WorldWideScience

Sample records for dynamic structure factors

  1. On R factors for dynamic structure crystallography

    DEFF Research Database (Denmark)

    Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro

    2010-01-01

    In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....

  2. Unascertained Factor Method of Dynamic Characteristic Analysis for Antenna Structures

    Institute of Scientific and Technical Information of China (English)

    ZHU Zeng-qing; LIANG Zhen-tao; CHEN Jian-jun

    2008-01-01

    The dynamic characteristic analysis model of antenna structures is built, in which the structural physical parameters and geometrical dimensions are all considered as unascertained variables, And a structure dynamic characteristic analysis method based on the unascertained factor method is given. The computational expression of structural characteristic is developed by the mathematics expression of unascertained factor and the principles of unascertained rational numbers arithmetic. An example is given, in which the possible values and confidence degrees of the unascertained structure characteristics are obtained. The calculated results show that the method is feasible and effective.

  3. Dynamical Structure Factors of quasi-one-dimensional antiferromagnets

    Science.gov (United States)

    Hagemans, Rob; Caux, Jean-Sébastien; Maillet, Jean Michel

    2007-03-01

    For a long time it has been impossible to accurately calculate the dynamical structure factors (spin-spin correlators as a function of momentum and energy) of quasi-one-dimensional antiferromagnets. For integrable Heisenberg chains, the recently developed ABACUS method (a first-principles computational approach based on the Bethe Ansatz) now yields highly accurate (over 99% of the sum rule) results for the DSF for finite chains, allowing for a very precise description of neutron-scattering data over the full momentum and energy range. We show remarkable agreement between results obtained with ABACUS and experiment.

  4. Tissue factor activates allosteric networks in factor VIIa through structural and dynamic changes

    DEFF Research Database (Denmark)

    Madsen, Jesper Jonasson; Persson, E.; Olsen, O. H.

    2015-01-01

    Background: Tissue factor (TF) promotes colocalization of enzyme (factorVIIa) and substrate (FX or FIX), and stabilizes the active conformation of FVIIa. Details on how TF induces structural and dynamic changes in the catalytic domain of FVIIa to enhance its efficiency remain elusive. Objective...

  5. Dynamic-structure-factor measurements on a model Lorentz gas

    Science.gov (United States)

    Egelstaff, P. A.; Eder, O. J.; Glaser, W.; Polo, J.; Renker, B.; Soper, A. K.

    1990-02-01

    A model system for the Lorentz gas can be made [Eder, Chen, and Egelstaff, Proc. Phys. Soc. London 89, 833 (1966); McPherson and Egelstaff, Can. J. Phys. 58, 289 (1980)] by mixing small quantities of hydrogen with an argon host. For neutron-scattering experiments the large H-to-Ar cross section ratio (~200) makes the argon relatively invisible. Dynamic-structure-factor [S(Q,ω) for H2] measurements at room temperature have been made on this system using the IN4 spectrometer at the Institute Laue Langevin, Grenoble, France. Argon densities between 1.9 and 10.5 atoms/nm3 were used for 0.4

  6. A structural dynamic factor model for the effects of monetary policy estimated by the EM algorithm

    DEFF Research Database (Denmark)

    Bork, Lasse

    This paper applies the maximum likelihood based EM algorithm to a large-dimensional factor analysis of US monetary policy. Specifically, economy-wide effects of shocks to the US federal funds rate are estimated in a structural dynamic factor model in which 100+ US macroeconomic and financial time...... series are driven by the joint dynamics of the federal funds rate and a few correlated dynamic factors. This paper contains a number of methodological contributions to the existing literature on data-rich monetary policy analysis. Firstly, the identification scheme allows for correlated factor dynamics...... as opposed to the orthogonal factors resulting from the popular principal component approach to structural factor models. Correlated factors are economically more sensible and important for a richer monetary policy transmission mechanism. Secondly, I consider both static factor loadings as well as dynamic...

  7. A structural dynamic factor model for the effects of monetary policy estimated by the EM algorithm

    DEFF Research Database (Denmark)

    Bork, Lasse

    This paper applies the maximum likelihood based EM algorithm to a large-dimensional factor analysis of US monetary policy. Specifically, economy-wide effects of shocks to the US federal funds rate are estimated in a structural dynamic factor model in which 100+ US macroeconomic and financial time...... series are driven by the joint dynamics of the federal funds rate and a few correlated dynamic factors. This paper contains a number of methodological contributions to the existing literature on data-rich monetary policy analysis. Firstly, the identification scheme allows for correlated factor dynamics...... as opposed to the orthogonal factors resulting from the popular principal component approach to structural factor models. Correlated factors are economically more sensible and important for a richer monetary policy transmission mechanism. Secondly, I consider both static factor loadings as well as dynamic...

  8. DYNAMIC CHARACTERISTIC ANALYSIS OF FUZZY- STOCHASTIC TRUSS STRUCTURES BASED ON FUZZY FACTOR METHOD AND RANDOM FACTOR METHOD

    Institute of Scientific and Technical Information of China (English)

    MA Juan; CHEN Jian-jun; XU Ya-lan; JIANG Tao

    2006-01-01

    A new fuzzy stochastic finite element method based on the fuzzy factor method and random factor method is given and the analysis of structural dynamic characteristic for fuzzy stochastic truss structures is presented. Considering the fuzzy randomness of the structural physical parameters and geometric dimensions simultaneously, the structural stiffness and mass matrices are constructed based on the fuzzy factor method and random factor method; from the Rayleigh's quotient of structural vibration, the structural fuzzy random dynamic characteristic is obtained by means of the interval arithmetic;the fuzzy numeric characteristics of dynamic characteristic are then derived by using the random variable's moment function method and algebra synthesis method. Two examples are used to illustrate the validity and rationality of the method given. The advantage of this method is that the effect of the fuzzy randomness of one of the structural parameters on the fuzzy randomness of the dynamic characteristic can be reflected expediently and objectively.

  9. A combined structural dynamics approach identifies a putative switch in factor VIIa employed by tissue factor to initiate blood coagulation

    DEFF Research Database (Denmark)

    Olsen, Ole H; Rand, Kasper D; Østergaard, Henrik;

    2007-01-01

    Coagulation factor VIIa (FVIIa) requires tissue factor (TF) to attain full catalytic competency and to initiate blood coagulation. In this study, the mechanism by which TF allosterically activates FVIIa is investigated by a structural dynamics approach that combines molecular dynamics (MD...

  10. Structure Factors of Berly for the Use in Dynamical Diffraction Studies with X-rays

    OpenAIRE

    Yoshimura, Junichi; Okamura, Mitsuru; Taki, Sadao

    1985-01-01

    For the use in dynamical diffraction works with X-rays, structure factors corresponding to the real and imaginary parts, respectively, of atomic scattering factors were calculated for beryl (Be_3Al_2Si_6O_) from previously reported structural data.

  11. Dynamic structure factor in single- and two-species thermal GBL lattice gas

    Science.gov (United States)

    Dubbeldam, D.; Hoekstra, A. G.; Sloot, P. M. A.

    2000-07-01

    The two-dimensional 19-bits GBL lattice gas model conserves energy in a non-trivial way, allowing temperature, temperature gradients, and heat conduction. We describe the thermodynamics of the model, its equilibrium properties, and confirm the change of sound speed with energy density at fixed density with simulation results. The sound speed, the sound damping, and the thermal diffusivity are extracted from the dynamic structure factor and shown for various energy densities at fixed density. We have extended the 19 bits GBL model with multiple-species (miscible fluid model) and have measured the dynamic structure factor for this two-component thermal lattice gas model.

  12. Structure Factors of α-Quartz for the Use in Dynamical Diffraction Studies with X-rays

    OpenAIRE

    Yoshimura, Junichi; Okamura, Mitsuru; Taki, Sadao

    1985-01-01

    From the need in dynamical diffraction works with X-rays, structure factors of α-quartz corresponding to the real and imaginary parts, respectively, of atomic scattering factors were calculated from previously reported structural data.

  13. Dynamical structure factors and excitation modes of the bilayer Heisenberg model

    Science.gov (United States)

    Lohöfer, M.; Coletta, T.; Joshi, D. G.; Assaad, F. F.; Vojta, M.; Wessel, S.; Mila, F.

    2015-12-01

    Using quantum Monte Carlo simulations along with higher-order spin-wave theory, bond-operator and strong-coupling expansions, we analyze the dynamical spin structure factor of the spin-half Heisenberg model on the square-lattice bilayer. We identify distinct contributions from the low-energy Goldstone modes in the magnetically ordered phase and the gapped triplon modes in the quantum disordered phase. In the antisymmetric (with respect to layer inversion) channel, the dynamical spin structure factor exhibits a continuous evolution of spectral features across the quantum phase transition, connecting the two types of modes. Instead, in the symmetric channel, we find a depletion of the spectral weight when moving from the ordered to the disordered phase. While the dynamical spin structure factor does not exhibit a well-defined distinct contribution from the amplitude (or Higgs) mode in the ordered phase, we identify an only marginally damped amplitude mode in the dynamical singlet structure factor, obtained from interlayer bond correlations, in the vicinity of the quantum critical point. These findings provide quantitative information in direct relation to possible neutron or light scattering experiments in a fundamental two-dimensional quantum-critical spin system.

  14. Static and Dynamic Structure Factors with Account of the Ion Structure for High-temperature Alkali and Alkaline Earth Plasmas

    CERN Document Server

    Sadykova, S P; Tkachenko, I M

    2010-01-01

    The $e-e$, $e-i$, $i-i$ and charge-charge static structure factors are calculated for alkali and Be$^{2+}$ plasmas using the method described by Gregori et al. in \\cite{bibGreg2006}. The dynamic structure factors for alkali plasmas are calculated using the method of moments \\cite{bibAdam83}, \\cite{bibAdam93}. In both methods the screened Hellmann-Gurskii-Krasko potential, obtained on the basis of Bogolyubov's method, has been used taking into account not only the quantum-mechanical effects but also the ion structure \\cite{bib73}. PACS: 52.27.Aj (Alkali and alkaline earth plasmas, Static and dynamic structure factors), 52.25.Kn (Thermodynamics of plasmas), 52.38.Ph (X-ray scattering)

  15. Dynamic structure factor of a strongly correlated Fermi superfluid within a density functional theory approach

    Science.gov (United States)

    Zou, Peng; Dalfovo, Franco; Sharma, Rishi; Liu, Xia-Ji; Hu, Hui

    2016-11-01

    We theoretically investigate the dynamic structure factor of a strongly interacting Fermi gas at the crossover from Bardeen-Cooper-Schrieffer superfluids to Bose-Einstein condensates, by developing an improved random phase approximation within the framework of a density functional theory (DFT)—the so-called superfluid local density approximation. Compared with the previous random-phase-approximation studies based on the standard Bogoliubov-de Gennes equations, the use of the DFT greatly improves the accuracy of the equation of state at the crossover, and leads to a better description of both collective Bogoliubov-Anderson-Goldstone phonon mode and single-particle fermionic excitations at small transferred momentum. Near unitarity, where the s-wave scattering length diverges, we show that the single-particle excitations start to significantly contribute to the spectrum of dynamic structure factor once the frequency is above a threshold of the energy gap at 2{{Δ }}. The sharp rise in the spectrum at this threshold can be utilized to measure the pairing gap Δ. Together with the sound velocity determined from the phonon branch, the dynamic structure factor provides us some key information of the crossover Fermi superfluid. Our predictions could be examined in experiments with 6Li or 40K atoms using Bragg spectroscopy.

  16. Structural dynamics

    CERN Document Server

    Strømmen, Einar N

    2014-01-01

    This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

  17. Factor analysis of dynamic structures (FADS) in the diagnosis of the renal disease

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, M.A.; Houston, A.S.

    1989-09-01

    Factor analysis of dynamic structures (FADS) has been used in the interpretation of dynamic scintigraphic studies since the technique was described by Bazin et al. (1980). This study was designed to analyse to what extent, if any, does physiological factor analysis of dynamic renal data really help the clinician and by how much the method improves the diagnostic accuracy when compared to deconvolution analysis and parenchymal transit time (PTT) measurements. One hundred and fifty patients who were clinically, biochemically and radiologically investigated for renal disease were included in the study. Fifty of these were found to have no clinical evidence of renal disease, 50 were diagnosed as having non obstructive kidney disease and 50 had evidence of renal obstruction. Data obtained from /sup 99m/Tc-DTPA renography were processed using deconvolution (with PTTs) and physiological factor analysis and the results compared by ROC analysis. Clinically the information gained from factor analysis was superior to that obtained from deconvolution with PTT measurements in that a more accurate differentiation between an obstructive nephropathy and an obstructive uropathy was obtained. It is considered that physiological factor analysis enhances the clinical information obtained from renography, increases diagnostic accuracy and obviates the need for diuresis renography. (orig.).

  18. Dynamic structure factor of vibrating fractals: Proteins as a case study

    Science.gov (United States)

    Reuveni, Shlomi; Klafter, Joseph; Granek, Rony

    2012-01-01

    We study the dynamic structure factor S(k,t) of proteins at large wave numbers k, kRg≫1, where Rg is the gyration radius. At this regime measurements are sensitive to internal dynamics, and we focus on vibrational dynamics of folded proteins. Exploiting the analogy between proteins and fractals, we perform a general analytic calculation of the displacement two-point correlation functions, . We confront the derived expressions with numerical evaluations that are based on protein data bank (PDB) structures and the Gaussian network model (GNM) for a few proteins and for the Sierpinski gasket as a controlled check. We use these calculations to evaluate S(k,t) with arrested rotational and translational degrees of freedom, and show that the decay of S(k,t) is dominated by the spatially averaged mean-square displacement of an amino acid. The latter has been previously shown to evolve subdiffusively in time, ˜tν, where ν is the anomalous diffusion exponent that depends on the spectral dimension ds and fractal dimension df. As a result, for wave numbers obeying k2≳1, S(k,t) effectively decays as a stretched exponential S(k,t)≃S(k)e-(Γkt)β with β≃ν, where the relaxation rate is Γk˜(kBT/mωo2)1/βk2/β, T is the temperature, and mωo2 the GNM effective spring constant describing the interaction between neighboring amino acids. The static structure factor is dominated by the fractal character of the native fold, S(k)˜k-df, with negligible to marginal influence of vibrations. The analytical expressions are first confronted with numerically based calculations on the Sierpinski gasket, and very good agreement is found between simulations and theory. We then perform PDB-GNM-based numerical calculations for a few proteins, and an effective stretched exponential decay of the dynamic structure factor is found, albeit their relatively small size. However, when rotational and translational diffusion are added, we find that their contribution is never negligible due to

  19. Ionization-potential depression and dynamical structure factor in dense plasmas

    Science.gov (United States)

    Lin, Chengliang; Röpke, Gerd; Kraeft, Wolf-Dietrich; Reinholz, Heidi

    2017-07-01

    The properties of a bound electron system immersed in a plasma environment are strongly modified by the surrounding plasma. The modification of an essential quantity, the ionization energy, is described by the electronic and ionic self-energies, including dynamical screening within the framework of the quantum statistical theory. Introducing the ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that ionic correlations and fluctuations play a critical role in determining the ionization potential depression. This is, in particular, true for mixtures of different ions with large mass and charge asymmetry. The ionization potential depression is calculated for dense aluminum plasmas as well as for a CH plasma and compared to the experimental data and more phenomenological approaches used so far.

  20. Structure, compressibility factor, and dynamics of highly size-asymmetric binary hard-disk liquids.

    Science.gov (United States)

    Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia

    2012-09-14

    By using event-driven molecular dynamics simulation, we investigate effects of varying the area fraction of the smaller component on structure, compressibility factor, and dynamics of the highly size-asymmetric binary hard-disk liquids. We find that the static pair correlations of the large disks are only weakly perturbed by adding small disks. The higher-order static correlations of the large disks, by contrast, can be strongly affected. Accordingly, the static correlation length deduced from the bond-orientation correlation functions first decreases significantly and then tends to reach a plateau as the area fraction of the small disks increases. The compressibility factor of the system first decreases and then increases upon increasing the area fraction of the small disks and separating different contributions to it allows to rationalize this non-monotonic phenomenon. Furthermore, adding small disks can influence dynamics of the system in quantitative and qualitative ways. For the large disks, the structural relaxation time increases monotonically with increasing the area fraction of the small disks at low and moderate area fractions of the large disks. In particular, "reentrant" behavior appears at sufficiently high area fractions of the large disks, strongly resembling the reentrant glass transition in short-ranged attractive colloids and the inverted glass transition in binary hard spheres with large size disparity. By tuning the area fraction of the small disks, relaxation process for the small disks shows concave-to-convex crossover and logarithmic decay behavior, as found in other binary mixtures with large size disparity. Moreover, diffusion of both species is suppressed by adding small disks. Long-time diffusion for the small disks shows power-law-like behavior at sufficiently high area fractions of the small disks, which implies precursors of a glass transition for the large disks and a localization transition for the small disks. Therefore, our results

  1. The dynamic characteristics and influencing factors of debt structure of the public companies in China

    Directory of Open Access Journals (Sweden)

    Zhefan Piao

    2013-09-01

    Full Text Available Design/methodology/approach: Learned from Leary (2009, Konstantinos Voutsinas and Richard A.Werner (2011, this study designs a model of debt maturity structure with an unbalanced panel data set. It consists of 1352 Chinese listed companies with8124 observations during the period of 2003-2011. Hausman test hasbeen used, and the findings support the fixed effects model.Findings: Besidesthe factors that have been confirmed by previous researches, debt maturitystructure is also sensitive to other factors, such as economicexpectations, monetary policy, financial restrictions and changes in tax rates.Research limitations/implications: There are still many cases, which affect the debt maturitystructure, are worth of further exploring, for instance, the impactof lagged monetary policy, the determinants of short-term debt ratio and thecost of operating.Practical implications: From the macro point of view, research in this area enable thegovernment to introduce more suitable policies that direct and promote thedevelopment of the bond market, thus it spurs corporations to choose theproper finance structure. From the micro point of view, firms can learn fromthe research to choose the efficient method and term of financing as well asdebt structure.Originality/value: In some way, conclusions of this papercontribute to the study of dynamic characteristics and factors of debt maturitystructure in Chinese listed companies.

  2. Dynamic Structure Factor and Transport Coefficients of a Homogeneously Driven Granular Fluid in Steady State

    Science.gov (United States)

    Vollmayr-Lee, Katharina; Zippelius, Annette; Aspelmeier, Timo

    2011-03-01

    We study the dynamic structure factor of a granular fluid of hard spheres, driven into a stationary nonequilibrium state by balancing the energy loss due to inelastic collisions with the energy input due to driving. The driving is chosen to conserve momentum, so that fluctuating hydrodynamics predicts the existence of sound modes. We present results of computer simulations which are based on an event driven algorithm. The dynamic structure factor F (q , ω) is determined for volume fractions 0.05, 0.1 and 0.2 and coefficients of normal restitution 0.8 and 0.9. We observe sound waves, and compare our results for F (q , ω) with the predictions of generalized fluctuating hydrodynamics which takes into account that temperature fluctuations decay either diffusively or with a finite relaxation rate, depending on wave number and inelasticity. We determine the speed of sound and the transport coefficients and compare them to the results of kinetic theory. K.V.L. thanks the Institute of Theoretical Physics, University of Goettingen, for financial support and hospitality.

  3. Scatter correction in planar imaging and SPECT by constrained factor analysis of dynamic structures (FADS)

    Energy Technology Data Exchange (ETDEWEB)

    Mas, J.; Younes, R.B.; Bellaton, B.; Bidet, R. (Centre Hospitalier Universitaire Jean Minjoz, 25 - Besancon (France). Lab. de Biophysique et de Medecine Nucleaire); Hannequin, P. (Centre d' Imagerie Nucleaire, 74 -Annecy (France))

    1990-11-01

    A new approach to Compton scatter correction based on factor analysis of dynamic structures (FADS) is presented in this study. The innovation is the use of a constrained photopeak factor. This novel algorithm is evaluated both on planar imaging and SPECT data using Monte Carlo simulations and real phantoms. A comparison with the modified method of Jaszczak is also presented. Different parameters are significantly improved with the authors' recombination method in SPECT studies; particularly after attenuation compensation by the iterative method of Chang. Compared with the subtraction method the contrast is increased by 1.5 for planar Monte Carlo simulations and the scatter fraction is reduced four times with the recombination method. (author).

  4. Microscopic model for the neutron dynamic structure factor of solid methane in phase II

    Energy Technology Data Exchange (ETDEWEB)

    Shin Yunchang, E-mail: yunchang.shin@yale.ed [Department of Physics, Indiana University Bloomington, IN 47408 (United States); Department of Physics, Yale University, New Haven, CT 06520 (United States); Mike Snow, W.; Liu, C.Y.; Lavelle, C.M.; Baxter, David V. [Department of Physics, Indiana University Bloomington, IN 47408 (United States)

    2010-08-21

    We have constructed a microscopic model for the neutron dynamic structure factor S(Q,{omega}) of solid methane in phase II. We expect this model to apply for neutron energies below 1 eV at pressures near 1 bar and temperatures below 20 K where methane possesses both free rotation and hindered rotation modes of the tetrahedral molecules in the unit cell. The model treats the motions of molecular translations, intra-molecular vibrations and the free and hindered rotations of methane molecule as independent. Total scattering cross-sections calculated from the model agree with the cross-section measurements for incident neutron energies of 0.5 meV-1 eV. The effective density of states is extracted from the model. We also present the quantitative calculation of the separate contributions of the two different rotational modes to the inelastic cross-section for different methane temperatures in phase II.

  5. Dynamic structure factor of the spin-1/2 XXZ chain in a transverse field

    Science.gov (United States)

    Bruognolo, Benedikt; Weichselbaum, Andreas; von Delft, Jan; Garst, Markus

    2016-08-01

    The spin-1/2 XXZ chain with easy-plane anisotropy in a transverse field describes well the thermodynamic properties of the material Cs2CoCl4 in a wide range of temperatures and fields including the region close to the spin-flop Ising quantum phase transition. For a comparison with prospective inelastic neutron scattering experiments on this compound, we present results of an extensive numerical study of its dynamic structure factor Sα β(k ,ω ) using matrix-product-state (MPS) techniques. Close to criticality, the dynamic part of the correlator Sx x longitudinal to the applied field is incoherent and possesses a small total weight as the ground state is already close to saturation. The transverse correlator Sz z, on the other hand, is dominated by a coherent single-particle excitation with additional spectral weight at higher energies that we tentatively attribute to a repulsively bound pair of particles. With increasing temperature, the latter quickly fades and spectral weight instead accumulates close to zero wave vector just above the single-particle energy. On a technical level, we compare the numerical efficiency of real-time evolution to an MPS-based Chebyshev expansion in the present context, finding that both methods yield results of similar quality at comparable numerical costs.

  6. Frequency moments of the Coulomb dynamic structure factor and related integrals

    CERN Document Server

    Crowley, Basil J B

    2015-01-01

    This report addresses the moments, ${\\mathfrak{G}_n}\\left( {\\mathbf{q}} \\right) = \\int_{ - \\infty }^{ + \\infty } {{\\omega ^n}S\\left( {{\\mathbf{q}},\\omega } \\right)\\mathrm{d}\\omega },\\,n \\in \\mathbb{N},\\,n \\geq - 1$, of the quantum mechanical dynamic structure factor $S\\left( {{\\mathbf{q}},\\omega } \\right)$ for a one-component Coulomb plasma in thermodynamic equilibrium. The Fluctuation Dissipation Theorem relates these moments to integrals involving the imaginary part of the inverse longitudinal dielectric function, with the odd moments in particular being equivalent to the odd moments of the imaginary part of the inverse dielectric function. Application of the Generalized Plasmon Pole Approximation arXiv:1508.05606 [physics.plasm-ph] to a weakly-coupled non-degenerate plasma, leads to general formulae expressed in terms of polynomial functions. Explicit forms of these functions are given for $n \\leq 20$. These formulae are generalized to degenerate and partially degenerate plasmas, in small-$\\mathbf{q}$ (lon...

  7. Coherence and spectral weight transfer in the dynamic structure factor of cold lattice bosons

    Science.gov (United States)

    Zaleski, T. A.; Kopeć, T. K.

    2017-01-01

    Ultracold atoms have been used to create novel correlated quantum phases allowing to address many solid-state physics problems using the quasi-particle concept, which is the foundation of our understanding of many-body quantum systems. For bosons, the simplest kinds of excited states involve two particles and they are connected to the dynamic structure factor S (k , ω) , measured using Bragg spectroscopy, similarly to the angle-resolved photoemission spectroscopy (ARPES) in solid state physics - a major tool in the study of high-Tc cuprates. Calculation of S (k , ω) requires a significant numerical effort to determine multidimensional convolutions of momentum and frequency dependent constituents functions, which we achieve using parallelized fast Fourier transform. As a result, we are able to show that spectral weight transfer between low and high energies is an intrinsic property of the strongly correlated Bose system in close analogy to the doped Mott-Hubbard electronic insulator. Furthermore, the appearance of sharp coherence peaks in the superfluid phase of the cold bosons closely resembles the formation of sharply defined quasiparticle excitations below Tc in cuprates suggesting an intimate connection between the intrinsic nature of these seemingly different systems.

  8. Three-mode coupling interference patterns in the dynamic structure factor of a relaxor ferroelectric

    Science.gov (United States)

    Manley, M. E.; Abernathy, D. L.; Sahul, R.; Stonaha, P. J.; Budai, J. D.

    2016-09-01

    A longstanding controversy for relaxor ferroelectrics has been the origin of the "waterfall" effect in the phonon dispersion curves, in which low-energy transverse phonons cascade into vertical columns. Originally interpreted as phonons interacting with polar nanoregions (PNRs), it was later explained as an interference effect of coupling damped optic and acoustic phonons. In light of a recently discovered PNR vibrational mode near the "waterfall" wave vector [M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai, Nat. Commun. 5, 3683 (2014), 10.1038/ncomms4683], we have reexamined this feature using neutron scattering on [100]-poled PMN-30%PT [0.6 Pb (M g1 /3N b2 /3 ) O3-0.3 PbTi O3] . We find that the PNR mode couples to both optic and acoustic phonons and that this results in complex patterns in the dynamic structure factor, including intensity pockets and peaks localized in momentum-energy space. These features are fully explained by extending the mode-coupling model to include three coupled damped harmonic oscillators representing the transverse optic, acoustic, and PNR modes.

  9. Heterogeneous dynamics in DNA site discrimination by the structurally homologous DNA-binding domains of ETS-family transcription factors.

    Science.gov (United States)

    He, Gaofei; Tolic, Ana; Bashkin, James K; Poon, Gregory M K

    2015-04-30

    The ETS family of transcription factors exemplifies current uncertainty in how eukaryotic genetic regulators with overlapping DNA sequence preferences achieve target site specificity. PU.1 and Ets-1 represent archetypes for studying site discrimination by ETS proteins because their DNA-binding domains are the most divergent in sequence, yet they share remarkably superimposable DNA-bound structures. To gain insight into the contrasting thermodynamics and kinetics of DNA recognition by these two proteins, we investigated the structure and dynamics of site discrimination by their DNA-binding domains. Electrophoretic mobilities of complexes formed by the two homologs with circularly permuted binding sites showed significant dynamic differences only for DNA complexes of PU.1. Free solution measurements by dynamic light scattering showed PU.1 to be more dynamic than Ets-1; moreover, dynamic changes are strongly coupled to site discrimination by PU.1, but not Ets-1. Interrogation of the protein/DNA interface by DNA footprinting showed similar accessibility to dimethyl sulfate for PU.1/DNA and Ets-1/DNA complexes, indicating that the dynamics of PU.1/DNA complexes reside primarily outside that interface. An information-based analysis of the two homologs' binding motifs suggests a role for dynamic coupling in PU.1's ability to enforce a more stringent sequence preference than Ets-1 and its proximal sequence homologs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Fundamentals of structural dynamics

    CERN Document Server

    Craig, Roy R

    2006-01-01

    From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e

  11. OCCURRENCE OF MENTAL DISORDERS IN POPULATION AFFECTED BY RADIATION ACCIDENT: STRUCTURE, DYNAMICS, RISK FACTORS

    Directory of Open Access Journals (Sweden)

    G. M. Rumyantseva

    2013-01-01

    Full Text Available The problem of damage to mental health of individuals born after theChernobylaccident remains of high interest, especially in the regions which have been subjected to significant contamination as a result of the accident. The article analyzes the dynamics of psychiatric morbidity in population of contaminated and non-contaminated areas of theBryanskregion according to state statistics and to files of neuropsychiatric ambulatory institutions. The incidence rates in the contaminated areas are found to be significantly different from those in the non-contaminated areas. Dynamics of mentally handicapped contingents after the radiation accident depends, at different stages of postaccidental situation, on a complex of factors: social, economic, radiation, and general toxic ones, which once again underlines the general social character of such disasters.

  12. Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field

    Science.gov (United States)

    Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.

    2015-10-01

    We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

  13. Regulation of the Dynamic Live Load Factor for Calculation of Bridge Structures on High-Speed Railway Mainlines

    Science.gov (United States)

    Dyachenko, Leonid K.; Benin, Andrey V.

    2017-06-01

    When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.

  14. Acculturative stress and influential factors among international students in China: a structural dynamic perspective.

    Science.gov (United States)

    Yu, Bin; Chen, Xinguang; Li, Shiyue; Liu, Yang; Jacques-Tiura, Angela J; Yan, Hong

    2014-01-01

    Stress represents a prominent aspect of modern life and is associated with numerous negative health consequences. International students are a key force in shaping globalization. However, these students often experience acculturative stress, influencing their health and well-being. The growing number of international students in China emerges as a new global health challenge and presents an opportunity to advance our understanding of acculturative stress. This study aims to investigate the acculturative stress of international students in China, and verify the mechanism and influential factors of acculturative stress. We analyzed survey data from 567 international students attending universities in Wuhan, China. We used a network-based analytical approach to assess the structure of the Acculturative Stress Scale for International Students and used regression analysis to assess the relationships between acculturative stress and theoretically related factors. We found that higher levels of acculturative stress were reported by students from Asia and Africa than from other regions (Europe/America/Oceania). Lower acculturative stress was reported by unmarried students than others and by students well prepared than not well prepared. We verified seven acculturative stress subconstructs: rejection, identity threat, opportunity deprivation, self-confidence, value conflict, cultural competence, and homesickness; and discovered a three-dimensional network structure of these subconstructs. Our results suggest that acculturative stress was more common among international students in China than in developed countries. Acculturative stress was also more common among international students who did not well prepared, married, and belonged to an organized religion. African and Asian students' stress was higher than that for students from other regions. Acculturative stress prevention programs should seek to improve preparedness of the international students for studying abroad and

  15. Acculturative stress and influential factors among international students in China: a structural dynamic perspective.

    Directory of Open Access Journals (Sweden)

    Bin Yu

    Full Text Available Stress represents a prominent aspect of modern life and is associated with numerous negative health consequences. International students are a key force in shaping globalization. However, these students often experience acculturative stress, influencing their health and well-being. The growing number of international students in China emerges as a new global health challenge and presents an opportunity to advance our understanding of acculturative stress. This study aims to investigate the acculturative stress of international students in China, and verify the mechanism and influential factors of acculturative stress. We analyzed survey data from 567 international students attending universities in Wuhan, China. We used a network-based analytical approach to assess the structure of the Acculturative Stress Scale for International Students and used regression analysis to assess the relationships between acculturative stress and theoretically related factors. We found that higher levels of acculturative stress were reported by students from Asia and Africa than from other regions (Europe/America/Oceania. Lower acculturative stress was reported by unmarried students than others and by students well prepared than not well prepared. We verified seven acculturative stress subconstructs: rejection, identity threat, opportunity deprivation, self-confidence, value conflict, cultural competence, and homesickness; and discovered a three-dimensional network structure of these subconstructs. Our results suggest that acculturative stress was more common among international students in China than in developed countries. Acculturative stress was also more common among international students who did not well prepared, married, and belonged to an organized religion. African and Asian students' stress was higher than that for students from other regions. Acculturative stress prevention programs should seek to improve preparedness of the international students for

  16. Seasonal dynamics of crustacean zooplankton community structure in Erhai Lake, a plateau lake, with reference to phytoplankton and environmental factors

    Science.gov (United States)

    Yang, Wei; Deng, Daogui; Zhang, Sai; Hu, Cuilin

    2014-09-01

    The seasonal dynamics of a crustacean zooplankton community in Erhai Lake was investigated from May 2010 to April 2011. In total, 11 species were recorded, including six (6 genera) cladoceran and five (5 genera) copepod species. The crustacean zooplankton densities ranged from 24.3 to 155.4 ind./L. In winter and spring, the large-bodied cladoceran Daphnia galeata dominated the crustacean plankton community. In summer and autumn, when the colonial or filamentous algae dominated the phytoplankton communities, the small-bodied species (e.g. B osmina fatalis, Ceriodaphnia quadrangular, and Mesocyclops leuckarti) replaced the large-bodied ones. One-way ANOVA and redundancy analysis revealed that community structure was dependent upon total nitrogen, total phosphorus, water temperature, transparency, and the biomass of small algae. The variation in both phytoplankton structure and environmental variables were important factors in the seasonal succession of crustacean zooplankton structure in Erhai Lake.

  17. Probing the dynamic structure factor of a neutral Fermi superfluid along the BCS-BEC crossover using atomic impurity qubits

    Science.gov (United States)

    Mitchison, Mark T.; Johnson, Tomi H.; Jaksch, Dieter

    2016-12-01

    We study an impurity atom trapped by an anharmonic potential, immersed within a cold atomic Fermi gas with attractive interactions that realizes the crossover from a Bardeen-Cooper-Schrieffer superfluid to a Bose-Einstein condensate. Considering the qubit comprising the lowest two vibrational energy eigenstates of the impurity, we demonstrate that its dynamics probes the equilibrium density fluctuations encoded in the dynamic structure factor of the superfluid. Observing the impurity's evolution is thus shown to facilitate nondestructive measurements of the superfluid order parameter and the contact between collective and single-particle excitation spectra. Our setup constitutes a model of an open quantum system interacting with a thermal reservoir, the latter supporting both bosonic and fermionic excitations that are also coupled to each other.

  18. Structural Dynamics Laboratory (SDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...

  19. Basic structural dynamics

    CERN Document Server

    Anderson, James C

    2012-01-01

    A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural d

  20. Structure, dynamics and folding of an immunoglobulin domain of the gelation factor (ABP-120) from Dictyostelium discoideum.

    Science.gov (United States)

    Hsu, Shang-Te Danny; Cabrita, Lisa D; Fucini, Paola; Dobson, Christopher M; Christodoulou, John

    2009-05-15

    We have carried out a detailed structural and dynamical characterisation of the isolated fifth repeat of the gelation factor (ABP-120) from Dictyostelium discoideum (ddFLN5) by NMR spectroscopy to provide a basis for studies of co-translational folding on the ribosome of this immunoglobulin-like domain. The isolated ddFLN5 can fold autonomously in solution into a structure that resembles very closely the crystal structure of the domain in a construct in which the adjacent sixth repeat (ddFLN6) is covalently linked to its C-terminus in tandem but deviates locally from a second crystal structure in which ddFLN5 is flanked by ddFLN4 and ddFLN6 at both N- and C-termini. Conformational fluctuations were observed via (15)N relaxation methods and are primarily localised in the interstrand loops that encompass the C-terminal hemisphere. These fluctuations are distinct in location from the region where line broadening is observed in ddFLN5 when attached to the ribosome as part of a nascent chain. This observation supports the conclusion that the broadening is associated with interactions with the ribosome surface [Hsu, S. T. D., Fucini, P., Cabrita, L. D., Launay, H., Dobson, C. M. & Christodoulou, J. (2007). Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 104, 16516-16521]. The unfolding of ddFLN5 induced by high concentrations of urea shows a low population of a folding intermediate, as inferred from an intensity-based analysis, a finding that differs from that of ddFLN5 as a ribosome-bound nascent chain. These results suggest that interesting differences in detail may exist between the structure of the domain in isolation and when linked to the ribosome and between protein folding in vitro and the folding of a nascent chain as it emerges from the ribosome.

  1. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  2. Density Fluctuations in the Yukawa One Component Plasma: An accurate model for the dynamical structure factor

    CERN Document Server

    Mithen, James P; Crowley, Basil J B; Gregori, Gianluca

    2011-01-01

    Using numerical simulations, we investigate the equilibrium dynamics of a single component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, the model has significant applicability for both analyzing and interpreting the results of x-ray scattering data from high power lasers and fourth generation light sources.

  3. Structural investigation of zymogenic and activated forms of human blood coagulation factor VIII: a computational molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Venkateswarlu Divi

    2010-02-01

    Full Text Available Abstract Background Human blood coagulation factor VIII (fVIII is a large plasma glycoprotein with sequential domain arrangement in the order A1-a1-A2-a2-B-a3-A3-C1-C2. The A1, A2 and A3 domains are interconnected by long linker peptides (a1, a2 and a3 that possess the activation sites. Proteolysis of fVIII zymogen by thrombin or factor Xa results in the generation of the activated form (fVIIIa which serves as a critical co-factor for factor IXa (fIXa enzyme in the intrinsic coagulation pathway. Results In our efforts to elucidate the structural differences between fVIII and fVIIIa, we developed the solution structural models of both forms, starting from an incomplete 3.7 Å X-ray crystal structure of fVIII zymogen, using explicit solvent MD simulations. The full assembly of B-domainless single-chain fVIII was built between the A1-A2 (Ala1-Arg740 and A3-C1-C2 (Ser1669-Tyr2332 domains. The structural dynamics of fVIII and fVIIIa, simulated for over 70 ns of time scale, enabled us to evaluate the integral motions of the multi-domain assembly of the co-factor and the possible coordination pattern of the functionally important calcium and copper ion binding in the protein. Conclusions MD simulations predicted that the acidic linker peptide (a1 between the A1 and A2 domains is largely flexible and appears to mask the exposure of putative fIXa enzyme binding loop (Tyr555-Asp569 region in the A2 domain. The simulation of fVIIIa, generated from the zymogen structure, predicted that the linker peptide (a1 undergoes significant conformational reorganization upon activation by relocating completely to the A1-domain. The conformational transition led to the exposure of the Tyr555-Asp569 loop and the surrounding region in the A2 domain. While the proposed linker peptide conformation is predictive in nature and warrants further experimental validation, the observed conformational differences between the zymogen and activated forms may explain and support the

  4. Structural and Dynamic Process Family Risk Factors: Consequences for Holistic Adolescent Functioning

    Science.gov (United States)

    Matjasko, Jennifer L.; Grunden, Leslie N.; Ernst, Jody L.

    2007-01-01

    This study utilized a dynamic cumulative family risk model to explain changes in adolescent functioning. We used a person-centered approach to detect patterns of academic, emotional, and behavioral functioning and the stability of these patterns using two waves of the National Longitudinal Study of Adolescent Health (N = 10,173). Four adjustment…

  5. Density of states from mode expansion of the self-dynamic structure factor of a liquid metal

    Science.gov (United States)

    Guarini, E.; Bellissima, S.; Bafile, U.; Farhi, E.; De Francesco, A.; Formisano, F.; Barocchi, F.

    2017-01-01

    We show that by exploiting multi-Lorentzian fits of the self-dynamic structure factor at various wave vectors it is possible to carefully perform the Q →0 extrapolation required to determine the spectrum Z (ω ) of the velocity autocorrelation function of a liquid. The smooth Q dependence of the fit parameters makes their extrapolation to Q =0 a simple procedure from which Z (ω ) becomes computable, with the great advantage of solving the problems related to resolution broadening of either experimental or simulated self-spectra. Determination of a single-particle property like the spectrum of the velocity autocorrelation function turns out to be crucial to understanding the whole dynamics of the liquid. In fact, we demonstrate a clear link between the collective mode frequencies and the shape of the frequency distribution Z (ω ) . In the specific case considered in this work, i.e., liquid Au, analysis of Z (ω ) revealed the presence, along with propagating sound waves, of lower frequency modes that were not observed before by means of dynamic structure factor measurements. By exploiting ab initio simulations for this liquid metal we could also calculate the transverse current-current correlation spectra and clearly identify the transverse nature of the above mentioned less energetic modes. Evidence of propagating transverse excitations has actually been reported in various works in the recent literature. However, in some cases, like the present one, these modes are difficult to detect in density fluctuation spectra. We show here that the analysis of the single-particle dynamics is able to unveil their presence in a very effective way. The properties here shown to characterize Z (ω ) , and the information in it contained therefore allow us to identify it with the density of states (DoS) of the liquid. We demonstrate that only nonhydrodynamic modes contribute to the DoS, thus establishing its purely microscopic origin. Finally, as a by-product of this work, we

  6. Finite-size effects in molecular dynamics simulations: Static structure factor and compressibility. II. Application to a model krypton fluid

    Science.gov (United States)

    Salacuse, J. J.; Denton, A. R.; Egelstaff, P. A.; Tau, M.; Reatto, L.

    1996-03-01

    The method described in the preceding paper [J. J. Salacuse, A. R. Denton, and P. A. Egelstaff, preceding paper, Phys. Rev. E 53, 2382 (1996)] for computing the static structure factor S(Q) of a bulk fluid is used to analyze molecular dynamics computer simulation data for a model krypton fluid whose atoms interact via a truncated Aziz pair potential. Simulations have been carried out for two system sizes of N=706 and 2048 particles and two thermodynamic states, described by a common reduced temperature T*=1.51 and reduced densities ρ*=0.25 and 0.4. Results presented include the N-particle radial distribution function gN(r) and the bulk static structure factor S(Q). In addition we calculate the direct correlation function c(r) from the full S(Q). In comparison with corresponding predictions of the modified hypernetted chain theory, the results are generally in excellent agreement at all r and Q, to within random statistical errors in the simulation data.

  7. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  8. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Tsakalidis, Konstantinos

    We study dynamic data structures for different variants of orthogonal range reporting query problems. In particular, we consider (1) the planar orthogonal 3-sided range reporting problem: given a set of points in the plane, report the points that lie within a given 3-sided rectangle with one....... Dynamic problems like the above arise in various applications of network optimization, VLSI layout design, computer graphics and distributed computing. For the first problem, we present dynamic data structures for internal and external memory that support planar orthogonal 3-sided range reporting queries......, and insertions and deletions of points efficiently over an average case sequence of update operations. The external memory data structures find applications in constraint and temporal databases. In particular, we assume that the coordinates of the points are drawn from different probabilistic distributions...

  9. Dynamics of structures

    CERN Document Server

    Paultre, Patrick

    2013-01-01

    This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to

  10. Structural dynamics analysis

    Science.gov (United States)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.

