Applications

    DEFF Research Database (Denmark)

    2013-01-01

    on research and recent developments on THz photonics and applications. This issue contains 28 papers including 12 invited and 16 contributed papers authored by both well-established research groups and emerging stars pioneering in the THz field all over the world. While the invited papers include extended...

  6. Optical Absorption Spectra and Intraband Dynamics in Terahertz-Driven Semiconductor Superlattice

    Institute of Scientific and Technical Information of China (English)

    MI Xian-Wu

    2004-01-01

    @@ We have theoretically investigated the optical absorption spectrum and intraband dynamics by subjecting a superlattice to both a terahertz (THz)-frequency driving field and an optical pulse by using an excitonic basis.In the presence of a THz dc field, the satellite structures in the absorption spectra are presented. The satellite structure is a result from the THz nonlinear dynamics of Wannier-Stark ladder excitons. On the other hand, the coherent intraband polarization is investigated. We find that the excitonic Bloch oscillation is driven by the THz field and yields an intraband polarization that continues to oscillate at times much longer than the intraband dephasing time. The temporal evolution of the slowly varying components of the intraband polarization is dependent on the THz frequency.

  7. Dynamical effects and terahertz harmonic generation in low-doped bulk semiconductors and submicron structures

    Energy Technology Data Exchange (ETDEWEB)

    Persano Adorno, D.; Capizzo, M.C.; Zarcone, M. [Dipartimento di Fisica e Tecnologie Relative, Viale delle Scienze, Ed. 18, 90128, Palermo (Italy)

    2006-08-15

    We present results obtained using a three-dimensional multivalleys Monte Carlo (MC) model to simulate the nonlinear carrier dynamics under the influence of an intense sub-terahertz electric field in a doped bulk semiconductor. By self-consistently coupling a one-dimensional Poisson solver to the ensemble MC code we simulate also the nonlinear carrier dynamics in n{sup +}nn{sup +} structures operating under large-amplitude periodic signals and investigate the voltage-current characteristic hysteresis cycle and the high-order harmonic efficiency. For both cases we discuss the dependence of the nonlinearities and of the harmonic generation efficiency on the frequency and the intensity of the alternating signal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Terahertz all-optical NOR and AND logic gates based on 2D photonic crystals

    Science.gov (United States)

    Parandin, Fariborz; Karkhanehchi, Mohammad Mehdi

    2017-01-01

    Usually, photonic crystals are used in designing optical logic gates. This study focuses on the design and simulation of an all optical NOR and AND logic gates based on two dimensional photonic crystals. The simplicity of the proposed structure is a characteristic feature of this designation. Finite Difference Time Domain (FDTD) as well as Plane Wave Expansion (PWE) methods have been used for this structural analysis. The simulation results revealed an increase in the interval between "zero" and "one" logic levels. Also, the simple structure and its small size demonstrate the usefulness of this structure in optical integrated circuits. The proposed optical gates can operate with a bit rate of about 1.54 Tbit/s.

  9. Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.

    Science.gov (United States)

    Burgess, Ian B; Zhang, Yinan; McCutcheon, Murray W; Rodriguez, Alejandro W; Bravo-Abad, Jorge; Johnson, Steven G; Loncar, Marko

    2009-10-26

    We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi((2)) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors.

  10. Integrated terahertz optoelectronics

    Science.gov (United States)

    Liang, Guozhen; Wang, Qi Jie

    2016-11-01

    Currently, terahertz (THz) optical systems are based on bulky free-space optics. This is due to the lack of a common platform onto which different THz components, e.g., source, waveguide, modulator and detector, can be monolithically integrated. With the development of THz quantum cascade laser (QCL), it has been realized that the QCL chip may be such a platform for integrated THz photonics. Here, we report our recent works where the THz QCL is integrated with passive or optoelectronic components. They are: 1) integrated graphene modulator with THz QCL achieving 100% modulation depth and fast speed; 2) phase-locked THz QCL with integrated plasmonic waveguide and subwavelength antennas realizing dynamically widely tunable polarizations.

  11. Enhanced terahertz emission from thin film semiconductor/metal interfaces

    NARCIS (Netherlands)

    Ramakrishnan, G.

    2012-01-01

    Terahertz light is electromagnetic radiation, similar to visible light. The photons that the terahertz light is comprised of carry a much smaller amount of energy compared to the visible light photons. Unlike visible light, terahertz light can pass through materials like plastic, cardboards, wood et

  12. Enhanced terahertz emission from thin film semiconductor/metal interfaces

    NARCIS (Netherlands)

    Ramakrishnan, G.

    2012-01-01

    Terahertz light is electromagnetic radiation, similar to visible light. The photons that the terahertz light is comprised of carry a much smaller amount of energy compared to the visible light photons. Unlike visible light, terahertz light can pass through materials like plastic, cardboards, wood

  13. Nonlinear dynamics in wurtzite InN diodes under terahertz radiation

    Institute of Scientific and Technical Information of China (English)

    Feng Wei

    2012-01-01

    We carry out a theoretical study of nonlinear dynamics in terahertz-driven n+nn+ wurtzite InN diodes by using time-dependent drift diffusion equations.A cooperative nonlinear oscillatory mode appears due to the negative differential mobility effect,which is the unique feature of wurtzite InN aroused by its strong nonparabolicity of the T1 valley.The appearance of different nonlinear oscillatory modes,including periodic and chaotic states,is attributed to the competition between the self-sustained oscillation and the external driving oscillation.The transitions between the periodic and chaotic states are carefully investigated using chaos-detecting methods,such as the bifurcation diagram,the Fourier spectrum and the first return map.The resulting bifurcation diagram displays an interesting and complex transition picture with the driving amplitude as the control parameter.

  14. Carrier dynamics of terahertz emission from low-temperature-grown gaas.

    Science.gov (United States)

    Liu, Dongfeng; Qin, Jiayin

    2003-06-20

    Through theoretical modeling, we find that the dynamics of photogenerated carriers play a very important role in shaping the temporal waveform of terahertz (THz) radiation pulses emitted from biased low-temperature (LT-grown GaAs antenna. Our modeling gives successful analyses for the sharp and short, slow and long negative parts of temporal THz waveforms. By including intraband, carrier relaxation effect in the modeled mobility, we find an obvious dependence of the THz conversion efficiency on the material of THz emitter and experimental parameters such as the optical duration, the center wavelength, and the fluence of the laser pulses. Our research also shows that electron-hole and electron-electron collisions in LT-GaAs contribute to the saturation phenomenon with an increase of laser fluence.

  15. Coherent Interband and Intersubband Dynamics in Terahertz-Driven GaAs Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We theoretically investigate the optical absorption spectra and charge density by subjecting a GaAs quantum well to both an intense terahertz (THz)-frequency driving field and an optical pulse within the theory of density matrix. In presence of a strong THz field, the optical transitions in quantum well subbands are altered by the THz field. The alteration has a direct impact on the optical absorption and the charge density. The excitonic peak splitting and THz optical sideband in the absorption spectra show up when changing the THz field intensity and/or frequency. The Autler-Towns splitting is a result from the THz nonlinear dynamics of confined excitons. On the other hand, the carrier charge density is created as wave packets formed by coherent superposition of several eigenstates. The charge density exhibitsquantum beats for short pulses and/or wider wells and is modulated by the THz field.

  16. Terahertz lattice dynamics of the potassium rare-earth binary molybdates

    Science.gov (United States)

    Poperezhai, S.; Gogoi, P.; Zubenko, N.; Kutko, K.; Kutko, V. I.; Kovalev, A. S.; Kamenskyi, D.

    2017-03-01

    We report a systematic study of low-energy lattice vibrations in the layered systems KY(MoO4)2, KDy(MoO4)2, KEr(MoO4)2, and KTm(MoO4)2. A layered crystal structure and low symmetry of the local environment of the rare-earth ion cause the appearance of vibrational and electronic excitations in Terahertz frequencies. The interaction between these excitations leads to sophisticated dynamical properties, including non-linear effects in paramagnetic resonance spectra. The THz study in magnetic field allows for the clear distinction between lattice vibrations and electronic excitations. We measured the THz transmission spectra and show that the low energy lattice vibrations in binary molybdates can be well described within the quasi-one-dimensional model. The developed model describes the measured far-infrared spectra, and results of our calculations agree with previous Raman and ultrasound studies.

  17. Probing charge transfer and hot carrier dynamics in organic solar cells with terahertz spectroscopy

    Science.gov (United States)

    Cunningham, Paul D.; Lane, Paul A.; Melinger, Joseph S.; Esenturk, Okan; Heilweil, Edwin J.

    2016-04-01

    Time-resolved terahertz spectroscopy (TRTS) was used to explore charge generation, transfer, and the role of hot carriers in organic solar cell materials. Two model molecular photovoltaic systems were investigated: with zinc phthalocyanine (ZnPc) or alpha-sexathiophene (α-6T) as the electron donors and buckminsterfullerene (C60) as the electron acceptor. TRTS provides charge carrier conductivity dynamics comprised of changes in both population and mobility. By using time-resolved optical spectroscopy in conjunction with TRTS, these two contributions can be disentangled. The sub-picosecond photo-induced conductivity decay dynamics of C60 were revealed to be caused by auto-ionization: the intrinsic process by which charge is generated in molecular solids. In donor-acceptor blends, the long-lived photo-induced conductivity is used for weight fraction optimization of the constituents. In nanoscale multilayer films, the photo-induced conductivity identifies optimal layer thicknesses. In films of ZnPc/C60, electron transfer from ZnPc yields hot charges that localize and become less mobile as they thermalize. Excitation of high-lying Franck Condon states in C60 followed by hole-transfer to ZnPc similarly produces hot charge carriers that self-localize; charge transfer clearly precedes carrier cooling. This picture is contrasted to charge transfer in α-6T/C60, where hole transfer takes place from a thermalized state and produces equilibrium carriers that do not show characteristic signs of cooling and self-localization. These results illustrate the value of terahertz spectroscopic methods for probing charge transfer reactions.

  18. Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics

    Science.gov (United States)

    Lloyd-Hughes, J.

    2015-08-01

    Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.

  19. Spatial-temporal dynamics of the terahertz field generated by femtosecond filament

    Science.gov (United States)

    Smirnov, S. V.; Grachev, Ya V.; Tsypkin, A. N.; Kulya, M. S.; Putilin, S. E.; Bespalov, V. G.

    2016-08-01

    We present the study on spatial distribution of the maximum of terahertz field amplitude in time domain when generated by a femtosecond filament. It is shown that as a result of the propagation of the terahertz field forms a spherical wave front, on the edge of which the maximum of amplitude has a temporary delay in contrary to its central part.

  20. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  1. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, Rajeev

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the a

  2. Optical-router-based dynamically reconfigurable photonic access network

    NARCIS (Netherlands)

    Roy, R.

    2014-01-01

    The Broadband photonics (BBP) project under the Freeband consortium of projects investigated the design of a dynamically reconfigurable photonic access network. Access networks form a key link in ensuring optimal bandwidth to the end user without which any improvements deeper in the network in the

  3. The structure and terahertz dynamics of water confined in nanoscale pools in salt solutions.

    Science.gov (United States)

    Turton, David A; Corsaro, Carmelo; Candelaresi, Marco; Brownlie, Angela; Seddon, Ken R; Mallamace, Francesco; Wynne, Klaas

    2011-01-01

    The behaviour of liquid water below its melting point is of great interest as it may hold clues to the properties of normal liquid water and of water in and on the surfaces of biomolecules. A second critical point, giving rise to a polyamorphic transition between high and low density water, may be hidden in the supercooled region but cannot be observed directly. Here it is shown that water can be locked up in nano-pools or worm-like structures using aqueous LiCl salt solutions and can be studied with terahertz spectroscopies. Very high dynamic range ultrafast femtosecond optical Kerr effect (OKE) spectroscopy is used to study the temperature-dependent behaviour of water in these nano-pools on timescales from 10 fs to 4 ns. These experiments are complemented by temperature-dependent nuclear magnetic resonance (NMR) diffusion measurements, concentration-dependent Fourier-transform infrared (FTIR) measurements, and temperature-dependent rheology. It is found that liquid water in the nanoscale pools undergoes a fragile-to-strong transition at about 220 K associated with a sharp increase in the inhomogeneity of translational dynamics.

  4. The influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization dynamics

    Science.gov (United States)

    Zhang, Xiao-Miao; Li, Jing-Lun; Yu, Jie; Cong, Shu-Lin

    2017-03-01

    We investigate theoretically the influence of molecular pre-orientation on the resonance-enhanced multi-photon ionization (REMPI) dynamics, taking the LiH molecule for example. The LiH molecule is first pre-oriented by a single-cycle pulse (SCP) in terahertz (THz) region, and then excited by the femtosecond pump pulse, and finally ionized by the femtosecond probe pulse. We focus on the impact of the pre-orientation on the ionization probability, energy- and angle-resolved photoelectron spectra and photoelectron angular distribution (PAD). It is found that the ionization probability and peak intensity of energy-resolved photoelectron spectra are significantly affected by molecular orientation. The angle-resolved photoelectron spectra are related to the molecular orientation. The PAD can be changed by varying the delay time between the THz SCP and pump pulse. We also investigate the effect of temperature on excitation and ionization dynamics.

  5. Investigation of terahertz waves propagating through far infrared/CO2 laser stealth-compatible coating based on one-dimensional photonic crystal

    Science.gov (United States)

    Wang, Qichao; Wang, Jiachun; Zhao, Dapeng; Zhang, Jikui; Li, Zhigang; Chen, Zongsheng; Zeng, Jie; Miao, Lei; Shi, Jiaming

    2016-11-01

    We propose a new method to disclose the camouflaged targets coated with far infrared/CO2 laser stealth-compatible coating by utilizing terahertz (THz) radar. A coating based on one-dimensional photonic crystal (1DPC) with a defect mode is specially designed and successfully prepared, which possesses a high reflectivity in 8-14 μm waveband and a low reflectivity at 10.6 μm, by alternating thin films of Ge, ZnSe and Si. The propagation characteristic of 0.3-2 THz wave at incident angle from 0° to 80° in such PC coating is investigated theoretically based on characteristic matrix method. The maximal transmittance is up to 92%, and the absorptivity keeps lower than 0.5% over the whole band. The results are verified by experiments, which demonstrate the feasibility of using THz radar to detect the targets covered with such stealth-compatible coatings.

  6. Multifunctional optomechanical dynamics in integrated silicon photonics

    Science.gov (United States)

    Li, Huan

    Light can generate forces on matter. The nature of these forces is electromagnetic force, or Lorentz force. The emergence and rapid progress of nanotechnology provided an unprecedented platform where the very feeble optical forces began to play significant roles. The interactions between light and matter in nanoscale has been the focus of almost a decade of active theoretical and experimental investigations, which are still ongoing and constitute a whole new burgeoning branch of nanotechnology, nano-optomechanical systems (NOMS). In such context, the general goal of my research is to generate, enhance and control optical forces on silicon photonics platforms, with a focus on developing new functionalities and demonstrating novel effects, which will potentially lead to a new class of silicon photonic devices for a broad spectrum of applications. In this dissertation, the concept of optical force and the general background of the NOMS research area are first introduced. The general goal of the silicon photonics research area and the research presented in this dissertation is then described. Subsequently, the fundamental theory for optical force is summarized. The different methods to calculate optical forces are enumerated and briefly reviewed. Integrated hybrid plasmonic waveguide (HPWG) devices have been successfully fabricated and the enhanced optical forces experimentally measured for the first time. All-optical amplification of RF signals has been successfully demonstrated. The optical force generated by one laser is used to mechanically change the optical path and hence the output power of another laser. In addition, completely optically tunable mechanical nonlinear behavior has been demonstrated for the first time and systematically studied. Optomechanical photon shuttling between photonic cavities has been demonstrated with a "photon see-saw" device. This photon see-saw is a novel multicavity optomechanical device which consists of two photonic crystal

  7. Terahertz physics

    CERN Document Server

    Lewis, R A

    2012-01-01

    Terahertz physics covers one of the least explored but richest regions of the electromagnetic spectrum. Designed for independent learning, this is the first book to open up this exciting new field to students of science and engineering. Written in a clear and consistent style, the textbook focuses on an understanding of fundamental physical principles at terahertz frequencies and their applications. Part I outlines the foundations of terahertz science, starting with the mathematical representation of oscillations before exploring terahertz-frequency light, terahertz phenomena in matter and the terahertz interactions between light and matter. Part II covers components of terahertz technology, from sources of terahertz frequency radiation, through the manipulation of the radiation, to its detection. Part III deals with applications, including time-domain spectroscopy. Highlighting modern developments and concepts, the book is ideal for self-study. It features precise definitions, clear explanations, instructive...

  8. Boson peak dynamics of glassy glucose studied by integrated terahertz-band spectroscopy

    Science.gov (United States)

    Kabeya, Mikitoshi; Mori, Tatsuya; Fujii, Yasuhiro; Koreeda, Akitoshi; Lee, Byoung Wan; Ko, Jae-Hyeon; Kojima, Seiji

    2016-12-01

    We performed terahertz time-domain spectroscopy, low-frequency Raman scattering, and Brillouin light scattering on vitreous glucose to investigate the boson peak (BP) dynamics. In the spectra of α (ν ) /ν2 [ α (ν ) is the absorption coefficient], the BP is clearly observed around 1.1 THz. Correspondingly, the complex dielectric constant spectra show a universal resonancelike behavior only below the BP frequency. As an analytical scheme, we propose the relative light-vibration coupling coefficient (RCC), which is obtainable from the combination of the far-infrared and Raman spectra. The RCC reveals that the infrared light-vibration coupling coefficient CIR(ν ) of the vitreous glucose behaves linearly on frequency which deviates from Taraskin's model of CIR(ν ) =A +B ν2 [S. N. Taraskin et al., Phys. Rev. Lett. 97, 055504 (2006), 10.1103/PhysRevLett.97.055504]. The linearity of CIR(ν ) might require modification of the second term of the model. The measured transverse sound velocity shows an apparent discontinuity with the flattened mode observed in the inelastic neutron scattering study [N. Violini et al., Phys. Rev. B 85, 134204 (2012), 10.1103/PhysRevB.85.134204] and suggests a coupling between the transverse acoustic and flattened modes.

  9. Terahertz technology

    CERN Document Server

    Rostami, Ali; Baghban, Hamed

    2010-01-01

    This book presents information about Terahertz science, Terahertz photodetectors and Terahertz Lasers. A special emphasis is given to room temperature operation of long wavelength photodetectors based on novel quantum dots (Centered Defect Spherical Quantum Dots). Moreover, a complete analysis of systems based on Quantum Cascade structures to detect far infrared wavelengths is provided. Finally, the book presents Terahertz laser principles considering multi-color lasers in this range of wavelengths. It is written as a background for graduate students in the Optics field.

  10. Entanglement Dynamics of Electrons and Photons

    Science.gov (United States)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong

    2016-12-01

    Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.

  11. Entanglement Dynamics of Electrons and Photons

    Science.gov (United States)

    Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong

    2016-08-01

    Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.

  12. Subwavelength micropillar array terahertz lasers.

    Science.gov (United States)

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  13. Dynamic photonic crystals dimensionality tuning by laser beams polarization changing

    Science.gov (United States)

    Golinskaya, Anastasia D.; Stebakova, Yulia V.; Valchuk, Yana V.; Smirnov, Aleksandr M.; Mantsevich, Vladimir N.

    2017-05-01

    A simple way to create dynamic photonic crystals with different lattice symmetry by interference of non-coplanar laser beams in colloidal solution of quantum dots was demonstrated. With the proposed technique we have made micro-periodic dynamic semiconductor structure with strong nonlinear changing of refraction and absorption and analyzed the self-diffraction processes of two, three and four non-coplanar laser beams at the dynamic photonic crystal (diffraction grating) with hexagonal lattice structure. To reach the best uniform contrast of the structure and for better understanding of the problems, specially raised by the interference of multiple laser beams theoretical calculation of the periodic intensity field in the QDs solution were performed. It was demonstrated that dynamic photonic crystal structure and even it's dimension can be easily tuned with a high speed by the laser beams polarization variation without changing the experimental setup geometry.

  14. Switching dynamics in InP photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel;

    2016-01-01

    In this paper, we presented switching dynamic investigations on an InP photonic-crystal (PhC) nanocavity structure using homodyne pump-probe measurements. The measurements were compared with simulations based on temporal nonlinear coupled mode theory and carrier rate equations for the dynamics...

  15. Afterglow of the dynamical Schwinger process: soft photons amass

    CERN Document Server

    Otto, Andreas

    2016-01-01

    We consider the conversion of an electric field into photons as a secondary probe of the dynamical Schwinger process. In spatially homogeneous electric fields, quantum fluctuations of electron-positron ($e^+e^-$) pairs are lifted on the mass shell leaving asymptotically a small finite pair density. The $e^+e^-$ dynamics in turn couples to the quantized photon field and drives its on-shell mode occupation. The spectral properties of the emerging asymptotic photons accompanying the Schwinger process are calculated in lowest-order perturbation theory. Soft photons in the optical range are produced amass in the sub critical region, thus providing a promising discovery avenue, e.g.\\ for laser parameters of the Extreme Light Initiative (ELI-NP) to be put in operation soon.

  16. Dynamics of multi-photon processes in semiconductor heterostructures

    OpenAIRE

    Marti, Daniel

    2003-01-01

    The present work is devoted to the study of the dynamics of multi-photon processes in semiconductor heterostructures. A time-dependent description is important for understanding in detail the transient response of semiconductors excited by ultrashort optical pulses. In the first part of this thesis, we set up a phenomenological model based on rate equations, in order to investigate the possibility of measuring degenerate two-photon gain in a semiconductor microcavity. The amplification predic...

  17. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    Science.gov (United States)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  18. An electrically driven terahertz metamaterial diffractive modulator with more than 20 dB of dynamic range

    Energy Technology Data Exchange (ETDEWEB)

    Karl, N.; Reichel, K.; Mendis, R.; Mittleman, D. M. [Department of Electrical and Computer Engineering, Rice University, MS 378, Houston, Texas 77251-1892 (United States); Chen, H.-T.; Taylor, A. J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P. O. Box 1663, MS K771, Los Alamos, New Mexico 87545 (United States); Brener, I.; Benz, A.; Reno, J. L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, P. O. Box 5800, MS 1082, Albuquerque, New Mexico 87185 (United States)

    2014-03-03

    We design and experimentally demonstrate a switchable diffraction grating for terahertz modulation based on planar active metamaterials, where a Schottky gate structure is implemented to tune the metamaterial resonances in real-time via the application of an external voltage bias. The diffraction grating is formed by grouping the active split-ring resonators into an array of independent columns with alternate columns biased. We observe off-axis diffraction over a wide frequency band in contrast to the narrow-band resonances, which permits operation of the device as a relatively high-speed, wide-bandwidth, high-contrast modulator, with more than 20 dB of dynamic range.

  19. Dynamics of multi-photon photoluminescence in gold nanoantennas

    CERN Document Server

    Biagioni, P; Huang, J -S; Kern, J; Duò, L; Hecht, B; Finazzi, M; Cerullo, G

    2011-01-01

    We perform a combined study of the degree of nonlinearity and the temporal dynamics of multiphoton-excited photoluminescence (MPPL) in gold nanoantennas. At variance with standard gold two-photon photoluminescence (TPPL), the large photoluminescence enhancement in resonant nanostructures is sometimes found to involve more than two absorbed photons per emitted photon. By two-pulse correlation measurements of TPPL and MPPL we are able to address the particular dynamics of these mechanisms. Our data give direct evidence for the two-step model that has been proposed for gold TPPL and suggest that MPPL is characterized by very similar dynamics. Interestingly, for resonant antennas we observe a reduced MPPL relaxation time compared to off-resonant antennas.

  20. Multi-group dynamic quantum secret sharing with single photons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-07-15

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.

  1. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    Science.gov (United States)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  2. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  3. Coherent Dynamics of Quantum Dots in Photonic-Crystal Cavities

    DEFF Research Database (Denmark)

    Madsen, Kristian Høeg

    deviations. Similar measurements on a quantum dot in a photonic-crystal cavity sow a Rabi splitting on resonance, while time-resolved measurements prove that the system is in the weak coupling regime. Whle tuning the quantum dot through resonance of the high-Q mode we observe a strong and surprisingly...... Successfully model the decay rates with a microscopic model that allows us to for the first time extract the effective phonon density of states, which we can model with bulk phonons. Studies on a quantum dot detuned from a low-Q mode of a photonic-crystal cavity show a high collection efficiency at the first......In this thesis we have performed quantum-electrodynamics experiments on quantum dots embedded in photonic-crystal cavities. We perform a quantitative comparison of the decay dynamics and emission spectra of quantum dots embedded in a micropillar cavity and a photonic-crystal cavity. The light...

  4. Low temperature dynamics in amorphous solids : A photon echo study

    NARCIS (Netherlands)

    Meijers, Hans C.; Wiersma, Douwe A.

    1994-01-01

    The long-lived stimulated photon echo is put forward as a powerful technique to probe structural dynamics in glasses and other amorphous solids. We present results of optical dephasing measurements on several doped organic glasses (deuterated ethanol, toluene, and triethylamine) and polymers (polyst

  5. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  6. Spatial Terahertz Modulator

    Science.gov (United States)

    Xie, Zhenwei; Wang, Xinke; Ye, Jiasheng; Feng, Shengfei; Sun, Wenfeng; Akalin, Tahsin; Zhang, Yan

    2013-11-01

    Terahertz (THz) technology is a developing and promising candidate for biological imaging, security inspection and communications, due to the low photon energy, the high transparency and the broad band properties of the THz radiation. However, a major encountered bottleneck is lack of efficient devices to manipulate the THz wave, especially to modulate the THz wave front. A wave front modulator should allow the optical or electrical control of the spatial transmission (or reflection) of an input THz wave and hence the ability to encode the information in a wave front. Here we propose a spatial THz modulator (STM) to dynamically control the THz wave front with photo-generated carriers. A computer generated THz hologram is projected onto a silicon wafer by a conventional spatial light modulator (SLM). The corresponding photo-generated carrier spatial distribution will be induced, which forms an amplitude hologram to modulate the wave front of the input THz beam. Some special intensity patterns and vortex beams are generated by using this method. This all-optical controllable STM is structure free, high resolution and broadband. It is expected to be widely used in future THz imaging and communication systems.

  7. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  8. Three-photon near-threshold photoionization dynamics of isooctane

    Science.gov (United States)

    Healy, Andrew T.; Underwood, David F.; Lipsky, Sanford; Blank, David A.

    2005-08-01

    The electron survival probability following three-photon (9.3eV total) near-threshold photoionization of neat isooctane is measured with sub-50fs time resolution. The measured dynamics are nonexponential in time and are well described by a diffusion-controlled electron-cation recombination model. Excitation-power-dependent studies indicate that the unperturbed three-photon threshold ionization is only observed for pump irradiance below 0.5TW/cm2. At excitation fields above this level, the signal is no longer cubic in the excitation irradiance, and the observed electron survival probability dramatically changes, decaying as a single exponential in time.

  9. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array

    Science.gov (United States)

    Hu, Fangrong; Xu, Ningning; Wang, Weiming; Wang, Yue'e.; Zhang, Wentao; Han, Jiaguang; Zhang, Weili

    2016-02-01

    We experimentally demonstrate a dynamically tunable terahertz (THz) metamaterial absorber based on an electrostatic microelectromechanical systems (MEMS) actuator and electrical dipole resonator array. The absorption of the THz wave is mainly a result of the electrical dipole resonance, which shows a tunable performance on demand. By preforming the finite integral technique, we discovered that the central absorption frequency and the amplitude can be simultaneously tuned by the applied voltage U. Characterized by a white light interferometer and a THz time domain spectroscopy system, our THz absorber is measured to show a modulation of the central frequency and the amplitude to about 10% and 20%, respectively. The experimental results show good agreement with the simulation. This dynamically tunable absorber has potential applications on THz filters, modulators and controllers.

  10. Responsivity Calibration of Pyroelectric Terahertz Detectors

    CERN Document Server

    Berry, Christopher W; Jarrahi, Mona

    2014-01-01

    There has been a significant advancement in terahertz radiation sources in the past decade, making milliwatt terahertz power levels accessible in both continuous-wave and pulsed operation. Such high-power terahertz radiation sources circumvent the need for cryogenic-cooled terahertz detectors such as semiconductor bolometers and necessitate the need for new types of calibrated, room-temperature terahertz detectors. Among various types of room-temperature terahertz detectors, pyroelectric detectors are one of the most widely used detectors, which can offer wide dynamic range, broad detection bandwidth, and high sensitivity levels. In this article, we describe the calibration process of a commercially available pyroelectric detector (Spectrum Detector, Inc, SPI-A-65 THz), which incorporates a 5 mm diameter LiTaO3 detector with an organic terahertz absorber coating.

  11. Terahertz Microscope

    Science.gov (United States)

    2010-05-01

    Science, 2009. 9. Reference: 1. Ferguson , B., Zhang, X.-C. Materials for terahertz science and technology, Nature Materials 1, 26 - 33 (01 Sep 2002...interaction, Phys. Rev. Lett., 71, 2725-2728 (1993). 21. Woolard D.L., Brown R., Pepper M., Kemp M., Terahertz frequency sensing and imaging: a time

  12. 光子晶体增强石墨烯THz吸收%Terahertz absorption of graphene enhanced by one-dimensional photonic crystal

    Institute of Scientific and Technical Information of China (English)

    谢凌云; 肖文波; 黄国庆; 胡爱荣; 刘江涛

    2014-01-01

    研究了光子晶体表面石墨烯在应力赝磁场作用下的太赫兹(THz)吸收。由于应力赝磁场的存在使得石墨烯中电子出现朗道能级并对THz波呈现出一个较强的吸收。而光子晶体和石墨烯形成了表面微腔结构使得石墨烯对THz波的吸收比无光子晶体时增强了将近四倍。且可以通过改变应力赝磁场和间隔层厚度来调控石墨烯的THz吸收。%The terahertz (THz) radiation absorption of graphene layers in a pseudomagnetic field, prepared on top of a one-dimensional photonic crystal (1DPC), is investigated theoretically. Discrete Landau levels can be found in graphene in a pseudomagnetic field. Strong THz transitions may be found between the discrete Landau levels. The THz absorption of graphene can also be tuned by varying either pseudomagnetic field or the distance between the graphene and the 1DPC.

  13. Dynamic range studies and improvements for multiplexed photonic Doppler velocimetry

    Science.gov (United States)

    Miller, Edward Kirk; Lee, Kevin; Larson, Eric; Daykin, Edward

    2017-01-01

    We present studies of the dynamic range achievable with multiplexed photonic Doppler velocimetry (MPDV) measurements, and we demonstrate some techniques to extend the dynamic range. Improved dynamic range for MPDV measurements is needed in order to track the velocity of the free surface behind a cloud of ejecta, so we have undertaken theoretical and experimental studies of factors affecting dynamic range, particularly in cases where the large number of MPDV probe points precludes high illumination power on each channel. To quantify the potential dynamic range of a given MPDV configuration, we introduce a metric called the frequency-domain number of bits, FNOB, which is less stringent than the formally defined equivalent number of bits (ENOB). This new metric is simple to compute in the lab, and it is well suited to conventional PDV analysis, which does not require digitizer phase coherence beyond tens of nanoseconds.

  14. Focus: Phase-resolved nonlinear terahertz spectroscopy—From charge dynamics in solids to molecular excitations in liquids

    Science.gov (United States)

    Elsaesser, Thomas; Reimann, Klaus; Woerner, Michael

    2015-06-01

    Intense terahertz (THz) electric field transients with amplitudes up to several megavolts/centimeter and novel multidimensional techniques are the key ingredients of nonlinear THz spectroscopy, a new area of basic research. Both nonlinear light-matter interactions including the non-perturbative regime and THz driven charge transport give new insight into the character and dynamics of low-energy excitations of condensed matter and into quantum kinetic phenomena. This article provides an overview of recent progress in this field, combining an account of technological developments with selected prototype results for liquids and solids. The potential of nonlinear THz methods for future studies of low-frequency excitations of condensed-phase molecular systems is discussed as well.

  15. Broadband terahertz fiber directional coupler

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Jepsen, Peter Uhd

    2010-01-01

    We present the design of a short broadband fiber directional coupler for terahertz (THz) radiation and demonstrate a 3 dB coupler with a bandwidth of 0:6 THz centered at 1:4 THz. The broadband coupling is achieved by mechanically downdoping the cores of a dual-core photonic crystal fiber...

  16. Mind the gap: Exact quantum dynamics in photonic crystals

    CERN Document Server

    Prior, Javier; Chin, Alex W; Huelga, Susana F; Plenio, Martin B

    2012-01-01

    Employing a recently developed numerically exact method for the description of arbitrary system-environment interactions, we analyze the full dynamics of an atomic system coupled to an environment with a gapped spectral density. This is a situation encountered for example for the radiation field in a photonic crystal and whose analysis has been so far been confined to limiting cases due to the lack of suitable numerical techniques. We show that both atomic population and coherences' dynamics can drastically deviate from the results predicted when using the rotating wave approximation, particularly in the strong coupling regime. Experimental conditions required to observe these corrections are also discussed.

  17. Multi-group dynamic quantum secret sharing with single photons

    Science.gov (United States)

    Liu, Hongwei; Ma, Haiqiang; Wei, Kejin; Yang, Xiuqing; Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu

    2016-07-01

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application.

  18. Terahertz metamaterials

    Science.gov (United States)

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  19. Dynamics of four-photon photoluminescence in gold nanoantennas.

    Science.gov (United States)

    Biagioni, Paolo; Brida, Daniele; Huang, Jer-Shing; Kern, Johannes; Duò, Lamberto; Hecht, Bert; Finazzi, Marco; Cerullo, Giulio

    2012-06-13

    Two-pulse correlation is employed to investigate the temporal dynamics of both two-photon photoluminescence (2PPL) and four-photon photoluminescence (4PPL) in resonant and nonresonant nanoantennas excited at a wavelength of 800 nm. Both 2PPL and 4PPL data are consistent with the same two-step model already established for 2PPL, implying that the first excitation step in 4PPL is a three-photon sp → sp direct interband transition. Considering energy and parity conservation, we also explain why 4PPL behavior is favored over, for example, three- and five-photon photoluminescence in the power range below the damage threshold of our antennas. Since sizable 4PPL requires larger peak intensities of the local field, we are able to select either 2PPL or 4PPL in the same gold nanoantennas by choosing a suitable laser pulse duration. We thus provide a first consistent model for the understanding of multiphoton photoluminescence generation in gold nanoantennas, opening new perspectives for applications ranging from the characterization of plasmonic resonances to biomedical imaging.

  20. Monte Carlo simulations of hole dynamics in SiGe/Si terahertz quantum-cascade structures

    Science.gov (United States)

    Ikonić, Z.; Kelsall, R. W.; Harrison, P.

    2004-06-01

    A detailed analysis of hole transport in cascaded p - Si/SiGe quantum well structures is performed using ensemble Monte Carlo simulations. The hole subband structure is calculated using the 6×6 k·p model, and then used to find carrier relaxation rates due to the alloy disorder, acoustic and optical phonon scattering. The simulation accounts for the in-plane k -space anisotropy of both the hole subband structure and the scattering rates. Results are presented for prototype terahertz Si/SiGe quantum cascade structures.

  1. Terahertz carrier dynamics and dielectric properties of GaN epilayers with different carrier concentrations

    Science.gov (United States)

    Guo, H. C.; Zhang, X. H.; Liu, W.; Yong, A. M.; Tang, S. H.

    2009-09-01

    Using terahertz time-domain spectroscopy, we measured the complex conductivity and dielectric function of n-type GaN with various carrier concentrations on sapphire substrate. The measured complex conductivity, which is due to the free carriers, is well fitted by simple Drude model. The contribution from the lattice vibration to the complex dielectric function increases with the decrease in free carrier concentration. A better fitting of the frequency-dependent complex dielectric response was obtained by considering both of the Drude and the classical damped oscillator model.

  2. [Terahertz radiation influence on number and development dynamics of offspring F1 of fruit fly females under stress].

    Science.gov (United States)

    Fedorov, A I; Weĭsman, N Ia; Nemova, E F; Mamrashev, A A; Nikolaev, N A

    2013-01-01

    Virgin fruit fly females were stressed by placement into a confined space without food for 2.5 hours. Some flies were subjected to terahertz radiation (0.1-2.2 THz) for the last 30 min. Then females were copulated with males. Offspring F1 from oocytes which were mature or immature at exposure (oviposition in 1-2 or 9-10 days after irradiation) was studied. Stress induces a rejection of the offspring maturation dynamics to imago from external control (offspring of flies which was maintained in standard conditions). In offsping from mature oocytes of irradiated flies the dynamics of male maturation to imago was different from internal control (offspring of stressed unirradiated flies). The number of imago males decreased. The dynamics of female maturation to imago coincides with laboratory control. In offsping from immature oocytes of irradiated flies the dynamics of female and male maturation and the number of flies were not significantly different from the internal control. It was concluded that only mature oocytes are sensitive to THz radiation influence.

  3. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    of nonlinear beam reshaping occurring on a short time scale before the establishment of a steady state regime. In experiment, a 532nm laser beam can be injected into a single hole of an infiltrated PCF cladding structure, and the temporal dynamics of the nonlinear response is measured by monitoring......Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio......-sensing as well as active devices for all-optical switching at low (mW) laser powers. Commercially available PCFs infiltrated with liquids also provide a versatile and compact tool for exploration of the fundamentals of nonlinear beam propagation in periodic photonic structures. To explore the full scientific...