    1985-01-01

    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  11. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Tsakalidis, Konstantinos

    We study dynamic data structures for different variants of orthogonal range reporting query problems. In particular, we consider (1) the planar orthogonal 3-sided range reporting problem: given a set of points in the plane, report the points that lie within a given 3-sided rectangle with one....... Dynamic problems like the above arise in various applications of network optimization, VLSI layout design, computer graphics and distributed computing. For the first problem, we present dynamic data structures for internal and external memory that support planar orthogonal 3-sided range reporting queries...... unbounded side, (2) the planar orthogonal range maxima reporting problem: given a set of points in the plane, report the points that lie within a given orthogonal range and are not dominated by any other point in the range, and (3) the problem of designing fully persistent B-trees for external memory...

  12. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Kejlberg-Rasmussen, Casper

    to a given key? The updates we can do are: inserting a new key or deleting a given key. Our dictionary has the working set property, which means that the running time of a query depends on the query distribution. Specifically the time to search for a key depends on when we last searched for it. Our data...... statements about our data structure, which are based on the structure of the underlying problem, that we are trying to solve. We can rely on the properties of the invariants when performing queries, and in return we need to ensure that the invariants remain true after we perform updates. When designing data......In this thesis I will address three dynamic data structure problems using the concept of invariants. The first problem is maintaining a dynamically changing set of keys – a dictionary – where the queries we can ask are: does it contain a given key? and what is the preceding (or succeeding) key...

  13. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Kejlberg-Rasmussen, Casper

    statements about our data structure, which are based on the structure of the underlying problem, that we are trying to solve. We can rely on the properties of the invariants when performing queries, and in return we need to ensure that the invariants remain true after we perform updates. When designing data......In this thesis I will address three dynamic data structure problems using the concept of invariants. The first problem is maintaining a dynamically changing set of keys – a dictionary – where the queries we can ask are: does it contain a given key? and what is the preceding (or succeeding) key...... to a given key? The updates we can do are: inserting a new key or deleting a given key. Our dictionary has the working set property, which means that the running time of a query depends on the query distribution. Specifically the time to search for a key depends on when we last searched for it. Our data...

  14. Dynamical Structure of Baryons

    CERN Document Server

    Aleksejevs, A

    2013-01-01

    Compton scattering offers a unique opportunity to study the dynamical structure of hadrons over a wide kinematic range, with polarizabilities characterizing the hadron active internal degrees of freedom. We present calculations and detailed analysis of electric and magnetic and the spin-dependent dynamical polarizabilities for the lowest in mass SU(3) octet of baryons. These extensive calculations are made possible by the recent implementation of semi-automatized calculations in chiral perturbation theory which allows evaluating polarizabilities from Compton scattering up to next-to-the-leading order. The dependencies for the range of photon energies covering the majority of the meson photoproduction channels are analyzed.

  15. Dynamic Weighted Data Structures.

    Science.gov (United States)

    1982-06-01

    and Bonnie Hampton, who taught me much more than how to play the cello . Finally, for hours of artistic satisfaction, I thank Johannes Brahms, Ludwig...van "j Beethoven, Igor Stravinsky, Glan-Carlo Menotti, and Johann Sebastian Bach . Dynamic Weighted Data Structures Samuel W. Bent This thesis discusses...34I find It a matter of some difficulty to arrange these cards In a manner suited to my needs.’ I glanced at the cards and noticed each was labelled

  16. Structural dynamic modification

    Indian Academy of Sciences (India)

    A Sestieri

    2000-06-01

    Vibration and acoustic requirements are becoming increasingly important in the design of mechanical structures, but they are not usually of primary concern in the design process. So the need to vary the structural behaviour to solve noise and vibration problems often occurs at the prototype stage, giving rise to the so-called structural modification problem. In this paper, the direct problem of determing the new response of a system, after some modifications are introduced into the sestem, is analysed using two different databases: the modal database and the frequency response function database. The limitaions of the modal database are discussed. Structural modifications that can be accounted for are lumped masses, springs, dampers and dynamic absorbers.

  17. Wave packet dynamics and factorization of numbers

    CERN Document Server

    Mack, H; Haug, F; Straub, F S; Freyberger, M; Schleich, W P; Mack, Holger; Bienert, Marc; Haug, Florian; Straub, Frank S.; Freyberger, Matthias; Schleich, Wolfgang P.

    2002-01-01

    We connect three phenomena of wave packet dynamics: Talbot images, revivals of a particle in a box and fractional revivals. The physical origin of these effects is deeply rooted in phase factors which are quadratic in the quantum number. We show that the characteristic structures in the time evolution of these systems allow us to factorize large integers.

  18. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    T K Kundra

    2000-06-01

    Structural dynamic modification techniques attempt to reduce dynamic design time and can be implemented beginning with spatial models of structures, dynamic test data or updated models. The models assumed in this discussion are mathematical models, namely mass, stiffness, and damping matrices of the equations of motion of a structure. These models are identified/extracted from dynamic test data viz. frequency response functions (FRFs). Alternatively these models could have been obtained by adjusting or updating the finite element model of the structure in the light of the test data. The methods of structural modification for getting desired dynamic characteristics by using modifiers namely mass, beams and tuned absorbers are discussed.

  19. System Identification by Dynamic Factor Models

    NARCIS (Netherlands)

    C. Heij (Christiaan); W. Scherrer; M. Destler

    1996-01-01

    textabstractThis paper concerns the modelling of stochastic processes by means of dynamic factor models. In such models the observed process is decomposed into a structured part called the latent process, and a remainder that is called noise. The observed variables are treated in a symmetric way, so

  20. Exploration of fluid dynamic indicators/causative factors in the formation of tower structures in staphylococci bacteria bio-films

    Science.gov (United States)

    Sherman, Erica; Derek, Moormeier; Bayles, Kenneth; Wei, Timothy

    2015-11-01

    Staphylococcus aureus bacteria form biofilms with distinct structures that facilitate their ability to tolerate treatment and to spread within the body. As such, staph infections represent one of the greatest threats to post-surgery patients. It has been found that flow conditions play a significant role in the developmental and dispersal activity of a biofilm. The coupling between the growing biofilm and surrounding flow, however, is not well understood. Indeed, little is know why bacteria form tower structures under certain conditions but not in a predictable way. μ-PTV measurements were made in a microchannel to try to identify fluid dynamic indicators for the formation of towers in biofilm growth. Preliminary experiments indicated changes in the near wall flow up to five hours before a tower formed. The reason for that is the target of this investigation. Staphylococcus aureus bacteria were cultured in the Bioflux Fluxion channel and subjected to a steady shear rate of 0.5 dynes. In addition to μ-PTV measurement, nuclease production and cell number density counts were observed prior to and during tower development. These were compared against measurements made under the same nominal flow conditions where a tower did not form.

  1. Structural Dynamics of Maneuvering Aircraft.

    Science.gov (United States)

    1987-09-01

    AD-RI92 376 STRUCTURAL DYNAMICS OF MANEUVERING RIRCRAFT(U) CONRAD I TECHNOLOGIES INC KING OF PRUSSIA PR M M REDDI SEP 97 CTI-8601 NRDC-88014-69...REPORT NO. NADC-8014-60 STRUCTURAL DYNAMICS OF MANEUVERING AIRCRAFT M. Mahadeva Reddi .4 Conrad Technologies, Inc. 650 S. Henderson Rd. D T IQ King of...NO A0 CCESSION NO. R02303001 107601 11. TITLE (Include Security Classfication) (u) STRUCTURAL DYNAMICS OF MANEUVERING AIRCRAFT 12. PERSONAL AUTHORS) M

  2. Biochemical, structural and molecular dynamics analyses of the potential virulence factor RipA from Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rodrigo Torres

    Full Text Available Human diseases are attributed in part to the ability of pathogens to evade the eukaryotic immune systems. A subset of these pathogens has developed mechanisms to survive in human macrophages. Yersinia pestis, the causative agent of the bubonic plague, is a predominately extracellular pathogen with the ability to survive and replicate intracellularly. A previous study has shown that a novel rip (required for intracellular proliferation operon (ripA, ripB and ripC is essential for replication and survival of Y. pestis in postactivated macrophages, by playing a role in lowering macrophage-produced nitric oxide (NO levels. A bioinformatics analysis indicates that the rip operon is conserved among a distally related subset of macrophage-residing pathogens, including Burkholderia and Salmonella species, and suggests that this previously uncharacterized pathway is also required for intracellular survival of these pathogens. The focus of this study is ripA, which encodes for a protein highly homologous to 4-hydroxybutyrate-CoA transferase; however, biochemical analysis suggests that RipA functions as a butyryl-CoA transferase. The 1.9 Å X-ray crystal structure reveals that RipA belongs to the class of Family I CoA transferases and exhibits a unique tetrameric state. Molecular dynamics simulations are consistent with RipA tetramer formation and suggest a possible gating mechanism for CoA binding mediated by Val227. Together, our structural characterization and molecular dynamic simulations offer insights into acyl-CoA specificity within the active site binding pocket, and support biochemical results that RipA is a butyryl-CoA transferase. We hypothesize that the end product of the rip operon is butyrate, a known anti-inflammatory, which has been shown to lower NO levels in macrophages. Thus, the results of this molecular study of Y. pestis RipA provide a structural platform for rational inhibitor design, which may lead to a greater understanding of the

  3. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment.

    Science.gov (United States)

    Valentín-Vargas, Alexis; Root, Robert A; Neilson, Julia W; Chorover, Jon; Maier, Raina M

    2014-12-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  4. Environmental Factors Influencing the Structural Dynamics of Soil Microbial Communities During Assisted Phytostabilization of Acid-Generating Mine Tailings: a Mesocosm Experiment

    Science.gov (United States)

    Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  5. Dynamic testing of cable structures

    Directory of Open Access Journals (Sweden)

    Caetano Elsa

    2015-01-01

    Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.

  6. Structural dynamics in rotating systems

    Science.gov (United States)

    Kiraly, Louis J.

    1993-01-01

    Major issues and recent advances in the structural dynamics of rotating systems are summarized. The objectives and benefits of such systems are briefly discussed. Directions for future research are suggested.

  7. Hysteresis in structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyi, A., E-mail: aivanyi@morpheus.pte.hu [Pollack Mihaly Faculty of Engineering, University of Pecs, Boszorkany u. 2, H-7624 Pecs (Hungary); Ivanyi, P., E-mail: peteri@morpheus.pte.hu [Pollack Mihaly Faculty of Engineering, University of Pecs, Boszorkany u. 2, H-7624 Pecs (Hungary); Ivanyi, M.M., E-mail: ivanyi@uvaterv.hu [Pollack Mihaly Faculty of Engineering, University of Pecs, Boszorkany u. 2, H-7624 Pecs (Hungary); UVATERV Ltd, Budapest, 1117, Dombovari ut 17, Budapest (Hungary); Ivanyi, M., E-mail: drivanyi@pmmk.pte.hu [Pollack Mihaly Faculty of Engineering, University of Pecs, Boszorkany u. 2, H-7624 Pecs (Hungary)

    2012-05-01

    In this paper the Preisach hysteresis model is applied to determine the dynamic behavior of a steel column with mass on the top and loaded by an impulse force. The column is considered as a rigid element, while the fixed end of the column is modeled with a rotational spring of hysterestic characteristic. In the solution of the non-linear dynamical equation of motion the fix-point technique is inserted to the time marching iteration. In the investigation the non-linearity of the rotation spring is modeled with the Preisach hysteresis model. The variation of amplitude and the action time interval of force are changing. The results are plotted in figures.

  8. Dynamic behaviors of pretensioned cable AERORail structure

    Institute of Scientific and Technical Information of China (English)

    李方元; 吴培峰

    2015-01-01

    The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail’s cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.

  9. Solute-solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: a molecular dynamics study

    Science.gov (United States)

    Zhang, Feng; Sun, Yang; Ye, Zhuo; Zhang, Yue; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ding, Ze-Jun; Ho, Kai-Ming

    2015-05-01

    We have performed molecular dynamics simulations on a typical Al-based alloy Al90Sm10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the system originating from the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm-Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.

  10. Lymphotactin structural dynamics

    OpenAIRE

    Volkman, Brian F.; Liu, Tina Y.; Peterson, Francis C.

    2009-01-01

    Lymphotactin/XCL1, the defining member of the C class of chemokines, undergoes a conformational change that involves the complete restructuring of all stabilizing interactions. Other chemokines are restricted to a single conformation by a pair of conserved disulfide crosslinks, one of which is absent in lymphotactin. This structural interconversion is entirely reversible, and the two-state equilibrium is sensitive to changes in temperature and ionic strength. One species adopts the conserved ...

  11. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  12. Structural Mechanics and Dynamics Branch

    Science.gov (United States)

    Stefko, George

    2003-01-01

    The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.

  13. Application of Structural-Dynamic Approaches Provide Novel Insights Into the Enzymatic Mechanism of the Tumor Necrosis Factor-Alpha Converting Enzyme (TACE)

    Energy Technology Data Exchange (ETDEWEB)

    Sagi, I.; Milla, M

    2008-01-01

    Zinc dependent metalloproteinases comprise a large family of structurally homologous enzymes with a wide variety of biological roles. Originally described as proteinases involved in extracellular matrix (ECM) catabolism, these enzymes were later found to serve major roles as initiators of signaling pathways in many aspects of biology, ranging from cell proliferation, differentiation and communication, to pathological states associated with tumor metastasis, inflammation, tissue degeneration and cell death. From these enzymes, the tumor necrosis factor-a converting enzyme (TACE) stands out as a central shedding activity mediating the regulated release of a host of cytokines, receptors and other cell surface molecules. Selective drugs targeted at blocking TACE for treatment of rheumatoid arthritis and other disease indications are highly sought. Yet, the structural and chemical knowledge underlying its enzymatic activity is very limited. This is in part due to the fact that the catalytic zinc atom of metalloproteinases is usually spectroscopically silent and hence difficult to study using conventional spectroscopic and analytical tools. Most structural and biochemical studies, as well as medicinal chemistry efforts carried out so far were limited to non-dynamic structure/function characterization. Thus, to date, our mechanistic knowledge comes from theoretical calculations derived from static crystal structures from family members that are highly similar in their amino acid sequence and three-dimensional structure.This review introduces the importance of real-time quantification of biophysical properties and structural kinetic behavior applied to the study of TACE and other zinc metalloproteinases to dissect their molecular mechanisms. The molecular details that link the catalytic chemistry to key kinetic, electronic and structural events have remained elusive because of the difficulties associated with probing time-dependent structure-function aspects of enzymatic

  14. Bayesian Estimation of Categorical Dynamic Factor Models

    Science.gov (United States)

    Zhang, Zhiyong; Nesselroade, John R.

    2007-01-01

    Dynamic factor models have been used to analyze continuous time series behavioral data. We extend 2 main dynamic factor model variations--the direct autoregressive factor score (DAFS) model and the white noise factor score (WNFS) model--to categorical DAFS and WNFS models in the framework of the underlying variable method and illustrate them with…

  15. Dynamic Soil-Structure-Interaction

    DEFF Research Database (Denmark)

    Kellezi, Lindita

    1998-01-01

    The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...... represents an attempt to construct a local stiffness for the unbounded soil domain....

  16. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  17. ADJUSTMENT FACTORS AND ADJUSTMENT STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    Tao Benzao

    2003-01-01

    In this paper, adjustment factors J and R put forward by professor Zhou Jiangwen are introduced and the nature of the adjustment factors and their role in evaluating adjustment structure is discussed and proved.

  18. Algebraic Structure of Dynamical Systems

    Science.gov (United States)

    2017-05-22

    Scholar project report; no. 461 (2017) ALGEBRAIC STRUCTURE OF DYNAMICAL SYSTEMS by MIDN 1/C James P. Talisse United States Naval Academy Annapolis, MD...based on the structure of algebraic objects associated with it. In this project we study two algebraic objects, centralizers and topological full groups...group completely defines the system up to time reversal. We apply numerical estimates to draw conclusions about the algebraic properties of this group

  19. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  20. Distributed Dynamic Condition Response Structures

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao

    We present distributed dynamic condition response structures as a declarative process model inspired by the workflow language employed by our industrial partner and conservatively generalizing labelled event structures. The model adds to event structures the possibility to 1) finitely specify...... repeated, possibly infinite behavior, 2) finitely specify fine-grained acceptance conditions for (possibly infinite) runs based on the notion of responses and 3) distribute events via roles. We give a graphical notation inspired by related work by van der Aalst et al and formalize the execution semantics...

  1. Structural Dynamics of the Ribosome

    OpenAIRE

    Korostelev, Andrei; Ermolenko, Dmitri N.; Noller, Harry F.

    2008-01-01

    Protein synthesis is inherently a dynamic process, requiring both small- and large-scale movements of tRNA and mRNA. It has long been suspected that these movements might be coupled to conformational changes in the ribosome, and in its RNA moieties in particular. Recently, the nature of ribosome structural dynamics has begun to emerge from a combination of approaches, most notably cryo-EM, X-ray crystallography and FRET. Ribosome movement occurs both on a grand scale, as in the intersubunit r...

  2. A Study of Quasicrystal Structure Factors by Using Quantitative CBED

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The procedure of simulating convergent beam electron diffraction (CBED) pattern of quasicrystals by dynamical theory is described. The simulated patterns are generally coincide with the experimental patterns. The variations of intensity distribution in CBED pattern with the amplitude and phase of the structure factor of quasicrystai are caiculated with dynamical theory. The sensitivity of intensity distribution to the structure factor is investigated.

  3. Primary structural dynamics in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sascha; Liang Wenxi; Zewail, Ahmed H, E-mail: zewail@caltech.edu [Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125 (United States)

    2011-06-15

    The structural dynamics of graphite and graphene are unique, because of the selective coupling between electron and lattice motions and hence the limit on electric and electro-optic properties. Here, we report on the femtosecond probing of graphite films (1-3 nm) using ultrafast electron crystallography in the transmission mode. Two time scales are observed for the dynamics: a 700 fs initial decrease in diffraction intensity due to lattice phonons in optically dark regions of the Brillouin zone, followed by a 12 ps decrease due to phonon thermalization near the {Gamma} and K regions. These results indicate the non-equilibrium distortion of the unit cells at early time and the subsequent role of long-wavelength atomic motions in the thermalization process. Theory and experiment are now in agreement regarding the nature of nuclear motions, but the results suggest that potential change plays a role in the lateral dynamics of the lattice.

  4. Structurally Dynamic Spin Market Networks

    Science.gov (United States)

    Horváth, Denis; Kuscsik, Zoltán

    The agent-based model of stock price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. The inherent structure of node agent "brain" is modeled by a recursive neural network with local and global inputs and feedback connections. For specific parametric combination the complex network displays small-world phenomenon combined with scale-free behavior. The identification of a local leader (network hub, agent whose strategies are frequently adapted by its neighbors) is carried out by repeated random walk process through network. The simulations show empirically relevant dynamics of price returns and volatility clustering. The additional emerging aspects of stylized market statistics are Zipfian distributions of fitness.

  5. Dynamic molecular graphs: "hopping" structures.

    Science.gov (United States)

    Cortés-Guzmán, Fernando; Rocha-Rinza, Tomas; Guevara-Vela, José Manuel; Cuevas, Gabriel; Gómez, Rosa María

    2014-05-05

    This work aims to contribute to the discussion about the suitability of bond paths and bond-critical points as indicators of chemical bonding defined within the theoretical framework of the quantum theory of atoms in molecules. For this purpose, we consider the temporal evolution of the molecular structure of [Fe{C(CH2 )3 }(CO)3 ] throughout Born-Oppenheimer molecular dynamics (BOMD), which illustrates the changing behaviour of the molecular graph (MG) of an electronic system. Several MGs with significant lifespans are observed across the BOMD simulations. The bond paths between the trimethylenemethane and the metallic core are uninterruptedly formed and broken. This situation is reminiscent of a "hopping" ligand over the iron atom. The molecular graph wherein the bonding between trimethylenemethane and the iron atom takes place only by means of the tertiary carbon atom has the longest lifespan of all the considered structures, which is consistent with the MG found by X-ray diffraction experiments and quantum chemical calculations. In contrast, the η(4) complex predicted by molecular-orbital theory has an extremely brief lifetime. The lifespan of different molecular structures is related to bond descriptors on the basis of the topology of the electron density such as the ellipticities at the FeCH2 bond-critical points and electron delocalisation indices. This work also proposes the concept of a dynamic molecular graph composed of the different structures found throughout the BOMD trajectories in analogy to a resonance hybrid of Lewis structures. It is our hope that the notion of dynamic molecular graphs will prove useful in the discussion of electronic systems, in particular for those in which analysis on the basis of static structures leads to controversial conclusions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dynamic Range Majority Data Structures

    OpenAIRE

    Elmasry, Amr; HE, MENG; Munro, J. Ian; Nicholson, Patrick K.

    2011-01-01

    Given a set $P$ of coloured points on the real line, we study the problem of answering range $\\alpha$-majority (or "heavy hitter") queries on $P$. More specifically, for a query range $Q$, we want to return each colour that is assigned to more than an $\\alpha$-fraction of the points contained in $Q$. We present a new data structure for answering range $\\alpha$-majority queries on a dynamic set of points, where $\\alpha \\in (0,1)$. Our data structure uses O(n) space, supports queries in $O((\\lg...

  7. Dynamic Range Majority Data Structures

    CERN Document Server

    He, Meng; Nicholson, Patrick K

    2011-01-01

    Given a set $P$ of coloured points on the real line, we study the problem of answering range $\\alpha$-majority (or "heavy hitter") queries on $P$. More specifically, for a query range $Q$, we want to return each colour that is assigned to more than an $\\alpha$-fraction of the points contained in $Q$. We present a new data structure for answering range $\\alpha$-majority queries on a dynamic set of points, where $\\alpha \\in (0,1)$. Our data structure uses O(n) space, supports queries in $O((\\lg n) / \\alpha)$ time, and updates in $O((\\lg n) / \\alpha)$ amortized time. If the coordinates of the points are integers, then the query time can be improved to $O(\\lg n / (\\alpha \\lg \\lg n) + (\\lg(1/\\alpha))/\\alpha))$. For constant values of $\\alpha$, this improved query time matches an existing lower bound, for any data structure with polylogarithmic update time. We also generalize our data structure to handle sets of points in d-dimensions, for $d \\ge 2$, as well as dynamic arrays, in which each entry is a colour.

  8. Dynamic ice loads on conical structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Two series of model tests were performed to observe the dynamic ice loads on conical structures.The variable testing parameters include the water line diameter of the model cone and ice parameters.During small water line diameter tests,two-time breaking is found to be the typical failure of ice on steep conical structure,and also be controlled by other factors,such as ice speed and the cone angle.During big water line diameter tests,the ice sheet failed nonsimultaneously around the cone.Several independe...

  9. Factors That Affect the Degree of Twist in beta-Sheet Structures : A Molecular Dynamics Simulation Study of a Cross-beta Filament of the GNNQQNY Peptide

    NARCIS (Netherlands)

    Periole, Xavier; Rampioni, Aldo; Vendruscolo, Michele; Mark, Alan E.

    2009-01-01

    By exploiting the recent availability of the crystal structure of a cross-beta filament of the GNNQQNY peptide fragment of the yeast prion protein Sup35, possible factors affecting the twisting of beta-sheets structures have been analyzed. The advantage of this system is that it is composed entirely

  10. Twelve lectures on structural dynamics

    CERN Document Server

    Preumont, André

    2013-01-01

    This text addresses the modeling of vibrating systems with the perspective of finding the model of minimum complexity which accounts for the physics of the phenomena at play. The first half of the book (Ch.1-6) deals with the dynamics of discrete and continuous mechanical systems; the classical approach emphasizes the use of Lagrange's equations. The second half of the book (Ch.7-12) deals with more advanced topics, rarely encountered in the existing literature: seismic excitation, random vibration (including fatigue), rotor dynamics, vibration isolation and dynamic vibration absorbers; the final chapter is an introduction to active control of vibrations. The first part of this text may be used as a one semester course for 3rd year students in Mechanical, Aerospace or Civil Engineering. The second part of the text is intended for graduate classes. A set of problems is provided at the end of every chapter. The author has a 35 years experience in various aspects of Structural dynamics, both in industry (nuclea...

  11. RESEARCH ON NONLINEAR PROBLEMS IN STRUCTURAL DYNAMICS.

    Science.gov (United States)

    Research on nonlinear problems structural dynamics is briefly summarized. Panel flutter was investigated to make a critical comparison between theory...panel flutter in aerospace vehicles, plausible simplifying assumptions are examined in the light of experimental results. Structural dynamics research

  12. Structural dynamic modification using additive damping

    Indian Academy of Sciences (India)

    B C Nakra

    2000-06-01

    In order to control dynamic response in structures and machines, modofications using additive viscoelastic damping materials are highlighted. The techniques described for analysis include analytical methods for structural elements, FEM and perturbation methods for reanalysis or structural dynamic modifications for complex structures. Optimisation techniques are used for damping effectiveness include multi-parameter optimisatoin techniques and a technique using dynamic sensitivity analysis and structural dynamic modification. These have been applied for optimum dynamic design of structures incorporating viscoelastic damping. Some current trends for vibraton control are also discussed.

  13. Dynamic Factor Models for the Volatility Surface

    DEFF Research Database (Denmark)

    van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van

    The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...... features for representing the surface and its dynamics: a general dynamic factor model, restricted factor models designed to capture the key features of the surface along the moneyness and maturity dimensions, and in-between spline-based methods. Key findings are that: (i) the restricted and spline......-based models are both rejected against the general dynamic factor model, (ii) the factors driving the surface are highly persistent, (iii) for the restricted models option Delta is preferred over the more often used strike relative to spot price as measure for moneyness....

  14. Structure and dynamics of solutions

    CERN Document Server

    Ohtaki, H

    2013-01-01

    Recent advances in the study of structural and dynamic properties of solutions have provided a molecular picture of solute-solvent interactions. Although the study of thermodynamic as well as electronic properties of solutions have played a role in the development of research on the rate and mechanism of chemical reactions, such macroscopic and microscopic properties are insufficient for a deeper understanding of fast chemical and biological reactions. In order to fill the gap between the two extremes, it is necessary to know how molecules are arranged in solution and how they change their pos

  15. Dynamic range majority data structures

    DEFF Research Database (Denmark)

    Elmasry, Amr Ahmed Abd Elmoneim; He, Meng; Munro, J. Ian

    2011-01-01

    Given a set P of n coloured points on the real line, we study the problem of answering range α-majority (or "heavy hitter") queries on P. More specifically, for a query range Q, we want to return each colour that is assigned to more than an α-fraction of the points contained in Q. We present a new...... data structure for answering range α-majority queries on a dynamic set of points, where α ε (0,1). Our data structure uses O(n) space, supports queries in O((lg n)/α) time, and updates in O((lg n)/α) amortized time. If the coordinates of the points are integers, then the query time can be improved to O...

  16. Sierra Structural Dynamics Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  17. Structural Dynamics of Electronic Systems

    Science.gov (United States)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  18. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2008-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on t

  19. Dynamics of Correlation Structure in Stock Market

    Directory of Open Access Journals (Sweden)

    Maman Abdurachman Djauhari

    2014-01-01

    Full Text Available In this paper a correction factor for Jennrich’s statistic is introduced in order to be able not only to test the stability of correlation structure, but also to identify the time windows where the instability occurs. If Jennrich’s statistic is only to test the stability of correlation structure along predetermined non-overlapping time windows, the corrected statistic provides us with the history of correlation structure dynamics from time window to time window. A graphical representation will be provided to visualize that history. This information is necessary to make further analysis about, for example, the change of topological properties of minimal spanning tree. An example using NYSE data will illustrate its advantages.

  20. Resolution of structural heterogeneity in dynamic crystallography.

    Science.gov (United States)

    Ren, Zhong; Chan, Peter W Y; Moffat, Keith; Pai, Emil F; Royer, William E; Šrajer, Vukica; Yang, Xiaojing

    2013-06-01

    Dynamic behavior of proteins is critical to their function. X-ray crystallography, a powerful yet mostly static technique, faces inherent challenges in acquiring dynamic information despite decades of effort. Dynamic `structural changes' are often indirectly inferred from `structural differences' by comparing related static structures. In contrast, the direct observation of dynamic structural changes requires the initiation of a biochemical reaction or process in a crystal. Both the direct and the indirect approaches share a common challenge in analysis: how to interpret the structural heterogeneity intrinsic to all dynamic processes. This paper presents a real-space approach to this challenge, in which a suite of analytical methods and tools to identify and refine the mixed structural species present in multiple crystallographic data sets have been developed. These methods have been applied to representative scenarios in dynamic crystallography, and reveal structural information that is otherwise difficult to interpret or inaccessible using conventional methods.

  1. The Joint Dynamics of Equity Market Factors

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Langlois, Hugues

    2013-01-01

    are small and even negative, the extreme correlations are large and positive, so that the linear correlations drastically overstate the benefits of diversification across the factors. We model the nonlinear factor dependence dynamics and explore their economic importance in a portfolio allocation experiment...

  2. Dynamic structure of dense krypton gas

    Science.gov (United States)

    Egelstaff, P. A.; Salacuse, J. J.; Schommers, W.; Ram, J.

    1984-07-01

    We have made molecular-dynamics computer simulations of dense krypton gas (10.6×1027 atoms/m3 and 296 K) using reasonably realistic pair potentials. Comparisons are made with the recent experimental data[P. A. Egelstaff et al., Phys. Rev. A 27, 1106 (1983)] for the dynamic structure factor S(q,ω) over the range 0.4

  3. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan

    2015-01-01

    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  4. Tissue Factor Structure and Function

    Directory of Open Access Journals (Sweden)

    Saulius Butenas

    2012-01-01

    Full Text Available Tissue factor (TF is an integral membrane protein that is essential to life. It is a component of the factor VIIa-TF complex enzyme and plays a primary role in both normal hemostasis and thrombosis. With a vascular injury, TF becomes exposed to blood and binds plasma factor VIIa, and the resulting complex initiates a series of enzymatic reactions leading to clot formation and vascular sealing. Many cells, both healthy, and tumor cells, produce detectable amounts of TF, especially when they are stimulated by various agents. Despite the relative simplicity and small size of TF, there are numerous contradictory reports about the synthesis and presentation of TF on blood cells and circulation in normal blood either on microparticles or as a soluble protein. Another subject of controversy is related to the structure/function of TF. It has been almost commonly accepted that cell-surface-associated TF has low (if any activity, that is, is “encrypted” and requires specific conditions/reagents to become active, that is, “decrypted.” However there is a lack of agreement related to the mechanism and processes leading to alterations in TF function. In this paper TF structure, presentation, and function, and controversies concerning these features are discussed.

  5. Transforming Static Data Structures to Dynamic Structures.

    Science.gov (United States)

    1979-09-03

    2C*(N))) f?, (Ps(N)) n (N). The last two Inequalities both follow from the fact that PS grows at least linearly. QED. Maurer and Ottmann [1979...Maurer, H. A. and T. Ottmann C1979]. "Dynamic solutions of decomposable searching problems," Report 33, Institut fur Informationsverabeltung

  6. Predicting protein dynamics from structural ensembles

    CERN Document Server

    Copperman, J

    2015-01-01

    The biological properties of proteins are uniquely determined by their structure and dynamics. A protein in solution populates a structural ensemble of metastable configurations around the global fold. From overall rotation to local fluctuations, the dynamics of proteins can cover several orders of magnitude in time scales. We propose a simulation-free coarse-grained approach which utilizes knowledge of the important metastable folded states of the protein to predict the protein dynamics. This approach is based upon the Langevin Equation for Protein Dynamics (LE4PD), a Langevin formalism in the coordinates of the protein backbone. The linear modes of this Langevin formalism organize the fluctuations of the protein, so that more extended dynamical cooperativity relates to increasing energy barriers to mode diffusion. The accuracy of the LE4PD is verified by analyzing the predicted dynamics across a set of seven different proteins for which both relaxation data and NMR solution structures are available. Using e...

  7. Structural Dynamics Model of a Cartesian Robot

    Science.gov (United States)

    1985-10-01

    34 D FILE COPY AD-A198 053 *.CC Technical Report 1009 Structural Dynamics Model of a Cartesian Robot "DTIC SELEC T E 0 Alfonso Garcia Reynoso MIT...COVERED Structural Dynamics Model of a Cartesian Robot technical report G. PERFORMING ORG. REPORT NUM9ER 7. AUTHO0R(@) S. CONTRACT On GRANT NUMSER...8217 %S S Structural Dynamics Model of a Cartesian Robot by Alfonso Garcia Reynoso BSME Instituto Tecnol6gico de Veracruz (1967) MSME Instituto Tecnol6gico

  8. Structurally dynamic spin market networks

    CERN Document Server

    Horváth, D

    2007-01-01

    The agent-based model of price dynamics on a directed evolving complex network is suggested and studied by direct simulation. The resulting stationary regime is maintained as a result of the balance between the extremal dynamics, adaptivity of strategic variables and reconnection rules. For some properly selected parametric combination the network displays small-world phenomenon with high mean clustering coefficient and power-law node degree distribution. The mechanism of repeated random walk through network combined with a fitness recognition is proposed and tested to generate modular multi-leader market. The simulations suggest that dynamics of fitness is the slowest process that manifests itself in the volatility clustering of the log-price returns.

  9. Dynamic risk factors: the Kia Marama evaluation.

    Science.gov (United States)

    Hudson, Stephen M; Wales, David S; Bakker, Leon; Ward, Tony

    2002-04-01

    Risk assessment is an essential part of clinical practice. Each of the three aspects of risk (static, stable, and acute dynamic) are important at various points of contact between the man and the systems that are responsible for providing service. Dynamic factors, the typical treatment and supervision targets, have received less research attention than static factors. This paper examined the extent to which pretreatment, posttreatment and change scores were associated with reoffending among men incarcerated for sexually molesting. The results were generally supportive of change in prooffending attitudes as the key to not reoffending and suggested that the perspective-taking component of empathy and the use of fantasy may be important mechanisms. Affect scales generally failed to show any relationship with reoffending, outside decreases in trait and suppressed anger. Moreover, these data suggest that we could improve our assessments and treatment through increased sensitivity to offense pathways.

  10. Structural Optimization of Machine Gun Based on Dynamic Stability Concept

    Institute of Scientific and Technical Information of China (English)

    LI Yong-jian; WANG Rui-lin; ZHANG Ben-jun

    2008-01-01

    Improving the firing accuracy is a final goal of structural optimization of machine guns. The main factors which affect the dispersion accuracy of machine gun are analyzed. Based on the concept of dynamic stability, a structural optimization model is built up, and the sensitivity of dispersion accuracy to design variables is analyzed. The optimization results of a type of machine gun show that the method is valid, feasible, and can be used as a guide to the structural optimization of other automatic weapons.

  11. Fungal community dynamics and driving factors during agricultural waste composting.

    Science.gov (United States)

    Yu, Man; Zhang, Jiachao; Xu, Yuxin; Xiao, Hua; An, Wenhao; Xi, Hui; Xue, Zhiyong; Huang, Hongli; Chen, Xiaoyang; Shen, Alin

    2015-12-01

    This study was conducted to identify the driving factors behind fungal community dynamics during agricultural waste composting. Fungal community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis combined with DNA sequencing. The effects of physico-chemical parameters on fungal community abundance and structure were evaluated by least significant difference tests and redundancy analysis. The results showed that Cladosporium bruhnei, Hanseniaspora uvarum, Scytalidium thermophilum, Tilletiopsis penniseti, and Coprinopsis altramentaria were prominent during the composting process. The greatest variation in the distribution of fungal community structure was statistically explained by pile temperature and total organic carbon (TOC) (P composting.

  12. Visualizing structural dynamics of thylakoid membranes

    Science.gov (United States)

    Iwai, Masakazu; Yokono, Makio; Nakano, Akihiko

    2014-01-01

    To optimize photosynthesis, light-harvesting antenna proteins regulate light energy dissipation and redistribution in chloroplast thylakoid membranes, which involve dynamic protein reorganization of photosystems I and II. However, direct evidence for such protein reorganization has not been visualized in live cells. Here we demonstrate structural dynamics of thylakoid membranes by live cell imaging in combination with deconvolution. We observed chlorophyll fluorescence in the antibiotics-induced macrochloroplast in the moss Physcomitrella patens. The three-dimensional reconstruction uncovered the fine thylakoid membrane structure in live cells. The time-lapse imaging shows that the entire thylakoid membrane network is structurally stable, but the individual thylakoid membrane structure is flexible in vivo. Our observation indicates that grana serve as a framework to maintain structural integrity of the entire thylakoid membrane network. Both the structural stability and flexibility of thylakoid membranes would be essential for dynamic protein reorganization under fluctuating light environments. PMID:24442007

  13. Simultaneous determination of protein structure and dynamics

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.

    2005-01-01

    We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information at ...

  14. Understanding Microbial Communities: Function, Structure and Dynamics

    Science.gov (United States)

    2015-02-11

    microbial communities: Function, structure and dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to...dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to December 2014. The programme involved over 150...Communities: Function, Structure and Dynamics’, at the Isaac Newton Institute, Cambridge University, UK, from 19th August 2014 – 19th December 2014

  15. Structural Dynamic Behavior of Wind Turbines

    Science.gov (United States)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  16. The structural and dynamical variables of pentane isomers

    Science.gov (United States)

    Patel, Tarika K.; Vaghela, M. V.; Gajjar, P. N.

    2016-05-01

    We derived structural and dynamical properties of pentane isomers: normal pentane, iso-pentane and neo pentane for liquid and gaseous state. We use molecular dynamics simulation to calculate the dynamical properties of pentane isomers for number of particles 729 using the intermolecular potential and force due to Lenard Jones potential. The computations also include mean square displacement and self diffusion co-efficient using Einstein relation. In structural properties, structure factor and phonon frequency are obtaining from P Y Method and Hubbard and Beeby Approach respectively. The Intermolecular potential and self diffusion co-efficient depend on the branching in the structure. The pair correlation function and phonon dispersion curves revels the complex structure of neo-pentane with respect to iso-pentane and n-pentane.

  17. Dynamic Response of Embedded Structures.

    Science.gov (United States)

    1991-07-15

    1 (202) 767-6963 AFOSR/Nh 00 FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. Uwc A ____________ SECURITY CLASSIFICATION OF THIS PAGE...4. Baker W. E., Westine P. S., Dodge F. T., "Similarity Methods in Engineering Dynamics", Hayden Book Company, Inc., New Jerset, 1978. 5. Bazant , Z...P., "Size Effect in Blunt Fracture: Concrete, Rock, Metal", ASCE, Journal of Engineering Mechanics, Vol. 110, No. 4, April 1984. 6. Bazant , Z. P

  18. 31st IMAC Conference on Structural Dynamics

    CERN Document Server

    Adams, Douglas; Carrella, Alex; Mayes, Randy; Rixen, Daniel; Allen, Matt; Cunha, Alvaro; Catbas, Fikret; Pakzad, Shamim; Racic, Vitomir; Pavic, Aleksandar; Reynolds, Paul; Simmermacher, Todd; Cogan, Scott; Moaveni, Babak; Papadimitriou, Costas; Allemang, Randall; Clerck, James; Niezrecki, Christopher; Wicks, Alfred

    2013-01-01

    Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on:   Nonlinear Oscillations Nonlinearities In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity.

  19. Multiscale Dynamics of Solar Magnetic Structures

    Science.gov (United States)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries.We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  20. Phenomenology, Structure, and Dynamic of Psychedelic States.

    Science.gov (United States)

    Preller, Katrin H; Vollenweider, Franz X

    2016-12-27

    Classic serotonergic hallucinogens or psychedelics produce an altered states of consciousness (ASC) that is characterized by profound alterations in sensory perception, mood, thought including the perception of reality, and the sense of self. Over the past years, there has been considerable progress in the search for invariant and common features of psychedelic states. In the first part of this review, we outline contemporary approaches to characterize the structure of ASCs by means of three primary etiology-independent dimensions including oceanic boundlessness, anxious ego-dissolution, and visionary restructuralization as well as by 11 lower-order factors, all of which can be reliably measured by the altered state of consciousness questionnaire (APZ-OAV). The second part sheds light on the dynamic nature of psychedelic experiences. Frequently, psychedelic subjects progress through different stages over time and levels of changes along a perception-hallucination continuum of increasing arousal and ego-dissolution. We then review in detail the acute effects of psychedelics on sensory perception, emotion, cognition, creativity, and time perception along with possible neural mechanisms underlying them. The next part of this review outlines the influence of non-pharmacological factors (predictors) on the acute psychedelic experience, such as demographics, genetics, personality, mood, and setting, and also discusses some long-term effects succeeding the acute experience. The last part presents some recent concepts and models attempting to understand different facets of psychedelic states of consciousness from a neuroscientific perspective.

  1. Dynamic Analysis of Structures Using Neural Networks

    Directory of Open Access Journals (Sweden)

    N. Ahmadi

    2008-01-01

    Full Text Available In the recent years, neural networks are considered as the best candidate for fast approximation with arbitrary accuracy in the time consuming problems. Dynamic analysis of structures against earthquake has the time consuming process. We employed two kinds of neural networks: Generalized Regression neural network (GR and Back-Propagation Wavenet neural network (BPW, for approximating of dynamic time history response of frame structures. GR is a traditional radial basis function neural network while BPW categorized as a wavelet neural network. In BPW, sigmoid activation functions of hidden layer neurons are substituted with wavelets and weights training are achieved using Scaled Conjugate Gradient (SCG algorithm. Comparison the results of BPW with those of GR in the dynamic analysis of eight story steel frame indicates that accuracy of the properly trained BPW was better than that of GR and therefore, BPW can be efficiently used for approximate dynamic analysis of structures.

  2. Midfrequency band dynamics of large space structures

    Science.gov (United States)

    Coppolino, Robert N.; Adams, Douglas S.; Levine, Marie B.

    2004-09-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  3. Damping mechanisms and models in structural dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...

  4. The Structure and Dynamics of GRB Jets

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; /KIPAC, Menlo Park

    2006-10-25

    There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.

  5. The crystal structures of apo and cAMP-bound GlxR from Corynebacterium glutamicum reveal structural and dynamic changes upon cAMP binding in CRP/FNR family transcription factors.