  4. Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited

    DEFF Research Database (Denmark)

    Wang, Tianwu; Romanova, Elena A.; Abdel-Moneim, Nabil

    2016-01-01

    Broadband (1.6-18 THz) terahertz time-domain spectroscopy (THz-TDS) and time-resolved terahertz spectroscopy (TRTS) were performed on a 54 mu m thick chalcogenide glass (As30Se30Te40) sample with a two-color laser-induced air plasma THz system in transmission and reflection modes, respectively. T...

  5. Nonlinear switching dynamics in a photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel;

    2014-01-01

    the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms......We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...

  6. Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework

    Science.gov (United States)

    Ryder, Matthew R.; Van de Voorde, Ben; Civalleri, Bartolomeo; Bennett, Thomas D.; Mukhopadhyay, Sanghamitra; Cinque, Gianfelice; Fernandez-Alonso, Felix; De Vos, Dirk; Rudić, Svemir; Tan, Jin-Chong

    2017-06-01

    We show clear experimental evidence of cooperative terahertz (THz) dynamics observed below 3 THz (˜100 cm-1 ), for a low-symmetry Zr-based metal-organic framework structure, termed MIL-140A [ZrO (O2C-C 6H4-CO2) ]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory calculations. The complex pore architecture caused by the THz rotations has been characterized. We discovered an array of soft modes with trampolinelike motions, which could potentially be the source of anomalous mechanical phenomena such as negative thermal expansion. Our results demonstrate coordinated shear dynamics (2.47 THz), a mechanism which we have shown to destabilize the framework structure, in the exact crystallographic direction of the minimum shear modulus (Gmin ).

  7. Generation of Terahertz Radiation in LED Heterostructures with Multiple InGaN/GaN Quantum Wells at Two-Photon Excitation by Femtosecond

    Science.gov (United States)

    Prudaev, I. A.; Sarkisov, S. Yu.; Tolbanov, O. P.; Kosobutsky, A. V.

    2015-06-01

    The results of experiments on the generation of terahertz radiation in the nitride LED structures at optical excitation by ultrashort laser pulses are presented. The dependences of the emission spectra on the structural parameters of samples and intensity of laser pulses are studied. An increase in the amplitude and the shift of the frequency spectra of terahertz pulses to higher frequencies with increasing number of quantum wells in the heterostructure is found.

  8. Two-photon imaging and analysis of neural network dynamics

    Science.gov (United States)

    Lütcke, Henry; Helmchen, Fritjof

    2011-08-01

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  9. Two-photon imaging and analysis of neural network dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Luetcke, Henry; Helmchen, Fritjof [Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)

    2011-08-15

    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to measure and analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behavior. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so-called 'microcircuits') remains comparably poor. Predominantly, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near-millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.

  10. Dynamically tunable graphene/dielectric photonic crystal transmission lines

    Science.gov (United States)

    Williamson, Ian; Mousavi, S. Hossein; Wang, Zheng

    2015-03-01

    It is well known that graphene supports plasmonic modes with high field confinement and lower losses when compared to conventional metals. Additionally, graphene features a highly tunable conductivity through which the plasmon dispersion can be modulated. Over the years these qualities have inspired a wide range of applications for graphene in the THz and infrared regimes. In this presentation we theoretically demonstrate a graphene parallel plate waveguide (PPWG) that sandwiches a 2D photonic crystal slab. The marriage of these two geometries offers a large two dimensional band gap that can be dynamically tuned over a very broad bandwidth. Our device operates in the low-THz band where the graphene PPWG supports a quasi-TEM mode with a relatively flat attenuation. Unlike conventional photonic crystal slabs, the quasi-TEM nature of the graphene PPWG mode allows the slab thickness to be less than 1/10 of the photonic crystal lattice constant. These features offer up a wealth of opportunities, including tunable metamaterials with a possible platform for large band gaps in 3D structures through tiling and stacking. Additionally, the geometry provides a platform for tunable defect cavities without needing three dimensional periodicity.

  11. Quantum dynamics of two-photon quantum Rabi model

    Science.gov (United States)

    Lü, Zhiguo; Zhao, Chunjian; Zheng, Hang

    2017-02-01

    We apply a simple analytical method based on a unitary transformation to calculate the ground state, its excitation spectrum and quantum dynamic evolution of physical quantities for the double-photon quantum Rabi Hamiltonian over the wide coupling-strength range. The concise analytical method possesses the same mathematical simplicity as the approach of the rotating wave approximation (RWA). By quantitative comparison with the numerically exact result obtained by matrix diagonalization, we confirm that our calculated results obtained by transformed rotating-wave method are not only accurate in the weak coupling regime but also correct in intermediate strong-coupling case. In the intermediate ultrastrong-coupling regime, the calculated values of the ground state and lower lying excited states are nearly the same as the exact ones. It turns out that our calculation for the energy spectrum is beyond the ordinary-RWA. Meanwhile, we demonstrate the signatures resulting from the counter-rotating wave terms by monitoring the population, the coherence, the squeezing of the photon under the ultra-strong conditions. In particular, we find that when the frequency of the photon is much larger than the transition frequency of the system, the lineshape of the time evolution becomes complicated with the increase of the coupling strength, which may be verified experimentally.

  12. Robust large dimension terahertz cloaking

    CERN Document Server

    Liang, Dachuan; Han, Jiaguang; Yang, Yuanmu; Zhang, Shuang; Zhang, Weili

    2011-01-01

    Invisibility cloaking not only catches the human imagination, but also promises fascinating applications in optics and photonics. By manipulating electromagnetic waves with metamaterials, researchers have been able to realize electromagnetic cloaking in the microwave, terahertz and optical regimes. Nevertheless, the complex design and fabrication process, narrow bandwidth, and high intrinsic losses in the metamaterial-based cloaks have imposed intractable limitations on their realistic applications. Seeking new approaches to overcome these perceived disadvantages is in progress. Here by using uniform sapphire crystal, we demonstrate the first homogenous invisibility cloak functioning at terahertz frequencies. The terahertz invisibility device features a large concealed volume, low loss, and broad bandwidth. In particular, it is capable of hiding objects with a dimension nearly an order of magnitude larger than that of its lithographic counterpart, but without involving complex and time-consuming cleanroom pro...

  13. Negative terahertz conductivity in remotely doped graphene bilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics of RAS, and Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005 (Russian Federation); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Electronics, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan)

    2015-11-14

    Injection or optical generation of electrons and holes in graphene bilayers (GBLs) can result in the interband population inversion enabling the terahertz (THz) radiation lasing. The intraband radiative processes compete with the interband transitions. We demonstrate that remote doping enhances the indirect interband generation of photons in the proposed GBL heterostructures. Therefore, such remote doping helps to surpass the intraband (Drude) absorption, and results in large absolute values of the negative dynamic THz conductivity in a wide range of frequencies at elevated (including room) temperatures. The remotely doped GBL heterostructure THz lasers are expected to achieve higher THz gain compared with previously proposed GBL-based THz lasers.

  14. Adiabatic Dynamics of Edge Waves in Photonic Graphene

    CERN Document Server

    Ablowitz, M J; Ma, Y -P

    2014-01-01

    The propagation of localized edge modes in photonic honeycomb lattices, formed from an array of adiabatically varying periodic helical waveguides, is considered. Asymptotic analysis leads to an explicit description of the underlying dynamics. Depending on parameters, edge states can exist over an entire period or only part of a period; in the latter case an edge mode can effectively disintegrate and scatter into the bulk. In the presence of nonlinearity, a `time'-dependent one-dimensional nonlinear Schr\\"odinger (NLS) equation describes the envelope dynamics of edge modes. When the average of the `time varying' coefficients yields a focusing NLS equation, soliton propagation is exhibited. For both linear and nonlinear systems, certain long lived traveling modes with minimal backscattering are found; they exhibit properties of topologically protected states.

  15. Terahertz field imaging inside tapered parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    We present a non-invasive broadband air photonic method of terahertz field imaging inside a tapered parallel plate waveguide. The method is based on the terahertz-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct...

  16. Characteristics of THz carrier dynamics in GaN thin film and ZnO nanowires by temperature dependent terahertz time domain spectroscopy measurement

    Science.gov (United States)

    Balci, Soner; Baughman, William; Wilbert, David S.; Shen, Gang; Kung, Patrick; Kim, Seongsin Margaret

    2012-12-01

    We present a comprehensive study of the characteristics of carrier dynamics using temperature dependent terahertz time domain spectroscopy. By utilizing this technique in combination with numerical calculations, the complex refractive index, dielectric function, and conductivity of n-GaN, undoped ZnO NWs, and Al-doped ZnO NWs were obtained. The unique temperature dependent behaviors of major material parameters were studied at THz frequencies, including plasma frequency, relaxation time, carrier concentration and mobility. Frequency and temperature dependent carrier dynamics were subsequently analyzed in these materials through the use of the Drude and the Drude-Smith models.

  17. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials

    CERN Document Server

    Seren, Huseyin R; Keiser, George R; Maddox, Scott J; Zhao, Xiaoguang; Fan, Kebin; Bank, Seth R; Zhang, Xin; Averitt, Richard D

    2015-01-01

    The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector, and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field induced intervalley scattering resulting in a reduced carrier mobility thereby damping the plasmonic response. We demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide f...

  18. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphas

  19. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    This book covers modern photonics accessibly and discusses the basic physical principles underlying all the applications and technology of photonicsThis volume covers the basic physical principles underlying the technology and all applications of photonics from statistical optics to quantum optics. The topics discussed in this volume are: Photons in perspective; Coherence and Statistical Optics; Complex Light and Singular Optics; Electrodynamics of Dielectric Media; Fast and slow Light; Holography; Multiphoton Processes; Optical Angular Momentum; Optical Forces, Trapping and Manipulation; Pol

  20. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  1. Photonics

    CERN Document Server

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying thescience and technology of nanophotonics, its materials andstructures This volume presents nanophotonic structures and Materials.Nanophotonics is photonic science and technology that utilizeslight/matter interactions on the nanoscale where researchers arediscovering new phenomena and developing techniques that go wellbeyond what is possible with conventional photonics andelectronics.The topics discussed in this volume are: CavityPhotonics; Cold Atoms and Bose-Einstein Condensates; Displays;E-paper; Graphene; Integrated Photonics; Liquid Cry

  2. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2013-01-01

    Microwave photonics continues to see rapid growth. The integration of optical fiber and wireless networks has become a commercial reality and is becoming increasingly pervasive. Such hybrid technology will lead to many innovative applications, including backhaul solutions for mobile networks and ultrabroadband wireless networks that can provide users with very high bandwidth services. Microwave Photonics, Second Edition systematically introduces important technologies and applications in this emerging field. It also reviews recent advances in micro- and millimeter-wavelength and terahertz-freq

  3. Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders

    KAUST Repository

    Zhang, Ying

    2017-06-15

    We demonstrated a structure with periodic cylinders arranged bilaterally and a thin dielectric layer covered inside that supports bound modes of surface plasmon polaritons at terahertz frequencies. This structure can confine the surface plasmon polaritons in the lateral direction, and at the same time reduce the field expansion into space. We examined and explored the characteristics of several different structures using scanning near-field terahertz microscopy. The proposed designs pave a novel way to terahertz waveguiding and may have important applications in the development of flexible, wideband and compact photonic circuits operating at terahertz frequencies.

  4. Emergent geometries and nonlinear-wave dynamics in photon fluids.

    Science.gov (United States)

    Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D

    2016-03-22

    Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.

  5. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  6. Terahertz optics: Terahertz-driven harmonics

    Science.gov (United States)

    Kim, K. Y.; You, Y. S.

    2014-02-01

    Researchers have demonstrated high-harmonic generation using strong terahertz pulses in a bulk solid without damaging it. The mechanism underpinning such an extreme nonlinearity also generates coherent electromagnetic radiation covering the terahertz, infrared and optical regions.

  7. Mechanism and modulation of terahertz generation from a semimetal - graphite

    CERN Document Server

    Ye, Tong; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li

    2015-01-01

    Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows no temperature dependency from room temperature to 80C. Above knowledge will help us understand terahertz generations, achieve maximum output and elec...

  8. Detection of Terahertz Radiation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation.......The present invention relates to a system for detecting terahertz radiation, a camera device, and a method for detecting terahertz radiation....

  9. Dynamic Equations and Nonlinear Dynamics of Cascade Two-Photon Laser

    Institute of Scientific and Technical Information of China (English)

    XIE Xia; HUANG Hong-Bin; QIAN Feng; ZHANG Ya-Jun; YANG Peng; QI Guan-Xiao

    2006-01-01

    We derive equations and study nonlinear dynamics of cascade two-photon laser, in which the electromagnetic field in the cavity is driven by coherently prepared three-level atoms and classical field injected into the cavity. The dynamic equations of such a system are derived by using the technique of quantum Langevin operators, and then are studied numerically under different driving conditions. The results show thgt under certain conditions the cascade twophoton laser can generate chaotic, period doubling, periodic, stable and bistable states. Chaos can be inhibited by atomic populations, atomic coherences, and injected classical field. In addition, no chaos occurs in optical bistability.

  10. Terahertz superconducting plasmonic hole array

    CERN Document Server

    Tian, Zhen; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applications in the design of low-loss, large dynamic range amplitude modulation, and surface plasmon based terahertz devices.

  11. cGMP in Mouse Rods: the spatiotemporal dynamics underlying single photon responses

    Directory of Open Access Journals (Sweden)

    Owen P. Gross

    2015-03-01

    Full Text Available Vertebrate vision begins when retinal photoreceptors transduce photons into membrane hyperpolarization, which reduces glutamate release onto second-order neurons. In rod photoreceptors, transduction of single photons is achieved by a well-understood G-protein cascade that modulates cGMP levels, and in turn, cGMP-sensitive inward current. The spatial extent and depth of the decline in cGMP during the single photon response have been major issues in phototransduction research since the discovery that single photons elicit substantial and reproducible changes in membrane current. The spatial profile of cGMP decline during the single photon response affects signal gain, and thus may contribute to reduction of trial-to-trial fluctuations in the single photon response. Here we summarize the general principles of rod phototransduction, emphasizing recent advances in resolving the spatiotemporal dynamics of cGMP during the single photon response.

  12. Dynamic increase and decrease of photonic crystal nanocavity Q factors for optical pulse control.

    Science.gov (United States)

    Upham, Jeremy; Tanaka, Yoshinori; Asano, Takashi; Noda, Susumu

    2008-12-22

    We introduce recent advances in dynamic control over the Q factor of a photonic crystal nanocavity system. By carefully timing a rapid increase of the Q factor from 3800 to 22,000, we succeed in capturing a 4ps signal pulse within the nanocavity with a photon lifetime of 18ps. By performing an additional transition of the Q factor within the photon lifetime, the held light is once again ejected from of the system on demand.

  13. Coherent dynamics of a telecom-wavelength entangled photon source

    Science.gov (United States)

    Ward, M. B.; Dean, M. C.; Stevenson, R. M.; Bennett, A. J.; Ellis, D. J. P.; Cooper, K.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.; Shields, A. J.

    2014-02-01

    Quantum networks can interconnect remote quantum information processors, allowing interaction between different architectures and increasing net computational power. Fibre-optic telecommunications technology offers a practical platform for routing weakly interacting photonic qubits, allowing quantum correlations and entanglement to be established between distant nodes. Although entangled photons have been produced at telecommunications wavelengths using spontaneous parametric downconversion in nonlinear media, as system complexity increases their inherent excess photon generation will become limiting. Here we demonstrate entangled photon pair generation from a semiconductor quantum dot at a telecommunications wavelength. Emitted photons are intrinsically anti-bunched and violate Bell’s inequality by 17 standard deviations High-visibility oscillations of the biphoton polarization reveal the time evolution of the emitted state with exceptional clarity, exposing long coherence times. Furthermore, we introduce a method to evaluate the fidelity to a time-evolving Bell state, revealing entanglement between photons emitted up to 5 ns apart, exceeding the exciton lifetime.

  14. Photon counting spectroscopic CT with dynamic beam attenuator

    CERN Document Server

    Atak, Haluk

    2016-01-01

    Purpose: Photon counting (PC) computed tomography (CT) can provide material selective CT imaging at lowest patient dose but it suffers from suboptimal count rate. A dynamic beam attenuator (DBA) can help with count rate by modulating x-ray beam intensity such that the low attenuating areas of the patient receive lower exposure, and detector behind these areas is not overexposed. However, DBA may harden the beam and cause artifacts and errors. This work investigates positive and negative effects of using DBA in PCCT. Methods: A simple PCCT with single energy bin, spectroscopic PCCT with 2 and 5 energy bins, and conventional energy integrating CT with and without DBA were simulated and investigated using 120kVp tube voltage and 14mGy air dose. The DBAs were modeled as made from soft tissue (ST) equivalent material, iron (Fe), and holmium (Ho) K-edge material. A cylindrical CT phantom and chest phantom with iodine and CaCO3 contrast elements were used. Image artifacts and quantification errors in general and mat...

  15. Temporal dynamics of two-photon-pumped amplified spontaneous emission in slab organic crystals

    NARCIS (Netherlands)

    Fang, Hong-Hua; Chen, Qi-Dai; Ding, Ran; Yang, Jie; Ma, Yu-Guang; Wang, Hai-Yu; Gao, Bing-Rong; Feng, Jing; Sun, Hong-Bo; Fang, Honghua

    2010-01-01

    We have studied the ultrafast dynamics of two-photon-pumped amplified spontaneous emission (ASE) from a single crystal by the time-resolved fluorescence upconversion technique. With the increase of two-photon pump intensities, the emission decay time is dramatically shortened by 30 times (from 3 ns

  16. Role of dynamical screening in excitation kinetics of biased quantum wells: Nonlinear absorption and ultrabroadband terahertz emission

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Monozon, B. S.; Jepsen, Peter Uhd

    2006-01-01

    calculations, in particular, predict the strongly nonlinear dependency of the effective optical absorption coefficient on the excitation pulse fluence, and ultrabroadband terahertz emission. Our theoretical model is free of fitting parameters. Calculations performed for internally biased InFaN/GaN quantum...

  17. Dynamics of a multi-beam photonic free electron laser

    NARCIS (Netherlands)

    Lee, J.H.H.; van Dijk, M.W.; Denis, T.; van der Slot, Petrus J.M.; Boller, Klaus J.

    2012-01-01

    A photonic free-electron laser (pFEL) uses free electrons streaming through a photonic crystal (PhC) to generate tunable coherent radiation. Here, we consider a pFEL driven by a set of three low energy (~ 10 keV), low perveance (< 0.1 μP) electron beams. Using a particle-in- cell code, we numericall

  18. Terahertz planar waveguide devices based on graphene

    Science.gov (United States)

    Yuan, Yizhe; Guo, Xiaoyong; An, Liqun; Xu, Wen

    2017-02-01

    We present a theoretical study on graphene-semiconductor planar structures. The frequency of the photonic modes in the structure, which can be efficiently tuned via varying the sample parameters, is within the terahertz (THz) bandwidth. Furthermore, it is found that a roughly linear dispersion relation can be obtained for photonic modes in the THz region. Hence, the proposed graphene-semiconductor planar structures can be served as THz waveguide with desirable transmission characteristics.

  19. Pulsed terahertz emission from GaN/InN heterostructure

    Science.gov (United States)

    Reklaitis, Antanas

    2011-11-01

    Dynamics of the electron-hole plasma excited by the femtosecond optical pulse in wurtzite GaN/InN heterostructure is investigated by Monte Carlo simulations. The GaN/InN heterostructure for pulsed terahertz emission is suggested. The results of Monte Carlo simulations show that the power of terahertz emission from the GaN/InN heterostructure exceeds the power of terahertz emission from the surface of InN by one order of magnitude.

  20. Active graphene-silicon hybrid diode for terahertz waves.

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-11

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  1. Active graphene–silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene–silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices. PMID:25959596

  2. Active graphene-silicon hybrid diode for terahertz waves

    Science.gov (United States)

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-05-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene-silicon hybrid film. The diode transmits terahertz waves when biased with a positive voltage while attenuates the wave under a low negative voltage, which can be seen as an analogue of an electronic semiconductor diode. Here, we obtain a large transmission modulation of 83% in the graphene-silicon hybrid film, which exhibits tremendous potential for applications in designing broadband terahertz modulators and switchable terahertz plasmonic and metamaterial devices.

  3. An effect of temperature distribution on terahertz phase dynamics in intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Hidehiro, E-mail: hd-asai@aist.go.jp; Kawabata, Shiro

    2013-11-15

    Highlights: •We calculate the temperature distribution in intrinsic Josephson junctions (IJJs). •We investigate the effect of temperature distribution on THz radiation from IJJs. •The Joule heating in the IJJs makes inhomogeneous temperature distribution. •The inhomogeneous temperature distribution strongly excites THz emission. -- Abstract: In this study, we numerically calculate the temperature distribution and the THz phase dynamics in the mesa-structured intrinsic Josephson junctions (IJJs) using the thermal diffusion equation and the Sine–Gordon equation. We observe that the temperature distribution has a broad peak around the center region of the IJJ mesa. Under a high external current, a “hot spot” where the temperature is locally higher than the superconducting critical temperature appears around this region. The transverse Josephson plasma wave is strongly excited by the inhomogeneous temperature distribution in the mesa. This gives rise to intense THz emission.

  4. Dynamical modeling of pulsed two-photon interference

    Science.gov (United States)

    Fischer, Kevin A.; Müller, Kai; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-11-01

    Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. In order to achieve this result, we make the connection between quantum Monte-Carlo simulations, experimental characterizations, and an extended form of the quantum regression theorem. We elaborate on how an ideal pulsed single-photon source is connected to its photocount distribution and its measured degree of second- and first-order optical coherence. By doing so, we provide a description of the relationship between instantaneous source correlations and the typical experimental interferometers (Hanbury-Brown and Twiss, Hong-Ou-Mandel, and Mach-Zehnder) used to characterize such sources. Then, we use these techniques to explore several prototypical quantum systems and their non-ideal behaviors. As an example numerical result, we show that for the most popular single-photon source—a resonantly excited two-level system—its error probability is directly related to its excitation pulse length. We believe that the intuition gained from these representative systems and characters can be used to interpret future results with more complicated source Hamiltonians and behaviors. Finally, we have thoroughly documented our simulation methods with contributions to the Quantum Optics Toolbox in Python in order to make our work easily accessible to other scientists and engineers.

  5. Fragmentation dynamics of ammonia cluster ions after single photon ionisation

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E.; Vries, J. de; Steger, H.; Menzel, C.; Kamke, W.; Hertel, I.V. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik Freiburg Univ. (Germany, F.R.). Freiburger Materialforschungszentrum)

    1991-01-01

    A reflecting time of flight mass spectrometer (RETOF) is used to study unimolecular and collision induced fragmentation of ammonia cluster ions. Synchrotron radiation from the BESSY electron storage ring is used in a range of photon energies from 9.08 up to 17.7 eV for single photon ionisation of neutral clusters in a supersonic beam. The threshold photoelectron photoion coincidence technique (TPEPICO) is used to define the energy initially deposited into the cluster ions. Metastable unimolecular decay ({mu}s range) is studied using the RETOF's capacity for energy analysis. Under collision free conditions the by far most prominent metastable process is the evaporation of one neutral NH{sub 3} monomer from protonated clusters (NH{sub 3}){sub x}NH{sub 4}{sup +}. Abundance of homogeneous vs. protonated cluster ions and of metastable fragments are reported as a function of photon energy and cluster size up to n=10. (orig.).

  6. Active terahertz wave imaging system for detecting hidden objects

    Science.gov (United States)

    Gan, Yuner; Liu, Ming; Zhao, Yuejin

    2016-11-01

    Terahertz wave can penetrate the common dielectric materials such as clothing, cardboard boxes, plastics and so on. Besides, the low photon energy and non-ionizing characteristic of the terahertz wave are especially suitable for the safety inspection of the human body. Terahertz imaging technology has a tremendous potential in the field of security inspection such as stations, airports and other public places. Terahertz wave imaging systems are divided into two categories: active terahertz imaging systems and passive terahertz imaging systems. So far, most terahertz imaging systems work at point to point mechanical scan pattern with the method of passive imaging. The imaging results of passive imaging tend to have low contrast and the image is not clear enough. This paper designs and implements an active terahertz wave imaging system combining terahertz wave transmitting and receiving with a Cassegrain antenna. The terahertz wave at the frequency of 94GHz is created by impact ionization avalanche transit time (IMPATT) diode, focused on the feed element for Cassegrain antenna by high density polyethylene (HDPE) lens, and transmitted to the human body by Cassegrain antenna. The reflected terahertz wave goes the same way it was emitted back to the feed element for Cassegrain antenna, focused on the horn antenna of detector by another high density polyethylene lens. The scanning method is the use of two-dimensional planar mirror, one responsible for horizontal scanning, and another responsible for vertical scanning. Our system can achieve a clear human body image, has better sensitivity and resolution than passive imaging system, and costs much lower than other active imaging system in the meantime.

  7. Dynamically reconfigurable directionality of plasmon-based single photon sources

    CERN Document Server

    Chen, Yuntian; Koenderink, A Femius

    2010-01-01

    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication.

  8. Dynamically reconfigurable directionality of plasmon-based single photon sources

    DEFF Research Database (Denmark)

    Chen, Yuntian; Lodahl, Peter; Koenderink, A. Femius

    2010-01-01

    We propose a plasmon-based reconfigurable antenna to controllably distribute emission from single quantum emitters in spatially separated channels. Our calculations show that crossed particle arrays can split the stream of photons from a single emitter into multiple narrow beams. We predict...... that beams can be switched on and off by switching host refractive index. The design method is based on engineering the dispersion relations of plasmon chains and is generally applicable to traveling wave antennas. Controllable photon delivery has potential applications in classical and quantum communication....

  9. Many-body decoherence dynamics and optimised operation of a single-photon switch

    CERN Document Server

    Murray, Callum R; Pohl, Thomas

    2016-01-01

    We develop a theoretical framework to characterize the decoherence dynamics due to multi-photon scattering in an all-optical switch based on Rydberg atom induced nonlinearities. By incorporating the knowledge of this decoherence process into optimal photon storage and retrieval strategies, we establish optimised switching protocols for experimentally relevant conditions, and evaluate the corresponding limits in the achievable fidelities. Based on these results we work out a simplified description that reproduces recent experiments [arXiv:1511.09445] and provides a new interpretation in terms of many-body decoherence involving multiple incident photons and multiple gate excitations forming the switch. Aside from offering insights into the operational capacity of realistic photon switching capabilities, our work provides a complete description of spin wave decoherence in a Rydberg quantum optics setting, and has immediate relevance to a number of further applications employing photon storage in Rydberg media.

  10. Many-body decoherence dynamics and optimized operation of a single-photon switch

    Science.gov (United States)

    Murray, C. R.; Gorshkov, A. V.; Pohl, T.

    2016-09-01

    We develop a theoretical framework to characterize the decoherence dynamics due to multi-photon scattering in an all-optical switch based on Rydberg atom induced nonlinearities. By incorporating the knowledge of this decoherence process into optimal photon storage and retrieval strategies, we establish optimized switching protocols for experimentally relevant conditions, and evaluate the corresponding limits in the achievable fidelities. Based on these results we work out a simplified description that reproduces recent experiments (Nat. Commun. 7 12480) and provides a new interpretation in terms of many-body decoherence involving multiple incident photons and multiple gate excitations forming the switch. Aside from offering insights into the operational capacity of realistic photon switching capabilities, our work provides a complete description of spin wave decoherence in a Rydberg quantum optics setting, and has immediate relevance to a number of further applications employing photon storage in Rydberg media.

  11. Terahertz spectroscopy of two-dimensional subwavelength plasmonic structures

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul K [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Han, Jiaguang [OSU; Lu, Xinchao [OSU; Zhang, Weili [OSU

    2009-01-01

    The fascinating properties of plasmonic structures have had significant impact on the development of next generation ultracompact photonic and optoelectronic components. We study two-dimensional plasmonic structures functioning at terahertz frequencies. Resonant terahertz response due to surface plasmons and dipole localized surface plasmons were investigated by the state-of-the-art terahertz time domain spectroscopy (THz-TDS) using both transmission and reflection configurations. Extraordinary terahertz transmission was demonstrated through the subwavelength metallic hole arrays made from good conducting metals as well as poor metals. Metallic arrays m!lde from Pb, generally a poor metal, and having optically thin thicknesses less than one-third of a skin depth also contributed in enhanced THz transmission. A direct transition of a surface plasmon resonance from a photonic crystal minimum was observed in a photo-doped semiconductor array. Electrical controls of the surface plasmon resonances by hybridization of the Schottkey diode between the metallic grating and the semiconductor substrate are investigated as a function of the applied reverse bias. In addition, we have demonstrated photo-induced creation and annihilation of surface plasmons with appropriate semiconductors at room temperature. According to the Fano model, the transmission properties are characterized by two essential contributions: resonant excitation of surface plasmons and nonresonant direct transmission. Such plasmonic structures may find fascinating applications in terahertz imaging, biomedical sensing, subwavelength terahertz spectroscopy, tunable filters, and integrated terahertz devices.

  12. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    DEFF Research Database (Denmark)

    Colman, Pierre; Hansen, Per Lunnemann; Yu, Yi

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report...

  13. Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo

    NARCIS (Netherlands)

    Yeremenko, S; Pshenichnikov, MS; Wiersma, DA; Pshenichnikov, Maxim S.

    2003-01-01

    Results of heterodyne-detected photon echo experiments on the OH stretching mode of water are reported and discussed. Two vibrational dynamical processes with time constants of 130 and 900 fs were identified. The former is attributed to bond breaking dynamics of a single hydrogen bond, the latter to

  14. Structural dynamics in water probed by heterodyne-detected photon echo

    NARCIS (Netherlands)

    Yeremenko, S; Pshenichnikov, MS; Wiersma, DA; Miller, DR; Murnane, MM; Scherer, NF; Weiner, AM

    2003-01-01

    Results of heterodyne-detected photon echo experiments on the OH stretching mode of HDO molecule in heavy water and acetonitrile are reported and discussed. Two vibrational dynamical processes with time constants of 130 A and 900 fs were identified. The former is attributed to bond breaking dynamics

  15. Tunable photonic Bloch oscillations in electrically modulated photonic crystals

    CERN Document Server

    Wang, Gang; Yu, Kin Wah

    2008-01-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump AC or DC electric field, terahertz PBOs can appear and cover a terahertz band in electromagnetic spectrum.

  16. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.

    Science.gov (United States)

    Wang, Gang; Huang, Ji Ping; Yu, Kin Wah

    2008-10-01

    We exploit theoretically the occurrence and tunability of photonic Bloch oscillations (PBOs) in one-dimensional photonic crystals (PCs) containing nonlinear composites. Because of the enhanced third-order nonlinearity (Kerr-type nonlinearity) of composites, photons undergo oscillations inside tilted photonic bands, which are achieved by the application of graded external-pump electric fields on such PCs, varying along the direction perpendicular to the surface of layers. The tunability of PBOs (including amplitude and period) is readily achieved by changing the field gradient. With an appropriate graded pump ac or dc electric field, terahertz PBOs can appear and cover a terahertz band in an electromagnetic spectrum.

  17. Active graphene–silicon hybrid diode for terahertz waves

    OpenAIRE

    Li, Quan; Tian, Zhen; Zhang, Xueqian; Singh, Ranjan; Du, Liangliang; Gu, Jianqiang; Han, Jiaguang; Zhang, Weili

    2015-01-01

    Controlling the propagation properties of the terahertz waves in graphene holds great promise in enabling novel technologies for the convergence of electronics and photonics. A diode is a fundamental electronic device that allows the passage of current in just one direction based on the polarity of the applied voltage. With simultaneous optical and electrical excitations, we experimentally demonstrate an active diode for the terahertz waves consisting of a graphene–silicon hybrid film. The di...

  18. Quantum walks and wavepacket dynamics on a lattice with twisted photons.

    Science.gov (United States)

    Cardano, Filippo; Massa, Francesco; Qassim, Hammam; Karimi, Ebrahim; Slussarenko, Sergei; Paparo, Domenico; de Lisio, Corrado; Sciarrino, Fabio; Santamato, Enrico; Boyd, Robert W; Marrucci, Lorenzo

    2015-03-01

    The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

  19. Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD

    Science.gov (United States)

    Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera

    2015-01-01

    We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788

  20. Robust Topological Terahertz Circuits using Semiconductors

    CERN Document Server

    Bahari, Babak; Kanté, Boubacar

    2016-01-01

    Topological Insulator-based devices can transport electrons/photons at the surfaces of materials without any back reflections, even in the presence of obstacles. Topological properties have recently been studied using non-reciprocal materials such as gyromagnetics or using bianisotropy. However, these effects usually saturate at optical frequencies and limit our ability to scale down devices. In order to implement topological devices that we introduce in this paper for the terahertz range, we show that semiconductors can be utilized via their cyclotron resonance in combination with small magnetic fields. We propose novel terahertz operating devices such as the topological tunable power splitter and the topological circulator. This work opens new perspectives in the design of terahertz integrated devices and circuits with high functionality.

  1. PBG based terahertz antenna for aerospace applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on high-gain antennas in the terahertz spectrum and their optimization. The terahertz spectrum is an unallocated EM spectrum, which is being explored for a number of applications, especially to meet increasing demands of high data rates for wireless space communications. Space communication systems using the terahertz spectrum can resolve the problems of limited bandwidth of present wireless communications without radio-frequency interference. This book describes design of such high-gain antennas and their performance enhancement using photonic band gap (PBG) substrates. Further, optimization of antenna models using evolutionary algorithm based computational engine has been included. The optimized high-performance compact antenna may be used for various wireless applications, such as inter-orbital communications and on-vehicle satellite communications.

  2. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water

    CERN Document Server

    Vinh, N Q; Allen, S James; George, D K; Rahmani, A J; Plaxco, Kevin W

    2015-01-01

    Because it is sensitive to fluctuations occurring over femtoseconds to picoseconds, gigahertz-to-terahertz dielectric relaxation spectroscopy can provide a valuable window into water's most rapid intermolecular motions. In response, we have built a vector network analyzer dielectric spectrometer capable of measuring absorbance and index of refraction in this frequency regime with unprecedented precision. Using this to determine the complex dielectric response of water and aqueous salt solutions from 5.9 GHz to 1.12 THz (which we provide in the SI), we have obtained strong new constraints on theories of water's collective dynamics. For example, while the salt-dependencies we observe for water's two slower relaxations (8 and 1 ps) are easily reconciled with suggestions that they arise due to rotations of fully and partially hydrogen bonded molecules, respectively, the salt-dependence of the fastest relaxation (180 fs) appears difficult to reconcile with its prior assignment to liberations of single hydrogen bon...

  3. Terahertz Nonlinearity in Graphene Plasmons

    CERN Document Server

    Jadidi, Mohammad M; Winnerl, Stephan; Sushkov, Andrei B; Drew, H Dennis; Murphy, Thomas E; Mittendorff, Martin

    2015-01-01

    Sub-wavelength graphene structures support localized plasmonic resonances in the terahertz and mid-infrared spectral regimes. The strong field confinement at the resonant frequency is predicted to significantly enhance the light-graphene interaction, which could enable nonlinear optics at low intensity in atomically thin, sub-wavelength devices. To date, the nonlinear response of graphene plasmons and their energy loss dynamics have not been experimentally studied. We measure and theoretically model the terahertz nonlinear response and energy relaxation dynamics of plasmons in graphene nanoribbons. We employ a THz pump-THz probe technique at the plasmon frequency and observe a strong saturation of plasmon absorption followed by a 10 ps relaxation time. The observed nonlinearity is enhanced by two orders of magnitude compared to unpatterned graphene with no plasmon resonance. We further present a thermal model for the nonlinear plasmonic absorption that supports the experimental results.

  4. Surface-emitting terahertz quantum cascade lasers with continuous-wave power in the tens of milliwatt range

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gangyi, E-mail: gangyi.xu@mail.sitp.ac.cn [Institut d' Electronique Fondamentale, Univ. Paris Sud, UMR8622 CNRS, 91405 Orsay (France); Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Li, Lianhe; Giles Davies, A.; Linfield, Edmund H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS9 2JT (United Kingdom); Isac, Nathalie; Halioua, Yacine; Colombelli, Raffaele, E-mail: raffaele.colombelli@u-psud.fr [Institut d' Electronique Fondamentale, Univ. Paris Sud, UMR8622 CNRS, 91405 Orsay (France)

    2014-03-03

    We demonstrate efficient surface-emitting terahertz frequency quantum cascade lasers with continuous wave output powers of 20–25 mW at 15 K and maximum operating temperatures of 80–85 K. The devices employ a resonant-phonon depopulation active region design with injector, and surface emission is realized using resonators based on graded photonic heterostructures (GPHs). GPHs can be regarded as energy wells for photons and have recently been implemented through grading the period of the photonic structure. In this paper, we show that it is possible to keep the period constant and grade instead the lateral metal coverage across the GPH. This strategy ensures spectrally single-mode operation across the whole laser dynamic range and represents an additional degree of freedom in the design of confining potentials for photons.

  5. Tunable Ultrafast Photon Source and Imaging System for Studying Carrier Dynamics in Graphene Devices

    Science.gov (United States)

    2015-07-23

    Tunable ultrafast photon source and imaging system for studying carrier dynamics in graphene devices This project enabled the acquisition of a...and imaging system for studying carrier dynamics in graphene devices Report Title This project enabled the acquisition of a optical parametric...carrier dynamics in graphene devices As discussed below the focus of this DURIP project was on understanding the interaction between electrons, holes

  6. One loop graviton corrections to dynamical photons in de Sitter

    CERN Document Server

    Glavan, D; Prokopec, Tomislav; Woodard, R P

    2016-01-01

    We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.

  7. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  8. Magnetically tunable magnetic photonic crystal for terahertz switch and filter%基于磁光子晶体的磁控可调谐太赫兹滤波器和开关

    Institute of Scientific and Technical Information of China (English)

    郭展; 范飞; 白晋军; 牛超; 常胜江

    2011-01-01

    The feasibility of ferrite magnetism materials applied to THz waveguide devices is investigated. A novel continuously tunable bandpass filter and switch under the control of an external magnetic field in a terahertz wave band are designed. Detailed calculations on the shift and the variation in the position of the bandgap reveal that the filter and the switch achieved by this two-dimensional magnetic photonic crystal waveguide have good performancs.%本文研究了铁氧体磁性材料应用于太赫兹波导器件的可行性.利用铁氧体磁性材料的磁导率随外磁场改变而变化的性质,设计出了一种新颖的磁控连续可调谐太赫兹滤波器和开关.利用平面波展开法(plane wave expansion,PWE)和时域有限差分法(finite difference time domain,FDTD)计算了二维磁光子晶体中外磁场变化对带隙位置和宽度的影响,结果显示应用该结构实现的滤波器和开关具有良好的性能.

  9. 不同半导体材料构成光子晶体在太赫兹波段能态密度特性%State Density Properties of Photonic Crystal Composited by Different Semiconductor Material in Terahertz Band

    Institute of Scientific and Technical Information of China (English)

    邴丕彬; 闫昕

    2012-01-01

    Based on the plane wave expansion method research Ⅳ, Ⅲ-Ⅴ and Ⅱ- Ⅵ semiconductor material composition family 2d triangle photonic crystal lattice terahertz band state density of characteristics, numerical simulation to get Ⅳ family in filling SiC rate f = 0. 8 form 0. 037 THz band gap width, Ⅱ-Ⅵ ZnO family in filling rate f = 0. 73 form 0. 0417 THz band gap width form, the filler rate case Ⅲ-Ⅴ race semiconductor material form 0.027 THz band gap width, more data Ⅱ-Ⅵ race semiconductor material form more wide band gap, the result is too Hertz photonic crystal devices to provide the theoretical basis for development.%基于平面波展开法研究Ⅳ、Ⅲ-Ⅴ和Ⅱ-Ⅵ族半导体材料构成二维三角晶格光子晶体在太赫兹波段的能态密度特性,数值模拟得到Ⅳ族SiC在填充率f=0.8时形成0.037 THz带隙宽度,Ⅱ-Ⅵ族ZnO在填充率f=0.73时形成0.0417 THz带隙宽度,不同填充率情况下Ⅲ-Ⅴ族半导体材料形成0.027 THz带隙宽度,比较数据Ⅱ-Ⅵ族半导体材料形成较宽的带隙,研究结果为太赫兹光子晶体器件的开发提供了理论依据.

  10. Temporal dynamics of all-optical switching in Photonic Crystal Cavity

    DEFF Research Database (Denmark)

    Colman, Pierre; Heuck, Mikkel; Yu, Yi;

    2014-01-01

    The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing.......The temporal dynamics of all-optical switching has been investigated in a Photonic Crystal Cavity with a 150fs-40aJ/pulse resolution. This allowed observing for the first time effects like pulse reshaping, pulse delay and intra-cavity Four-Wave-Mixing....

  11. Dynamics of Two-Photon Lasers with Λ Atomic Level Configuration

    Institute of Scientific and Technical Information of China (English)

    YANG Peng; QIAN Feng; HUANG Hong-Bin; XIE Xia; ZHANG Ya-Jun

    2006-01-01

    We derive the dimensionless dynamic equations of two-photon lasers with A atomic level configuration by using the quantum Langevin equation method with the considerations of atomic coherence and injected classical fields.Then we analyze the stability and the chaotic dynamics of the two-photon laser by calculating the bifurcation diagram and the maximum Lyapunov exponent (MLE). Our results show that the Lorenz strange attractors and one-focus strange attractors can exist in this system, and the chaos can be induced or inhibited by the injected classical fields via Hopfbifurcations or crises, while the atomic coherence induces chaos via crises, and inhibit chaos via Hopf bifurcation or crises.

  12. Ultrafast coherent dynamics of a photonic crystal all-optical switch

    CERN Document Server

    Colman, Pierre; Yu, Yi; Mørk, Jesper

    2016-01-01

    We present pump-probe measurements of an all-optical photonic crystal switch based on a nanocavity, resolving fast coherent temporal dynamics. The measurements demonstrate the importance of coherent effects typically neglected when considering nanocavity dynamics. In particular, we report the observation of an idler pulse. The measurements are in good agreement with a theoretical model that allows us to ascribe the observation to oscillations of the free carrier population in the nanocavity. The effect opens perspectives for the realization of new all-optical photonic crystal switches with unprecedented switching contrast.

  13. Correlated Terahertz and High Harmonic Generation from Aligned Nitrogen Molecules

    Science.gov (United States)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lv, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2016-05-01

    When laser beams are focused on atoms and molecules, wide spectral range of photons can be radiated from the source. In the region of high energy, high harmonic generation (HHG), covering tens to hundreds electron volts, emit within the attosecond timescale. In the low energy region, terahertz wave generation (TWG) can also be generated. Synchronizing TWG with HHG is to take snapshot of the electronic dynamics with time-scale spanning over 6 orders of magnitudes. In this abstract, we report the joint measurements on TWG and HHG from pre-aligned molecules. By calibrating the angular ionization rates with the alignment dependent TWG, we reconstruct the photoionization cross section (PICS) of nitrogen in one run of experiment. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures (Yindong Huang et al., Phys. Rev. Lett. 115, 123002, 2015).

  14. Three-dimensional dynamic photonic crystal creation by four laser beams interference in colloidal quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Mantsevich, V. N.; Ezhova, K. V.; Tikhonov, I. V.; Dneprovskii, V. S.

    2016-04-01

    We investigate a simple way to create dynamic photonic crystals with different lattice symmetry by interference of four non-coplanar laser beams in colloidal solution of CdSe/ZnS quantum dots (QDs). The formation of dynamic photonic crystal was confirmed by the observed diffraction of the beams that have excited photonic crystal at the angles equal to that calculated for the corresponding three-dimensional lattice (self-diffraction regime). Self-diffraction from an induced 3D transient photonic crystal has been discovered in the case of resonant excitation of the excitons (electron - hole transitions) in CdSe/ZnS QDs (highly absorbing colloidal solution) by powerful beams of mode-locked laser with picosecond pulse duration. Self-diffraction arises for four laser beams intersecting in the cell with colloidal CdSe/ZnS QDs due to the induced 3D dynamic photonic crystal. The physical processes that arise in CdSe/ZnS QDs and are responsible for the observed self-action effects are discussed.

  15. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    -induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision...

  16. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    -induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric......The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision...

  17. Heterodyne-detected stimulated photon echo: applications to optical dynamics in solution : applications to optical dynamics in solution

    NARCIS (Netherlands)

    de Boeij, W.P.; Pshenichnikov, M.S; Wiersma, D. A.

    1998-01-01

    Heterodyne detection of the stimulated photon echo (HSPE) is discussed and applied to explore molecular solvation dynamics. With this technique the in-phase and in-quadrature parts of the induced transient nonlinear polarization can be time-gated. A third-order perturbative description of the HSPE i

  18. New Insights into the Dynamics of Zwitterionic Micelles and Their Hydration Waters by Gigahertz-to-Terahertz Dielectric Spectroscopy

    CERN Document Server

    George, Deepu K; Hull, Olivia A; Mishra, Archana; Capelluto, Daniel G S; Mitchell-Koch, Katie R; Vinh, Nguyen Q

    2016-01-01

    Gigahertz-to-terahertz spectroscopy of macromolecules in aqueous environments provides an important approach for identifying their global and transient molecular structures, as well as directly assessing hydrogen-bonding. We report dielectric properties of zwitterionic dodecylphosphocholine (DPC) micelles in aqueous solutions over a wide frequency range, from 50 MHz to 1.12 THz. The dielectric relaxation spectra reveal different polarization mechanisms at the molecular level, reflecting the complexity of DPC micelle-water interactions. We have made a deconvolution of the spectra into different components and combined them with the effective-medium approximation to separate delicate processes of micelles in water. Our measurements demonstrate reorientational motion of the DPC surfactant head groups within the micelles, and two levels of hydration water shells, including tightly- and loosely-bound hydration water layers. From the dielectric strength of bulk water in DPC solutions, we found that the number of wa...

  19. Glass transition dynamics of anti-inflammatory ketoprofen studied by Raman scattering and terahertz time-domain spectroscopy

    Science.gov (United States)

    Shibata, Tomohiko; Igawa, Hikaru; Kim, Tae Hyun; Mori, Tatsuya; Kojima, Seiji

    2014-03-01

    A liquid-glass transition and a crystalline state of pharmaceutical racemic ketoprofen were studied by Raman scattering and the broadband terahertz time-domain spectroscopy (THz-TDS) in the frequency range from 9 to 260 cm-1. The low-frequency Raman scattering spectra clearly shows the remarkable change related to a liquid-glass transition at about Tg = 267 K. After melt-quenching at liquid nitrogen temperature, a boson peak appears at about 16.5 cm-1 near and below Tg and the intensity of quasi-elastic scattering related to structural relaxation increases markedly on heating. The crystalline racemic ketoprofen of "conformer A" shows the noncoincidence effect of mode frequencies below 200 cm-1 between Raman scattering spectra and dielectric spectra observed by THz-TDS.

  20. Modal dynamics in hollow-core photonic-crystal fibers with elliptical veins.

    Science.gov (United States)

    Hochman, Amit; Leviatan, Yehuda

    2005-08-08

    Modal characteristics of hollow-core photonic-crystal fibers with elliptical veins are studied by use of a recently proposed numerical method. The dynamic behavior of bandgap guided modes, as the wavelength and aspect ratio are varied, is shown to include zero-crossings of the birefringence, polarization dependent radiation losses, and deformation of the fundamental mode.

  1. LOW-TEMPERATURE DYNAMICS IN AMORPHOUS SOLIDS - A PHOTON-ECHO STUDY

    NARCIS (Netherlands)

    MEIJERS, HC; WIERSMA, DA

    1994-01-01

    The long-lived stimulated photon echo is put forward as a powerful technique to probe structural dynamics in glasses and other amorphous solids. We present results of optical dephasing measurements on several doped organic glasses (deuterated ethanol, toluene, and triethylamine) and polymers (polyst

  2. Glass Dynamics Probed by the Long-Lived Stimulated Photon Echo

    NARCIS (Netherlands)

    Meijers, Hans C.; Wiersma, Douwe A.

    1992-01-01

    The dynamics in an ethanol glass at 1.5 K has been investigated from picoseconds to milliseconds by two-dimensional stimulated-photon-echo measurements on zinc porphin. In this time frame the distribution of relaxation rates exhibits a 1/R dependence except for a gap stretching from about 1 kHz to 1

  3. Design and Optimization of Air-Doped 3-dB Terahertz Fiber Directional Couplers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.;

    2014-01-01

    We present a thorough practical design optimization of broadband low loss, terahertz (THz) photonic crystal fiber directional couplers in which the two cores are mechanically down- doped with a triangular array of air holes.......We present a thorough practical design optimization of broadband low loss, terahertz (THz) photonic crystal fiber directional couplers in which the two cores are mechanically down- doped with a triangular array of air holes....

  4. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, D.; Novitsky, Andrey

    2012-01-01

    We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging.......We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging....

  5. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Chigrin, D.; Novitsky, Andrey

    2012-01-01

    We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging.......We propose the structured graphene terahertz hyperlens that allows overcoming natural diffraction limit and resolving subwavelength features. The proposed hyperlens can have applications in terahertz spectroscopy and imaging....

  6. Tuning the terahertz low-energy charge dynamics by simultaneous effect of epitaxial and anisotropic strain in PrNi O3 thin films

    Science.gov (United States)

    Phanindra, V. Eswara; Das, Sarmistha; Kumar, K. Santhosh; Agarwal, Piyush; Rana, Rakesh; Rana, D. S.

    2017-02-01

    The interplay of charge, spin, and lattice correlations strongly influence the insulator-metal (I-M) transition and magnetic ordering in rare earth nickelates. In this context, we explored the low-energy charge dynamics in structurally modulated PrNi O3 (PNO) thin films to unravel the complexity of ground state across I-M transition using terahertz (THz) spectroscopy. The THz optical constants of compressive film on LaAl O3 (100) substrate and the tensile films on NdGa O3 (100), (001), (110), and (111) substrates with varying orthorhombic distortion exhibit remarkably distinct features as a function of frequency and temperature. The THz conductivity of compressive film sans any I-M transition follows the Drude model. In contrast, the tensile strained films exhibit non-Drude THz conductivity, a giant positive dielectric permittivity, and negative imaginary conductivity, all of which can be explained by the Drude-Smith model. This rich variety of low-energy dynamics manifests as a function of temperature, strain, and crystal orientation. Such distinct THz spectral features, as induced by a subtle variation in strain while crossing over from tensile to compressive strain and with varying degree of orthorhombicity coupled with oxygen vacancies, reveal a novel facet of structure-property relationship of PNO.

  7. Multiple regimes of carrier cooling in photoexcited graphene probed by time-resolved terahertz spectroscopy

    Science.gov (United States)

    Frenzel, A. J.; Gabor, N. M.; Herring, P. K.; Fang, W.; Kong, J.; Jarillo-Herrero, P.; Gedik, N.

    2013-03-01

    Energy relaxation and cooling of photoexcited charge carriers in graphene has recently attracted significant attention due to possible hot carrier effects, large quantum efficiencies, and photovoltaic applications. However, the details of these processes remain poorly understood, with many conflicting interpretations reported. Here we use time-resolved terahertz spectroscopy to explore multiple relaxation and cooling regimes in graphene in order to elucidate the fundamental physical processes which occur upon photoexcitation of charge carriers. We observe a novel negative terahertz photoconductivity that results from the unique linear dispersion and allows us to measure the electron temperature with ultrafast time resolution. Additionally, we present measurements of the relaxation dynamics over a wide range of excitation fluence. By varying the pump photon energy, we demonstrate that cooling dynamics of photoexcited carriers depend on the amount of energy deposited in the graphene system by the pump pulse, not the number of absorbed photons. The data suggest that fundamentally different regimes are encountered for different excitation fluences. These results may provide a unifying framework for reconciling various measurements of energy relaxation and cooling in graphene.

  8. Dynamics of two-photon photoluminescence in gold nanostructures

    Science.gov (United States)

    Biagioni, P.; Brida, D.; Huang, J.-S.; Kern, J.; Duò, L.; Hecht, B.; Finazzi, M.; Cerullo, G.

    2012-03-01

    We introduce the possibility of performing two-pulse correlation measurements in order to probe the dynamics of twophoton photoluminescence in Au nanostructures. Our preliminary results obtained from single-crystal Au nanorods are consistent with the two-step model for the photoluminescence process.

  9. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    Science.gov (United States)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  10. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination.......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...

  11. Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics

    Science.gov (United States)

    Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent

    2012-06-01

    We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.

  12. Terahertz Spectroscopy and Imaging

    CERN Document Server

    Zeitler, Axel; Kuwata-Gonokami, Makoto

    2013-01-01

    "This book presents the current state of knowledge in the field of terahertz spectroscopy, providing a comprehensive source of information for beginners and experienced researchers alike whose interests lie in this area. The book aims to explain the fundamental physics that underpins terahertz  technology and to describe its key applications. Highlights of scientific research in the field of terahertz science are also outlined in some chapters, providing an overview as well as giving an insight into future directions for research.  Over the past decade terahertz spectroscopy has developed into one of the most rapidly growing areas of its kind, gaining an important impact across a wide range of scientific disciplines. Due to substantial advances in femtosecond laser technology, terahertz time-domain spectroscopy (THz-TDS) has established itself as the dominant spectroscopic technique for experimental scientists interested in measurements at this frequency range. In solids and liquids THz radiation is in reso...

  13. Dynamic control of photosynthetic photon flux for lettuce production in CELSS

    Science.gov (United States)

    Chun, C.; Mitchell, C. A.

    1996-01-01

    A new dynamic control of photosynthetic photon flux (PPF) was tested using lettuce canopies growing in the Minitron II plant-growth/canopy gas-exchange system. Canopy photosynthetic rates (Pn) were measured in real time and fedback for further environment control. Pn can be manipulated by changing PPF, which is a good environmental parameter for dynamic control of crop production in a Controlled Ecological Life-Support Systems CELSS. Decision making that combines empirical mathematical models with rule sets developed from recent experimental data was tested. With comparable yield indices and potential for energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  14. Manipulation of dynamic nuclear spin polarization in single quantum dots by photonic environment engineering

    Science.gov (United States)

    Fong, C. F.; Ota, Y.; Iwamoto, S.; Arakawa, Y.

    2017-06-01

    Optically induced dynamic nuclear spin polarization (DNP) in a semiconductor quantum dot (QD) requires many cycles of excitation of spin polarized carriers and carrier recombination. As such, the radiative lifetime of the exciton containing the electron becomes one of the limiting factors of DNP. In principle, changing the radiative lifetime of the exciton will affect DNP and thus the nuclear spin polarization. Here, we demonstrate the manipulation of DNP in single QDs through the engineering of the photonic environment using two-dimensional photonic crystals. We find that the achievable degree of nuclear spin polarization can be controlled through the modification of exciton radiative lifetime. Our results show the promise of achieving a higher degree of nuclear spin polarization via photonic environment engineering, with implications on spin-based quantum information processing.

  15. Tunable terahertz photonic crystal structures containing graphene%基于石墨烯的可调谐太赫兹光子晶体结构

    Institute of Scientific and Technical Information of China (English)

    邓新华; 袁吉仁; 刘江涛; 王同标

    2015-01-01

    We introduce graphene into conventional photonic crystals to build new photonic crystal structures, and strictly derive the dispersion relations of the structures based on the electromagnetic boundary conditions and the Maxwell’s equations required. The dispersion relations are different from that of the conventional photonic crystals, and the optical properties of the structures may also differ from that of the conventional photonic crystals because of the presence of graphene conductivity in the dispersion relations. By changing the Fermi energy of graphene, the conductivity of it can be changed, the dispersion relations adjusted, the energy band structure altered, and its light propagation manipulated as well. With increasing Fermi energy, the energy band can be transformed from the allowed bands to the prohibited bands and then transformed along the opposite direction to the allowed bands. Because the conductivity changes rapidly in low frequency range, while changes slowly in high frequency range, as the Fermi energy increases, the energy band in the low frequency region will move quickly to higher frequency region, and the energy band in the high frequency region moves slowly, leading to the band compression and mutual conversion between the allowed and the prohibited bands. The larger the Fermi energy, the more obvious the band compression, and the more easy the mutual conversion.%本文将石墨烯引入到常规光子晶体中构建一种新型光子晶体,首次从理论上严格导出了决定其能带结构的色散关系,由于色散关系中石墨烯电导率的存在导致了它具有与常规光子晶体有所不同的特殊光学性质,我们发现,随着费米能增大,低频段能带迅速向高频移动,而高频段能带移动缓慢,导致了常规光子晶体没有的能带压缩现象的发生,究其原因在于石墨烯在低频段电导率迅速变化,而高频段电导率变化缓慢,导致能带向高频压缩,使

  16. Does urea alter the collective hydrogen-bond dynamics in water? A dielectric relaxation study in the terahertz-frequency region.

    Science.gov (United States)

    Samanta, Nirnay; Das Mahanta, Debasish; Kumar Mitra, Rajib

    2014-12-01

    We report the ultrafast collective hydrogen-bond dynamics of water in the extended hydration layer of urea by using terahertz time-domain spectroscopy in the frequency region of 0.3-2.0 THz. The complex dielectric function has been fitted using a Debye relaxation model, and the timescales obtained are in the order of approximately 9 ps and 200 fs for bulk water; this exhibits a considerable acceleration beyond the 4 M urea concentration and indicates a possible disruption in the collective hydrogen-bonded water-network structure, which, in turn, provides an indirect support for the water "structure-breaking" ability of urea. With 5 M urea in the presence of different concentrations of trimethylamine-N-oxide (TMAO), it was found that these parameters essentially follow the trend observed for TMAO itself, which signifies that any possible disruption of the water structure by urea is outdone by the strong hydrogen-bonding ability of TMAO, which explains its ability to revive urea-denatured proteins to their respective native states.

  17. Unified dynamics of electrons and photons via Zitterbewegung and spin-orbit interaction

    Science.gov (United States)

    Leary, C. C.; Smith, Karl H.

    2014-02-01

    We show that when an electron or photon propagates in a cylindrically symmetric waveguide, it experiences both a Zitterbewegung effect and a spin-orbit interaction leading to identical propagation dynamics for both particles. Applying a unified perturbative approach to both particles simultaneously, we find that to first order in perturbation theory, their Hamiltonians each contain identical Darwin (Zitterbewegung) and spin-orbit terms, resulting in the unification of their dynamics. The presence of the Zitterbewegung effect may be interpreted physically as the delocalization of the electron on the scale of its Compton wavelength, or the delocalization of the photon on the scale of its wavelength in the waveguide. The presence of the spin-orbit interaction leads to the prediction of several rotational effects: the spatial or time evolution of either particle's spin or polarization vector is controlled by the sign of its orbital angular momentum quantum number or, conversely, its spatial wave function is controlled by its spin angular momentum.

  18. Imaging with terahertz radiation

    Science.gov (United States)

    Chan, Wai Lam; Deibel, Jason; Mittleman, Daniel M.

    2007-08-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  19. Non-Markovian Dynamics in Chiral Quantum Networks with Spins and Photons

    CERN Document Server

    Ramos, Tomás; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-01-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to the familiar photonic networks consisting of driven two-level atoms exchanging photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D XX-spin chains representing a spin waveguide. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bat...

  20. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip

    Science.gov (United States)

    Burla, Maurizio; Wang, Xu; Li, Ming; Chrostowski, Lukas; Azaña, José

    2016-09-01

    Photonic-based instantaneous frequency measurement (IFM) of unknown microwave signals offers improved flexibility and frequency range as compared with electronic solutions. However, no photonic platform has ever demonstrated the key capability to perform dynamic IFM, as required in real-world applications. In addition, all demonstrations to date employ bulky components or need high optical power for operation. Here we demonstrate an integrated photonic IFM system that can identify frequency-varying signals in a dynamic manner, without any need for fast measurement instrumentation. The system is based on a fully linear, ultracompact system based on a waveguide Bragg grating on silicon, only 65-μm long and operating up to ~30 GHz with carrier power below 10 mW, significantly outperforming present technologies. These results open a solid path towards identification of dynamically changing signals over tens of GHz bandwidths using a practical, low-cost on-chip implementation for applications from broadband communications to biomedical, astronomy and more.

  1. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    Science.gov (United States)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Metamaterials for terahertz polarimetric devices

    Energy Technology Data Exchange (ETDEWEB)

    O' hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory; Smirnova, Evgenya [Los Alamos National Laboratory; Azad, Abul [Los Alamos National Laboratory

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at terahertz frequencies, it may find applications in other frequency ranges as well.

  3. Dynamic modes of microwave signal autogeneration in a radio photonic ring generator

    Science.gov (United States)

    Kondrashov, A. V.; Ustinov, A. B.; Kalinikos, B. A.

    2017-02-01

    Dynamic modes of microwave signal autogeneration in a radio photonic generator have been investigated. The generator is a ring circuit with a low-pass filter and microwave amplifier in its microwave path. The optical path contains an optical fiber delay line. The generator demonstrates the periodical, chaotic, and noise dynamics. It has been shown that the correlation dimensionality of the random signal attractor in the chaotic generation mode saturates with increasing phase space dimensionality. Saturation is not observed in the noise-generation mode.

  4. Magnetically Tunable Terahertz Switch and Band-Pass Filter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui; GUO Peng; CHANG Sheng-Jiang; YUAN Jing-He

    2008-01-01

    A novel design of a tunable terahertz switch and band-pass filter using liquid-crystal-filled photonic crystal waveguide is demonstrated. The effects of magnetic field on the photonic bandgaps and transmitting properties of a THz wave are investigated by using the plane wave expansion method and finite difference time domain method. The efficient photonic bandgap tuning is predicted such that the two-dimensional liquid-crystal-filled photonic crystal waveguide can serve as a switch and continuously tunable band-pass filter with controlling of the magnetic field.

  5. Heterostructure terahertz devices.

    Science.gov (United States)

    Ryzhii, Victor

    2008-08-19

    The terahertz (THz) range of frequencies is borderline between microwave electronics and photonics. It corresponds to the frequency bands of molecular and lattice vibrations in gases, fluids, and solids. The importance of the THz range is in part due to numerous potential and emerging applications which include imaging and characterization, detection of hazardous substances, environmental monitoring, radio astronomy, covert inter-satellite communications, as well as biological and medical applications. During the last decades marked progress has been achieved in the development, fabrication, and practical implementation of THz devices and systems. This is primarily owing to the utilization of gaseous and free electron lasers and frequency converters using nonlinear optical phenomena as sources of THz radiation. However, such devices and hence the systems based on them are fairly cumbersome. This continuously stimulates an extensive search for new compact and efficient THz sources based on semiconductor heterostructures. Despite tremendous efforts lasting several decades, the so-called THz gap unbridged by semiconductor heterostructure electron and optoelectron devices still exists providing appropriate levels of power of the generated THz radiation. The invention and realization of quantum cascade lasers made of multiple quantum-well heterostructures already resulted in the partial solution of the problem in question, namely, in the successful coverage of the high-frequency portion of the THz gap (2-3 THz and higher). Further advancement to lower frequencies meets, perhaps, fundamental difficulties. All this necessitates further extensive theoretical and experimental studies of more or less traditional and novel semiconductor heterostructures as a basis for sources of THz radiation. This special issue includes 11 excellent original papers submitted by several research teams representing 14 institutions in Europe, America, and Asia. Several device concepts which

  6. Preface: Heterostructure terahertz devices

    Science.gov (United States)

    Ryzhii, Victor

    2008-08-01

    The terahertz (THz) range of frequencies is borderline between microwave electronics and photonics. It corresponds to the frequency bands of molecular and lattice vibrations in gases, fluids, and solids. The importance of the THz range is in part due to numerous potential and emerging applications which include imaging and characterization, detection of hazardous substances, environmental monitoring, radio astronomy, covert inter-satellite communications, as well as biological and medical applications. During the last decades marked progress has been achieved in the development, fabrication, and practical implementation of THz devices and systems. This is primarily owing to the utilization of gaseous and free electron lasers and frequency converters using nonlinear optical phenomena as sources of THz radiation. However, such devices and hence the systems based on them are fairly cumbersome. This continuously stimulates an extensive search for new compact and efficient THz sources based on semiconductor heterostructures. Despite tremendous efforts lasting several decades, the so-called THz gap unbridged by semiconductor heterostructure electron and optoelectron devices still exists providing appropriate levels of power of the generated THz radiation. The invention and realization of quantum cascade lasers made of multiple quantum-well heterostructures already resulted in the partial solution of the problem in question, namely, in the successful coverage of the high-frequency portion of the THz gap (2-3 THz and higher). Further advancement to lower frequencies meets, perhaps, fundamental difficulties. All this necessitates further extensive theoretical and experimental studies of more or less traditional and novel semiconductor heterostructures as a basis for sources of THz radiation. This special issue includes 11 excellent original papers submitted by several research teams representing 14 institutions in Europe, America, and Asia. Several device concepts which

  7. Polarization and dynamical properties of VCSELs-based photonic neuron subject to optical pulse injection

    Science.gov (United States)

    Xiang, Shuiying; Wen, Aijun; Zhang, Hao; Li, Jiafu; Guo, Xingxing; Shang, Lei; Lin, Lin

    2016-11-01

    The polarization-resolved nonlinear dynamics of vertical-cavity surface-emitting lasers (VCSELs) subject to orthogonally polarized optical pulse injection are investigated numerically based on the spin flip model. By extensive numerical bifurcation analysis, the responses dynamics of photonic neuron based on VCSELs under the arrival of external stimuli of orthogonally polarized optical pulse injection are mainly discussed. It is found that, several neuron-like dynamics, such as phasic spiking of a single abrupt large amplitude pulse followed with or without subthreshold oscillation, and tonic spiking with multiple periodic pulses, are successfully reproduced in the numerical model of VCSELs. Besides, the effects of stimuli strength, pump current, frequency detuning, as well as the linewidth enhancement factor on the neuron-like response dynamics are examined carefully. The operating parameters ranges corresponding to different neuron-like dynamics are further identified. Thus, the numerical model and simulation results are very useful and interesting for the ultrafast brain-inspired neuromorphic photonics systems based on VCSELs.

  8. Performance of passive terahertz imaging system

    Science.gov (United States)

    Wang, Jia; Zhao, Guozhong

    2016-11-01

    Terahertz (THz) radiation has the higher penetration to clothing, cardboard boxes, plastic packaging materials and other similar dielectrics. Its lower photon energy compared with X-rays make the detected material and the human being to be not destroyed. THz application in field of security are developed by many countries. In this research, we present a multiband of passive terahertz imaging by the thermal radiation measurement. The Noise Equivalent Temperature Difference(NETD) is obtained. The result shows that NETD of the passive imaging system is 0.8K at 94 GHz, and 1.5K at 250GHz. We found that the main source of noise is the noise from detection circuit. Finally, the improvement methods of detecting sensitivity are analyzed and discussed.

  9. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred

    2002-07-30

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  10. Photon-counting single-molecule spectroscopy for studying conformational dynamics and macromolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, Ted Alfred [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    Single-molecule methods have the potential to provide information about conformational dynamics and molecular interactions that cannot be obtained by other methods. Removal of ensemble averaging provides several benefits, including the ability to detect heterogeneous populations and the ability to observe asynchronous reactions. Single-molecule diffusion methodologies using fluorescence resonance energy transfer (FRET) are developed to monitor conformational dynamics while minimizing perturbations introduced by interactions between molecules and surfaces. These methods are used to perform studies of the folding of Chymotrypsin Inhibitor 2, a small, single-domain protein, and of single-stranded DNA (ssDNA) homopolymers. Confocal microscopy is used in combination with sensitive detectors to detect bursts of photons from fluorescently labeled biomolecules as they diffuse through the focal volume. These bursts are analyzed to extract fluorescence resonance energy transfer (FRET) efficiency. Advances in data acquisition and analysis techniques that are providing a more complete picture of the accessible molecular information are discussed. Photon Arrival-time Interval Distribution (PAID) analysis is a new method for monitoring macromolecular interactions by fluorescence detection with simultaneous determination of coincidence, brightness, diffusion time, and occupancy (proportional to concentration) of fluorescently-labeled molecules undergoing diffusion in a confocal detection volume. This method is based on recording the time of arrival of all detected photons, and then plotting the two-dimensional histogram of photon pairs, where one axis is the time interval between each pair of photons 1 and 2, and the second axis is the number of other photons detected in the time interval between photons 1 and 2. PAID is related to Fluorescence Correlation Spectroscopy (FCS) by a collapse of this histogram onto the time interval axis. PAID extends auto- and cross-correlation FCS

  11. Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film

    Science.gov (United States)

    Yan, Huijie; An, Baoli; Fan, Zhengfu; Zhu, Xiaoya; Lin, Xian; Jin, Zuanming; Ma, Guohong

    2016-04-01

    By using optical pump-terahertz probe (OPTP) experiments, we study the free charge carrier dynamics in photoexcited drop-cast CH3NH3PbI3-based perovskite thin film at room temperature. Compared with the pump photon energy at 1.55 eV, the measured OPTP signal following excitation of 3.1 eV shows an additional fast decay channel of the photoconductivity. Our experimental results demonstrate that effective carrier lifetime can be strongly modulated by surface recombination. In addition, the Drude-Smith-like transient terahertz photoconductivity spectra suggest that photogenerated free carriers experience backscattering at grain boundaries in our solution-processed perovskite films studied here.

  12. Creation technique and nonlinear optics of dynamic one-dimensional photonic crystals in colloidal solution of quantum dots

    Science.gov (United States)

    Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K.; Kozlova, M.; Stebakova, J. V.; Valchuk, Y. V.

    2017-05-01

    One-dimensional dynamic photonic crystal was formed by a periodic spatial modulation of dielectric permittivity induced by the two ultrashort laser pulses interference in semiconductor quantum dots CdSe/ZnS (QDs) colloidal solution intersecting at angle θ. The fundamental differences of dynamic photonic crystals from static ones which determine the properties of these transient structures are the following. I. Dynamic photonic crystals lifetimes are determined by the nature of nonlinear changes of dielectric permittivity. II. The refractive index changing is determined by the intensity of the induced standing wave maxima and nonlinear susceptibility of the sample. We use the pump and probe method to create the dynamic one-dimensional photonic crystal and to analyze its features. Two focused laser beams are the pump beams, that form in the colloidal solution of quantum dots dynamic one-dimensional photonic crystal. The picosecond continuum, generated by the first harmonic of laser (1064 nm) passing through a heavy water is used as the probe beam. The self-diffraction of pumping beams on self induced dynamic one-dimensional photonic crystal provides information about spatial combining of laser beams.

  13. Saving entangled photons from sudden death is a single-mode fiber --- Interplay of Decoherence and dynamical decoupling

    Science.gov (United States)

    Gupta, Manish Kumar; You, Chenglong; Dowling, Jonathan P.; Lee, Hwang

    2016-05-01

    We study the dynamics of decoherence in an optical fiber for the case of entangled photons. Such a study will allow us to increase the physical length of fiber for transmission of entangled photon from the sources such as SPDC. We analytically derive the model for Decoherence of entangled state photons in a single-mode fiber. We also show that entanglement lifetime can be increased for Bell state and Werner state with open loop control technique called Dynamical decoupling. The authors would like to acknowledge support from the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation and the Northrop Grumman Corporation.

  14. High dynamic range microwave photonic down-conversion based on dual-parallel Mach-Zehnder modulator

    Science.gov (United States)

    Li, Hongli; Wang, Yunxin; Wang, Dayong; Rong, Lu; Jia, Yupeng; Li, Jingnan; Zhong, Xin; Yang, Dengcai; Zhou, Tao

    2016-10-01

    In order to enhance conversion efficiency and spurious free dynamic range of microwave photonic link, we present a microwave photonic down-conversion system based on an integrated dual-parallel Mach Zehnder modulator (DPMZM) and microwave photonic filter. The principle of frequency down conversion is analyzed. We demonstrate the conversion efficiency of system through theoretical derivation and simulation. The performance of the microwave photonic link is tested experimentally. It is found that the spurious free dynamic range of the proposed method is up to 102.5dB/Hz2/3 and the conversion efficiency is up to -22.01dB. The integrated dual-parallel Mach-Zehnder modulator link can serve as a good alternative to improve the conversion efficiency and spurious free dynamic range.

  15. Dynamic Tuning and Memory Switching of Defect Modes in a Hybrid Photonic Structure

    Directory of Open Access Journals (Sweden)

    Hsiao-Tsung Wang

    2016-10-01

    Full Text Available We propose a memorable and electrically tunable photonic device by infiltrating a dual-mode chiral-doped dual-frequency liquid crystal (LC as the central defect layer in a one-dimensional photonic crystal (PC. According to the transmission properties of this structure, the wavelength tunability of defect modes is obtained by manipulating the LC layer in the dynamic mode due to the electrically controlled birefringence effect. Moreover, the switching between two memorable states, the splay and π-twist states, creates two distinct sets of defect modes at null voltage. The spectral characteristics of this device ensure its potential application as an energy-efficient multichannel wavelength filter.

  16. Nonlinear terahertz spectroscopy of Higgs mode in s-wave superconductors

    Science.gov (United States)

    Matsunaga, Ryusuke; Shimano, Ryo

    2017-02-01

    We review our recent experiments of ultrafast dynamics in s-wave superconductors Nb1-x Ti x N by using nonlinear terahertz (THz) spectroscopy. The free oscillation of the Higgs mode, i.e. the amplitude mode of the superconducting order parameter, is observed after instantaneous injection of quasiparticles at the superconducting gap edge by an intense monocycle THz pulse. The ultrafast nonequilibrium dynamics of the order parameter under the strong AC driving field with the photon energy tuned below the superconducting gap is also investigated. A resonant nonlinear interaction between the Higgs mode and the electromagnetic field is revealed, as manifested by an efficient THz third-harmonic generation from the superconductor.