    Directory of Open Access Journals (Sweden)

    Philip D Townsend

    Full Text Available The cyclic AMP-dependent transcriptional regulator GlxR from Corynebacterium glutamicum is a member of the super-family of CRP/FNR (cyclic AMP receptor protein/fumarate and nitrate reduction regulator transcriptional regulators that play central roles in bacterial metabolic regulatory networks. In C. glutamicum, which is widely used for the industrial production of amino acids and serves as a non-pathogenic model organism for members of the Corynebacteriales including Mycobacterium tuberculosis, the GlxR homodimer controls the transcription of a large number of genes involved in carbon metabolism. GlxR therefore represents a key target for understanding the regulation and coordination of C. glutamicum metabolism. Here we investigate cylic AMP and DNA binding of GlxR from C. glutamicum and describe the crystal structures of apo GlxR determined at a resolution of 2.5 Å, and two crystal forms of holo GlxR at resolutions of 2.38 and 1.82 Å, respectively. The detailed structural analysis and comparison of GlxR with CRP reveals that the protein undergoes a distinctive conformational change upon cyclic AMP binding leading to a dimer structure more compatible to DNA-binding. As the two binding sites in the GlxR homodimer are structurally identical dynamic changes upon binding of the first ligand are responsible for the allosteric behavior. The results presented here show how dynamic and structural changes in GlxR lead to optimization of orientation and distance of its two DNA-binding helices for optimal DNA recognition.

  6. Structural dynamics of liganded myoglobin.

    OpenAIRE

    Frauenfelder, H; Petsko, G A

    1980-01-01

    X-ray crystallography can reveal the magnitudes and principal directions of the mean-square displacements of every atom in a protein. This structural information is complementary to the temporal information obtainable by spectroscopic techniques such as nuclear magnetic resonance. Determination of the temperature dependence of the mean-square displacements makes it possible to separate large conformational motions from simple thermal vibrations. The contribution of crystal lattice disorder to...

  7. On Dynamics of Spinning Structures

    Science.gov (United States)

    Gupta, K. K.; Ibrahim, A.

    2012-01-01

    This paper provides details of developments pertaining to vibration analysis of gyroscopic systems, that involves a finite element structural discretization followed by the solution of the resulting matrix eigenvalue problem by a progressive, accelerated simultaneous iteration technique. Thus Coriolis, centrifugal and geometrical stiffness matrices are derived for shell and line elements, followed by the eigensolution details as well as solution of representative problems that demonstrates the efficacy of the currently developed numerical procedures and tools.

  8. Dynamic Study of Bicycle Frame Structure

    Science.gov (United States)

    Sani, M. S. M.; Nazri, N. A.; Zahari, S. N.; Abdullah, N. A. Z.; Priyandoko, G.

    2016-11-01

    Bicycle frames have to bear variety of loads and it is needed to ensure the frame can withstand dynamic loads to move. This paper focusing on dynamic study for bicycle frame structure with a purpose to avoid the problem regarding loads on the structure and to ensure the structure is safe when multiple loads are applied on it. The main objectives of dynamic study are to find the modal properties using two method; finite element analysis (FEA) and experimental modal analysis (EMA). The correlation between two studies will be obtained using percentage error. Firstly, 3D model of mountain bike frame structure has been draw using computer-aided design (CAD) software and normal mode analysis using MSC Nastran Patran was executed for numerical method meanwhile modal testing using impact hammer was performed for experimental counterpart. From the correlation result, it show that percentage error between FEA and EMA were below 10% due to noise, imperfect experiment setup during perform EMA and imperfect modeling of mountain bike frame structure in CAD software. Small percentage error differences makes both of the method can be applied to obtain the dynamic characteristic of structure. It is essential to determine whether the structure is safe or not. In conclusion, model updating method is required to reduce more percentage error between two results.

  9. Structural Equation Modeling of Travel Choice Dynamics

    OpenAIRE

    Golob, Thomas F.

    1988-01-01

    This research has two objectives. The first objective is to explore the use of the modeling tool called "latent structural equations" (structural equations with latent variables) in the general field of travel behavior analysis and the more specific field of dynamic analysis of travel behavior. The second objective is to apply a latent structural equation model in order to determine the causal relationships between income, car ownership, and mobility. Many transportation researchers ...

  10. Dynamic Performance and Its Driving Factor Structure of Product Supply-chain%动态产品供应链绩效及其驱动因素结构分析

    Institute of Scientific and Technical Information of China (English)

    刘进

    2012-01-01

    The constant change of the products supply - chain environment makes the performance goal system and its driving factors structure dynamically changing. So the products supply - chain was taken as research object and the product life cycle was taken as the division to the supply - chain environment. The theory model was established for the dynamic performance and its driving factor of product supply - chain. The empirical analysis shows that; with the development of supply - chain product in the life cycle, the operation strategy has the significant influence on the performance of the product supply - chain and their drive strength changes dynamically. The based strategy is the significant factor to the performance too, but the drive strength has certain stability.%由于产品供应链环境的不断变化使得供应链绩效目标体系及其驱动因素结构具有动态性,以产品供应链为研究对象,以产品生命周期来划分动态产品供应链环境,建立动态产品供应链绩效及其驱动因素结构模型.实证分析表明:随着供应链产品生命周期的演进,运作策略对产品供应链绩效影响显著且驱动力度动态变化,基础策略的影响显著但驱动力度具有一定的稳定性.

  11. [Oligoglycine surface structures: molecular dynamics simulation].

    Science.gov (United States)

    Gus'kova, O A; Khalatur, P G; Khokhlov, A R; Chinarev, A A; Tsygankova, S V; Bovin, N V

    2010-01-01

    The full-atomic molecular dynamics (MD) simulation of adsorption mode for diantennary oligoglycines [H-Gly4-NH(CH2)5]2 onto graphite and mica surface is described. The resulting structure of adsorption layers is analyzed. The peptide second structure motives have been studied by both STRIDE (structural identification) and DSSP (dictionary of secondary structure of proteins) methods. The obtained results confirm the possibility of polyglycine II (PGII) structure formation in diantennary oligoglycine (DAOG) monolayers deposited onto graphite surface, which was earlier estimated based on atomic-force microscopy measurements.

  12. Dynamics and management of stage-structured fish stocks

    OpenAIRE

    2012-01-01

    With increasing fishing pressures having brought several stocks to the brink of collapse, there is a need for developing efficient harvesting methods that account for factors beyond merely yield or profit. We consider the dynamics and management of a stage-structured fish stock. Our work is based on a consumer-resource model which De Roos et al. (2008) have derived as an approximation of a physiologically-structured counterpart. First, we rigorously prove the existence of steady states in bot...

  13. Capital Structure, Environmental Dynamism, Innovation Strategy, and Strategic Risk Management

    DEFF Research Database (Denmark)

    Juul Andersen, Torben

    2005-01-01

    Previous research found that capital structure affects performance when it is adapted to the level of environmental dynamism and pursuit of an innovation strategy. The current study reproduces some of these relationships in a more recent dataset but also identifies significant nuances across...... industrial environments. Analyses of a large cross sectional sample and various industry sub-samples suggest that other factors have influenced capital structure effects in recent years including flexibilities in multinational organization and effective strategic risk management capabilities....

  14. Comparing Factor Structures of Adolescent Psychopathology

    Science.gov (United States)

    Verona, Edelyn; Javdani, Shabnam; Sprague, Jenessa

    2011-01-01

    Research on the structure of adolescent psychopathology can provide information on broad factors that underlie different forms of maladjustment in youths. Multiple studies from the literature on adult populations suggest that 2 factors, Internalizing and Externalizing, meaningfully comprise the factor structure of adult psychopathology (e.g.,…

  15. Comparing Factor Structures of Adolescent Psychopathology

    Science.gov (United States)

    Verona, Edelyn; Javdani, Shabnam; Sprague, Jenessa

    2011-01-01

    Research on the structure of adolescent psychopathology can provide information on broad factors that underlie different forms of maladjustment in youths. Multiple studies from the literature on adult populations suggest that 2 factors, Internalizing and Externalizing, meaningfully comprise the factor structure of adult psychopathology (e.g.,…

  16. Dynamics of localized structures in vector waves

    CERN Document Server

    Hernández-García, E; Colet, P; San Miguel, M; Hernandez-Garcia, Emilio; Hoyuelos, Miguel; Colet, Pere; Miguel, Maxi San

    1999-01-01

    Dynamical properties of topological defects in a twodimensional complex vector field are considered. These objects naturally arise in the study of polarized transverse light waves. Dynamics is modeled by a Vector Complex Ginzburg-Landau Equation with parameter values appropriate for linearly polarized laser emission. Creation and annihilation processes, and selforganization of defects in lattice structures, are described. We find "glassy" configurations dominated by vectorial defects and a melting process associated to topological-charge unbinding.

  17. Spin Dynamics in Confined Magnetic Structures III

    CERN Document Server

    Hillebrands, Burkard

    2006-01-01

    This third volume of Spin Dynamics in Confined Magnetic Structures addresses central aspects of spin-dynamic phenomena, including recent new developments, on a tutorial level. Researchers will find a comprehensive compilation of the current work in the field. Introductory chapters help newcomers to understand the basic concepts. The more advanced chapters give the current state of the art of spin dynamic issues ranging from the femtosecond to the microsecond regime. This volume concentrates on new experimental techniques such as ferromagnetic-resonance-force microscopy and two-photon photoemission, as well as on aspects of precessional switching, spin-wave excitation, vortex dynamics, spin relaxation, domain-wall dynamics in nanowires and their applications to magnetic logic devices. An important chapter is devoted to the presently very hot subject of the spin-transfer torque, combining the physics of electronic transport and micromagnetics. The comprehensive presentation of these developments makes this volu...

  18. Strength of concrete structures under dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Kumpyak, O. G., E-mail: ogkumpyak@yandex.ru; Galyautdinov, Z. R., E-mail: gazr@yandex.ru; Kokorin, D. N., E-mail: kokorindenn@yandex.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The use of elastic supports is one the efficient methods of decreasing the dynamic loading. The paper describes the influence of elastic supports on the stress-strain state of steel concrete structures exposed to one-time dynamic loading resulting in failure. Oblique bending beams on elastic supports and their elastic, elastoplastic, and elastoplastic consolidation behavior are considered in this paper. For numerical calculations the developed computer program is used based on the finite element method. Research findings prove high efficiency of elastic supports under dynamic loading conditions. The most effective behavior of elastic supports is demonstrated at the elastoplastic stage. A good agreement is observed between the theoretical and experimental results.

  19. 人-桥动力相互作用下侧向振动的动力放大系数分析%Analysis of the dynamic amplification factor of latetral structural vibration induced by crowd-bridge interaction

    Institute of Scientific and Technical Information of China (English)

    宋志刚; 张尧

    2015-01-01

    从社会力模型和人桥相互作用的机理出发研究了柔性人行桥在人桥相互作用下侧向振动的动力放大系数。首先将人行激励分解为固有侧向力和附加侧向力,分别采用傅里叶级数模型和社会力模型表示上述侧向力,从而建立考虑负阻尼的强迫振动模型。结合该模型推导出动力放大系数的表达式,在此基础上给出了基于动力放大系数的结构动力响应的简化计算方法。最后,结合某人行桥结构,对比分析了采用建议的估算方法与时程模拟结果的差异,证实了简化计算方法的有效性。%Depending on the social force model and the mechanism of crowd-bridge interaction,the lateral dynamic amplification factor of flexible footbridges was studied.The lateral step force induced by pedestrian was divided into two parts,namely the intrinsic lateral force and additional lateral force.Representing the two parts of forces by Fourier series and social force respectively,the motion equation of footbridge was set up with the consideration of negative damping.The expression of dynamic amplification factor was derived from the structural motion equation.Then a simplified method for estimating structural responses was proposed according to the relationship between structural responses and the dynamic amplification factor.The peak displacement and acceleration of a concrete footbridge were calculated by using the simplified method and the conventional time history analysis respectively.The results of the two methods were compared with each other,and the effectiveness of the simplified method was validated.

  20. Nonlinear Dynamics of Structures with Material Degradation

    Science.gov (United States)

    Soltani, P.; Wagg, D. J.; Pinna, C.; Whear, R.; Briody, C.

    2016-09-01

    Structures usually experience deterioration during their working life. Oxidation, corrosion, UV exposure, and thermo-mechanical fatigue are some of the most well-known mechanisms that cause degradation. The phenomenon gradually changes structural properties and dynamic behaviour over their lifetime, and can be more problematic and challenging in the presence of nonlinearity. In this paper, we study how the dynamic behaviour of a nonlinear system changes as the thermal environment causes certain parameters to vary. To this end, a nonlinear lumped mass modal model is considered and defined under harmonic external force. Temperature dependent material functions, formulated from empirical test data, are added into the model. Using these functions, bifurcation parameters are defined and the corresponding nonlinear responses are observed by numerical continuation. A comparison between the results gives a preliminary insight into how temperature induced properties affects the dynamic response and highlights changes in stability conditions of the structure.

  1. A Dynamic Model for Energy Structure Analysis

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Energy structure is a complicated system concerning economic development, natural resources, technological innovation, ecological balance, social progress and many other elements. It is not easy to explain clearly the developmental mechanism of an energy system and the mutual relations between the energy system and its related environments by the traditional methods. It is necessary to develop a suitable dynamic model, which can reflect the dynamic characteristics and the mutual relations of the energy system and its related environments. In this paper, the historical development of China's energy structure was analyzed. A new quantitative analysis model was developed based on system dynamics principles through analysis of energy resources, and the production and consumption of energy in China and comparison with the world. Finally, this model was used to predict China's future energy structures under different conditions.

  2. Simultaneous determination of protein structure and dynamics

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.

    2005-01-01

    We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information...... at the atomic level about the structural and dynamical features of proteins-with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout...... the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant...

  3. Unifying dynamical and structural stability of equilibria

    Science.gov (United States)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  4. Dynamics of competitive systems with a single common limiting factor.

    Science.gov (United States)

    Kon, Ryusuke

    2015-02-01

    The concept of limiting factors (or regulating factors) succeeded in formulating the well-known principle of competitive exclusion. This paper shows that the concept of limiting factors is helpful not only to formulate the competitive exclusion principle, but also to obtain other ecological insights. To this end, by focusing on a specific community structure, we study the dynamics of Kolmogorov equations and show that it is possible to derive an ecologically insightful result only from the information about interactions between species and limiting factors. Furthermore, we find that the derived result is a generalization of the preceding work by Shigesada, Kawasaki, and Teramoto (1984), who examined a certain Lotka-Volterra equation in a different context.

  5. 基于动力方法的 RC 框架结构整体超强能力分析∗%Capacity Analysis for Structural Global Overstrength Factor of RC Frames by Dynamic Methods

    Institute of Scientific and Technical Information of China (English)

    陈伟宏; 崔双双; 吴波

    2015-01-01

    结构超强系数是结构在强震作用下不发生倒塌的重要因素,但是目前中国现行抗震规范没有纳入结构超强能力的影响,对于结构安全性的计算都是考虑结构构件,没有更多地考虑整体结构的承载能力。考虑不同设防烈度,不同层数严格按现行抗震规范设计了17个典型RC框架结构,采用 OpenSees进行有限元建模与分析,并采用结构拟静力试验数据对有限元模型进行验证。采用非线性动力方法对所设计典型结构的地震反应进行了分析,得到了按现行抗震规范所设计结构的整体动力超强系数能力值的取值及其变化规律。结果表明:通过结构整体动力超强系数能力值,可以预测临界倒塌状态时结构的最大承载能力。分别按Ⅵ度,Ⅶ度和Ⅷ度抗震设防设计的结构,结构整体动力超强系数能力值分别至少要达到6,4和3,其最低值和NEHRP2000推荐条文中给出的结构整体超强系数限值3一致。%Structural over-strength is an important factor for structural collapse prevention when the structures suffer maj or earthquakes,however,it isn't included in our current Chinese seismic design code, and the seismic design specifications for structural safety calculations are based on structural members, with no more consideration on global carrying capacity of the whole structure.1 7 RC frame buildings with different fortification intensities and storeys were designed according to the current Chinese Codes.These structures were modeled and analyzed in the platform OpenSees.By comparison of the quasi-static test data for RC frame structures with the analytical data correspondingly,the OpenSees models were verified and validated.For these 1 7 RC frames,structural seismic response was analyzed by nonlinear dynamic proce-dures (NDP),and the values of the “capacity”of structural overstrength factors and their variation rules with structural storeys and design fortification

  6. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  7. Chemical structure and dynamics: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  8. Multiscale structure in eco-evolutionary dynamics

    Science.gov (United States)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  9. Factor Structure in Commodity Futures Return and Volatility

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Lunde, Asger; Olesen, Kasper Vinther

    Using data on more than 750 million futures trades during 2004-2013, we analyze eight stylized facts of commodity price and volatility dynamics in the post financialization period. We pay particular attention to the factor structure in returns and volatility and to commodity market integration...... volatility indicates a nontrivial degree of market integration....

  10. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging.

    Science.gov (United States)

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M L; Hallin, Emil

    2015-07-17

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed.

  11. Optimal restructuring strategies under various dynamic factors

    Institute of Scientific and Technical Information of China (English)

    MENG Qing-xuan

    2007-01-01

    Corporate restructuring was identified as a new industrial force that has great impact on economic values and that therefore has become central in daily financial decision making. This article investigates the optimal restructuring strategies under different dynamic factors and their numerous impacts on firm value. The concept of quasi-leverage is introduced and valuation models are built for corporate debt and equity under imperfect market conditions. The model's input variables include the quasi-leverage and other firm-specific parameters, the output variables include multiple corporate security values. The restructuring cost is formulated in the form of exponential function, which allows us to observe the sensitivity of the variation in security values. The unified model and its analytical solution developed in this research allow us to examine the continuous changes of security values by dynamically changing the coupon rates, riskless interest rate, bankruptcy cost, quasi-leverage, personal tax rate, corporate taxes rate, transaction cost, firm risk, etc., so that the solutions provide useful guidance for financing and restructuring decisions.

  12. Structural Dynamics of Tropical Moist Forest Gaps

    OpenAIRE

    Hunter, Maria O.; Michael Keller; Douglas Morton; Bruce Cook; Michael Lefsky; Mark Ducey; Scott Saleska; Raimundo Cosme de Oliveira; Juliana Schietti

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered...

  13. Protein Secondary Structure Prediction Using Dynamic Programming

    Institute of Scientific and Technical Information of China (English)

    Jing ZHAO; Pei-Ming SONG; Qing FANG; Jian-Hua LUO

    2005-01-01

    In the present paper, we describe how a directed graph was constructed and then searched for the optimum path using a dynamic programming approach, based on the secondary structure propensity of the protein short sequence derived from a training data set. The protein secondary structure was thus predicted in this way. The average three-state accuracy of the algorithm used was 76.70%.

  14. Identifying Community Structures in Dynamic Networks

    CERN Document Server

    Alvari, Hamidreza; Sukthankar, Gita; Lakkaraju, Kiran

    2016-01-01

    Most real-world social networks are inherently dynamic, composed of communities that are constantly changing in membership. To track these evolving communities, we need dynamic community detection techniques. This article evaluates the performance of a set of game theoretic approaches for identifying communities in dynamic networks. Our method, D-GT (Dynamic Game Theoretic community detection), models each network node as a rational agent who periodically plays a community membership game with its neighbors. During game play, nodes seek to maximize their local utility by joining or leaving the communities of network neighbors. The community structure emerges after the game reaches a Nash equilibrium. Compared to the benchmark community detection methods, D-GT more accurately predicts the number of communities and finds community assignments with a higher normalized mutual information, while retaining a good modularity.

  15. Ultrafast structural dynamics of perovskite superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Woerner, M.; Korff Schmising, C. von; Zhavoronkov, N.; Elsaesser, T. [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie, Berlin (Germany); Bargheer, M. [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam (Germany); Vrejoiu, I.; Hesse, D.; Alexe, M. [Max-Planck-Institut fuer Mikrostrukturphysik, Halle (Germany)

    2009-07-15

    Femtosecond X-ray diffraction provides direct insight into the ultrafast reversible lattice dynamics of materials with a perovskite structure. Superlattice (SL) structures consisting of a sequence of nanometer-thick layer pairs allow for optically inducing a tailored stress profile that drives the lattice motions and for limiting the influence of strain propagation on the observed dynamics. We demonstrate this concept in a series of diffraction experiments with femtosecond time resolution, giving detailed information on the ultrafast lattice dynamics of ferroelectric and ferromagnetic superlattices. Anharmonically coupled lattice motions in a SrRuO{sub 3}/PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (SRO/PZT) SL lead to a switch-off of the electric polarizations on a time scale of the order of 1 ps. Ultrafast magnetostriction of photoexcited SRO layers is demonstrated in a SRO/SrTiO{sub 3} (STO) SL. (orig.)

  16. Structure and dynamics of the solar chromosphere

    NARCIS (Netherlands)

    Krijger, Johannes Mattheus

    2002-01-01

    The thesis "Structure and dynamics of the solar chromosphere" of J.M. Krijger is a study on the behavior of the solar chromosphere, the thin layer just above the solar surface (photosphere) visible in purple red light during a total solar eclipse. The most important result of this thesis is that the

  17. Structure and dynamics of the solar chromosphere

    NARCIS (Netherlands)

    Krijger, Johannes Mattheus

    2003-01-01

    The thesis "Structure and dynamics of the solar chromosphere" of J.M. Krijger is a study on the behavior of the solar chromosphere, the thin layer just above the solar surface (photosphere) visible in purple red light during a total solar eclipse. The most important result of this thesis is that the

  18. Proteins with Novel Structure, Function and Dynamics

    Science.gov (United States)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  19. A Comparison of Pseudo-Maximum Likelihood and Asymptotically Distribution-Free Dynamic Factor Analysis Parameter Estimation in Fitting Covariance-Structure Models to Block-Toeplitz Representing Single-Subject Multivariate Time-Series

    NARCIS (Netherlands)

    Molenaar, P.C.M.; Nesselroade, J.R.

    1998-01-01

    The study of intraindividual variability pervades empirical inquiry in virtually all subdisciplines of psychology. The statistical analysis of multivariate time-series data - a central product of intraindividual investigations - requires special modeling techniques. The dynamic factor model (DFM), w

  20. Dynamic object management for distributed data structures

    Science.gov (United States)

    Totty, Brian K.; Reed, Daniel A.

    1992-01-01

    In distributed-memory multiprocessors, remote memory accesses incur larger delays than local accesses. Hence, insightful allocation and access of distributed data can yield substantial performance gains. The authors argue for the use of dynamic data management policies encapsulated within individual distributed data structures. Distributed data structures offer performance, flexibility, abstraction, and system independence. This approach is supported by data from a trace-driven simulation study of parallel scientific benchmarks. Experimental data on memory locality, message count, message volume, and communication delay suggest that data-structure-specific data management is superior to a single, system-imposed policy.

  1. Factor structure of emotional intelligence in schizophrenia.

    Science.gov (United States)

    Lin, Yu-Chung; Wynn, Jonathan K; Hellemann, Gerhard; Green, Michael F

    2012-08-01

    Social cognition, which includes emotional intelligence, is impaired in schizophrenia. The Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) is a widely-used assessment of emotional intelligence, with a four-factor structure in healthy individual. However, a recent factor analysis in schizophrenia patients revealed a two-factor structure of the MSCEIT. The current study aimed to replicate this finding in a larger, more diverse, schizophrenia sample (n=194). Our findings revealed an identical two-factor structure as in the previously-reported study, indicating that emotional intelligence is organized in a different manner in schizophrenia than it is in healthy controls.

  2. Exploiting Dynamically Propositional Logic Structures in SAT

    CERN Document Server

    Chen, Jingchao

    2011-01-01

    The 32-bit hwb (hwb-n32 for short) problem is from equivalence checking that arises in combining two circuits computing the hidden weighted bit function. Since 2002, it remains still unsolvable in every SAT competition. This paper focuses on solving problems such as hwb-n32. Generally speaking, modern solvers can detect only XOR, AND, OR and ITE gates. Other non-clausal formulas (propositional logic structures) cannot be detected. To solve the hwb-n32 problem, we extract dynamically some special propositional logic structures, and then use a variant of DPLL-based solvers to solve the subproblem simplified by the extracted structure information. Using the dynamic extraction technique, we solved efficiently the hwb-n32 problem, even some of which were solved within 3000 seconds.

  3. Correlation Measure Equivalence in Dynamic Causal Structures

    CERN Document Server

    Gyongyosi, Laszlo

    2016-01-01

    We prove an equivalence transformation between the correlation measure functions of the causally-unbiased quantum gravity space and the causally-biased standard space. The theory of quantum gravity fuses the dynamic (nonfixed) causal structure of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity space, the events are causally nonseparable and all time bias vanishes, which makes it no possible to use the standard causally-biased entropy and the correlation measure functions. Since a corrected causally-unbiased entropy function leads to an undefined, obscure mathematical structure, in our approach the correction is made in the data representation of the causally-unbiased space. We prove that the standard causally-biased entropy function with a data correction can be used to identify correlations in dynamic causal structures. As a corollary, all mathematical properties of the causally-biased correlation measure functions are preserved in the causally-unbiased space. The eq...

  4. Knottin cyclization: impact on structure and dynamics

    Directory of Open Access Journals (Sweden)

    Gracy Jérôme

    2008-12-01

    Full Text Available Abstract Background Present in various species, the knottins (also referred to as inhibitor cystine knots constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack. Results In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding. Conclusion In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity

  5. The fundamental structures of dynamic social networks

    CERN Document Server

    Sekara, Vedran; Lehmann, Sune

    2015-01-01

    Networks provide a powerful mathematical framework for analyzing the structure and dynamics of complex systems (1-3). The study of group behavior has deep roots in the social science literature (4,5) and community detection is a central part of modern network science. Network communities have been found to be highly overlapping and organized in a hierarchical structure (6-9). Recent technological advances have provided a toolset for measuring the detailed social dynamics at scale (10,11). In spite of great progress, a quantitative description of the complex temporal behavior of social groups-with dynamics spanning from minute-by-minute changes to patterns expressed on the timescale of years-is still absent. Here we uncover a class of fundamental structures embedded within highly dynamic social networks. On the shortest time-scale, we find that social gatherings are fluid, with members coming and going, but organized via a stable core of individuals. We show that cores represent social contexts (9), with recur...

  6. Eysenck Personality Inventory Item Factor Structure.

    Science.gov (United States)

    Comrey, Andrew L.; And Others

    1988-01-01

    Three methods were used to test the factor structure of the Eysenck Personality Inventory administered to 583 Australians. The preferred method was to extract factors by the minimum residual method, use the Tandem Criteria Method, and then rotate that number of factors by the Tandem Criteria I method. (SLD)

  7. THE DYNAMICS OF THE MATRICS STRUCTURE

    Directory of Open Access Journals (Sweden)

    Dumitru CONSTANTINESCU

    2007-01-01

    Full Text Available The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with the most important impact on a project’s quality, costs and lead time. From the organizational point of view, the matrix structure is frequently chosen for projects. The matrix structure generally coexists with the line structure. The two structures are contrastive. The line structure is based on the unity of command principle and is not open to cooperation and dialogue. The matrix structure encourages cooperation and communication, favours conflict, which is considered here a healthy and essential process. The matrix structure and the line structure claim their right to initiative. Conflict and the multidimensional integration of multiple hierarchies can be negotiated through the concept charisma – mediation, sustained by the matrix structure.

  8. Soliton structure dynamics in inhomogeneous media

    CERN Document Server

    Guerrero, L E; González, J A

    1998-01-01

    We show that soliton interaction with finite-width inhomogeneities can activate a great number of soliton internal modes. We obtain the exact stationary soliton solution in the presence of inhomogeneities and solve exactly the stability problem. We present a Karhunen-Loeve analysis of the soliton structure dynamics as a time-dependent force pumps energy into the traslational mode of the kink. We show the importance of the internal modes of the soliton as they can generate shape chaos for the soliton as well as cases in which the first shape mode leads the dynamics.

  9. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  10. Understanding the dynamical structure of pulsating stars: The center-of-mass velocity and the Baade-Wesselink projection factor of the beta-Cephei star alpha-Lupi

    CERN Document Server

    Nardetto, N; Fokin, A; Chapellier, E; Pietrzynski, G; Gieren, W; Graczyk, D; Mourard, D

    2013-01-01

    High-resolution spectroscopy of pulsating stars is a powerful tool to study the dynamical structure of their atmosphere. Lines asymmetry is used to derive the center-of-mass velocity of the star, while a direct measurement of the atmospheric velocity gradient helps determine the projection factor used in the Baade-Wesselink method of distance determination. We aim at deriving the center-of-mass velocity and the projection factor of the beta-Cephei star alpha-Lup. We present HARPS high spectral resolution observations of alpha-Lup. We calculate the first-moment radial velocities and fit the spectral line profiles by a bi-Gaussian to derive line asymmetries. Correlations between the gamma-velocity and the gamma-asymmetry (defined as the average values of the radial velocity and line asymmetry curves respectively) are used to derive the center-of-mass velocity of the star. By combining our spectroscopic determination of the atmospheric velocity gradient with a hydrodynamical modelof the photosphere of the star, ...

  11. Gravitational form factors and nucleon spin structure

    Science.gov (United States)

    Teryaev, O. V.

    2016-10-01

    Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell-Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.

  12. Nucleon structure from 2+1-flavor dynamical DWF ensembles

    CERN Document Server

    Abramczyk, Michael; Lytle, Andrew; Ohta, Shigemi

    2016-01-01

    Nucleon isovector vector- and axialvector-current form factors, the renormalized isovector transversity and scalar charge, and the bare quark momentum and helicity moments of isovector structure functions are reported with improved statistics from two recent RBC+UKQCD 2+1-flavor dynamical domain-wall fermions ensembles: Iwasaki\\(\\times\\)DSDR gauge \\(32^3\\times64\\) at inverse lattice spacing of 1.38 GeV and pion mass of 249 and 172 MeV.

  13. Time Collocation Method for Structural Dynamic Problems

    Institute of Scientific and Technical Information of China (English)

    TANG Chen; LUO Tao; YAN Haiqing; GU Xiaohui

    2005-01-01

    In order to achieve highly accurate and efficient numerical calculations of structural dynamics, time collocation method is presented. For a given time interval, the numerical solution of the method is approximated by a polynomial. The polynomial coefficients are evaluated by solving algebraic equation. Once the polynomial coefficients are evaluated, the numerical solutions at any time in the interval can be easily calculated. New formulae are derived for the polynomial coefficients,which are more practical and succinct than those previously given. Two structural dynamic equations are calculated by the proposed method. The numerical solutions are compared with the traditional fourth-order Runge-Kutta method. The results show that the method proposed is highly accurate and computationally efficient. In addition, an important advantage of the method is the simplicity in software programming.

  14. Chemical structure and dynamics. Annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  15. Chemical structure and dynamics: Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  16. Annual Report 2000. Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  17. Factor Structure in Commodity Futures Return and Volatility

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Lunde, Asger; Olesen, Kasper Vinther

    Using data on more than 750 million futures trades during 2004-2013, we analyze eight stylized facts of commodity price and volatility dynamics in the post financialization period. We pay particular attention to the factor structure in returns and volatility and to commodity market integration...... with the equity market. We find evidence of a factor structure in daily commodity futures returns. However, the factor structure in daily commodity futures volatility is even stronger than in returns. When computing model-free realized commodity betas with the stock market we find that they were high during 2008......-2010 but have since returned to the pre-crisis level close to zero. The common factor in commodity volatility is nevertheless clearly related to stock market volatility. We conclude that, while commodity markets appear to again be segmented from the equity market when only returns are considered, commodity...

  18. Dynamic active earth pressure on retaining structures

    Indian Academy of Sciences (India)

    Deepankar Choudhury; Santiram Chatterjee

    2006-12-01

    Earth-retaining structures constitute an important topic of research in civil engineering, more so under earthquake conditions. For the analysis and design of retaining walls in earthquake-prone zones, accurate estimation of dynamic earth pressures is very important. Conventional methods either use pseudo-static approaches of analysis even for dynamic cases or a simple single-degree of freedom model for the retaining wall–soil system. In this paper, a simplified two-degree of freedom mass–spring–dashpot (2-DOF) dynamic model has been proposed to estimate the active earth pressure at the back of the retaining walls for translation modes of wall movement under seismic conditions. The horizontal zone of influence on dynamic earth force on the wall is estimated. Results in terms of displacement, velocity and acceleration-time history are presented for some typical cases, which show the final movement of the wall in terms of wall height, which is required for the design. The non-dimensional design chart proposed in the present study can be used to compute the total dynamic earth force on the wall under different input ground motion and backfill conditions. Finally, the results obtained have been compared with those of the available Scott model and the merits of the present results have been discussed.

  19. Dynamical Structure of Nuclear Excitation in Continuum

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Lei; ZHANG Huan-Qiao; ZHANG Xi-Zhen

    2005-01-01

    @@ Dynamical structures of collective excitation in continuum are studied by calculating the isoscalar and isovector strength as well as transition density of nuclei near the drip-line such as 28O and 34Ca. It is found that for some excited states in continuum the proton and neutron transition density calculated from isoscalar and isovector excitation at some given energies may be different, which will affect the calculation of the polarization for nuclei with N ≠ Z.

  20. Nonlinear Dynamics and Control of Flexible Structures

    Science.gov (United States)

    1991-03-01

    Freedom," Ph.D. Thesis, Department of Theoretical and Applied Mechanics, Cornell University, in preparation. 5I I URI Reorts Islam , Saiful and Mircea...Theoretical and Applied Mechanics I S. Islam Civil and Environmental Engineering I 2! I 3 URI Accomplishments 3 -Nonlinear Dynamics and Chaos in Flexible...Structures with Symmetry," 31 (1991) 265-285. Islam , S. and M. Grigoriu, "Nonlinear Random Vibration of Pin-Jointed Trusses with Imperfections," in

  1. Flexible joints in structural and multibody dynamics

    OpenAIRE

    O. A. Bauchau; Han, S.

    2013-01-01

    Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformat...

  2. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  3. Modal interactions in dynamical and structural systems

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, A.H.; Balachandran, B. (Virginia Polytechnic Institute and State Univ., Blacksburg (USA))

    1989-11-01

    The authors review theoretical and experimental studies of the influence of modal interactions on the nonlinear response of harmonically excited structural and dynamical systems. In particular, they discuss the response of pendulums, ships, rings, shells, arches, beam structures, surface waves, and the similarities in the qualitative behavior of these systems. The systems are characterized by quadratic nonlinearities which may lead to two-to-one and combination autoparametric resonances. These resonances give rise to a coupling between the modes involved in the resonance leading to nonlinear periodic, quasi-periodic, and chaotic motions.

  4. Some Modern Problems in Structural Engineering Dynamics

    Directory of Open Access Journals (Sweden)

    I. Elishakoff

    2010-01-01

    Full Text Available This review paper deals with two problems in structural engineering dynamics; one is deterministic, the other is of stochastic nature. One problem is linear, the other is nonlinear. Authors have a biased preferential view on these problems because of their active involvement in the discussed research topics. Still, these two problems reflect, at least in a small manner, some developments in this vast and fascinating field. The first part deals with deterministic linear vibrations of double-walled carbon nanotubes either in classical or refined setting; the second part is devoted to the nonlinear random vibrations of structures.

  5. Feature extraction for structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois [Los Alamos National Laboratory; Farrar, Charles [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Nishio, Mayuko [UNIV OF TOKYO; Worden, Keith [UNIV OF SHEFFIELD; Takeda, Nobuo [UNIV OF TOKYO

    2010-11-08

    This study focuses on defining and comparing response features that can be used for structural dynamics model validation studies. Features extracted from dynamic responses obtained analytically or experimentally, such as basic signal statistics, frequency spectra, and estimated time-series models, can be used to compare characteristics of structural system dynamics. By comparing those response features extracted from experimental data and numerical outputs, validation and uncertainty quantification of numerical model containing uncertain parameters can be realized. In this study, the applicability of some response features to model validation is first discussed using measured data from a simple test-bed structure and the associated numerical simulations of these experiments. issues that must be considered were sensitivity, dimensionality, type of response, and presence or absence of measurement noise in the response. Furthermore, we illustrate a comparison method of multivariate feature vectors for statistical model validation. Results show that the outlier detection technique using the Mahalanobis distance metric can be used as an effective and quantifiable technique for selecting appropriate model parameters. However, in this process, one must not only consider the sensitivity of the features being used, but also correlation of the parameters being compared.

  6. Structural dynamic analysis of composite beams

    Science.gov (United States)

    Suresh, J. K.; Venkatesan, C.; Ramamurti, V.

    1990-12-01

    In the treatment of the structural dynamic problem of composite materials, two alternate types of formulations, based on the elastic modulus and compliance quantities, exist in the literature. The definitions of the various rigidities are observed to differ in these two approaches. Following these two types of formulation, the structural dynamic characteristics of a composite beam are analyzed. The results of the analysis are compared with those available in the literature. Based on the comparison, the influence of the warping function in defining the coupling terms in the modulus approach and also on the natural frequencies of the beam has been identified. It is found from the analysis that, in certain cases, the difference between the results of the two approaches is appreciable. These differences may be attributed to the constraints imposed on the deformation and flexibility of the beam by the choice of the description of the warping behaviour. Finally, the influence of material properties on the structural dynamic characteristics of the beam is studied for different composites for various angles of orthotropy.

  7. Handbook on dynamics of jointed structures.

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  8. The Factor Structure in Equity Options

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Fournier, Mathieu; Jacobs, Kris

    Principal component analysis of equity options on Dow-Jones firms reveals a strong factor structure. The first principal component explains 77% of the variation in the equity volatility level, 77% of the variation in the equity option skew, and 60% of the implied volatility term structure across...... equities. Furthermore, the first principal component has a 92% correlation with S&P500 index option volatility, a 64% correlation with the index option skew, and a 80% correlation with the index option term structure. We develop an equity option valuation model that captures this factor structure...

  9. Dynamic Factor Method of Computing Dynamic Mathematical Model for System Simulation

    Institute of Scientific and Technical Information of China (English)

    老大中; 吴娟; 杨策; 蒋滋康

    2003-01-01

    The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.

  10. Controlling Proton Delivery through Catalyst Structural Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Allan Jay P. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; 221 Science Center, State University of New York at Fredonia, Fredonia NY 14063 USA; Ginovska, Bojana [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Kumar, Neeraj [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Hou, Jianbo [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Raugei, Simone [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Helm, Monte L. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Appel, Aaron M. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Bullock, R. Morris [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; O' Hagan, Molly [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA

    2016-09-27

    The fastest synthetic molecular catalysts for production and oxidation of H2 emulate components of the active site of natural hydrogenases. The role of controlled structural dynamics is recognized as a critical component in the catalytic performance of many enzymes, including hydrogenases, but is largely neglected in the design of synthetic molecular cata-lysts. In this work, the impact of controlling structural dynamics on the rate of production of H2 was studied for a series of [Ni(PPh2NC6H4-R2)2]2+ catalysts including R = n-hexyl, n-decyl, n-tetradecyl, n-octadecyl, phenyl, or cyclohexyl. A strong correlation was observed between the ligand structural dynamics and the rates of electrocatalytic hydrogen production in acetonitrile, acetonitrile-water, and protic ionic liquid-water mixtures. Specifically, the turnover frequencies correlate inversely with the rates of ring inversion of the amine-containing ligand, as this dynamic process dictates the positioning of the proton relay in the second coordination sphere and therefore governs protonation at either catalytically productive or non-productive sites. This study demonstrates that the dynamic processes involved in proton delivery can be controlled through modifications of the outer coordination sphere of the catalyst, similar to the role of the protein architecture in many enzymes. The present work provides new mechanistic insight into the large rate enhancements observed in aqueous protic ionic liquid media for the [Ni(PPh2NR2)]2+ family of catalysts. The incorporation of controlled structural dynamics as a design parameter to modulate proton delivery in molecular catalysts has enabled H2 production rates that are up to three orders of magnitude faster than the [Ni(PPh2NPh2)]2+complex. The observed turnover frequencies are up to 106 s-1 in acetonitrile-water, and over 107 s-1 in protic ionic liquid-water mixtures, with a minimal increase in overpotential. This material is based upon work supported as part of

  11. DYNAMIC CINEMATIC TO A STRUCTURE 2R

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2016-06-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Flat structures 2R can solve all the problems posed by all the robotic anthropomorphic structures. The study of the anthropomorphic robots by the use of a flat structure 2R is a much easier method than classical used spatial methods. The paper outlines a method for the determination of dynamic to a robotic structure 2R balanced. 2R plane structures are used in practice only in the form balanced, for which in this paper will be made, initial, the total balance, and then the study cinematico-dynamic will only develop on the model already balanced. Dynamic relations presented then briefly without deduction will be explained and discussed with regard to their application. On the basis of the model presented and following calculations performed can be chosen correctly the two electric motors in the actuator. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  12. Nucleon form factors on the lattice with light dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-09-15

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  13. The structure of the nucleon: Elastic electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, V. [Norfolk State University, Norfolk, VA (United States); Perdrisat, C.F.; Carlson, C.E. [The College of William and Mary, Williamsburg, VA (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Brash, E.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Christopher Newport University, Newport News, VA (United States)

    2015-07-15

    Precise proton and neutron form factor measurements at Jefferson Lab, using spin observables, have recently made a significant contribution to the unraveling of the internal structure of the nucleon. Accurate experimental measurements of the nucleon form factors are a test-bed for understanding how the nucleon's static properties and dynamical behavior emerge from QCD, the theory of the strong interactions between quarks. There has been enormous theoretical progress, since the publication of the Jefferson Lab proton form factor ratio data, aiming at reevaluating the picture of the nucleon. We will review the experimental and theoretical developments in this field and discuss the outlook for the future. (orig.)

  14. 30th IMAC, A Conference on Structural Dynamics

    CERN Document Server

    Catbas, FN; Mayes, R; Rixen, D; Griffith, DT; Allemang, R; Clerck, J; Klerk, D; Simmermacher, T; Cogan, S; Chauhan, S; Cunha, A; Racic, V; Reynolds, P; Salyards, K; Adams, D; Kerschen, G; Carrella, A; Voormeeren, SN; Allen, MS; Horta, LG; Barthorpe, R; Niezrecki, C; Blough, JR; Vol.1 Topics on the Dynamics of Civil Structures; Vol.2 Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics; Vol.3 Topics in Nonlinear Dynamics; Vol.4 Topics in Model Validation and Uncertainty Quantification; Vol.5 Topics in Modal Analysis I; Vol.6 Topics in Modal Analysis II

    2012-01-01

    Topics on the Dynamics of Civil Structures, Volume 1, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the first volume of six from the Conference, brings together 45 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Human Induced Vibrations Bridge Dynamics Operational Modal Analysis Experimental Techniques and Modeling for Civil Structures System Identification for Civil Structures Method and Technologies for Bridge Monitoring Damage Detection for Civil Structures Structural Modeling Vibration Control Method and Approaches for Civil Structures Modal Testing of Civil Structures.