  17. A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

    Directory of Open Access Journals (Sweden)

    Kamil Moldosanov

    2016-07-01

    Full Text Available Background: The need for practical and adaptable terahertz sources is apparent in the areas of application such as early cancer diagnostics, nondestructive inspection of pharmaceutical tablets, visualization of concealed objects. We outline the operation principle and suggest the design of a simple appliance for generating terahertz radiation by a system of nanoobjects – gold nanobars (GNBs or nanorings (GNRs – irradiated by microwaves.Results: Our estimations confirm a feasibility of the idea that GNBs and GNRs irradiated by microwaves could become terahertz emitters with photon energies within the full width at half maximum of the longitudinal acoustic phononic DOS of gold (ca. 16–19 meV, i.e., 3.9–4.6 THz. A scheme of the terahertz radiation source is suggested based on the domestic microwave oven irradiating a substrate with multiple deposited GNBs or GNRs.Conclusion: The size of a nanoobject for optimal conversion is estimated to be approx. 3 nm (thickness by approx. 100 nm (length of GNB, or along the GNR. This detailed prediction is open to experimental verification. An impact is expected onto further studies of interplay between atomic vibrations and electromagnetic waves in nanoobjects.

  18. Strong-field terahertz-optical mixing in excitons

    CERN Document Server

    Su, M Y; Sherwin, M S; Huntington, A S; Coldren, L A

    2002-01-01

    Driving a double-quantum-well excitonic intersubband resonance with a terahertz (THz) electric field of frequency \\omega_{THz} generated terahertz optical sidebands \\omega=\\omega_{THz}+\\omega_{NIR} on a weak NIR probe. At high THz intensities, the intersubband dipole energy which coupled two excitons was comparable to the THz photon energy. In this strong-field regime the sideband intensity displayed a non-monotonic dependence on the THz field strength. The oscillating refractive index which gives rise to the sidebands may be understood by the formation of Floquet states, which oscillate with the same periodicity as the driving THz field.

  19. Dynamically Babinet-invertible metasurface: a capacitive-inductive reconfigurable filter for terahertz waves using vanadium-dioxide metal-insulator transition

    CERN Document Server

    Urade, Yoshiro; Okimura, Kunio; Nakanishi, Toshihiro; Miyamaru, Fumiaki; Takeda, Mitsuo W; Kitano, Masao

    2016-01-01

    This paper proposes a reconfigurable planar metamaterial that can be switched between capacitive and inductive responses using local changes in the electrical conductivity of its constituent material. The proposed device is based on Babinet's principle and exploits the singular electromagnetic responses of metallic checkerboard structures, which are dependent on the local electrical conductivity. Utilizing the heating-induced metal-insulator transition of vanadium dioxide ($\\mathrm{VO}_2$), the proposed metamaterial is designed to compensate for the effect of the substrate and is experimentally characterized in the terahertz regime. This reconfigurable metamaterial can be utilized as a switchable filter and as a switchable phase shifter for terahertz waves.

  20. Time evolution of photon propagation in scattering and absorbing media: the Dynamic Radiative Transfer System

    CERN Document Server

    Georgakopoulos, A; Georgiou, E

    2016-01-01

    A new dynamic system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on firsthand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), calculates accurately the time evolution of photon propagation in media of complex structure and shape. DRTS employs a dynamical system formality using a global sparse matrix which characterizes the physical, optical and geometrical properties of the material volume of interest. The new system state vector is generated by the above time-independent matrix, using simple matrix vector multiplication addition for each subsequent time step. DRTS simulation results are presented for 3D light propagation in different optical media, demonstrating greatly reduced computational cost and resource requirements compared to other methods. Flexibility of the method allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and ...

  1. Dynamical properties induced by state-dependent delays in photonic systems

    Science.gov (United States)

    Martínez-Llinàs, Jade; Porte, Xavier; Soriano, Miguel C.; Colet, Pere; Fischer, Ingo

    2015-06-01

    In many dynamical systems and complex networks time delays appear naturally in feedback loops or coupling connections of individual elements. Moreover, in a whole class of systems, these delay times can depend on the state of the system. Nevertheless, so far the understanding of the impact of such state-dependent delays remains poor with a particular lack of systematic experimental studies. Here we fill this gap by introducing a conceptually simple photonic system that exhibits dynamics of self-organised switching between two loops with two different delay times, depending on the state of the system. On the basis of experiments and modelling on semiconductor lasers with frequency-selective feedback mirrors, we characterize the switching between the states defined by the individual delays. Our approach opens new perspectives for the study of this class of dynamical systems and enables applications in which the self-organized switching can be exploited.

  2. Experimental Chiral Dynamics New Opportunities with Polarized Internal Targets and Almost-Real Photon Tagging

    CERN Document Server

    Bernstein, A M

    1998-01-01

    Experiments on pion (Goldstone Boson) photoproduction from the nucleon tests the ability to make QCD predictions at confinement scale energies. Experiments with both polarized beams and targets have the potential sensitivity to demonstrate the dynamic isospin breaking effects of the up and down quark mass difference, whereas experiments on Compton scattering from the nucleon will incisively probe its chiral structure by measuring all of the spin dependent amplitudes. These and other types of photo-induced measurements on nuclei could be possible at BLAST with the addition of an almost-real photon tagging system and a forward low energy recoil ion hodoscope.

  3. Dynamical heavy-quark recombination and the non-photonic single electron puzzle at RHIC

    CERN Document Server

    Ayala, Alejandro; Montano, Luis Manuel; Sanchez, G Toledo

    2009-01-01

    We show that the single, non-photonic electron nuclear modification factor $R_{AA}^e$ is affected by the thermal enhancement of the heavy-baryon to heavy-meson ratio in relativistic heavy-ion collisions with respect to proton-proton collisions. We make use of the dynamical quark recombination model to compute such ratio and show that this produces a sizable suppression factor for $R_{AA}^e$ at intermediate transverse momenta. We argue that such suppression factor needs to be considered, in addition to the energy loss contribution, in calculations of $R_{AA}^e$

  4. Ultrafast Dynamics in Low Temperature Saccharide Glasses: A Photon Echo Study

    Science.gov (United States)

    Nagasawa, Yutaka; Nakagawa, Yukako; Mori, Yoshio; Muromoto, Takayuki; Okada, Tadashi

    2004-04-01

    Saccharides are used as protectant by many organisms such as insects and amphibians. The glass transition of the saccharides is considered to be the key factor in the protection of the biological tissue against freezing and dehydration. The molecular dynamics of saccharide glasses were studied by photon echo spectroscopy and it revealed that electronic dephasing time is much longer in saccharide glasses compared to artificial polymer glass, polyvinylalcohol (PVA), at temperature of 10 K. Critically damped oscillation which can be assigned to the phonon mode of the saccharide glass was also observed.

  5. Terahertz reflection and emission associated with nonequilibrium surface plasmon polaritons in n-GaN

    Science.gov (United States)

    Melentyev, G. A.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Vorobjev, L. E.; Firsov, D. A.; Nykänen, H.; Riuttanen, L.; Svensk, O.; Suihkonen, S.

    2015-01-01

    Surface plasmon polaritons are investigated in heavily doped n-GaN epitaxial layers. The grating etched on the surface of the epitaxial layer is used to convert photons into the surface plasmon polaritons and vice versa. The spectral study of reflection demonstrates the possibility of nonequilibrium surface plasmon polaritons excitation due to terahertz radiation scattering on the grating. Terahertz electroluminescence is investigated under lateral electric field. The luminescence spectrum demonstrates a significant contribution of nonequilibrium surface plasmon polariton scattering to terahertz radiation emission.

  6. Metamaterials for terahertz polarimetric devices

    Energy Technology Data Exchange (ETDEWEB)

    O' hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory; Smirnova, Evgenya [Los Alamos National Laboratory; Azad, Abul [Los Alamos National Laboratory; Chen, Hou-tong [Los Alamos National Laboratory; Peralta, Xomalin G [SNL; Brener, Igal [SNL

    2008-01-01

    We present experimental and numerical investigations of planar terahertz metamaterial structures designed to interact with the state of polarization. The dependence of metamaterial resonances on polarization results in unique amplitude and phase characteristics of the terahertz transmission, providing the basis for polarimetric terahertz devices. We highlight some potential applications for polarimetric devices and present simulations of a terahertz quarter-wave plate and a polarizing terahertz beam splitter. Although this work was performed at tcrahertz frequencies, it may find applications in other frequency ranges as well.

  7. Theoretical Research of Terahertz Negative Dynamic Conductivity in Optically Pumped Graphene%光抽运石墨烯太赫兹负动态电导率的理论研究

    Institute of Scientific and Technical Information of China (English)

    张玉萍; 张晓; 刘陵玉; 张洪艳; 高营; 徐世林; 张会云

    2012-01-01

    石墨烯特殊的零带隙能带结构和载流子弛豫特性,在研究太赫兹辐射源相干放大领域引起广泛关注.考虑带内和带间跃迁对电导率的贡献,研究了光抽运单层和多层石墨烯中非平衡二维电子-空穴系统的动态电导率特性.结果表明,在足够强的光抽运下,石墨烯中的粒子数反转能够使得动态电导率的实部在太赫兹频段内出现负值,这使基于石墨烯的太赫兹放大或受激辐射源成为可能.同时,通过研究动量弛豫时间、温度、层数、光强对石墨烯的负动态电导率的影响表明,石墨烯多层结构的动态电导率最小值的绝对值更大,作为太赫兹激光器的激活介质更具优势.%Due to the gapless energy spectrum and carriers relaxation characteristics, graphene causes a widespread concern in amplification of terahertz coherent sources. We consider the contribution of both interband and intraband transitions to the conductivity, and study the dynamic conductivity characteristics of a nonequilibium two-dimensional electron-hole system in optically pumped single and multiple graphene layer (SGL and MGL) structures. The results demonstrate that the population inversion in graphene can lead to a negative dynamic conductivity in the terahertz range of frequencies at sufficiently strong pumping, and the phenomenon might be used in graphene-based terahertz coherent sources radiation and amplification. Meanwhile, by studying the dependences of the negative conductivity on momentum relaxation time, temperature, number of layers, and optical intensity, it is found that the minimum absolute value of the real part of conductivity in MGL structures is greater than that in SGL structures. Thus, the MGL structures have more advantages to be the active medium of terahertz laser.

  8. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images.

  9. Terahertz Response of Carbon Nanotubes and Graphene

    Science.gov (United States)

    Kawano, Yukio

    2015-12-01

    The terahertz (THz) research field is expected to serve as a new platform for studying low-energy excitation in solids and higher-order structures in large molecules, and for realizing applications in medicine, agriculture, security, and high-capacity communications. The THz frequency region, however, is located between the electronic and photonic bands, hampering the development of basic components like detectors and sources. This article presents an overview of basic background information about THz waves and THz detector applications and describes the THz response of carbon-based low-dimensional systems, such as single carbon nanotubes (CNT), CNT-array films, and graphene.

  10. Limit of Spectral Resolution in Terahertz Time-Domain Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Jingzhou Xu; Tao Yuan; Samuel Mickan; X.-C.Zhang

    2003-01-01

    The pulsed nature of terahertz time-domain spectroscopy (THz-TDS) sets a fundamental limit on its spectral resolution. The spectral resolution of THz-TDS can be improved by increasing the duration of the temporal measurement, but is limited by the dynamic range of the system in the time domain. This paper presents calculations and experimental results relating the temporal dynamic range of a THz-TDS system to its spectral resolution. We discuss three typical terahertz sources in terms of their dynamic range and hence achievable spectral resolution.

  11. Calculating dose distributions and wedge factors for photon treatment fields with dynamic wedges based on a convolution/superposition method.

    Science.gov (United States)

    Liu, H H; McCullough, E C; Mackie, T R

    1998-01-01

    A convolution/superposition based method was developed to calculate dose distributions and wedge factors in photon treatment fields generated by dynamic wedges. This algorithm used a dual source photon beam model that accounted for both primary photons from the target and secondary photons scattered from the machine head. The segmented treatment tables (STT) were used to calculate realistic photon fluence distributions in the wedged fields. The inclusion of the extra-focal photons resulted in more accurate dose calculation in high dose gradient regions, particularly in the beam penumbra. The wedge factors calculated using the convolution method were also compared to the measured data and showed good agreement within 0.5%. The wedge factor varied significantly with the field width along the moving jaw direction, but not along the static jaw or the depth direction. This variation was found to be determined by the ending position of the moving jaw, or the STT of the dynamic wedge. In conclusion, the convolution method proposed in this work can be used to accurately compute dose for a dynamic or an intensity modulated treatment based on the fluence modulation in the treatment field.

  12. Broadband terahertz spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Wenhui Fan

    2011-01-01

    1.Introduction Spanning the frequency range between the infrared (IR) radiation and microwaves,terahertz (THz) waves are,also known as T-rays,T-lux,or simply called THz,assigned to cover the electromagnetic spectrum typically from 100 GHz (1011 Hz) to 10 THz (1013 Hz),namely,from 3 mm to 30 μm in wavelength,although slightly different definitions have been quoted by different authors.For a very long time,THz region is an almost unexplored field due to its rather unique location in the electromagnetic spectrum.Well-known techniques in optical or microwave region can not be directly employed in the THz range because optical wavelengths are too short and microwave wavelengths are too long compared to THz wavelengths.%An overview of the major techniques to generate and detect THz radiation so far, especially the major approaches to generate and detect coherent ultra-short THz pulses using ultra-short pulsed laser, has been presented. And also, this paper, in particularly, focuses on broadband THz spectroscopy and addresses on a number of issues relevant to generation and detection of broadband pulsed THz radiation as well as broadband time-domain THz spectroscopy (THz-TDS) with the help of ultra-short pulsed laser. The time-domain waveforms of coherent ultra-short THz pulses from photoconductive antenna excited by femtosecond laser with different pulse durations and their corresponding Fourier-transformed spectra have been obtained via the numerical simulation of ultrafast dynamics between femtosecond laser pulse and photoconductive material. The origins of fringes modulated on the top of broadband amplitude spectrum, which is measured by electric-optic detector based on thin nonlinear crystal and extracted by fast Fourier transformation, have been analyzed and the major solutions to get rid of these fringes are discussed.

  13. Optical absorption in asymmetric double quantum wells driven by two intense terahertz fields

    Institute of Scientific and Technical Information of China (English)

    Wu Hong-Wei; Mi Xian-Wu

    2013-01-01

    Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.Wben the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.

  14. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    DEFF Research Database (Denmark)

    van Capel, P. J. S.; Turchinovich, Dmitry; Porte, Henrik

    2011-01-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic...... emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation....

  15. Terahertz antenna electronic chopper

    Energy Technology Data Exchange (ETDEWEB)

    Sterczewski, L. A., E-mail: lukasz.sterczewski@pwr.edu.pl; Grzelczak, M. P.; Plinski, E. F. [Department of Electronics, Wroclaw University of Technology, 27 Wybrzeze Wyspianskiego St., 50-370 Wroclaw (Poland)

    2016-01-15

    In this paper, we present an electronic circuit used to bias a photoconductive antenna that generates terahertz radiation. The working principles and the design process for the device are discussed in detail. The noise and shape of the wave measurements for a built device are considered. Furthermore, their impact on a terahertz pulse and its spectra is also examined. The proposed implementation is simple to build, robust and offers a real improvement over THz instrumentation due to the frequency tuning. Additionally, it provides for galvanic isolation and ESD protection.

  16. Asymmetric planar terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ramjan [Los Alamos National Laboratory; Al - Naib, Ibraheem A. I. [PHILIPPS UNIV; Koch, Martin [PHILIPPS UNIV; Zhang, Weili [OKLAHOMA STATE UNIV

    2010-01-01

    Using terahertz time-domain spectroscopy, we report an experimental observation of three distinct resonances in split ring resonators (SRRs) for both vertical and horizontal electric field polarizations at normal incidence. Breaking the symmetry in SRRs by gradually displacing the capacitive gap from the centre towards the comer of the ring allows for an 85% modulation of the fundamental inductive-capacitive (LC) resonance. Increasing asymmetry leads to the evolution of an otherwise inaccessible high quality factor electric quadrupole resonance that can be exploited for bio-sensing applications in the terahertz region.

  17. Slow aging dynamics and avalanches in a gold-cadmium alloy investigated by x-ray photon correlation spectroscopy.

    Science.gov (United States)

    Müller, L; Waldorf, M; Gutt, C; Grübel, G; Madsen, A; Finlayson, T R; Klemradt, U

    2011-09-01

    Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au50.5Cd49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.

  18. High Reliability Oscillators for Terahertz Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Terahertz sources based on lower frequency oscillators and amplifiers plus a chain of frequency multipliers are the workhorse technology for NASA's terahertz...

  19. Correlated terahertz acoustic and electromagnetic emission in dynamically screened InGaN/GaN quantum wells

    Science.gov (United States)

    van Capel, P. J. S.; Turchinovich, D.; Porte, H. P.; Lahmann, S.; Rossow, U.; Hangleiter, A.; Dijkhuis, J. I.

    2011-08-01

    We investigate acoustic and electromagnetic emission from optically excited strained piezoelectric In0.2Ga0.8N/GaN multiple quantum wells (MQWs), using optical pump-probe spectroscopy, time-resolved Brillouin scattering, and THz emission spectroscopy. A direct comparison of detected acoustic signals and THz electromagnetic radiation signals demonstrates that transient strain generation in InGaN/GaN MQWs is correlated with electromagnetic THz generation, and both types of emission find their origin in ultrafast dynamical screening of the built-in piezoelectric field in the MQWs. The measured spectral intensity of the detected Brillouin signal corresponds to a maximum strain amplitude of generated acoustic pulses of 2%. This value coincides with the static lattice-mismatch-induced strain in In0.2Ga0.8N/GaN, demonstrating the total release of static strain in MQWs via impulsive THz acoustic emission. This confirms the ultrafast dynamical screening mechanism in MQWs as a highly efficient method for impulsive strain generation.

  20. Effects of Atomic Coherence and Injected Classical Field on Chaotic Dynamics of Non-degenerate Cascade Two-Photon Lasers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the cascade two-photon laser dynamic equation derived with the technique of quantum Langevin operators with the considerations of coherently prepared three-level atoms and the classical field injected into the cavity, we numerically study the effects of atomic coherence and classical field on the chaotic dynamics of a two-photon laser. Lyapunov exponent and bifurcation diagram calculations show that the Lorenz chaos and hyperchaos can be induced or inhibited by the atomic coherence and the classical field via crisis or Hopf bifurcations.

  1. Terahertz generation from graphite

    NARCIS (Netherlands)

    Ramakrishnan, G.; Chakkittakandy, R.; Planken, P.C.M.

    2009-01-01

    Generation of subpicosecond terahertz pulses is observed when graphite surfaces are illuminated with femtosecond near-infrared laser pulses. The nonlinear optical generation of THz pulses from graphite is unexpected since, in principle, the material possesses a centre of inversion symmetry.

  2. Scattering of two photons on a quantum emitter in a one-dimensional waveguide: exact dynamics and induced correlations

    DEFF Research Database (Denmark)

    Nysteen, Anders; Kristensen, Philip Trøst; McCutcheon, Dara

    2015-01-01

    We develop a wavefunction approach to describe the scattering of two photons on a quantum emitter embedded in a one-dimensional waveguide. Our method allows us to calculate the exact dynamics of the complete system at all times, as well as the transmission properties of the emitter. We show...... that the nonlinearity of the emitter with respect to incoming photons depends strongly on the emitter excitation and the spectral shape of the incoming pulses, resulting in transmission of the photons which depends crucially on their separation and width. In addition, for counter-propagating pulses, we analyze...... the induced level of quantum correlations in the scattered state, and we show that the emitter behaves as a nonlinear beam-splitter when the spectral width of the photon pulses is similar to the emitter decay rate....

  3. Expectation-maximization of the potential of mean force and diffusion coefficient in Langevin dynamics from single molecule FRET data photon by photon.

    Science.gov (United States)

    Haas, Kevin R; Yang, Haw; Chu, Jhih-Wei

    2013-12-12

    The dynamics of a protein along a well-defined coordinate can be formally projected onto the form of an overdamped Lagevin equation. Here, we present a comprehensive statistical-learning framework for simultaneously quantifying the deterministic force (the potential of mean force, PMF) and the stochastic force (characterized by the diffusion coefficient, D) from single-molecule Förster-type resonance energy transfer (smFRET) experiments. The likelihood functional of the Langevin parameters, PMF and D, is expressed by a path integral of the latent smFRET distance that follows Langevin dynamics and realized by the donor and the acceptor photon emissions. The solution is made possible by an eigen decomposition of the time-symmetrized form of the corresponding Fokker-Planck equation coupled with photon statistics. To extract the Langevin parameters from photon arrival time data, we advance the expectation-maximization algorithm in statistical learning, originally developed for and mostly used in discrete-state systems, to a general form in the continuous space that allows for a variational calculus on the continuous PMF function. We also introduce the regularization of the solution space in this Bayesian inference based on a maximum trajectory-entropy principle. We use a highly nontrivial example with realistically simulated smFRET data to illustrate the application of this new method.

  4. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances.

    Science.gov (United States)

    Gunst, Jonas; Keitel, Christoph H; Pálffy, Adriana

    2016-04-27

    Photonic qubits lie at the heart of quantum information technology, often encoding information in their polarization state. So far, only low-frequency optical and infrared photons have been employed as flying qubits, as the resources that are at present easiest to control. With their essentially different way of interacting with matter, x-ray qubits would bear however relevant advantages: they are extremely robust, penetrate deep through materials, and can be focused down to few-nm waveguides, allowing unprecedented miniaturization. Also, x-rays are resonant to nuclear transitions, which are very well isolated from the environment and present long coherence times. Here, we show theoretically that x-ray polarization qubits can be dynamically controlled by nuclear Mössbauer resonances. The control knob is played by nuclear hyperfine magnetic fields, that allow via fast rotations precise processing of single x-ray quanta polarization. With such rotations, single-qubit and binary logical operations such as a destructive C-NOT gate can be implemented.

  5. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph......We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  6. Choreography of cell motility and interaction dynamics imaged by two-photon microscopy in lymphoid organs.

    Science.gov (United States)

    Cahalan, Michael D; Parker, Ian

    2008-01-01

    The immune system is the most diffuse cellular system in the body. Accordingly, long-range migration of cells and short-range communication by local chemical signaling and by cell-cell contacts are vital to the control of an immune response. Cellular homing and migration within lymphoid organs, antigen recognition, and cell signaling and activation are clearly vital during an immune response, but these events had not been directly observed in vivo until recently. Introduced to the field of immunology in 2002, two-photon microscopy is the method of choice for visualizing living cells deep within native tissue environments, and it is now revealing an elegant cellular choreography that underlies the adaptive immune response to antigen challenge. We review cellular dynamics and molecular factors that contribute to basal motility of lymphocytes in the lymph node and cellular interactions leading to antigen capture and recognition, T cell activation, B cell activation, cytolytic effector function, and antibody production.

  7. Slow dynamics in an azopolymer molecular layer studied by x-ray photon correlation spectroscopy

    Science.gov (United States)

    Orsi, Davide; Cristofolini, Luigi; Fontana, Marco P.; Pontecorvo, Emanuele; Caronna, Chiara; Fluerasu, Andrei; Zontone, Federico; Madsen, Anders

    2010-09-01

    We report the results of x-ray photon correlation spectroscopy (XPCS) experiments on multilayers of a photosensitive azo-polymer which can be softened by photoisomerization. Time correlation functions have been measured at different temperatures and momentum transfers (q) and under different illumination conditions (dark, UV or visible). The correlation functions are well described by the Kohlrausch-Williams-Watts (KWW) form with relaxation times that are proportional to q-1 . The characteristic relaxation times follow the same Vogel-Fulcher-Tammann law describing the bulk viscosity of this polymer. The out-of-equilibrium relaxation dynamics following a UV photoperturbation are accelerated, which is in agreement with a fluidification effect previously measured by rheology. The transient dynamics are characterized by two times correlation function, and dynamical heterogeneity is evidenced by calculating the variance χ of the degree of correlation as a function of ageing time. A clear peak in χ appears at a well defined time τC which scales with q-1 and with the ageing time, in a similar fashion as previously reported in colloidal suspensions [O. Dauchot , Phys. Rev. Lett. 95, 265701 (2005)10.1103/PhysRevLett.103.265701]. From an accurate analysis of the correlation functions we could demonstrate a temperature and light dependent cross-over from compressed KWW to simple exponential behavior.

  8. Microstructure Functional Devices-Effectively Manipulate Terahertz Waves

    Institute of Scientific and Technical Information of China (English)

    Fei Fan; Ji-Ning Li; Sai Chen; Sheng-Jiang Chang

    2014-01-01

    Terahertz (THz) technology promises important applications including imaging, spectroscopy, and communications. However, one of limitations at present for advancing THz applications is the lack of efficient devices to manipulate THz waves. Here, our recent important progresses in THz functional devices based on artificial microstructures, such as photonic crystal, metamaterial, and plasmonic structures, have been reviewed in this paper, involving the THz modulator, isolator, and sensor. These THz microstructure functional devices exhibit great promising potential in THz application systems.

  9. Low-temperature dynamics in an ethanol glass studied by the long-lived stimulated photon echo

    NARCIS (Netherlands)

    Meijers, Hans C.; Wiersma, Douwe A.

    The long-lived stimulated photon echo has been used to measure the dynamics of a deuterated ethanol glass at 1.5 K. The time dependence of the effective dephasing time constant can be described by using the standard two-level system model and a I/R distribution function for the relaxation rates of

  10. Low-temperature dynamics in an ethanol glass studied by the long-lived stimulated photon echo

    NARCIS (Netherlands)

    Meijers, Hans C.; Wiersma, Douwe A.

    1992-01-01

    The long-lived stimulated photon echo has been used to measure the dynamics of a deuterated ethanol glass at 1.5 K. The time dependence of the effective dephasing time constant can be described by using the standard two-level system model and a I/R distribution function for the relaxation rates of t

  11. Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO

    Science.gov (United States)

    Ovchinnikov, A. V.; Chefonov, O. V.; Agranat, M. B.; Grishunin, K. A.; Il'in, N. A.; Pisarev, R. V.; Kimel, A. V.; Kalashnikova, A. M.

    2016-10-01

    Optical second harmonic generation at the photon energy of 2ℏω = 2eV in the model centrosymmetric antiferromagnet NiO irradiated with picosecond terahertz pulses (0.4-2.5 THz) at room temperature is detected. The analysis of experimental results shows that induced optical second harmonic generation at the moment of the impact of a terahertz pulse arises through the electric dipole mechanism of the interaction of the electric field of a pump pulse with the electron subsystem of NiO. Temporal changes in optical second harmonic generation during 7 ps after the action of the pulse are also of an electric dipole origin and are determined by the effects of propagation of the terahertz pulse in a NiO platelet. Coherent oscillations of spins at the antiferromagnetic resonance frequency induced by the magnetic component of the terahertz pulse induce a relatively weak modulation of magnetic dipole optical second harmonic generation.

  12. Sub-cycle measurement of intensity correlations in the Terahertz range

    CERN Document Server

    Benea-Chelmus, Ileana-Cristina; Beck, Mattias; Faist, Jerome

    2015-01-01

    The Terahertz frequency range bears intriguing opportunities, beyond very advanced applications in spectroscopy and matter control. Peculiar quantum phenomena are predicted to lead to light emission by non-trivial mechanisms. Typically, such emission mechanisms are unraveled by temporal correlation measurements of photon arrival times, as demonstrated in their pioneering work by Hanbury Brown and Twiss. So far, the Terahertz range misses an experimental implementation of such technique with very good temporal properties and high sensitivity. In this paper, we propose a room-temperature scheme to measure photon correlations at THz frequencies based on electro-optic sampling. The temporal resolution of 146 fs is faster than one cycle of oscillation and the sensitivity is so far limited to ~1500 photons. With this technique, we measure the photon statistics of a THz quantum cascade laser. The proposed measurement scheme allows, in principle, the measurement of ultrahigh bandwidth photons and paves the way toward...

  13. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris;

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  14. Nonlinear optics and photonics

    CERN Document Server

    He, Guang S

    2015-01-01

    This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...

  15. Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity

    Energy Technology Data Exchange (ETDEWEB)

    Jarlov, C., E-mail: clement.jarlov@epfl.ch; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E. [Laboratory of Physics of Nanostructures, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-11-09

    Exciton and cavity mode (CM) dynamics in site-controlled pyramidal quantum dots (QDs), integrated with linear photonic crystal membrane cavities, are investigated for a range of temperatures and photo-excitation power levels. The absence of spurious multi-excitonic effects, normally observed in similar structures based on self-assembled QDs, permits the observation of effects intrinsic to two-level systems embedded in a solid state matrix and interacting with optical cavity modes. The coupled exciton and CM dynamics follow the same trend, indicating that the CM is fed only by the exciton transition. The Purcell reduction of the QD and CM decay times is reproduced well by a theoretical model that includes exciton linewidth broadening and temperature dependent non-radiative processes, from which we extract a Purcell factor of 17 ± 5. For excitation powers above QD saturation, we show the influence of quantum wire barrier states at short delay time, and demonstrate the absence of multiexcitonic background emission.

  16. Configurable Electronics with Low Noise and 14-bit Dynamic Range for Photodiode-based Photon Detectors

    CERN Document Server

    Müller, H; Yin, Z; Zhou, D; Cao, X; Li, Q; Liu, Y; Zou, F; Skaali, B; Awes, T C

    2006-01-01

    We describe the principles and measured performance characteristics of custom configurable 32-channel shaper/digitizer Front End Electronics (FEE) cards with 14-bit dynamic range for use with gain-adjustable photon detectors. The electronics has been designed for the PHOS calorimeter of ALICE with avalanche photodiode (APD) readout operated at -25 C ambient temperature and a signal shaping time of $1 {\\mu}s$. The electronics has also been adopted by the EMCal detector of ALICE with the same APD readout, but operated at an ambient temperature of +20 C and with a shaping time of 100ns. The CR-RC2 signal shapers on the FEE cards are implemented in discrete logic on a 10-layer board with two shaper sections for each input channel. The two shaper sections with gain ratio of 16:1 are digitized by 10-bit ADCs and provide an effective dynamic range of 14 bits. Gain adjustment for each individual APD is available through 32 bias voltage control registers of 10-bit range. The fixed gains and shaping times of the pole-z...

  17. Observation of genuine wave vector (k or β) gap in a dynamic transmission line and temporal photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Ayona, J. R.; Halevi, P., E-mail: halevi@inaoep.mx [Electronics Department, Instituto Nacional de Astrofísica, Óptica y Electrónica, Tonantzintla, Puebla 72840 (Mexico)

    2015-08-17

    By definition, a temporal photonic crystal (TPC) has a permittivity ε(t) that varies periodically with time. We prove that, in the long wavelength limit, a TPC is accurately mimicked by a dynamic transmission line (DTL) having a capacitance (inductance) per unit length equal to ε(t) (μ). Employing a DTL in the microwave region, we measured the photonic band structure, which results to display a genuine wave vector (k or β) gap, in very good agreement with our theoretical model and the equivalent TPC.

  18. Observation of genuine wave vector (k or β) gap in a dynamic transmission line and temporal photonic crystals

    Science.gov (United States)

    Reyes-Ayona, J. R.; Halevi, P.

    2015-08-01

    By definition, a temporal photonic crystal (TPC) has a permittivity ɛ(t) that varies periodically with time. We prove that, in the long wavelength limit, a TPC is accurately mimicked by a dynamic transmission line (DTL) having a capacitance (inductance) per unit length equal to ɛ(t) (μ). Employing a DTL in the microwave region, we measured the photonic band structure, which results to display a genuine wave vector (k or β) gap, in very good agreement with our theoretical model and the equivalent TPC.

  19. Dephasing of Single-Photon Orbital Angular Momentum Qudit States in Fiber: Limits to Correction via Dynamical Decoupling

    Science.gov (United States)

    Gupta, Manish K.; Dowling, Jonathan P.

    2016-06-01

    We analytically derive a decoherence model for orbital angular momentum states of a photon in a multimode optical fiber and show that the rate of decoherence scales approximately exponentially with l2, where l is the azimuthal mode order. We also show numerically that for large values of l the orbital angular momentum photon state completely dephases. However, for lower values of l the decoherence can be minimized by using dynamical decoupling to allow for qudit high-bandwidth quantum communication and similar applications.

  20. Ultrafast X-ray diffraction probe of terahertz field-driven soft mode dynamics in SrTiO 3

    Energy Technology Data Exchange (ETDEWEB)

    Kozina, M.; Driel, T.van; Chollet, M.; Sato, T.; Glownia, J.M.; Wandel, S.; /SLAC; Radovic, M.; /PSI, SLS /PSI, Villigen; Staub, U.; /PSI, Villigen; Hoffmann, M.C.; /SLAC

    2017-09-01

    We use ultrafast X-ray pulses to characterize the lattice response of SrTiO3 when driven by strong terahertz fields. We observe transient changes in the diffraction intensity with a delayed onset with respect to the driving field. Fourier analysis reveals two frequency components corresponding to the two lowest energy zone-center optical modes in SrTiO3. The lower frequency mode exhibits clear softening as the temperature is decreased while the higher frequency mode shows slight temperature dependence.

  1. Terahertz Diode Development

    Science.gov (United States)

    2009-03-23

    Gunn Diode , Negative Differential Resistance, Ballistic Transport, GaN, THz, Co-planar Resonator 16. SECURITY CLASSIFICATION OF: REPORT U b...Report DATES COVERED (From - Jo) 1 January 2004- 31 December 2008 4. TITLE AND SUBTITLE Terahertz Diode Development 5a. CONTRACT NUMBER N00014...current-voltage oscillations at the terminals of the diode at a frequency which is, to first order, determined by the average transit time of the EAL

  2. Terahertz (THZ) Imaging

    Science.gov (United States)

    2006-03-01

    characteristics as a result of various types of tooth decay are reported showing the potential of this technique for dental diagnosis. 20. Herrmann...Identification of tooth decay using terahertz imaging and spectroscopy” Infrared and Millimeter Waves, 2002. Conference Digest. Twenty Seventh...applications such as detection of skin, tooth and breast cancer. The design and working of a THz imaging system capable of generating a usable

  3. Intense terahertz excitation of semiconductors

    CERN Document Server

    Ganichev, S D

    2006-01-01

    This work presents the first comprehensive treatment of high-power terahertz applications to semiconductors and low-dimensional semiconductor structures. Terahertz properties of semiconductors are in the centre of scientific activities because of the need of high-speed electronics.

  4. Terahertz plasmonic composites.

    Science.gov (United States)

    Nemat-Nasser, Syrus C; Amirkhizi, Alireza V; Padilla, Willie J; Basov, Dimitri N; Nemat-Nasser, Sia; Bruzewicz, Derek; Whitesides, George

    2007-03-01

    The dielectric response of a polymer matrix composite can be substantially modified and tuned within a broad frequency band by integrating within the material an artificial plasmon medium composed of periodically distributed, very thin, electrically conducting wires. In the microwave regime, such plasmon/polymer composites have been studied analytically, computationally, and experimentally. This work reports the design, fabrication, and characterization of similar composites for operation at terahertz frequencies. Such composites require significant reduction in the thickness and spacing of the wires. We used numerical modeling to design artificial effective plasmonic media with turn-on frequencies in the terahertz range. Prototype samples were produced by lithographically embedding very thin gold strips into a PDMS [poly(dimethylsiloxane)] matrix. These samples were characterized with a Fourier-transform infrared interferometer using the frequency-dependent transmission and Kramers-Kronig relations to determine the electromagnetic properties. We report the characterization results for a sample, demonstrating excellent agreement between theory, computer design, and experiment. To our knowledge this is the first demonstration of the possibility of creating composites with tuned dielectric response at terahertz frequencies.

  5. Terahertz Light Source and User Area at FACET

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z.; Li, S.Z.; Litos, M.; Fisher, A.D.; Hogan, M.J.; /SLAC

    2011-11-08

    FACET at SLAC provides high charge, high peak current, low emittance electron beam that is bunched at THz wavelength scale during its normal operation. A THz light source based coherent transition radiation (CTR) from this beam would potentially be the brightest short-pulse THz source ever constructed. Efforts have been put into building this photon source together with a user area, to provide a platform to utilize this unique THz radiation for novel nonlinear and ultrafast phenomena researches and experiments. Being a long-time underutilized portion of the electromagnetic spectrum, terahertz (100 GHz {approx} 10 THz) spectral range is experiencing a renaissance in recent years, with broad interests from chemical and biological imaging, material science, telecommunication, semiconductor and superconductor research, etc. Nevertheless, the paucity of THz sources especially strong THz radiation hinders both its commercial applications and nonlinear processes research. FACET - Facilities for Accelerator science and Experimental Test beams at SLAC - provides 23 GeV electron beam with peak currents of {approx} 20 kA that can be focused down to 100 {mu}m{sup 2} transversely. Such an intense electron beam, when compressed to sub-picosecond longitudinal bunch length, coherently radiates high intensity EM fields well within THz frequency range that are orders of magnitude stronger than those available from laboratory tabletop THz sources, which will enable a wide variety of THz related research opportunities. Together with a description of the FACET beamline and electron beam parameters, this paper will report FACET THz radiation generation via coherent transition radiation and calculated photon yield and power spectrum. A user table is being set up along the THz radiation extraction sites, and equipped with various signal diagnostics including THz power detector, Michelson interferometer, sample stages, and sets of motorized optical components. This setup will also be

  6. Time-resolved terahertz spectroscopy of black silicon

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Jepsen, Peter Uhd;

    2010-01-01

    The ultrafast photoconductivity dynamics of black silicon is measured by time-resolved terahertz spectroscopy. Black silicon is produced by laser annealing of an a-Si:H film. We show that the decay time of the photoconductivity depends on the annealing method and fluence used in the production...

  7. Terahertz Quantum-Cascade Transmission-Line Metamaterials

    Science.gov (United States)

    Tavallaee, Amir Ali

    Terahertz quantum-cascade (QC) lasers operating at 0.6 - 5 THz (λ ˜ 60 - 500 µm) are poised to become the dominant solid-state sources of continuous-wave (cw) far-infrared radiation enabling applications in terahertz spectroscopy, imaging, and sensing. QC-lasers are the longest wavelength semiconductor laser sources in which terahertz gain is obtained from electronic intersubband radiative transitions in GaAs/AlGaAs heterostructure quantum wells. Since their invention in 2001, rapid development has enabled demonstration of cw powers greater than 100 mW. However, challenges still remain in the areas of operating temperature, laser efficiency and power, and beam quality to name a few. The highest-temperature operation of terahertz quantum-cascade lasers (200 K pulsed, 117 K cw) depends on the use of a low-loss "metal-metal" waveguide where the active gain material is sandwiched between two metal cladding layers; a technique similar, in concept, to microstrip transmission line technology at microwave frequencies. Due to the subwavelength transverse dimensions of the metal-metal waveguide, however, obtaining a directive beam pattern and efficient out-coupling of THz power is non-trivial. This thesis reports the demonstration of a one-dimensional waveguide for terahertz quantum-cascade lasers that acts as a leaky-wave antenna and tailors laser radiation in one dimension to a directional beam. This scheme adapts microwave transmission-line metamaterial concepts to a planar structure realized in terahertz metal-metal waveguide technology and is fundamentally different from distributed feedback/photonic crystal structures that work based on Bragg scattering of propagating modes. The leaky-wave metamaterial antenna operates based on a propagating mode with an effective phase index smaller than unity such that it radiates in the surface direction via a leaky-wave mechanism. Surface emission (˜ 40° from broadside) with a single directive beam (FWHM ˜ 15°) at 2.74 THz

  8. Photo-excited terahertz switch based on composite metamaterial structure

    Science.gov (United States)

    Wang, Guocui; Zhang, Jianna; Zhang, Bo; He, Ting; He, Yanan; Shen, Jingling

    2016-09-01

    A photo-excited terahertz switch based on a composite metamaterial structure was designed by integration of photoconductive silicon into the gaps of split-ring resonators. The conductivity of the silicon that was used to fill the gaps in the split-ring resonators was tuned dynamically as a function of the incident pump power using laser excitation, leading to a change in the composite metamaterial structure's properties. We studied the transmission characteristics of the composite metamaterial structure for various silicon conductivities, and the results indicated that this type of composite metamaterial structure could be used as a resonance frequency tunable terahertz metamaterial switch. We also designed other structures by filling different gaps with silicon, and proved that these structures could be used as terahertz metamaterial switches can change the working mode from a single frequency to multiple frequencies.

  9. Terahertz time domain interferometry of a SIS tunnel junction and a quantum point contact

    Energy Technology Data Exchange (ETDEWEB)

    Karadi, Chandu [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1995-09-01

    The author has applied the Terahertz Time Domain Interferometric (THz-TDI) technique to probe the ultrafast dynamic response of a Superconducting-Insulating-Superconducting (SIS) tunnel junction and a Quantum Point Contact (QPC). The THz-TDI technique involves monitoring changes in the dc current induced by interfering two picosecond electrical pulses on the junction as a function of time delay between them. Measurements of the response of the Nb/AlOxNb SIS tunnel junction from 75--200 GHz are in full agreement with the linear theory for photon-assisted tunneling. Likewise, measurements of the induced current in a QPC as a function of source-drain voltage, gate voltage, frequency, and magnetic field also show strong evidence for photon-assisted transport. These experiments together demonstrate the general applicability of the THz-TDI technique to the characterization of the dynamic response of any micron or nanometer scale device that exhibits a non-linear I-V characteristic.

  10. A feasibility study of Dynamic Phantom scanner for quality assurance of photon beam profiles at various gantry angles.

    Science.gov (United States)

    Zhang, Yunkai; Hsi, Wen C; Chu, James C H; Bernard, Damian B; Abrams, Ross A

    2005-01-01

    The effect of gantry rotation on beam profiles of photon and electron beams is an important issue in quality assurance for radiotherapy. To address variations in the profiles of photon and electron beams at different gantry angles, a Dynamic Phantom scanner composed of a 20 x 12 x 6 cm3 scanning Lucite block was designed as a cross-beam-profile scanner. To our knowledge, differences between scanned profiles acquired at different gantry angles with a small size Lucite block and those acquired a full-size (60 x 60 x 50 cm3) water phantom have not been previously investigated. We therefore performed a feasibility study for a first prototype Dynamic Phantom scanner without a gantry attachment mount. Radiation beams from a Varian LINAC 21EX and 2100C were used. Photon beams (6 MV and 18 MV) were shaped by either collimator jaws or a Varian 120 Multileaf (MLC) collimator, and electron beams (6 MeV, 12 MeV, and 20 MeV) were shaped by a treatment cone. To investigate the effect on profiles by using a Lucite block, a quantitative comparison of scanned profiles with the Dynamic Phantom and a full-size water phantom was first performed at a 0 degrees gantry angle for both photon and electron beams. For photon beam profiles defined by jaws at 1.0 cm and 5.0 cm depths of Lucite (i.e., at 1.1 cm and 5.7 cm depth of water), a good agreement (less than 1% variation) inside the field edge was observed between profiles scanned with the Dynamic Phantom and with a water phantom. The use of Lucite in the Dynamic Phantom resulted in reduced penumbra width (about 0.5 mm out of 5 mm to 8mm) and reduced (1% to 2%) scatter dose beyond the field edges for both 6 MV and 18 MV beams, compared with the water phantom scanner. For profiles of the MLC-shaped 6 MV photon beam, a similar agreement was observed. For profiles of electron beams scanned at 2.9 cm depth of Lucite (i.e., at 3.3 cm depth of water), larger disagreements in profiles (3% to 4%) and penumbra width (3 mm to 4 mm out of 12 mm

  11. Decay dynamics of radiatively coupled quantum dots in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mørk, Jesper; Lodahl, Peter

    2011-01-01

    We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range of probl......We theoretically investigate the influence of radiative coupling on light emission in a photonic crystal slab structure. The calculation method is based on a formalism that combines the photon Green's tensor with a self-consistent Dyson equation approach and is applicable to a wide range...

  12. A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G. K. M.;

    2016-01-01

    We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numerical...

  13. Vertically illuminated TW-UTC photodiodes for terahertz generation

    Science.gov (United States)

    Barrientos Z., Claudio M.; Calle G., Victor H.; Alvarez, Jaime A.; Mena, F. Patricio; Vukusic, Josip; Stake, Jan; Michael, Ernest A.

    2012-09-01

    More efficient and powerful continuous-wave photonic mixers as terahertz sources are motivated by the need of more versatile local oscillators for submillimeter/terahertz receiver systems. Uni-Travelling Carrier (UTC) photodiodes are very prospective candidates for reaching this objective, but so far only have been reported as lumped-elements or as edge-illuminated optical-waveguide travelling-wave (TW) devices. To overcome the associated power limitations of those implementations, we are developing a novel implementation of the UTC photodiodes which combines a travelingwave photomixer with vertical velocity-matched illumination in a distributed structure. In this implementation called velocity-matched travelling-wave uni-travelling carrier photodiode, it is possible to obtain in-situ velocity matching of the beat-fringes of the two angled laser beams with the submm/THz-wave on the stripline. In this way, minimum frequency roll-off is achieved by tuning the angle between the two laser beams. A first design of these TW-UTC PDs from our Terahertz Photonics Laboratory at University of Chile has been micro-fabricated at the MC2 cleanroom facility at Chalmers Technical University.

  14. WGM-Based Photonic Local Oscillators and Modulators

    Science.gov (United States)

    Matsko, Andrey; Maleki, Lute; Iltchenko, Vladimir; Savchenkov, Anatoliy

    2007-01-01

    Photonic local oscillators and modulators that include whispering-gallery mode (WGM) optical resonators have been proposed as power-efficient devices for generating and detecting radiation at frequencies of the order of a terahertz. These devices are intended especially to satisfy anticipated needs for receivers capable of detecting lowpower, narrow-band terahertz signals to be used for sensing substances of interest in scientific and military applications. At present, available terahertz-signal detectors are power-inefficient and do not afford the spectral and amplitude resolution needed for detecting such signals. The proposed devices would not be designed according to the conventional approach of direct detection of terahertz radiation. Instead, terahertz radiation would first be up-converted into the optical domain, wherein signals could be processed efficiently by photonic means and detected by optical photodetectors, which are more efficient than are photodetectors used in conventional direct detection of terahertz radiation. The photonic devices used to effect the up-conversion would include a tunable optical local oscillator and a novel electro-optical modulator. A local oscillator according to the proposal would be a WGM-based modelocked laser operating at a desired pulserepetition rate of the order of a terahertz. The oscillator would include a terahertz optical filter based on a WGM microresonator, a fiber-optic delay line, an optical amplifier (which could be either a semiconductor optical amplifier or an erbium-doped optical fiberamplifier), and a WGM Ka-band modulator. The terahertz repetition rate would be obtained through harmonic mode locking: for example, by modulating the light at a frequency of 33 GHz and locking each 33d optical mode, one would create a 1.089-THz pulse train. The high resonance quality factors (Q values) of WGM optical resonators should make it possible to decrease signal-generation threshold power levels significantly below

  15. Nonlinear Dynamics of Photonics for Optical Signal Processing - Optical Frequency Conversion and Optical DSB-to-SSB Conversion

    Science.gov (United States)

    2015-09-17

    processing - optical frequency conversion and optical DSB -to-SSB conversion 5a. CONTRACT NUMBER FA2386-14-1-0006 5b. GRANT NUMBER Grant 134113...nonlinear dynamics of semiconductor lasers for certain optical signal processing functionalities, including optical DSB -to-SSB conversion, photonic...conversion and optical DSB -to-SSB conversion Performance Period May 30, 2014 ~ May 29, 2015 Principal Investigator Name: Sheng-Kwang Hwang Position

  16. Superconductor terahertz metamaterial

    CERN Document Server

    Gu, Jianqiang; Tian, Zhen; Cao, Wei; Xing, Qirong; Han, Jiaguang; Zhang, Weili

    2010-01-01

    We characterize the behaviour of split ring resonators made up of high-transition temperature YBCO superconductor using terahertz time domain spectroscopy. The superconductor metamaterial shows sharp change in the transmission spectrum at the fundamental inductive-capacitive resonance and the dipole resonance as the temperature dips below the transition temperature. Our results reveal that the high performance of such a metamaterial is limited by material imperfections and defects such as cracks, voids and secondary phases which play dominant role in partially impeding the flow of current causing dissipation of energy and electrical resistance to appear in the superconductor film.

  17. Active terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory

    2009-01-01

    In this paper we present an overview of research in our group in terahertz (THz) metamaterials and their applications. We have developed a series of planar metamaterials operating at THz frequencies, all of which exhibit a strong resonant response. By incorporating natural materials, e.g. semiconductors, as the substrates or as critical regions of metamaterial elements, we are able to effectively control the metamaterial resonance by the application of external stimuli, e.g., photoexcitation and electrical bias. Such actively controllable metamaterials provide novel functionalities for solid-state device applications with unprecedented performance, such as THz spectroscopy, imaging, and many others.

  18. Dynamic characterization of hydrophobic and hydrophilic solutes in oleic-acid enhanced transdermal delivery using two-photon fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Tsung-Hua [Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City, Taiwan (China); Dong, Chen-Yuan, E-mail: cydong@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Center for Quantum Science and Engineering, National Taiwan University, Taipei, Taiwan (China); Center for Optoelectronic Biomedicine, National Taiwan University, Taipei, Taiwan (China)

    2014-10-20

    In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeutic purposes.

  19. Nonlinear TeraHertz Coherent Excitation of Vibrational Modes of Liquids

    CERN Document Server

    Allodi, Marco A; Blake, Geoffrey A

    2015-01-01

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A TeraHertz-TeraHertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond TeraHertz pulse, that are then measured in a TeraHertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader TeraHertz frequency coverage and an increased sensitivity relative to previously reported TeraHertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm$^{-1}$), and in carbon tetrachloride at 6.50 THz (217 cm$^{-1}$), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in TeraHertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at TeraHertz frequencies.

  20. Terahertz pulsed imaging in vivo

    Science.gov (United States)

    Pickwell-MacPherson, E.

    2011-03-01

    Terahertz (1012 Hz) pulsed imaging is a totally non-destructive and non-ionising imaging modality and thus potential applications in medicine are being investigated. In this paper we present results using our hand-held terahertz probe that has been designed for in vivo use. In particular, we use the terahertz probe to perform reflection geometry in vivo measurements of human skin. The hand-held terahertz probe gives more flexibility than a typical flat-bed imaging system, but it also results in noisier data and requires existing processing methods to be improved. We describe the requirements and limitations of system geometry, data acquisition rate, image resolution and penetration depth and explain how various factors are dependent on each other. We show how some of the physical limitations can be overcome using novel data processing methods.

  1. Reflectarray antennas for terahertz communications

    CERN Document Server

    Niu, Tiaoming; Ung, Benjamin S -Y; Menekse, Hakan; Bhaskaran, Madhu; Sriram, Sharath; Fumeaux, Christophe

    2012-01-01

    Reflectarrays composed of resonant microstrip gold patches on a dielectric substrate are demonstrated for operation at terahertz frequencies. Based on the relation between the patch size and the reflection phase, a progressive phase distribution is implemented on the patch array to create a reflector able to deflect an incident beam towards a predefined angle off the specular direction. In order to confirm the validity of the design, a set of reflectarrays each with periodically distributed 360*360 patch elements are fabricated and measured. The experimental results obtained through terahertz time-domain spectroscopy (THz-TDS) show that up to nearly 80% of the incident amplitude is deflected into the desired direction at an operation frequency close to 1 THz. The radiation patterns of the reflectarray in TM and TE polarizations are also obtained at different frequencies. This work presents an attractive concept for developing components able to efficiently manipulate terahertz radiation for emerging terahertz...

  2. Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors

    Science.gov (United States)

    Hu, C. Y.

    2016-12-01

    The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect: giant circular birefringence induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet: a mixture of all-optical Internet with quantum Internet.

  3. Ultrafast terahertz emission properties in GaAs semiconductor

    Science.gov (United States)

    Wang, Aihua; Shi, Yulei; Zhou, Qingli

    2015-08-01

    Ultrafast carrier dynamics in Schottky barriers is an extremely active area of research in recent years. The observation of the generation of terahertz pulses from metal/semiconductor interfaces provides a technique to characterize electronic properties of these materials. However, a detailed analysis of these phenomena has not been performed satisfactorily. In this work, the measurements of optically generated terahertz emission from Au/GaAs interfaces are investigated in detail. We observe that, under high laser power excitation, terahertz signals from bare GaAs wafers and Au/GaAs samples exhibit an opposite polarity. The polarity-flip behaviors in the terahertz beams are also observed in the temperature-dependent measurements and the femtosecond pump-generation studies of the Au/GaAs interfaces. These effects can be fully explained in terms of the dynamics of carrier transfer in the Au/GaAs Schottky barriers, which involves the internal photoelectric emission and the electron tunneling effect, and picosecond time constants are found for these processes.

  4. Dynamic control of higher-order modes in hollow-core photonic crystal fibers.

    Science.gov (United States)

    Euser, T G; Whyte, G; Scharrer, M; Chen, J S Y; Abdolvand, A; Nold, J; Kaminski, C F; Russell, P St J

    2008-10-27

    We present a versatile method for selective mode coupling into higher-order modes of photonic crystal fibers, using holograms electronically generated by a spatial light modulator. The method enables non-mechanical and completely repeatable changes in the coupling conditions. We have excited higher order modes up to LP(31) in hollow-core photonic crystal fibers. The reproducibility of the coupling allows direct comparison of the losses of different guided modes in both hollow-core bandgap and kagome-lattice photonic crystal fibers. Our results are also relevant to applications in which the intensity distribution of the light inside the fiber is important, such as particle- or atom-guidance.

  5. A Investigation of Dynamic Laser Speckle Phenomena Using Photon Limited Detection

    Science.gov (United States)

    Newman, Jeffrey Daniel

    The statistical properties of dynamic laser speckle patterns are investigated in theory and in experiment using photon limited pulse counting techniques. The primary analytic tool for these investigations is the spatio-temporal correlation of intensity fluctuations which is shown to yield detailed structural information about the source intensity distribution behind the scatterer and the scattering plane motion. It is demonstrated that the intensity correlation structure of fluctuating optical fields can be measured simultaneously in the spatial and temporal domains using a two dimensional imaging photodetector (IPD) and time marking electronics. Preliminary measurements with this device show that the method is well suited for use in a variety of practical measurement schemes including speckle velocimetry and stellar speckle interferometry. The present configuration relies on a software based delayed coincidence counter which is approximately 200 time too slow to keep up with the data in real time. The total data base is limited to 5 x 10('4) detected photoevents from which the correlation function is estimated at over 2 x 10('3) space -time lags with a signal to noise ratio of 15:1. The practical limitations associated with IPD correlation measurements are discussed in detail. The properties of dynamic speckle from pseudo -random scattering surfaces, which contains both random and non-random phase structures are investigated. It is shown in the special case of a phase grating placed behind a diffuser that the grating structure may be uniquely recovered from both spatial and temporal intensity correlation measurements of the scattered light. In particular, the temporal autocorrelation measurements are shown to reveal the grating structure under conditions of arbitrarily diffuse scattering, e.g. when there is no visual indication of the grating's presence in the diffraction pattern. The possible use of these results for a commercial optical information coding scheme

  6. Terahertz polariton propagation in patterned materials.

    Science.gov (United States)

    Stoyanov, Nikolay S; Ward, David W; Feurer, Thomas; Nelson, Keith A

    2002-10-01

    Generation and control of pulsed terahertz-frequency radiation have received extensive attention, with applications in terahertz spectroscopy, imaging and ultrahigh-bandwidth electro-optic signal processing. Terahertz 'polaritonics', in which terahertz lattice waves called phonon-polaritons are generated, manipulated and visualized with femtosecond optical pulses, offers prospects for an integrated solid-state platform for terahertz signal generation and guidance. Here, we extend terahertz polaritonics methods to patterned structures. We demonstrate femtosecond laser fabrication of polaritonic waveguide structures in lithium tantalate and lithium niobate crystals, and illustrate polariton focusing into, and propagation within, the fabricated waveguide structures. We also demonstrate a 90 degrees turn within a structure consisting of two waveguides and a reflecting face, as well as a structure consisting of splitting and recombining elements that can be used as a terahertz Mach-Zehnder interferometer. The structures permit integrated terahertz signal generation, propagation through waveguide-based devices, and readout within a single solid-state platform.

  7. Resonant metallic nanostructures for enhanced terahertz spectroscopy

    KAUST Repository

    Toma, A.

    2015-11-12

    We present our recent studies on terahertz resonant dipole nanoantennas. Exploiting the localization and enhancement capabilities of these devices, we introduce an effective method to perform terahertz spectroscopy on an extremely small number of nano-objects.

  8. Direct observation of photocarrier electron dynamics in C60 films on graphite by time-resolved two-photon photoemission

    Science.gov (United States)

    Shibuta, Masahiro; Yamamoto, Kazuo; Ohta, Tsutomu; Nakaya, Masato; Eguchi, Toyoaki; Nakajima, Atsushi

    2016-10-01

    Time-resolved two-photon photoemission (TR-2PPE) spectroscopy is employed to probe the electronic states of a C60 fullerene film formed on highly oriented pyrolytic graphite (HOPG), acting as a model two-dimensional (2D) material for multi-layered graphene. Owing to the in-plane sp2-hybridized nature of the HOPG, the TR-2PPE spectra reveal the energetics and dynamics of photocarriers in the C60 film: after hot excitons are nascently formed in C60 via intramolecular excitation by a pump photon, they dissociate into photocarriers of free electrons and the corresponding holes, and the electrons are subsequently detected by a probe photon as photoelectrons. The decay rate of photocarriers from the C60 film into the HOPG is evaluated to be 1.31 × 1012 s‑1, suggesting a weak van der Waals interaction at the interface, where the photocarriers tentatively occupy the lowest unoccupied molecular orbital (LUMO) of C60. The photocarrier electron dynamics following the hot exciton dissociation in the organic thin films has not been realized for any metallic substrates exhibiting strong interactions with the overlayer. Furthermore, the thickness dependence of the electron lifetime in the LUMO reveals that the electron hopping rate in C60 layers is 3.3 ± 1.2 × 1013 s‑1.

  9. Statistics of decay dynamics of quantum emitters in disordered photonic-crystal waveguides

    DEFF Research Database (Denmark)

    Javadi, Alisa; Garcia-Fernandez, Pedro David; Sapienza, Luca;

    2014-01-01

    We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24.......We present a statistical analysis of the spontaneous emission of quantum dots coupled to Anderson-localized cavities in disordered photonic-crystal waveguides.We observe an average Purcell factor of ∼ 5 with a maximum value of 24....

  10. Avalanche dynamics in silicon avalanche single- and few-photon sensitive photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Blazej, J; Prochazka, I, E-mail: blazej@fjfi.cvut.c [Czech Technical University in Prague, Brehova 7, 115 19 Prague 1 (Czech Republic)

    2009-11-15

    We are presenting the results of the study of the Single Photon Avalanche Diode (SPAD) avalanche pulse response rise-time and its dependence on several key parameters. We were investigating the unique properties of K14 type SPAD with its high delay uniformity of 200 {mu}m active area, the character of avalanche, and the correlation between the avalanche build-up time and the photon number involved in the avalanche trigger. The detection chip was operated with bias higher then breakdown voltage, ie. in Geiger mode. The detection chip was operated in a passive quenching circuit with active gating. This set-up enabled us to monitor both the diode reverse current using an electrometer and a fast digitizing oscilloscope. The electrometer reading enabled to estimate the photon number per detection event, the avalanche build up was recorded on the oscilloscope and processed by custom designed waveform analysis package. The correlation of avalanche build up to the photon number, bias above break, photon absorption location, optical pulse length and photon energy was investigated in detail. The experimental results are presented.

  11. Visible light dynamical diffraction in a 1-D photonic crystal-based interferometer with an extremely thin spacer layer

    Science.gov (United States)

    Prudnikov, I. R.

    2016-01-01

    Properties of light diffraction in a Fabry-Pérot-like interferometer composed of two 1-D photonic crystals and a nanometer-thick spacer layer are analytically investigated. It is shown that the resonant enhancement of light wave intensity in such a layer is possible because of light dynamical diffraction from the photonic crystals of the interferometer. Numerical simulations of (i) light reflectivity and transmittance curves of the interferometer having an ultra-thin spacer layer (its thickness changes from less than 1 nm to about 10 nm) and (ii) the resonant distribution of the light wave intensity in the vicinity of the layer are performed. Based on the numerical simulations, potentialities for the determination of the structural parameters (e.g., thicknesses and refraction indexes) of ultra-thin spacer films are discussed. A difference is found to appear in resonant intensity enhancements inside the ultra-thin spacer layers between s- and p-polarized light waves.

  12. Modulation of carrier dynamics and threshold characteristics in 1.3-μm quantum dot photonic crystal nanocavity lasers

    Science.gov (United States)

    Xing, Enbo; Tong, Cunzhu; Rong, Jiamin; Shu, Shili; Wu, Hao; Wang, Lijie; Tian, Sicong; Wang, Lijun

    2016-08-01

    A self-consistent all-pathway quantum dot (QD) rate equation model, in which all possible relaxation pathways are considered, is used to investigate the influence of quality (Q) factor on the carrier dynamics of 1.3-μm InAs/GaAs QD photonic crystal (PhC) nanolasers. It is found that Q factor not only affects the photon lifetime, but also modulates the carrier occupation in QDs. About three times increases of carrier injection efficiency in QD ground state can be realized in nanocavity with high Q factor. However, it also reveals that over 90% improvement of threshold current happens when Q factor increases from 2000 to 7000, which means it might be not necessary to pursuit for ultrahigh Q factor for the purpose of low threshold current.

  13. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  14. Time-resolved terahertz spectroscopy of semiconductor nanostructures

    DEFF Research Database (Denmark)

    Porte, Henrik

    of the photoconductivity is observed, due the release of carriers from the quantum dots into the conducting barrier states. Secondly, the carrier dynamics in InGaN/GaN quantum wells subject to a built-in piezoelectric eld is described. An initial fast decay of the photoconductivity as the piezoelectric eld is screened......This thesis describes time-resolved terahertz spectroscopy measurements on various semiconductor nanostructures. The aim is to study the carrier dynamics in these nanostructures on a picosecond timescale. In a typical experiment carriers are excited with a visible or near-infrared pulse...... and by measuring the transmission of a terahertz probe pulse, the photoconductivity of the excited sample can be obtained. By changing the relative arrival time at the sample between the pump and the probe pulse, the photoconductivity dynamics can be studied on a picosecond timescale. The rst studied semiconductor...

  15. Multiband terahertz metamaterial absorber

    Institute of Scientific and Technical Information of China (English)

    Gu Chao; Qu Shao-Bo; Pei Zhi-Bin; Xu Zhuo; Liu Jia; Gu Wei

    2011-01-01

    This paper reports the design of a multiband metamaterial (MM) absorber in the terahertz region. Theoretical and simulated results show that the absorber has four distinct and strong absorption points at 1.69, 2.76, 3.41 and that the impedance of MM could be tuned to match approximately the impedance of the free space to minimise the reflectance at absorption frequencies and large power loss exists at absorption frequencies. The distribution of the power loss indicates that the absorber is an excellent electromagnetic wave collector: the wave is first trapped and reinforced in certain specific locations and then consumed. This multiband absorber has applications in the detection of explosives and materials characterisation.

  16. A spectral analysis of an integrated photomixer/antenna in a homodyne terahertz photomixing system

    Science.gov (United States)

    Ryu, Han-Cheol; Park, Seong-Ook; Kang, Kwang-Yong

    2013-01-01

    An analysis has been carried out to estimate the spectral characteristics of an integrated photomixer/antenna in a homodyne photomixing system. The analysis adopts the impedance mismatch factor and Friis power transmission formula used in communication links based on the conventional analysis theory of a terahertz photomixer. The analysis and experimental results have proved that an impedance matching condition between the impedance of a photomixer and the input impedance of an antenna is directly related with photomixing terahertz wave generation. The Friis formula is introduced to calculate the propagation loss of the wave from a transmitter to a receiver in a homodyne photomixing system. A log-periodic antenna was used to ensure a high dynamic range in a broad frequency region. The dynamic range of the homodyne terahertz photomixing system was about 60 dB near 100 GHz and decreased with an increasing frequency from 10 GHz to 1000 GHz. The measured results agree well with the theoretically analyzed results and prove that the terahertz photomixing power is closely related to impedance mismatch factor and it could be estimated in the homodyne terahertz photomixing system without a terahertz power detector.

  17. Switching terahertz waves with gate-controlled active graphene metamaterials.

    Science.gov (United States)

    Lee, Seung Hoon; Choi, Muhan; Kim, Teun-Teun; Lee, Seungwoo; Liu, Ming; Yin, Xiaobo; Choi, Hong Kyw; Lee, Seung S; Choi, Choon-Gi; Choi, Sung-Yool; Zhang, Xiang; Min, Bumki

    2012-11-01

    The extraordinary electronic properties of graphene provided the main thrusts for the rapid advance of graphene electronics. In photonics, the gate-controllable electronic properties of graphene provide a route to efficiently manipulate the interaction of photons with graphene, which has recently sparked keen interest in graphene plasmonics. However, the electro-optic tuning capability of unpatterned graphene alone is still not strong enough for practical optoelectronic applications owing to its non-resonant Drude-like behaviour. Here, we demonstrate that substantial gate-induced persistent switching and linear modulation of terahertz waves can be achieved in a two-dimensional metamaterial, into which an atomically thin, gated two-dimensional graphene layer is integrated. The gate-controllable light-matter interaction in the graphene layer can be greatly enhanced by the strong resonances of the metamaterial. Although the thickness of the embedded single-layer graphene is more than six orders of magnitude smaller than the wavelength (metamaterial, can modulate both the amplitude of the transmitted wave by up to 47% and its phase by 32.2° at room temperature. More interestingly, the gate-controlled active graphene metamaterials show hysteretic behaviour in the transmission of terahertz waves, which is indicative of persistent photonic memory effects.

  18. Principle and applications of terahertz molecular imaging.

    Science.gov (United States)

    Son, Joo-Hiuk

    2013-05-31

    The principle, characteristics and applications of molecular imaging with terahertz electromagnetic waves are reviewed herein. The terahertz molecular imaging (TMI) technique uses nanoparticle probes to achieve dramatically enhanced sensitivity compared with that of conventional terahertz imaging. Surface plasmons, induced around the nanoparticles, raise the temperature of water in biological cells, and the temperature-dependent changes in the optical properties of water, which are large in the terahertz range, are measured differentially by terahertz waves. TMI has been applied to cancer diagnosis and nanoparticle drug delivery imaging. The technique is also compared with magnetic resonance imaging by using a dual-modality nanoparticle probe.

  19. Measuring the dynamics of second-order photon correlation functions inside a pulse with picosecond time resolution

    DEFF Research Database (Denmark)

    Assmann, Marc; Veit, Franziska; Tempel, Jean-Sebastian;

    2010-01-01

    We present a detailed discussion of a recently demonstrated experimental technique capable of measuring the orrelation function of a pulsed light source with picosecond time resolution. The measurement involves a streak camera in single photon counting mode, which is modified such that a signal...... at a fixed repetition rate, and well defined energy, can be monitored after each pulsed laser excitation. The technique provides further insight into the quantum optical properties of pulsed light emission from semiconductor nanostructures, and the dynamics inside a pulse, on the subnanosecond time scale....

  20. From single photons to milliwatt radiant power-electron storage rings as radiation sources with a high dynamic range

    Energy Technology Data Exchange (ETDEWEB)

    Klein, R.; Thornagel, R.; Ulm, G. [Physikalisch-Technische Bundesanstalt, Berlin (Germany)

    2010-10-15

    The spectral radiant intensity of synchrotron radiation from electron storage rings can be calculated from basic electrodynamic relations (Schwinger equation) and it is directly proportional to the stored electron beam current, i.e. the number of stored electrons. With the necessary equipment installed to measure and control the electron beam current over a wide dynamic range, the radiant intensity of the synchrotron radiation can be adjusted accordingly without changing the spectrum. This is done, e.g., at the Metrology Light Source (MLS), the dedicated electron storage ring of the Physikalisch-Technische Bundesanstalt. The MLS is operated as a primary radiation source standard from the near IR up to the soft x-ray region and its operational parameters can be adjusted and accurately measured in a wide range: the electron beam current can be varied from 1 pA (one stored electron) up to 200 mA and thus the radiant intensity can be changed by more than 11 decades. The photon flux or radiant power for typical angular acceptances can thus be varied from single photons to milliwatts. This is a very powerful tool, e.g., for the characterization of the linearity of the response of radiation detectors or for the calibration of photon counting detectors. In this article we present an overview of past, current and possible future activities exploiting this feature. (authors)

  1. Graphene active plasmonic metamaterials for new types of terahertz lasers

    Science.gov (United States)

    Otsuji, Taiichi; Watanabe, Takayuki; Satou, Akira; Popov, Vyacheslav; Ryzhii, Victor

    2013-05-01

    This paper reviews recent advances in graphene active plasmonic metamaterials for new types of terahertz lasers. We theoretically discovered that when the population of Dirac Fermionic carriers in graphene are inverted by optical or electrical pumping the excitation of graphene plasmons by the THz photons results in propagating surface plasmon polaritons with giant gain in a wide THz range. Furthermore, when graphene is patterned in a micro- or nano-ribbon array by grating gate metallization, the structure acts as an active plasmonic metamaterial, providing a super-radiant plasmonic lasing with giant gain at the plasmon modes in a wide THz frequency range.

  2. Poole-Frenkel Effect in Terahertz Electromagnetic Fields

    OpenAIRE

    1995-01-01

    The ionisation of deep impurity centres in germanium has been observed with radiation in the terahertz range where the photon energy is much less than the binding energy of the impurities. It is shown that for not too high radiation intensities the ionisation is caused by the Poole-Frenkel effect. As in the well-known case of d.c. fields, the electric field of the high-frequency radiation lowers the Coulomb potential barrier and enhances the thermal emission of carriers.

  3. Tuning a microcavity-coupled terahertz laser

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Fabrizio; Bianchi, Vezio; Vitiello, Miriam S., E-mail: miriam.vitiello@sns.it [NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Li, Lianhe; Zhu, Jingxuan; Linfield, Edmund H.; Giles Davies, A. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Tredicucci, Alessandro [Dipartimento di Fisica, Università degli Studi di Pisa, Largo Pontecorvo 6, 56127 Pisa (Italy)

    2015-12-28

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers.

  4. Multiple dynamic regimes in colloid-polymer dispersions: New insight using X-ray photon correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Sunita [Department of Chemistry, Stony Brook University, Stony Brook New York; National Institute of Standards and Technology, Gaithersburg Maryland; Kishore, Suhasini [Department of Chemistry, Stony Brook University, Stony Brook New York; Department of Chemical Engineering, University of Massachusetts Amherst, Amherst Massachusetts; Narayanan, Suresh [Argonne National Laboratory, Advanced Photon Source, Argonne Illinois; Sandy, Alec R. [Argonne National Laboratory, Advanced Photon Source, Argonne Illinois; Bhatia, Surita R. [Department of Chemistry, Stony Brook University, Stony Brook New York; Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton New York

    2015-12-01

    We present an X-ray photon correlation spectros- copy (XPCS) study of dynamic transitions in an anisotropic colloid-polymer dispersion with multiple arrested states. The results provide insight into the mechanism for formation of repulsive glasses, attractive glasses, and networked gels of col- loids with weakly adsorbing polymer chains. In the presence of adsorbing polymer chains, we observe three distinct regimes: a state with slow dynamics consisting of finite particles and clusters, for which interparticle interactions are predominantly repulsive; a second dynamic regime occurring above the satu- ration concentration of added polymer, in which small clusters of nanoparticles form via a short-range depletion attraction; and a third regime above the overlap concentration in which dynamics of clusters are independent of polymer chain length. The observed complex dynamic state diagram is primarily gov- erned by the structural reorganization of a nanoparticle cluster and polymer chains at the nanoparticle-polymer surface and in the concentrated medium, which in turn controls the dynamics of the dispersion

  5. Two-photon photoemission investigation of electronic and dynamical properties of alkali atoms adsorbed on noble metal surfaces

    Science.gov (United States)

    Sametoglu, Vahit

    We present a systematic time-resolved two-photon photoemission study of the electronic and dynamical properties of Li through Cs adsorbed on Cu(111) and Ag(111) surfaces. A fundamental problem in surface science is how to describe the electronic structure of a chemisorption interface based on the intrinsic properties of the interacting materials. Because of their simple s-electron structure, elements of the alkali atom group comprise paradigmatic adsorbates in many theories of chemisorption, whereas the complementary experimental studies are sparse and incomplete. Through a combination of spectroscopic and femtosecond time-resolved surface measurements, we are able to probe systematically the binding energies, symmetries, and electron and nuclear relaxation dynamics of the initially unoccupied alkali atom resonances. As a prelude, we study the two-photon photoemission process occurring at the bare Ag(111) surface. We develop a quantitative model for two-photon photoemission process, where the nonresonant and k-dependent two-photon absorption between the lower and upper sp-bands is modeled by the optical Bloch equations, and the angle-dependent intensities are described by the Fresnel equations. Our two-photon photoemission spectra of Li through Cs chemisorbed Cu(111) and Ag(111) surfaces reveal two resonances with the m = 0 and m = +/-1 symmetry ('m' is the projection of the orbital angular momentum 'l' onto the surface plane). For the m = 0 resonance, which is derived from the hybridization of the ns and npz orbitals of alkali atoms, we find a binding energy of 1.84--1.99 eV below the vacuum level, which is independent of the alkali atom period, and tunes with coverage in a universal manner. At 0.3--0.7 eV higher energy, we discover and identify the m = +/-1 resonance by its characteristic angular intensity distribution, which derives from the antisymmetry of the npx and npy orbitals. We implement a quantitative model for the alkali atom chemisorption based on the

  6. Monitoring CBF in clinical routine by dynamic single photon emission tomography (SPECT) of inhaled xenon-133

    DEFF Research Database (Denmark)

    Sugiyama, H; Christensen, J; Skyhøj Olsen, T

    1986-01-01

    A very simple and low-cost brain dedicated, rapidly rotating Single Photon Emission Tomograph SPECT is described. Its use in following patients with ischemic stroke is illustrated by two middle cerebral artery occlusion cases, one with persistent occlusion and low CBF in MCA territory, and one...

  7. Scanning Terahertz Heterodyne Imaging Systems

    Science.gov (United States)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  8. Terahertz Science, Technology, and Communication

    Science.gov (United States)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  9. Dynamics of structural transformation of lymph nodes in rats after a single exposure to ionizing photon radiation

    Directory of Open Access Journals (Sweden)

    Kriventsov M.A.