  15. Dynamic Failure of Composite and Sandwich Structures

    CERN Document Server

    Abrate, Serge; Rajapakse, Yapa D S

    2013-01-01

    This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors.  The first section deals with fluid-structure interactions in marine structures.  The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures.  Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature.  Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...

  16. Bayesian Estimation of Random Coefficient Dynamic Factor Models

    Science.gov (United States)

    Song, Hairong; Ferrer, Emilio

    2012-01-01

    Dynamic factor models (DFMs) have typically been applied to multivariate time series data collected from a single unit of study, such as a single individual or dyad. The goal of DFMs application is to capture dynamics of multivariate systems. When multiple units are available, however, DFMs are not suited to capture variations in dynamics across…

  17. Application of dynamic programming to structural repairing strategies

    Institute of Scientific and Technical Information of China (English)

    陈朝晖; LIU; Xila; 等

    2002-01-01

    A model of dynamic programming for repairing strategies of concrete structures during a projected service period is proposed,which takes into account the degradation in strength of components and the probability of accidental load.This model takes the safety grade of a structural system as the state variable of repairing strategies,and incorporates economic factors including expected repair cost,property loss due to structure failure,goods and material loss due to structure failure,loss of production interrupt due to structure failure,and inspection cost in decision making.It is found that the optimal repairing strategies are sensitive to the probability of accidental loads as well as the failure costs.The practicality of the model is demonstrated by an example.

  18. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...

  19. The structural dynamics of social class.

    Science.gov (United States)

    Kraus, Michael W; Park, Jun Won

    2017-08-01

    Individual agency accounts of social class persist in society and even in psychological science despite clear evidence for the role of social structures. This article argues that social class is defined by the structural dynamics of society. Specifically, access to powerful networks, groups, and institutions, and inequalities in wealth and other economic resources shape proximal social environments that influence how individuals express their internal states and motivations. An account of social class that highlights the means by which structures shape and are shaped by individuals guides our understanding of how people move up or down in the social class hierarchy, and provides a framework for interpreting neuroscience studies, experimental paradigms, and approaches that attempt to intervene on social class disparities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dynamic sign structures in visual art and music

    DEFF Research Database (Denmark)

    Zeller, Jörg

    2006-01-01

    Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures.......Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures....

  1. Dynamic sign structures in visual art and music

    DEFF Research Database (Denmark)

    Zeller, Jörg

    2006-01-01

    Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures.......Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures....

  2. Dynamic Trade Policy Game under Imperfect Factor Mobility

    OpenAIRE

    Kwan-Ho Kim

    2003-01-01

    This paper considers a dynamic strategic trade policy game when the sectoral movement of production factors is sluggish. A differential game between a domestic and foreign government is presented. The result of this dynamic game singles out two factors to determine the relative positions of the domestic firm and foreign firm at the steady state.

  3. Fundamental structures of dynamic social networks.

    Science.gov (United States)

    Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune

    2016-09-06

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.

  4. The Hierarchical Structure and Dynamics of Voids

    CERN Document Server

    Aragon-Calvo, M A

    2012-01-01

    Contrary to the common view voids have very complex internal structure and dynamics. Here we show how the hierarchy of structures in the density field inside voids is reflected by a similar hierarchy of structures in the velocity field. Voids defined by dense filaments and clusters can de described as simple expanding domains with coherent flows everywhere except at their boundaries. At scales smaller that the void radius the velocity field breaks into expanding sub-domains corresponding to sub- voids. These sub-domains break into even smaller sub-sub domains at smaller scales resulting in a nesting hierarchy of locally expanding domains. The ratio between the magnitude of the velocity field responsible for the expansion of the void and the velocity field defining the sub voids is approximately one order of magnitude. The small-scale components of the velocity field play a minor role in the shaping of the voids but they define the local dynamics directly affecting the processes of galaxy formation and evoluti...

  5. Structural Dynamics of Tropical Moist Forest Gaps

    Science.gov (United States)

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  6. Structural Dynamics of Tropical Moist Forest Gaps.

    Directory of Open Access Journals (Sweden)

    Maria O Hunter

    Full Text Available Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down differ from traditional field measurements (bottom up, and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012 at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8% as compared to Ducke Reserve (2.0%. On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1. Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively. At Tapajos, height loss had a much stronger signal

  7. Structural Dynamics of Tropical Moist Forest Gaps.

    Science.gov (United States)

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  8. 523 FACTORS INFLUENCING DIRECT COSTS DYNAMICS OF ...

    African Journals Online (AJOL)

    Osondu

    responsible for direct costs dynamics of building projects in Delta State, Nigeria. The objective is to compare ..... not significantly vary among cost variation groups. This was ... loans from banks for finance which often attract high interest rates ...

  9. Structural dynamics of turbo-machines

    CERN Document Server

    Rangwala, AS

    2009-01-01

    The book presents a detailed and comprehensive treatment of structural vibration evaluation of turbo-machines. Starting with the fundamentals of the theory of vibration as related to various aspects of rotating machines, the dynamic analysis procedures of a broad spectrum of turbo-machines is covered. An in-depth procedure for analyzing the torsional and flexural oscillations of the components and of the rotor-bearing system is presented. The latest trends in design and analysis are presented, chief among them: Blade and coupled disk-blade mod

  10. The chemical bond structure and dynamics

    CERN Document Server

    Zewail, Ahmed

    1992-01-01

    This inspired book by some of the most influential scientists of our time--including six Nobel laureates--chronicles our emerging understanding of the chemical bond through the last nine decades and into the future. From Pauling's early structural work using x-ray and electron diffraction to Zewail's femtosecond lasers that probe molecular dynamics in real time; from Crick's molecular biology to Rich's molecular recognition, this book explores a rich tradition of scientific heritage and accomplishment. The perspectives given by Pauling, Perutz, Rich, Crick, Porter, Polanyi, Herschbach, Zewail,

  11. Inverse Eigenvalue Problem in Structural Dynamics Design

    Institute of Scientific and Technical Information of China (English)

    Huiqing Xie; Hua Dai

    2006-01-01

    A kind of inverse eigenvalue problem in structural dynamics design is considered. The problem is formulated as an optimization problem. The properties of this problem are analyzed, and the existence of the optimum solution is proved. The directional derivative of the objective function is obtained and a necessary condition for a point to be a local minimum point is given. Then a numerical algorithm for solving the problem is presented and a plane-truss problem is discussed to show the applications of the theories and the algorithm.

  12. Molten uranium dioxide structure and dynamics.

    Science.gov (United States)

    Skinner, L B; Benmore, C J; Weber, J K R; Williamson, M A; Tamalonis, A; Hebden, A; Wiencek, T; Alderman, O L G; Guthrie, M; Leibowitz, L; Parise, J B

    2014-11-21

    Uranium dioxide (UO2) is the major nuclear fuel component of fission power reactors. A key concern during severe accidents is the melting and leakage of radioactive UO2 as it corrodes through its zirconium cladding and steel containment. Yet, the very high temperatures (>3140 kelvin) and chemical reactivity of molten UO2 have prevented structural studies. In this work, we combine laser heating, sample levitation, and synchrotron x-rays to obtain pair distribution function measurements of hot solid and molten UO2. The hot solid shows a substantial increase in oxygen disorder around the lambda transition (2670 K) but negligible U-O coordination change. On melting, the average U-O coordination drops from 8 to 6.7 ± 0.5. Molecular dynamics models refined to this structure predict higher U-U mobility than 8-coordinated melts.

  13. Experiment and Formulations for the Dynamic Characteristics of Jointed Structures

    Directory of Open Access Journals (Sweden)

    Rongqiang Liu

    2013-01-01

    Full Text Available Clearance joints significantly affect the dynamic properties of deployable structures (DSs. This paper presents a spring-mass model with clearance for the study of the axial stiffness of a jointed structure. The nonlinear stiffness can be predicted by calculating the model's natural frequency which is the reciprocal of the motion period of the model. The results of the theoretical model show that the dynamic stiffness of the clearance joint increases with increases in the displacement amplitude; this finding is consistent with the experimental results. With the inclusion of sliding factors, contact friction, and impact, the established model of energy dissipation is useful for estimating the effects of joint damping on DSs. The energy dissipation model reveals the effects of joint features and excitation conditions on the dissipation of the jointed structure, that is, the excitation frequency and amplitude. Dynamic experiments were performed on jointed structures to characterize the dissipation variations. An exponentially fitting equation was developed based on the energy dissipation model and was verified through the experimental data. This formulation is more efficient than numerical integration for the calculation of the energy dissipation.

  14. Molecular structures and intramolecular dynamics of pentahalides

    Science.gov (United States)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  15. Chemical Structure and Dynamics annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  16. Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM

    Science.gov (United States)

    Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman

    2012-01-01

    This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…

  17. Structural optimization for nonlinear dynamic response.

    Science.gov (United States)

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  18. Structural and dynamical properties of complex networks

    Science.gov (United States)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  19. Predicting structure in nonsymmetric sparse matrix factorizations

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, J.R. (Xerox Palo Alto Research Center, CA (United States)); Ng, E.G. (Oak Ridge National Lab., TN (United States))

    1992-10-01

    Many computations on sparse matrices have a phase that predicts the nonzero structure of the output, followed by a phase that actually performs the numerical computation. We study structure prediction for computations that involve nonsymmetric row and column permutations and nonsymmetric or non-square matrices. Our tools are bipartite graphs, matchings, and alternating paths. Our main new result concerns LU factorization with partial pivoting. We show that if a square matrix A has the strong Hall property (i.e., is fully indecomposable) then an upper bound due to George and Ng on the nonzero structure of L + U is as tight as possible. To show this, we prove a crucial result about alternating paths in strong Hall graphs. The alternating-paths theorem seems to be of independent interest: it can also be used to prove related results about structure prediction for QR factorization that are due to Coleman, Edenbrandt, Gilbert, Hare, Johnson, Olesky, Pothen, and van den Driessche.

  20. Factor structure of Raven's Coloured Progressive Matrices

    OpenAIRE

    Muniz, Monalisa; Gomes, Cristiano Mauro Assis; Pasian, Sonia Regina

    2016-01-01

    Abstract This study's objective was to verify the factor structure of Raven's Coloured Progressive Matrices (CPM). The database used included the responses of 1,279 children, 50.2% of which were males with an average age of 8.48 years old and a standard deviation of 1.49 yrs. Confirmatory factor analyses were run to test seven models based on CPM theory and on a Brazilian study addressing the test's structure. The results did not confirm the CPM theoretical proposition concerning the scales b...

  1. Loads and Structural Dynamics Requirements for Spaceflight Hardware

    Science.gov (United States)

    Schultz, Kenneth P.

    2011-01-01

    The purpose of this document is to establish requirements relating to the loads and structural dynamics technical discipline for NASA and commercial spaceflight launch vehicle and spacecraft hardware. Requirements are defined for the development of structural design loads and recommendations regarding methodologies and practices for the conduct of load analyses are provided. As such, this document represents an implementation of NASA STD-5002. Requirements are also defined for structural mathematical model development and verification to ensure sufficient accuracy of predicted responses. Finally, requirements for model/data delivery and exchange are specified to facilitate interactions between Launch Vehicle Providers (LVPs), Spacecraft Providers (SCPs), and the NASA Technical Authority (TA) providing insight/oversight and serving in the Independent Verification and Validation role. In addition to the analysis-related requirements described above, a set of requirements are established concerning coupling phenomena or other interaction between structural dynamics and aerodynamic environments or control or propulsion system elements. Such requirements may reasonably be considered structure or control system design criteria, since good engineering practice dictates consideration of and/or elimination of the identified conditions in the development of those subsystems. The requirements are included here, however, to ensure that such considerations are captured in the design space for launch vehicles (LV), spacecraft (SC) and the Launch Abort Vehicle (LAV). The requirements in this document are focused on analyses to be performed to develop data needed to support structural verification. As described in JSC 65828, Structural Design Requirements and Factors of Safety for Spaceflight Hardware, implementation of the structural verification requirements is expected to be described in a Structural Verification Plan (SVP), which should describe the verification of each

  2. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    2000-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.

  3. Structural studies on leukaemia inhibitory factor

    Energy Technology Data Exchange (ETDEWEB)

    Norton, R.S.; Maurer, T.; Smith, D.K. [Biomolecular Research Institute, Parville (Australia); Nicola, N.A. [Institute of Medical Research, Melbourne (Australia)

    1994-12-01

    Leukaemia Inhibitory Factor (LIF) is a pleiotropic cytokine that acts on a wide range of target cells, including mega-karyocytes, osteoblasts, hepatocytes, adipocytes, neurons, embryonic stem cells, and primordial germ cells. Many of its activities are shared with other cytokines, particularly interleukin-6, oncostatin-M, ciliary neurotrophic factor, and granulocyte colony-stimulating factor (G-CSF). Although secreted in vivo as a glycoprotein, nonglycosylated recombinant protein expressed in E. coli is fully active and has been used in our nuclear magnetic resonance (NMR) studies of the three-dimensional structure and structure-function relationships of LIF. With 180 amino acids and a molecular mass of about 20 kDa, OF is too large for direct structure determination by two-dimensional and three-dimensional {sup 1}HNMR. It is necessary to label the protein with the stable isotopes {sup 15}N and {sup 13}C and employ heteronuclear three-dimensional NMR in order to resolve and interpret the spectral information required for three-dimensional structure determination. This work has been undertaken with both human LIF and a mouse-human chimaera that binds to the human LIF receptor with the same affinity as the human protein and yet expresses in E. coli at much higher levels. Sequence-specific resonance assignments and secondary structure elements for these proteins will be presented and progress towards determination of their three-dimensional structures described.

  4. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  5. Structural dynamics and thermostabilization of neurotensin receptor 1.

    Science.gov (United States)

    Lee, Sangbae; Bhattacharya, Supriyo; Tate, Christopher G; Grisshammer, Reinhard; Vaidehi, Nagarajan

    2015-04-16

    The neurotensin receptor NTSR1 binds the peptide agonist neurotensin (NTS) and signals preferentially via the Gq protein. Recently, Grisshammer and co-workers reported the crystal structure of a thermostable mutant NTSR1-GW5 with NTS bound. Understanding how the mutations thermostabilize the structure would allow efficient design of thermostable mutant GPCRs for protein purification, and subsequent biophysical studies. Using microsecond scale molecular dynamics simulations (4 μs) of the thermostable mutant NTSR1-GW5 and wild type NTSR1, we have elucidated the structural and energetic factors that affect the thermostability and dynamics of NTSR1. The thermostable mutant NTSR1-GW5 is found to be less flexible and less dynamic than the wild type NTSR1. The point mutations confer thermostability by improving the interhelical hydrogen bonds, hydrophobic packing, and receptor interactions with the lipid bilayer, especially in the intracellular regions. During MD, NTSR1-GW5 becomes more hydrated compared to wild type NTSR1, with tight hydrogen bonded water clusters within the transmembrane core of the receptor, thus providing evidence that water plays an important role in improving helical packing in the thermostable mutant. Our studies provide valuable insights into the stability and functioning of NTSR1 that will be useful in future design of thermostable mutants of other peptide GPCRs.

  6. From Dynamic Condition Response Structures to Büchi Automata

    DEFF Research Database (Denmark)

    Mukkamala, Raghava Rao; Hildebrandt, Thomas

    2010-01-01

    Recently we have presented distributed dynamic condition response structures (DCR structures) as a declarative process model conservatively generalizing labelled event structures to allow for finite specifications of repeated, possibly infinite behavior. The key ideas are to split the causality r...

  7. some notes on discount factor restrictions for dynamic optimization problems

    OpenAIRE

    Gerhard Sorger

    2008-01-01

    We consider dynamic optimization problems on one-dimensional state spaces. Un- der standard smoothness and convexity assumptions, the optimal solutions are characterized by an optimal policy function h mapping the state space into itself. There exists an extensive literature on the relation between the size of the discount factor of the dynamic optimization problem on the one hand and the properties of the dynamical system xt+1 = h(xt) on the other hand. The purpose of this paper is to survey...

  8. Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads

    Institute of Scientific and Technical Information of China (English)

    Xu Long; Fei Ge; Lei Wang; Youshi Hong

    2009-01-01

    This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SFT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investi-gated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads.

  9. Bayesian analysis of the dynamic structure in China's economic growth

    Science.gov (United States)

    Kyo, Koki; Noda, Hideo

    2008-11-01

    To analyze the dynamic structure in China's economic growth during the period 1952-1998, we introduce a model of the aggregate production function for the Chinese economy that considers total factor productivity (TFP) and output elasticities as time-varying parameters. Specifically, this paper is concerned with the relationship between the rate of economic growth in China and the trend in TFP. Here, we consider the time-varying parameters as random variables and introduce smoothness priors to construct a set of Bayesian linear models for parameter estimation. The results of the estimation are in agreement with the movements in China's social economy, thus illustrating the validity of the proposed methods.

  10. Lagrangian coherent structures and inertial particle dynamics

    CERN Document Server

    Sudharsan, M; Riley, James J

    2015-01-01

    In this work we investigate the dynamics of inertial particles using finite-time Lyapunov exponents (FTLE). In particular, we characterize the attractor and repeller structures underlying preferential concentration of inertial particles in terms of FTLE fields of the underlying carrier fluid. Inertial particles that are heavier than the ambient fluid (aerosols) attract onto ridges of the negative-time fluid FTLE. This negative-time FTLE ridge becomes a repeller for particles that are lighter than the carrier fluid (bubbles). We also examine the inertial FTLE (iFTLE) determined by the trajectories of inertial particles evolved using the Maxey-Riley equations with non-zero Stokes number and density ratio. Finally, we explore the low-pass filtering effect of Stokes number. These ideas are demonstrated on two-dimensional numerical simulations of the unsteady double gyre flow.

  11. Dynamic structural correlation via nonlinear programming techniques

    Science.gov (United States)

    Ting, T.; Ojalvo, I. U.

    1988-01-01

    A solution to the correlation between structural dynamic test results and finite element analyses of the same components is presented in this paper. Basically, the method can be categorized as a Levenberg-Marquardt type Gauss-Newton method which requires only the differences between FE modal analyses and test results and their first derivatives with respect to preassigned design variables. With proper variable normalization and equation scaling, the method has been made numerically better-conditioned and the inclusion of the Levenberg-Marquardt technique overcomes any remaining difficulty encountered in inverting singular or near-singular matrices. An important feature is that each iteration requires only one function evaluation along with the associated design sensitivity analysis and so the procedure is computationally efficient.

  12. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  13. Dynamic structure of active nematic shells

    Science.gov (United States)

    Zhang, Rui; Zhou, Ye; Rahimi, Mohammad; de Pablo, Juan J.

    2016-11-01

    When a thin film of active, nematic microtubules and kinesin motor clusters is confined on the surface of a vesicle, four +1/2 topological defects oscillate in a periodic manner between tetrahedral and planar arrangements. Here a theoretical description of nematics, coupled to the relevant hydrodynamic equations, is presented here to explain the dynamics of active nematic shells. In extensile microtubule systems, the defects repel each other due to elasticity, and their collective motion leads to closed trajectories along the edges of a cube. That motion is accompanied by oscillations of their velocities, and the emergence and annihilation of vortices. When the activity increases, the system enters a chaotic regime. In contrast, for contractile systems, which are representative of some bacterial suspensions, a hitherto unknown static structure is predicted, where pairs of defects attract each other and flows arise spontaneously.

  14. Structure and dynamics of interphase chromosomes.

    Directory of Open Access Journals (Sweden)

    Angelo Rosa

    Full Text Available During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraints.

  15. Molecular dynamics study of ice structural evolution

    Institute of Scientific and Technical Information of China (English)

    Wang Yan; Dong Shun-Le

    2008-01-01

    Molecular dynamics simulation is employed to study the structural evolution of low density amorphous ice during its compression from one atmosphere to 2.5 GPa. Calculated results show that high density amorphous ice is formed at an intermediate pressure of~1.0GPa; the O-O-O bond angle ranges from 83° to 113°, and the O-H...O bond is bent from 112° to 160°. Very high density amorphous ice is obtained by quenching to 80K and decompressing the ice to ambient pressure from 160 K/1.3 GPa or 160 K/1.7 GPa; and the next-nearest O-O length is found to be 0.310 nm, just 0.035 nm beyond the nearest O-O distance of 0.275 nm.

  16. Chemical structure and dynamics. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  17. Annual Report 1998: Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  18. Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization

    Directory of Open Access Journals (Sweden)

    Aizzat S. Yahaya Rashid

    2014-01-01

    Full Text Available The dynamic behavior of a body-in-white (BIW structure has significant influence on the noise, vibration, and harshness (NVH and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process.

  19. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  20. Structural and Dynamical Properties of Polyethylene/Graphene Nanocomposites through Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Anastassia N. Rissanou

    2015-02-01

    Full Text Available Detailed atomistic (united atoms molecular dynamics simulations of several graphene based polymer (polyethylene, PE nanocomposite systems have been performed. Systems with graphene sheets of different sizes have been simulated at the same graphene concentration (~3%. In addition, a periodic graphene layer (“infinite sheet” has been studied. Results concerning structural and dynamical properties of PE chains are presented for the various systems and compared to data from a corresponding bulk system. The final properties of the material are the result of a complex effect of the graphene’s sheet size, mobility and fluctuations. A detailed investigation of density, structure and dynamics of the hybrid systems has been conducted. Particular emphasis has been given in spatial heterogeneities due to the PE/graphene interfaces, which were studied through a detailed analysis based on radial distances form the graphene’s center-of-mass. Chain segmental dynamics is found to be slower, compared to the bulk one, at the PE/graphene interface by a factor of 5 to 10. Furthermore, an analysis on the graphene sheets characteristics is presented in terms of conformational properties (i.e., wrinkling and mobility.

  1. Dynamics of Subauroral Polarization Stream (SAPS) Structures

    Science.gov (United States)

    Sazykin, S. Y.; Coster, A. J.; Huba, J.; Ridley, A. J.; Erickson, P. J.; Foster, J. C.; Baker, J. B. H.; Wolf, R.

    2015-12-01

    The Subauroral Polarization Stream (SAPS) flow structures are narrow ionospheric channels of fast (in excess of 100 m/s) westward drift just outside the equatorward edge of the diffuse aurora in the dusk-to-midnight local time sector. Other terms for this phenomenon include subauroral Ion Drift (SAID) events and Polarization Jets. SAPS structures represent a striking departure from the commonly-used two-cell convection pattern. They are thought to arise from the displacement of the downward region-2 Birkeland currents on the dusk side equatorward of the low-latitude boundary of the auroral oval during times of changing high-latitude convection. In this paper, we will use several event simulations with the SAMI3-RCM numerical model (a self-consistent ionosphere-inner magnetosphere model) and RCM-GITM (a self-consistent model of the ionosphere-thermosphere-inner magnetosphere) to analyze the relative roles of changes in the IMF Bz component, ionospheric electron density depletions, and thermospheric modifications in controlling the dynamics of SAPS. Simulation results will be compared to multi-instrument ionospheric observations.

  2. Dynamic Approach of Capital Structure of European Shipping Companies

    Directory of Open Access Journals (Sweden)

    Stavros H. Arvanitis

    2012-12-01

    Full Text Available The issue of capital structure of companies is one of the most debated problems of financialmanagement. According to economic theory, capital structure determines the stock market valueof firms and therefore their viability, while one of the most negative result of the crash of 2008 andthe persisting crisis (excess supply in markets of labor and money is their ongoing steep declineof lending by credit institutions and other sources. In this paper, considering the importanceof the issue and motivated by the conflicting results of previous empirical studies, we attemptthe analysis of capital structure of the European Maritime Enterprises (oceanic shipping.We focus on shipping companies, because of the large volume of funding that demands theirmain operation, due to the intensity of the assets held. The objectives of this research are firstlythe identification of factors that affect the capital structure of European oceanic shipping andsecondly to search for the existence of an ideal - target capital structure ratio. The determinantsof capital structure are examined through static (fixed effect method and FGLS and dynamic(GMM Methods econometric models, using data from the financial statements of 32 listedEuropean shipping companies for the period 2005-2010. The results suggest the prevalence ofpecking order theory in our case, while a positive relationship arises between tangible assets andtax benefits (arising from sources other than borrowing against leverage. Moreover, we observea negative relationship between size or profitability and debt. Our findings contribute to a deeperunderstanding of the decisions taken by European shipping on their capital structure.

  3. Electronic structure and dynamics of nitrosyl porphyrins.

    Science.gov (United States)

    Scheidt, W Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W; Silvernail, Nathan J; Sage, J Timothy

    2010-07-19

    Nitric oxide (NO) is a signaling molecule employed to regulate essential physiological processes. Thus, there is great interest in understanding the interaction of NO with heme, which is found at the active site of many proteins that recognize NO, as well as those involved in its creation and elimination. We summarize what we have learned from investigations of the structure, vibrational properties, and conformational dynamics of NO complexes with ferrous porphyrins, as well as computational investigations in support of these experimental studies. Multitemperature crystallographic data reveal variations in the orientational disorder of the nitrosyl ligand. In some cases, equilibria among NO orientations can be analyzed using the van't Hoff relationship and the free energy and enthalpy of the solid-state transitions evaluated experimentally. Density functional theory (DFT) calculations predict that intrinsic barriers to torsional rotation are smaller than thermal energies at physiological temperatures, and the coincidence of observed NO orientations with minima in molecular mechanics potentials indicates that nonbonded interactions with other chemical groups control the conformational freedom of the bound NO. In favorable cases, reduced disorder at low temperatures exposes subtle structural features including off-axis tilting of the Fe-NO bond and anisotropy of the equatorial Fe-N bonds. We also present the results of nuclear resonance vibrational spectroscopy measurements on oriented single crystals of [Fe(TPP)(NO)] and [Fe(TPP)(1-MeIm)(NO)]. These describe the anisotropic vibrational motion of iron in five- and six-coordinate heme-NO complexes and reveal vibrations of all Fe-ligand bonds as well as low-frequency molecular distortions associated with the doming of the heme upon ligand binding. A quantitative comparison with predicted frequencies, amplitudes, and directions facilitates identification of the vibrational modes but also suggests that commonly used DFT

  4. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  5. Structural Dynamics of the MecA-ClpC Complex

    Science.gov (United States)

    Liu, Jing; Mei, Ziqing; Li, Ningning; Qi, Yutao; Xu, Yanji; Shi, Yigong; Wang, Feng; Lei, Jianlin; Gao, Ning

    2013-01-01

    The MecA-ClpC complex is a bacterial type II AAA+ molecular machine responsible for regulated unfolding of substrates, such as transcription factors ComK and ComS, and targeting them to ClpP for degradation. The six subunits of the MecA-ClpC complex form a closed barrel-like structure, featured with three stacked rings and a hollow passage, where substrates are threaded and translocated through successive pores. Although the general concepts of how polypeptides are unfolded and translocated by internal pore loops of AAA+ proteins have long been conceived, the detailed mechanistic model remains elusive. With cryoelectron microscopy, we captured four different structures of the MecA-ClpC complexes. These complexes differ in the nucleotide binding states of the two AAA+ rings and therefore might presumably reflect distinctive, representative snapshots from a dynamic unfolding cycle of this hexameric complex. Structural analysis reveals that nucleotide binding and hydrolysis modulate the hexameric complex in a number of ways, including the opening of the N-terminal ring, the axial and radial positions of pore loops, the compactness of the C-terminal ring, as well as the relative rotation between the two nucleotide-binding domain rings. More importantly, our structural and biochemical data indicate there is an active allosteric communication between the two AAA+ rings and suggest that concerted actions of the two AAA+ rings are required for the efficiency of the substrate unfolding and translocation. These findings provide important mechanistic insights into the dynamic cycle of the MecA-ClpC unfoldase and especially lay a foundation toward the complete understanding of the structural dynamics of the general type II AAA+ hexamers. PMID:23595989

  6. Improving the Factor Structure of Psychological Scales

    Science.gov (United States)

    Zhang, Xijuan; Savalei, Victoria

    2015-01-01

    Many psychological scales written in the Likert format include reverse worded (RW) items in order to control acquiescence bias. However, studies have shown that RW items often contaminate the factor structure of the scale by creating one or more method factors. The present study examines an alternative scale format, called the Expanded format, which replaces each response option in the Likert scale with a full sentence. We hypothesized that this format would result in a cleaner factor structure as compared with the Likert format. We tested this hypothesis on three popular psychological scales: the Rosenberg Self-Esteem scale, the Conscientiousness subscale of the Big Five Inventory, and the Beck Depression Inventory II. Scales in both formats showed comparable reliabilities. However, scales in the Expanded format had better (i.e., lower and more theoretically defensible) dimensionalities than scales in the Likert format, as assessed by both exploratory factor analyses and confirmatory factor analyses. We encourage further study and wider use of the Expanded format, particularly when a scale’s dimensionality is of theoretical interest. PMID:27182074

  7. Force Factor Modulation in Electro Dynamic Loudspeakers

    DEFF Research Database (Denmark)

    Risbo, Lars; Agerkvist, Finn T.; Tinggaard, Carsten

    2016-01-01

    The relationship between the non-linear phenomenon of ’reluctance force’ and the position dependency of the voice coil inductance was established in 1949 by Cunningham, who called it ’magnetic attraction force’. This paper revisits Cunningham’s analysis and expands it into a generalised form...... that includes the frequency dependency and applies to coils with non-inductive (lossy) blocked impedance. The paper also demonstrates that Cunningham’s force can be explained physically as a modulation of the force factor which again is directly linked to modulation of the flux of the coil. A verification based...... on both experiments and simulations is presented along discussions of the impact of force factor modulation for various motor topologies. Finally, it is shown that the popular L2R2 coil impedance model does not correctly predict the force unless the new analysis is applied....

  8. Force Factor Modulation in Electro Dynamic Loudspeakers

    DEFF Research Database (Denmark)

    Risbo, Lars; Agerkvist, Finn T.; Tinggaard, Carsten

    2016-01-01

    The relationship between the non-linear phenomenon of ’reluctance force’ and the position dependency of the voice coil inductance was established in 1949 by Cunningham, who called it ’magnetic attraction force’. This paper revisits Cunningham’s analysis and expands it into a generalised form that...... on both experiments and simulations is presented along discussions of the impact of force factor modulation for various motor topologies. Finally, it is shown that the popular L2R2 coil impedance model does not correctly predict the force unless the new analysis is applied....... that includes the frequency dependency and applies to coils with non-inductive (lossy) blocked impedance. The paper also demonstrates that Cunningham’s force can be explained physically as a modulation of the force factor which again is directly linked to modulation of the flux of the coil. A verification based...

  9. Recombination Dynamics in Quantum Well Semiconductor Structures

    Science.gov (United States)

    Fouquet, Julie Elizabeth

    Time-resolved and time-integrated photoluminescence as a function of excitation energy density have been observed in order to study recombination dynamics in GaAs/Al(,x)Ga(,1 -x)As quantum well structures. The study of room temperature photoluminescence from the molecular beam epitaxy (MBE) -grown multiple quantum well structure and photoluminescence peak energy as a function of tem- perature shows that room temperature recombination at excitation densities above the low 10('16) cm('-3) level is due to free carriers, not excitons. This is the first study of time-resolved photoluminescence of impurities in quantum wells; data taken at different emission wave- lengths at low temperatures shows that the impurity-related states at photon energies lower than the free exciton peaks luminesce much more slowly than the free exciton states. Results from a similar structure grown by metal -organic chemical vapor deposition (MOCVD) are explained by saturation of traps. An unusual increase in decay rate observed tens of nanoseconds after excitation is probably due to carriers falling out of the trap states. Since this is the first study of time-resolved photoluminescence of MOCVD-grown quantum well structures, this unusual behavior may be realted to the MOCVD growth process. Further investigations indi- cate that the traps are not active at low temperatures; they become active at approximately 150 K. The traps are probably associated with the (hetero)interfaces rather than the bulk Al(,x)Ga(,1-x)As material. The 34 K photoluminescence spectrum of this sample revealed a peak shifted down by approximately 36 meV from the main peak. Time-resolved and time-integrated photoluminescence results here show that this peak is not a stimulated phonon emission sideband, but rather is an due to an acceptor impurity, probably carbon. Photo- luminescence for excitation above and below the barrier bandgap shows that carriers are efficiently collected in the wells in both single and multiple

  10. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  11. A Formal Framework for P Systems with Dynamic Structure

    OpenAIRE

    Freund, Rudolf; Pérez Hurtado de Mendoza, Ignacio; Riscos Núñez, Agustín; Verlan, Sergey

    2012-01-01

    This article introduces a formalism/framework able to describe different variants of P systems having a dynamic structure. This framework can be useful for the definition of new variants of P systems with dynamic structure, for the comparison of existing definitions as well as for their extension. We give a precise definition of the formalism and show how existing variants of P systems with dynamic structure can be translated to it.

  12. Universal structural estimator and dynamics approximator for complex networks

    CERN Document Server

    Chen, Yu-Zhong

    2016-01-01

    Revealing the structure and dynamics of complex networked systems from observed data is of fundamental importance to science, engineering, and society. Is it possible to develop a universal, completely data driven framework to decipher the network structure and different types of dynamical processes on complex networks, regardless of their details? We develop a Markov network based model, sparse dynamical Boltzmann machine (SDBM), as a universal network structural estimator and dynamics approximator. The SDBM attains its topology according to that of the original system and is capable of simulating the original dynamical process. We develop a fully automated method based on compressive sensing and machine learning to find the SDBM. We demonstrate, for a large variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and predicts its dynamical behavior with high precision.

  13. An effective pair potential for liquid semiconductor, Se: Structure and related dynamical properties

    Indian Academy of Sciences (India)

    P P Nath; S Sarkar; R N Joarder

    2005-07-01

    The effective pair potential of liquid semiconductor Se is extracted from its experimental structure factor data using an accurate liquid state theory and this shows important basic features. A model potential incorporating the basic features of the structure factor extracted potential is suggested. This model potential is then used to describe through low-order perturbation theory, the structure and related dynamical properties like self-diffusion coefficient and shear viscosity of this complex liquid over a wide range of temperatures.

  14. Dynamic order reduction of thin-film deposition kinetics models: A reaction factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Adomaitis, Raymond A., E-mail: adomaiti@umd.edu [Department of Chemical and Biomolecular Engineering, Institute for Systems Research, University of Maryland, College Park, Maryland 20742 (United States)

    2016-01-15

    A set of numerical tools for the analysis and dynamic dimension reduction of chemical vapor and atomic layer deposition (ALD) surface reaction models is developed in this work. The approach is based on a two-step process where in the first, the chemical species surface balance dynamic equations are factored to effectively decouple the (nonlinear) reaction rates, a process that eliminates redundant dynamic modes and that identifies conserved quantities. If successful, the second phase is implemented to factor out redundant dynamic modes when species relatively minor in concentration are omitted; if unsuccessful, the technique points to potential model structural problems. An alumina ALD process is used for an example consisting of 19 reactions and 23 surface and gas-phase species. Using the approach developed, the model is reduced by nineteen modes to a four-dimensional dynamic system without any knowledge of the reaction rate values. Results are interpreted in the context of potential model validation studies.

  15. Structured Counseling for Auditory Dynamic Range Expansion.

    Science.gov (United States)

    Gold, Susan L; Formby, Craig

    2017-02-01

    A structured counseling protocol is described that, when combined with low-level broadband sound therapy from bilateral sound generators, offers audiologists a new tool for facilitating the expansion of the auditory dynamic range (DR) for loudness. The protocol and its content are specifically designed to address and treat problems that impact hearing-impaired persons who, due to their reduced DRs, may be limited in the use and benefit of amplified sound from hearing aids. The reduced DRs may result from elevated audiometric thresholds and/or reduced sound tolerance as documented by lower-than-normal loudness discomfort levels (LDLs). Accordingly, the counseling protocol is appropriate for challenging and difficult-to-fit persons with sensorineural hearing losses who experience loudness recruitment or hyperacusis. Positive treatment outcomes for individuals with the former and latter conditions are highlighted in this issue by incremental shifts (improvements) in LDL and/or categorical loudness judgments, associated reduced complaints of sound intolerance, and functional improvements in daily communication, speech understanding, and quality of life leading to improved hearing aid benefit, satisfaction, and aided sound quality, posttreatment.

  16. Optimizing Dynamical Network Structure for Pinning Control

    Science.gov (United States)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  17. Structural Factors Affecting Health Examination Behavioral Intention.

    Science.gov (United States)

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-04-01

    Disease screening instruments used for secondary prevention can facilitate early determination and treatment of pathogenic factors, effectively reducing disease incidence, mortality rates, and health complications. Therefore, people should be encouraged to receive health examinations for discovering potential pathogenic factors before symptoms occur. Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan. In total, 388 effective questionnaires were analyzed through structural model analysis. Consequently, this study yielded four crucial findings: (1) The established extended health belief model could effectively predict health examination behavioral intention; (2) Self-efficacy was the factor that most strongly influenced health examination behavioral intention, followed by health knowledge; (3) Self-efficacy substantially influenced perceived benefits and perceived barriers; (4) Health knowledge and social support indirectly influenced health examination behavioral intention. The preceding results can effectively increase the acceptance and use of health examination services among the public, thereby facilitating early diagnosis and treatment and ultimately reducing disease and mortality rates.

  18. The stability and dynamic behaviour of fluid-loaded structures

    CSIR Research Space (South Africa)

    Suliman, Ridhwaan

    2015-07-01

    Full Text Available ECCOMAS Young Investigators Conference 6th GACM Colloquium, July 20–23, 2015, Aachen, Germany The stability and dynamic behaviour of fluid-loaded structures R. Suliman, N. Peake Abstract. The deformation of slender elastic structures due...

  19. STRUCTURE AND DYNAMICS OF ALKALI BORATE GLASSES - A MOLECULAR-DYNAMICS STUDY

    NARCIS (Netherlands)

    VERHOEF, AH; DENHARTOG, HW

    1995-01-01

    Structural and dynamical properties of lithium, cesium and mixed alkali (i.e., lithium and cesium) borate glasses have been studied by the molecular dynamics method. The calculations yield glass structures consisting of planar BO3 triangles and BO4 tetrahedrons with no sixfold ring structures at all

  20. Linking extinction-colonization dynamics to genetic structure in a salamander metapopulation.

    Science.gov (United States)

    Cosentino, Bradley J; Phillips, Christopher A; Schooley, Robert L; Lowe, Winsor H; Douglas, Marlis R

    2012-04-22

    Theory predicts that founder effects have a primary role in determining metapopulation genetic structure. However, ecological factors that affect extinction-colonization dynamics may also create spatial variation in the strength of genetic drift and migration. We tested the hypothesis that ecological factors underlying extinction-colonization dynamics influenced the genetic structure of a tiger salamander (Ambystoma tigrinum) metapopulation. We used empirical data on metapopulation dynamics to make a priori predictions about the effects of population age and ecological factors on genetic diversity and divergence among 41 populations. Metapopulation dynamics of A. tigrinum depended on wetland area, connectivity and presence of predatory fish. We found that newly colonized populations were more genetically differentiated than established populations, suggesting that founder effects influenced genetic structure. However, ecological drivers of metapopulation dynamics were more important than age in predicting genetic structure. Consistent with demographic predictions from metapopulation theory, genetic diversity and divergence depended on wetland area and connectivity. Divergence was greatest in small, isolated wetlands where genetic diversity was low. Our results show that ecological factors underlying metapopulation dynamics can be key determinants of spatial genetic structure, and that habitat area and isolation may mediate the contributions of drift and migration to divergence and evolution in local populations.

  1. Dynamic stress intensity factor KⅢ and dynamic crack propagation characteristics of anisotropic materials

    Institute of Scientific and Technical Information of China (English)

    GAO Xin; WANG Han-gong; KANG Xing-wu

    2008-01-01

    Based on the mechanics of anisotropic materials,the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated.Stress,strain and displacement around the crack tip are expressed as an analytical complex function,which can be represented in power series.Constant coefficients of series are determined by boundary conditions.Expressions of dynamic stress intensity factors for a mode Ⅲ crack are obtained.Components of dynamic stress,dynamic strain and dynamic displacement around the crack tip are derived.Crack propagation characteristics are represented by the mechanical properties of the anisotropic materials,i.e.,crack propagation velocity M and the parameter α.The faster the crack velocity is,the greater the maximums of stress components and dynamic displacement components around the crack tip are.In particular,the parameter α affects stress and dynamic displacement around the crack tip.

  2. Study of the structure and dynamics of complex biological networks

    Science.gov (United States)

    Samal, Areejit

    2008-12-01

    In this thesis, we have studied the large scale structure and system level dynamics of certain biological networks using tools from graph theory, computational biology and dynamical systems. We study the structure and dynamics of large scale metabolic networks inside three organisms, Escherichia coli, Saccharomyces cerevisiae and Staphylococcus aureus. We also study the dynamics of the large scale genetic network controlling E. coli metabolism. We have tried to explain the observed system level dynamical properties of these networks in terms of their underlying structure. Our studies of the system level dynamics of these large scale biological networks provide a different perspective on their functioning compared to that obtained from purely structural studies. Our study also leads to some new insights on features such as robustness, fragility and modularity of these large scale biological networks. We also shed light on how different networks inside the cell such as metabolic networks and genetic networks are interrelated to each other.

  3. DYNAMIC DESIGN OF INTERNAL COMBUSTION ENGINE BLOCK STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Several main steps of internal combustion engine block structure dynamic design,such as model set-up,structure dynamic response analysis,optimizing design and vibration and noise control,are discussed for the type of EQ6100 gasoline engine block.

  4. Structural dynamics branch research and accomplishments for fiscal year 1987

    Science.gov (United States)

    1988-01-01

    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications.

  5. Structural dynamics branch research and accomplishments to FY 1992

    Science.gov (United States)

    Lawrence, Charles

    1992-12-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  6. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider, fr...