    2014-03-01

    Full Text Available Background. One of the problems of modern morphology is the investigation of the impact of extreme environmental factors, such as ionizing radiationon the body. However, literature data are often controversial, due to the lack of unity in the methodological assessment of the effects of ionizing radiation, as well as usage of different types of radiation doses and experimental facilities. Objective. The purpose of this research was a comparative investigation of the dynamics of structural transformations of mesenteric lymph nodes after a single total photon-ionizing radiation. Methods. Experiment was conducted on 30 male Wistar rats. Rats were exposed to a single ionizing photon irradiation at a dose of 4.5 Gy. Intact animals served as a control. Experimental animals were euthanized by decapitation under ether anesthesia on the 3rd, 7th, 14th and 30th day after irradiation (6 rats in each experimental period. After decapitation mesenteric lymph nodes were isolated to the subsequent histological study using standard hematoxylin and eosin staining procedure. Results. Typical histological changes in the mesenteric lymph nodes included decrease of the cortex area and the number of primary and secondary lymphoid nodules, reduced density of the cell population in all structural and functional areas of the organ, expansion of sinus spaces and prominent reaction of the microvasculature. Conclusion. Histological study revealed the evidence of significant changes in both stromal vascular and parenchymal components of investigated organs. Changes were divided into phases, acquiring the greatest severity on the 3rd-7thday, with subsequent attenuation on the 14th day and almost complete recovery on the 30th day after irradiation, indicating the reversibility of detected changes. Citation: Kriventsov MA, Kutsaya VV. [Dynamics of structural transformation of lymph nodes in rats after a single exposure to ionizing photon radiation]. Morphologia. 2014

  10. Conductivity of solvated electrons in hexane investigated with terahertz time-domain spectroscopy.

    Science.gov (United States)

    Knoesel, Ernst; Bonn, Mischa; Shan, Jie; Wang, Feng; Heinz, Tony F

    2004-07-01

    We present investigations of the transient photoconductivity and recombination dynamics of quasifree electrons in liquid n-hexane and cyclohexane performed using terahertz time-domain spectroscopy (THz-TDS). Quasifree electrons are generated by two-photon photoionization of the liquid using a femtosecond ultraviolet pulse, and the resulting changes in the complex conductivity are probed by a THz electromagnetic pulse at a variable delay. The detection of time-domain wave forms of the THz electric field permits the direct determination of both the real and the imaginary part of the conductivity of the electrons over a wide frequency range. The change in conductivity can be described by the Drude model, thus yielding the quasifree electron density and scattering time. The electron density is found to decay on a time scale of a few hundred picoseconds, which becomes shorter with increasing excitation density. The dynamics can be described by a model that assumes nongeminate recombination between electrons and positive ions. In addition, a strong dependence of the quasifree electron density on temperature is observed, in agreement with a two-state model in which the electron may exist in either a quasifree or a bound state.

  11. Industrial Applications of Terahertz Imaging

    Science.gov (United States)

    Zeitler, J. Axel; Shen, Yao-Chun

    This chapter gives a concise overview of potential industrial applications for terahertz imaging that have been reported over the past decade with a discussion of the major advantages and limitations of each approach. In the second half of the chapter we discuss in more detail how terahertz imaging can be used to investigate the microstructure of pharmaceutical dosage forms. A particular focus in this context is the nondestructive measurement of the coating thickness of polymer coated tablets, both by means of high resolution offline imaging in research and development as well as for in-line quality control during production.

  12. Generation of coherent terahertz radiation by polarized electron-hole pairs in GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, A. V., E-mail: alex.andrianov@mail.ioffe.ru; Alekseev, P. S.; Klimko, G. V.; Ivanov, S. V.; Shcheglov, V. L.; Sedova, M. A.; Zakhar' in, A. O. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-11-15

    The generation of coherent terahertz radiation upon the band-to-band femtosecond laser photoexcitation of GaAs/AlGaAs multiple-quantum-well structures in a transverse electric field at room temperature is investigated. The properties of the observed terahertz radiation suggest that it is generated on account of the excitation of a time-dependent dipole moment as a result of the polarization of nonequilibrium electron-hole pairs in quantum wells by the electric field. The proposed theoretical model taking into account the dynamic screening of the electric field in the quantum wells by nonequilibrium charge carriers describes the properties of the observed terahertz signal.

  13. Initial dynamics of supercontinuum generation in highly nonlinear photonic crystal fiber.

    Science.gov (United States)

    Moeser, J T; Wolchover, N A; Knight, J C; Omenetto, F G

    2007-04-15

    We present a theoretical and experimental analysis of supercontinuum generation in very short lengths of high-nonlinearity photonic crystal fibers. The Raman response function for Schott SF6 glass is presented for what is believed to be the first time and used for numerical modeling of pulse propagation. Simulation and experiments are in excellent agreement and demonstrate the rapid transition to regimes of spectral complexity due to higher-order nonlinear effects.

  14. Exceptional-point Dynamics in Photonic Honeycomb Lattices with PT Symmetry

    Science.gov (United States)

    2012-01-17

    including the existence of diabolical points, with the band structure of graphene in condensed matter physics literature. In graphene , the electrons...photonic and electronic graphene structures allow us to test experimentally various legendary predictions of relativistic quantum mechanics such as...with the mod- ulation of the index of refraction, to achieve new classes of synthetic metamaterials that can give rise to altogether new physical

  15. Azimuthal correlations in photon-photon collisions

    CERN Document Server

    Artéaga-Romero, N; Kessler, P; Ong, S; Panella, O

    1995-01-01

    Using the general helicity formula for \\gamma^* \\gamma^* collisions, we are showing that it should be possible to determine a number of independent ``structure functions'', i.e. linear combinations of elements of the two-photon helicity tensor, through azimuthal correlations in two-body or quasi two-body reactions induced by the photon-photon interaction, provided certain experimental conditions are satisfied. Numerical results of our computations are presented for some particular processes and dynamic models.

  16. Three Dimensional Broadband Tunable Terahertz Metamaterials

    CERN Document Server

    Fan, Kebin; Zhang, Xin; Averitt, Richard D

    2013-01-01

    We present optically tunable magnetic 3D metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon-on-sapphire, fabricated using multilayer electroplating. Photoexcitation of free carriers in the silicon within the capacitive region of the DSRR results in a red-shift of the resonant frequency from 1.74 THz to 1.16 THz. The observed frequency shift leads to a transition from a magnetic-to-bianisotropic response as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers.

  17. Ticking terahertz wave generation in attoseconds

    CERN Document Server

    Zhang, Dongwen; Meng, Chao; Du, Xiyu; Zhou, Zhaoyan; Zhao, Zengxiu; Yuan, Jianmin

    2012-01-01

    We perform a joint measurement of terahertz waves and high-order harmonics generated from noble atoms driven by a fundamental laser pulse and its second harmonic. By correlating their dependence on the phase-delay of the two pulses, we determine the generation of THz waves in tens of attoseconds precision. Compared with simulations and models, we find that the laser-assisted soft-collision of the electron wave packet with the atomic core plays a key role. It is demonstrated that the rescattering process, being indispensable in HHG processes, dominant THz wave generation as well but in a more elaborate way. The new finding might be helpful for the full characterization of the rescattering dynamics.

  18. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  19. A Perfect Terahertz Metamaterial Absorber

    CERN Document Server

    Bagheri, Alireza

    2015-01-01

    In this paper the design for an absorbing metamaterial with near unity absorbance in terahertz region is presented. The absorber's unit cell structure consists of two metamaterial resonators that couple to electric and magnetic fields separately. The structure allows us to maximize absorption by varying dielectric material and thickness and, hence the effective electrical permittivity and magnetic permeability.

  20. Fast terahertz imaging using a quantum cascade amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yuan, E-mail: yr235@cam.ac.uk; Wallis, Robert; Jessop, David Stephen; Degl' Innocenti, Riccardo; Klimont, Adam; Beere, Harvey E.; Ritchie, David A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-07-06

    A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback, the laser mirror losses are enhanced to fully suppress lasing action, creating a THz QC amplifier. The addition of reflection from an external target to the amplifier creates enough optical feedback to initiate lasing action and the resulting emission enhances photon-assisted transport, which in turn reduces the voltage across the device. At the peak gain point, the maximum photon density coupled back leads to a prominent self-mixing effect in the QC amplifier, leading to a high sensitivity, with a signal to noise ratio up to 55 dB, along with a fast data acquisition speed of 20 000 points per second.

  1. Direct observation of spatio-temporal dynamics of short electron bunches in storage rings

    CERN Document Server

    Evain, C; Parquier, M Le; Szwaj, C; Tordeux, M -A; Manceron, L; Brubach, J -B; Roy, P; Bielawski, S

    2016-01-01

    In recent synchrotron radiation facilities, the use of short (picosecond) electron bunches is a powerful method for producing giant pulses of Terahertz Coherent Synchrotron Radiation (THz CSR). Here we report on the first direct observation of these pulse shapes with a few picoseconds resolution, and of their dynamics over a long time. We thus confirm in a very direct way the theories predicting an interplay between two physical processes. Below a critical bunch charge, we observe a train of identical THz pulses (a broadband Terahertz comb) stemming from the shortness of the electron bunches. Above this threshold, a large part of the emission is dominated by drifting structures, which appear through spontaneous self-organization. These challenging single-shot THz recordings are made possible by using a recently developed photonic time stretch detector with a high sensitivity. The experiment has been realized at the SOLEIL storage ring.

  2. Intravital two-photon microscopy of immune cell dynamics in corneal lymphatic vessels.

    Directory of Open Access Journals (Sweden)

    Philipp Steven

    Full Text Available BACKGROUND: The role of lymphatic vessels in tissue and organ transplantation as well as in tumor growth and metastasis has drawn great attention in recent years. METHODOLOGY/PRINCIPAL FINDINGS: We now developed a novel method using non-invasive two-photon microscopy to simultaneously visualize and track specifically stained lymphatic vessels and autofluorescent adjacent tissues such as collagen fibrils, blood vessels and immune cells in the mouse model of corneal neovascularization in vivo. The mouse cornea serves as an ideal tissue for this technique due to its easy accessibility and its inducible and modifiable state of pathological hem- and lymphvascularization. Neovascularization was induced by suture placement in corneas of Balb/C mice. Two weeks after treatment, lymphatic vessels were stained intravital by intrastromal injection of a fluorescently labeled LYVE-1 antibody and the corneas were evaluated in vivo by two-photon microscopy (TPM. Intravital TPM was performed at 710 nm and 826 nm excitation wavelengths to detect immunofluorescence and tissue autofluorescence using a custom made animal holder. Corneas were then harvested, fixed and analyzed by histology. Time lapse imaging demonstrated the first in vivo evidence of immune cell migration into lymphatic vessels and luminal transport of individual cells. Cells immigrated within 1-5.5 min into the vessel lumen. Mean velocities of intrastromal corneal immune cells were around 9 µm/min and therefore comparable to those of T-cells and macrophages in other mucosal surfaces. CONCLUSIONS: To our knowledge we here demonstrate for the first time the intravital real-time transmigration of immune cells into lymphatic vessels. Overall this study demonstrates the valuable use of intravital autofluorescence two-photon microscopy in the model of suture-induced corneal vascularizations to study interactions of immune and subsequently tumor cells with lymphatic vessels under close as possible

  3. Dynamics of isolated-photon plus jet production in pp collisions at √s = 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Aefsky, Scott; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asbah, Nedaa; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Bittner, Bernhard; Black, Curtis; Black, James

    2013-01-01

    The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb$^{−1}$. Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin– averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle.

  4. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Chen, Hou - Tong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory

    2010-12-10

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of {approx}10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor holes. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stopband to a passband and up to {pi}/2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz plasmonics.

  5. Dynamics of blueshifted floating pulses in gas filled hollow-core photonic crystal fibers

    CERN Document Server

    Facao, M

    2013-01-01

    Frequency blueshifting was recently observed in light pulses propagating on gas filled hollow-core photonic crystal fibers where a plasma has been produced due to photoionization of the gas. One of the propagation models that is adequate to describe the actual experimental observations is here investigated. It is a nonlinear Schr\\"odinger equation with an extra term, to which we applied a self-similar change of variables and found its accelerating solitons. As in other NLS related models possessing accelerating solitons, there exist asymmetrical pulses that decay as they propagate in some parameter region that was here well defined.

  6. Mammalian stem cells reprogramming in response to terahertz radiation.

    Directory of Open Access Journals (Sweden)

    Jonathan Bock

    Full Text Available We report that extended exposure to broad-spectrum terahertz radiation results in specific changes in cellular functions that are closely related to DNA-directed gene transcription. Our gene chip survey of gene expression shows that whereas 89% of the protein coding genes in mouse stem cells do not respond to the applied terahertz radiation, certain genes are activated, while other are repressed. RT-PCR experiments with selected gene probes corresponding to transcripts in the three groups of genes detail the gene specific effect. The response was not only gene specific but also irradiation conditions dependent. Our findings suggest that the applied terahertz irradiation accelerates cell differentiation toward adipose phenotype by activating the transcription factor peroxisome proliferator-activated receptor gamma (PPARG. Finally, our molecular dynamics computer simulations indicate that the local breathing dynamics of the PPARG promoter DNA coincides with the gene specific response to the THz radiation. We propose that THz radiation is a potential tool for cellular reprogramming.

  7. New terahertz dielectric spectroscopy for the study of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    George, Deepu K.; Charkhesht, Ali; Vinh, N. Q., E-mail: Vinh@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-12-15

    We present the development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As an important benchmark system, we report on the measurements of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17–37.36 cm{sup −1} or 0.268–60 mm). The system provides a coherent radiation source with power up to 20 mW in the gigahertz-to-terahertz region. The dynamic range of our instrument reaches 10{sup 12} and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with error bars of ±0.02 °C from 0 °C to 90 °C. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  8. Low frequency terahertz-induced demagnetization in ferromagnetic nickel

    Science.gov (United States)

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P.

    2016-05-01

    A laser stimulus at terahertz (THz) frequency is expected to offer superior control over magnetization dynamics compared to an optical pulse, where ultrafast demagnetization is mediated by heat deposition. As a THz field cycle occurs on a timescale similar to the natural speed of spin motions, this can open a path for triggering precessional magnetization motion and ultimately ultrafast magnetic switching by the THz magnetic field component, without quenching. Here, we explore the ultrafast magnetic response of a ferromagnetic nickel thin film excited by a strong (33 MV/cm) terahertz transient in non-resonant conditions. While the magnetic laser pulse component induces ultrafast magnetic precessions, we experimentally found that at high pump fluence, the THz pulse leads to large quenching which dominates the precessional motion by far. Furthermore, degradation of magnetic properties sets in and leads to permanent modifications of the Ni thin film and damage.

  9. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  10. Intense ultrashort terahertz pulses: generation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Matthias C [Max Planck Research Department for Structural Dynamics, University of Hamburg, CFEL, 22607 Hamburg (Germany); Fueloep, Jozsef Andras, E-mail: matthias.c.hoffmann@mpsd.cfel.de, E-mail: fulop@fizika.ttk.pte.hu [Department of Experimental Physics, University of Pecs, Ifjusag u. 6, 7624 Pecs (Hungary)

    2011-03-02

    Ultrashort terahertz pulses derived from femtosecond table-top sources have become a valuable tool for time-resolved spectroscopy during the last two decades. Until recently, the pulse energies and field strengths of these pulses have been generally too low to allow for the use as pump pulses or the study of nonlinear effects in the terahertz range. In this review article we will describe methods of generation of intense single cycle terahertz pulses with emphasis on optical rectification using the tilted-pulse-front pumping technique. We will also discuss some applications of these intense pulses in the emerging field of nonlinear terahertz spectroscopy. (topical review)

  11. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Amaran, Saieswari; Kosloff, Ronnie [Fritz Haber Research Centre and The Department of Physical Chemistry, Hebrew University, Jerusalem 91904 (Israel); Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert [Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Rybak, Leonid; Levin, Liat; Amitay, Zohar [The Shirlee Jacobs Femtosecond Laser Research Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel (Germany)

    2013-10-28

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  12. High-cadence observations of CME initiation and plasma dynamics in the corona with TESIS on board CORONAS-Photon

    Science.gov (United States)

    Bogachev, Sergey; Kuzin, Sergey; Zhitnik, I. A.; Bugaenko, O. I.; Goncharov, A. L.; Ignatyev, A. P.; Krutov, V. V.; Lomkova, V. M.; Mitrofanov, A. V.; Nasonkina, T. P.; Oparin, S. N.; Petzov, A. A.; Shestov, S. V.; Slemzin, V. A.; Soloviev, V. A.; Suhodrev, N. K.; Shergina, T. A.

    The TESIS is an ensemble of space instruments designed in Lebedev Institute of Russian Academy of Sciences for spectroscopic and imaging investigation of the Sun in EUV and soft X-ray spectral range with high spatial, temporal and spectral resolution. From 2009 January, when TESIS was launched onboard the Coronas-Photon satellite, it provided about 200 000 new images and spectra of the Sun, obtained during one of the deepest solar minimum in last century. Because of the wide field of view (4 solar radii) and high sensitivity, TESIS provided high-quality data on the origin and dynamics of eruptive prominences and CMEs in the low and intermediate solar corona. TESIS is also the first EUV instrument which provided high-cadence observations of coronal bright points and solar spicules with temporal resolution of a few seconds. We present first results of TESIS observations and discuss them from a scientific point of view.

  13. Tunable terahertz wave Goos-Hänchen shift of reflected terahertz wave from prism-metal-polymer-metal multilayer structure

    Science.gov (United States)

    Li, Jiu-Sheng; Wu, Jing-fang; Zhang, Le

    2015-01-01

    We propose a scheme to manipulate the Goos-Hänchen shift of a terahertz wave reflected from the prism-metal-polymer-metal interface via external voltage bias. By adjusting the external voltage bias, the refractive index of the nonlinear polymer can be changed, so the lateral Goos-Hänchen shift is dynamically tuned. The relation among the Goos-Hänchen shift, prism and the nonlinear polymer is investigated in theory analysis and simulation. Using this scheme, the Goos-Hänchen shift can be tuned without changing the original structure of the proposed device. Numerical calculation results further indicate that the proposed structure has the potential application for the integrated terahertz wave switch.

  14. ARTICLES: A Surface Femtosecond Two-Photon Photoemission Spectrometer for Excited Electron Dynamics and Time-Dependent Photochemical Kinetics

    Science.gov (United States)

    Ren, Ze-feng; Zhou, Chuan-yao; Ma, Zhi-bo; Xiao, Chun-lei; Mao, Xin-chun; Dai, Dong-xu; LaRue, Jerry; Cooper, Russell; Wodtke, Alec M.; Yang, Xue-ming

    2010-06-01

    A surface femtosecond two-photon photoemission (2PPE) spectrometer devoted to the study of ultrafast excited electron dynamics and photochemical kinetics on metal and metal oxide surfaces has been constructed. Low energy photoelectrons are measured using a hemispherical electron energy analyzer with an imaging detector that allows us to detect the energy and the angular distributions of the photoelectrons simultaneously. A Mach-Zehnder interferometer was built for the time-resolved 2PPE (TR-2PPE) measurement to study ultrafast surface excited electron dynamics, which was demonstrated on the Cu(111) surface. A scheme for measuring time-dependent 2PPE (TD-2PPE) spectra has also been developed for studies of surface photochemistry. This technique has been applied to a preliminary study on the photochemical kinetics on ethanol/TiO2(110). We have also shown that the ultrafast dynamics of photoinduced surface excited resonances can be investigated in a reliable way by combining the TR-2PPE and TD-2PPE techniques.

  15. Dynamics of Entanglement between a Quantum Dot Spin Qubit and a Photon Qubit inside a Semiconductor High-Q Nanocavity

    Directory of Open Access Journals (Sweden)

    Hubert Pascal Seigneur

    2010-01-01

    Full Text Available We investigate in this paper the dynamics of entanglement between a QD spin qubit and a single photon qubit inside a quantum network node, as well as its robustness against various decoherence processes. First, the entanglement dynamics is considered without decoherence. In the small detuning regime (Δ=78 μeV, there are three different conditions for maximum entanglement, which occur after 71, 93, and 116 picoseconds of interaction time. In the large detuning regime (Δ=1.5 meV, there is only one peak for maximum entanglement occurring at 625 picoseconds. Second, the entanglement dynamics is considered with decoherence by including the effects of spin-nucleus and hole-nucleus hyperfine interactions. In the small detuning regime, a decent amount of entanglement (35% entanglement can only be obtained within 200 picoseconds of interaction. Afterward, all entanglement is lost. In the large detuning regime, a smaller amount of entanglement is realized, namely, 25%. And, it lasts only within the first 300 picoseconds.

  16. Dynamic single photon emission computed tomography using N-isopropyl-p-(/sup 123/I)iodoamphetamine for cerebrovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Takashi; Kinoshita, Kazuo; Watanabe, Katsushi; Hoshi, Hiroaki; Jinnouchi, Seishi

    1988-03-01

    Continuous sequential single photon emission computed tomography (dynamic SPECT) with N-isopropyl-p-(/sup 123/I)iodoamphetamine (IMP) was perfomed in 17 patients with cerebrovascular diseases (three with transient ischemic attack, four with cerebral infarction, two with ruptured aneurysms, two with arteriovenous malformations (AVM), one with an unruptured giant aneurysm, and five with moyamoya disease). Dynamic SPECT scans were obtained with a circular-detector array emission CT instrument at a fixed level parallel to the orbitomeatal plane. The scans were taken over a 20-minute period, at 2-minute intervals, immediately after intravenous injection of IMP. Time courses of activity ratio of the affectednon-affected areas were calculated. Accumulation of IMP in ischemic areas was consistently suppressed to approximately 70 to 80% that in the non-affected areas. IMP accumulation in infarcted regions was less than 40 to 50% that in non-affected areas. In the regions of AVM and giant aneurysm, accumulation of IMP was rapid and relatively high, but its removal was prompt. Dynamic IMP SPECT appears useful in the assessment of cerebral perfusion and may have numerous applications in neurosurgery.

  17. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    Science.gov (United States)

    Sajadi, Mohsen; Wolf, Martin; Kampfrath, Tobias

    2014-03-01

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ˜1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  18. Terahertz field enhancement via coherent superposition of the pulse sequences after a single optical-rectification crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sajadi, Mohsen, E-mail: sajadi@fhi-berlin.mpg.de; Wolf, Martin; Kampfrath, Tobias [Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-03-03

    Terahertz electromagnetic pulses are frequently generated by optical rectification of femtosecond laser pulses. In many cases, the efficiency of this process is known to saturate with increasing intensity of the generation beam because of two-photon absorption. Here, we demonstrate two routes to reduce this effect in ZnTe(110) crystals and enhance efficiency, namely, by (i) recycling the generation pulses and by (ii) splitting each generation pulse into two pulses before pumping the crystal. In both methods, the second pulse arrives ∼1 ns after the first one, sufficiently long for optically generated carriers to relax. Enhancement is achieved by coherently superimposing the two resulting terahertz fields.

  19. Terahertz biochip based on optoelectronic devices

    Science.gov (United States)

    Lu, Ja-Yu; Chen, Li-Jin; Kao, Tzeng-Fu; Chang, Hsu-Hao; Liu, An-Shyi; Yu, Yi-Chun; Wu, Ruey-Beei; Liu, Wei-Sheng; Chyi, Jen-Inn; Pan, Ci-Ling; Tsai, Ming-Cheng; Sun, Chi-Kuang

    2005-10-01

    The accurate detection of minute amounts of chemical and biological substances has been a major goal in bioanalytical technology throughout the twentieth century. Fluorescence dye labeling detection remains the effective analysis method, but it modifies the surroundings of molecules and lowering the precision of detection. An alternative label free detecting tool with little disturbance of target molecules is highly desired. Theoretical calculations and experiments have demonstrated that many biomolecules have intrinsic resonance due to vibration or rotation level transitions, allowing terahertz (THz)-probing technique as a potential tool for the label-free and noninvasive detection of biomolecules. In this paper, we first ever combined the THz optoelectronic technique with biochip technology to realize THz biosensing. By transferring the edge-coupled photonic transmitter into a thin glass substrate and by integrating with a polyethylene based biochip channel, near field THz detection of the biomolecules is demonstrated. By directly acquiring the absorption micro-spectrum in the THz range, different boiomecules can then be identified according to their THz fingerprints. For preliminary studies, the capability to identity different illicit drug powders is successfully demonstrated. This novel biochip sensing system has the advantages including label-free detection, high selectivity, high sensitivity, ease for sample preparation, and ease to parallel integrate with other biochip functionality modules. Our demonstrated detection capability allows specifying various illicit drug powders with weight of nano-gram, which also enables rapid identification with minute amounts of other important molecules including DNA, biochemical agents in terrorism warfare, explosives, viruses, and toxics.

  20. Exciton Dynamics in LH1 and LH2 of Rhodopseudomonas Acidophila and Rhodobium Marinum Probed with Accumulated Photon Echo and Pump-Probe Measurements

    NARCIS (Netherlands)

    Lampoura, Stefania S.; Grondelle, Rienk van; Stokkum, Ivo H.M. van; Cogdell, Richard J.; Wiersma, Douwe A.; Duppen, Koos; van Stokkum, I.H.N.

    2000-01-01

    Exciton dynamics in the B850 and B875 bands of isolated complexes of Rhodopseudomonas acidophila (strain 10050 and 7050) and in the B875 band of isolated complexes of Rhodobium marinum were investigated by means of accumulated photon echo and pump-probe techniques at different temperatures and wavel

  1. Dynamical moments reveal a topological quantum transition in a photonic quantum walk

    CERN Document Server

    Cardano, Filippo; Massa, Francesco; Piccirillo, Bruno; de Lisio, Corrado; De Filippis, Giulio; Cataudella, Vittorio; Santamato, Enrico; Marrucci, Lorenzo

    2015-01-01

    Many phenomena in solid-state physics can be understood in terms of their topological properties. Recently, controlled protocols of quantum walks are proving to be effective simulators of such phenomena. Here we report the realization of a photonic quantum walk showing both the trivial and the non-trivial topologies associated with chiral symmetry in one-dimensional periodic systems, as in the Su-Schrieffer-Heeger model of polyacetylene. We find that the probability distribution moments of the walker position after many steps behave differently in the two topological phases and can be used as direct indicators of the quantum transition: while varying a control parameter, these moments exhibit a slope discontinuity at the transition point, and remain constant in the non-trivial phase. Extending this approach to higher dimensions, different topological classes, and other typologies of quantum phases may offer new general instruments for investigating quantum transitions in such complex systems.

  2. New terahertz dielectric spectroscopy for the study aqueous solutions

    CERN Document Server

    George, Deepu K; Vinh, N Q

    2015-01-01

    We present a development of a high precision, tunable far-infrared (terahertz) frequency-domain dielectric spectrometer for studying the dynamics of biomolecules in aqueous solutions in the gigahertz-to-terahertz frequency. As a first application we report on the measurement of the absorption and refractive index for liquid water in the frequency range from 5 GHz to 1.12 THz (0.17 to 37.36 cm-1 or 0.268 to 60 mm). The system provides a coherent radiation source with a power up to 20 mW in the gigahertz-to-terahertz region. The power signal-to-noise ratio of our instrument reaches 1015 and the system achieves a spectral resolution of less than 100 Hz. The temperature of samples can be controlled precisely with an error bars of 0.02 oC from above 0 oC to 90 oC. Given these attributes, our spectrometer provides unique capabilities for the accurate measurement of even very strongly absorbing materials such as aqueous solutions.

  3. Terahertz interferometric imaging of RDX

    Science.gov (United States)

    Sinyukov, Alexander M.; Barat, Robert B.; Gary, Dale E.; Michalopoulou, Zoi-Heleni; Zorych, Ivan; Zimdars, David; Federici, John F.

    2007-04-01

    Experimental results of homodyne terahertz interferometric 2-D imaging of RDX are presented. Continuous waves at 0.25-0.6 THz are used to obtain images of a C-4 sample at several THz frequencies. The performance of an N element detector array is imitated by only one detector placed at N positions. The distance between the C-4 sample and the detector array is ~30 cm. By taking interferometric images at several THz frequencies RDX can be recognized by the spectral peak at 0.82 THz. Simulations of interferometric images of two point sources of spherical waves are presented. The terahertz interferometric imaging method can be used in defense and security applications to detect concealed weapons, explosives as well as chemical and biological agents.

  4. Terahertz applications: trends and challenges

    Science.gov (United States)

    Robin, Thierry; Bouye, Clementine; Cochard, Jacques

    2014-03-01

    The objective of our work [1] was to determine the opportunities and challenges for Terahertz application development for the next years with a focus on systems: for homeland security and for Non Destructive Testing (NDT). Terahertz radiation has unique abilities and has been the subject of extensive research for many years. Proven concepts have emerged for numerous applications including Industrial NDT, Security, Health, Telecommunications, etc. Nevertheless, there has been no widely deployed application and Businesses based on THz technologies are still in their infancy. Some technological, market and industrial barriers are still to be broken. We summarize the final analysis and data: study of the technology trends and major bottlenecks per application segment, main challenges to be addressed in the next years, key opportunities for THz technologies based on market needs and requirements.

  5. Towards the full quantum dynamical description of photon induced processes in $\\mathrm{D}_{2}^{+}$

    CERN Document Server

    Tóth, Attila; Kiss, Zsolt G; Halász, Gábor J; Vibók, Ágnes

    2016-01-01

    A new quantum dynamical model has been developed to describe the dissociative ionization of deuterium molecular ions by intense laser pulses ($\\tau=10$ fs, $\\lambda=200$ nm and $I=3\\times10^{13}$ W/cm$^{2}$). We calculated the ionization probability densities by solving the time-dependent Schr\\"odinger equation numerically. Throughout the simulation the nuclear vibration was considered as a dynamic variable with fixed molecular axis orientation. Benchmark calculations were performed for the ionization of $\\mathrm{HeH}^{++}$, for which accurate numerical results are available in the literature, in order to check the performance of this new restricted model.

  6. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering

    Science.gov (United States)

    Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.; Watson, Michael A.; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C.

    2016-12-01

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  7. Optical Effects Accompanying the Dynamical Bragg Diffraction in Linear 1D Photonic Crystals Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Anton Maydykovskiy

    2014-10-01

    Full Text Available We survey our recent results on the observation and studies of the effects accompanying the dynamical Bragg diffraction in one-dimensional photonic crystals (PhC. Contrary to the kinematic Bragg diffraction, the dynamical one considers a continuous interaction between the waves travelling within a spatially-periodic structure and is the most pronounced in the so called Laue geometry, leading to a number of exciting phenomena. In the described experiments, we study the PhC based on porous silicon or porous quartz, made by the electrochemical etching of crystalline silicon with the consequent thermal annealing. Importantly, these PhC are approximately hundreds of microns thick and contain a few hundreds of periods, so that the experiments in the Laue diffraction scheme are available. We discuss the effect of the temporal splitting of femtosecond laser pulses and show that the effect is quite sensitive to the polarization and the phase of a femtosecond laser pulse. We also show the experimental realization of the Pendular effect in porous quartz PhC and demonstrate the experimental conditions for the total spatial switching of the output radiation between the transmitted and diffracted directions. All described effects are of high interest for the control over the light propagation based on PhC structures.

  8. Strain Imaging Using Terahertz Waves and Metamaterials

    Science.gov (United States)

    2016-11-01

    TECHNICAL REPORT RDMR-WD-16-48 STRAIN IMAGING USING TERAHERTZ WAVES AND METAMATERIALS Henry O. Everitt and Martin S...TITLE AND SUBTITLE Strain Imaging Using Terahertz Waves and Metamaterials 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt, Martin S...technique to measure strain in opaque objects. Experiments were conducted utilizing metamaterials on polydimethylsiloxane (PDMS) sheets to produce

  9. Ultrabroadband terahertz conductivity of Si nanocrystal films

    DEFF Research Database (Denmark)

    Cooke, D. G.; Meldrum, A.; Jepsen, P. Uhd

    2012-01-01

    The terahertz conductivity of silicon nanoparticles embedded in glass with varying density is studied with ultra-broadband terahertz spectroscopy on picosecond time scales following fs optical excitation. The transition from relatively isolated charge carriers to densities which allow inter...... the applicability of this simple model to the conductivity of nanoparticle ensembles over the entire THz spectral window....

  10. Terahertz Nanoscience of Multifunctional Materials: Atomistic Exploration

    Science.gov (United States)

    2014-03-28

    Approved for Public Release; Distribution Unlimited Final report on the project "Terahertz Nanoscience of Multifunctional Materials: Atomistic...non peer-reviewed journals: Final report on the project "Terahertz Nanoscience of Multifunctional Materials: Atomistic Exploration" Report Title In... nanoscience of multifunctional materials: atomistic exploration” PI:Inna Ponomareva We have accomplished the following. 1. We have developed a set of

  11. Terahertz homodyne self-mixing transmission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, Till, E-mail: till.mohr@physik.tu-darmstadt.de; Breuer, Stefan; Blömer, Dominik; Patel, Sanketkumar; Schlosser, Malte; Birkl, Gerhard; Elsäßer, Wolfgang [Institute for Applied Physics, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt (Germany); Simonetta, Marcello [Dipartimento di Ingegneria Industriale e dell' Informazione, Università di Pavia, Via Ferrata 1, i-27100 Pavia (Italy); Deninger, Anselm [Toptica Photonics AG, Lochhamer Schlag 19, 82166 Gräfelfing (Germany); Giuliani, Guido [Dipartimento di Ingegneria Civile e Architettura, Università di Pavia, Via Ferrata 3, i-27100 Pavia (Italy)

    2015-02-09

    A compact homodyne self-mixing terahertz spectroscopy concept is experimentally investigated and confirmed by calculations. This method provides amplitude and phase information of the terahertz radiation emitted by a photoconductive antenna in a transmission experiment where a rotating chopper wheel serves as a feedback mirror. As a proof-of-principle experiment the frequency-dependent refractive index of Teflon is measured.

  12. Introduction to THz wave photonics

    CERN Document Server

    Zhang, X-C

    2009-01-01

    Introduction to THz Wave Photonics examines the science and technology related to terahertz wave technologies, taking a dual approach between presenting the field 's history while simultaneously providing an overview of existing technology. The latest research in developing THz areas such as electromagnetic waves are presented, along with an introduction to continuous wave THz technology. Authors X.-C. Zhang and Jingzhou Xu place particular emphasis on pulsed THz technology, among many other facets of THz technology including: Complete coverage of THz wave spectroscopy and imagingA discussion

  13. Characterization of low-loss waveguides and devices for terahertz radiation

    Science.gov (United States)

    Rahman, B. M. Azizur; Markides, Christos; Uthman, Muhammad; Quadir, Anita; Kejalakshmy, Namassivayane; Themistos, Christos

    2014-03-01

    A rigorous full-vectorial modal solution approach based on the finite element method is used to find the propagation properties of terahertz (THz) waveguides, such as photonic crystal fibers, quantum cascaded lasers, plasmonic waveguides, power splitters, and narrow-band filters. Design approaches to reduce the modal loss due to the material and leakage loss in photonic crystal fibers and in metal-coated hollow-glass plasmonic waveguides have also been considered. The plasmonic confinement and gain threshold of quantum cascaded lasers used as THz sources and the chromatic dispersion in plasmonic waveguides are also presented.

  14. Dynamical theory of photon superradiative emission by nanoscale system of Bose-condensed magnons

    Science.gov (United States)

    Andrianov, Sergey N.; Moiseev, Sergey A.

    2017-09-01

    We have shown the possibility of non-Dicke superradiance for non-ideal magnon Bose-Einstein condensate (BEC) in a broadband frequency bath. Here, it is found that all the stored energy in the system of Bose-condensed magnons can be irradiated into a short pulse with a time delay caused by the strong frequency modulation of magnons due to direct inter-particle interactions in the Bose-condensed state. The last mechanism radically distinguishes this effect from the well-known Dicke superradiance of two-level atomic ensemble where the delay is connected with enhancement of the inter-atomic correlations due to exchange by virtual photons. In our case, the superradiance is the consequence of Bose-condensation in the coherent state where the particles are coupled by direct interaction. We have discussed the conditions for observation of this effect for Bose-condensed magnons in a solid-state sample with a spatial size smaller comparing with the wavelength of the emitted field. In general, we had shown that this kind of superradiance can proceed in samples with ferromagnetic type interaction. As for the antiferromagnetic ones, the effect of magnon superradiance takes place without delay.

  15. Toward an Impurity Band PV: Dynamics of Carriers Generated via Sub-band gap Photons

    Science.gov (United States)

    Sullivan, Joseph; Simmons, Christie; Akey, Austin; Aziz, Michael; Buonassisi, Tonio

    2013-03-01

    Intermediate band solar cells are a pathway to cells that surpass the Shockley-Queisser limit by enabling the utilization of sub-band gap photons. A proposed method for fabricating an intermediate band material is to use impurities that introduce electronic levels within the band gap. At sufficiently high dopant concentrations, band formation may lead to a suppression of Shockley-Reed-Hall recombination, an idea known as ``lifetime recovery''. We investigate a proposed intermediate band material, silicon hyper-doped with sulfur. This material system exhibits strong sub-band gap optical absorption and metallic conductivity at sufficiently high sulfur concentrations, which makes it a strong candidate for an impurity-band material. We employ low-temperature photoconductivity using sub-band gap light to estimate the trapping rate of electrons in the conduction band. We vary the sulfur concentration near the critical value for the metal-insulator transition to test the idea of ``lifetime recovery'' in the S:Si system.