  7. The factor structure of six salutogenic constructs

    Directory of Open Access Journals (Sweden)

    Marita Breed

    2006-01-01

    Full Text Available The aim of this research was to investigate the factor structure of six salutogenic constructs, namely sense of coherence, hardiness, learned resourcefulness, potency, internal locus of control and self-efficacy. Measurement with a sample of 935 part-time students did not fit the conceptualisation of salutogenesis. A different factor structure for Whites versus Others occurred. For Whites, all six constructs more or less contributed towards the general salutogenic factor and for Others all but learned resourcefulness contributed. For Whites, salutogenesis consisted of two clear dimensions (a global positive orientation; specific behavioural skills and for Others one dimension (an optimistic life view. Confirmatory factor analysis performed on the data for both groups, indicated a weak fit. It was recommended that salutogenesis be further explored within an overall personality theory. Opsomming Die doel van hierdie navorsing was om die faktorstruktuur van ses salutogeniese konstrukte te ondersoek, naamlik sin vir koherensie, gehardheid, aangeleerde vindingrykheid, potensie, interne lokus van beheer en selfgenoegsaamheid. Meting met ‘n steekproef van 935 deeltydse studente het nie ‘n passing getoon met die konseptualisering van salutogenese nie. ‘n Eiesoortige faktorstruktuur vir Wit studente versus Ander studente het voorgekom. Vir Wittes, het al ses die konstrukte meer of minder bygedra tot die algemene salutugeniese faktor en vir Andere het almal behalwe aangeleerde vindingrykheid bygedra. Vir Wittes bestaan salutogenese uit twee duidelike dimensies (‘n globale positiewe lewensorientasie; spesifieke gedrags vaardighede en vir Andere uit een dimensie (‘n optimistiese lewensbeskouing. Bevestigende faktor ontleding uitgevoer op die data van beide groepe, het ‘n swak passing getoon. Daar is aanbeveel dat salutogenese verder ondersoek word binne ‘n oorkoepelende persoonlikheidsteorie.

  8. Visualizing Structure and Dynamics of Disaccharide Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  9. The Influence of Knitting Structure on Heating and Cooling Dynamic

    Directory of Open Access Journals (Sweden)

    Daiva MIKUČIONIENĖ

    2013-05-01

    Full Text Available The comfort provided by clothing depends on several factors, one of them being thermal comfort. Human thermal comfort depends on a combination of clothing, climate, and physical activity. It is known, the fibre type, yarn properties, fabric structure, finishing are the main factors affecting thermo-physiological comfort. The thermal property of knitted fabric is very important not only for its thermal comfort but also for protection against cross weather conditions. Most of the studies carried out have been devoted to measure static thermal properties. But it is very important not only amount of the heat released to the environment but also the dynamics of the heat transmission. The main goal of this work was to investigate the dynamic of the heat and cool transfer through the fabrics with different knitting pattern and different type of the yarns. Three different types of knitted fabrics were developed for this experimental work.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4434

  10. The Influence of Knitting Structure on Heating and Cooling Dynamic

    Directory of Open Access Journals (Sweden)

    Daiva MIKUČIONIENĖ

    2013-05-01

    Full Text Available The comfort provided by clothing depends on several factors, one of them being thermal comfort. Human thermal comfort depends on a combination of clothing, climate, and physical activity. It is known, the fibre type, yarn properties, fabric structure, finishing are the main factors affecting thermo-physiological comfort. The thermal property of knitted fabric is very important not only for its thermal comfort but also for protection against cross weather conditions. Most of the studies carried out have been devoted to measure static thermal properties. But it is very important not only amount of the heat released to the environment but also the dynamics of the heat transmission. The main goal of this work was to investigate the dynamic of the heat and cool transfer through the fabrics with different knitting pattern and different type of the yarns. Three different types of knitted fabrics were developed for this experimental work.DOI: http://dx.doi.org/10.5755/j01.ms.19.2.4434

  11. Structural dynamics for new launch vehicles

    Science.gov (United States)

    Neighbors, Joyce; Ryan, Robert S.

    1992-01-01

    An overview is presented of current studies that will permit more robust designs and reduce the safety hazards of maximum dynamic pressure during launches. Key considerations in the assessment of future operable launch capabilities are the dynamics problems that arise during the initial minutes of transition from the static configuration on the launch pad to the attainment of orbital velocity. Attention is given to a typical attempt to achieve robustness that involves creating a design in which the first bending mode will have a high enough frequency to allow decoupling between the autopilot design and the flexible body dynamics.

  12. Ergodic Theory, Open Dynamics, and Coherent Structures

    CERN Document Server

    Bose, Christopher; Froyland, Gary

    2014-01-01

    This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.

  13. Dynamic structure factors and sum rules in two-component quantum gases with spin-orbit coupling%自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则

    Institute of Scientific and Technical Information of China (English)

    贺丽; 余增强

    2016-01-01

    Sum rules for the dynamic structure factors are powerful tools to explore the collective behaviors in many-body systems at zero temperature as well as at finite temperatures. The recent remarkable realization of synthetic spin-orbit (SO) coupling in quantum gases is opening up new perspective to study the intriguing SO effects with ultracold atoms. So far, a specific type of SO coupling, which is generated by a pair of Raman laser beams, has been experimentally achieved in Bose-Einstein condensates of 87Rb and degenerate Fermi gases of 40K and 6Li. In the presence of SO coupling, the dynamic structure factors for the density fluctuation and spin fluctuation satisfy different sum rules. In particular, in the two-component quantum gases with inter-species Raman coupling, the f-sum rule for the spin fluctuation has an additional term proportional to the transverse spin polarization. Due to the coupling between the momentum and spin, the first moment of the dynamic structure factor does not necessarily possess the inversion symmetry, which is in strong contrast to the conventional system without SO coupling. Such an asymmetric behavior could be observed in both Fermi gases and Bose gases with Raman coupling. As a demonstration, we focus on the uniform case at zero temperature in this work. For the non-interacting Fermi gases, the asymmetric first moment appears only when the Raman detuning is finite. The asymmetric amplitude is quite limited, and it vanishes at both zero detuning and infinite detuning. For the weakly interacting Bose gases, the first moment is asymmetric in momentum space even at zero detuning, when the ground state spontaneously breaks the Z2 symmetry in the plane-wave condensation phase. Using the Bogoliubov method, the dynamic structure factor and its first moment are explicitly calculated for various interaction parameters. We find that the asymmetric behavior in the spin channel could be much more significant than in the density channel, and the

  14. The effects of bolted joints on dynamic response of structures

    Science.gov (United States)

    Zaman, I.; Khalid, A.; Manshoor, B.; Araby, S.; Ghazali, M. I.

    2013-12-01

    Joint is an universal fastening technology for structural members; in particular bolted joints are extensively used in mechanical structures due to their simple maintenance and low cost. However, the components of bolted joints are imperative because failure could be catastrophic and endanger lives. Hence, in this study, the effects of bolted joints on vibrating structures are investigated by determining the structural dynamic properties, such as mode shapes, damping ratios and natural frequencies, and these are compared with the monolithic structures (welding). Two approaches of experimental rigs are developed: a beam and a frame where both are subjected to dynamic loading. The analysis reveals the importance of bolted joints in increasing the damping properties and minimizing the vibration magnitude of structures, this indicates the significant influence of bolted joints on the dynamic behaviour of assembled structures. The outcome of this study provides a good model for predicting the experimental variable response in different types of structural joints.

  15. CISM course on exploiting nonlinear behaviour in structural dynamics

    CERN Document Server

    Virgin, Lawrence; Exploiting Nonlinear Behavior in Structural Dynamics

    2012-01-01

    The articles in this volume give an overview and introduction to nonlinear phenomena in structural dynamics. Topics treated are approximate methods for analyzing nonlinear systems (where the level of nonlinearity is assumed to be relatively small), vibration isolation, the mitigation of undesirable torsional vibration in rotating systems utilizing specifically nonlinear features in the dynamics, the vibration of nonlinear structures in which the motion is sufficiently large amplitude and structural systems with control.

  16. Laser fields in dynamically ionized plasma structures for coherent acceleration

    CERN Document Server

    Luu-Thanh, Ph.; Pukhov, A.; Kostyukov, I.

    2015-01-01

    With the emergence of the CAN (Coherent Amplification Network) laser technology, a new scheme for direct particle acceleration in periodic plasma structures has been proposed. By using our full electromagnetic relativistic particle-in-cell (PIC) simulation code equipped with ionisation module, we simulate the laser fields dynamics in the periodic structures of different materials. We study how the dynamic ionization influences the field structure.

  17. Factors Determining Particle Dynamics over the Air-Sea Interface

    NARCIS (Netherlands)

    Leeuw, G. de; Larsen, S.E.; Mestayer, P.G.

    2000-01-01

    Work done in the framework of the ASE subproject, topic 5, on factors determining particle dynamics over the air-sea interface, is briefly reviewed. Emphasis is on the cooperative efforts between the authors, covering a period of roughly 8 years, from 1988 until 1996 [1–16], which in part were

  18. Nucleon form factors with dynamical twisted mass fermions

    CERN Document Server

    Alexandrou, C; Brinet, M; Carbonell, J; Drach, V; Harraud, P A; Korzec, T; Koutsou, G

    2008-01-01

    The electromagnetic and axial form factors of the nucleon are evaluated in twisted mass QCD with two degenerate flavors of light, dynamical quarks. The axial charge g_A, magnetic moment and the Dirac and Pauli radii are determined for pion masses in the range 300 MeV to 500 MeV.

  19. Seismic force modification factor for ductile structures

    Institute of Scientific and Technical Information of China (English)

    TONG Gen-shu; HUANG Jin-qiao

    2005-01-01

    The earthquake forces used in design codes of buildings should be theoretically determinable. This work examines the seismic force modification factor R based on elastic-plastic time-history earthquake analysis of SDOF systems, wherein the hysteresis models are elastic-perfectly-plastic (EPP), elastic-linearly-hardening (ELH), shear-slipped and bilinear-elastic. The latter two models are analysed for separating the effect of the ductility and the energy-dissipating capacity. Three-hundred eighty-eight earthquake records from different site conditions are used in analysis. The ductility is taken to be 2, 3, 4, 5 and 6, with the damping ratio being 0.02, 0.035 and 0.05 respectively. The post-yield stiffness ratios 0.0, 0.1 and 0.2 are used in the analysis. The R spectra are standardized by the characteristic period of the earthquake records, which leads to a much smaller scatter in averaged numerical results. It was found that the most important factor determining R is the ductility. R increases more than linearly with ductility. The energy-dissipating capacity, damping and the post-yield stiffness are the less important factors. The energy dissipating capacity is important only for structures with short period and moderate period (0.3≤T/Tg<5.0). For EPP and ELH models, R for 0.05 damping is 10% to 15% smaller than for 0.02 damping. For EPP and ELH models, greater post-yield stiffness leads to greater R, but the influence of post-yield stiffness is obvious only when the post-yield stiffness is less than 10% of the initial stiffness. By means of statistical regression analysis the relation of the seismic force modification factor R with the natural period of the system and ductility for EPP and ELH models were established for each site and soil condition.

  20. Structural Influence on Excited State Dynamics in Simple Amines

    DEFF Research Database (Denmark)

    Klein, Liv Bærenholdt

    is femtosecond time-resolved photoelectron velocity map imaging (VMI), which is a newtechnique in the Copenhagen lab. The design, building and implementation of the VMI spectrometer has been a very substantial part of the thesis work. This techniques oers enhanced information content in the form of ecient...... and sensitive collection of photoelectron spectra. In particular, the angleresolved data available from the VMI approach provides highly detailed mechanistic insight about the relaxation pathways. One striking novel nding is that for tertiary amines, the critical factor driving the non-adiabatic dynamics...... structure. The VMI technique has been found to be very useful in investigating the nature of the coupling between the states and provides hints to the fate of the 3s state which has previously been a mystery. This is in prominent contrast to the primary and secondary amines as well as previously...

  1. Is There Really a Global Business Cycle? : A Dynamic Factor Model with Stochastic Factor Selection

    NARCIS (Netherlands)

    T. Berger (Tino); L.C.G. Pozzi (Lorenzo)

    2016-01-01

    textabstractWe investigate the presence of international business cycles in macroeconomic aggregates (output, consumption, investment) using a panel of 60 countries over the period 1961-2014. The paper presents a Bayesian stochastic factor selection approach for dynamic factor models with

  2. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    Science.gov (United States)

    Wilkie, W.; Warren, J.; Horta, L.; Juang, J.; Gibbs, S.; Dowell, E.; Guerrant, D.; Lawrence, D.

    2014-06-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  3. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    Science.gov (United States)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  4. The Sun's interior structure and dynamics, and the solar cycle

    CERN Document Server

    Broomhall, A -M; Howe, R; Norton, A A; Thompson, M J

    2014-01-01

    The Sun's internal structure and dynamics can be studied with helioseismology, which uses the Sun's natural acoustic oscillations to build up a profile of the solar interior. We discuss how solar acoustic oscillations are affected by the Sun's magnetic field. Careful observations of these effects can be inverted to determine the variations in the structure and dynamics of the Sun's interior as the solar cycle progresses. Observed variations in the structure and dynamics can then be used to inform models of the solar dynamo, which are crucial to our understanding of how the Sun's magnetic field is generated and maintained.

  5. How do static and dynamic risk factors work together to predict violent behaviour among offenders with an intellectual disability?

    Science.gov (United States)

    Lofthouse, R E; Totsika, V; Hastings, R P; Lindsay, W R; Hogue, T E; Taylor, J L

    2014-02-01

    Research on risk assessment with offenders with an intellectual disability (ID) has largely focused on estimating the predictive accuracy of static or dynamic risk assessments, or a comparison of the two approaches. The aim of this study was to explore how static and dynamic risk variables may 'work together' to predict violent behaviour. Data from 212 offenders with an ID were analysed. Risk assessment tools included one static measure (Violence Risk Appraisal Guide), and two dynamic measures (Emotional Problems Scale and the Short Dynamic Risk Scale). Six-month concurrent prediction data on violent behaviour were collected. A structured methodology was employed to explore putative relationships between static and dynamic factors. Static risk factors temporally preceded dynamic ones, and were shown to dominate both dynamic measures, while there was a non-zero relationship between the static and the two dynamic measures. According to Kraemer et al., these findings suggest that dynamic risk factors function as proxy risk factors for static risk. Dynamic and static risk factors appear to capture elements of the same underlying risk associated with violent behaviour in individuals with an ID. This is the first study to empirically explore risk interrelationships in the forensic ID field. We discuss the importance of the contribution of dynamic variables in the prediction and management of risk. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSIDD.

  6. PGA and structural dynamics input motion at a given site

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The computation of the representative ground motions, to be used as input for the dynamic analyses of a struc-ture at a particular site, can be approached by several methods. The choice of the approach depends on two factors: the da-ta available and the type of problem to be solved. This paper reports the experience of the authors in approaching a specificcase study: the Southern Memnon Colossus, located in Luxor, Egypt. The results are of interest when the hazard analysisestimation in developing countries and the safeguard of cultural heritage are concerned. Monuments have to be treated asimportant structures, due to their historical and economical value. Hence, standard procedures of probabilistic seismic haz-ard analysis for the seismic classification of common buildings have to be disregarded. On the other hand, the consequencesof the collapse of a monument are not comparable to those related to structures such as nuclear power plants and large dams,for which the deterministic seismic hazard analysis provides a straightforward framework for evaluation of the worst caseone, is adopted. Its stochastic component can capture significant characteristics of earthquakes, primarily the frequencycontents which depend on the magnitude (often referred to as the earthquake scaling law).

  7. Sensitive dependence of network dynamics on network structure

    CERN Document Server

    Nishikawa, Takashi; Motter, Adilson E

    2016-01-01

    The relation between network structure and dynamics is determinant for the behavior of complex systems in numerous domains. An important longstanding problem concerns the properties of the networks that optimize the dynamics with respect to a given performance measure. Here we show that such optimization can lead to sensitive dependence of the dynamics on the structure of the network. Specifically, we demonstrate that the stability of the dynamical state, as determined by the maximum Lyapunov exponent, can exhibit a cusp-like dependence on the number of nodes and links as well as on the size of perturbations applied to the network structure. As mechanisms underlying this sensitivity, we identify discontinuous transitions occurring in the complement of optimal networks and the prevalence of eigenvector degeneracy in these networks. These findings establish a unified characterization of networks optimized for dynamical stability in diffusively coupled systems, which we illustrate using Turing instability in act...

  8. Segmenting Dynamic Human Action via Statistical Structure

    Science.gov (United States)

    Baldwin, Dare; Andersson, Annika; Saffran, Jenny; Meyer, Meredith

    2008-01-01

    Human social, cognitive, and linguistic functioning depends on skills for rapidly processing action. Identifying distinct acts within the dynamic motion flow is one basic component of action processing; for example, skill at segmenting action is foundational to action categorization, verb learning, and comprehension of novel action sequences. Yet…

  9. Electronic-structural dynamics in graphene

    Directory of Open Access Journals (Sweden)

    Isabella Gierz

    2016-09-01

    meV, a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light.

  10. Dynamic network structure of interhemispheric coordination.

    Science.gov (United States)

    Doron, Karl W; Bassett, Danielle S; Gazzaniga, Michael S

    2012-11-13

    Fifty years ago Gazzaniga and coworkers published a seminal article that discussed the separate roles of the cerebral hemispheres in humans. Today, the study of interhemispheric communication is facilitated by a battery of novel data analysis techniques drawn from across disciplinary boundaries, including dynamic systems theory and network theory. These techniques enable the characterization of dynamic changes in the brain's functional connectivity, thereby providing an unprecedented means of decoding interhemispheric communication. Here, we illustrate the use of these techniques to examine interhemispheric coordination in healthy human participants performing a split visual field experiment in which they process lexical stimuli. We find that interhemispheric coordination is greater when lexical information is introduced to the right hemisphere and must subsequently be transferred to the left hemisphere for language processing than when it is directly introduced to the language-dominant (left) hemisphere. Further, we find that putative functional modules defined by coherent interhemispheric coordination come online in a transient manner, highlighting the underlying dynamic nature of brain communication. Our work illustrates that recently developed dynamic, network-based analysis techniques can provide novel and previously unapproachable insights into the role of interhemispheric coordination in cognition.

  11. Molecular dynamics modeling of structural battery components

    NARCIS (Netherlands)

    Verners, O.; Van Duin, A.C.T.; Wagemaker, M.; Simone, A.

    2015-01-01

    A crosslinked polymer based solid electrolyte prototype material –poly(propylene glycol) diacrylate– is studied using the reactive molecular dynamics force field ReaxFF. The focus of the study is the evaluation of the effects of equilibration and added plasticizer (ethylene carbonate) or anion compo

  12. Site-directed spectroscopic probes of actomyosin structural dynamics.

    Science.gov (United States)

    Thomas, David D; Kast, David; Korman, Vicci L

    2009-01-01

    Spectroscopy of myosin and actin has entered a golden age. High-resolution crystal structures of isolated actin and myosin have been used to construct detailed models for the dynamic actomyosin interactions that move muscle. Improved protein mutagenesis and expression technologies have facilitated site-directed labeling with fluorescent and spin probes. Spectroscopic instrumentation has achieved impressive advances in sensitivity and resolution. Here we highlight the contributions of site-directed spectroscopic probes to understanding the structural dynamics of myosin II and its actin complexes in solution and muscle fibers. We emphasize studies that probe directly the movements of structural elements within the myosin catalytic and light-chain domains, and changes in the dynamics of both actin and myosin due to their alternating strong and weak interactions in the ATPase cycle. A moving picture emerges in which single biochemical states produce multiple structural states, and transitions between states of order and dynamic disorder power the actomyosin engine.

  13. Structural Dynamics Within and Between Organizations.

    Science.gov (United States)

    Fombrun, Charles J.

    1986-01-01

    The concept of structure is recast as an instantaneous correspondence between an infrastructure, a sociostructure, and a superstructure--manifestations of collective life juxtaposed through technological solutions, political exchanges, and social interpretations involving organizations. Ultimately, structuring is a dialectical unfolding of…

  14. Employee motivation in Ghana: A factor structure and measurement tool

    Directory of Open Access Journals (Sweden)

    B. B. Puplampu

    2007-12-01

    Full Text Available Purpose: This paper reports research on the factor structure of employee motivation as well as provides a tool for measuring the level of employee motivation in Ghanaian organisations. Methodology: The study was designed as exploratory, comparative and cross-sectional. 260 respondents drawn from across the gender, status and job grade hierarchy of 19 organisations participated. The organisations were matched in terms of tenure (over 5years, number of employees (50 or more and geographic location (headquartered in Accra. A 41-item questionnaire on the Level of Motivation (LoM; Characteristics of Employee Motivation (CEM; aspects of Organisational Citizenship Behaviour (OCB; Managerial Assumptions about employee behaviour (MA; Contextual Institutional Analysis (IAN and Organisational Leadership Issues (Le was developed and used. The instrument combined fixed response format on a 3-point scale with open-ended responses. Findings: Exploratory Factor Analyses (Varimax Rotation, converging in 26 iterations yielded 6 factors, which account for 60% of the variance. Thematic analyses of both interview and open-ended questionnaire data support the emergent factor structure, providing some tentative indication that employee motivation in the Ghanaian (or indeed African context should be looked at more in an integrated manner rather than in terms of the limiting confines of any one theory of motivation. The 3 items hypothesised to constitute the measure of level of employee motivation loaded neatly onto Factor 6. One-way ANOVA demonstrated no differences in the level of motivation across the organisational samples; this was confirmed by the interview data. Implications/Originality/Value: The implications and value of this research are: that motivation research in Africa does need to focus more on developing an integrated model of employee motivation; also, a simple 3-item but novel tool for measuring the level of employee motivation as well as its

  15. Dynamic characteristics of large repetitive framelike structures

    Science.gov (United States)

    Nayfeh, A. H.; Hartle, M. S.

    1984-01-01

    Using a building block approach and starting with a single element, expressions for the energy of various two-dimensional frametype gridwork configurations are derived. These are then used to develop energy equivalent continua for the gridworks. Equations of motion and associated boundary conditions are obtained for the continua. Some dynamic characteristics of these continua are investigated and compared with corresponding results obtained from finite element codes and also with some available theoretical predictions.

  16. Jellyfish modulate bacterial dynamic and community structure.

    Science.gov (United States)

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  17. Jellyfish modulate bacterial dynamic and community structure.

    Directory of Open Access Journals (Sweden)

    Tinkara Tinta

    Full Text Available Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  18. Factor Analysis of Enterprise Internet+ Impetus Based on System Dynamics

    Directory of Open Access Journals (Sweden)

    Cao Haiwang

    2017-01-01

    Full Text Available Internet+ plays an important role in the transition and upgrading of enterprises in this era. To promote enterprise Internet+ implementation, this paper studies the influencing factors in enterprise Internet+ impetus. First, based on system dynamics, the influencing factors of enterprise Internet+ impetus are analyzed as well as their relationships. Then, a system dynamics model is established and Vensim PLE is utilized to simulate the model. Finally, some suggestions about the Internet+ implementation are given. The simulation results show that technological environment, government policy and information asymmetry all have different influence on the enterprise Internet+ impetus and different strategies can be taken to change their influence. This study is helpful for enterprises to understand the Internet+ impetus mechanism thus promote Internet+ implementation.

  19. Estimating cyanobacteria community dynamics and its relationship with environmental factors.

    Science.gov (United States)

    Luo, Wenhuai; Chen, Huirong; Lei, Anping; Lu, Jun; Hu, Zhangli

    2014-01-20

    The cyanobacteria community dynamics in two eutrophic freshwater bodies (Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic counting method and a PCR-DGGE genotyping method. Results showed that cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria species were identified in water samples collected from the two reservoirs, among which fourteen were identified with the morphological method and sixteen with the PCR-DGGE method. The cyanobacteria community composition analysis showed a seasonal fluctuation from July to December. The cyanobacteria population peaked in August in both reservoirs, with cell abundances of 3.78 × 10(8) cells L(-1) and 1.92 × 10(8) cells L(-1) in the Tiegang and Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to further investigate the correlation between cyanobacteria community dynamics and environmental factors. The result indicated that the cyanobacteria community dynamics was mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data obtained from PCR-DGGE combined with a traditional morphological method could reflect cyanobacteria community dynamics and its correlation with environmental factors in eutrophic freshwater bodies.

  20. Estimating Cyanobacteria Community Dynamics and its Relationship with Environmental Factors

    Science.gov (United States)

    Luo, Wenhuai; Chen, Huirong; Lei, Anping; Lu, Jun; Hu, Zhangli

    2014-01-01

    The cyanobacteria community dynamics in two eutrophic freshwater bodies (Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic counting method and a PCR-DGGE genotyping method. Results showed that cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria species were identified in water samples collected from the two reservoirs, among which fourteen were identified with the morphological method and sixteen with the PCR-DGGE method. The cyanobacteria community composition analysis showed a seasonal fluctuation from July to December. The cyanobacteria population peaked in August in both reservoirs, with cell abundances of 3.78 × 108 cells L-1 and 1.92 × 108 cells L-1 in the Tiegang and Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to further investigate the correlation between cyanobacteria community dynamics and environmental factors. The result indicated that the cyanobacteria community dynamics was mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data obtained from PCR-DGGE combined with a traditional morphological method could reflect cyanobacteria community dynamics and its correlation with environmental factors in eutrophic freshwater bodies. PMID:24448632

  1. Protein dynamics derived from clusters of crystal structures.

    OpenAIRE

    van Aalten, D M; Conn, D A; de Groot, B L; Berendsen, H J; Findlay, J B; Amadei, A

    1997-01-01

    A method is presented to mathematically extract concerted structural transitions in proteins from collections of crystal structures. The "essential dynamics" procedure is used to filter out small-amplitude fluctuations from such a set of structures; the remaining large conformational changes describe motions such as those important for the uptake/release of substrate/ligand and in catalytic reactions. The method is applied to sets of x-ray structures for a number of proteins, and the results ...

  2. Broadband Structural Dynamics: Understanding the Impulse-Response of Structures Across Multiple Length and Time Scales

    Science.gov (United States)

    2010-08-18

    annual progress in this effort in four research areas: (1) structural health monitoring, (2) experimental structural dynamics , (3) spectral modeling of wave propagation, and (4) wavelet analysis for damage detection.

  3. Nucleon Structure and Hyperon Form Factors from Lattice QCD.

    Energy Technology Data Exchange (ETDEWEB)

    Lin,H.W.

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point. to be 1.23(5), consistent with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(2G), consistent with the Adelaide-JLab Collaboration's result. The hyperon {Sigma} and {Xi} axial coupling constants are also performed for the first time in a lattice calculation, g{sub {Sigma}{Sigma}} = 0.441(14) and g{sub {Xi}{Xi}} = -0.277(11).

  4. Nucleon Structure and hyperon form factors from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huey-Wen

    2007-06-11

    In this work, I report the latest lattice QCD calculations of nucleon and hyperon structure from chiral fermions in 2+1-flavor dynamical simulations. All calculations are done with a chirally symmetric fermion action, domain-wall fermions, for valence quarks. I begin with the latest lattice results on the nucleon structure, focusing on results from RBC/UKQCD using 2+1-flavor chiral fermion actions. We find the chiral-extrapolated axial coupling constant at physical pion mass point to be 1.23(5), consistant with experimental value. The renormalization constants for the structure functions are obtained from RI/MOM-scheme non-perturbative renormalization. We find first moments of the polarized and unpolarized nucleon structure functions at zero transfer momentum to be 0.133(13) and 0.203(23) respectively, using continuum chiral extrapolation. These are consistent with the experimental values, unlike previous calculations which have been 50% larger. We also have a prediction for the transversity, which we find to be 0.56(4). The twist-3 matrix element is consistent with zero which agrees with the prediction of the Wandzura-Wilczek relation. In the second half of this work, I report an indirect dynamical estimation of the strangeness proton magnetic moments using mixed actions. With the analysis of hyperon form factors and using charge symmetry, the strangeness of proton is found to be -0.066(26), consistent with the Adelaide-JLab Collaboration's result. The hyperon Sigma and Xi axial coupling constants are also performed for the first time in a lattice calculation, g_SigmaSigma = 0.441(14) and g_XiXi = -0.277(11).

  5. Structural integration in hypoxia-inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dalei; Potluri, Nalini; Lu, Jingping; Kim, Youngchang; Rastinejad, Fraydoon

    2015-08-20

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.

  6. Structure-based control of complex networks with nonlinear dynamics

    CERN Document Server

    Zañudo, Jorge G T; Albert, Réka

    2016-01-01

    Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...

  7. Dynamic Analysis of Composite Structural System for Looms Industry

    Directory of Open Access Journals (Sweden)

    Jigar K. Sevalia

    2014-02-01

    Full Text Available All the structures subjected to any kind of loads or displacement tends to behave dynamically. Thus the structures are always under continuous loading. The industrial buildings have to support the machineries in motion which are under high degree of vibrations. And so the design of base and the foundations of such structures under vibrations are very important and need to be stable. Problems of dynamics of bases and foundations are to be studied carefully, so as to understand the response characteristics of the power loom industry structure. This is very important from the economic point of view as well as to secure the stability and safety of the structure; dynamic analysis was carried out for Ground + One storey industry load bearing structure using STAAD.Pro software. In this paper, an attempt has been made to study the dynamic analysis of the structure under vibrations caused by reciprocating type machines. This paper makes attempt to study the effects of various structural parameters like Beam Size, Column Size and Storey Height and Wall Thickness variation on Frequency and Displacement of the industrial building which in future will serve as guidelines to the structural engineers and the industry people.

  8. Structural and dynamical transformations between neighboring dense microemulsion phases

    Science.gov (United States)

    Kotlarchyk, M.; Sheu, E. Y.; Capel, M.

    1992-07-01

    A small-angle x-ray scattering (SAXS) study of dense AOT-water-decane microemulsions [AOT denotes sodium bis(2-ethylhexyl) sulfosuccinate] was undertaken in order to delineate clearly the phase behavior and corresponding structural transitions for AOT-plus-water volume fractions ranging from φ=0.60 to 0.95. Spectra were collected for temperatures between T=3 and 65 °C. The resulting T-vs-φ phase diagram indicates three distinct structural domains when the water-to-AOT molar ratio is fixed at W=40.8, namely, the previously investigated L2 droplet phase, a high-temperature Lα lamellar phase, and a low-temperature L3 phase consisting of randomly connected lamellar sheets. A significantly wide coexistence region accompanies the droplet-to-lamellar phase transition, which is demonstrated to be first order. For W between 15 and 40, an analysis of the lamellar structure using a one-dimensional paracrystal model produces a Hosemann g factor indicative of an approximately constant variation in the lamellar spacing of about 8%. The SAXS study was supplemented by dielectric-relaxation, shear-viscosity, and quasielastic light-scattering measurements in order to substantiate the observed phase transitions and further our understanding of the structural and dynamical properties of the L3 phase. It was found that the L3 phase exhibits Newtonian behavior up to a shear rate of 790 s-1, in contradiction to previous theoretical considerations. The phase exhibits two distinct relaxation modes. A relaxation time of ~1 ms characterizes the Brownian motion of a single lamellar sheet, while the motion of the entire interconnected sheet assembly has a relaxation time on the order of 1 s.

  9. Opinion dynamics on a group structured adaptive network

    CERN Document Server

    Gargiulo, F

    2009-01-01

    Many models have been proposed to analyze the evolution of opinion structure due to the interaction of individuals in their social environment. Such models analyze the spreading of ideas both in completely interacting backgrounds and on social networks, where each person has a finite set of interlocutors.Moreover also the investigation on the topological structure of social networks has been object of several analysis, both from the theoretical and the empirical point of view. In this framework a particularly important area of study regards the community structure inside social networks.In this paper we analyze the reciprocal feedback between the opinions of the individuals and the structure of the interpersonal relationships at the level of community structures. For this purpose we define a group based random network and we study how this structure co-evolve with opinion dynamics processes. We observe that the adaptive network structure affects the opinion dynamics process helping the consensus formation. Th...

  10. Cluster structure and dynamics in gels and glasses

    CERN Document Server

    Pastore, Raffaele; Fierro, Anallisa; Ciamarra, Massimo Pica; Coniglio, Antonio

    2016-01-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The dynamical glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may be also relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  11. Phase Space Structures of k-threshold Sequential Dynamical Systems

    CERN Document Server

    Rani, Raffaele

    2011-01-01

    Sequential dynamical systems (SDS) are used to model a wide range of processes occurring on graphs or networks. The dynamics of such discrete dynamical systems is completely encoded by their phase space, a directed graph whose vertices and edges represent all possible system configurations and transitions between configurations respectively. Direct calculation of the phase space is in most cases a computationally demanding task. However, for some classes of SDS one can extract information on the connected component structure of phase space from the constituent elements of the SDS, such as its base graph and vertex functions. We present a number of novel results about the connected component structure of the phase space for k-threshold dynamical system with binary state spaces. We establish relations between the structure of the components, the threshold value, and the update sequence. Also fixed-point reachability from garden of eden configurations is investigated and upper bounds for the length of paths in t...

  12. The semi-dynamical reflection equation: solutions and structure matrices

    Energy Technology Data Exchange (ETDEWEB)

    Avan, J; Zambon, C [Laboratoire de Physique Theorique et Modelisation, Universite de Cergy-Pontoise (CNRS UMR 8089), Saint-Martin 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France)], E-mail: avan@u-cergy.fr, E-mail: cristina.zambon@u-cergy.fr

    2008-05-16

    Explicit solutions of the non-constant semi-dynamical reflection equation are constructed, together with suitable parametrizations of their structure matrices. Considering the semi-dynamical reflection equation with rational non-constant Arutyunov-Chekhov-Frolov structure matrices, and a specific meromorphic ansatz, it is found that only two sets of the previously found constant solutions are extendible to the non-constant case. In order to simplify future constructions of spin-chain Hamiltonians, a parametrization procedure is applied explicitly to all elements of the semi-dynamical reflection equation available. Interesting expressions for 'twists' and R-matrices entering the parametrization procedure are found. In particular, some expressions for the R-matrices seem to appear here for the first time. In addition, a new set of consistent structure matrices for the semi-dynamical reflection equation is obtained.

  13. NEW TYPE OF VIBRATION STRUCTURE OF VERTICAL DYNAMIC BALANCING MACHINE

    Institute of Scientific and Technical Information of China (English)

    Li Dinggen; Cao Jiguang; Chen Chuanyao; Wang Junwen

    2004-01-01

    A new type of vibration structure of vertical dynamic balancing machine is designed, which is based on the analysis for swing frame of a traditional vertical dynamic balancing machine. The static unbalance and couple unbalance can be separated effectively by using the new machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the finite element modal analysis with the experimental modal analysis, the natural frequencies and vibration modes are found out. There are many spring boards in the new swing frame. Their stiffness is different and assort with each other. Furthermore, there are three sensors on the measurement points. Therefore, the new dynamic balancing machine can measure the static unbalance and couple unbalance directly, and the influence between them is faint. The new structure has the function of belt-strain compensation to improve the measurement precision. The practical result indicates that the new vertical dynamic balancing machine is suitable for inertial measurement of flying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines. The vertical dynamic balancing machine with the new vibration structure can be widely used in the future applications. The modeling and analysis of the new vibration structure provide theoretic instruction and practical experience for designing new type of vertical dynamic balancing machines. Based on the design principles such as stiffness-matching, frequency-adjacence and strain-compensation and so on, various new type of vibration structures can be designed.

  14. Bone dynamic study. Evaluation for factor analysis of hip joint

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kotaro; Toyama, Hinako; Ishikawa, Nobuyoshi; Hatakeyama, Rokuro; Akisada, Masayoshi; Miyagawa, Shunpei

    1989-02-01

    Factor analysis was applied to dynamic study of Tc-99m MDP for the evaluation of hip joint disorders. Fifteen patients were examined; eight were normal, six was osteoarthritis in which one accompanied synovitis was included, and one was aseptic necrosis on the head of the femur. In normals, according to the Tc-99m MDP kinetics, three factor images and time-activity curves were obtained which were named as blood vessel, soft tissue, and bone factor images and curves. In the patient with osteoarthritis, increased accumulation of the hip joint was shown in bone factor image only. But in one patient, who took osteoarthritis with synovitis, marked accumulations of the Tc-99m MDP appeared not only on the bone factor image but also on the soft tissue. Operation revealed thickening synovial tissue around the hip joint, caused by inflammatory process. In follow-up studies of the patient with aseptic necrosis on the head of the left femur, exessive accumulations, which were seemed in his left hip joint on both bone and soft tissue factor images at first, were decreased respondently to the treatment of this lesion. In conclusion, the factor analysis was useful for differential diagnosis of the hip joint disorders and observation of the clinical course of the hip joint disorders.

  15. Spin structure factors of Heisenberg spin chain in the presence of anisotropy and magnetic field

    Science.gov (United States)

    Rezania, H.

    2017-02-01

    We have theoretically studied the spin structure factors of spin chain in the presence of longitudinal field and transverse anisotropy. The possible effects of easy axis magnetization are investigated in terms of anisotropy in the Heisenberg interactions. This anisotropy is considered for exchange coupling constants perpendicular to magnetic field direction. The original spin model hamiltonian is mapped to a bosonic model via a hard core bosonic transformation where an infinite hard core repulsion is imposed to constrain one boson occupation per site. Using Green's function approach, the energy spectrum of quasiparticle excitation has been obtained. The spectrum of the bosonic gas has been implemented in order to obtain two particle propagator which corresponds to spin structure factor of original Heisenberg chain model Hamiltonian. The results show the position of peak in the longitudinal structure factor at fixed value for anisotropy moves to higher frequency with magnetic field. Also the intensity of dynamical structure factor decreases with magnetic field. A small dependence of longitudinal dynamical spin structure factor on the anisotropy is observed for fixed value of magnetic field. Our results show longitudinal static structure factor is found to be monotonically increasing with magnetic field due to increase of spins aligning along magnetic field. Furthermore the dispersion behaviors of static longitudinal and transverse structure factors for different magnetic fields and anisotropy parameters are addressed.

  16. Gas Price Formation, Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Davoust, R.

    2008-07-01

    Our study, focused on gas prices in importing economies, describes wholesale prices and retail prices, their evolution for the last one or two decades, the economic mechanisms of price formation. While an international market for oil has developed thanks to moderate storage and transportation charges, these costs are much higher in the case of natural gas, which involves that this energy is still traded inside continental markets. There are three regional gas markets around the world: North America (the United States, importing mainly from Canada and Mexico), Europe (importing mainly from Russia, Algeria and Norway) and Asia (Japan, Korea, Taiwan, China and India, importing mainly from Indonesia, Malaysia and Australia). A market for gas has also developed in South America, but it will not be covered by our paper. In Europe and the US, due to large domestic resources and strong grids, natural gas is purchased mostly through pipelines. In Northeast Asia, there is a lack of such infrastructures, so imported gas takes mainly the form of Liquefied Natural Gas (LNG), shipped on maritime tankers. Currently, the LNG market is divided into two zones: the Atlantic Basin (Europe and US) and the Pacific Basin (Asia and the Western Coast of America). For the past few years, the Middle East and Africa have tended to be crucial suppliers for both LNG zones. Gas price formation varies deeply between regional markets, depending on several structural factors (regulation, contracting practises, existence of a spot market, liquidity, share of imports). Empirically, the degree of market opening (which corresponds to the seniority in the liberalization process) seems to be the primary determinant of pricing patterns. North America has the most liberalized and well-performing natural gas industry in the world. Gas pricing is highly competitive and is based on supply/demand balances. Spot and futures markets are developed. The British gas sector is also deregulated and thus follows a

  17. Structural Factors Affecting Health Examination Behavioral Intention

    National Research Council Canada - National Science Library

    Huang, Hui-Ting; Kuo, Yu-Ming; Wang, Shiang-Ru; Wang, Chia-Fen; Tsai, Chung-Hung

    2016-01-01

    .... Here, we used the health belief model as a foundation and integrated social psychological factors and investigated the factors influencing health examination behavioral intention among the public in Taiwan...

  18. Introducing Students to Structural Dynamics and Earthquake Engineering

    Science.gov (United States)

    Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel

    2010-01-01

    The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…

  19. Structure and Dynamics of the VAULT COMPLEX

    NARCIS (Netherlands)

    A. van Zon (Arend)

    2004-01-01

    textabstractVaults are the largest ribonucleoprotein particles found in eukaryotic cells. The maincomponent of these 13 MDa structures is the Mr 100,000 major vault protein (MVP).In mammalian cells, about 96 copies of this protein are necessary to form one vaultparticle. Two additional proteins are

  20. Emergence of structured communities through evolutionary dynamics.

    Science.gov (United States)

    Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M

    2015-10-21

    Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Oxide Interfaces: emergent structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, Roy [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-08-16

    This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achieve a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.

  2. DYNAMIC OPTIMIZATION FOR UNCERTAIN STRUCTURES USING INTERVAL METHOD

    Institute of Scientific and Technical Information of China (English)

    ChertSub-A-; WuJie; LiuChun

    2003-01-01

    An interval optimization method for the dynamic response of structures with interval parameters is presented. The matrices of structures with interval parameters are given. Combining the interval extension with the perturbation, the method for interval dynamic response analysis is derived. The interval optimization problem is transformed into a corresponding deterministic one. Because the mean values and the uncertainties of the interval parameters can be elected design variables, more information of the optimization results can be obtained by the present method than that obtained by the deterministic one. The present method is implemented for a truss structure. The numerical results show that the method is effective.

  3. Long-wavelength limit of the static structure factors for mixtures of two simple molten salts with a common ion and generalized Bhatia-Thornton formalism: Molecular dynamics study of molten mixture Ag(Br{sub 0.7}I{sub 0.3})

    Energy Technology Data Exchange (ETDEWEB)

    Bitrian, Vicente [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Campus Nord UPC, Edifici B4-B5, Despatx B4-204, Jordi Girona 1-3, 08034 Barcelona (Spain); Trullas, Joaquim [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Campus Nord UPC, Edifici B4-B5, Despatx B4-204, Jordi Girona 1-3, 08034 Barcelona (Spain)], E-mail: quim.trullas@upc.edu; Silbert, Moises [School of Mathematics, University of East Anglia, Norwich NR4 7QF (United Kingdom)

    2008-12-15

    The relation between thermodynamic properties and the long-wavelength limit of the structure factors for mixtures of two simple molten salts with a common ion is derived. While the long-wavelength limit of the partial structure factors for binary ionic systems is directly related to the isothermal compressibility, for ternary ionic systems it is shown that it is also related to the mean square thermal fluctuation in the relative concentration of the non-common ions. This result leads to a generalization of the Bhatia-Thornton formalism. From the local fluctuations in the total number-density, charge-density, and relative concentration, six static structure factors, and the corresponding spatial correlation functions, are defined. By introducing three complementary structure factors, it is possible to describe either these mixtures as a system of cations and anions irrespective of the species of the non-common ions, or solely the binary subsystem of the non-common ions. The generalized structure factors and their long-wavelength limits are illustrated by molecular dynamics simulation results of the molten mixture Ag(Br{sub 0.7}I{sub 0.3}). The mixture retains the charge order characteristic of pure molten monovalent salts and the topological order observed in monovalent ionic melts in which the cations are smaller than the anions, while the main trends of the anionic chemical order are those of simple binary alloys. The long-wavelength fluctuations in the local relative concentration are found to be very sensitive to the choice of the short-range interactions between the non-common ions.

  4. International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    CSNDD 2012; CSNDD 2014

    2015-01-01

    This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics.  Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...

  5. Dynamics and control of diseases in networks with community structure.

    Directory of Open Access Journals (Sweden)

    Marcel Salathé

    2010-04-01

    Full Text Available The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc. depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.

  6. Dynamic energy absorption characteristics of hollow microlattice structures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, YL; Schaedler, TA; Chen, X

    2014-10-01

    Hollow microlattice structures are promising candidates for advanced energy absorption and their characteristics under dynamic crushing are explored. The energy absorption can be significantly enhanced by inertial stabilization, shock wave effect and strain rate hardening effect. In this paper we combine theoretical analysis and comprehensive finite element method simulation to decouple the three effects, and then obtain a simple model to predict the overall dynamic effects of hollow microlattice structures. Inertial stabilization originates from the suppression of sudden crushing of the microlattice and its contribution scales with the crushing speed, v. Shock wave effect comes from the discontinuity across the plastic shock wave front during dynamic loading and its contribution scales with e. The strain rate effect increases the effective yield strength upon dynamic deformation and increases the energy absorption density. A mechanism map is established that illustrates the dominance of these three dynamic effects at a range of crushing speeds. Compared with quasi-static loading, the energy absorption capacity a dynamic loading of 250 m/s can be enhanced by an order of magnitude. The study may shed useful insight on designing and optimizing the energy absorption performance of hollow microlattice structures under various dynamic loads. (C) 2014 Elsevier Ltd. All rights reserved.

  7. The Hyades distance, structure, dynamics, and age

    CERN Document Server

    Perryman, M A C; Lebreton, Y; Gómez, A; Turon, C; De Strobel, G C; Mermilliod, J C; Robichon, N; Kovalevsky, J; Crifo, F

    1997-01-01

    We use absolute trigonometric parallaxes from the Hipparcos Catalogue to determine individual distances to members of the Hyades cluster, from which the 3-dimensional structure of the cluster can be derived. Inertially-referenced proper motions are used to rediscuss distance determinations based on convergent-point analyses. A combination of parallaxes and proper motions from Hipparcos, and radial velocities from ground-based observations, are used to determine the position and velocity components of candidate members with respect to the cluster centre, providing new information on cluster membership: 13 new candidate members within 20 pc of the cluster centre have been identified. Farther from the cluster centre there is a gradual merging between certain cluster members and field stars, both spatially and kinematically. Within the cluster, the kinematical structure is fully consistent with parallel space motion of the component stars with an internal velocity dispersion of about 0.3 km/s. The spatial structu...

  8. Cosmic Voids: structure, dynamics and galaxies

    CERN Document Server

    van de Weygaert, Rien

    2009-01-01

    In this review we discuss several aspects of Cosmic Voids. Voids are a major component of the large scale distribution of matter and galaxies in the Universe. They are of instrumental importance for understanding the emergence of the Cosmic Web. Their relatively simple shape and structure makes them into useful tools for extracting the value of a variety cosmic parameters, possibly including even that of the influence of dark energy. Perhaps most promising and challenging is the issue of the galaxies found within their realm. Not only does the pristine environment of voids provide a promising testing ground for assessing the role of environment on the formation and evolution of galaxies, the dearth of dwarf galaxies may even represent a serious challenge to the standard view of cosmic structure formation.

  9. Spatial Dynamic Structures and Mobility in Computation

    CERN Document Server

    Aman, Bogdan

    2011-01-01

    Membrane computing is a well-established and successful research field which belongs to the more general area of molecular computing. Membrane computing aims at defining parallel and non-deterministic computing models, called membrane systems or P Systems, which abstract from the functioning and structure of the cell. A membrane system consists of a spatial structure, a hierarchy of membranes which do not intersect, with a distinguishable membrane called skin surrounding all of them. A membrane without any other membranes inside is elementary, while a non-elementary membrane is a composite membrane. The membranes define demarcations between regions; for each membrane there is a unique associated region. Since we have a one-to-one correspondence, we sometimes use membrane instead of region, and vice-versa. The space outside the skin membrane is called the environment. In this thesis we define and investigate variants of systems of mobile membranes as models for molecular computing and as modelling paradigms fo...

  10. Dynamic kirigami structures for integrated solar tracking.

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max

    2015-09-08

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.

  11. Information diversity in structure and dynamics of simulated neuronal networks.

    Science.gov (United States)

    Mäki-Marttunen, Tuomo; Aćimović, Jugoslava; Nykter, Matti; Kesseli, Juha; Ruohonen, Keijo; Yli-Harja, Olli; Linne, Marja-Leena

    2011-01-01

    Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.

  12. Dynamics-based Nondestructive Structural Monitoring Techniques

    Science.gov (United States)

    2012-06-21

    in the practice of non- destructive evaluation ( NDE ) and structural health monitoring (SHM). Guided wave techniques have several advantages over...conventional bulk wave ultrasonic NDE /SHM techniques. Some of these advantages are outlined in Table I. However, in addition to the advantages of...PVDF transducers for SHM applications with controlled guided wave modes and frequencies [7]. Wilcox used EMATs with circular coils in a guided wave

  13. Dynamics-based Nondestructive Structural Monitoring Teclrniques

    Science.gov (United States)

    2012-05-21

    destructive evaluation ( NDE ) and structural health monitoring (SHM). Guided wave techniques have several advantages over conventional bulk wave...ultrasonic NDE /SHM techniques. Some of these advantages are outlined in Table I. However, in addition to the advantages of guided waves comes an...PVDF transducers for SHM applications with controlled guided wave modes and frequencies [7]. Wilcox used EMATs with circular coils in a guided wave

  14. Molecular Analysis of Factor VIII and Factor IX Genes in Hemophilia Patients: Identification of Novel Mutations and Molecular Dynamics Studies

    Science.gov (United States)

    Al-Allaf, Faisal A.; Taher, Mohiuddin M.; Abduljaleel, Zainularifeen; Bouazzaoui, Abdellatif; Athar, Mohammed; Bogari, Neda M.; Abalkhail, Halah A.; Owaidah, Tarek MA.

    2017-01-01

    Background Hemophilias A and B are X-linked bleeding disorders caused by mutations in the factor VIII and factor IX genes, respectively. Our objective was to identify the spectrum of mutations of the factor VIII and factor IX genes in Saudi Arabian population and determine the genotype and phenotype correlations by molecular dynamics (MD) simulation. Methods For genotyping, blood samples from Saudi Arabian patients were collected, and the genomic DNA was amplified, and then sequenced by Sanger method. For molecular simulations, we have used softwares such as CHARMM (Chemistry at Harvard Macromolecular Mechanics; http://www.charmm-gui.org) and GROMACS. In addition, the secondary structure was determined based on the solvent accessibility for the confirmation of the protein stability at the site of mutation. Results Six mutations (three novel and three known) were identified in factor VIII gene, and six mutations (one novel and five known) were identified in factor IX gene. The factor VIII novel mutations identified were c.99G>T, p. (W33C) in exon 1, c.2138 DelA, p. (N713Tfs*9) in eon14, also a novel mutation at splicing acceptor site of exon 23 c.6430 - 1G>A. In factor IX, we found a novel mutation c.855G>C, p. (E285D) in exon 8. These novel mutations were not reported in any factor VIII or factor IX databases previously. The deleterious effects of these novel mutations were confirmed by PolyPhen2 and SIFT programs. Conclusion The protein functional and structural studies and the models built in this work would be appropriate for predicting the effects of deleterious amino acid substitutions causing these genetic disorders. These findings are useful for genetic counseling in the case of consanguineous marriages which is more common in the Saudi Arabia. PMID:28270892

  15. [Dynamic changes of soil ecological factors in Ziwuling secondary forest area under human disturbance].

    Science.gov (United States)

    Zhou, Zhengchao; Shangguan, Zhouping

    2005-09-01

    As a widespread natural phenomenon, disturbance is considered as a discrete event occurred in natural ecosystems at various spatial and temporal scales. The occurrence of disturbance directly affects the structure, function and dynamics of ecosystems. Forest logging and forestland assart, the common human disturbances in forest area, have caused the dynamic changes of forest soil ecological factors in a relatively consistent environment. A study on the dynamics of soil bulk density, soil organic matter, soil microbes and other soil ecological factors under different human disturbance (logging and assart, logging but without assart, control) were conducted in the Ziwuling secondary forest area. The results indicated that human disturbance had a deep impact on the soil ecological factors, with soil physical and chemical properties become bad, soil organic matter decreased from 2.2% to 0.8%, and soil stable aggregates dropped more than 30%. The quantity of soil microbes decreased sharply with enhanced human disturbance. Soil organic matter and soil microbes decreased more than 50% and 90%, respectively, and soil bulk density increased from 0.9 to 1.21 g x cm(-3) with increasing soil depth. Ditch edge level also affected the dynamics of soil factors under the same disturbance, with a better soil ecological condition at low-than at high ditch edge level.

  16. Nonlocalized cluster dynamics and nuclear molecular structure

    CERN Document Server

    Zhou, Bo; Horiuchi, Hisashi; Ren, Zhongzhou; Röpke, Gerd; Schuck, Peter; Tohsaki, Akihiro; Xu, Chang; Yamada, Taiichi

    2013-01-01

    A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter $``B"$ in the THSR (Tohsaki-Horiuchi-Schuck-R\\"{o}pke) wave function. The nonlocalized cluster aspects of the inversion-doublet bands in $^{20}$Ne which have been considered as a typical manifestation of localized clustering are discussed. So far unexplained puzzling features of the THSR wave function, namely that after angular-momentum projection for two cluster systems the prolate THSR wave function is almost 100$\\%$ equivalent to an oblate THSR wave function is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate. The proposal of the container picture is based on the fact that typical cluster systems, 2$\\alpha$, 3$\\alpha$, and $\\alpha$+$^{16}$O, are all well described by a single THSR wave function. It will be shown for the case of linear-chain states w...

  17. Dynamics and management of stage-structured fish stocks.

    Science.gov (United States)

    Meng, Xinzhu; Lundström, Niklas L P; Bodin, Mats; Brännström, Åke

    2013-01-01

    With increasing fishing pressures having brought several stocks to the brink of collapse, there is a need for developing efficient harvesting methods that account for factors beyond merely yield or profit. We consider the dynamics and management of a stage-structured fish stock. Our work is based on a consumer-resource model which De Roos et al. (in Theor. Popul. Biol. 73, 47-62, 2008) have derived as an approximation of a physiologically-structured counterpart. First, we rigorously prove the existence of steady states in both models, that the models share the same steady states, and that there exists at most one positive steady state. Furthermore, we carry out numerical investigations which suggest that a steady state is globally stable if it is locally stable. Second, we consider multiobjective harvesting strategies which account for yield, profit, and the recovery potential of the fish stock. The recovery potential is a measure of how quickly a fish stock can recover from a major disturbance and serves as an indication of the extinction risk associated with a harvesting strategy. Our analysis reveals that a small reduction in yield or profit allows for a disproportional increase in recovery potential. We also show that there exists a harvesting strategy with yield close to the maximum sustainable yield (MSY) and profit close to that associated with the maximum economic yield (MEY). In offering a good compromise between MSY and MEY, we believe that this harvesting strategy is preferable in most instances. Third, we consider the impact of harvesting on population size structure and analytically determine the most and least harmful harvesting strategies. We conclude that the most harmful harvesting strategy consists of harvesting both adults and juveniles, while harvesting only adults is the least harmful strategy. Finally, we find that a high percentage of juvenile biomass indicates elevated extinction risk and might therefore serve as an early-warning signal of

  18. Dynamics in Sequence Space for RNA Secondary Structure Design.

    Science.gov (United States)

    Matthies, Marco C; Bienert, Stefan; Torda, Andrew E

    2012-10-01

    We have implemented a method for the design of RNA sequences that should fold to arbitrary secondary structures. A popular energy model allows one to take the derivative with respect to composition, which can then be interpreted as a force and used for Newtonian dynamics in sequence space. Combined with a negative design term, one can rapidly sample sequences which are compatible with a desired secondary structure via simulated annealing. Results for 360 structures were compared with those from another nucleic acid design program using measures such as the probability of the target structure and an ensemble-weighted distance to the target structure.

  19. Structure and Dynamics of the Interstellar Medium

    Science.gov (United States)

    Tenorio-Tagle, Guillermo; Moles, Mariano; Melnick, Jorge

    Here for the first time is a book that treats practically all aspects of modern research in interstellar matter astrophysics. 20 review articles and 40 carefully selected and refereed papers give a thorough overview of the field and convey the flavor of enthusiastic colloquium discussions to the reader. The book includes sections on: - Molecular clouds, star formation and HII regions - Mechanical energy sources - Discs, outflows, jets and HH objects - The Orion Nebula - The extragalactic interstellar medium - Interstellar matter at high galactic latitudes - The structure of the interstellar medium

  20. Structure and dynamics of magnetic nanoparticles

    DEFF Research Database (Denmark)

    Clausen, K.N.; Bødker, F.; Hansen, M.F.

    2000-01-01

    In this paper we present X-ray and neutron diffraction data illustrating aspects of crystal and magnetic structures of ferromagnetic alpha-Fe and antiferromagnetic NiO nanoparticles, as well as inelastic neutron scattering studies of the magnetic fluctuations in NiO and in canted antiferromagneti...... alpha-Fe2O3. In the inelastic case we make use of the fact that we can study both the superparamagnetic relaxation and collective magnetic excitations of the whole particle moment at the antiferromagnetic Bragg positions. (C) 2000 Elsevier Science B.V. All rights reserved....

  1. Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Nina A. Filenko

    2012-01-01

    Full Text Available Dynamics of nucleosomes and their interactions are important for understanding the mechanism of chromatin assembly. Internucleosomal interaction is required for the formation of higher-order chromatin structures. Although H1 histone is critically involved in the process of chromatin assembly, direct internucleosomal interactions contribute to this process as well. To characterize the interactions of nucleosomes within the nucleosome array, we designed a dinucleosome and performed direct AFM imaging. The analysis of the AFM data showed dinucleosomes are very dynamic systems, enabling the nucleosomes to move in a broad range along the DNA template. Di-nucleosomes in close proximity were observed, but their population was low. The use of the zwitterionic detergent, CHAPS, increased the dynamic range of the di-nucleosome, facilitating the formation of tight di-nucleosomes. The role of CHAPS and similar natural products in chromatin structure and dynamics is also discussed.

  2. Intrinsically disordered proteins: structural and functional dynamics

    Directory of Open Access Journals (Sweden)

    Wallin S

    2017-02-01

    Full Text Available Stefan Wallin Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL, Canada Abstract: The classical view holds that proteins fold into essentially unique three-dimensional structures before becoming biologically active. However, studies over the last several years have provided broad and convincing evidence that some proteins do not adopt a single structure and yet are fully functional. These intrinsically disordered proteins (IDPs have been found to be highly prevalent in many genomes, including human, and play key roles in central cellular processes, such as regulation of transcription and translation, cell cycle, and cell signaling. Moreover, IDPs are overrepresented among proteins implicated in disease, including various cancers and neurodegenerative disorders. Intense efforts, by using both experimental and computational approaches, are consequently under way to uncover the molecular mechanisms that underpin the roles of IDPs in biology and disease. This review provides an introduction to the general biophysical properties of IDPs and discusses some of the recent emerging areas in IDP research, including the roles of IDPs in allosteric regulation, regulatory unfolding, and formation of intracellular membrane-less organelles. In addition, recent attempts at therapeutic targeting of IDPs by small molecules, noting in particular that IDPs represent a potentially important source of new drug targets in light of their central role in protein–protein interaction networks, are also reviewed. Keywords: natively unfolded proteins, unstructured proteins, protein folding, protein–protein interaction, cell regulation, signaling, drug development, inhibitors

  3. Ab initio theory for ultrafast magnetization dynamics with a dynamic band structure

    Science.gov (United States)

    Mueller, B. Y.; Haag, M.; Fähnle, M.

    2016-09-01

    Laser-induced modifications of magnetic materials on very small spatial dimensions and ultrashort timescales are a promising field for novel storage and spintronic devices. Therefore, the contribution of electron-electron spin-flip scattering to the ultrafast demagnetization of ferromagnets after an ultrashort laser excitation is investigated. In this work, the dynamical change of the band structure resulting from the change of the magnetization in time is taken into account on an ab initio level. We find a large influence of the dynamical band structure on the magnetization dynamics and we illustrate the thermalization and relaxation process after laser irradiation. Treating the dynamical band structure yields a demagnetization comparable to the experimental one.

  4. Structure and conformational dynamics of scaffolded DNA origami nanoparticles.

    Science.gov (United States)

    Pan, Keyao; Bricker, William P; Ratanalert, Sakul; Bathe, Mark

    2017-06-20

    Synthetic DNA is a highly programmable nanoscale material that can be designed to self-assemble into 3D structures that are fully determined by underlying Watson-Crick base pairing. The double crossover (DX) design motif has demonstrated versatility in synthesizing arbitrary DNA nanoparticles on the 5-100 nm scale for diverse applications in biotechnology. Prior computational investigations of these assemblies include all-atom and coarse-grained modeling, but modeling their conformational dynamics remains challenging due to their long relaxation times and associated computational cost. We apply all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conformational structure and dynamics. We use our coarse-grained model with a set of secondary structural motifs to predict the equilibrium solution structures of 45 DX-based DNA origami nanoparticles including a tetrahedron, octahedron, icosahedron, cuboctahedron and reinforced cube. Coarse-grained models are compared with 3D cryo-electron microscopy density maps for these five DNA nanoparticles and with all-atom molecular dynamics simulations for the tetrahedron and octahedron. Our results elucidate non-intuitive atomic-level structural details of DX-based DNA nanoparticles, and offer a general framework for efficient computational prediction of global and local structural and mechanical properties of DX-based assemblies that are inaccessible to all-atom based models alone. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Ab initio lattice dynamics of complex structures

    DEFF Research Database (Denmark)

    Voss, Johannes

    2008-01-01

    systems in particular. A more detailed analysis of the phonon spectrum has been performed for the compound Mg(BH4)2, where several crystal symmetries have been proposed theoretically and experimentally. By means of an analysis of the instabilities of these structures, a new, stable phase has been......In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent...... determined. Aiming at finding scaling relationships between alloy stabilities and computationally inexpensive properties, the stabilities of cation-alloyed metal aluminum hexahydrides have been studied. The analysis shows that charge density symmetries are correlated to the stability. In addition...

  6. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection...... a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework......, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision....

  7. Modeling structural dynamic behavior of SSME components

    Science.gov (United States)

    Kiefling, Larry A.; Saxon, J. B.; Prickett, T. L.

    1991-01-01

    FEM studies are presented of the nozzle and the low-pressure fuel-pump inducer designs for the Space Shuttle Main Engine (SSME) to analyze the effects of structural vibrations. FEM preprocessing software based on a CAD system is employed to develop a model of the component's sophisticated geometry. The nozzle geometry is also defined by means of the preprocessing technique and subsequently analyzed with respect to time-transient loading. The analysis is conducted with a Cray supercomputer using the SPAR/EAL FEM program. The investigation of the nozzle demonstrates the advantageous use of symmetry in the determination of nozzle response to SSME start-up transients. Plots of time vs strain are developed for gages on the nozzle wall and steerhorn tubing. The results of the inducer modeling are found to be adequate for investigating the component's principle modes, and the nozzle results indicate the suitability of the FEM techniques for optimizing the design of engine components.

  8. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.

    Science.gov (United States)

    Yoo, Jejoong; Aksimentiev, Aleksei

    2013-12-10

    The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.

  9. Multiscale simulation of microbe structure and dynamics.

    Science.gov (United States)

    Joshi, Harshad; Singharoy, Abhishek; Sereda, Yuriy V; Cheluvaraja, Srinath C; Ortoleva, Peter J

    2011-10-01

    A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin.

  10. Structure and dynamics of core-periphery networks

    CERN Document Server

    Csermely, Peter; Wu, Ling-Yun; Uzzi, Brian

    2013-01-01

    Recent studies uncovered important core/periphery network structures characterizing complex sets of cooperative and competitive interactions between network nodes, be they proteins, cells, species or humans. Better characterization of the structure, dynamics and function of core/periphery networks is a key step of our understanding cellular functions, species adaptation, social and market changes. Here we summarize the current knowledge of the structure and dynamics of "traditional" core/periphery networks, rich-clubs, nested, bow-tie and onion networks. Comparing core/periphery structures with network modules, we discriminate between global and local cores. The core/periphery network organization lies in the middle of several extreme properties, such as random/condensed structures, clique/star configurations, network symmetry/asymmetry, network assortativity/disassortativity, as well as network hierarchy/anti-hierarchy. These properties of high complexity together with the large degeneracy of core pathways e...

  11. Dynamics of a bistable Miura-origami structure

    Science.gov (United States)

    Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.

    2017-05-01

    Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.

  12. Stabilization of structure-preserving power networks with market dynamics

    CERN Document Server

    Stegink, Tjerk W; van der Schaft, Arjan J

    2016-01-01

    This paper studies the problem of maximizing the social welfare while stabilizing both the physical power network as well as the market dynamics. For the physical power grid a third-order structure-preserving model is considered involving both frequency and voltage dynamics. By applying the primal-dual gradient method to the social welfare problem, a distributed dynamic pricing algorithm in port-Hamiltonian form is obtained. After interconnection with the physical system a closed-loop port-Hamiltonian system of differential-algebraic equations is obtained, whose properties are exploited to prove local asymptotic stability of the optimal points.

  13. Accelerating Dynamic Cardiac MR Imaging Using Structured Sparse Representation

    Directory of Open Access Journals (Sweden)

    Nian Cai

    2013-01-01

    Full Text Available Compressed sensing (CS has produced promising results on dynamic cardiac MR imaging by exploiting the sparsity in image series. In this paper, we propose a new method to improve the CS reconstruction for dynamic cardiac MRI based on the theory of structured sparse representation. The proposed method user the PCA subdictionaries for adaptive sparse representation and suppresses the sparse coding noise to obtain good reconstructions. An accelerated iterative shrinkage algorithm is used to solve the optimization problem and achieve a fast convergence rate. Experimental results demonstrate that the proposed method improves the reconstruction quality of dynamic cardiac cine MRI over the state-of-the-art CS method.

  14. Local dynamics of proteins and DNA evaluated from crystallographic B factors

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Bohdan, E-mail: bohdan.schneider@gmail.com [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic); Gelly, Jean-Christophe; Brevern, Alexandre G. de [INSERM, U1134, DSIMB, 75739 Paris (France); Université Paris Diderot, Sorbonne Paris Cité, UMR-S 1134, 75739 Paris (France); Institut National de la Transfusion Sanguine (INTS), 75739 Paris (France); Laboratoire d’Excellence GR-Ex, 75739 Paris (France); Černý, Jiří [Institute of Biotechnology AS CR, Videnska 1083, 142 20 Prague (Czech Republic)

    2014-09-01

    Distributions of scaled B factors from 704 protein–DNA complexes reflect primarily the neighbourhood of amino-acid and nucleotide residues: their flexibility grows from the protein core to protein–protein and protein–DNA interfaces, to solvent-exposed residues. Some of the findings clearly observed at higher resolution structures can no longer be observed for structures at low resolution indicating problems in refinement protocols. The dynamics of protein and nucleic acid structures is as important as their average static picture. The local molecular dynamics concealed in diffraction images is expressed as so-called B factors. To find out how the crystal-derived B factors represent the dynamic behaviour of atoms and residues of proteins and DNA in their complexes, the distributions of scaled B factors from a carefully curated data set of over 700 protein–DNA crystal structures were analyzed [Schneider et al. (2014 ▶), Nucleic Acids Res.42, 3381–3394]. Amino acids and nucleotides were categorized based on their molecular neighbourhood as solvent-accessible, solvent-inaccessible (i.e. forming the protein core) or lying at protein–protein or protein–DNA interfaces; the backbone and side-chain atoms were analyzed separately. The B factors of two types of crystal-ordered water molecules were also analyzed. The analysis confirmed several expected features of protein and DNA dynamics, but also revealed surprising facts. Solvent-accessible amino acids have B factors that are larger than those of residues at the biomolecular interfaces, and core-forming amino acids are the most restricted in their movement. A unique feature of the latter group is that their side-chain and backbone atoms are restricted in their movement to the same extent; in all other amino-acid groups the side chains are more floppy than the backbone. The low values of the B factors of water molecules bridging proteins with DNA and the very large fluctuations of DNA phosphates are

  15. Cluster structure and dynamics in gels and glasses

    Science.gov (United States)

    Pastore, R.; de Candia, A.; Fierro, A.; Pica Ciamarra, M.; Coniglio, A.

    2016-07-01

    The dynamical arrest of gels is the consequence of a well defined structural phase transition, leading to the formation of a spanning cluster of bonded particles. The glass transition, instead, is not accompanied by any clear structural signature. Nevertheless, both transitions are characterized by the emergence of dynamical heterogeneities. Reviewing recent results from numerical simulations, we discuss the behavior of dynamical heterogeneities in different systems and show that a clear connection with the structure exists in the case of gels. The emerging picture may also be relevant for the more elusive case of glasses. We show, as an example, that the relaxation process of a simple glass-forming model can be related to a reverse percolation transition and discuss further perspective in this direction.

  16. Factor Structure of the Exercise Self-Efficacy Scale

    Science.gov (United States)

    Cornick, Jessica E.

    2015-01-01

    The current study utilized exercise self-efficacy ratings from undergraduate students to assess the factor structure of the Self-Efficacy to Regulate Exercise Scale (Bandura, 1997, 2006). An exploratory factor analysis (n = 759) indicated a two-factor model solution and three separate confirmatory factor analyses (n = 1,798) supported this…

  17. An Aspect of Dynamic Human-structure Interaction

    DEFF Research Database (Denmark)

    Pedersen, Lars

    2008-01-01

    . Focus is on how modal characteristics of the structure, i.e. its frequency and damping, are influenced by the presence of stationary humans. Vertical vibrations are considered, and particular focus is given the influence of human posture on modal characteristics of the supporting structure. Insight......It is known that humans and structures interact. Humans can cause structures to vibrate, and excessive vibrations may occur if the motion frequency of humans coincides with a resonant frequency of the structural system. It is also known that stationary humans (such as humans sitting or standing...... on the structure) influence the dynamic behaviour and modal characteristics of the structure carrying them, whether being a grandstand, an office floor or similar. However, the interaction between the stationary humans and the structure is generally not well understood, and the paper addresses this interaction...

  18. Examining the factor structure of the Multiple Sclerosis Impact Scale.

    Science.gov (United States)

    Fitzgerald, Shawn M; Li, Jian; Rumrill, Phillip D; Merchant, William; Bishop, Malachy

    2014-01-01

    The purpose of this study was to investigate the factor structure of the Multiple Sclerosis Impact Scale (MSIS-29) to assess its suitability for modeling the impact of MS on a nation-wide sample of individuals from the United States. Investigators completed a Confirmatory Factor Analysis (CFA) to examine the two-factor structure proposed by Hobart et al. [17]. Although the original MSIS-29 factor structure did not fit the data exactly, the hypothesized two-factor model was partially supported in the current data. Implications for future instrument development and rehabilitation practice are discussed.

  19. Author Impact Factor: tracking the dynamics of individual scientific impact

    Science.gov (United States)

    Pan, Raj Kumar; Fortunato, Santo

    2014-05-01

    The impact factor (IF) of scientific journals has acquired a major role in the evaluations of the output of scholars, departments and whole institutions. Typically papers appearing in journals with large values of the IF receive a high weight in such evaluations. However, at the end of the day one is interested in assessing the impact of individuals, rather than papers. Here we introduce Author Impact Factor (AIF), which is the extension of the IF to authors. The AIF of an author A in year t is the average number of citations given by papers published in year t to papers published by A in a period of Δt years before year t. Due to its intrinsic dynamic character, AIF is capable to capture trends and variations of the impact of the scientific output of scholars in time, unlike the h-index, which is a growing measure taking into account the whole career path.

  20. Author Impact Factor: tracking the dynamics of individual scientific impact

    CERN Document Server

    Pan, Raj Kumar

    2013-01-01

    The impact factor (IF) of scientific journals has acquired a major role in the evaluations of the output of scholars, departments and whole institutions. Typically papers appearing in journals with large values of the IF receive a high weight in such evaluations. However, at the end of the day one is interested in assessing the impact of individuals, rather than papers. Here we introduce Author Impact Factor (AIF), which is the extension of the IF to authors. The AIF of an author A in year $t$ is the average number of citations given by papers published in year $t$ to papers published by A in a period of $\\Delta t$ years before year $t$. Due to its intrinsic dynamic character, AIF is capable to capture trends and variations of the impact of the scientific output of scholars in time, unlike the $h$-index, which is a growing measure taking into account the whole career path.

  1. Can causal dynamical triangulations probe factor-ordering issues?

    CERN Document Server

    Maitra, R L

    2009-01-01

    The causal dynamical triangulations (CDT) program has for the first time allowed for path-integral computation of correlation functions in full general relativity without symmetry reductions and taking into account Lorentzian signature. One of the most exciting recent results in CDT is the strong agreement of these computations with (minisuperspace) path integral calculations in quantum cosmology. Herein I will describe my current project to compute minisuperspace (Friedman-Robertson-Walker) path integrals with a range of different measures corresponding to various factor orderings of the Friedman-Robertson-Walker Hamiltonian. The aim is to compare with CDT results and ask whether CDT can shed light on factor-ordering ambiguities in quantum cosmology models.

  2. Author Impact Factor: tracking the dynamics of individual scientific impact.

    Science.gov (United States)

    Pan, Raj Kumar; Fortunato, Santo

    2014-05-12

    The impact factor (IF) of scientific journals has acquired a major role in the evaluations of the output of scholars, departments and whole institutions. Typically papers appearing in journals with large values of the IF receive a high weight in such evaluations. However, at the end of the day one is interested in assessing the impact of individuals, rather than papers. Here we introduce Author Impact Factor (AIF), which is the extension of the IF to authors. The AIF of an author A in year t is the average number of citations given by papers published in year t to papers published by A in a period of Δt years before year t. Due to its intrinsic dynamic character, AIF is capable to capture trends and variations of the impact of the scientific output of scholars in time, unlike the h-index, which is a growing measure taking into account the whole career path.

  3. On the dynamics of floating structures

    CERN Document Server

    Lannes, David

    2016-01-01

    This paper addresses the floating body problem which consists in studying the interaction of surface water waves with a floating body. We propose a new formulation of the water waves problem that can easily be generalized in order to take into account the presence of a floating body. The resulting equations have a compressible-incompressible structure in which the interior pressure exerted by the fluid on the floating body is a Lagrange multiplier that can be determined through the resolution of a $d$-dimensional elliptic equation, where $d$ is the horizontal dimension. In the case where the object is freely floating, we decompose the hydrodynamic force and torque exerted by the fluid on the solid in order to exhibit an added mass effect; in the one dimensional case $d=1$, the computations can be carried out explicitly. We also show that this approach in which the interior pressure appears as a Lagrange multiplier can be implemented on reduced asymptotic models such as the nonlinear shallow water equations an...

  4. Organoactinide chemistry: synthesis, structure, and solution dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, J.G.

    1985-12-01

    This thesis considers three aspects of organoactinide chemistry. In chapter one, a bidentate phosphine ligand was used to kinetically stabilize complexes of the type Cp/sub 2/MX/sub 2/. Ligand redistribution processes are present throughout the synthetic work, as has often been observed in uranium cyclopentadienyl chemistry. The effects of covalent M-L bonding on the solution and solid state properties of U(III) coordination complexes are considered. In particular, the nature of the more subtle interaction between the metal and the neutral ligand are examined. Using relative basicity data obtained in solution, and solid state structural data (and supplemented by gas phase photoelectron measurements), it is demonstrated that the more electron rich U(III) centers engage in significant U ..-->.. L ..pi..-donation. Trivalent uranium is shown to be capable of acting either as a one- or two-electron reducing agent toward a wide variety of unsaturated organic and inorganic molecules, generating molecular classes unobtainable via traditional synthetic approaches, as well as offering an alternative synthetic approach to molecules accessible via metathesis reactions. Ligand redistribution processes are again observed, but given the information concerning ligand lability, this reactivity pattern is applied to the synthesis of pure materials inaccessible from redox chemistry. 214 refs., 33 figs., 10 tabs.

  5. Polarized actin structural dynamics in response to cyclic uniaxial stretch

    Science.gov (United States)

    Huang, Lawrence; Helmke, Brian P.

    2014-01-01

    Endothelial cell (EC) alignment to directional flow or stretch supports anti-inflammatory functions, but mechanisms controlling polarized structural adaptation in response to physical cues remain unclear. This study aimed to determine whether factors associated with early actin edge ruffling implicated in cell polarization are prerequisite for stress fiber (SF) reorientation in response to cyclic uniaxial stretch. Time-lapse analysis of EGFP-actin in confluent ECs showed that onset of either cyclic uniaxial or equibiaxial stretch caused a non-directional increase in edge ruffling. Edge activity was concentrated in a direction perpendicular to the stretch axis after 60 min, consistent with the direction of SF alignment. Rho-kinase inhibition caused reorientation of both stretch-induced edge ruffling and SF alignment parallel to the stretch axis. Arp2/3 inhibition attenuated stretch-induced cell elongation and disrupted polarized edge dynamics and microtubule organizing center reorientation, but it had no effect on the extent of SF reorientation. Disrupting localization of p21-activated kinase (PAK) did not prevent stretch-induced SF reorientation, suggesting that this Rac effector is not critical in regulating stretch-induced cytoskeletal remodeling. Overall, these results suggest that directional edge ruffling is not a primary mechanism that guides SF reorientation in response to stretch; the two events are coincident but not causal. PMID:25821527

  6. On Natural Genetic Engineering: Structural Dynamism in Random Boolean Networks

    CERN Document Server

    Bull, Larry

    2012-01-01

    This short paper presents an abstract, tunable model of genomic structural change within the cell lifecycle and explores its use with simulated evolution. A well-known Boolean model of genetic regulatory networks is extended to include changes in node connectivity based upon the current cell state, e.g., via transposable elements. The underlying behaviour of the resulting dynamical networks is investigated before their evolvability is explored using a version of the NK model of fitness landscapes. Structural dynamism is found to be selected for in non-stationary environments and subsequently shown capable of providing a mechanism for evolutionary innovation when such reorganizations are inherited.

  7. A Structural Dynamics Approach to the Simulation of Spacecraft Control/Structure Interaction

    Science.gov (United States)

    Young, J. W.

    1985-01-01

    A relatively simple approach to the analysis of linear spacecraft control/structure interaction problems is presented. The approach uses a commercially available structural system dynamic analysis package for both controller and plant dynamics, thus obviating the need to transfer data between separate programs. The unilateral coupling between components in the control system block diagram is simulated using sparse matrix stiffness and damping elements available in the structural dynamic code. The approach is illustrated with a series of simple tutorial examples of a rigid spacecraft core with flexible appendages.

  8. Structure and dynamics of liquid Zn: an analysis of ab-initio simulations

    Directory of Open Access Journals (Sweden)

    del Rio B. G.

    2017-01-01

    Full Text Available The static and dynamic properties of liquid Zn have been studied using an ab initio molecular dynamics method. Results are reported for the thermodynamic states at 723K near which inelastic neutron and x-ray scattering data are available. The calculated static structure shows very good agreement with experimental measurements, including an asymmetric main peak. The dynamic structure reveals the existence of propagating density fluctuations, and the associated dispersion relation has also been calculated. The possible coupling between longitudinal and transverse excitation modes has been investigated by looking at specific signatures in two wavevector regions: the first one is located around the position of the main peak of the structure factor, qp, as suggested by the recently reported appearance of high frequency transverse waves in several liquid metals under high pressures; the second region is around qp/2, as suggested by inelastic scattering experiments for liquid Zn and other metals.

  9. Structural Basis and IP6 Requirement for Pds5-Dependent Cohesin Dynamics.

    Science.gov (United States)

    Ouyang, Zhuqing; Zheng, Ge; Tomchick, Diana R; Luo, Xuelian; Yu, Hongtao

    2016-04-21

    The ring-shaped cohesin complex regulates transcription, DNA repair, and chromosome segregation by dynamically entrapping chromosomes to promote chromosome compaction and sister-chromatid cohesion. The cohesin ring needs to open and close to allow its loading to and release from chromosomes. Cohesin dynamics are controlled by the releasing factors Pds5 and Wapl and the cohesin stabilizer Sororin. Here, we report the crystal structure of human Pds5B bound to a conserved peptide motif found in both Wapl and Sororin. Our structure establishes the basis for how Wapl and Sororin antagonistically influence cohesin dynamics. The structure further reveals that Pds5 can bind inositol hexakisphosphate (IP6). The IP6-binding segment of Pds5B is shaped like the jaw of a plier lever and inhibits the binding of Scc1 to Smc3. We propose that Pds5 stabilizes a transient, open state of cohesin to promote its release from chromosomes.

  10. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  11. Spin structure factors of chiral quantum spin liquids on the kagome lattice

    Science.gov (United States)

    Halimeh, Jad C.; Punk, Matthias

    2016-09-01

    We calculate dynamical spin structure factors for gapped chiral spin liquid states in the spin-1/2 Heisenberg antiferromagnet on the kagome lattice using Schwinger-boson mean-field theory. In contrast to static (equal-time) structure factors, the dynamical structure factor shows clear signatures of time-reversal symmetry breaking for chiral spin liquid states. In particular, momentum inversion k →-k symmetry as well as the sixfold rotation symmetry around the Γ point are lost. We highlight other interesting features, such as a relatively flat onset of the two-spinon continuum for the cuboc1 state. Our work is based on the projective symmetry group classification of time-reversal symmetry breaking Schwinger-boson mean-field states by Messio, Lhuillier, and Misguich.

  12. Factor structure underlying components of allostatic load.

    Directory of Open Access Journals (Sweden)

    Jeanne M McCaffery

    Full Text Available Allostatic load is a commonly used metric of health risk based on the hypothesis that recurrent exposure to environmental demands (e.g., stress engenders a progressive dysregulation of multiple physiological systems. Prominent indicators of response to environmental challenges, such as stress-related hormones, sympatho-vagal balance, or inflammatory cytokines, comprise primary allostatic mediators. Secondary mediators reflect ensuing biological alterations that accumulate over time and confer risk for clinical disease but overlap substantially with a second metric of health risk, the metabolic syndrome. Whether allostatic load mediators covary and thus warrant treatment as a unitary construct remains to be established and, in particular, the relation of allostatic load parameters to the metabolic syndrome requires elucidation. Here, we employ confirmatory factor analysis to test: 1 whether a single common factor underlies variation in physiological systems associated with allostatic load; and 2 whether allostatic load parameters continue to load on a single common factor if a second factor representing the metabolic syndrome is also modeled. Participants were 645 adults from Allegheny County, PA (30-54 years old, 82% non-Hispanic white, 52% female who were free of confounding medications. Model fitting supported a single, second-order factor underlying variance in the allostatic load components available in this study (metabolic, inflammatory and vagal measures. Further, this common factor reflecting covariation among allostatic load components persisted when a latent factor representing metabolic syndrome facets was conjointly modeled. Overall, this study provides novel evidence that the modeled allostatic load components do share common variance as hypothesized. Moreover, the common variance suggests the existence of statistical coherence above and beyond that attributable to the metabolic syndrome.

  13. Dynamic capabilities for cooperation in Brazilian multinational and factors determining its management

    Directory of Open Access Journals (Sweden)

    Priscila Rezende da Costa

    2015-05-01

    Full Text Available In the context of emerging companies’ growth, current challenges depend on the local generation of product and process innovations, as well as dynamic capability to generate innovative solutions cooperatively and new globe business models. The objective of this study is to analyse the determining managerial factors for the dynamic capability of cooperation in Brazilian multinationals (BMNs. A survey was conducted with a sample of 60 BMNs, and a structured questionnaire and statistical tests with factorial analysis and Cronbach's alpha were used. The aggregate analysis of the results indicates that BMNs are going through a transitional process between the operational capability of cooperation and the capability for dynamic cooperation, which are relevant to the continuous adaptation of already-established cooperative management routines and the evaluation and incorporation of the relational capability of management practices that consider systemic flows, open innovation and integrate strategic intentionality into cooperative processes.

  14. Ab initio simulations and neutron scattering studies of structure and dynamics in PdH

    CERN Document Server

    Totolici, I E

    2001-01-01

    The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calcu...

  15. Structure and dynamics of stock market in times of crisis

    Science.gov (United States)

    Zhao, Longfeng; Li, Wei; Cai, Xu

    2016-02-01

    Daily correlations among 322 S&P 500 constituent stocks are investigated by means of correlation-based (CB) network. By using the heterogeneous time scales, we identify global expansion and local clustering market behaviors during crises, which are mainly caused by community splits and inter-sector edge number decreases. The CB networks display distinctive community and sector structures. Graph edit distance is applied to capturing the dynamics of CB networks in which drastic structure reconfigurations can be observed during crisis periods. Edge statistics reveal the power-law nature of edges' duration time distribution. Despite the networks' strong structural changes during crises, we still find some long-duration edges that serve as the backbone of the stock market. Finally the dynamical change of network structure has shown its capability in predicting the implied volatility index (VIX).

  16. A compact data structure for representing a dynamic multiset

    DEFF Research Database (Denmark)

    Katajainen, Jyrki; Rao, S. Srinivasa

    2010-01-01

    We develop a data structure for maintaining a dynamic multiset that uses O(nlglgn/lgn) bits and O(1) words, in addition to the space required by the n elements stored, supports searches in O(lgn) worst-case time and updates in O(lgn) amortized time. Compared to earlier data structures, we improve...... the space requirements from O(n) bits to O(nlglgn/lgn) bits, but the running time of updates is amortized, not worst-case. © 2010 Elsevier B.V. All rights reserved.......We develop a data structure for maintaining a dynamic multiset that uses O(nlglgn/lgn) bits and O(1) words, in addition to the space required by the n elements stored, supports searches in O(lgn) worst-case time and updates in O(lgn) amortized time. Compared to earlier data structures, we improve...

  17. Synchronization in dynamical networks with unconstrained structure switching

    CERN Document Server

    del Genio, Charo I; Criado, Regino; Boccaletti, Stefano

    2015-01-01

    We provide a rigorous solution to the problem of constructing a structural evolution for a network of coupled identical dynamical units that switches between specified topologies without constraints on their structure. The evolution of the structure is determined indirectly, from a carefully built transformation of the eigenvector matrices of the coupling Laplacians, which are guaranteed to change smoothly in time. In turn, this allows to extend the Master Stability Function formalism, which can be used to assess the stability of a synchronized state. This approach is independent from the particular topologies that the network visits, and is not restricted to commuting structures. Also, it does not depend on the time scale of the evolution, which can be faster than, comparable to, or even secular with respect to the the dynamics of the units.