  16. Terahertz absorption of lysozyme in solution

    Science.gov (United States)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2017-08-01

    Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.

  17. Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission

    Science.gov (United States)

    Islam, Md. Saiful; Sultana, Jakeya; Rana, Sohel; Islam, Mohammad Rakibul; Faisal, Mohammad; Kaijage, Shubi F.; Abbott, Derek

    2017-03-01

    In this paper, we present a porous-core circular photonic crystal fiber (PC-CPCF) with ultra-low material loss for efficient terahertz wave transmission. The full vector finite element method with an ideally matched layer boundary condition is used to characterize the wave guiding properties of the proposed fiber. At an operating frequency of 1 THz, simulated results exhibit an extremely low effective material loss of 0.043 cm-1, higher core power fraction of 47% and ultra-flattened dispersion variation of 0.09 ps/THz/cm. The effects of important design properties such as single mode operation, confinement loss and effective area of the fiber are investigated in the terahertz regime. Moreover, the proposed fiber can be fabricated using the capillary stacking or sol-gel technique and be useful for long distance transmission of terahertz waves.

  18. Neuromorphic Silicon Photonics

    CERN Document Server

    Tait, Alexander N; de Lima, Thomas Ferreira; Wu, Allie X; Nahmias, Mitchell A; Shastri, Bhavin J; Prucnal, Paul R

    2016-01-01

    We report first observations of an integrated analog photonic network, in which connections are configured by microring weight banks, as well as the first use of electro-optic modulators as photonic neurons. A mathematical isomorphism between the silicon photonic circuit and a continuous neural model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, existing neural engineering tools can be adapted to silicon photonic information processing systems. A 49-node silicon photonic neural network programmed using a "neural compiler" is simulated and predicted to outperform a conventional approach 1,960-fold in a toy differential system emulation task. Photonic neural networks leveraging silicon photonic platforms could access new regimes of ultrafast information processing for radio, control, and scientific computing.

  19. Coherent Terahertz Radiation from Multiple Electron Beams Excitation within a Plasmonic Crystal-like structure

    Science.gov (United States)

    Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang

    2017-01-01

    Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.

  20. Terahertz Solitons in Biomolecular Systems and their Excitation by External Electromagnetic Field

    Directory of Open Access Journals (Sweden)

    Bugay А.N.

    2015-01-01

    Full Text Available Nonlinear dynamics of charge and acoustic excitations in cellular microtubules is considered. Different types of nonlinear solitary waves were studied taking account for dissipation. The mechanism of electro-acoustic pulse excitation by external electromagnetic field of terahertz frequency is recognized.

  1. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  2. Ultrafast spintronics roadmap: from femtosecond spin current pulses to terahertz non-uniform spin dynamics via nano-confined spin transfer torques (Conference Presentation)

    Science.gov (United States)

    Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe

    2016-10-01

    Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.

  3. Diffraction control in PT-symmetric photonic lattices: from beam rectification to dynamic localization

    CERN Document Server

    Kartashov, Yaroslav V; Konotop, Vladimir V; Torner, Lluis

    2016-01-01

    We address the propagation of light beams in longitudinally modulated PT-symmetric lattices, built as arrays of couplers with periodically varying separation between their channels, and show a number of possibilities for efficient diffraction control available in such non-conservative structures. The dynamics of light in such lattices crucially depends on the ratio of the switching length for the straight segments of each coupler and the longitudinal lattice period. Depending on the longitudinal period, one can achieve either beam rectification, when the input light propagates at a fixed angle across the structure without diffractive broadening, or dynamic localization, when the initial intensity distribution is periodically restored after each longitudinal period. Importantly, the transition between these two different propagation regimes can be achieved by tuning only gain and losses acting in the system, provided that the PT-symmetry remains unbroken. The impact of Kerr nonlinearity is also discussed.

  4. Instrumentation and Beam Dynamics Study of Advanced Electron-Photon Facility in Indiana University

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tianhuan [Indiana Univ., Bloomington, IN (United States)

    2011-08-01

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been specified. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  5. Instrumentation and beam dynamics study of advanced electron-photon facility in Indiana University

    Science.gov (United States)

    Luo, Tianhuan

    The Advanced eLectron-PHoton fAcility (ALPHA) is a compact electron accelerator under construction and being commissioned at the Indiana University Center for Exploration of Energy and Matter (CEEM). In this thesis, we have studied the refurbished Cooler Injector Synchrotron (CIS) RF cavity using both the transmission line model and SUPERFISH simulation. Both low power and high power RF measurements have been carried out to characterize the cavity. Considering the performance limit of ferrite, we have designed a new ferrite loaded, co-axial quarter wave like cavity with similar structure but a more suitable ferrite material. We have also designed a traveling wave stripline kicker for fast extraction by POISSON and Microwave Studio. The strips' geometry is trimmed to maximize the uniformity of the kicking field and match the impedance of the power cables. The time response simulation shows the kicker is fast enough for machine operation. The pulsed power supply requirement has also been speci ed. For the beam diagnosis in the longitudinal direction, we use a wideband Wall Gap Monitor (WGM) served in CIS. With proper shielding and amplification to get good WGM signal, we have characterized the injected and extracted beam signal in single pass commissioning, and also verified the debunching effect of the ALPHA storage ring. A modulation-demodulation signal processing method is developed to measure the current and longitudinal profile of injected beam. By scanning the dipole strength in the injection line, we have reconstructed the tomography of the longitudinal phase space of the LINAC beam. In the accumulation mode, ALPHA will be operated under a low energy and high current condition, where intra beam scattering (IBS) becomes a dominant effect on the beam emittance. A self consistent simulation, including IBS effect, gas scattering and linear coupling, has been carried out to calculate the emittance of the stored beam.

  6. High-harmonic and terahertz wave spectroscopy (HATS) for aligned molecules

    CERN Document Server

    Huang, Yindong; Zhao, Jing; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Yuan, Jianmin; Zhao, Zengxiu

    2016-01-01

    We present the experimental and theoretical details of our recent published letter [Phys. Rev. Lett. 115. 123002] on synchronized high-harmonic and terahertz-wave spectroscopy (HATS) from nonadiabatically aligned nitrogen molecules in dual-color laser fields. Associating the alignment-angle dependent terahertz wave generation with the synchronizing high-harmonic signal, the angular differential photoionization cross section (PICS) for molecules can be reconstructed, and the minima of the angle on PICS show great convergence between the theoretical predictions and the experimental deduced results. We also show the optimal relative phase between the dual-color laser fields for terahertz wave generation dose not change with the alignment angle at a precision of $50$ attoseconds. This all-optical method provides an alternative for investigating molecular structures and dynamics.

  7. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    Science.gov (United States)

    Wang, Yuwen; Zhang, Yongyou; Zhang, Qingyun; Zou, Bingsuo; Schwingenschlogl, Udo

    2016-01-01

    We study the dynamics of an ultrafast single photon pulse in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. We find that for any single photon input the transmissivity depends periodically on the separation between the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse can be modified by controlling the coupling between the waveguide and Jaynes-Cummings system. Tailoring of the waveform is important for single photon manipulation in quantum informatics. PMID:27653770

  8. Dynamics of single photon transport in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system

    KAUST Repository

    Wang, Yuwen

    2016-09-22

    We study the dynamics of an ultrafast single photon pulse in a one-dimensional waveguide two-point coupled with a Jaynes-Cummings system. We find that for any single photon input the transmissivity depends periodically on the separation between the two coupling points. For a pulse containing many plane wave components it is almost impossible to suppress transmission, especially when the width of the pulse is less than 20 times the period. In contrast to plane wave input, the waveform of the pulse can be modified by controlling the coupling between the waveguide and Jaynes-Cummings system. Tailoring of the waveform is important for single photon manipulation in quantum informatics. © The Author(s) 2016.

  9. Supra-nanosecond dynamics of a red-to-blue photon upconversion system.

    Science.gov (United States)

    Singh-Rachford, Tanya N; Castellano, Felix N

    2009-03-16

    Blue-green upconverted emission from 2-chloro-bis-phenylethynylanthracene (2CBPEA) sensitized by the red-absorbing platinum(II)tetraphenyltetrabenzoporphyrin (PtTPBP) has been investigated in N,N-dimethylformamide (DMF). The upconverted singlet fluorescence of 2CBPEA resulting from its sensitized triplet-triplet annihilation (TTA) is observed following selective excitation of PtTPBP at 635 +/- 5 nm. Stern-Volmer analysis of the photoluminescence quenching of PtTPBP by 2CBPEA yields a bimolecular quenching constant of 1.62 x 10(9) M(-1) s(-1), slightly below the diffusion limit in DMF at room temperature. The TTA process was confirmed by the quadratic dependence of the integrated upconverted singlet fluorescence emission profile of 2CBPEA measured as a function of 635 nm incident laser power. Time-resolved emission spectra following 630 nm nanosecond laser pulses illustrate the prompt nature of porphyrin phosphorescence quenching and the delayed nature of the upconverted singlet fluorescence from 2CBPEA. Transient absorption decays monitored at the peak of the characteristic 2CBPEA triplet-triplet excited-state absorption (490 nm) measured as a function of incident nanosecond 630 nm pump laser fluence recovered the rate constant for the sensitized TTA process, k(TT) = 5.64 +/- 0.08 x 10(9) M(-1) s(-1). To calculate this rate constant, we determined the triplet-triplet extinction coefficient of 2CBPEA (12,500 M(-1) cm(-1) at 490 nm) utilizing triplet energy transfer from donors with known excited-state extinction coefficients, namely [Ru(bpy)(3)](2+) and 2-acetonaphthone and averaged these values. The current work, to the best of our knowledge, represents the first example of red-to-blue upconversion thus demonstrating another viable sensitized TTA process, as well as providing the first measurements of k(TT) in a photon upconverting scheme. As 2CBPEA is stable under ambient conditions, this chromophore represents an almost ideal candidate for light

  10. Photon mass from inflation.

    Science.gov (United States)

    Prokopec, Tomislav; Törnkvist, Ola; Woodard, Richard

    2002-09-01

    We consider vacuum polarization from massless scalar electrodynamics in de Sitter inflation. The theory exhibits a 3+1 dimensional analog of the Schwinger mechanism in which a photon mass is dynamically generated. The mechanism is generic for light scalar fields that couple minimally to gravity. The nonvanishing of the photon mass during inflation may result in magnetic fields on cosmological scales.

  11. Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations.

    Science.gov (United States)

    Longhi, Stefano

    2007-02-01

    It is theoretically shown that storage and time reversal of light pulses can be achieved in a coupled-resonator optical waveguide by dynamic tuning of the cavity resonances without maintaining the translational invariance of the system. The control exploits the Bloch oscillation motion of a light pulse in the presence of a refractive index ramp, and it is therefore rather different from the mechanism of adiabatic band compression and reversal proposed by Yanik and Fan in recent works [Phys. Rev. Lett., 92, 083901 (2004); 93, 173903 (2004)].

  12. Third-order terahertz response of gapped, nearly-metallic armchair graphene nanoribbons

    Science.gov (United States)

    Wang, Yichao; Andersen, David R.

    2016-11-01

    We use time dependent perturbation theory to study the terahertz nonlinear response of gapped intrinsic and extrinsic nearly-metallic armchair graphene nanoribbons of finite length under an applied electric field. Generally, the nonlinear conductances exhibit contributions due to single-photon, two-photon, and three-photon processes. The interference between each of these processes results in remarkably complex behavior for the third-order conductances, including quantum dot signatures that should be measurable with a relatively simple experimental configuration. Notably, we observe sharp resonances in the isotropic third-order response due to the Van Hove singularities in the density of states at one-, two-, and three-photon resonances. However, these resonances are absent in the anisotropic third-order response; a result of the overall symmetry of the system.

  13. Decay dynamics of quantum dots influenced by the local density of optical states of two-dimensional photonic crystal membranes

    DEFF Research Database (Denmark)

    Julsgaard, Brian; Johansen, Jeppe; Stobbe, Søren

    2008-01-01

    We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two-...... the bandgap in good agreement with local density of states calculations.......We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quantum dots’ spontaneous emission rates as the two...

  14. Understanding the dynamics of photoionization-induced solitons in gas-filled hollow-core photonic crystal fibers

    CERN Document Server

    Saleh, Mohammed F

    2011-01-01

    We present in detail our developed model [Saleh et al., Phys. Rev. Lett. 107] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizing gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency red-shift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blue-shift in the frequency domain. By applying the Gagnon-B\\'{e}langer gauge transformation, multi-peak `inverted gravity-like' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range non-local interactions between temporally distant solitons, unique of...

  15. Handbook of terahertz technologies devices and applications

    CERN Document Server

    Song, Ho-Jin

    2015-01-01

    Terahertz waves, which lie in the frequency range of 0.1-10 THz, have long been investigated in a few limited fields, such as astronomy, because of a lack of devices for their generation and detection. Several technical breakthroughs made over the last couple of decades now allow us to radiate and detect terahertz waves more easily, which has triggered the search for new uses of terahertz waves in many fields, such as bioscience, security, and information and communications technology. The book covers some of the technical breakthroughs in terms of device technologies. It discusses not only th

  16. Terahertz Tools Advance Imaging for Security, Industry

    Science.gov (United States)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  17. Fiber-based swept-source terahertz radar.

    Science.gov (United States)

    Huang, Yu-Wei; Tseng, Tzu-Fang; Kuo, Chung-Chiu; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-05-01

    We demonstrate an all-terahertz swept-source imaging radar operated at room temperature by using terahertz fibers for radiation delivery and with a terahertz-fiber directional coupler acting as a Michelson interferometer. By taking advantage of the high water reflection contrast in the low terahertz regime and by electrically sweeping at a high speed a terahertz source combined with a fast rotating mirror, we obtained the living object's distance information with a high image frame rate. Our experiment showed that this fiber-based swept-source terahertz radar could be used in real time to locate concealed moving live objects with high stability.

  18. Enhancement of terahertz pulse emission by optical nanoantenna.

    Science.gov (United States)

    Park, Sang-Gil; Jin, Kyong Hwan; Yi, Minwoo; Ye, Jong Chul; Ahn, Jaewook; Jeong, Ki-Hun

    2012-03-27

    Bridging the gap between ultrashort pulsed optical waves and terahertz (THz) waves, the THz photoconductive antenna (PCA) is a major constituent for the emission or detection of THz waves by diverse optical and electrical methods. However, THz PCA still lacks employment of advanced breakthrough technologies for high-power THz emission. Here, we report the enhancement of THz emission power by incorporating optical nanoantennas with a THz photoconductive antenna. The confinement and concentration of an optical pump beam on a photoconductive substrate can be efficiently achieved with optical nanoantennas over a high-index photoconductive substrate. Both numerical and experimental results clearly demonstrate the enhancement of THz wave emission due to high photocarrier generation at the plasmon resonance of nanoantennas. This work opens up many opportunities for diverse integrated photonic elements on a single PCA at THz and optical frequencies.

  19. Optically thin hybrid cavity for terahertz photo-conductive detectors

    Science.gov (United States)

    Thompson, R. J.; Siday, T.; Glass, S.; Luk, T. S.; Reno, J. L.; Brener, I.; Mitrofanov, O.

    2017-01-01

    The efficiency of photoconductive (PC) devices, including terahertz detectors, is constrained by the bulk optical constants of PC materials. Here, we show that optical absorption in a PC layer can be modified substantially within a hybrid cavity containing nanoantennas and a Distributed Bragg Reflector. We find that a hybrid cavity, consisting of a GaAs PC layer of just 50 nm, can be used to absorb >75% of incident photons by trapping the light within the cavity. We provide an intuitive model, which describes the dependence of the optimum operation wavelength on the cavity thickness. We also find that the nanoantenna size is a critical parameter, small variations of which lead to both wavelength shifting and reduced absorption in the cavity, suggesting that impedance matching is key for achieving efficient absorption in the optically thin hybrid cavities.

  20. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  1. Advances in the biological effects of terahertz wave radiation

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Yan-Hui Hao; Rui-Yun Peng

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  2. Cascaded Parametric Amplification for Highly Efficient Terahertz Generation

    CERN Document Server

    Ravi, Koustuban; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Muecke, Oliver D; Kaertner, Franz X

    2016-01-01

    A highly efficient, practical approach to high-energy terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. The THz wave initially generated by difference frequency generation between a strong narrowband optical pump and optical seed (0.1-10% of pump energy) kick-starts a repeated or cascaded energy down-conversion of pump photons. This helps to greatly surpass the quantum-defect efficiency and results in exponential growth of THz energy over crystal length. In cryogenically cooled periodically poled lithium niobate, energy conversion efficiencies >8% for 100 ps pulses are predicted. The calculations account for cascading effects, absorption, dispersion and laser-induced damage. Due to the coupled nonlinear interaction of multiple triplets of waves, THz-COPA exhibits physics distinct from conventional three-wave mixing parametric amplifiers. This in turn governs optimal phase-matching conditions, evolution of optical spectra as well as limitations o...

  3. Terahertz imaging: applications and perspectives.

    Science.gov (United States)

    Jansen, Christian; Wietzke, Steffen; Peters, Ole; Scheller, Maik; Vieweg, Nico; Salhi, Mohammed; Krumbholz, Norman; Jördens, Christian; Hochrein, Thomas; Koch, Martin

    2010-07-01

    Terahertz (THz) spectroscopy, and especially THz imaging, holds large potential in the field of nondestructive, contact-free testing. The ongoing advances in the development of THz systems, as well as the appearance of the first related commercial products, indicate that large-scale market introduction of THz systems is rapidly approaching. We review selected industrial applications for THz systems, comprising inline monitoring of compounding processes, plastic weld joint inspection, birefringence analysis of fiber-reinforced components, water distribution monitoring in polymers and plants, as well as quality inspection of food products employing both continuous wave and pulsed THz systems.

  4. Terahertz wide aperture reflection tomography

    Science.gov (United States)

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M.; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  5. Graphene hyperlens for terahertz radiation

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Lavrinenko, Andrei; Chigrin, Dmitry N.

    2012-01-01

    We propose a graphene hyperlens for the terahertz (THz) range. We employ and numerically examine a structured graphene-dielectric multilayered stack that is an analog of a metallic wire medium. As an example of the graphene hyperlens in action, we demonstrate an imaging of two point sources...... separated by a distance λ0/5. An advantage of such a hyperlens as compared to a metallic one is the tunability of its properties by changing the chemical potential of graphene. We also propose a method to retrieve the hyperbolic dispersion, check the effective medium approximation, and retrieve...

  6. Terahertz Spectroscopy of Novel Superconductors

    Directory of Open Access Journals (Sweden)

    Stefano Lupi

    2011-01-01

    Full Text Available Through the coupling of Synchrotron Radiation and Michelson interferometry, one may obtain in the terahertz (THz range transmittance and reflectivity spectra with a signal-to-noise ratio (S/N up to 103. In this paper we review the application of this spectroscopic technique to novel superconductors with an increasing degree of complexity: the single-gap boron-doped diamond; the isotropic multiband V3Si, where superconductivity opens two gaps at the Fermi energy; the CaAlSi superconductor, isostructural to MgB2, with a single gap in the hexagonal ab plane and two gaps along the orthogonal c axis.

  7. Metamaterial Absorbers in Terahertz Band

    Institute of Scientific and Technical Information of China (English)

    Qi-Ye Wen; Huai-Wu Zhang; Qing-Hui Yang; Man-Man Mo

    2013-01-01

    In recent years, a great deal of effort has been made to a create terahertz (THz) wave absorber based on metamaterials (MM). Metamaterials absorbers have a variety of potential applications including thermal emitters, detector, stealth technology, phase imaging, etc. In this paper, we firstly introduce the basic structure and work principle of the THz MM absorbers, and a transmission line model is developed for devices analysis. To expand the application of THz absorbers, dual-band and broadband THz MM absorbers are designed, fabricated, and measured. At the end of this article, the future development trends of MM absorbers are discussed.

  8. Fast photonic information processing using semiconductor lasers with delayed optical feedback: role of phase dynamics.

    Science.gov (United States)

    Nguimdo, Romain Modeste; Verschaffelt, Guy; Danckaert, Jan; Van der Sande, Guy

    2014-04-01

    Semiconductor lasers subject to delayed optical feedback have recently shown great potential in solving computationally hard tasks. By optically implementing a neuro-inspired computational scheme, called reservoir computing, based on the transient response to optical data injection, high processing speeds have been demonstrated. While previous efforts have focused on signal bandwidths limited by the semiconductor laser's relaxation oscillation frequency, we demonstrate numerically that the much faster phase response makes significantly higher processing speeds attainable. Moreover, this also leads to shorter external cavity lengths facilitating future on-chip implementations. We numerically benchmark our system on a chaotic time-series prediction task considering two different feedback configurations. The results show that a prediction error below 4% can be obtained when the data is processed at 0.25 GSamples/s. In addition, our insight into the phase dynamics of optical injection in a semiconductor laser also provides a clear understanding of the system performance at different pump current levels, even below solitary laser threshold. Considering spontaneous emission noise and noise in the readout layer, we obtain good prediction performance at fast processing speeds for realistic values of the noise strength.

  9. Terahertz spectroscopic investigations of leather in terahertz wave range

    Science.gov (United States)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Pulsed THz time-domain spectroscopy is a coherent technique, in which both the amplitude and the phase of a THz pulse are measured. Recently, material characterization using THz spectroscopy has been applied to biochemicals, pharmaceuticals, polymers and semiconductors and has given us important information. Moreover, THz imaging has progressed and is expected to be applicable for the identification of narcotics and explosives. The most important and characteristic point of THz spectroscopy is said to be its ability to observe intermolecular vibrations in contrast to infrared spectroscopy (IR), which observes intramolecular vibrations. Coherent detection enables direct calculations of both the imaginary and the real parts of the refractive index without using the Kramers-Kronig relations. Terahertz wave spectroscopy has been used to study the properties and absorption spectra characteristic of materials. In this paper, the spectral characteristics of cow skin, pig skin sheep skin, horse skin and deer skin have been measured with terahertz time-domain spectroscopy in the range of 0.1~2.0THz. The results show that THz-TDS technology provides an important tool for quality analysis and detection of leathers.

  10. Graphene vertical hot-electron terahertz detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Satou, A.; Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Electronics, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2014-09-21

    We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such as tungsten disulfide and related materials). The operation of these detectors is enabled by the thermionic emissions from the GLs enhanced by the electrons heated by incoming THz radiation. Hence, these detectors are the hot-electron bolometric detectors. The electron heating is primarily associated with the intraband absorption (the Drude absorption). In the frame of the developed model, we calculate the responsivity and detectivity as functions of the photon energy, GL doping, and the applied voltage for the GLDs with different number of GLs. The detectors based on the cascade multiple-GL structures can exhibit a substantial photoelectric gain resulting in the elevated responsivity and detectivity. The advantages of the THz detectors under consideration are associated with their high sensitivity to the normal incident radiation and efficient operation at room temperature at the low end of the THz frequency range. Such GLDs with a metal grating, supporting the excitation of plasma oscillations in the GL-structures by the incident THz radiation, can exhibit a strong resonant response at the frequencies of several THz (in the range, where the operation of the conventional detectors based on A{sub 3}B{sub 5} materials, in particular, THz quantum-well detectors, is hindered due to a strong optical phonon radiation absorption in such materials). We also evaluate the characteristics of GLDs in the mid- and far-infrared ranges where the electron heating is due to the interband absorption in GLs.

  11. Quantized photonic spin Hall effect in graphene

    Science.gov (United States)

    Cai, Liang; Liu, Mengxia; Chen, Shizhen; Liu, Yachao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2017-01-01

    We examine the photonic spin Hall effect (SHE) in a graphene-substrate system with the presence of an external magnetic field. In the quantum Hall regime, we demonstrate that the in-plane and transverse spin-dependent splittings in the photonic SHE exhibit different quantized behaviors. The quantized SHE can be described as a consequence of a quantized geometric phase (Berry phase), which corresponds to the quantized spin-orbit interaction. Furthermore, an experimental scheme based on quantum weak value amplification is proposed to detect the quantized SHE in the terahertz frequency regime. By incorporating the quantum weak measurement techniques, the quantized photonic SHE holds great promise for detecting quantized Hall conductivity and the Berry phase. These results may bridge the gap between the electronic SHE and photonic SHE in graphene.

  12. Supercontinuous high harmonic generation from asymmetric molecules in the presence of a terahertz field

    Institute of Scientific and Technical Information of China (English)

    Du Hong-Chuan; Wang Hui-Qiao; Hu Bi-Tao

    2011-01-01

    We have investigated high-order harmonic generation from asymmetric molecules. It is found that supercontinuous high harmonics, which are produced from asymmetric molecules by significantly steering the ionization, are broken down when the electric field of the 5-fs driving laser pulse is increased to 0.16 a.u.The high harmonic generation from asymmetric molecules with the presence of a terahertz field is also investigated. This reveals that the terahertz controlled laser pulse significantly increases the energy difference between photons, emitted from the ejected electrons,in the first and second halves of the optical cycle at the centre of the driving laser pulse. In this way, a 200-eV broadbandsupercontinuum can be produced in the plateau, from which a 60-as pulse with a bandwidth of 60 eV can be directly obtained with a minor post-pulse.

  13. Microwave-to-terahertz dielectric resonators for liquid sensing in microfluidic systems

    Science.gov (United States)

    Klein, N.; Watts, C.; Hanham, S. M.; Otter, W. J.; Ahmad, M. M.; Lucyszyn, S.

    2016-09-01

    The microwave-to-terahertz frequency range offers unique opportunities for the sensing of liquids based on the degree of molecular orientational and electronic polarization, Debye relaxation due to intermolecular forces between (semi-)polar molecules and collective vibrational modes within complex molecules. Methods for the fast dielectric characterization of (sub-)nanolitre volumes of mostly aqueous liquids and biological cell suspensions are discussed, with emphasis on labon- chip approaches aimed towards single-cell detection and label-free flow cytometry at microwave-to-terahertz frequencies. Among the most promising approaches, photonic crystal defect cavities made from high-resistivity silicon are compared with metallic split-ring resonant systems and high quality factor (Q-factor) whispering gallery-type resonances in dielectric resonators. Applications range from accurate haemoglobin measurements on nanolitre samples to label-free detection of circulating tumor cells.

  14. Terahertz wave generation and detection in double-graphene layered van der Waals heterostructures

    Science.gov (United States)

    Yadav, Deepika; Boubanga Tombet, Stephane; Watanabe, Takayuki; Arnold, Stevanus; Ryzhii, Victor; Otsuji, Taiichi

    2016-12-01

    We report on the first experimental observation of terahertz emission and detection in a double graphene layered (GL) heterostructure which comprises a thin hexagonal-boron nitride tunnel-barrier layer sandwiched between two separately contacted GLs. Inter-GL population inversion is induced by electrically biasing the structure. Resonant tunneling and negative differential resistance is expected when the two graphene band structures are perfectly aligned. However, in the case of small misalignments we demonstrate that the photon-absorption/emission-assisted non-resonant- and resonant-tunneling causes all excess charges in the n-type GL to recombine with the holes in the p-type GL giving rise to an increased measured dc current. This work highlights a novel strategy for the realization of efficient voltage-tunable terahertz emitters and detectors.

  15. Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime

    Science.gov (United States)

    Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui

    2015-05-01

    The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.

  16. Engineering the Losses and Beam Divergence in Arrays of Patch Antenna Microcavities for Terahertz Sources

    Science.gov (United States)

    Madéo, Julien; Pérez-Urquizo, Joel; Todorov, Yanko; Sirtori, Carlo; Dani, Keshav M.

    2017-07-01

    We perform a comprehensive study on the emission from finite arrays of patch antenna microcavities designed for the terahertz range by using a finite element method. The emission properties including quality factors, far-field pattern, and photon extraction efficiency are investigated for etched and non-etched structures as a function of the number of resonators, the dielectric layer thickness, and period of the array. In addition, the simulations are achieved for lossy and perfect metals and dielectric layers, allowing to extract the radiative and non-radiative contributions to the total quality factors of the arrays. Our study shows that this structure can be optimized to obtain low beam divergence (FWHM 50% while keeping a strongly localized mode. These results show that the use of these microcavities would lead to efficient terahertz emitters with a low divergence vertical emission and engineered losses.

  17. Interferometric two-photon photoemission correlation technique and femtosecond wet-electron dynamics at the TiO2 (110) surface

    Institute of Scientific and Technical Information of China (English)

    Bin LI; Jin ZHAO; Min FENG; Ken ONDA

    2008-01-01

    The femtosecond time-resolved two-photon pho-toemission (TR-2PP) and the ultra high vacuum (UHV) sur-face science techniques are integrated to investigate the elec-tronic structures and the interracial electron transfer dynamics at the atomically ordered adsorbate overlayers on TiO,2single-crystalline surfaces. Our research into the CH,3OH/TiO,2sys-tem exhibits complex dynamics, providing abundant informa-tion with regard to electron transport and solvation processes in the interfacial solvent structures. These represent the fundamentally physical, photochemical, and photocatalytic reactions of protic chemicals covered with metal-oxides.

  18. Metal Mesh Filters for Terahertz Receivers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of this SBIR program is to develop and demonstrate metal mesh filters for use in NASA's low noise receivers for terahertz astronomy and...

  19. Confocal Terahertz Imaging of Ancient Manuscripts

    Science.gov (United States)

    Flammini, Mariano; Bonsi, Claudia; Ciano, Chiara; Giliberti, Valeria; Pontecorvo, Emanuele; Italia, Paola; DelRe, Eugenio; Ortolani, Michele

    2016-11-01

    Terahertz imaging has the potential to identify and decipher portions of ancient manuscripts, which may be unreadable at infrared and visible wavelengths. We use a scanning confocal terahertz microscope to scan a medieval parchment with music notes and pentagrams written with different inks. The microscope is based on a continuous-wave solid-state source at 0.3 THz, emitting in the free space with a horn antenna, and a high numerical-aperture ellipsoidal reflector. We present terahertz images with diffraction-limited lateral resolution of approximately 0.5 mm, where the different inks all give similar high contrast. Symbols written on the "verso" side of the parchment, barely glimpsed in the near-infrared photograph, leave a clear imprint in the terahertz images. Artifacts due to imperfect flatness of the parchment are also briefly discussed.

  20. Terahertz planar antennas for next generation communication

    CERN Document Server

    Jha, Kumud Ranjan

    2014-01-01

    This book describes various methods to enhance the directivity of  planar antennas, enabling the next generation of high frequency, wireless communication.  The authors discuss various applications to the terahertz regime of the electromagnetic spectrum, with an emphasis on gain enhancement mechanisms.  The numerical models of these antennas are presented and the analytical results are supported, using commercial simulators. The multilayer substrate microstrip transmission line at terahertz frequency is also explored and a method to obtain the various parameters of this interconnect at high frequency is described.  This book will be a valuable resource for anyone needing to explore the terahertz band gap for future wireless communication, in an effort to solve the bandwidth (spectrum scarcity) problem. • Enables development of terahertz communication systems in a license-free band of the electromagnetic spectrum; • Describes methods to design a multi-layered substrate transmission line to reduce var...

  1. Recent developments in terahertz sensing technology

    Science.gov (United States)

    Shur, Michael

    2016-05-01

    Terahertz technology has found numerous applications for the detection of biological and chemical hazardous agents, medical diagnostics, detection of explosives, providing security in buildings, airports, and other public spaces, shortrange covert communications (in the THz and sub-THz windows), and applications in radio astronomy and space research. The expansion of these applications will depend on the development of efficient electronic terahertz sources and sensitive low-noise terahertz detectors. Schottky diode frequency multipliers have emerged as a viable THz source technology reaching a few THz. High speed three terminal electronic devices (FETs and HBTs) have entered the THz range (with cutoff frequencies and maximum frequencies of operation above 1 THz). A new approach called plasma wave electronics recently demonstrated an efficient terahertz detection in GaAs-based and GaN-based HEMTs and in Si MOS, SOI, FINFETs and in FET arrays. This progress in THz electronic technology has promise for a significant expansion of THz applications.

  2. Investigating murals with terahertz reflective tomography

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Wang, Sen; Zhang, Qunxi; Ye, Jiasheng; Zhang, Yan

    2015-08-01

    Terahertz time-domain spectroscopy (THz-TDS) imaging technology has been proposed to be used in the non-invasive detection of murals. THz-TDS images provide structural data of the sample that cannot be obtained with other complementary techniques. In this paper, two types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by the terahertz reflected time domain spectroscopy imaging system. These preset defects include a leaf slice and a slit built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. With this THz tomography, different defects with the changes of optical thickness and their relative refractive index have been identified. The application of reflective pulsed terahertz imaging has been extended to the defect detection of the murals.

  3. Terahertz spectrum of gallic acid

    Science.gov (United States)

    Wu, Meng; Zhao, Guozhong; Wang, Haiyan; Liang, Chengshen

    2009-11-01

    Gallic acid is natural polyphenol compound found in many green plants. More and more experiments have demonstrated that the gallic acid has comprehensive applications. In the field of medicine, the gallic acid plays an important role in antianaphylaxis, antineoplastic, antimycotic, anti-inflammatory, antivirotic, antiasthmatic and inhibiting the degradation of insulin. It also has a lot of applications in chemical industry, food industry and light industry. So it is important to study the terahertz time-domain spectroscopy of gallic acid. Terahertz time-domain spectroscopy (THz-TDS) is a new coherent spectral technology based on the femtosecond laser. In this work, the spectral characteristics of gallic acid in the range of 0.4 THz to 2.6 THz have been measured by THz-TDS. We obtained its absorption and refraction spectra at room temperature. The vibration absorption spectrum of the single molecule between 0.4 THz and 2.6 THz is simulated based on the Density Functional Theory (DFT). It is found that the gallic acid has the spectral response to THz wave in this frequency range. The results show the abnormal dispersion at 1.51 THz and 2.05 THz. These results can be used in the qualitative analysis of gallic acid and the medicine and food inspection.

  4. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  5. Magic Wavelengths for Terahertz Clock Transitions

    OpenAIRE

    Zhou, Xiaoji; Xu, Xia; Chen, Xuzong; Chen, Jingbiao

    2010-01-01

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth Sr, Ca and Mg atoms are investigated while considering terahertz clock transitions between the $^{3}P_{0}, ^{3}P_{1}, ^{3}P_{2}$ metastable triplet states. Our calculation shows that magic wavelengths of trapping laser do exist. This result is important because those metastable states have already been used to realize accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelength for teraher...

  6. Applications of terahertz spectroscopy in biosystems.

    Science.gov (United States)

    Plusquellic, David F; Siegrist, Karen; Heilweil, Edwin J; Esenturk, Okan

    2007-12-03

    Terahertz (THz) spectroscopic investigations of condensed-phase biological samples are reviewed ranging from the simple crystalline forms of amino acids, carbohydrates and polypeptides to the more complex aqueous forms of small proteins, DNA and RNA. Vibrationally resolved studies of crystalline samples have revealed the exquisite sensitivity of THz modes to crystalline order, temperature, conformational form, peptide sequence and local solvate environment and have given unprecedented measures of the binding force constants and anharmonic character of the force fields, properties necessary to improve predictability but not readily obtainable using any other method. These studies have provided benchmark vibrational data on extended periodic structures for direct comparisons with classical (CHARMm) and quantum chemical (density functional theory) theories. For the larger amorphous and/or aqueous phase samples, the THz modes form a continuum-like absorption that arises because of the full accessibility to conformational space and/or the rapid time scale for inter-conversion in these environments. Despite severe absorption by liquid water, detailed investigations have uncovered the photo- and hydration-induced conformational flexibility of proteins, the solvent shell depth of the water/biomolecule boundary layers and the solvent reorientation dynamics occurring in these interfacial layers that occur on sub-picosecond time scales. As such, THz spectroscopy has enhanced and extended the accessibility to intermolecular forces, length- and timescales important in biological structure and activity.

  7. Terahertz molecular resonance of cancer DNA

    Science.gov (United States)

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A.; Son, Joo-Hiuk

    2016-11-01

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  8. Nonlinear terahertz metamaterials with active electrical control

    Science.gov (United States)

    Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.

    2017-09-01

    We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

  9. Metal wires for terahertz wave guiding.

    Science.gov (United States)

    Wang, Kanglin; Mittleman, Daniel M

    2004-11-18

    Sources and systems for far-infrared or terahertz (1 THz = 10(12) Hz) radiation have received extensive attention in recent years, with applications in sensing, imaging and spectroscopy. Terahertz radiation bridges the gap between the microwave and optical regimes, and offers significant scientific and technological potential in many fields. However, waveguiding in this intermediate spectral region still remains a challenge. Neither conventional metal waveguides for microwave radiation, nor dielectric fibres for visible and near-infrared radiation can be used to guide terahertz waves over a long distance, owing to the high loss from the finite conductivity of metals or the high absorption coefficient of dielectric materials in this spectral range. Furthermore, the extensive use of broadband pulses in the terahertz regime imposes an additional constraint of low dispersion, which is necessary for compatibility with spectroscopic applications. Here we show how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity. As an example of this new waveguiding structure, we demonstrate an endoscope for terahertz pulses.

  10. Optoelectronic devices, plasmonics, and photonics with topological insulators

    Science.gov (United States)

    Politano, Antonio; Viti, Leonardo; Vitiello, Miriam S.

    2017-03-01

    Topological insulators are innovative materials with semiconducting bulk together with surface states forming a Dirac cone, which ensure metallic conduction in the surface plane. Therefore, topological insulators represent an ideal platform for optoelectronics and photonics. The recent progress of science and technology based on topological insulators enables the exploitation of their huge application capabilities. Here, we review the recent achievements of optoelectronics, photonics, and plasmonics with topological insulators. Plasmonic devices and photodetectors based on topological insulators in a wide energy range, from terahertz to the ultraviolet, promise outstanding impact. Furthermore, the peculiarities, the range of applications, and the challenges of the emerging fields of topological photonics and thermo-plasmonics are discussed.

  11. Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide

    Science.gov (United States)

    Baierl, S.; Mentink, J. H.; Hohenleutner, M.; Braun, L.; Do, T.-M.; Lange, C.; Sell, A.; Fiebig, M.; Woltersdorf, G.; Kampfrath, T.; Huber, R.

    2016-11-01

    Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of the longitudinal component of the antiferromagnetic order parameter, which are probed by magneto-optical effects of second order in the spin deflection. These observations allow us to dynamically disentangle electronic from lattice-related contributions to magnetic linear birefringence and dichroism—information so far only accessible by ultrafast THz spin control. The nonlinearities discussed here foreshadow physics that will become essential in future subcycle spin switching.

  12. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy.

    Science.gov (United States)

    Sibik, Juraj; Löbmann, Korbinian; Rades, Thomas; Zeitler, J Axel

    2015-08-03

    There is a controversy about the extent to which the primary and secondary dielectric relaxations influence the crystallization of amorphous organic compounds below the glass transition temperature. Recent studies also point to the importance of fast molecular dynamics on picosecond-to-nanosecond time scales with respect to the glass stability. In the present study we provide terahertz spectroscopy evidence on the crystallization of amorphous naproxen well below its glass transition temperature and confirm the direct role of Johari-Goldstein (JG) secondary relaxation as a facilitator of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization in several chosen amorphous drugs. We believe that this technique has immediate applications to quantify the stability of amorphous drug materials.

  13. Predicting Crystallization of Amorphous Drugs with Terahertz Spectroscopy

    DEFF Research Database (Denmark)

    Sibik, Juraj; Löbmann, Korbinian; Rades, Thomas;

    2015-01-01

    -to-nanosecond time scales with respect to the glass stability. In the present study we provide terahertz spectroscopy evidence on the crystallization of amorphous naproxen well below its glass transition temperature and confirm the direct role of Johari–Goldstein (JG) secondary relaxation as a facilitator......There is a controversy about the extent to which the primary and secondary dielectric relaxations influence the crystallization of amorphous organic compounds below the glass transition temperature. Recent studies also point to the importance of fast molecular dynamics on picosecond...... of the crystallization. We determine the onset temperature Tβ above which the JG relaxation contributes to the fast molecular dynamics and analytically quantify the level of this contribution. We then show there is a strong correlation between the increase in the fast molecular dynamics and onset of crystallization...

  14. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gayduchenko, I., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); National Research Centre “Kurchatov Institute,” Moscow 123128 (Russian Federation); Kardakova, A.; Voronov, B.; Finkel, M. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Fedorov, G., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700 (Russian Federation); Jiménez, D. [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain); Morozov, S. [Moscow Institute of Physics and Technology (State University), Dolgoprudny 141700 (Russian Federation); Presniakov, M. [National Research Centre “Kurchatov Institute,” Moscow 123128 (Russian Federation); Goltsman, G. [Physics Department, Moscow State Pedagogical University, Moscow 119991 (Russian Federation); Moscow Institute of Electronics and Mathematics, National Research University Higher School of Economics, Moscow 109028 (Russian Federation)

    2015-11-21

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.

  15. Terahertz Difference-Frequency Quantum Cascade Laser Sources on Silicon

    Science.gov (United States)

    2016-12-22

    Terahertz difference-frequency quantum cascade laser sources on silicon SEUNGYONG JUNG,1,3 JAE HYUN KIM,1 YIFAN JIANG,1 KARUN VIJAYRAGHAVAN,2 AND...revised 24 November 2016; accepted 30 November 2016 (Doc. ID 278379); published 22 December 2016 Terahertz quantum cascade laser sources based on intra...of microwatts of average terahertz power output and wide spectral tunability. However, terahertz radiation outcoupling in these sources is still highly

  16. Metamaterials: A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime (Small 19/2016).

    Science.gov (United States)

    Wu, Liang; Du, Ting; Xu, Ningning; Ding, Chunfeng; Li, Hui; Sheng, Quan; Liu, Ming; Yao, Jianquan; Wang, Zhiyong; Lou, Xiaojie; Zhang, Weili

    2016-05-01

    A giant terahertz modulation based on a Ba0.6 Sr0.4 TiO3 -silicon hybrid metamaterial is reported by L. Wu, W. Zhang, and co-workers on page 2610. The proposed nanoscale Ba0.6 Sr0.4 TiO3 (BST) hybrid metamaterial, delivering a transmission contrast of up to ≈79% due to electrically enabled carrier transport between the ferroelectric thin film and silicon substrate, is promising in developing high-performance real world photonic devices for terahertz technology.

  17. MEMS and Metamaterials: A Perfect Marriage at Terahertz Frequencies

    Science.gov (United States)

    2012-08-01

    transverse magnetic (TM) radiation. Flexible THz Wide Angle “Perfect” Absorbers Physical Review B, 78 (24), 2008 Terahertz metamaterial absorber...and Metamaterials: A Perfect Marriage at Terahertz Frequencies Frequency Tunable Terahertz Metamaterials Physical Review B, 83 (19), 2011 Frequency...Magnetic resonance Electric resonance Physical Review Letters, 103 (14), 2009 Structurally Tunable THz Metamaterials • We demonstrate reconfigurable

  18. Plasmonic Terahertz Amplification in Graphene-Based Asymmetric Hyperbolic Metamaterial

    Directory of Open Access Journals (Sweden)

    Igor Nefedov

    2015-05-01

    Full Text Available We propose and theoretically explore terahertz amplification, based on stimulated generation of plasmons in graphene asymmetric hyperbolic metamaterials (AHMM, strongly coupled to terahertz radiation. In contrast to the terahertz amplification in resonant nanocavities, AHMM provides a wide-band THz amplification without any reflection in optically thin graphene multilayers.

  19. Highly tunable optical activity in planar achiral terahertz metamaterials

    CERN Document Server

    Singh, Ranjan; Zhang, Weili; Zheludev, Nikolay I

    2010-01-01

    Using terahertz time domain spectroscopy we demonstrate tunable polarization rotation and circular dichroism in intrinsically nonchiral planar terahertz metamaterials without twofold rotational symmetry. The observed effect is due to extrinsic chirality arising from the mutual orientation of the metamaterial plane and the propagation direction of the incident terahertz wave.

  20. Plasmonic Terahertz Amplification in Graphene-Based Asymmetric Hyperbolic Metamaterial

    OpenAIRE

    Igor Nefedov; Leonid Melnikov

    2015-01-01

    We propose and theoretically explore terahertz amplification, based on stimulated generation of plasmons in graphene asymmetric hyperbolic metamaterials (AHMM), strongly coupled to terahertz radiation. In contrast to the terahertz amplification in resonant nanocavities, AHMM provides a wide-band THz amplification without any reflection in optically thin graphene multilayers.

  1. Nondestructive Evaluation of Aircraft Composites Using Terahertz Time Domain Spectroscopy

    Science.gov (United States)

    2008-12-10

    Taday, P. F., Pepper , M. (2008). Elimination of scattering effects in spectral measurement of granulated materials using terahertz time domain...W., Ferguson , B., Rainsford, T., Mickan, S. P., & Abbott, D. (2005). Material parameter extraction for terahertz time-domain spectroscopy using... Ferguson , B., Rainsford, T., Mickan, S. P., & Abbott, D. (2005). Simple material parameter estimation via terahertz time-domain spectroscopy

  2. A Broadband Metasurface-Based Terahertz Flat-Lens Array

    KAUST Repository

    Wang, Qiu

    2015-02-12

    A metasurface-based terahertz flat-lens array is proposed, comprising C-shaped split-ring resonators exhibiting locally engineerable phase discontinuities. Possessing a high numerical aperture, the planar lens array is flexible, robust, and shows excellent focusing characteristics in a broadband terahertz frequency. It could be an important step towards the development of planar terahertz focusing devices for practical applications.

  3. Time-resolved terahertz spectroscopy of conjugated polymer/CdSe nanorod composites

    DEFF Research Database (Denmark)

    Cooke, David; Lek, Jun Y.; Krebs, Frederik C

    2010-01-01

    report ultrafast carrier dynamics in hybrid CdSe nanorod / poly(3-hexythiophene) (P3HT) bulk heterojunction films measured by time-resolved terahertz spectroscopy, and compare to the well studied P3HT/phenyl-C61-butyric acid methyl ester (PCBM) blend. Both films show an improved peak photoconduct......report ultrafast carrier dynamics in hybrid CdSe nanorod / poly(3-hexythiophene) (P3HT) bulk heterojunction films measured by time-resolved terahertz spectroscopy, and compare to the well studied P3HT/phenyl-C61-butyric acid methyl ester (PCBM) blend. Both films show an improved peak...... photoconductivity compared to P3HT alone, consistent with efficient charge transfer. The photoconductivity dynamics show fast, picosecond trapping or recombination in the hybrid blend while the all-organic film shows no such loss of mobile charge over ns time scales. The ac conductivity for all samples is well...

  4. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission

    Science.gov (United States)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-01

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li+ F- and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  5. High-efficiency dynamic routing architecture for the readout of single photon avalanche diode arrays in time-correlated measurements

    Science.gov (United States)

    Cominelli, A.; Acconcia, G.; Peronio, P.; Rech, I.; Ghioni, M.

    2017-05-01

    In recent years, the Time-Correlated Single Photon Counting (TCSPC) technique has gained a prominent role in many fields, where the analysis of extremely fast and faint luminous signals is required. In the life science, for instance, the estimation of fluorescence time-constants with picosecond accuracy has been leading to a deeper insight into many biological processes. Although the many advantages provided by TCSPC-based techniques, their intrinsically repetitive nature leads to a relatively long acquisition time, especially when time-resolved images are obtained by means of a single detector, along with a scanning point system. In the last decade, TCSPC acquisition systems have been subjected to a fast trend towards the parallelization of many independent channels, in order to speed up the measure. On one hand, some high-performance multi-module systems have been already made commercially available, but high area and power consumption of each module have limited the number of channels to only some units. On the other hand, many compact systems based on Single Photon Avalanche Diodes (SPAD) have been proposed in literature, featuring thousands of independent acquisition chains on a single chip. The integration of both detectors and conversion electronic in the same pixel area, though, has imposed tight constraints on power dissipation and area occupation of the electronics, resulting in a tradeoff with performance, both in terms of differential nonlinearity and timing jitter. Furthermore, in the ideal case of simultaneous readout of a huge number of channels, the overall data rate can be as high as 100 Gbit/s, which is nowadays too high to be easily processed in real time by a PC. Typical adopted solutions involve an arbitrary dwell time, followed by a sequential readout of the converters, thus limiting the maximum operating frequency of each channel and impairing the measurement speed, which still lies well below the limit imposed by the saturation of the

  6. Terahertz-based target typing.

    Energy Technology Data Exchange (ETDEWEB)

    Lyo, Sungkwun Kenneth; Wanke, Michael Clement; Reno, John Louis; Shaner, Eric Arthur; Grine, Albert D.; Barrick, Todd A.

    2008-09-01

    The purpose of this work was to create a THz component set and understanding to aid in the rapid analysis of transient events. This includes the development of fast, tunable, THz detectors, along with filter components for use with standard detectors and accompanying models to simulate detonation signatures. The signature effort was crucial in order to know the spectral range to target for detection. Our approach for frequency agile detection was to utilize plasmons in the channel of a specially designed field-effect transistor called the grating-gate detector. Grating-gate detectors exhibit narrow-linewidth, broad spectral tunability through application of a gate bias, and no angular dependence in their photoresponse. As such, if suitable sensitivity can be attained, they are viable candidates for Terahertz multi-spectral focal plane arrays.

  7. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  8. Terahertz metamaterial with asymmetric transmission

    CERN Document Server

    Singh, R; Menzel, C; Rockstuhl, C; Azad, A K; Cheville, R A; Lederer, F; Zhang, W; Zheludev, N I

    2009-01-01

    We show for the first time that a planar metamaterial, an array of coupled metal split-ring resonators with a unit cell lacking mirror symmetry, exhibits asymmetric transmission of terahertz radiation propagating through it in opposite directions. This intriguing effect, that is compatible with Lorentz reciprocity and time-reversal, depends on a directional difference in conversion efficiency of the incident circularly polarized wave into one of opposite handedness, that is only possible in lossy low-symmetry planar chiral metamaterials. We show that asymmetric transmission is linked to excitation of enantiomerically sensitive plasmons, these are induced charge-field excitations that depend on the mutual handedness of incident wave and metamaterial pattern. Various bands of positive, negative and zero phase and group velocities have been identified indicating the opportunity to develop polarization sensitive negative index and slow light media based on such metamaterials.

  9. Microlensless interdigitated photoconductive terahertz emitters.

    Science.gov (United States)

    Singh, Abhishek; Prabhu, S S

    2015-01-26

    We report here fabrication of interdigitated photoconductive antenna (iPCA) terahertz (THz) emitters based on plasmonic electrode design. Novel design of this iPCA enables it to work without microlens array focusing, which is otherwise required for photo excitation of selective photoconductive regions to avoid the destructive interference of emitted THz radiation from oppositely biased regions. Benefit of iPCA over single active region PCA is, photo excitation can be done at larger area hence avoiding the saturation effect at higher optical excitation density. The emitted THz radiation power from plasmonic-iPCAs is ~2 times more than the single active region plasmonic PCA at 200 mW optical excitation, which will further increase at higher optical powers. This design is expected to reduce fabrication cost of photoconductive THz sources and detectors.

  10. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    Science.gov (United States)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  11. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    Science.gov (United States)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  12. Photon technology. Hard photon technology; Photon technology. Hard photon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Research results of hard photon technology have been summarized as a part of novel technology development highly utilizing the quantum nature of photon. Hard photon technology refers to photon beam technologies which use photon in the 0.1 to 200 nm wavelength region. Hard photon has not been used in industry due to the lack of suitable photon sources and optical devices. However, hard photon in this wavelength region is expected to bring about innovations in such areas as ultrafine processing and material synthesis due to its atom selective reaction, inner shell excitation reaction, and spatially high resolution. Then, technological themes and possibility have been surveyed. Although there are principle proposes and their verification of individual technologies for the technologies of hard photon generation, regulation and utilization, they are still far from the practical applications. For the photon source technology, the laser diode pumped driver laser technology, laser plasma photon source technology, synchrotron radiation photon source technology, and vacuum ultraviolet photon source technology are presented. For the optical device technology, the multi-layer film technology for beam mirrors and the non-spherical lens processing technology are introduced. Also are described the reduction lithography technology, hard photon excitation process, and methods of analysis and measurement. 430 refs., 165 figs., 23 tabs.

  13. Gate-tunable coherent perfect absorption of terahertz radiation in graphene

    Science.gov (United States)

    Liu, Fangli; Chong, Y. D.; Adam, Shaffique; Polini, Marco

    2014-12-01

    Perfect absorption of radiation in a graphene sheet may play a pivotal role in the realization of technologically relevant optoelectronic devices. In particular, perfect absorption of radiation in the terahertz (THz) spectral range would tremendously boost the utility of graphene in this difficult range of photon energies, which still lacks cheap and robust devices operating at room temperature. In this work we show that unpatterned graphene flakes deposited on appropriate substrates can display gate-tunable coherent perfect absorption (CPA) in the THz spectral range. We present theoretical estimates for the CPA operating frequency as a function of doping, which take into account the presence of common sources of disorder in graphene samples.

  14. HfO 2 -based ferroelectric modulator of terahertz waves with graphene metamaterial

    Science.gov (United States)

    Jiang, Ran; Wu, Zheng-Ran; Han, Zu-Yin; Jung, Hyung-Suk

    2016-10-01

    Tunable modulations of terahertz waves in a graphene/ferroelectric-layer/silicon hybrid structure are demonstrated at low bias voltages. The modulation is due to the creation/elimination of an extra barrier in Si layer in response to the polarization in the ferroelectric Si:HfO2 layer. Considering the good compatibility of HfO2 with the Si-based semiconductor process, the highly tunable characteristics of the graphene metamaterial device under ferroelectric effect open up new avenues for graphene-based high performance integrated active photonic devices compatible with the silicon technology. Project supported by the National Natural Science Foundation of China (Grant No. 11374182).

  15. One-dimensional carbon nanostructures for terahertz electron-beam radiation

    Science.gov (United States)

    Tantiwanichapan, Khwanchai; Swan, Anna K.; Paiella, Roberto

    2016-06-01

    One-dimensional carbon nanostructures such as nanotubes and nanoribbons can feature near-ballistic electronic transport over micron-scale distances even at room temperature. As a result, these materials provide a uniquely suited solid-state platform for radiation mechanisms that so far have been the exclusive domain of electron beams in vacuum. Here we consider the generation of terahertz light based on two such mechanisms, namely, the emission of cyclotronlike radiation in a sinusoidally corrugated nanowire (where periodic angular motion is produced by the mechanical corrugation rather than an externally applied magnetic field), and the Smith-Purcell effect in a rectilinear nanowire over a dielectric grating. In both cases, the radiation properties of the individual charge carriers are investigated via full-wave electrodynamic simulations, including dephasing effects caused by carrier collisions. The overall light output is then computed with a standard model of charge transport for two particularly suitable types of carbon nanostructures, i.e., zigzag graphene nanoribbons and armchair single-wall nanotubes. Relatively sharp emission peaks at geometrically tunable terahertz frequencies are obtained in each case. The corresponding output powers are experimentally accessible even with individual nanowires, and can be scaled to technologically significant levels using array configurations. These radiation mechanisms therefore represent a promising paradigm for light emission in condensed matter, which may find important applications in nanoelectronics and terahertz photonics.

  16. Perfect terahertz absorber using fishnet based metafilm

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Abul Kalam [Los Alamos National Laboratory; Shchegolkov, Dmitry Yu [Los Alamos National Laboratory; Chen, Houtong [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; Smirnova, E I [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory

    2009-01-01

    We present a perfect terahertz (THz) absorber working for a broad-angle of incidence. The two fold symmetry of rectangular fishnet structure allows either complete absorption or mirror like reflection depending on the polarization of incident the THz beam. Metamaterials enable the ability to control the electromagnetic wave in a unique fashion by designing the permittivity or permeability of composite materials with desired values. Although the initial idea of metamaterials was to obtain a negative index medium, however, the evolution of metamaterials (MMs) offers a variety of practically applicable devices for controlling electromagnetic wave such as tunable filters, modulators, phase shifters, compact antenna, absorbers, etc. Terahertz regime, a crucial domain of the electromagnetic wave, is suffering from the scarcity of the efficient devices and might take the advantage of metamaterials. Here, we demonstrate design, fabrication, and characterization of a terahertz absorber based on a simple fishnet metallic film separated from a ground mirror plane by a dielectric spacer. Such absorbers are in particular important for bolometric terahertz detectors, high sensitivity imaging, and terahertz anechoic chambers. Recently, split-ring-resonators (SRR) have been employed for metamaterial-based absorbers at microwave and THz frequencies. The experimental demonstration reveals that such absorbers have absorptivity close to unity at resonance frequencies. However, the downside of these designs is that they all employ resonators of rather complicated shape with many fine parts and so they are not easy to fabricate and are sensitive to distortions.

  17. Terahertz Array Receivers with Integrated Antennas

    Science.gov (United States)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; Thomas, Bertrand; Mehdi, Imran

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  18. Integrated Arrays on Silicon at Terahertz Frequencies

    Science.gov (United States)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  19. Dynamic Multi-Party Quantum Private Comparison Protocol with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    Science.gov (United States)

    Liu, Wen; Wang, Yong-Bin

    2016-12-01

    A dynamic quantum private comparison protocol based on the single photons in both polarization and spatial-mode degrees of freedom is proposed. In this protocol, any two parties of n( n ≥ 4) parties can compare their private information with the help of others n - 2 parties. And any party can join in the protocol to take part in the comparison of n parties. Correctness analysis shows that the proposed protocol can be used to compare their information correctly. Security analysis shows that the proposed protocol can resist the general active attacks from an outside eavesdropper. And it can overcomes the problem of information leakage.

  20. Interfacial Electron Transfer and Transient Photoconductivity Studied with Terahertz Spectroscopy

    Science.gov (United States)

    Milot, Rebecca Lee

    Terahertz spectroscopy is distinguished from other far infrared and millimeter wave spectroscopies by its inherent phase sensitivity and sub-picosecond time resolution making it a versatile technique to study a wide range of physical phenomena. As THz spectroscopy is still a relatively new field, many aspects of THz generation mechanisms have not been fully examined. Using terahertz emission spectroscopy (TES), THz emission from ZnTe(110) was analyzed and found to be limited by two-photon absorption and free-carrier generation at high excitation fluences. Due to concerns about the continued use of fossil fuels, solar energy has been widely investigated as a promising source of renewable energy. Dye-sensitized solar cells (DSSCs) have been developed as a low-cost alternative to conventional photovoltaic solar cells. To solve the issues of the intermittency and inefficient transport associated with solar energy, researchers are attempting to adapt DSSCs for water oxidation and chemical fuel production. Both device designs incorporate sensitizer molecules covalently bound to metal oxide nanoparticles. The sensitizer, which is comprised of a chromophore and anchoring group, absorbs light and transfers an electron from its excited state to the conduction band of the metal oxide, producing an electric current. Using time-resolved THz spectroscopy (TRTS), an optical pump/THz probe technique, the efficiency and dynamics of electron injection from sensitizers to metal oxides was evaluated as a function of the chromophore, its anchoring group, and the metal oxide identity. Experiments for studying fully functioning DSSCs and water oxidation devices are also described. Bio-inspired pentafluorophenyl porphyrin chromophores have been designed and synthesized for use in photoelectrochemical water oxidation cells. Influences on the efficiency and dynamics of electron injection from the chromophores into TiO2 and SnO2 nanoparticles due to changes in both the central substituent to

  1. Single photon emission dynamics of InP-InGaP quantum dots under p-shell excitation

    Science.gov (United States)

    Nowak, A. K.; Martín, M. D.; van der Meulen, H. P.; Ripalda, J. M.; González, L.; González, Y.; Viña, L.; Calleja, J. M.

    2014-10-01

    Single photon emitters based on InP/GaInP quantum dots have been studied under p-shell excitation by time-resolved photoluminescence and photon correlation spectroscopy. By tuning the excitation energy in resonance with quantum dot excited states, we observe a marked decrease of the antibunching time as a result of the increased excitation rate for decreasing energy detuning. A similar behavior is observed by increasing the pump power. The spectral dependence of the antibunching rate follows the energy profile of the excited state, as measured by photoluminescence excitation.

  2. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  3. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Rana, Sohel; Habib, Selim

    2016-01-01

    We present a new kind of dual-hole unit-based porous-core hexagonal photonic crystal fiber (H-PCF) with low loss and high birefringence in terahertz regime. The proposed fiber offers simultaneously high birefringence and low effective material loss (EML) in the frequency range of 0.5-0.85 THz wit...

  4. Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Habib, Selim; Abdur Razzak, S. M.;

    2015-01-01

    A novel porous-core kagome lattice photonic crystal fiber (PCF) is designed and analyzed in this paper for terahertz (THz) wave guidance. Using finite element method (FEM), properties of the proposed kagome lattice PCF are simulated in details including the effective material loss (EML...

  5. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Rana, Sohel; Habib, Selim

    2016-01-01

    We present a new kind of dual-hole unit-based porous-core hexagonal photonic crystal fiber (H-PCF) with low loss and high birefringence in terahertz regime. The proposed fiber offers simultaneously high birefringence and low effective material loss (EML) in the frequency range of 0.5-0.85 THz wit...

  6. Microwave Photonics

    OpenAIRE

    Seeds, A.J.; Liu, C. P.; T. Ismail; Fice, M. J.; Pozzi, F; Steed, R. J.; Rouvalis, E.; Renaud, C.C.

    2010-01-01

    Microwave photonics is the use of photonic techniques for the generation, transmission, processing and reception of signals having spectral components at microwave frequencies. This tutorial reviews the technologies used and gives applications examples.

  7. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    A review is given of the space-time wave mechanics of single photons, a subject with an almost century long history. The Landau-Peierls photon wave function, which is related nonlocally to the electromagnetic field is first described, and thereafter the so-called energy wave function, based...... on the positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...... train quantum electrodynamics. A brief description of particle (photon) position operators is given, and it is shown that photons usually are only algebraically confined in an emission process. Finally, it is demonstrated that the profile of the birth domain of a radio-frequency photon emitted...

  8. Peptide backbone orientation and dynamics in spider dragline silk and two-photon excitation in nuclear magnetic and quadrupole resonance

    Energy Technology Data Exchange (ETDEWEB)

    Eles, P.T

    2005-07-01

    In the first part of the dissertation, spider dragline silk is studied by solid state NMR techniques. The dependence of NMR frequency on molecular orientation is exploited using the DECODER experiment to determine the orientation of the protein backbone within the silk fibre. Practical experimental considerations require that the silk fibres be wound about a cylindrical axis perpendicular to the external magnetic field, complicating the reconstruction of the underlying orientation distribution and necessitating the development of numerical techniques for this purpose. A two-component model of silk incorporating static b-sheets and polyglycine II helices adequately fits the NMR data and suggests that the b-sheets are well aligned along the silk axis (20 FWHM) while the helices are poorly aligned (68 FWHM). The effects of fibre strain, draw rate and hydration on orientation are measured. Measurements of the time-scale for peptide backbone motion indicate that when wet, a strain-dependent fraction of the poorly aligned component becomes mobile. This suggests a mechanism for the supercontraction of silk involving latent entropic springs that undergo a local strain-dependent phase transition, driving supercontraction. In the second part of this dissertation a novel method is developed for exciting NMR and nuclear quadrupole resonance (NQR) by rf irradiation at multiple frequencies that sum to (or differ by) the resonance frequency. This is fundamentally different than traditional NMR experiments where irradiation is applied on-resonance. With excitation outside the detection bandwidth, two-photon excitation allows for detection of free induction signals during excitation, completely eliminating receiver dead-time. A theoretical approach to describing two-photon excitation is developed based on average Hamiltonian theory. An intuition for two-photon excitation is gained by analogy to the coherent absorption of multiple photons requiring conservation of total energy and

  9. Active metamaterials terahertz modulators and detectors

    CERN Document Server

    Rout, Saroj

    2017-01-01

    This book covers the theoretical background and experimental methods for engineers and physicist to be able to design, fabricate and characterize terahertz devices using metamaterials. Devices utilize mainstream semiconductor foundry processes to make them for communication and imaging applications. This book will provide engineers and physicists a comprehensive reference to construct such devices with general background in circuits and electromagnetics. The authors describe the design and construction of electromagnetic (EM) devices for terahertz frequencies (108-1010cycles/sec) by embedding solid state electronic devices into artificial metamaterials where each unit cell is only a fraction of the wavelength of the incident EM wave. The net effect is an electronically tunable bulk properties with effective electric (permittivity) and magnetic (permeability) that can be utilized to make novel devices to fill the terahertz gap.

  10. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  11. Micromachined components for terahertz frequency applications

    CERN Document Server

    Parkhurst, G M

    2001-01-01

    lithographic technology for the fabrication of terahertz circuits, the integration of an active solid state device is explored. The device chosen for this work is the resonant tunnel diode (RTD). Some background discussion of the operation of these devices as oscillators is presented, and techniques for full integration of devices into a waveguide, using processes which are completely compatible with semiconductor manufacturing technology, are explored experimentally. Two main problems prevent the use of the terahertz frequency band (defined for present purposes as 100GHz - 10THz) in a wider range of applications. The first is the absence of a convenient, cheap solid-state source of power and the second is the significant cost of conventional passive components. In this Thesis, the second issue is addressed in detail, describing developments in the fabrication and characterisation of low cost lithographically-produced terahertz frequency passive components. An extensive study of the use of ultra-thick UV phot...

  12. Terahertz Plasmonic Structure With Enhanced Sensing Capabilities

    DEFF Research Database (Denmark)

    Yahiaoui, Riad; Strikwerda, Andrew C.; Jepsen, Peter Uhd

    2016-01-01

    We have designed, fabricated, and experimentally verified a highly sensitive plasmonic sensing device in the terahertz frequency range. For a proof of concept of the sensing phenomenon, we have chosen the so-called fishnet structure based on circular hole array insensitive to the polarization...... of the incident wave. We employ the localized resonance associated with the cutoff frequency (electric plasma frequency) of the hole array to investigate its sensing capability. A thin-film overlayer deposited on the surface of the metallic apertures causes an amplitude modulation and a shift in the resonant...... frequency of the terahertz transmission. The frequency shift and the amplitude modulation were investigated as a function of the refractive index and the thickness of the overlayer for determining the sensing potential of the proposed structure. Measurements carried out using terahertz time...

  13. Measurement of solid concentration using Terahertz technique

    Institute of Scientific and Technical Information of China (English)

    Liu Yi'an; Huang Zhiyao; Ji Haifeng; Wang Baoliang; Li Haiqing

    2007-01-01

    Terahertz(THz)technique is a new measurement technique that has emerged in recent years. For the measurement of solid concentration, a radiation attenuation method and a phase delay method were developed, which are based on the Beer-Lambert law. Experimental work was carried out on a terahertz time-domain spectroscopy system (THz-TDS). Results obtained verify that the terahertz technique may provide a possible new solution to the problem of solid concentration measurement and the two proposed measurement methods are effective. Experiment results also indicate that the phase delay method is more accurate than the radiation attenuation method and the size of the particles affects the measurement results of both methods.

  14. Interaction of Terahertz Radiation with Ferroelectrics

    Science.gov (United States)

    Nelson, Keith

    2007-03-01

    Ferroelectric crystals have long been used as acoustic transducers and receivers. An extensive toolset has been developed for MHz-frequency acoustic wave generation, control, guidance, and readout. In recent years, an analogous toolset has been developed for terahertz wave transduction and detection. Femtosecond optical pulses irradiate ferroelectric crystals to generate responses in the 0.1-5 THz frequency range that are admixtures of electromagnetic and polar lattice vibrational excitations called phonon-polaritons. Spatiotemporal femtosecond pulse shaping may be used to generate additional optical pulses that arrive at specified times and sample locations for control and manipulation of the THz waves. Femtosecond laser machining may be used for fabrication of waveguides, resonators, and other structures that are integrated into the ferroelectric host crystal. Finally, real-space imaging of the THz fields can be executed with variably delayed femtosecond probe pulses, permitting direct visualization of THz wave spatial and temporal evolution. This ``polaritonics'' toolset enables multiplexed generation of arbitrary THz waveforms and use of the waveforms within the ferroelectric host crystal or after projection into free space or an adjacent medium. The polaritonics platform will be reviewed and several new developments and applications will be presented. These include spectroscopy of relaxor ferroelectrics, whose temperature-dependent dielectric responses in the GHz-THz regime reveal complex polarization dynamics on well separated fast and slow time scales; direct measurement of phonon-polariton lattice vibrational displacements through femtosecond time-resolved x-ray diffraction; generation of high polariton field amplitudes and pulse energies; use of large-amplitude polariton waves to drive nonlinear lattice vibrational responses; and enhancement of optical-to-THz conversion efficiency through a pseudo-phase-matching approach that circumvents the very large

  15. Development of a silicon microstrip detector with single photon sensitivity for fast dynamic diffraction experiments at a synchrotron radiation beam

    Science.gov (United States)

    Arakcheev, A.; Aulchenko, V.; Kudashkin, D.; Shekhtman, L.; Tolochko, B.; Zhulanov, V.

    2017-06-01

    Time-resolved experiments on the diffraction of synchrotron radiation (SR) from crystalline materials provide information on the evolution of a material structure after a heat, electron beam or plasma interaction with a sample under study. Changes in the material structure happen within a microsecond scale and a detector with corresponding parameters is needed. The SR channel 8 of the VEPP-4M storage ring provides radiation from the 7-pole wiggler that allows to reach several tens photons within one μs from a tungsten crystal for the most intensive diffraction peak. In order to perform experiments that allow to measure the evolution of tungsten crystalline structure under the impact of powerful laser beam, a new detector is developed, that can provide information about the distribution of a scattered SR flux in space and its evolution in time at a microsecond scale. The detector is based on the silicon p-in-n microstrip sensor with DC-coupled metal strips. The sensor contains 1024 30 mm long strips with a 50 μm pitch. 64 strips are bonded to the front-end electronics based on APC128 ASICs. The APC128 ASIC contains 128 channels that consist of a low noise integrator with 32 analogue memory cells each. The integrator equivalent noise charge is about 2000 electrons and thus the signal from individual photons with energy above 40 keV can be observed. The signal can be stored at the analogue memory with 10 MHz rate. The first measurements with the beam scattered from a tungsten crystal with energy near 60 keV demonstrated the capability of this prototype to observe the spatial distribution of the photon flux with the intensity from below one photon per channel up to 0~10 photons per channel with a frame rate from 10 kHz up to 1 MHz.

  16. Polychromatic photons

    DEFF Research Database (Denmark)

    Keller, Ole

    2002-01-01

    on the positive-frequency Riemann-Silberstein vectors, is discussed. Recent attempts to understand the birth process of a photon emerging from a single atom are summarized. The polychromatic photon concept is introduced, and it is indicated how the wave mechanics of polychromatic photons can be upgraded to wave...

  17. Nine orders of magnitude dynamic range: picomolar to millimolar concentration measurement in capillary electrophoresis with laser induced fluorescence detection employing cascaded avalanche photodiode photon counters.

    Science.gov (United States)

    Dada, Oluwatosin O; Essaka, David C; Hindsgaul, Ole; Palcic, Monica M; Prendergast, Jillian; Schnaar, Ronald L; Dovichi, Norman J

    2011-04-01

    The dynamic range of capillary electrophoresis analysis is ultimately limited by molecular shot noise at low concentrations and by concentration-induced band broadening at high concentrations. We report a system that approaches these fundamental limits. A laser-induced fluorescence detector is reported that employs a cascade of four fiber-optic beam splitters connected in series to generate a primary signal and four attenuated signals, each monitored by a single-photon counting avalanche photodiode. Appropriate scaling of the signals from the five photodiodes produces a linear optical calibration curve for 5-carboxyl-tetramethylrhodamine from the concentration detection limit of 1 pM to the upper limit of 1 mM. Mass detection limits are 120 yoctomoles (70 molecules) injected into the instrument. The very-wide dynamic range instrument was used to study the metabolic products of the fluorescently labeled glycosphingolipid tetramethylrhodamine labeled GM1 (GM1-TMR) produced by single cells isolated from the rat cerebellum.

  18. From optical MEMS to photonic crystal

    Science.gov (United States)

    Lee, Sukhan; Kim, Jideog; Lee, Hong-Seok; Moon, Il-Kwon; Won, JongHwa; Ku, Janam; Choi, Hyung; Shin, Hyungjae

    2002-10-01

    This paper presents the emergence of photonic crystals as significant optomechatronics components, following optical MEMS. It is predicted that, in the coming years, optical MEMS and photonic crystals may go through dynamic interactions leading to synergy as well as competition. First, we present the Structured Defect Photonic Crystal (SDPCTM) devised by the authors for providing the freedom of designing photonic bandgap structures, such that the application of photonic crystals be greatly extended. Then, we present the applications of optical MEMS and photonic crystals to displays and telecommunications. It is shown that many of the applications that optical MEMS can contribute to telecommunications and displays may be implemented by photonic crystals.

  19. Intense Terahertz Fields for Fast Energy Release

    Science.gov (United States)

    2016-11-01

    6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-17-10 Intense Terahertz Fields for Fast Energy Release...N) Energy /Work/Power electron volt (eV) 1.602 177 × 10 –19 joule (J) erg 1 × 10 –7 joule (J) kiloton (kt) (TNT equivalent) 4.184 × 10 12...customary unit. Grant #  HDTRA 1-12-1-0044 Intense Terahertz Fields for Fast Energy Release Final Report PI: Keith A. Nelson 617-253-1423 kanelson

  20. A polarization-independent broadband terahertz absorber

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Cheng; Zang, XiaoFei, E-mail: xfzang@usst.edu.cn, E-mail: ymzhu@usst.edu.cn; Wang, YiQiao; Chen, Lin; Cai, Bin; Zhu, YiMing, E-mail: xfzang@usst.edu.cn, E-mail: ymzhu@usst.edu.cn [Shanghai Key Laboratory of Modern Optical System and Engineering Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2014-07-21

    A highly efficient broadband terahertz absorber is designed, fabricated, and experimentally as well as theoretically evaluated. The absorber comprises a heavily doped silicon substrate and a well-designed two-dimensional grating. Due to the destructive interference of waves and diffraction, the absorber can achieve over 95% absorption in a broad frequency range from 1 to 2 THz and for angles of incidence from 0° to 60°. Such a terahertz absorber is also polarization-independent due to its symmetrical structure. This omnidirectional and broadband absorber have potential applications in anti-reflection coatings, imaging systems, and so on.