  18. Connectivity, dynamics, and structure in a tetrahedral network liquid.

    Science.gov (United States)

    Roldán-Vargas, Sándalo; Rovigatti, Lorenzo; Sciortino, Francesco

    2017-01-04

    We report a detailed computational study by Brownian dynamics simulations of the structure and dynamics of a liquid of patchy particles which forms an amorphous tetrahedral network upon decreasing the temperature. The highly directional particle interactions allow us to investigate the system connectivity by discriminating the total set of particles into different populations according to a penta-modal distribution of bonds per particle. With this methodology we show how the particle bonding process is not randomly independent but it manifests clear bond correlations at low temperatures. We further explore the dynamics of the system in real space and establish a clear relation between particle mobility and particle connectivity. In particular, we provide evidence of anomalous diffusion at low temperatures and reveal how the dynamics is affected by the short-time hopping motion of the weakly bounded particles. Finally we widely investigate the dynamics and structure of the system in Fourier space and identify two quantitatively similar length scales, one dynamic and the other static, which increase upon cooling the system and reach distances of the order of few particle diameters. We summarize our findings in a qualitative picture where the low temperature regime of the viscoelastic liquid is understood in terms of an evolving network of long time metastable cooperative domains of particles.

  19. Dynamic stiffness for thin-walled structures by power series

    Institute of Scientific and Technical Information of China (English)

    ZHU Bin; LEUNG A.Y.T.

    2006-01-01

    The dynamic stiffness method is introduced to analyze thin-walled structures including thin-walled straight beams and spatial twisted helix beam. A dynamic stiffness matrix is formed by using frequency dependent shape functions which are exact solutions of the governing differential equations. With the obtained thin-walled beam dynamic stiffness matrices, the thin-walled frame dynamic stiffness matrix can also be formulated by satisfying the required displacements compatibility and forces equilibrium, a method which is similar to the finite element method (FEM). Then the thin-walled structure natural frequencies can be found by equating the determinant of the system dynamic stiffness matrix to zero. By this way, just one element and several elements can exactly predict many modes of a thin-walled beam and a spatial thin-walled frame, respectively. Several cases are studied and the results are compared with the existing solutions of other methods. The natural frequencies and buckling loads of these thin-walled structures are computed.

  20. Modeling community structure and topics in dynamic text networks

    CERN Document Server

    Henry, Teague; Chai, Christine; Owens-Oas, Derek

    2016-01-01

    The last decade has seen great progress in both dynamic network modeling and topic modeling. This paper draws upon both areas to create a Bayesian method that allows topic discovery to inform the latent network model and the network structure to facilitate topic identification. We apply this method to the 467 top political blogs of 2012. Our results find complex community structure within this set of blogs, where community membership depends strongly upon the set of topics in which the blogger is interested.

  1. 32nd IMAC Conference and Exposition on Structural Dynamics

    CERN Document Server

    Mayes, Randy; Rixen, Daniel; Catbas, Fikret; Atamturktur, H; Moaveni, Babak; Papadimitriou, Costas; Schoenherr, Tyler; Foss, Gary; Niezrecki, Christopher; Allemang, Randall; Kerschen, Gaetan

    2014-01-01

    This critical collection examines a range of topics in modal analysis, from experimental techniques to acoustics to biodynamics,  as presented in early findings and case studies from the Proceedings of the 32nd IMAC, A Conference and Exposition on Structural Dynamics, 2014. The collection includes papers in the following general technical research areas: Experimental Techniques, Processing Modal Data, Rotating Machinery, Acoustics, Adaptive Structures, Biodynamics, Damping

  2. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    Science.gov (United States)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  3. Dynamic design of automotive systems: Engine mounts and structural joints

    Indian Academy of Sciences (India)

    R Singh

    2000-06-01

    Dynamic design and vibro-acoustic modelling issues for automotive structures are illustrated via two case studies. The first case examines the role performance of passive and adaptive hydraulic engine mounts. In the second, the importance of welded joints and adhesives in vehicle bodies and chassis structures is highlighted via generic 'T' and 'L' beams assemblies. In each case, analytical and experimental results are presented. Unresolved research issues are briefly discussed.

  4. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  5. The search for a new model structure of β-Factor XIIa

    Science.gov (United States)

    Henriques, Elsa S.; Floriano, Welly B.; Reuter, Nathalie; Melo, André; Brown, David; Gomes, José A. N. F.; Maigret, Bernard; Nascimento, Marco A. C.; Ramos, Maria João

    2001-04-01

    We present the search for a new model of β-factor XIIa, a blood coagulation enzyme, with an unknown experimental 3D-structure. We decided to build not one but three different models using different homologous proteins as well as different techniques and different modellers. Additional studies, including extensive molecular dynamics simulations on the solvated state, allowed us to draw several conclusions concerning homology modelling, in general, and β-factor XIIa, in particular.

  6. Dynamic Analysis of Wind Turbines Including Soil-Structure Interaction

    DEFF Research Database (Denmark)

    Harte, M.; Basu, B.; Nielsen, Søren R.K.

    2012-01-01

    This paper investigates the along-wind forced vibration response of an onshore wind turbine. The study includes the dynamic interaction effects between the foundation and the underlying soil, as softer soils can influence the dynamic response of wind turbines. A Multi-Degree-of-Freedom (MDOF...... rotational speed (3P effects). The effect of dynamic soil-structure interaction on the rotation of the foundation has also been investigated.......) horizontal axes onshore wind turbine model is developed for dynamic analysis using an Euler–Lagrangian approach. The model is comprised of a rotor blade system, a nacelle and a flexible tower connected to a foundation system using a substructuring approach. The rotor blade system consists of three rotating...

  7. The Role of Structure in the Protein Dynamical Transition

    CERN Document Server

    He, Yunfen

    2008-01-01

    The protein dynamical transition is investigated as a function of protein structure using terahertz time domain spectroscopy (THz-TDS). Measurements performed for native state and denatured hen egg white lysozyme (HEWL) show that protein structure is not necessary for the dynamical transition. We find the temperature dependence follows activated behavior and there is no evidence of a fragile to strong transition. Measurements of short chain poly alanine show a dynamical transition down to penta-alanine, however no transition is observed for di-alanine or tri-alanine. These measurements demonstrate that the temperature dependence arises strictly from the interaction of the side chains with the solvent. The lack of a transition for shorter chain polypeptides may indicate the temperature dependence arises from a net ordering of the adjacent water which scales with the length of the polypeptide chain.

  8. A structural perspective on the dynamics of kinesin motors

    CERN Document Server

    Hyeon, Changbong

    2011-01-01

    Despite significant fluctuation under thermal noise, biological machines in cells perform their tasks with exquisite precision. Using molecular simulation of a coarse-grained model and theoretical arguments we envisaged how kinesin, a prototype of biological machines, generates force and regulates its dynamics to sustain persistent motor action. A structure based model, which can be versatile in adapting its structure to external stresses while maintaining its native fold, was employed to account for several features of kinesin dynamics along the biochemical cycle. This analysis complements our current understandings of kinesin dynamics and connections to experiments. We propose a thermodynamic cycle for kinesin that emphasizes the mechanical and regulatory role of the neck-linker and clarify issues related the motor directionality, and the difference between the external stalling force and the internal tension responsible for the head-head coordination. The comparison between the thermodynamic cycle of kines...

  9. Dynamically Multivalued Self-Organisation and Probabilistic Structure Formation Processes

    CERN Document Server

    Kirilyuk, A P

    2004-01-01

    The unreduced, universally nonperturbative analysis of arbitrary many-body interaction process reveals the irreducible, purely dynamic source of randomness. It leads to the universal definition of real system complexity (physics/9806002), where the internally chaotic self-organisation emerges as a limiting case of complex interaction dynamics (physics/0211071). It extends also the concept of "self-organised criticality" and corresponds to formation of distinct enough (but always internally chaotic) structures occurring if the system is far from characteristic frequency resonances. Transition to the opposite limiting regime of multivalued interaction dynamics, that of uniform (global) chaos, takes place around the main frequency resonance(s), which provides the absolutely universal criterion of global chaos onset, applicable to any kind of system, as well as the new, extended interpretation of the phenomenon of resonance itself. As a result, one obtains the causally complete description of world structure emer...

  10. Static and dynamic buckling of thin-walled plate structures

    CERN Document Server

    Kubiak, Tomasz

    2013-01-01

    This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the  thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.

  11. NAC transcription factors: structurally distinct, functionally diverse

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Ernst, Heidi A; Leggio, Leila Lo;

    2005-01-01

    NAC proteins constitute one of the largest families of plant-specific transcription factors, and the family is present in a wide range of land plants. Here, we summarize the biological and molecular functions of the NAC family, paying particular attention to the intricate regulation of NAC protei...

  12. Money-center structures in dynamic banking systems

    Science.gov (United States)

    Li, Shouwei; Zhang, Minghui

    2016-10-01

    In this paper, we propose a dynamic model for banking systems based on the description of balance sheets. It generates some features identified through empirical analysis. Through simulation analysis of the model, we find that banking systems have the feature of money-center structures, that bank asset distributions are power-law distributions, and that contract size distributions are log-normal distributions.

  13. In situ characterization of structural dynamics in swelling hydrogels.

    Science.gov (United States)

    Guzman-Sepulveda, J R; Deng, J; Fang, J Y; Dogariu, A

    2016-07-06

    Characterizing the structural morphology and the local viscoelastic properties of soft complex systems raises significant challenges. Here we introduce a dynamic light scattering method capable of in situ, continuous monitoring of structural changes in evolving systems such as swelling gels. We show that the inherently non-stationary dynamics of embedded probes can be followed using partially coherent radiation, which effectively isolates only single scattering contributions even during the dramatic changes in the scattering regime. Using a simple and robust experimental setup, we demonstrate the ability to continuously monitor the structural dynamics of chitosan hydrogels formed by the Ag(+) ion-triggered gelation during their long-term swelling process. We demonstrate that both the local viscoelastic properties of the suspending medium and an effective cage size experienced by diffusing probe particles loaded into the hydrogel can be recovered and used to describe the structural dynamics of hydrogels with different levels of cross-linking. This characterization capability is critical for defining and controlling the hydrogel performance in different biomedical applications.

  14. Simultaneous dynamic electrical and structural measurements of functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A. [XMaS, The UK-CRG, ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Department of Physics, University of Liverpool, Liverpool L69 3BX (United Kingdom); Lepadatu, S. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Bikondoa, O.; Hase, T. P. A. [XMaS, The UK-CRG, ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Lesourd, M. [ESRF-The European Synchrotron, CS40220, F-38043, Grenoble Cedex 09 (France); Dontsov, D. [SIOS Meßtechnik GmbH, Am Vogelherd 46, 98693 Ilmenau (Germany); Cain, M. G. [National Physical Laboratory, Hampton Road, Teddington TW11 0LW (United Kingdom); Electrosciences Ltd., Farnham, Surrey GU9 9QT (United Kingdom)

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  15. Dynamic Capital Structure with Callable Debt and Debt Renegotiations

    DEFF Research Database (Denmark)

    Christensen, Peter Ove; Flor, Christian Riis; Lando, David

    2014-01-01

    We consider a dynamic trade-off model of a firm’s capital structure with debt renegotiation. Debt holders only accept restructuring offers from equity holders backed by threats which are in the equity holders’ own interest to execute. Our model shows that in a complete information model in which...

  16. From dynamics to structure and function of model biomolecular systems

    NARCIS (Netherlands)

    Fontaine-Vive-Curtaz, F.

    2007-01-01

    The purpose of this thesis was to extend recent works on structure and dynamics of hydrogen bonded crystals to model biomolecular systems and biological processes. The tools that we have used are neutron scattering (NS) and density functional theory (DFT) and force field (FF) based simulation method

  17. Structure and dynamics of confined alcohol-water mixtures

    NARCIS (Netherlands)

    Bampoulis, Pantelis; Witteveen, J.P.; Kooij, Ernst S.; Lohse, Detlef; Poelsema, Bene; Zandvliet, Henricus J.W.

    2016-01-01

    The effect of confinement between mica and graphene on the structure and dynamics of alcohol–water mixtures has been studied in situ and in real time at the molecular level by atomic force microscopy (AFM) at room temperature. AFM images reveal that the adsorbed molecules are segregated into faceted

  18. Structural preablation dynamics of graphite observed by ultrafast electron crystallography

    NARCIS (Netherlands)

    Carbone, Fabrizio; Baum, Peter; Rudolf, Petra; Zewail, Ahmed H.

    2008-01-01

    By means of time-resolved electron crystallography, we report direct observation of the structural dynamics of graphite, providing new insights into the processes involving coherent lattice motions and ultrafast graphene ablation. When graphite is excited by an ultrashort laser pulse, the excited

  19. Label-free characterization of biomembranes: from structure to dynamics

    NARCIS (Netherlands)

    Mashaghi, A.; Mashaghi, S.; Reviakine, I.; Heeren, R.M.A.; Sandoghdarf, V.; Bonn, M.

    2013-01-01

    We review recent progress in the study of the structure and dynamics of phospholipid membranes and associated proteins, using novel label-free analytical tools. We describe these techniques and illustrate them with examples highlighting current capabilities and limitations. Recent advances in applyi

  20. The Fine Structure of Equity-Index Option Dynamics

    DEFF Research Database (Denmark)

    Andersen, Torben G.; Bondarenko, Oleg; Todorov, Viktor;

    We analyze the high-frequency dynamics of S&P 500 equity-index option prices by constructing an assortment of implied volatility measures. This allows us to infer the underlying fine structure behind the innovations in the latent state variables driving the movements of the volatility surface. In...

  1. A new dynamic null model for phylogenetic community structure

    NARCIS (Netherlands)

    Pigot, Alex L; Etienne, Rampal S

    2015-01-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by

  2. Small-angle neutron scattering and Molecular Dynamics structural study of gelling DNA nanostars

    CERN Document Server

    Fernandez-Castanon, Javier; Rovigatti, Lorenzo; Zanatta, Marco; Paciaroni, Alessandro; Comez, Lucia; Porcar, Lionel; Jafta, Charl J; Fadda, Giulia C; Bellini, Tommaso; Sciortino, Francesco

    2016-01-01

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed by 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nano star concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor theoretically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  3. Small-angle neutron scattering and molecular dynamics structural study of gelling DNA nanostars

    Science.gov (United States)

    Fernandez-Castanon, J.; Bomboi, F.; Rovigatti, L.; Zanatta, M.; Paciaroni, A.; Comez, L.; Porcar, L.; Jafta, C. J.; Fadda, G. C.; Bellini, T.; Sciortino, F.

    2016-08-01

    DNA oligomers with properly designed sequences self-assemble into well defined constructs. Here, we exploit this methodology to produce bulk quantities of tetravalent DNA nanostars (each one composed of 196 nucleotides) and to explore the structural signatures of their aggregation process. We report small-angle neutron scattering experiments focused on the evaluation of both the form factor and the temperature evolution of the scattered intensity at a nanostar concentration where the system forms a tetravalent equilibrium gel. We also perform molecular dynamics simulations of one isolated tetramer to evaluate the form factor numerically, without resorting to any approximate shape. The numerical form factor is found to be in very good agreement with the experimental one. Simulations predict an essentially temperature-independent form factor, offering the possibility to extract the effective structure factor and its evolution during the equilibrium gelation.

  4. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    Science.gov (United States)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  5. Structural Genomics of Bacterial Virulence Factors

    Science.gov (United States)

    2006-05-01

    structure of pXO1-118 shown in its 2fo-fc electron density map. Arginine 74 and the two visible conformations of Phenylalanine 19 are shown. B...the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interac- tions. Proteins

  6. Dynamic Structural Modeling and Its Applications: An Analysis of Anxiety Structure

    Directory of Open Access Journals (Sweden)

    Keita Kinjo

    2012-11-01

    Full Text Available This study aims at investigating and analyzing the changes of consciousness structure. The method is already known and is referred to as structural modeling; to investigate and analyze the change of consciousness structure. However, there have been only a few studies conducted to analyze the change of consciousness structure. We have therefore proposed the dynamic structural modeling as an outline to investigate and analyze the change of consciousness structure. As an example, we have applied the principle to the data about the structural change of human anxiety at the 2011 off the Pacific coast of Tohoku Earthquake and the result gives us useful information.

  7. Uncertainty Quantification in Experimental Structural Dynamics Identification of Composite Material Structures

    DEFF Research Database (Denmark)

    Luczak, Marcin; Peeters, Bart; Kahsin, Maciej

    2014-01-01

    Aerospace and wind energy structures are extensively using components made of composite materials. Since these structures are subjected to dynamic environments with time-varying loading conditions, it is important to model their dynamic behavior and validate these models by means of vibration...... for uncertainty evaluation in experimentally estimated models. Investigated structures are plates, fuselage panels and helicopter main rotor blades as they represent different complexity levels ranging from coupon, through sub-component up to fully assembled structures made of composite materials. To evaluate...

  8. Neighborhood structure effects on the Dynamic response of soil-structure interaction by harmonic analysis

    Directory of Open Access Journals (Sweden)

    Pan Dan-guang

    2015-01-01

    Full Text Available For realizing the variation of structural dynamic characteristics due to neighbor structure in buildings group, the surface structure is idealized as an equivalent single degree of freedom system with rigid base whose site consists of a single homogeneous layer. Based on the model, a equivalent method on the equivalent seismic excitation is proposed. Then, the differences of seismic response and equivalent seismic input between soil - structure interaction (SSI system and structure -soil-structure interaction (SSSI system are investigated by harmonic analysis. The numerical results show that dynamic responses would be underestimated in SSSI system when the forcing frequencies are close to the Natural frequency if the effects of neighborhood structure were ignored. Neighborhood structure would make the translational displacement increase and rocking vibration decrease. When establishing an effective seismic input, it is necessary to consider the impact of inertia interaction.

  9. Structure and dynamics in network-forming materials

    Science.gov (United States)

    Wilson, Mark

    2016-12-01

    The study of the structure and dynamics of network-forming materials is reviewed. Experimental techniques used to extract key structural information are briefly considered. Strategies for building simulation models, based on both targeting key (experimentally-accessible) materials and on systematically controlling key model parameters, are discussed. As an example of the first class of materials, a key target system, SiO2, is used to highlight how the changing structure with applied pressure can be effectively modelled (in three dimensions) and used to link to both experimental results and simple structural models. As an example of the second class the topology of networks of tetrahedra in the MX2 stoichiometry are controlled using a single model parameter linked to the M-X-M bond angles. The evolution of ordering on multiple length-scales is observed as are the links between the static structure and key dynamical properties. The isomorphous relationship between the structures of amorphous Si and SiO2 is discussed as are the similarities and differences in the phase diagrams, the latter linked to potential polyamorphic and ‘anomalous’ (e.g. density maxima) behaviour. Links to both two-dimensional structures for C, Si and Ge and near-two-dimensional bilayers of SiO2 are discussed. Emerging low-dimensional structures in low temperature molten carbonates are also uncovered.

  10. Functional dynamic factor models with application to yield curve forecasting

    KAUST Repository

    Hays, Spencer

    2012-09-01

    Accurate forecasting of zero coupon bond yields for a continuum of maturities is paramount to bond portfolio management and derivative security pricing. Yet a universal model for yield curve forecasting has been elusive, and prior attempts often resulted in a trade-off between goodness of fit and consistency with economic theory. To address this, herein we propose a novel formulation which connects the dynamic factor model (DFM) framework with concepts from functional data analysis: a DFM with functional factor loading curves. This results in a model capable of forecasting functional time series. Further, in the yield curve context we show that the model retains economic interpretation. Model estimation is achieved through an expectation- maximization algorithm, where the time series parameters and factor loading curves are simultaneously estimated in a single step. Efficient computing is implemented and a data-driven smoothing parameter is nicely incorporated. We show that our model performs very well on forecasting actual yield data compared with existing approaches, especially in regard to profit-based assessment for an innovative trading exercise. We further illustrate the viability of our model to applications outside of yield forecasting.

  11. Structure, dynamics, assembly, and evolution of protein complexes.

    Science.gov (United States)

    Marsh, Joseph A; Teichmann, Sarah A

    2015-01-01

    The assembly of individual proteins into functional complexes is fundamental to nearly all biological processes. In recent decades, many thousands of homomeric and heteromeric protein complex structures have been determined, greatly improving our understanding of the fundamental principles that control symmetric and asymmetric quaternary structure organization. Furthermore, our conception of protein complexes has moved beyond static representations to include dynamic aspects of quaternary structure, including conformational changes upon binding, multistep ordered assembly pathways, and structural fluctuations occurring within fully assembled complexes. Finally, major advances have been made in our understanding of protein complex evolution, both in reconstructing evolutionary histories of specific complexes and in elucidating general mechanisms that explain how quaternary structure tends to evolve. The evolution of quaternary structure occurs via changes in self-assembly state or through the gain or loss of protein subunits, and these processes can be driven by both adaptive and nonadaptive influences.

  12. Metastable structures and size effects in small group dynamics.

    Science.gov (United States)

    Lauro Grotto, Rosapia; Guazzini, Andrea; Bagnoli, Franco

    2014-01-01

    In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: (1) they emerge as a consequence of the natural tendency of (both conscious and unconscious) emotions to combine into structured group patterns; (2) they have a certain degree of stability in time; (3) they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; (4) they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical "leadership" pattern, and in "cognitive" terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e., the group behaves "as if" it was assuming that). Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: (1) are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? (2) can these states be differentiated in structural terms? (3) to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical setting.

  13. Metastable structures and size effects in small group dynamics

    Directory of Open Access Journals (Sweden)

    Rosapia eLauro Grotto

    2014-07-01

    Full Text Available In his seminal works on group dynamics Bion defined a specific therapeutic setting allowing psychoanalytic observations on group phenomena. In describing the setting he proposed that the group was where his voice arrived. This physical limit was later made operative by assuming that the natural dimension of a therapeutic group is around 12 people. Bion introduced a theory of the group aspects of the mind in which proto-mental individual states spontaneously evolve into shared psychological states that are characterized by a series of features: 1 they emerge as a consequence of the natural tendency of (both conscious and unconscious emotions to combine into structured group patterns; 2 they have a certain degree of stability in time; 3 they tend to alternate so that the dissolution of one is rapidly followed by the emergence of another; 4 they can be described in qualitative terms according to the nature of the emotional mix that dominates the state, in structural terms by a kind of typical 'leadership’ pattern, and in 'cognitive’ terms by a set of implicit expectations that are helpful in explaining the group behavior (i.e. the group behaves 'as if’ it was assuming that…. Here we adopt a formal approach derived from Socio-physics in order to explore some of the structural and dynamic properties of this small group dynamics. We will described data from an analytic DS model simulating small group interactions of agents endowed with a very simplified emotional and cognitive dynamic in order to assess the following main points: 1 are metastable collective states allowed to emerge in the model and if so, under which conditions in the parameter space? 3 can these states be differentiated in structural terms? 3 to what extent are the emergent dynamic features of the systems dependent of the system size? We will finally discuss possible future applications of the quantitative descriptions of the interaction structure in the small group clinical

  14. Structure and Dynamics of Glycosphingolipids in Lipid Bilayers: Insights from Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Ronak Y. Patel

    2011-01-01

    Full Text Available Glycolipids are important constituents of biological membranes, and understanding their structure and dynamics in lipid bilayers provides insights into their physiological and pathological roles. Experimental techniques have provided details into their behavior at model and biological membranes; however, computer simulations are needed to gain atomic level insights. This paper summarizes the insights obtained from MD simulations into the conformational and orientational dynamics of glycosphingolipids and their exposure, hydration, and hydrogen-bonding interactions in membrane environment. The organization of glycosphingolipids in raft-like membranes and their modulation of lipid membrane structure are also reviewed.

  15. Demographic Correlates and Factor Structure of the Family Environment Scale.

    Science.gov (United States)

    Boake, Corwin; Salmon, Paul G.

    1983-01-01

    Factor analyzed the Family Environment Scale (FES) subscale scores of 204 families and correlated them with family demographic characteristics. The obtained factor structure showed two major factors similar to "control" and "acceptance-rejection" dimensions in previous research. Results support the FES as part of multimethod…

  16. Factor Structure of the TOEFL Internet-Based Test

    Science.gov (United States)

    Sawaki, Yasuyo; Stricker, Lawrence J.; Oranje, Andreas H.

    2009-01-01

    This construct validation study investigated the factor structure of the Test of English as a Foreign Language[TM] Internet-based test (TOEFL[R] iBT). An item-level confirmatory factor analysis was conducted for a test form completed by participants in a field study. A higher-order factor model was identified, with a higher-order general factor…

  17. Seismic Dynamic Damage Characteristics of Vertical and Batter Pile-supported Wharf Structure Systems

    Directory of Open Access Journals (Sweden)

    Li Jiren

    2015-10-01

    Full Text Available Considering a typical steel pipe pile-supported wharf as the research object, finite element analytical models of batter and vertical pile structures were established under the same construction site, service, and geological conditions to investigate the seismic dynamic damage characteristics of vertical and batter pile-supported wharf structures. By the numerical simulation and the nonlinear time history response analysis of structure system and the moment–axial force relation curve, we analyzed the dynamic damage characteristics of the two different structures of batter and vertical piles under different seismic ground motions to provide reasonable basis and reference for designing and selecting a pile-supported wharf structure. Results showed that the axial force of batter piles was dominant in the batter pile structure and that batter piles could effectively bear and share seismic load. Under the seismic ground motion with peak ground acceleration (PGA of 350 Gal and in consideration of the factors of the design requirement of horizontal displacement, the seismic performance of the batter pile structure was better than that of the vertical pile structure. Under the seismic ground motion with a PGA of 1000 Gal, plastic failure occurred in two different structures. The contrastive analysis of the development of plastic damage and the absorption and dissipation for seismic energy indicated that the seismic performance of the vertical pile structure was better than that of the batter pile structure.

  18. Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures

    DEFF Research Database (Denmark)

    Flodén, Ola; Persson, Kent; Sjöström, Anders

    2012-01-01

    The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...... lightweight structures without noise and disturbing vibrations between storeys and rooms. The dynamic response of floor and wall structures may be investigated using finite element models with three-dimensional solid elements [1]. In order to analyse the global response of complete buildings, finite element...

  19. Membrane proteins structure and dynamics by nuclear magnetic resonance.

    Science.gov (United States)

    Maltsev, Sergey; Lorigan, Gary A

    2011-10-01

    Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution- and solid-state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid-state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high-end NMR techniques, which give access to more structural and dynamic information.

  20. Watching coherent molecular structural dynamics during photoreaction: beyond kinetic description

    CERN Document Server

    Lemke, Henrik T; Hartsock, Robert; van Driel, Tim Brandt; Chollet, Matthieu; Glownia, J M; Song, Sanghoon; Zhu, Diling; Pace, Elisabetta; Nielsen, Martin M; Benfatto, Maurizio; Gaffney, Kelly J; Collet, Eric; Cammarata, Marco

    2015-01-01

    A deep understanding of molecular photo-transformations occurring is challenging because of the complex interaction between electronic and nuclear structure. The initially excited electronic energy dissipates into electronic and structural reconfigurations often in less than a billionth of a second. Molecular dynamics induced by photoexcitation have been very successfully studied with femtosecond optical spectroscopies, but electronic and nuclear dynamics are often very difficult to disentangle. X-ray based spectroscopies can reduce the ambiguity between theoretical models and experimental data, but it is only with the recent development of bright ultrafast X-ray sources, that key information during transient molecular processes can be obtained on their intrinsic timescale. We use Free Electron Laser (FEL) based time-resolved X-ray Absorption Near Edge Structure (XANES) measurements around the Iron K-edge of a spin crossover prototypical compound. We reveal its transformation from the ligand-located electroni...

  1. Dynamic soil-structure interaction of monopod and polypod foundations

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2016-01-01

    The paper concerns the importance of through–soil coupling for structures having foundations with more footings. First, a model for dynamic analysis of polypod footings is established in the frequency domain, employing Green’s function for wave propagation in a layered half-space. To allow analysis...... manner. As a computational example, the dynamic response of a plane frame structure with two footings is compared for two cases: one with and one without the cross coupling. Homogeneous as well as layered soil is considered....... within the time domain, frequency-independent lumped-parameter models are developed. The paper proposes a decision criterion for determination of which components must be included within a lumped-parameter model in order to account for the structure–soil–structure interaction in an adequate and efficient...

  2. Isomorph invariance of the structure and dynamics of classical crystals

    DEFF Research Database (Denmark)

    Albrechtsen, Dan; Olsen, Andreas Elmerdahl; Pedersen, Ulf Rørbæk

    2014-01-01

    of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles......This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework......, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics...

  3. Real-time probing of structural dynamics in perovskite materials

    Energy Technology Data Exchange (ETDEWEB)

    Elsaesser, Thomas [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin (Germany)

    2009-07-01

    Femtosecond x-ray diffraction probes structural dynamics of solids in real-time and gives insight into reversible geometry changes on atomic length and time scales. After a brief introduction into this field, recent results on the lattice dynamics of ferroelectric SrRuO{sub 3}/PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} superlattice structures and their interplay with the electric polarization of the material are presented. Ultrafast optical generation of mechanical stress allows for switching-off the polarization on a time scale of a few picoseconds. As a second example, magnetostriction in a ferromagnetic SrRuO{sub 3}/SrTiO{sub 3} superlattice structure is analyzed in real time.

  4. Dynamic behavior of reinforced concrete frame structure during construction

    Institute of Scientific and Technical Information of China (English)

    TIAN Ming-ge; YI Wei-jian

    2008-01-01

    The effects of concrete's time-variant elastic modulus, casting structural components, assembling temporary shoring framework system, and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies, corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies, mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete, especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.

  5. AGENT based structural static and dynamic collaborative optimization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A static and dynamic collaborative optimization mode for complex machine system and itsontology project relationship are put forward, on which an agent-based structural static and dynamiccollaborative optimization system is constructed as two agent colonies: optimization agent colony andfinite element analysis colony. And a two-level solving strategy as well as the necessity and possibilityfor handing with finite element analysis model in multi-level mode is discussed. Furthermore, the coop-eration of all FEA agents for optimal design of complicated structural is studied in detail. Structural stat-ic and dynamic collaborative optimization of hydraulic excavator working equimpent is taken as an ex-ample to show that the system is reliable.

  6. A new dynamic null model for phylogenetic community structure.

    Science.gov (United States)

    Pigot, Alex L; Etienne, Rampal S

    2015-02-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion - often attributed to negative biotic interactions - are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure.

  7. Photogrammetry and optical methods in structural dynamics - A review

    Science.gov (United States)

    Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter

    2017-03-01

    In the last few decades, there has been a surge of research in the area of non-contact measurement techniques. Photogrammetry has received considerable attention due to its ability to achieve full-field measurement and its robustness to work in testing environments and on testing articles in which using other measurement techniques may not be practical. More recently, researchers have used this technique to study transient phenomena and to perform measurements on vibrating structures. The current paper reviews the most current trends in the photogrammetry technique (point tracking, digital image correlation, and target-less approaches) and compares the applications of photogrammetry to other measurement techniques used in structural dynamics (e.g. laser Doppler vibrometry and interferometry techniques). The paper does not present the theoretical background of the optical techniques, but instead presents the general principles of each approach and highlights the novel structural dynamic measurement concepts and applications that are enhanced by utilizing optical techniques.

  8. Dynamic soil-structure interaction of monopod and polypod foundations

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard

    2016-01-01

    within the time domain, frequency-independent lumped-parameter models are developed. The paper proposes a decision criterion for determination of which components must be included within a lumped-parameter model in order to account for the structure–soil–structure interaction in an adequate and efficient......The paper concerns the importance of through–soil coupling for structures having foundations with more footings. First, a model for dynamic analysis of polypod footings is established in the frequency domain, employing Green’s function for wave propagation in a layered half-space. To allow analysis...... manner. As a computational example, the dynamic response of a plane frame structure with two footings is compared for two cases: one with and one without the cross coupling. Homogeneous as well as layered soil is considered....

  9. DYNAMICS OF DETECTED FIRE FACTORS IN CLOSED COMPARTMENT: COMPUTER SIMULATION

    Directory of Open Access Journals (Sweden)

    V. V. Nevdakh

    2015-01-01

    Full Text Available Computer simulation of the initial fire stages in closed compartment with the volume of ≈ 60 m3 and with a burner on a floor and 2 m above floor have been carried using FDS software. Fires with different t 2 –power low heat release rates have been modeled. Fires which growth times to reach 1055 kW were 100 s and 500 s have been considered as fast and slow fires respectively. Dynamics of heat release rates and detected fire factors such as spatial distributions of air temperature, smoke obscuration and variations of indoor pressure have been studied. It has been obtained that dynamics of heat release rates of the initial fire stages in closed compartment consists of two stages. During the first stage the heat release rate is proportional to mass burning rate and flaming occurs only above a burner. At the second stage dynamics of heat release rates has a form of irregular in amplitude and duration pulsations, which are caused by self-ignition in the smoke layer. The compartment air volume may be layered with respect to the height and every layer has its oven temperature, smoke obscuration, self-ignition areas have been shown. The layer thickness, gradients of temperature and obscuration depend on a fire growth rate and on a burner height above floor have been concluded. The spatial distributions of air temperature and pressure variation have the opposite gradients on a height have been obtained. Maximal pressure variation and its gradient occurs under the fast fire with a burner on a floor have been obtained too. 

  10. Dynamic regulation of transcription factors by nucleosome remodeling.

    Science.gov (United States)

    Li, Ming; Hada, Arjan; Sen, Payel; Olufemi, Lola; Hall, Michael A; Smith, Benjamin Y; Forth, Scott; McKnight, Jeffrey N; Patel, Ashok; Bowman, Gregory D; Bartholomew, Blaine; Wang, Michelle D

    2015-06-05

    The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.

  11. An exact factorization perspective on quantum interferences in nonadiabatic dynamics

    Science.gov (United States)

    Curchod, Basile F. E.; Agostini, Federica; Gross, E. K. U.

    2016-07-01

    Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface—the exact surface on which the nuclear dynamics takes place. We use a one-dimensional exactly solvable model to reproduce different conditions for quantum interferences, whose characteristic features already appear in one-dimension. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics one of the exact nuclear probability densities.

  12. An Exact Factorization Perspective on Quantum Interferences in Nonadiabatic Dynamics

    CERN Document Server

    Curchod, Basile F E; Gross, E K U

    2016-01-01

    Nonadiabatic quantum interferences emerge whenever nuclear wavefunctions in different electronic states meet and interact in a nonadiabatic region. In this work, we analyze how nonadiabatic quantum interferences translate in the context of the exact factorization of the molecular wavefunction. In particular, we focus our attention on the shape of the time-dependent potential energy surface - the exact surface on which the nuclear dynamics takes place - using an exactly-solvable model to reproduce different conditions for quantum interferences. The time-dependent potential energy surface develops complex features when strong interferences are present, in clear contrast to the observed behavior in simple nonadiabatic crossing cases. Nevertheless, independent classical trajectories propagated on the exact time-dependent potential energy surface reasonably conserve a distribution in configuration space that mimics the one of the exact nuclear probability density.

  13. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    Directory of Open Access Journals (Sweden)

    Sanaz Mahmoudpour

    2011-01-01

    Full Text Available Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite element method and scaled boundary finite element method is applied. Finite element method is used to analyze the structure, and scaled boundary finite element method is applied in the analysis of unbounded soil region. Due to analytical solution in the radial direction, the radiation condition is satisfied exactly. The material behavior of soil and structure is assumed to be linear. The soil region is considered as a homogeneous half-space. The analysis is performed in time domain. A computer program is prepared to analyze the soil-structure system. Comparing the results with those in literature shows the exactness and competency of the proposed method.

  14. Dynamic characterization of thin-film inflatable structures

    Science.gov (United States)

    Slade, Kara Nicole

    Inflatable structures constructed from thin polyimide films form a key part of several technology development programs for solar thermal propulsion for satellites, as well as for other applications both in space and on earth. This project investigates the mechanical properties of several of these structures, focusing primarily on their dynamic behavior. The primary focus is the Shooting Star Experiment prototype developed by NASA, but a simpler cylindrical structure is also considered in order to provide an analytically tractable situation for the evaluation of testing and modeling techniques. The cylindrical strut is tested statically to determine its load-deflection characteristics both in linear and nonlinear regimes. The phenomenon of wrinkling is observed under large deflection conditions, particularly at lower pressure. Then, modal testing is used to determine the dynamic properties of the strut for comparison to numerical models. Modal testing is also conducted on Pathfinder 3, a prototype inflatable solar concentrator for the Shooting Star Experiment, both in vacuum and ambient atmospheric conditions. The orbital terminator crossing test is used to determine the dynamic susceptibility of the Pathfinder 3 structure to thermal shock, and it is found to undergo only quasistatic deformations. Finite element models of the cylinder and the Pathfinder 3 concentrator are then constructed using MSC NASTRAN. The inflatable cylinder may be modeled as a beam if only global bending is considered. This restriction leads to the development of a frequency-dependent modulus of elasticity in bending for the structure, developed from engineering beam theory. Both frequency-dependent beam models and shell models are constructed and evaluated for their efficacy. The results from the modeling of the strut are then applied to the inflatable concentrator, where it is found that the shell model captures more of the dynamic subtleties of the system than the beam model, but that both

  15. Structure, dynamics, and ion conductance of the phospholamban pentamer.

    Science.gov (United States)

    Maffeo, Christopher; Aksimentiev, Aleksei

    2009-06-17

    A 52-residue membrane protein, phospholamban (PLN) is an inhibitor of an adenosine-5'-triphosphate-driven calcium pump, the Ca2+-ATPase. Although the inhibition of Ca2+-ATPase involves PLN monomers, in a lipid bilayer membrane, PLN monomers form stable pentamers of unknown biological function. The recent NMR structure of a PLN pentamer depicts cytoplasmic helices extending normal to the bilayer in what is known as the bellflower conformation. The structure shows transmembrane helices forming a hydrophobic pore 4 A in diameter, which is reminiscent of earlier reports of possible ion conductance through PLN pentamers. However, recent FRET measurements suggested an alternative structure for the PLN pentamer, known as the pinwheel model, which features a narrower transmembrane pore and cytoplasmic helices that lie against the bilayer. Here, we report on structural dynamics and conductance properties of the PLN pentamers from all-atom (AA) and coarse-grained (CG) molecular dynamics simulations. Our AA simulations of the bellflower model demonstrate that in a lipid bilayer membrane or a detergent micelle, the cytoplasmic helices undergo large structural fluctuations, whereas the transmembrane pore shrinks and becomes asymmetric. Similar asymmetry of the transmembrane region was observed in the AA simulations of the pinwheel model; the cytoplasmic helices remained in contact with the bilayer. Using the CG approach, structural dynamics of both models were investigated on a microsecond timescale. The cytoplasmic helices of the CG bellflower model were observed to fall against the bilayer, whereas in the CG pinwheel model the conformation of the cytoplasmic helices remained stable. Using steered molecular dynamics simulations, we investigated the feasibility of ion conductance through the pore of the bellflower model. The resulting approximate potentials of mean force indicate that the PLN pentamer is unlikely to function as an ion channel.

  16. Structure and Dynamics of the Quiet Solar Chromosphere

    Science.gov (United States)

    Kalkofen, Wolfgang

    2002-04-01

    The grant supported research on the structure of the quiet, nonmagnetic chromosphere and on wave excitation and propagation in both the nonmagnetic chromosphere and the magnetic network. The work on the structure of the chromosphere culminated in the recognition that between two competing views of the solar chromosphere, older models by Avrett and collaborators (referred to as VAL) and the newer, dynamical model by Carlsson & Stein (referred to as CS), the clear decision is in favor of the older models, and this in spite of the evident lack of physics, which does not include wave motion and oscillations. The contrast between the static VAL models and the dynamical CS model can be stated most succinctly by comparing the temperature variation implied by the VAL models and the temperature fluctuations of the CS model, which are, respectively, of the order of 10% for the VAL model (at heights where hydrogen is 50% ionized) and a factor of 10 (at the upper boundary of their chromospheric model). The huge fluctuations of the CS model have never been observed, whereas the smaller temperature variations of the VAL models are consistent with ground-based and space-based observations. While it should be obvious which model describes the Sun and which one fails, the case is far from settled in the minds of solar physicists. Thus, much educational work remains to be done and, of course, more research to develop arguments that make the case more convincing. The research on waves and oscillations has been based on a unified theory of excitation of acoustic waves in the field-free atmosphere and of transverse and longitudinal waves in magnetic flux tubes located in the magnetic network by noting, first, that impulsive excitation of all these waves in gravitationally stratified media leads to oscillations at the respective cutoff frequencies and, second, that the observed oscillation frequencies in the nonmagnetic and magnetic parts of the chromosphere match corresponding cutoff

  17. Synchronization of networks of chaotic oscillators: Structural and dynamical datasets

    Directory of Open Access Journals (Sweden)

    Ricardo Sevilla-Escoboza

    2016-06-01

    Full Text Available We provide the topological structure of a series of N=28 Rössler chaotic oscillators diffusively coupled through one of its variables. The dynamics of the y variable describing the evolution of the individual nodes of the network are given for a wide range of coupling strengths. Datasets capture the transition from the unsynchronized behavior to the synchronized one, as a function of the coupling strength between oscillators. The fact that both the underlying topology of the system and the dynamics of the nodes are given together makes this dataset a suitable candidate to evaluate the interplay between functional and structural networks and serve as a benchmark to quantify the ability of a given algorithm to extract the structural network of connections from the observation of the dynamics of the nodes. At the same time, it is possible to use the dataset to analyze the different dynamical properties (randomness, complexity, reproducibility, etc. of an ensemble of oscillators as a function of the coupling strength.

  18. Structure and Dynamics of Water at Carbon-Based Interfaces

    Directory of Open Access Journals (Sweden)

    Jordi Martí

    2017-03-01

    Full Text Available Water structure and dynamics are affected by the presence of a nearby interface. Here, first we review recent results by molecular dynamics simulations about the effect of different carbon-based materials, including armchair carbon nanotubes and a variety of graphene sheets—flat and with corrugation—on water structure and dynamics. We discuss the calculations of binding energies, hydrogen bond distributions, water’s diffusion coefficients and their relation with surface’s geometries at different thermodynamical conditions. Next, we present new results of the crystallization and dynamics of water in a rigid graphene sieve. In particular, we show that the diffusion of water confined between parallel walls depends on the plate distance in a non-monotonic way and is related to the water structuring, crystallization, re-melting and evaporation for decreasing inter-plate distance. Our results could be relevant in those applications where water is in contact with nanostructured carbon materials at ambient or cryogenic temperatures, as in man-made superhydrophobic materials or filtration membranes, or in techniques that take advantage of hydrated graphene interfaces, as in aqueous electron cryomicroscopy for the analysis of proteins adsorbed on graphene.

  19. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  20. Dynamic Force Identification for Beamlike Structures Using an Improved Dynamic Stiffness Method

    Directory of Open Access Journals (Sweden)

    S.L. Chen

    1996-01-01

    Full Text Available In this study a procedure of dynamic force identification for beamlike structures is developed based on an improved dynamic stiffness method. In this procedure, the entire structure is first divided into substructures according to the excitation locations and the measured response sites. Each substructure is then represented by an equivalent element. The resulting model only retains the degree of freedom (DOF associated with the excitations and the measured responses and the DOF corresponding to the boundaries of the structures. Because the technique partly bypasses the processes of modal parameter extraction, global matrix inversion, and model reduction, it can eliminate many of the approximations and errors that may be introduced during these processes. The principle of the method is described in detail and its efficiency is demonstrated via numerical simulations of three different structures. The sensitivity of the estimated force to random noise is discussed and the limitation of the technique is pointed out.

  1. The SR Approach: a new Estimation Method for Non-Linear and Non-Gaussian Dynamic Term Structure Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Bent Jesper

    This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...

  2. Structural Dynamics of the Cereblon Ligand Binding Domain

    Science.gov (United States)

    Hartmann, Marcus D.; Boichenko, Iuliia; Coles, Murray; Lupas, Andrei N.; Hernandez Alvarez, Birte

    2015-01-01

    Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution. PMID:26024445

  3. Structural dynamics of the cereblon ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Marcus D Hartmann

    Full Text Available Cereblon, a primary target of thalidomide and its derivatives, has been characterized structurally from both bacteria and animals. Especially well studied is the thalidomide binding domain, CULT, which shows an invariable structure across different organisms and in complex with different ligands. Here, based on a series of crystal structures of a bacterial representative, we reveal the conformational flexibility and structural dynamics of this domain. In particular, we follow the unfolding of large fractions of the domain upon release of thalidomide in the crystalline state. Our results imply that a third of the domain, including the thalidomide binding pocket, only folds upon ligand binding. We further characterize the structural effect of the C-terminal truncation resulting from the mental-retardation linked R419X nonsense mutation in vitro and offer a mechanistic hypothesis for its irresponsiveness to thalidomide. At 1.2Å resolution, our data provide a view of thalidomide binding at atomic resolution.

  4. Dynamic structure evolution of time-dependent network

    Science.gov (United States)

    Zhang, Beibei; Zhou, Yadong; Xu, Xiaoyan; Wang, Dai; Guan, Xiaohong

    2016-08-01

    In this paper, we research the long-voided problem of formulating the time-dependent network structure evolution scheme, it focus not only on finding new emerging vertices in evolving communities and new emerging communities over the specified time range but also formulating the complex network structure evolution schematic. Previous approaches basically applied to community detection on time static networks and thus failed to consider the potentially crucial and useful information latently embedded in the dynamic structure evolution process of time-dependent network. To address these problems and to tackle the network non-scalability dilemma, we propose the dynamic hierarchical method for detecting and revealing structure evolution schematic of the time-dependent network. In practice and specificity, we propose an explicit hierarchical network evolution uncovering algorithm framework originated from and widely expanded from time-dependent and dynamic spectral optimization theory. Our method yields preferable results compared with previous approaches on a vast variety of test network data, including both real on-line networks and computer generated complex networks.

  5. Dynamic, large-scale profiling of transcription factor activity from live cells in 3D culture.

    Directory of Open Access Journals (Sweden)

    Michael S Weiss

    Full Text Available BACKGROUND: Extracellular activation of signal transduction pathways and their downstream target transcription factors (TFs are critical regulators of cellular processes and tissue development. The intracellular signaling network is complex, and techniques that quantify the activities of numerous pathways and connect their activities to the resulting phenotype would identify the signals and mechanisms regulating tissue development. The ability to investigate tissue development should capture the dynamic pathway activity and requires an environment that supports cellular organization into structures that mimic in vivo phenotypes. Taken together, our objective was to develop cellular arrays for dynamic, large-scale quantification of TF activity as cells organized into spherical structures within 3D culture. METHODOLOGY/PRINCIPAL FINDINGS: TF-specific and normalization reporter constructs were delivered in parallel to a cellular array containing a well-established breast cancer cell line cultured in Matrigel. Bioluminescence imaging provided a rapid, non-invasive, and sensitive method to quantify luciferase levels, and was applied repeatedly on each sample to monitor dynamic activity. Arrays measuring 28 TFs identified up to 19 active, with 13 factors changing significantly over time. Stimulation of cells with β-estradiol or activin A resulted in differential TF activity profiles evolving from initial stimulation of the ligand. Many TFs changed as expected based on previous reports, yet arrays were able to replicate these results in a single experiment. Additionally, arrays identified TFs that had not previously been linked with activin A. CONCLUSIONS/SIGNIFICANCE: This system provides a method for large-scale, non-invasive, and dynamic quantification of signaling pathway activity as cells organize into structures. The arrays may find utility for investigating mechanisms regulating normal and abnormal tissue growth, biomaterial design, or as a

  6. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  7. Revisiting the Leadership Scale for Sport: Examining Factor Structure Through Exploratory Structural Equation Modeling.

    Science.gov (United States)

    Chiu, Weisheng; Rodriguez, Fernando M; Won, Doyeon

    2016-10-01

    This study examines the factor structure of the shortened version of the Leadership Scale for Sport, through a survey of 201 collegiate swimmers at National Collegiate Athletic Association Division II and III institutions, using both exploratory structural equation modeling and confirmatory factor analysis. Both exploratory structural equation modeling and confirmatory factor analysis showed that a five-factor solution fit the data adequately. The sizes of factor loadings on target factors substantially differed between the confirmatory factor analysis and exploratory structural equation modeling solutions. In addition, the inter-correlations between factors of the Leadership Scale for Sport and the correlations with athletes' satisfaction were found to be inflated in the confirmatory factor analysis solution. Overall, the findings provide evidence of the factorial validity of the shortened Leadership Scale for Sport.

  8. Space Dynamics and Improvement of the Total Factor Productivity

    Directory of Open Access Journals (Sweden)

    Lassaad Jebali

    2014-06-01

    Full Text Available The new analyses in economic sciences give a strong attention to the internal and external returns to scales of an industry. These economic theories envisage the existence of a competing sector, which produces a homogeneous good, another sector in onopolistic competition, which produces differentiated good with increasing return of scale, and another sector in imperfect competition profiting from external effects. These assumptions are the base of ‘New Theories of the International Trade’ analysis (NTIT. By adding the assumption of freedom movement of the factors of production and spatial analysis into the economic analysis, we can speak about the New Geographical Economy (NEG. In this paper, we propose to provide a model of the regional interaction by introducing the space variable as a factor, which directs effective choices of the economic policy. Therefore in the first section the geographical character of the labor productivity is introduced. The labor productivity spatialized as being the rise of the coordination mode is described in the second section, while empirical approach of space dynamics will be the subject of the last section.

  9. Dynamic factor analysis for estimating ground water arsenic trends.

    Science.gov (United States)

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  10. Structural and Symmetry Analysis of Discrete Dynamical Systems

    CERN Document Server

    Kornyak, Vladimir V

    2010-01-01

    To study discrete dynamical systems of different types --- deterministic, statistical and quantum --- we develope various approaches. We introduce the concept of a system of discrete relations on an abstract simplicial complex and develope algorithms for analysis of compatibility and construction of canonical decompositions of such systems. To illustrate these techniques we describe their application to some cellular automata. Much attention is paid to study symmetries of the systems. In the case of deterministic systems we reveale some important relations between symmetries and dynamics. We demonstrate that moving soliton-like structures arise inevitably in deterministic dynamical system whose symmetry group splits the set of states into finite number of group orbits. We develope algorithms and programs exploiting discrete symmetries to study microcanonical ensembles and search phase transitions in mesoscopic lattice models. We propose an approach to quantization of discrete systems based on introduction of ...

  11. Evolutionary dynamics of group interactions on structured populations: A review

    CERN Document Server

    Perc, Matjaz; Szolnoki, Attila; Floría, Luis M; Moreno, Yamir; 10.1098/rsif.2012.0997

    2013-01-01

    Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and nonliving matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proven valuable for studying pattern formation, equilibrium selection, and self-organisation in evolutionary games. Here we review recent advances in the study of evolutionary dynamics of group interactions on structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory...

  12. Geometrical Models of the Phase Space Structures Governing Reaction Dynamics

    CERN Document Server

    Waalkens, Holger

    2009-01-01

    Hamiltonian dynamical systems possessing equilibria of ${saddle} \\times {centre} \\times...\\times {centre}$ stability type display \\emph{reaction-type dynamics} for energies close to the energy of such equilibria; entrance and exit from certain regions of the phase space is only possible via narrow \\emph{bottlenecks} created by the influence of the equilibrium points. In this paper we provide a thorough pedagogical description of the phase space structures that are responsible for controlling transport in these problems. Of central importance is the existence of a \\emph{Normally Hyperbolic Invariant Manifold (NHIM)}, whose \\emph{stable and unstable manifolds} have sufficient dimensionality to act as separatrices, partitioning energy surfaces into regions of qualitatively distinct behavior. This NHIM forms the natural (dynamical) equator of a (spherical) \\emph{dividing surface} which locally divides an energy surface into two components (`reactants' and `products'), one on either side of the bottleneck. This di...

  13. Global Structure of Exact Scalar Hairy Dynamical Black Holes

    CERN Document Server

    Fan, Zhong-Ying; Lu, Hong

    2016-01-01

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the $1/(n-1)$ power of the final black hole mass. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  14. IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence

    CERN Document Server

    Borisov, Alexey V; Mamaev, Ivan S; Sokolovskiy, Mikhail A; IUTAM BOOKSERIES : Volume 6

    2008-01-01

    This work brings together previously unpublished notes contributed by participants of the IUTAM Symposium on Hamiltonian Dynamics, Vortex Structures, Turbulence (Moscow, 25-30 August 2006). The study of vortex motion is of great interest to fluid and gas dynamics: since all real flows are vortical in nature, applications of the vortex theory are extremely diverse, many of them (e.g. aircraft dynamics, atmospheric and ocean phenomena) being especially important. The last few decades have shown that serious possibilities for progress in the research of real turbulent vortex motions are essentially related to the combined use of mathematical methods, computer simulation and laboratory experiments. These approaches have led to a series of interesting results which allow us to study these processes from new perspectives. Based on this principle, the papers collected in this proceedings volume present new results on theoretical and applied aspects of the processes of formation and evolution of various flows, wave a...

  15. Ultrafast Structural Dynamics in Combustion Relevant Model Systems

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Peter M. [Brown University

    2014-03-31

    The research project explored the time resolved structural dynamics of important model reaction system using an array of novel methods that were developed specifically for this purpose. They include time resolved electron diffraction, time resolved relativistic electron diffraction, and time resolved Rydberg fingerprint spectroscopy. Toward the end of the funding period, we also developed time-resolved x-ray diffraction, which uses ultrafast x-ray pulses at LCLS. Those experiments are just now blossoming, as the funding period expired. In the following, the time resolved Rydberg Fingerprint Spectroscopy is discussed in some detail, as it has been a very productive method. The binding energy of an electron in a Rydberg state, that is, the energy difference between the Rydberg level and the ground state of the molecular ion, has been found to be a uniquely powerful tool to characterize the molecular structure. To rationalize the structure sensitivity we invoke a picture from electron diffraction: when it passes the molecular ion core, the Rydberg electron experiences a phase shift compared to an electron in a hydrogen atom. This phase shift requires an adjustment of the binding energy of the electron, which is measurable. As in electron diffraction, the phase shift depends on the molecular, geometrical structure, so that a measurement of the electron binding energy can be interpreted as a measurement of the molecule’s structure. Building on this insight, we have developed a structurally sensitive spectroscopy: the molecule is first elevated to the Rydberg state, and the binding energy is then measured using photoelectron spectroscopy. The molecule’s structure is read out as the binding energy spectrum. Since the photoionization can be done with ultrafast laser pulses, the technique is inherently capable of a time resolution in the femtosecond regime. For the purpose of identifying the structures of molecules during chemical reactions, and for the analysis of

  16. Application of an Entropy Maximizing and Dynamics Model for Understanding Settlement Structure

    OpenAIRE

    Davies, Toby; Fry, Hannah; Wilson, Alan; Palmisano, Alessio; Altaweel, Mark; Radner, Karen

    2013-01-01

    We present a spatial interaction entropy maximizing and structural dynamics model of settlements from the Middle Bronze (MBA) and Iron Ages (IA) in the Khabur Triangle (KT) region within Syria. The model addresses factors that make locations attractive for trade and settlement, affecting settlement growth and change. We explore why some sites become relatively major settlements, while others diminish in the periods discussed. We assess how political and geographic constraints affect regional ...

  17. Analysis of Seismic Damage of Underground Powerhouse Structure of Hydropower Plants Based on Dynamic Contact Force Method

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2014-01-01

    Full Text Available Based on the characteristics of the dynamic interaction between an underground powerhouse concrete structure and its surrounding rock in a hydropower plant, an algorithm of dynamic contact force was proposed. This algorithm enables the simulation of three states of contact surface under dynamic loads, namely, cohesive contact, sliding contact, and separation. It is suitable for the numerical analysis of the dynamic response of the large and complex contact system consisting of underground powerhouse concrete structure and the surrounding rock. This algorithm and a 3D plastic-damage model were implemented in a dynamic computing platform, SUCED, to analyze the dynamic characteristics of the underground powerhouse structure of Yingxiuwan Hydropower Plant. By comparing the numerical results and postearthquake investigations, it was concluded that the amplitude and duration of seismic waves were the external factors causing seismic damage of the underground powerhouse structure, and the spatial variations in structural properties were the internal factors. The existence of rock mass surrounding the underground powerhouse was vital to the seismic stability of the structure. This work provides the theoretical basis for the anti-seismic design of underground powerhouse structures.

  18. Non-pneumatic mechanical elastic wheel natural dynamic characteristics and influencing factors

    Institute of Scientific and Technical Information of China (English)

    ZHAO You-qun; ZANG Li-guo; CHEN Yue-qiao; LI Bo; WANG Jian

    2015-01-01

    Non-pneumatic tire appears to have advantages over traditional pneumatic tire in terms of flat proof and maintenance free. A mechanical elastic wheel (MEW) with a non-pneumatic elastic outer ring which functions as air of pneumatic tire was presented. The structure of MEW was non-inflatable integrated configuration and the effect of hinges was accounted for only in tension. To establish finite element model of MEW, various nonlinear factors, such as geometrical nonlinearity, material nonlinearity and contact nonlinearity, were considered. Load characteristic test was conducted by tyre dynamic test-bed to obtain force-deflection curve. And the finite element model was validated through load characteristic test. Natural dynamic characteristics of the MEW and its influencing factors were investigated based on the finite element model. Simulation results show that the finite element model closely matched experimental wheel. The results also show that natural frequency is related to ground constraints, material properties, loads and torques. Influencing factors as above obviously affect the amplitude of mode of vibration, but have little effect on mode of vibration shape. The results can provide guidance for experiment research, structural optimization of MEW.

  19. Polarizability effects on the structure and dynamics of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  20. Solving Optimal Control Problems by Exploiting Inherent Dynamical Systems Structures

    Science.gov (United States)

    Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Kobilarov, Marin

    2012-08-01

    Computing globally efficient solutions is a major challenge in optimal control of nonlinear dynamical systems. This work proposes a method combining local optimization and motion planning techniques based on exploiting inherent dynamical systems structures, such as symmetries and invariant manifolds. Prior to the optimal control, the dynamical system is analyzed for structural properties that can be used to compute pieces of trajectories that are stored in a motion planning library. In the context of mechanical systems, these motion planning candidates, termed primitives, are given by relative equilibria induced by symmetries and motions on stable or unstable manifolds of e.g. fixed points in the natural dynamics. The existence of controlled relative equilibria is studied through Lagrangian mechanics and symmetry reduction techniques. The proposed framework can be used to solve boundary value problems by performing a search in the space of sequences of motion primitives connected using optimized maneuvers. The optimal sequence can be used as an admissible initial guess for a post-optimization. The approach is illustrated by two numerical examples, the single and the double spherical pendula, which demonstrates its benefit compared to standard local optimization techniques.

  1. Dynamic stiffness and damping of foundations for jacket structures

    DEFF Research Database (Denmark)

    Latini, Chiara; Zania, Varvara; Johannesson, Björn

    2015-01-01

    Foundation for offshore jacket structures may comprise of long floating piles. The dynamic response of floating piles to horizontal load is herein investigated. The analytical solution of horizontally vibrating end bearing piles by Novak & Nogami (1977) has been modified. At first the soil resist...... study clarifies the role of the parameters involved i.e. the depth of the soil layer, the pile diameter and the soil layer shear wave velocity. Results are presented in terms of dimensionless graphs which highlight the frequency dependency of the dynamic stiffness and damping.......Foundation for offshore jacket structures may comprise of long floating piles. The dynamic response of floating piles to horizontal load is herein investigated. The analytical solution of horizontally vibrating end bearing piles by Novak & Nogami (1977) has been modified. At first the soil...... resistance as defined by Nogami & Novak (1977) is determined, considering 3D wave propagation within linear soil layer with hysteretic damping. Thereafter, the dynamic response of the pile is estimated assuming soil pressure equal to the soil resistance and imposing displacement compatibility. A parametric...

  2. Picosecond to Millisecond Structural Dynamics in Human Ubiquitin.

    Science.gov (United States)

    Lindorff-Larsen, Kresten; Maragakis, Paul; Piana, Stefano; Shaw, David E

    2016-08-25

    Human ubiquitin has been extensively characterized using a variety of experimental and computational methods and has become an important model for studying protein dynamics. Nevertheless, it has proven difficult to characterize the microsecond time scale dynamics of this protein with atomistic resolution. Here we use an unbiased computer simulation to describe the structural dynamics of ubiquitin on the picosecond to millisecond time scale. In the simulation, ubiquitin interconverts between a small number of distinct states on the microsecond to millisecond time scale. We find that the conformations visited by free ubiquitin in solution are very similar to those found various crystal structures of ubiquitin in complex with other proteins, a finding in line with previous experimental studies. We also observe weak but statistically significant correlated motions throughout the protein, including long-range concerted movement across the entire β sheet, consistent with recent experimental observations. We expect that the detailed atomistic description of ubiquitin dynamics provided by this unbiased simulation may be useful in interpreting current and future experiments on this protein.

  3. A new computational structure for real-time dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, A. (New Jersey Inst. of Tech., Newark (United States)); Hashimoto, Minoru (Univ. of Electrocommunications, Tokyo (Japan))

    1992-08-01

    The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.

  4. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    Spatial distributions of structured populations are usually estimated by fitting abundance surfaces for each stage and at each point of time separately, ignoring correlations that emerge from growth of individuals. Here, we present a statistical model that combines spatio-temporal correlations...... with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  5. Letting Structure Emerge: Connectionist and Dynamical Systems Approaches to Cognition

    Science.gov (United States)

    McClelland, James L.; Botvinick, Matthew M.; Noelle, David C.; Plaut, David C.; Rogers, Timothy T.; Seidenberg, Mark S.; Smith, Linda B.

    2011-01-01

    Connectionist and dynamical systems approaches explain human thought, language and behavior in terms of the emergent consequences of a large number of simple non-cognitive processes. We view the entities that serve as the basis for structured probabilistic approaches as sometimes useful but often misleading abstractions that have no real basis in the actual processes that give rise to linguistic and cognitive abilities or the development of these abilities. While structured probabilistic approaches can be useful in determining what would be optimal under certain assumptions, we suggest that approaches such as the connectionist and dynamical systems approaches, which focus on explaining the mechanisms giving rise to cognition, will be essential in achieving a full understanding of cognition and development. PMID:20598626

  6. Dynamic time warping for temperature compensation in structural health monitoring

    Science.gov (United States)

    Douglass, Alexander; Harley, Joel B.

    2017-02-01

    Guided wave structural health monitoring uses ultrasonic waves to identify changes in structures. To identify these changes, most guided wave methods require a pristine baseline measurement with which other measurements are compared. Damage signatures arise when there is a deviation between the baseline and the recorded measurement. However, temperature significantly complicates this analysis by creating misalignment between the baseline and measurements. This leads to false alarms of damage and significantly reduces the reliability of these systems. Several methods have been created to account for these temperature perturbations. Yet, most of these compensation methods fail in harsh, highly variable temperature conditions or require a prohibitive amount of prior data. In this paper, we use an algorithm known as dynamic time warping to compensate for temperature in these harsh conditions. We demonstrate that dynamic time warping is able to account for temperature variations whereas the more traditional baseline signal stretch method is unable to resolve damage under high temperature fluctuations.

  7. Differentiable dynamical systems an introduction to structural stability and hyperbolicity

    CERN Document Server

    Wen, Lan

    2016-01-01

    This is a graduate text in differentiable dynamical systems. It focuses on structural stability and hyperbolicity, a topic that is central to the field. Starting with the basic concepts of dynamical systems, analyzing the historic systems of the Smale horseshoe, Anosov toral automorphisms, and the solenoid attractor, the book develops the hyperbolic theory first for hyperbolic fixed points and then for general hyperbolic sets. The problems of stable manifolds, structural stability, and shadowing property are investigated, which lead to a highlight of the book, the \\Omega-stability theorem of Smale. While the content is rather standard, a key objective of the book is to present a thorough treatment for some tough material that has remained an obstacle to teaching and learning the subject matter. The treatment is straightforward and hence could be particularly suitable for self-study. Selected solutions are available electronically for instructors only. Please send email to textbooks@ams.org for more informatio...

  8. Kinematics, Dynamics, and the Structure of Physical Theory

    CERN Document Server

    Curiel, Erik

    2016-01-01

    Every physical theory has (at least) two different forms of mathematical equations to represent its target systems: the dynamical (equations of motion) and the kinematical (kinematical constraints). Kinematical constraints are differentiated from equations of motion by the fact that their particular form is fixed once and for all, irrespective of the interactions the system enters into. By contrast, the particular form of a system's equations of motion depends essentially on the particular interaction the system enters into. All contemporary accounts of the structure and semantics of physical theory treat dynamics, i.e., the equations of motion, as the most important feature of a theory for the purposes of its philosophical analysis. I argue to the contrary that it is the kinematical constraints that determine the structure and empirical content of a physical theory in the most important ways: they function as necessary preconditions for the appropriate application of the theory; they differentiate types of p...

  9. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  10. Yaw control for active damping of structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Control Engineering Lab.

    1996-12-01

    Yaw torque control for reduction of structural dynamic loads in a two-bladed wind turbine is investigated. The models are obtained using rigid-body mechanics. Linear quadratic control theory is utilized for design and analysis. The analysis of two simple examples, where the teeter angle and the tower lateral bending motion are regarded, shows that a time-varying controller has some advantages compared with a time-invariant controller. 6 refs, 9 figs

  11. Development of paradigms for the dynamics of structured populations

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This is a technical progress report on the dynamics of predator-prey systems in a patchy environment. A new phenomenon that might contribute to outbreaks in systems of discrete patches has been determined using a discrete time model with both spatial and age structure. A model for a single species in a patchy environment with migration, local population growth and disasters with in patches has been formulated and a brief description is included.

  12. Sierra Structural Dynamics User's Notes

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of weapons systems. This document provides a users guide to the input for Sierra/SD. Details of input specifications for the different solution types, output options, element types and parameters are included. The appendices contain detailed examples, and instructions for running the software on parallel platforms.

  13. SENSITIVITY ANALYSIS BASED ON LANCZOS ALGORITHM IN STRUCTURAL DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    李书; 王波; 胡继忠

    2003-01-01

    The sensitivity calculating formulas in structural dynamics was developed byutilizing the mathematical theorem and new definitions of sensitivities. So the singularityproblem of sensitivity with repeated eigenvalues is solved completely. To improve thecomputational efficiency, the reduction system is obtained based on Lanczos vectors. Afterincorporating the mathematical theory with the Lanczos algorithm, the approximatesensitivity solution can be obtained. A numerical example is presented to illustrate theperformance of the method.

  14. NMR contributions to structural dynamics studies of intrinsically disordered proteins☆

    Science.gov (United States)

    Konrat, Robert

    2014-01-01

    Intrinsically disordered proteins (IDPs) are characterized by substantial conformational plasticity. Given their inherent structural flexibility X-ray crystallography is not applicable to study these proteins. In contrast, NMR spectroscopy offers unique opportunities for structural and dynamic studies of IDPs. The past two decades have witnessed significant development of NMR spectroscopy that couples advances in spin physics and chemistry with a broad range of applications. This article will summarize key advances in basic physical-chemistry and NMR methodology, outline their limitations and envision future R&D directions. PMID:24656082

  15. Time resolved structural dynamics of butadiyne-linked porphyrin dimers.

    Science.gov (United States)

    Camargo, Franco V A; Hall, Christopher R; Anderson, Harry L; Meech, Stephen R; Heisler, Ismael A

    2016-03-01

    In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral) angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.

  16. Time resolved structural dynamics of butadiyne-linked porphyrin dimers

    Directory of Open Access Journals (Sweden)

    Franco V. A. Camargo

    2016-03-01

    Full Text Available In this work, the timescales and mechanisms associated with the structural dynamics of butadiyne-linked porphyrin dimers are investigated through time resolved narrowband pump/broadband probe transient absorption spectroscopy. Our results confirm previous findings that the broadening is partly due to a distribution of structures with different (dihedral angular conformations. Comparison of measurements with excitations on the red and blue sides of the Q-band unravel the ground and excited state conformational re-equilibration timescales. Further comparison to a planarized dimer, through the addition of a ligand, provides conclusive evidence for the twisting motion performed by the porphyrin dimer in solution.

  17. Structure-Preserving Algorithms for a Class of Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    Ling-shu Wang; Guang-hui Feng

    2007-01-01

    In this paper, we study structure-preserving algorithms for dynamical systems defined by ordinary differential equations in Rn. The equations are assumed to be of the form y = A(y) + D(y) + R(y), where A(y)of damping and expanding; R(y) reflects strange phenomenon of the system. It is shown that the numerical approximations to the exact ones, and these methods can describe the structural properties of the quadratic energy for these systems. Some numerical experiments and backward error analysis also show that these methods are better than other methods including the general algebraically stable Runge-Kutta(RK)methods.

  18. Structural Modeling and Molecular Dynamics Simulation of the Actin Filament

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Thomas [University of Heidelberg; Holmes, Kenneth [Max Planck Institute, Heidelberg, Germany; Noe, Frank [DFG Research Center Matheon, FU Berlin, Germany; Smith, Jeremy C [ORNL

    2011-01-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized.

  19. Dynamic Changes in Sarcoplasmic Reticulum Structure in Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Amanda L. Vega

    2011-01-01

    sarcoplasmic reticulum (SR and the sarcolemma where Ca2+ release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca2+] during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.

  20. An Optimal Dynamic Data Structure for Stabbing-Semigroup Queries

    DEFF Research Database (Denmark)

    Agarwal, Pankaj K.; Arge, Lars; Kaplan, Haim;

    2012-01-01

    {R}$, the stabbing-semigroup query asks for computing $\\sum_{s \\in S(q)} \\omega(s)$. We propose a linear-size dynamic data structure, under the pointer-machine model, that answers queries in worst-case $O(\\log n)$ time and supports both insertions and deletions of intervals in amortized $O(\\log n)$ time....... It is the first data structure that attains the optimal $O(\\log n)$ bound for all three operations. Furthermore, our structure can easily be adapted to external memory, where we obtain a linear-size structure that answers queries and supports updates in $O(\\log_B n)$ I/Os, where B is the disk block size...

  1. Structural prediction of dynamic Bayesian network with partial prior information.

    Science.gov (United States)

    Maiti, Aniruddha; Reddy, Ramakanth; Mukherjee, Anirban

    2015-01-01

    The prediction of the structure of a hidden dynamic Bayesian network (DBN) from a noisy dataset is an important and challenging task. This work presents a generalized framework to infer the DBN network structure with partial prior information. In the proposed framework, the partial information about the network structure is provided in the form of prior. The proposed method makes use of the prior information regarding the presence and as well as absence of some of the edges. Using the noisy dataset and partial prior information, this method is able to infer nearly accurate structure of the network. The proposed method is validated using simulated datasets. In addition, two real biological datasets are used to infer hidden biological interaction networks.

  2. Higher-order structure and epidemic dynamics in clustered networks

    CERN Document Server

    Ritchie, Martin; House, Thomas; Kiss, Istvan Z

    2013-01-01

    Clustering is typically measured by the ratio of triangles to all triples, open or closed. Generating clustered networks, and how clustering affects dynamics on networks, is reasonably well understood for certain classes of networks \\cite{vmclust, karrerclust2010}, e.g., networks composed of lines and non-overlapping triangles. In this paper we show that it is possible to generate networks which, despite having the same degree distribution and equal clustering, exhibit different higher-order structure, specifically, overlapping triangles and other order-four (a closed network motif composed of four nodes) structures. To distinguish and quantify these additional structural features, we develop a new network metric capable of measuring order-four structure which, when used alongside traditional network metrics, allows us to more accurately describe a network's topology. Three network generation algorithms are considered: a modified configuration model and two rewiring algorithms. By generating homogeneous netwo...

  3. Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon

    Science.gov (United States)

    Vasisht, Vishwas V.; Mathew, John; Sengupta, Shiladitya; Sastry, Srikanth

    2014-09-01

    Anomalous behaviour in density, diffusivity, and structural order is investigated for silicon modeled by the Stillinger-Weber potential by performing molecular dynamics simulations. As previously reported in the case of water [J. R. Errington and P. G. Debenedetti, Nature (London) 409, 318 (2001)] and silica [M. S. Shell, P. G. Debenedetti, and A. Z. Panagiotopoulos, Phys. Rev. E 66, 011202 (2002)], a cascading of thermodynamic, dynamic, and structural anomalous regions is also observed in liquid silicon. The region of structural anomaly includes the region of diffusivity anomaly, which in turn encompasses the region of density anomaly (which is unlike water but similar to silica). In the region of structural anomaly, a tight correlation between the translational and tetrahedrality order parameter is found, but the correlation is weaker when a local orientational order parameter (q3) is used as a measure of tetrahedrality. The total excess entropy and the pair correlation entropy are computed across the phase diagram and the correlation between the excess entropy and the regions of anomalies in the phase diagram of liquid silicon is examined. Scaling relations associating the excess entropy with the diffusion coefficient show considerable deviation from the quasi-universal behaviour observed in hard-sphere and Lennard-Jones liquids and some liquid metals. Excess entropy based criteria for diffusivity and structural anomalies fail to capture the observed regions of anomaly.

  4. 'Mum never loved me.' How structural factors influence adolescent ...

    African Journals Online (AJOL)

    How structural factors influence adolescent sexual and reproductive health ... Research in high income countries shows parent–child connectedness to be ... to young people's low self-esteem and risky sexual behaviour while unplanned ...

  5. Maximum Likelihood Factor Structure of the Family Environment Scale.

    Science.gov (United States)

    Fowler, Patrick C.

    1981-01-01

    Presents the maximum likelihood factor structure of the Family Environment Scale. The first bipolar dimension, "cohesion v conflict," measures relationship-centered concerns, while the second unipolar dimension is an index of "organizational and control" activities. (Author)

  6. Matrix factorization method for the Hamiltonian structure of integrable systems

    Indian Academy of Sciences (India)

    S Ghosh; B Talukdar; S Chakraborti

    2003-07-01

    We demonstrate that the process of matrix factorization provides a systematic mathematical method to investigate the Hamiltonian structure of non-linear evolution equations characterized by hereditary operators with Nijenhuis property.

  7. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  8. Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy.

    Science.gov (United States)

    Akerholm, Margaretha; Hinterstoisser, Barbara; Salmén, Lennart

    2004-02-25

    The cellulose structure is a factor of major importance for the strength properties of wood pulp fibers. The ability to characterize small differences in the crystalline structures of cellulose from fibers of different origins is thus highly important. In this work, dynamic FT-IR spectroscopy has been further explored as a method sensitive to cellulose structure variations. Using a model system of two different celluloses, the relation between spectral information and the relative cellulose Ialpha content was investigated. This relation was then used to determine the relative cellulose Ialpha content in different pulps. The estimated cellulose I allomorph compositions were found to be reasonable for both unbleached and bleached chemical pulps. In addition, it was found that the dynamic FT-IR spectroscopy technique had the potential to indicate possible correlation field splitting peaks of cellulose Ibeta.

  9. Stress, strain, and structural dynamics an interactive handbook of formulas, solutions, and Matlab toolboxes

    CERN Document Server

    Yang, Bingen

    2005-01-01

    Stress, Strain, and Structural Dynamics is a comprehensive and definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. This text integrates the development of fundamental theories, formulas and mathematical models with user-friendly interactive computer programs, written in the powerful and popular MATLAB. This unique merger of technical referencing and interactive computing allows instant solution of a variety of engineering problems

  10. Impact of constrained rewiring on network structure and node dynamics.

    Science.gov (United States)

    Rattana, P; Berthouze, L; Kiss, I Z

    2014-11-01

    In this paper, we study an adaptive spatial network. We consider a susceptible-infected-susceptible (SIS) epidemic on the network, with a link or contact rewiring process constrained by spatial proximity. In particular, we assume that susceptible nodes break links with infected nodes independently of distance and reconnect at random to susceptible nodes available within a given radius. By systematically manipulating this radius we investigate the impact of rewiring on the structure of the network and characteristics of the epidemic. We adopt a step-by-step approach whereby we first study the impact of rewiring on the network structure in the absence of an epidemic, then with nodes assigned a disease status but without disease dynamics, and finally running network and epidemic dynamics simultaneously. In the case of no labeling and no epidemic dynamics, we provide both analytic and semianalytic formulas for the value of clustering achieved in the network. Our results also show that the rewiring radius and the network's initial structure have a pronounced effect on the endemic equilibrium, with increasingly large rewiring radiuses yielding smaller disease prevalence.

  11. Bacterial Sigma Factors and Anti-Sigma Factors: Structure, Function and Distribution

    OpenAIRE

    Paget, Mark S.

    2015-01-01

    Sigma factors are multi-domain subunits of bacterial RNA polymerase (RNAP) that play critical roles in transcription initiation, including the recognition and opening of promoters as well as the initial steps in RNA synthesis. This review focuses on the structure and function of the major sigma-70 class that includes the housekeeping sigma factor (Group 1) that directs the bulk of transcription during active growth, and structurally-related alternative sigma factors (Groups 2–4) that control ...

  12. Crystal structures and dynamical properties of dense CO2.

    Science.gov (United States)

    Yong, Xue; Liu, Hanyu; Wu, Min; Yao, Yansun; Tse, John S; Dias, Ranga; Yoo, Choong-Shik

    2016-10-04

    Structural polymorphism in dense carbon dioxide (CO2) has attracted significant attention in high-pressure physics and chemistry for the past two decades. Here, we have performed high-pressure experiments and first-principles theoretical calculations to investigate the stability, structure, and dynamical properties of dense CO2 We found evidence that CO2-V with the 4-coordinated extended structure can be quenched to ambient pressure below 200 K-the melting temperature of CO2-I. CO2-V is a fully coordinated structure formed from a molecular solid at high pressure and recovered at ambient pressure. Apart from confirming the metastability of CO2-V (I-42d) at ambient pressure at low temperature, results of ab initio molecular dynamics and metadynamics (MD) simulations provided insights into the transformation processes and structural relationship from the molecular to the extended phases. In addition, the simulation also predicted a phase V'(Pna21) in the stability region of CO2-V with a diffraction pattern similar to that previously assigned to the CO2-V (P212121) structure. Both CO2-V and -V' are predicted to be recoverable and hard with a Vicker hardness of ∼20 GPa. Significantly, MD simulations found that the CO2 in phase IV exhibits large-amplitude bending motions at finite temperatures and high pressures. This finding helps to explain the discrepancy between earlier predicted static structures and experiments. MD simulations clearly indicate temperature effects are critical to understanding the high-pressure behaviors of dense CO2 structures-highlighting the significance of chemical kinetics associated with the transformations.

  13. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study.

    Science.gov (United States)

    Demontis, Pierfranco; Gulín-González, Jorge; Masia, Marco; Sant, Marco; Suffritti, Giuseppe B

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130-350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between "fragile" (at higher temperatures) and "strong" (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between "fragile" (at lower temperatures) and "strong" (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T(∗) ∼ 315 ± 5 K, was spotted at T(∗) ∼ 283 K and T(∗) ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible mechanisms of the two

  14. Structure factor determination of amorphous materials by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cuello, Gabriel J [Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, F-38042 Grenoble Cedex 9 (France)], E-mail: cuello@ill.eu

    2008-06-18

    An introduction is given to structure factor determination by means of neutron diffraction. The method of isotopic substitution, which allows us to separate the partial correlation functions, is also presented. Suitable instruments, the experimental procedures, and corrections are described. Other less-conventional techniques such as isomorphic substitution and anomalous dispersion are also discussed. Finally, examples of the structure factor determination in chalcogenide, molecular, telluride and phosphate glasses are discussed in order to illustrate the usefulness of the neutron diffraction technique.

  15. Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins.

    Science.gov (United States)

    Li, Yuanpei; Budamagunta, Madhu S; Luo, Juntao; Xiao, Wenwu; Voss, John C; Lam, Kit S

    2012-11-27

    Fully understanding the influence of blood proteins on the assembly structure and dynamics within nanoparticles is difficult because of the complexity of the system and the difficulty in probing the diverse elements and milieus involved. Here we show the use of site-specific labeling with spin probes and fluorophores combined with electron paramagnetic resonance (EPR) spectroscopy and fluorescence resonance energy transfer (FRET) measurements to provide insights into the molecular architecture and dynamics within nanoparticles. These tools are especially useful for determining nanoparticle stability in the context of blood proteins and lipoproteins and have allowed us to quantitatively analyze the dynamic changes in assembly structure, local stability, and cargo diffusion of a class of novel telodendrimer-based micellar nanoparticles. When combined with human plasma and individual plasma components, we find that non-cross-linked nanoparticles immediately lose their original assembly structure and release their payload upon interaction with lipoproteins. In contrast, serum albumins and immunoglobulin gamma have moderate affects on the integrity of the nanoparticles. Disulfide cross-linked nanoparticles show minimal interaction with lipoproteins and can better retain their assembly structure and payload in vitro and in vivo. We further demonstrate how the enhanced stability and release property of disulfide cross-linked nanoparticles can be reversed in reductive conditions. These findings identify factors that are crucial to the performance of nanomedicines and provide design modes to control their interplay with blood factors.

  16. Structure and regulatory function of plant transcription factors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The expression of inducible genes in plants is regulated byspecific transcription factors at the transcriptional level. A typical transcription factor usually contains a DNA-binding domain, a transcription regulation domain, a dimerization site and a nuclear localization domain. These functional domains define the characteristic, localization and regulatory role of a transcription factor. Transcription factors recognize and bind to specific cis-acting elements or interact with other proteins, and then activate or repress the transcription of target genes by their functional domains. In recent years, elucidation on the structure and function of transcription factors has become an important subject in plant molecular biology.

  17. Dynamic structure of unentangled polymer chains in the vicinity of non-attractive nanoparticles.

    Science.gov (United States)

    Li, Ying; Kröger, Martin; Liu, Wing Kam

    2014-03-21

    Using coarse-grained molecular dynamics simulation, we study the motion of unentangled polymer chains dynamically confined by non-attractive nanoparticles (NPs). Both normal mode and dynamic structure factor S(q, t) analysis are adopted to analyze chain's dynamics. Relaxation behaviors of chains are found to be significantly slowed down by NPs. The relaxation times of chain's normal modes are monotonically increasing with the NP volume fraction ϕ. At the same time, chains' dynamics are becoming non-Gaussian. Inspection of S(q, t) reveals that chain's dynamics can be attributed to two 'phases', a bulk polymer phase and a confined polymer phase between NPs. The dynamics of a confined polymer is slower than that of a bulk polymer, while still exhibiting high mobility. The amount of the bulk polymer phase is found to exponentially decay with increasing ϕ. With this figure at hand, we establish a simple relationship between NP and confined/interphase polymer volume fractions. This work seems to provide the first quantitative prediction on the relationship between NP and confined/interphase polymer volume fractions.

  18. Dynamic response analysis of structure under time-variant interval process model

    Science.gov (United States)

    Xia, Baizhan; Qin, Yuan; Yu, Dejie; Jiang, Chao

    2016-10-01

    Due to the aggressiveness of the environmental factor, the variation of the dynamic load, the degeneration of the material property and the wear of the machine surface, parameters related with the structure are distinctly time-variant. Typical model for time-variant uncertainties is the random process model which is constructed on the basis of a large number of samples. In this work, we propose a time-variant interval process model which can be effectively used to deal with time-variant uncertainties with limit information. And then two methods are presented for the dynamic response analysis of the structure under the time-variant interval process model. The first one is the direct Monte Carlo method (DMCM) whose computational burden is relative high. The second one is the Monte Carlo method based on the Chebyshev polynomial expansion (MCM-CPE) whose computational efficiency is high. In MCM-CPE, the dynamic response of the structure is approximated by the Chebyshev polynomials which can be efficiently calculated, and then the variational range of the dynamic response is estimated according to the samples yielded by the Monte Carlo method. To solve the dependency phenomenon of the interval operation, the affine arithmetic is integrated into the Chebyshev polynomial expansion. The computational effectiveness and efficiency of MCM-CPE is verified by two numerical examples, including a spring-mass-damper system and a shell structure.

  19. Exploring the factor structure of neurocognitive measures in older individuals.

    Science.gov (United States)

    Santos, Nadine Correia; Costa, Patrício Soares; Amorim, Liliana; Moreira, Pedro Silva; Cunha, Pedro; Cotter, Jorge; Sousa, Nuno

    2015-01-01

    Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the "best fit" model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate.

  20. Exploring the factor structure of neurocognitive measures in older individuals.

    Directory of Open Access Journals (Sweden)

    Nadine Correia Santos

    Full Text Available Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals was randomly divided into two groups: one for exploratory factor analysis (EFA and principal component analysis (PCA, to investigate the number of factors underlying the neurocognitive variables; the second to test the "best fit" model via confirmatory factor analysis (CFA. For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components and two rotation (orthogonal and oblique methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate.