WorldWideScience

Sample records for dynamic stress effects

  1. Effect of Magnetohydrodynamic Couple Stresses on Dynamic Characteristics of Exponential Slider Bearing

    Directory of Open Access Journals (Sweden)

    N.B. Naduvinamani

    2017-05-01

    Full Text Available The effect of couple stresses on static and dynamic characteristics of exponential slider bearing in the presence of magnetic field considering squeeze action is theoretically analyzed in this paper. The modified magnetohydrodynamic couple stress Reynolds type equation is derived on the basis of Stokes couple stress model and closed form expressions are obtained for static and dynamic character coefficients. Comparing with bearing lubricated with non-conducting Newtonian lubricants, the magnetohydrodynamic couple stress lubrication provides the higher steady load carrying capacity, dynamic stiffness and damping coefficient. The exponential bearing shows higher efficiency for small film thickness at higher value of couple stress parameter and Hartmann number.

  2. Strain-rate effect on initial crush stress of irregular honeycomb under dynamic loading and its deformation mechanism

    Science.gov (United States)

    Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin

    2018-02-01

    The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.

  3. Effects of moving dynamic tyre loads on tyre-pavement contact stresses

    CSIR Research Space (South Africa)

    Steyn, WJvdM

    2002-01-01

    Full Text Available The purpose of this paper is to indicate the effect that moving dynamic tyre loads has on the tyre-pavement contact stresses used in pavement analysis. Traditionally tyre loads (in pavement analysis) are modelled as constant loads applied through...

  4. Dynamic Behavior of Fault Slip Induced by Stress Waves

    Directory of Open Access Journals (Sweden)

    Guang-an Zhu

    2016-01-01

    Full Text Available Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB occurrence.

  5. Effects of upper mantle heterogeneities on the lithospheric stress field and dynamic topography

    Science.gov (United States)

    Osei Tutu, Anthony; Steinberger, Bernhard; Sobolev, Stephan V.; Rogozhina, Irina; Popov, Anton A.

    2018-05-01

    The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere-asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic

  6. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    Science.gov (United States)

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  7. THE EFFECTS OF ACUTE AND CHRONIC STRESS ON ERYTHROCYTE DYNAMIC IN COMBINATION WITH ß–ADRENERGIC RECEPTORS BLOCKADE IN RATS

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2005-08-01

    Full Text Available : 3 consecutive days propranolol hydrochloride administration (5 mg/kg b.w., subcutaneous injections under acute and chronic stress conditions causes changes of peripheral erythrocyte distribution in rats. The effects of acute stress and its combination with ȕ-adrenergic receptor blockade on erythrocyte dynamic were more pregnant beside the effects of chronic stress and its combination with ȕ-adrenergic receptor blockade, respectively. ȕ-adrenergic mechanisms were shown to be involved in regulation of erythrocyte dynamic in acute and chronic stress response.

  8. Two-dimensional simulation of the thermal stress effect on static and dynamic VDMOS characteristics

    International Nuclear Information System (INIS)

    Alwan, M.; Beydoun, B.; Ketata, K.; Zoaeter, M.

    2005-01-01

    Using a two-dimensional simulator, the effect of the thermal stress on static and dynamic vertical double-diffusion metal oxide semiconductor (VDMOS) characteristics have been investigated. The use of the device under certain thermal stress conditions can produce modifications of its physical and electrical properties. Based on physics and 2D simulations, this paper proposes an analysis of this stress effect observed on the electrical characteristics of the device. Parameters responsible of these modifications are determined. Approximate expressions of the ionization coefficients and breakdown voltage in terms of temperature are proposed. Non-punch-through junction theory is used to express the breakdown voltage and the space charge extension with respect to the impurity concentration and the temperature. The capacitances of the device have been also studied. The effect of the stress on C-V characteristics is observed and analyzed. We notice that the drain-gate, drain-source and gate-source capacitances are shifted due to the degradation of device physical properties versus thermal stress

  9. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.

    Science.gov (United States)

    Kim, Chang-Wan; Dai, Mai Duc; Eom, Kilho

    2016-01-01

    We have studied the finite-size effect on the dynamic behavior of graphene resonators and their applications in atomic mass detection using a continuum elastic model such as modified plate theory. In particular, we developed a model based on von Karman plate theory with including the edge stress, which arises from the imbalance between the coordination numbers of bulk atoms and edge atoms of graphene. It is shown that as the size of a graphene resonator decreases, the edge stress depending on the edge structure of a graphene resonator plays a critical role on both its dynamic and sensing performances. We found that the resonance behavior of graphene can be tuned not only through edge stress but also through nonlinear vibration, and that the detection sensitivity of a graphene resonator can be controlled by using the edge stress. Our study sheds light on the important role of the finite-size effect in the effective design of graphene resonators for their mass sensing applications.

  10. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, H; Kawano, S [Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Okitsu, T [Transplantation Unit, Kyoto University Hospital, Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Matsumoto, S [Baylor Research Institute Islet Cell Laboratory, 1400 Eight Avenue, Fort Worth, TX 76104 (United States); Suzuki, T; Kanno, I; Kotera, H [Department of Microengineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)], E-mail: shintaku@me.es.osaka-u.ac.jp

    2008-06-07

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications.

  11. Effects of fluid dynamic stress on fracturing of cell-aggregated tissue during purification for islets of Langerhans transplantation

    International Nuclear Information System (INIS)

    Shintaku, H; Kawano, S; Okitsu, T; Matsumoto, S; Suzuki, T; Kanno, I; Kotera, H

    2008-01-01

    Among clinical treatments for type 1 diabetes mellitus, the transplantation of islets of Langerhans to the portal vein of the hepar is a commonly used treatment for glucose homeostasis. Islet purification using the density gradient of a solution in a centrifuge separator is required for safety and efficiency. In the purification, the number of tissues to be transplanted is reduced by removing the acinar tissue and gathering the islet from the digest of pancreas. However, the mechanical effects on the fracture of islets in the centrifuge due to fluid dynamic stress are a serious problem in the purification process. In this study, a preliminary experiment using a cylindrical rotating viscometer with a simple geometry is conducted in order to systematically clarify the effect of fluid dynamic stress on the fracture of islets. The effects of fluid dynamic stress on the islet configuration is quantitatively measured for various flow conditions, and a predictive fracture model is developed based on the experimental results. Furthermore, in the practical purification process in the COBE (Gambro BCT), which is widely used in clinical applications, we perform a numerical analysis of the fluid dynamic stress based on Navier-Stokes equations to estimate the stress conditions for islets. Using the fracture model and numerical analysis, the islet fracture characteristics using the COBE are successfully investigated. The results obtained in this study provide crucial information for the purification of islets by centrifuge in practical and clinical applications

  12. Laplace-SGBEM analysis of the dynamic stress intensity factors and the dynamic T-stress for the interaction between a crack and auxetic inclusions

    Science.gov (United States)

    Kwon, Kibum

    A dynamic analysis of the interaction between a crack and an auxetic (negative Poisson ratio)/non-auxetic inclusion is presented. The two most important fracture parameters, namely the stress intensity factors and the T-stress are analyzed by using the symmetric Galerkin boundary element method in the Laplace domain for three different models of crack-inclusion interaction. To investigate the effects of auxetic inclusions on the fracture behavior of composites reinforced by this new type of material, comparisons of the dynamic stress intensity factors and the dynamic T-stress are made between the use of auxetic inclusions as opposed to the use of traditional inclusions. Furthermore, the technique presented in this research can be employed to analyze for the interaction between a crack and a cluster of auxetic/non-auxetic inclusions. Results from the latter models can be employed in crack growth analysis in auxetic-fiber-reinforced composites.

  13. Effects of stress-shielding on the dynamic viscoelasticity and ordering of the collagen fibers in rabbit Achilles tendon.

    Science.gov (United States)

    Ikoma, Kazuya; Kido, Masamitsu; Nagae, Masateru; Ikeda, Takumi; Shirai, Toshiharu; Ueshima, Keiichiro; Arai, Yuji; Oda, Ryo; Fujiwara, Hiroyoshi; Kubo, Toshikazu

    2013-11-01

    We investigated the effects of stress-shielding on both viscoelastic properties and microstructure of collagen fibers in the Achilles tendon by proton double-quantum filtered ((1) H-DQF) NMR spectroscopy. The right hind-limbs of 20 Japanese white rabbits were immobilized for 4 weeks in a cast with the ankle in plantarflexion. Dynamic viscoelasticity of the Achilles tendons was measured using a viscoelastic spectrometer. Proton DQF NMR signals were analyzed to determine the residual dipolar coupling of bound water molecules in the Achilles tendons. Both the dynamic storage modulus (E') and dynamic loss modulus (E″) decreased significantly in the Achilles tendons of the stress-shielding group. The results of the (1) H-DQF NMR examination demonstrated significantly reduced residual dipolar coupling in the Achilles tendons of this same group. The disorientation of collagen fibers by stress-shielding should contribute to degradation of the dynamic storage and loss moduli. The alterations of the collagen fiber orientation that contributed to the function of tendinous tissue can be evaluated by performing an analysis of (1) H DQF NMR spectroscopy. © 2013 Orthopaedic Research Society.

  14. Dynamics stresses in pipelines and components

    International Nuclear Information System (INIS)

    Prates, C.L.M.; Stukart, R.N.L.; Halbritter, A.L.

    1982-01-01

    The procedure to generate the dynamic stresses caused by external events, necessary for the structural calculation of pipelines and components in nuclear power plants is presented. A special attention is given to the stress caused by the action of earthquakes and exterior explosions. In the dynamic analysis of pipeline and components is usually to show the stresses procedured by these events under the response spectra form. The methodology to obtain these response spectra is shown and discussed. Some pratical examples of spectra from nuclear power plant building are still shown. (E.G.) [pt

  15. cHRV Uncovering Daily Stress Dynamics Using Bio-Signal from Consumer Wearables.

    Science.gov (United States)

    Hao, Tian; Chang, Henry; Ball, Marion; Lin, Kun; Zhu, Xinxin

    2017-01-01

    Knowing the dynamics of one's daily stress is essential to effective stress management in the context of smart and connected health. However, there lacks a practical and unobtrusive means to obtain real-time and longitudinal stress information. In this paper, we attempt to derive a convenient HRV-based (heart rate variability) biomarker named cHRV, which can be used to reliably reflect stress dynamics. cHRV's key advantage lies in its low maintenance and high practicality. It can be efficiently calculated only using data from photoplethysmography (PPG) sensors, the mainstream heart rate sensor embedded in most of the consumer wearables like Apple Watch. Benefiting from the proliferation of wearables, cHRV is ideal for day-to-day stress monitoring. To evaluate its feasibility and performance, we have conducted 14 in-lab controlled experiments. The result shows that the proposed cHRV has strong correlation with the stress dynamics (r > 0.95), therefore exhibits great potential for continuous stress assessment.

  16. Effects of heat stress on dynamic absorption process, tissue distribution and utilization efficiency of vitamin C in broilers

    International Nuclear Information System (INIS)

    Liu Guohua; Chen Guosheng; Cai Huiyi

    1998-01-01

    The experiment was conducted to determine the effects of heat stress on ascorbic acid nutritional physiology of broilers with radioisotope technology. 3 H-Vc was fed to broilers and then the blood, liver, kidney, breast muscle, and excreta were sampled to determine the dynamic absorption process, the tissue distribution and the utilization efficiency of vitamin C. The results indicated that the absorption, metabolism and mobilization of supplemented vitamin C in broilers with heat stress was faster than that in broilers without heat stress. However, the utilization efficiency of supplemented vitamin C in broilers with heat stress was not higher than that of broilers without heat stress

  17. Dynamic stress effects in technical superconductors and the ''training'' problem of superconducting magnets

    International Nuclear Information System (INIS)

    Pasztor, G.; Schmidt, C.

    1978-01-01

    The behavior of NbTi superconductors under dynamic mechanical stress was investigated. A training effect was found in short-sample tests when the conductor was strained in a magnetic field and with a transport current applied. Possible mechanisms are discussed which were proposed to explain training in short samples and in magnets. A stress-induced microplastic as well as an incomplete pseudoelastic behavior of NbTi was detected by monitoring acoustic emission. The experiments support the hypothesis that microplastic or shape memory effects in NbTi involving dislocation processes are responsible for training. The minimum energy needed to induce a normal transition in short-sample tests is calculated with a computer program, which gives the exact solution of the heat equation. A prestrain treatment of the conductor at room temperature is shown to be a simple method of reducing training of short samples and of magnets. This is a direct proof that the same mechanisms are involved in both cases

  18. Dynamic stresses, coulomb failure, and remote triggering: corrected

    Science.gov (United States)

    Hill, David P.

    2012-01-01

    Dynamic stresses associated with crustal surface waves with 15–30 s periods and peak amplitudes Coulomb failure models based on a frictional strength threshold offer one explanation for instances of rapid‐onset triggered seismicity that develop during the surface‐wave peak dynamic stressing. Evaluation of the triggering potential of surface‐wave dynamic stresses acting on critically stressed faults using a Mohr’s circle representation together with the Coulomb failure criteria indicates that Love waves should have a higher triggering potential than Rayleigh waves for most fault orientations and wave incidence angles. That (1) the onset of triggered seismicity often appears to begin during the Rayleigh wave rather than the earlier arriving Love wave, and (2) Love‐wave amplitudes typically exceed those for Rayleigh waves suggests that the explanation for rapid‐onset dynamic triggering may not reside solely with a simple static‐threshold friction mode. The results also indicate that normal faults should be more susceptible to dynamic triggering by 20‐s Rayleigh‐wave stresses than thrust faults in the shallow seismogenic crust (<10  km) while the advantage tips in favor of reverse faults greater depths. This transition depth scales with wavelength and coincides roughly with the transition from retrograde‐to‐prograde particle motion. Locally elevated pore pressures may have a role in the observed prevalence of dynamic triggering in extensional regimes and geothermal/volcanic systems. The result is consistent with the apparent elevated susceptibility of extensional or transtensional tectonic regimes to remote triggering by Rayleigh‐wave dynamic stresses than compressional or transpressional regimes.

  19. Estimation of flow stress of radiation induced F/M steels using molecular dynamics and discrete dislocation dynamics approach

    International Nuclear Information System (INIS)

    More, Ameya; Dutta, B.K.; Durgaprasad, P.V.; Arya, A.K.

    2012-01-01

    Fe-Cr based Ferritic/Martensitic (F/M) steels are the candidate structural materials for future fusion reactors. In this work, a multi-scale approach comprising atomistic Molecular Dynamics (MD) simulations and Discrete Dislocation Dynamics (DDD) simulations are used to model the effect of irradiation dose on the flow stress of F/M steels. At the atomic scale, molecular dynamics simulations are used to study the dislocation interaction with irradiation induced defects, i.e. voids and He bubbles. Whereas, the DDD simulations are used to estimate the change in flow stress of the material as a result of irradiation hardening. (author)

  20. ITER vacuum vessel dynamic stress analysis of a disruption

    International Nuclear Information System (INIS)

    Riemer, B.W.; Conner, D.L.; Strickler, D.J.; Williamson, D.E.

    1994-01-01

    Dynamic stress analysis of the International Thermonuclear Experimental Reactor vacuum vessel loaded by disruption forces was performed. The deformation and stress results showed strong inertial effects when compared to static analyses. Maximum stress predicted dynamically was 300 MPa, but stress shown by static analysis from loads at the same point in time reached only 80 MPa. The analysis also provided a reaction load history in the vessel's supports which is essential in evaluating support design. The disruption forces were estimated by assuming a 25-MA plasma current decaying at 1 MA/ms while moving vertically. In addition to forces developed within the vessel, vertical loadings from the first wall/strong back assemblies and the divertor were applied to the vessel at their attachment points. The first 50 natural modes were also determined. The first mode's frequency was 6.0 Hz, and its shape is characterized by vertical displacement of the vessel inner leg. The predicted deformation of the vessel appeared similar to its first mode shape combined with radial contraction. Kinetic energy history from the analysis also correlated with the first mode frequency

  1. Utilization of the molecular dynamic to study the effect of hydrogen in the stress corrosion

    International Nuclear Information System (INIS)

    Arnoux, P.

    2007-01-01

    Many microscopic and theoretical models of stress corrosion have been proposed, in particularly to explain the grain boundary cracking of stainless steels and nickel base. In this work calculus of molecular dynamic have been used to propose a mechanism of stress corrosion at the atomic scale. The author aims to reproduce, by molecular dynamic, the mechanism of an open crack in irradiated stainless steel in PWR reactor and show that the growth of the oxide at the crack back produce hydrogen. (A.L.B.)

  2. Memory dynamics under stress.

    Science.gov (United States)

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  3. Blade dynamic stress analysis of rotating bladed disks

    Directory of Open Access Journals (Sweden)

    Kellner J.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.

  4. New model for surface fracture induced by dynamical stress

    OpenAIRE

    Andersen, J. V.; Lewis, L. J.

    1997-01-01

    We introduce a model where an isotropic, dynamically-imposed stress induces fracture in a thin film. Using molecular dynamics simulations, we study how the integrated fragment distribution function depends on the rate of change and magnitude of the imposed stress, as well as on temperature. A mean-field argument shows that the system becomes unstable for a critical value of the stress. We find a striking invariance of the distribution of fragments for fixed ratio of temperature and rate of ch...

  5. Stress and Systemic Inflammation: Yin-Yang Dynamics in Health and Diseases.

    Science.gov (United States)

    Yan, Qing

    2018-01-01

    Studies in psychoneuroimmunology (PNI) would provide better insights into the "whole mind-body system." Systems biology models of the complex adaptive systems (CASs), such as a conceptual framework of "Yin-Yang dynamics," may be helpful for identifying systems-based biomarkers and targets for more effective prevention and treatment. The disturbances in the Yin-Yang dynamical balance may result in stress, inflammation, and various disorders including insomnia, Alzheimer's disease, obesity, diabetes, cardiovascular diseases, skin disorders, and cancer. At the molecular and cellular levels, the imbalances in the cytokine pathways, mitochondria networks, redox systems, and various signaling pathways may contribute to systemic inflammation. In the nervous system, Yin and Yang may represent the dynamical associations between the progressive and regressive processes in aging and neurodegenerative diseases. In response to the damages to the heart, the Yin-Yang dynamical balance between proinflammatory and anti-inflammatory cytokine networks is crucial. The studies of cancer have revealed the importance of the Yin-Yang dynamics in the tumoricidal and tumorigenic activities of the immune system. Stress-induced neuroimmune imbalances are also essential in chronic skin disorders including atopic dermatitis and psoriasis. With the integrative framework, the restoration of the Yin-Yang dynamics can become the objective of dynamical systems medicine.

  6. Motional Effect on Wall Shear Stresses

    DEFF Research Database (Denmark)

    Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won

    Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....

  7. Effect of material parameters on stress wave propagation during fast upsetting

    Institute of Scientific and Technical Information of China (English)

    WANG Zhong-jin; CHENG Li-dong

    2008-01-01

    Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.

  8. Death and population dynamics affect mutation rate estimates and evolvability under stress in bacteria.

    Science.gov (United States)

    Frenoy, Antoine; Bonhoeffer, Sebastian

    2018-05-01

    The stress-induced mutagenesis hypothesis postulates that in response to stress, bacteria increase their genome-wide mutation rate, in turn increasing the chances that a descendant is able to better withstand the stress. This has implications for antibiotic treatment: exposure to subinhibitory doses of antibiotics has been reported to increase bacterial mutation rates and thus probably the rate at which resistance mutations appear and lead to treatment failure. More generally, the hypothesis posits that stress increases evolvability (the ability of a population to generate adaptive genetic diversity) and thus accelerates evolution. Measuring mutation rates under stress, however, is problematic, because existing methods assume there is no death. Yet subinhibitory stress levels may induce a substantial death rate. Death events need to be compensated by extra replication to reach a given population size, thus providing more opportunities to acquire mutations. We show that ignoring death leads to a systematic overestimation of mutation rates under stress. We developed a system based on plasmid segregation that allows us to measure death and division rates simultaneously in bacterial populations. Using this system, we found that a substantial death rate occurs at the tested subinhibitory concentrations previously reported to increase mutation rate. Taking this death rate into account lowers and sometimes removes the signal for stress-induced mutagenesis. Moreover, even when antibiotics increase mutation rate, we show that subinhibitory treatments do not increase genetic diversity and evolvability, again because of effects of the antibiotics on population dynamics. We conclude that antibiotic-induced mutagenesis is overestimated because of death and that understanding evolvability under stress requires accounting for the effects of stress on population dynamics as much as on mutation rate. Our goal here is dual: we show that population dynamics and, in particular, the

  9. Effect of dynamic strain aging on cyclic stress response and deformation behavior of Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Mahobia, G.S.; Santhi Srinivasa, N.C.; Singh, Vakil; Chakravartty, J.K.; Nudurupatic, Saibaba

    2016-01-01

    The effect of strain rate and temperature was studied on cyclic stress response and deformation behavior of annealed Zircaloy-2. Dynamic strain aging was exhibited under some test conditions. The cyclic stress response was found to be dependent on temperature and strain rate. At 300 °C, with decrease in strain rate, there was decrease in the rate as well as the degree of cyclic hardening. However, at 400°C, there was opposite trend and with decrease in strain rate both the rate as well as the degree of hardening increased. The deformation substructure showed dislocation bands, dislocation vein structure, PSB wall structure at both the temperatures. Irrespective of the temperature, there was dislocation loop structure, known as corduroy structure, at both the test temperatures. Based on the dislocation structure, the initial linear hardening is attributed to development of veins and PSB wall structure and the secondary hardening to the Corduroy structure. (author)

  10. Dynamic stress of impeller blade of shaft extension tubular pump device based on bidirectional fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Kan; Liu, Huiwen; Yang, Chunxia [Hohai University, Nanjing (China); Zheng, Yuan [National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Nanjing (China); Fu, Shifeng; Zhang, Xin [Power China Huadong Engineering Corporation, Hangzhou (China)

    2017-04-15

    Current research on the stability of tubular pumps is mainly concerned with the transient hydrodynamic characteristics. However, the structural response under the influence of fluid-structure interaction hasn't been taken fully into consideration. The instability of the structure can cause vibration and cracks, which may threaten the safety of the unit. We used bidirectional fluid-structure interaction to comprehensively analyze the dynamic stress characteristics of the impeller blades of the shaft extension tubular pump device. Furthermore, dynamic stress of impeller blade of shaft extension tubular pump device was solved under different lift conditions of 0° blade angle. Based on Reynolds-average N-S equation and SST k-ω turbulence model, numerical simulation was carried out for three-dimensional unsteady incompressible turbulent flow field of the pump device whole flow passage. Meanwhile, the finite element method was used to calculate dynamic characteristics of the blade structure. The blade dynamic stress distribution was obtained on the basis of fourth strength theory. The research results indicate that the maximum blade dynamic stress appears at the joint between root of inlet side of the blade suction surface and the axis. Considering the influence of gravity, the fluctuation of the blade dynamic stress increases initially and decreases afterwards within a rotation period. In the meantime, the dynamic stress in the middle part of inlet edge presents larger relative fluctuation amplitude. Finally, a prediction method for dynamic stress distribution of tubular pump considering fluid-structure interaction and gravity effect was proposed. This method can be used in the design stage of tubular pump to predict dynamic stress distribution of the structure under different operating conditions, improve the reliability of pump impeller and analyze the impeller fatigue life.

  11. Dynamic Stress Concentration at the Boundary of an Incision at the Plate Under the Action of Weak Shock Waves

    Directory of Open Access Journals (Sweden)

    Mikulich Olena

    2017-09-01

    Full Text Available This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of weak shock waves. For solution of the problem it uses the integral and discrete Fourier transforms. Calculation of transformed dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithm is based on the method of mechanical quadratures and collocation technique. For calculation of originals of the dynamic stresses it uses modified discrete Fourier transform. The algorithm is effective in the analysis of the dynamic stress state of defective plates.

  12. Multibody Dynamic Stress Simulation of Rigid-Flexible Shovel Crawler Shoes

    Directory of Open Access Journals (Sweden)

    Samuel Frimpong

    2016-06-01

    Full Text Available Electric shovels are used in surface mining operations to achieve economic production capacities. The capital investments and operating costs associated with the shovels deployed in the Athabasca oil sands formation are high due to the abrasive conditions. The shovel crawler shoes interact with sharp and abrasive sand particles, and, thus, are subjected to high transient dynamic stresses. These high stresses cause wear and tear leading to crack initiation, propagation and premature fatigue failure. The objective of this paper is to develop a model to characterize the crawler stresses and deformation for the P&H 4100C BOSS during propel and loading using rigid-flexible multi-body dynamic theory. A 3-D virtual prototype model of the rigid-flexible crawler track assembly and its interactions with oil sand formation is simulated to capture the model dynamics within multibody dynamics software MSC ADAMS. The modal and stress shapes and modal loads due to machine weight for each flexible crawler shoes are generated from finite element analysis (FEA. The modal coordinates from the simulation are combined with mode and stress shapes using modal superposition method to calculate real-time stresses and deformation of flexible crawler shoes. The results show a maximum von Mises stress value of 170 MPa occurring in the driving crawler shoe during the propel motion. This study provides a foundation for the subsequent fatigue life analysis of crawler shoes for extending crawler service life.

  13. Stress Distribution in Graded Cellular Materials Under Dynamic Compression

    Directory of Open Access Journals (Sweden)

    Peng Wang

    Full Text Available Abstract Dynamic compression behaviors of density-homogeneous and density-graded irregular honeycombs are investigated using cell-based finite element models under a constant-velocity impact scenario. A method based on the cross-sectional engineering stress is developed to obtain the one-dimensional stress distribution along the loading direction in a cellular specimen. The cross-sectional engineering stress is contributed by two parts: the node-transitive stress and the contact-induced stress, which are caused by the nodal force and the contact of cell walls, respectively. It is found that the contact-induced stress is dominant for the significantly enhanced stress behind the shock front. The stress enhancement and the compaction wave propagation can be observed through the stress distributions in honeycombs under high-velocity compression. The single and double compaction wave modes are observed directly from the stress distributions. Theoretical analysis of the compaction wave propagation in the density-graded honeycombs based on the R-PH (rigid-plastic hardening idealization is carried out and verified by the numerical simulations. It is found that stress distribution in cellular materials and the compaction wave propagation characteristics under dynamic compression can be approximately predicted by the R-PH shock model.

  14. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  15. Point defects dynamics in a stress field

    International Nuclear Information System (INIS)

    Smetniansky de De Grande, Nelida.

    1989-01-01

    The dependence of anisotropic defect diffusion on stress is studied for a hexagonal close packed (hcp) material under irradiation and uniaxially stressed. The diffusion is described as a discrete process of thermally activated jumps. It is shown that the presence of an external stress field enhances the intrinsic anisotropic diffusion, being this variation determined by the defect dipole tensors' symmetry in the equilibrium and saddle point configurations. Also, the point defect diffusion equations to sinks, like edge dislocations and spherical cavities, are solved and the sink strengths are calculated. The conclusion is that the dynamics of the interaction between defects and sinks is controlled by the changes in diffusivity induced by stress fields. (Author) [es

  16. Dynamic stress intensity factors for a longitudinal semi-elliptical ...

    African Journals Online (AJOL)

    elliptical crack in a thick-walled cylinder subjected to transient dynamic stresses. First, the problem of dynamic elasticity in a thick-walled cylinder is solved analytically using the finite Hankel transform. Transient pressure is assumed to act on ...

  17. Field Measurement of Dynamic Compressive Stress Response of Pavement-Subgrade Induced by Moving Heavy-Duty Trucks

    Directory of Open Access Journals (Sweden)

    Lingshi An

    2018-01-01

    Full Text Available This paper presents the dynamic compressive stress response of pavement-subgrade induced by moving heavy-duty trucks. In order to study the distribution characteristic of dynamic pressure of pavement-subgrade in more detail, truck loadings, truck speeds, and dynamic pressure distributions at different depths were monitored under twenty-five working conditions on the section of Qiqihar-Nenjiang Highway in Heilongjiang Province, China. The effects of truck loading, truck speed, and depth on dynamic compressive stress response can be concluded as follows: (1 increasing truck loading will increase the dynamic pressure amplitude of subgrade-pavement and dominant frequencies are close to the characteristic frequencies caused by heavy-duty trucks at the speed of 70 km/h; (2 as truck speed increases, the dynamic pressure amplitudes of measuring points have an increasing tendency; the dynamic pressure spectrums are also significantly influenced by truck speed: the higher the truck speed, the wider the spectrum and the higher the dominant frequencies; (3 as depth increases, the dynamic pressure amplitudes of measuring points decrease rapidly. The influence of the front axle decreases gradually until disappearing and the compressive stress superposition phenomenon caused by rear double axles can be found with increasing depth.

  18. Comparing of Normal Stress Distribution in Static and Dynamic Soil-Structure Interaction Analyses

    International Nuclear Information System (INIS)

    Kholdebarin, Alireza; Massumi, Ali; Davoodi, Mohammad; Tabatabaiefar, Hamid Reza

    2008-01-01

    It is important to consider the vertical component of earthquake loading and inertia force in soil-structure interaction analyses. In most circumstances, design engineers are primarily concerned about the analysis of behavior of foundations subjected to earthquake-induced forces transmitted from the bedrock. In this research, a single rigid foundation with designated geometrical parameters located on sandy-clay soil has been modeled in FLAC software with Finite Different Method and subjected to three different vertical components of earthquake records. In these cases, it is important to evaluate effect of footing on underlying soil and to consider normal stress in soil with and without footing. The distribution of normal stress under the footing in static and dynamic states has been studied and compared. This Comparison indicated that, increasing in normal stress under the footing caused by vertical component of ground excitations, has decreased dynamic vertical settlement in comparison with static state

  19. COMT Diplotype Amplifies Effect of Stress on Risk of Temporomandibular Pain.

    Science.gov (United States)

    Slade, G D; Sanders, A E; Ohrbach, R; Bair, E; Maixner, W; Greenspan, J D; Fillingim, R B; Smith, S; Diatchenko, L

    2015-09-01

    When measured once, psychological stress predicts development of painful temporomandibular disorder (TMD). However, a single measurement fails to characterize the dynamic nature of stress over time. Moreover, effects of stress on pain likely vary according to biological susceptibility. We hypothesized that temporal escalation in stress exacerbates risk for TMD, and the effect is amplified by allelic variants in a gene, catechol-O-methyltransferase (COMT), regulating catechol neurotransmitter catabolism. We used data from the Orofacial Pain: Prospective Evaluation and Risk Assessment prospective cohort study of 2,707 community-dwelling adults with no lifetime history of TMD on enrollment. At baseline and quarterly periods thereafter, the Perceived Stress Scale (PSS) measured psychological stress. Genotyped DNA from blood samples determined COMT diplotypes. During follow-up of 0.25 to 5.2 y, 248 adults developed examiner-verified incident TMD. PSS scores at baseline were 20% greater (P stress escalation was limited to incident cases with COMT diplotypes coding for low-activity COMT, signifying impaired catabolism of catecholamines. Cox regression models confirmed significant effects on TMD hazard of both baseline PSS (P stress showed that a postbaseline increase of 1.0 standard deviation in PSS more than doubled risk of TMD incidence in subjects with low-activity COMT diplotypes (hazard ratio = 2.35; 95% confidence limits: 1.66, 3.32), an effect not found in subjects with high-activity COMT diplotypes (hazard ratio = 1.42; 95% confidence limits: 0.96, 2.09). Findings provide novel insights into dynamic effects of psychological stress on TMD pain, highlighting that effects are most pronounced in individuals whose genetic susceptibility increases responsiveness to catecholamine neurotransmitters. © International & American Associations for Dental Research 2015.

  20. Dynamic Response in Transient Stress-Field Behavior Induced by Hydraulic Fracturing

    Science.gov (United States)

    Jenkins, Andrew

    Hydraulic fracturing is a technique which is used to exploit geologic features and subsurface properties in an effort to increase production in low-permeability formations. The process of hydraulic fracturing provides a greater surface contact area between the producing formation and the wellbore and thus increases the amount of recoverable hydrocarbons from within the reservoir. The use of this stimulation technique has brought on massive applause from the industry due to its widespread success and effectiveness, however the dynamic processes that take part in the development of hydraulic fractures is a relatively new area of research with respect to the massive scale operations that are seen today. The process of hydraulic fracturing relies upon understanding and exploiting the in-situ stress distribution throughout the area of study. These in-situ stress conditions are responsible for directing fracture orientation and propagation paths throughout the period of injection. The relative magnitude of these principle stresses is key in developing a successful stimulation plan. In horizontal well plan development the interpretation of stress within the reservoir is required for determining the azimuth of the horizontal well path. These horizontal laterals are typically oriented in a manner such that the well path lies parallel to the minimum horizontal stress. This allows for vertical fractures to develop transversely to the wellbore, or normal to the least principle stress without the theoretical possibility of fractures overlapping, creating the most efficient use of the fluid energy during injection. The orientation and magnitude of these in-situ stress fields however can be dynamic, controlled by the subsequent fracture propagation and redistribution of the surrounding stresses. That is, that as the fracture propagates throughout the reservoir, the relative stress fields surrounding the fractures may see a shift and deviate from their original direction or

  1. Effect of normal stress under an excitation in poroelastic flat slabs

    African Journals Online (AJOL)

    user

    Biot's poroelastic theory is employed to investigate stresses under an ... Keywords: Flat slab, radial normal stress, pervious surface, impervious ... warranted, because of above mentioned applications. ...... M.Tajuddin, and G. Narayan Reddy, Effect of boundaries on the dynamic interaction of a liquid filled porous layer and a.

  2. Dynamic regulation of NMDAR function in the adult brain by the stress hormone corticosterone

    Directory of Open Access Journals (Sweden)

    Yiu Chung eTse

    2012-03-01

    Full Text Available Stress and corticosteroids dynamically modulate the expression of synaptic plasticity at glutamatergic synapses in the developed brain. Together with alpha-amino-3-hydroxy-methyl-4-isoxazole propionic acid receptors (AMPAR, N-methyl-D-aspartate receptors (NMDAR are critical mediators of synaptic function and are essential for the induction of many forms of synaptic plasticity. Regulation of NMDAR function by cortisol/corticosterone (CORT may be fundamental to the effects of stress on synaptic plasticity. Recent reports of the efficacy of NMDAR antagonists in treating certain stress-associated psychopathologies further highlight the importance of understanding the regulation of NMDAR function by CORT. Knowledge of how corticosteroids regulate NMDAR function within the adult brain is relatively sparse, perhaps due to a common belief that NMDAR function is relatively stable in the adult brain. We review recent results from our laboratory and others demonstrating dynamic regulation of NMDAR function by CORT in the adult brain. In addition, we consider the issue of how differences in the early life environment may program differential sensitivity to modulation of NMDAR function by CORT and how this may influence synaptic function during stress. Findings from these studies demonstrate that NMDAR function in the adult hippocampus remains sensitive to even brief exposures to CORT and that the capacity for modulation of NMDAR may be programmed, in part, by the early life environment. Modulation of NMDAR function may contribute to dynamic regulation of synaptic plasticity and adaptation in the face of stress, however enhanced NMDAR function may be implicated in mechanisms of stress related psychopathologies including depression.

  3. Prediction of flow- induced dynamic stress in an axial pump impeller using FEM

    International Nuclear Information System (INIS)

    Gao, J Y; Hou, Y S; Xi, S Z; Cai, Z H; Yao, P P; Shi, H L

    2013-01-01

    Axial pumps play an important role in water supply and flood control projects. Along with growing requirements for high reliability and large capacity, the dynamic stress of axial pumps has become a key problem. Unsteady flow is a significant reason which results structural dynamic stress of a pump. This paper reports on a flow-induced dynamic stress simulation in an axial pump impeller at three flow conditions by using FEM code. The pressure pulsation obtained from flow simulation using CFD code was set as the force boundary condition. The results show that the maximum stress of impeller appeared at joint between blade and root flange near trailing edge or joint between blade and root flange near leading edge. The dynamic stress of the two zones was investigated under three flow conditions (0.8Q d , 1.0Q d , 1.1Q d ) in time domain and frequency domain. The frequencies of stress at zones of maximum stress are 22.9Hz and 37.5Hz as the fundamental frequency and its harmonics. The fundamental frequencies are nearly equal to vane passing frequency (22.9 Hz) and 3 times blade passing frequency (37.5Hz). The first dominant frequency at zones of maximum stress is equal to the vane passing frequency due to rotor-stator interaction between the vane and the blade. This study would be helpful for axial pumps in reducing stress, improving structure design and fatigue life

  4. Comparison of erythrocyte dynamics in shear flow under different stress-free configurations

    Science.gov (United States)

    Cordasco, Daniel; Yazdani, Alireza; Bagchi, Prosenjit

    2014-04-01

    An open question that has persisted for decades is whether the cytoskeleton of a red blood cell is stress-free or under a stress. This question is important in the context of theoretical modeling of cellular motion under a flowing condition where it is necessary to make an assumption about the stress-free state. Here, we present a 3D numerical study to compare the cell dynamics in a simple shear flow under two different stress-free states, a biconcave discocyte representing the resting shape of the cell, and a nearly spherical oblate shape. We find that whether the stress-free states make a significant difference or not depends on the viscosity of the suspending medium. If the viscosity is close to that of blood plasma, the two stress-free states do not show any significant difference in cell dynamics. However, when the suspending medium viscosity is well above that of the physiological range, as in many in vitro studies, the shear rate separating the tank-treading and tumbling dynamics is observed to be higher for the biconcave stress-free state than the spheroidal state. The former shows a strong shape oscillation with repeated departures from the biconcave shape, while the latter shows a nearly stable biconcave shape. It is found that the cell membrane in the biconcave stress-free state is under a compressive stress and a weaker bending force density, leading to a periodic compression of the cell. The shape oscillation then leads to a higher energy barrier against membrane tank-tread leading to an early transition to tumbling. However, if the cells are released with a large off-shear plane angle, the oscillations can be suppressed due to an azimuthal motion of the membrane along the vorticity direction leading to a redistribution of the membrane points and lowering of the energy barrier, which again results in a nearly similar behavior of the cells under the two different stress-free states. A variety of off-shear plane dynamics is observed, namely, rolling

  5. Conceptualizing the dynamics of workplace stress: a systems-based study of nursing aides

    OpenAIRE

    Jetha, Arif; Kernan, Laura; Kurowski, Alicia

    2017-01-01

    Background Workplace stress is a complex phenomenon that may often be dynamic and?evolving over time. Traditional linear modeling does not allow representation of recursive feedback loops among the implicated factors. The objective of this study was to develop a multidimensional system dynamics model (SDM) of workplace stress among nursing aides and conduct simulations to illustrate how changes in psychosocial perceptions and workplace factors might influence workplace stress over time. Metho...

  6. Conceptualizing the dynamics of workplace stress: a systems-based study of nursing aides.

    Science.gov (United States)

    Jetha, Arif; Kernan, Laura; Kurowski, Alicia

    2017-01-05

    Workplace stress is a complex phenomenon that may often be dynamic and evolving over time. Traditional linear modeling does not allow representation of recursive feedback loops among the implicated factors. The objective of this study was to develop a multidimensional system dynamics model (SDM) of workplace stress among nursing aides and conduct simulations to illustrate how changes in psychosocial perceptions and workplace factors might influence workplace stress over time. Eight key informants with prior experience in a large study of US nursing home workers participated in model building. Participants brainstormed the range of components related to workplace stress. Components were grouped together based on common themes and translated into feedback loops. The SDM was parameterized through key informant insight on the shape and magnitude of the relationship between model components. Model construction was also supported utilizing survey data collected as part of the larger study. All data was entered into the software program, Vensim. Simulations were conducted to examine how adaptations to model components would influence workplace stress. The SDM included perceptions of organizational conditions (e.g., job demands and job control), workplace social support (i.e., managerial and coworker social support), workplace safety, and demands outside of work (i.e. work-family conflict). Each component was part of a reinforcing feedback loop. Simulations exhibited that scenarios with increasing job control and decreasing job demands led to a decline in workplace stress. Within the context of the system, the effects of workplace social support, workplace safety, and work-family conflict were relatively minor. SDM methodology offers a unique perspective for researchers and practitioners to view workplace stress as a dynamic process. The portrayal of multiple recursive feedback loops can guide the development of policies and programs within complex organizational contexts

  7. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    International Nuclear Information System (INIS)

    Zhang, Bo; Li, Yueming; Lu, Wei Zhen

    2016-01-01

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape

  8. Dynamic characteristics of rotating pretwisted clamped-clamped beam under thermal stress

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Li, Yueming [State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace, Xi' an Jiaotong UniversityXi' an (China); Lu, Wei Zhen [Dept. of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong (China)

    2016-09-15

    Effects of thermal stress on the vibration characteristics, buckling limit and critical speed of a rotating pretwisted beam clamped to rigid hub at a stagger angle were investigated. By considering the work done by thermal stress, the thermal influence on stiffness matrix was introduced in the dynamic model. The motion equations were derived based on Lagrange equation by employing three pure Cartesian deformation variables combined with nonlinear von Karman strain formula. Numerical investigations studied the modal characteristics of the beam. Numerical results calculated from a commercial finite element code and obtained with the present modeling method were in good agreement with the previous results reported in the literature. The combined softening effects due to the thermal stress and the rotation motion were observed. Furthermore, it is shown that the inclusion of thermal stress is necessary for blades operating under a high temperature field. Buckling thermal loads and the critical rotating speed were calculated through solving the corresponding nonlinear equations numerically, and some pertinent conclusions are outlined. It is also found that the peak value position of the first mode shape approaches to the tip of blade with the increment of rotating speed and hub radius. However, the variation in the environment temperature causes only a slight alteration in the mode shape.

  9. Dynamics of neuroendocrine stress response: bistability, timing, and control of hypocortisolism

    Science.gov (United States)

    D'Orsogna, Maria; Chou, Tom; Kim, Lae

    The hypothalamic-pituitary-adrenal (HPA) axis is a neuroendocrine system that regulates numerous physiological processes. Disruptions in its activity are correlated with stress-related diseases such as post-traumatic stress disorder (PTSD) and major depressive disorder. We characterize ``normal'' and ``diseased'' states of the HPA axis as basins of attraction of a dynamical system describing the inhibition of peptide hormones, corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH), by circulating glucocorticoids such as cortisol (CORT). Our model includes ultradian oscillations, CRH self-upregulation of CRH release, and distinguishes two components of negative feedback by cortisol on circulating CRH levels: a slow direct suppression of CRH synthesis and a fast indirect effect on CRH release. The slow regulation mechanism mediates external stress-driven transitions between the stable states in novel, intensity, duration, and timing-dependent ways. We find that the timing of traumatic events may be an important factor in determining if and how the hallmarks of depressive disorders will manifest. Our model also suggests a mechanism whereby exposure therapy of stress disorders may act to normalize downstream dysregulation of the HPA axis.

  10. The effect of additional equilibrium stress functions on the three-node hybrid-mixed curved beam element

    International Nuclear Information System (INIS)

    Kim, Jin Gon; Park, Yong Kuk

    2008-01-01

    To develop an effective hybrid-mixed element, it is extremely critical as to how to assume the stress field. This research article demonstrates the effect of additional equilibrium stress functions to enhance the numerical performance of the locking-free three-node hybrid-mixed curved beam element, proposed in Saleeb and Chang's previous work. It is exceedingly complicated or even infeasible to determine the stress functions to satisfy fully both the equilibrium conditions and suppression of kinematic deformation modes in the three-node hybrid-mixed formulation. Accordingly, the additional stress functions to satisfy partially or fully equilibrium conditions are incorporated in this study. Several numerical examples for static and dynamic problems confirm that the newly proposed element with these additional stress functions is highly effective regardless of the slenderness ratio and curvature of arches in static and dynamic analyses

  11. Stress Analysis of Transcatheter Aortic Valve Leaflets Under Dynamic Loading: Effect of Reduced Tissue Thickness.

    Science.gov (United States)

    Abbasi, Mostafa; Azadani, Ali N

    2017-07-01

    In order to accommodate transcatheter valves to miniaturized catheters, the leaflet thickness must be reduced to a value which is typically less than that of surgical bioprostheses. The study aim was to use finite-element simulations to determine the impact of the thickness reduction on stress and strain distribution. A 23 mm transcatheter aortic valve (TAV) was modelled based on the Edwards SAPIEN XT (Edwards Lifesciences, Irvine, CA, USA). Finite-element (FE) analysis was performed using the ABAQUS/Explicit solver. An ensemble-averaged transvalvular pressure waveform measured from in-vitro tests conducted in a pulse duplicator was applied to the leaflets. Through a parametric study, uniform TAV leaflet thickness was reduced from 0.5 to 0.18 mm. By reducing leaflet thickness, significantly higher stress values were found in the leaflet's fixed edge during systole, and in the commissures during diastole. Through dynamic FE simulations, the highest stress values were found during systole in the leaflet fixed edge. In contrast, at the peak of diastole high-stress regions were mainly observed in the commissures. The peak stress was increased by 178% and 507% within the leaflets after reducing the thickness of 0.5 mm to 0.18 mm at the peak of systole and diastole, respectively. The study results indicated that, the smaller the leaflet thickness, the higher the maximum principal stress. Increased mechanical stress on TAV leaflets may lead to accelerated tissue degeneration. By using a thinner leaflet, TAV durability may not atch with that of surgical bioprostheses.

  12. Internal stress evolution in Fe laths deformed at low temperature analysed by dislocation dynamics simulations

    International Nuclear Information System (INIS)

    Chaussidon, Julien; Fivel, Marc; Robertson, Christian; Marini, Bernard

    2010-01-01

    Stress evolution in Fe laths undergoing plastic deformation is investigated using three-dimensional dislocation dynamics simulations adapted to body centred cubic crystals, in the ductile to brittle transition temperature range. The selected boundary conditions, applied stress tensor and initial dislocation structures account for the realistic microstructure observed in bainitic steels. The effective stress field projected in the three different {1 0 0}cleavage planes is calculated for two different temperatures (50 and 200 K) and presented quantitatively, in the form of stress/frequency diagrams. It is shown that plastic activity tends to relax the stress acting in certain cleavage planes (the (0 1 0) and (0 0 1) planes) while, at the same time, amplifying the stress acting in other cleavage planes (the (1 0 0) planes). The selective stress amplification in the latter planes depends on the applied load direction, in combination with the limited set of available slip systems and the lath geometry. In the examined configuration, this selection effect is more pronounced with decreasing temperature, emphasizing the role of thermally activated plasticity on deformation-induced stress concentrations

  13. Flow stress and dynamic strain-ageing of β-transformed Zircaloy-4

    International Nuclear Information System (INIS)

    Woo, O.T.; Tseng, D.; Tangri, K.; MacEwen, S.R.

    1979-01-01

    The 0.2% yield stress of β-transformed Zircaloy-4 was found to be independent of prior-β grain size but varied as the inverse of the transformed β plate width. A dislocation loop expansion model originally proposed by Langford and Cohen (1969) for cold-drawn iron wires is used to explain the inverse plate width dependence. Both air-cooled and water-quenched samples exhibited dynamic strain-ageing effects in approximately the same temperature range of 573 to 673 K: (a) a local minimum in strain-rate sensitivity is associated with a peak or an inflection point in the temperature dependence of the 0.2% yield stress for water-quenched or air-cooled samples respectively, and (b) yield drops were observed in strain rate change tests. (Auth.)

  14. Effects of external stress on biodegradable orthopedic materials: A review

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2016-09-01

    Full Text Available Biodegradable orthopedic materials (BOMs are used in rehabilitation and reconstruction of fractured tissues. The response of BOMs to the combined action of physiological stress and corrosion is an important issue in vivo since stress-assisted degradation and cracking are common. Although the degradation behavior and kinetics of BOMs have been investigated under static conditions, stress effects can be very serious and even fatal in the dynamic physiological environment. Since stress is unavoidable in biomedical applications of BOMs, recent work has focused on the evaluation and prediction of the properties of BOMs under stress in corrosive media. This article reviews recent progress in this important area focusing on biodegradable metals, polymers, and ceramics.

  15. Transient electromagnetic and dynamic structural analyses of a blanket structure with coupling effects

    Energy Technology Data Exchange (ETDEWEB)

    Koganezawa, K. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kushiyama, M. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Niikura, S. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Kudough, F. [Mitsubishi Atomic Power Industries, Inc., Yokohama (Japan); Onozuka, M. [Mitsubishi Heavy Industries Ltd., Yokohama (Japan); Koizumi, K. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-12-31

    Transient electromagnetic and dynamic structural analyses of a blanket structure in the fusion experimental reactor (FER) under a plasma disruption event and a vertical displacement event (VDE) have been performed to investigate the dynamic structural characteristics and the feasibility of the structure. Coupling effects between eddy currents and dynamic deflections have also been taken into account in these analyses. In this study, the inboard blanket was employed because of our computer memory limitation. A 1/192 segment model of a full torus was analyzed using the analytical code, EDDYCUFF. In the plasma disruption event, the maximum magnetic pressure caused by eddy currents and poloidal fields was 1.2MPa. The maximum stress intensity by this magnetic pressure was 114MPa. In the VDE, the maximum magnetic pressure was 2.4MPa and the maximum stress intensity was 253MPa. This stress was somewhat beyond the allowable stress limit. Therefore, the blanket structure and support design should be reviewed to reduce the stress to a suitable value. In summary, the dynamic structural characteristics and design issues of the blanket structure have been identified. (orig.).

  16. Dynamic energy release rate in couple-stress elasticity

    International Nuclear Information System (INIS)

    Morini, L; Piccolroaz, A; Mishuris, G

    2013-01-01

    This paper is concerned with energy release rate for dynamic steady state crack problems in elastic materials with microstructures. A Mode III semi-infinite crack subject to loading applied on the crack surfaces is considered. The micropolar behaviour of the material is described by the theory of couple-stress elasticity developed by Koiter. A general expression for the dynamic J-integral including both traslational and micro-rotational inertial contributions is derived, and the conservation of this integral on a path surrounding the crack tip is demonstrated

  17. Lattice dynamics approach to determine the dependence of the time-of-flight of transversal polarized acoustic waves on external stress

    Science.gov (United States)

    Tarar, K. S.; Pluta, M.; Amjad, U.; Grill, W.

    2011-04-01

    Based on the lattice dynamics approach the dependence of the time-of-flight (TOF) on stress has been modeled for transversal polarized acoustic waves. The relevant dispersion relation is derived from the appropriate mass-spring model together with the dependencies on the restoring forces including the effect of externally applied stress. The lattice dynamics approach can also be interpreted as a discrete and strictly periodic lumped circuit. In that case the modeling represents a finite element approach. In both cases the properties relevant for wavelengths large with respect to the periodic structure can be derived from the respective limit relating also to low frequencies. The model representing a linear chain with stiffness to shear and additional stiffness introduced by extensional stress is presented and compared to existing models, which so far represent each only one of the effects treated here in combination. For a string this effect is well known from musical instruments. The counteracting effects are discussed and compared to experimental results.

  18. Hydrodynamic view of electrodynamics: energy rays and electromagnetic effective stress

    International Nuclear Information System (INIS)

    Chou, Chia-Chun; Wyatt, Robert E

    2011-01-01

    Energy rays ('photon trajectories') based upon the hydrodynamic formulation of electrodynamics are presented for time-dependent electromagnetic wave propagation. We derive Cauchy's equation of motion for the electromagnetic effective force governing the dynamics of energy rays. The effective force generated by the electromagnetic effective stress provides a surface force acting on the energy fluid element. For the head-on collision of two electromagnetic Gaussian pulses, the electromagnetic effective force, analogous to the role played by the quantum force in Bohmian mechanics, guides these non-crossing energy rays. For an electromagnetic pulse traveling from free space to a dielectric medium, the energy rays guided by the electromagnetic effective stress display reflection and refraction at the interface.

  19. Effects of a father-based in-home intervention on perceived stress and family dynamics in parents of children with autism.

    Science.gov (United States)

    Bendixen, Roxanna M; Elder, Jennifer H; Donaldson, Susan; Kairalla, John A; Valcante, Greg; Ferdig, Richard E

    2011-01-01

    Parents of children with autism report high rates of stress. Parental differences in stress are inconsistent, with most research indicating that mothers report higher levels of stress than fathers. We explored parental differences before and after an in-home training program. Fathers were taught an intervention designed to improve their child's social reciprocity and communication; they then trained mothers. Stress was assessed with the Parenting Stress Index-Short Form, and family dynamics was assessed with the Family Adaptability and Cohesion Evaluation Scales II. Both mothers and fathers reported high preintervention levels of stress. After intervention, fathers' stress was reduced, but not significantly, possibly because of the variability in fathers' scores; mothers' stress scores were significantly reduced. Parenting styles were significantly different before and after intervention. Interdisciplinary teams, including occupational therapists, nurses, and special educators, can work.together to have a positive impact on the lives of families of children with autism.

  20. Handling magnetic anisotropy and magnetoimpedance effect in flexible multilayers under external stress

    Energy Technology Data Exchange (ETDEWEB)

    Agra, K.; Bohn, F. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Mori, T.J.A. [Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro, 1000, Guará, 13083-100 Campinas, SP (Brazil); Callegari, G.L.; Dorneles, L.S. [Departamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Correa, M.A., E-mail: marciocorrea@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2016-12-15

    We investigate the dynamic magnetic response though magnetoimpedance effect of ferromagnetic flexible NiFe/Ta and FeCuNbSiB/Ta multilayers under external stress. We explore the possibility of handling magnetic anisotropy, and consequently the magnetoimpedance effect, of magnetostrictive multilayers deposited onto flexible substrates. We quantify the sensitivity of the multilayers under external stress by calculating the ratio between impedance variations and external stress changes, and show that considerable values can be reached by tuning the magnetic field, frequency, magnetostriction constant, and external stress. The results extend possibilities of application of magnetostrictive multilayers deposited onto flexible substrates when under external stress and place them as very attractive candidates as element sensor for the development of sensitive smart touch sensors. - Highlights: • We investigate the magnetoimpedance effect in magnetostrictive flexible multilayers grown on flexible substrates. • The external applied stress enables to tuning the samples anisotropies, and consequently the MI performance. • The flexible substrate becomes promising candidate for RF-frequency devices.

  1. Stress wave velocity and dynamic modulus of elasticity of yellow-poplar ranging from 100 to 10 percent moisture content

    Science.gov (United States)

    Jody D. Gray; Shawn T. Grushecky; James P. Armstrong

    2008-01-01

    Moisture content has a significant impact on mechanical properties of wood. In recent years, stress wave velocity has been used as an in situ and non-destructive method for determining the stiffness of wooden elements. The objective of this study was to determine what effect moisture content has on stress wave velocity and dynamic modulus of elasticity. Results...

  2. Dynamic response of plant genome to ultraviolet radiation and other genotoxic stresses

    International Nuclear Information System (INIS)

    Molinier, Jean; Oakeley, Edward J.; Niederhauser, Olivier; Kovalchuk, Igor; Hohn, Barbara

    2005-01-01

    Oligonucleotide microarray technology was used to identify genes, which are responding after exposure to UV-C radiation and to other agents causing genotoxic stress. The effect of these conditions on recombinational DNA repair was monitored in parallel. Global changes in gene expression were investigated in Arabidopsis wild-type plants challenged with UV-C, bleomycin, another abiotic agent and xylanase, a biotic factor, all leading to elevated homologous recombination frequencies. The comparison of the expression profile of each treatment allowed defining genes specifically involved in the dynamic response to UV. In the future, the potential roles of such genes in the different forms of stress recognition, signal transduction, and their roles in DNA repair processes will be assessed by using reverse genetic tools available for Arabidopsis thaliana

  3. Dynamic strain aging of zircaloy-4 PWR fuel cladding in biaxial stress state

    International Nuclear Information System (INIS)

    Park, Ki Seong; Lee, Byong Whi

    1989-01-01

    The expanding copper mandrel test performed at three strain rates (3.2x10E-5/s,2.0x10E-6/s and 1.2x10E-7/s) over 553-873 K temperature range by varying the heating rates (8-10deg C/s,1-2deg C/s and 0.5deg C/s) in air and in vacuum (5x10E-5 torr). The yield stress peak, the strain rate sensitivity minimum and the activation volume peaks could be explained in terms of the dynamic strain aging. The activation energy for dynamic strain aging obtained from the yield stress peak temperature and strain rate was 196 KJ/mol and this value was in good agreement with the activation energy for oxygen diffusion in α-zirconium and Zircaloy-2 (207-220KJ/mol). Therefore, oxygen atoms are responsible for the dynamic strain aging which appeared between 573K and 673K. The yield stress increase due to the oxidation was obtained by comparing the yield stress in air with that in vacuum and represented by the percentage increase of yield stress (σ y a -σ y v /σ y v ). The slower the strain rate, the greater the percentage increase occurs. In order to estimate the yield stress of PWR fuel cladding material under the service environment, the yield stress in water was obtained by comparing the oxidation rate in air that in water assuming the relationship between the oxygen pick-up amount and the yield stress increase. (Author)

  4. Distribution of Side Abutment Stress in Roadway Subjected to Dynamic Pressure and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Yao Qiangling

    2015-01-01

    Full Text Available The borehole stress-meter was employed in this study to investigate the distribution of the side abutment stress in roadway subjected to dynamic pressure. The results demonstrate that the side abutment stress of the mining roadway reaches a peak value when the distance to the gob is 8 m and the distribution curve of the side abutment stress can be divided into three zones: stress rising zone, stress stabilizing zone, and stress decreasing zone. Further numerical investigation was carried out to study the effect of the coal mass strength, coal seam depth, immediate roof strength, and thickness on the distribution of the side abutment stress. Based on the research results, we determined the reasonable position of the mining roadway and the optimal width of the barrier pillar. The engineering application demonstrates that the retention of the barrier pillar with a width of 5 m along the gob as the haulage roadway for the next panel is feasible, which delivers favorable technological and economic benefits.

  5. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  6. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  7. Three dimensional viscoelastic simulation on dynamic evolution of stress field in North China induced by the 1966 Xingtai earthquake

    Science.gov (United States)

    Chen, Lian-Wang; Lu, Yuan-Zhong; Liu, Jie; Guo, Ruo-Mei

    2001-09-01

    Using three dimensional (3D) viscoelastic finite element method (FEM) we study the dynamic evolution pattern of the coseismic change of Coulomb failure stress and postseismic change, on time scale of hundreds years, of rheological effect induced by the M S=7.2 Xingtai earthquake on March 22, 1966. Then, we simulate the coseismic disturbance in stress field in North China and dynamic change rate on one-year scale caused by the Xingtai earthquake and Tangshan earthquake during 15 years from 1966 to 1980. Finally, we discuss the triggering of a strong earthquake to another future strong earthquake.

  8. Cardiorespiratory Dynamic Response to Mental Stress: A Multivariate Time-Frequency Analysis

    Directory of Open Access Journals (Sweden)

    Devy Widjaja

    2013-01-01

    out continuously in time to evaluate the dynamic response to mental stress and attention. The results show an increased heart and respiratory rate during stress and attention, compared to a resting condition. Also a fast reduction in vagal activity is noted. The partial TF analysis reveals a faster reduction of RRV power related to (3 s than unrelated to (30 s respiration, demonstrating that the autonomic response to mental stress is driven by mechanisms characterized by different temporal scales.

  9. Manipulating the magnetic anisotropy and magnetization dynamics by stress: Numerical calculation and experiment

    Science.gov (United States)

    Correa, M. A.; Bohn, F.

    2018-05-01

    We perform a theoretical and experimental investigation of the magnetic properties and magnetization dynamics of a ferromagnetic magnetostrictive multilayer grown onto a flexible substrate and submitted to external stress. We calculate the magnetic behavior and magnetoimpedance effect for a trilayered system from an approach that considers a magnetic permeability model for planar geometry and a magnetic free energy density which takes into account induced uniaxial and magnetoelastic anisotropy contributions. We verify remarkable modifications of the magnetic anisotropy with external stress, as well as we show that the dynamic magnetic response is strongly affected by these changes. We discuss the magnetic features that lead to modifications of the frequency limits where distinct mechanisms are responsible by the magnetoimpedance variations, enabling us to manipulate the resonance fields. To test the robustness of the approach, we directly compare theoretical results with experimental data. Thus, we provide experimental evidence to confirm the validity of the theoretical approach, as well as to manipulate the resonance fields to tune the MI response according to real applications in devices.

  10. Impact of an intensive dynamic exercise program on oxidative stress and on the outcome in patients with fibromyalgia

    Directory of Open Access Journals (Sweden)

    Amal F Soliman

    2016-01-01

    Conclusion Twelve weeks of intensive dynamic exercise program should be recommended to patients with FM as it was effective in decreasing the oxidative stress parameters, increasing the antioxidant parameters, and improving the clinical outcome of this disease.

  11. Hot carrier injection degradation under dynamic stress

    International Nuclear Information System (INIS)

    Ma Xiao-Hua; Cao Yan-Rong; Hao Yue; Zhang Yue

    2011-01-01

    In this paper, we have studied hot carrier injection (HCI) under alternant stress. Under different stress modes, different degradations are obtained from the experiment results. The different alternate stresses can reduce or enhance the HC effect, which mainly depends on the latter condition of the stress cycle. In the stress mode A (DC stress with electron injection), the degradation keeps increasing. In the stress modes B (DC stress and then stress with the smallest gate injection) and C (DC stress and then stress with hole injection under V g = 0 V and V d = 1.8 V), recovery appears in the second stress period. And in the stress mode D (DC stress and then stress with hole injection under V g = −1.8 V and V d = 1.8 V), as the traps filled in by holes can be smaller or greater than the generated interface states, the continued degradation or recovery in different stress periods can be obtained. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Effects of fiber ellipticity and orientation on dynamic stress concentrations in porous fiber-reinforced composites

    Science.gov (United States)

    Hasheminejad, Seyyed M.; Sanaei, Roozbeh

    2007-11-01

    Interaction of time harmonic fast longitudinal and shear incident plane waves with an elliptical fiber embedded in a porous elastic matrix is studied. The novel features of Biot dynamic theory of poroelasticity along with the classical method of eigen-function expansion and the pertinent boundary conditions are employed to develop a closed form series solution involving Mathieu and modified Mathieu functions of complex arguments. The complications arising due to the non-orthogonality of angular Mathieu functions corresponding to distinct wave numbers in addition to the problems associated with appearance of additional angular dependent terms in the boundary conditions are all avoided by expansion of the angular Mathieu functions in terms of transcendental functions and subsequent integration, leading to a linear set of independent equations in terms of the unknown scattering coefficients. A MATHEMATICA code is developed for computing the Mathieu functions in terms of complex Fourier coefficients which are themselves calculated by numerically solving appropriate sets of eigen-systems. The analytical results are illustrated with numerical examples in which an elastic fiber of elliptic cross section is insonified by a plane fast compressional or shear wave at normal incidence. The effects of fiber cross sectional ellipticity, angle of incidence (fiber two-dimensional orientation), and incident wave polarization (P, SV, SH) on dynamic stress concentrations are studied in a relatively wide frequency range. Limiting cases are considered and fair agreements with well-known solutions are established.

  13. The dynamics of stress and fatigue across menopause: attractors, coupling, and resilience.

    Science.gov (United States)

    Taylor-Swanson, Lisa; Wong, Alexander E; Pincus, David; Butner, Jonathan E; Hahn-Holbrook, Jennifer; Koithan, Mary; Wann, Kathryn; Woods, Nancy F

    2018-04-01

    The objective of this study was to evaluate the regulatory dynamics between stress and fatigue experienced by women during the menopausal transition (MT) and early postmenopause (EPM). Fatigue and perceived stress are commonly experienced by women during the MT and EPM. We sought to discover relationships between these symptoms and to employ these symptoms as possible markers for resilience. Participants were drawn from the longitudinal Seattle Midlife Women's Health Study. Eligible women completed questionnaires on 60+ occasions (annual health reports and monthly health diaries) (n = 56 women). The total number of observations across the sample was 4,224. STRAW+10 criteria were used to stage women in either in late reproductive, early or late transition, or EPM stage. Change values were generated for fatigue and stress and analyzed with a multilevel structural equation model; slopes indicate how quickly a person returns to homeostasis after a perturbation. Coupling of stress and fatigue was modeled to evaluate resilience, the notion of maintaining stability during change. Eligible women were on average 35 years old (SD = 4.71), well educated, employed, married or partnered, and white. Fit indices suggested the model depicts the relationships of stress and fatigue (χ(9 df) = 7.638, P = 0.57, correction factor = 4.9244; root mean square error of approximation (RMSEA) 90% CI = 0.000 ≤ 0.000 ≤ 0.032; comparative fit index (CFI) = 1.00). A loss in model fit across stages suggests that the four stages differed in their dynamics (χΔ(12 df) = 21.181, P = .048). All stages showed fixed-point attractor dynamics: fatigue became less stable over time; stress generally became more stable over time. Coupling relationships of stress on fatigue show evidence for shifts in regulatory relationships with one another across the MT. Results are suggestive of general dysregulation via disruptions to coupling relationships of stress and

  14. Dynamic functional connectivity and individual differences in emotions during social stress.

    Science.gov (United States)

    Tobia, Michael J; Hayashi, Koby; Ballard, Grey; Gotlib, Ian H; Waugh, Christian E

    2017-12-01

    Exposure to acute stress induces multiple emotional responses, each with their own unique temporal dynamics. Dynamic functional connectivity (dFC) measures the temporal variability of network synchrony and captures individual differences in network neurodynamics. This study investigated the relationship between dFC and individual differences in emotions induced by an acute psychosocial stressor. Sixteen healthy adult women underwent fMRI scanning during a social evaluative threat (SET) task, and retrospectively completed questionnaires that assessed individual differences in subjectively experienced positive and negative emotions about stress and stress relief during the task. Group dFC was decomposed with parallel factor analysis (PARAFAC) into 10 components, each with a temporal signature, spatial network of functionally connected regions, and vector of participant loadings that captures individual differences in dFC. Participant loadings of two networks were positively correlated with stress-related emotions, indicating the existence of networks for positive and negative emotions. The emotion-related networks involved the ventromedial prefrontal cortex, cingulate cortex, anterior insula, and amygdala, among other distributed brain regions, and time signatures for these emotion-related networks were uncorrelated. These findings demonstrate that individual differences in stress-induced positive and negative emotions are each uniquely associated with large-scale brain networks, and suggest that dFC is a mechanism that generates individual differences in the emotional components of the stress response. Hum Brain Mapp 38:6185-6205, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Nutrients versus emerging contaminants–Or a dynamic match between subsidy and stress effects on stream biofilms

    International Nuclear Information System (INIS)

    Aristi, I.; Casellas, M.; Elosegi, A.; Insa, S.; Petrovic, M.; Sabater, S.; Acuña, V.

    2016-01-01

    Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3–4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the

  16. Spatio-temporal Dynamics and Mechanisms of Stress Granule Assembly.

    Directory of Open Access Journals (Sweden)

    Daisuke Ohshima

    2015-06-01

    Full Text Available Stress granules (SGs are non-membranous cytoplasmic aggregates of mRNAs and related proteins, assembled in response to environmental stresses such as heat shock, hypoxia, endoplasmic reticulum (ER stress, chemicals (e.g. arsenite, and viral infections. SGs are hypothesized as a loci of mRNA triage and/or maintenance of proper translation capacity ratio to the pool of mRNAs. In brain ischemia, hippocampal CA3 neurons, which are resilient to ischemia, assemble SGs. In contrast, CA1 neurons, which are vulnerable to ischemia, do not assemble SGs. These results suggest a critical role SG plays in regards to cell fate decisions. Thus SG assembly along with its dynamics should determine the cell fate. However, the process that exactly determines the SG assembly dynamics is largely unknown. In this paper, analyses of experimental data and computer simulations were used to approach this problem. SGs were assembled as a result of applying arsenite to HeLa cells. The number of SGs increased after a short latent period, reached a maximum, then decreased during the application of arsenite. At the same time, the size of SGs grew larger and became localized at the perinuclear region. A minimal mathematical model was constructed, and stochastic simulations were run to test the modeling. Since SGs are discrete entities as there are only several tens of them in a cell, commonly used deterministic simulations could not be employed. The stochastic simulations replicated observed dynamics of SG assembly. In addition, these stochastic simulations predicted a gamma distribution relative to the size of SGs. This same distribution was also found in our experimental data suggesting the existence of multiple fusion steps in the SG assembly. Furthermore, we found that the initial steps in the SG assembly process and microtubules were critical to the dynamics. Thus our experiments and stochastic simulations presented a possible mechanism regulating SG assembly.

  17. Wall Shear Stress Estimation of Thoracic Aortic Aneurysm Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    J. Febina

    2018-01-01

    Full Text Available An attempt has been made to evaluate the effects of wall shear stress (WSS on thoracic aortic aneurysm (TAA using Computational Fluid Dynamics (CFD. Aneurysm is an excessive localized swelling of the arterial wall due to many physiological factors and it may rupture causing shock or sudden death. The existing imaging modalities such as MRI and CT assist in the visualization of anomalies in internal organs. However, the expected dynamic behaviour of arterial bulge under stressed condition can only be effectively evaluated through mathematical modelling. In this work, a 3D aneurysm model is reconstructed from the CT scan slices and eventually the model is imported to Star CCM+ (Siemens, USA for intensive CFD analysis. The domain is discretized using polyhedral mesh with prism layers to capture the weakening boundary more accurately. When there is flow reversal in TAA as seen in the velocity vector plot, there is a chance of cell damage causing clots. This is because of the shear created in the system due to the flow pattern. It is observed from the proposed mathematical modelling that the deteriorating WSS is an indicator for possible rupture and its value oscillates over a cardiac cycle as well as over different stress conditions. In this model, the vortex formation pattern and flow reversals are also captured. The non-Newtonian model, including a pulsatile flow instead of a steady average flow, does not overpredict the WSS (15.29 Pa compared to 16 Pa for the Newtonian model. Although in a cycle the flow behaviour is laminar-turbulent-laminar (LTL, utilizing the non-Newtonian model along with LTL model also overpredicted the WSS with a value of 20.1 Pa. The numerical study presented here provides good insight of TAA using a systematic approach to numerical modelling and analysis.

  18. Effects of stress on alcohol drinking: a review of animal studies

    Science.gov (United States)

    Lopez, Marcelo F.; Doremus-Fitzwater, Tamara L.

    2011-01-01

    Rationale While stress is often proposed to play a significant role in influencing alcohol consumption, the relationship between stress and alcohol is complex and poorly understood. Over several decades, stress effects on alcohol drinking have been studied using a variety of animal models and experimental procedures, yet this large body of literature has generally produced equivocal results. Objectives This paper reviews results from animal studies in which alcohol consumption is evaluated under conditions of acute/sub-chronic stress exposure or models of chronic stress exposure. Evidence also is presented indicating that chronic intermittent alcohol exposure serves as a stressor that consequently influences drinking. Results The effects of various acute/sub-chronic stress procedures on alcohol consumption have generally been mixed, but most study outcomes suggest either no effect or decreased alcohol consumption. In contrast, most studies indicate that chronic stress, especially when administered early in development, results in elevated drinking later in adulthood. Chronic alcohol exposure constitutes a potent stressor itself, and models of chronic intermittent alcohol exposure reliably produce escalation of voluntary alcohol consumption. Conclusions A complex and dynamic interplay among a wide array of genetic, biological, and environmental factors govern stress responses, regulation of alcohol drinking, and the circumstances in which stress modulates alcohol consumption. Suggestions for future directions and new approaches are presented that may aid in developing more sensitive and valid animal models that not only better mimic the clinical situation, but also provide greater understanding of mechanisms that underlie the complexity of stress effects on alcohol drinking. PMID:21850445

  19. Determination of the Critical Stress Associated with Dynamic Phase Transformation in Steels by Means of Free Energy Method

    Directory of Open Access Journals (Sweden)

    Clodualdo Aranas

    2018-05-01

    Full Text Available The double differentiation method overestimates the critical stress associated with the initiation of dynamic transformation (DT because significant amounts of the dynamic phase must be present in order for its effect on the work hardening rate to be detectable. In this work, an alternative method (referred to here as the free energy method is presented based on the thermodynamic condition that the driving force is equal to the total energy obstacle during the exact moment of transformation. The driving force is defined as the difference between the DT critical stress (measured in the single-phase austenite region and the yield stress of the fresh ferrite that takes its place. On the other hand, the energy obstacle consists of the free energy difference between austenite and ferrite, and the work of shear accommodation and dilatation associated with the phase transformation. Here, the DT critical stresses in a C-Mn steel were calculated using the free energy method at temperatures ranging from 870 °C to 1070 °C. The results show that the calculated critical stress using the present approach appears to be more accurate than the values measured by the double differentiation method.

  20. Effects of edaravone combined with hyperbaric oxygen on cerebral vascular dynamics, oxidative stress products and inflammatory factors in patients with acute cerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Xia Li

    2017-10-01

    Full Text Available Objective: To investigate the effect of edaravone combined with hyperbaric oxygen therapy on cerebral vasculature, oxidative stress and inflammatory cytokines in patients with acute cerebral hemorrhage (ACH. Methods: A total of 96 patients with ACH were divided into control group (n=48 and observation group (n=48 according to the random number table. Both groups were treated routinely. On this basis, the control group was treated with edaravone injection, and the observation group was treated with edaravone injection combined with hyperbaric oxygen therapy. The change of cerebrovascular dynamics, oxidative stress products and inflammatory factors were examined in all subjects before and after treatment. Results: There were no significant differences in cerebrovascular function between the two groups before treatment. After treatment, the levels of Vmean and Qmean in both groups were significantly higher than those before treatment. The levels of Vmean and Qmean in the observation group were higher than those of the control group after treatment. There was no significant difference in serum oxidative stress between the two groups before treatment. After treatment, the levels of SOD in two groups were significantly higher than those before treatment. The level of SOD in the observation group was higher than that in the control group after treatment. After treatment, the levels of MDA in the two groups were significantly lower than that before treatment. The level of MDA in the observation group was lower than that of the control group after treatment. There were no significant differences in the level of serum inflammatory factors between the two groups before treatment. After treatment, the level of TNF-α and IL-1β in two groups were significantly lower than before treatment. The level of TNF-α and IL-1β in the observation group was lower than those of the control group after treatment. Conclusion: Edaravone combined with hyperbaric oxygen

  1. Size-effect on stress behavior of the AlN/TiN film

    International Nuclear Information System (INIS)

    Chen, D.; Wang, Y.M.; Ma, X.L.

    2009-01-01

    The stress behavior of AlN/TiN superlattice film has been studied by means of a crystal-chemical atomic dynamics simulation based on first-principles calculations. The size-effects on stress behavior are demonstrated and discussed in detail. Stress behavior depends not only on AlN thickness but also on structural relaxation and strain distribution in the film. When the AlN thickness exceeds a critical one, the superlattice film is metastable. Stress behavior can be traced to the AlN/TiN interface structure and its variation with strain relaxation, which may reflect the main strain characteristics caused by AlN structural transformation in this film.

  2. Effective gravitational wave stress-energy tensor in alternative theories of gravity

    International Nuclear Information System (INIS)

    Stein, Leo C.; Yunes, Nicolas

    2011-01-01

    The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.

  3. Effects of profile wear on wheel–rail contact conditions and dynamic interaction of vehicle and turnout

    Directory of Open Access Journals (Sweden)

    Jingmang Xu

    2016-01-01

    Full Text Available Severe wear is a common damage mechanism in railway turnouts, which strongly affects the dynamic performance of railway vehicles and maintenance costs of tracks. This article explores the effects of profile wear on contact behaviors in the wheel–rail/switch contact and dynamic interaction, and nominal and measured worn turnout rail profiles are used as boundary conditions of wheel–rail contact. The calculation of the dynamic loads and the resultant contact stresses and internal stresses makes it possible to rationally design railway turnouts and correctly select the material to be applied for their components. For these reasons, the multi-body system SIMPACK and finite element software ANSYS are used to calculate the features of load and subsequently distributions of contact stresses and internal stresses in the regions of wheel–turnout components. The results show that profile wear disturbs the distribution of wheel–rail contact point pairs, changes the positions of wheel–rail contact points along the longitudinal direction, and affects the dynamic interaction of vehicle and turnout. For the measured profile in this article, profile wear aggravates vertical dynamic responses significantly but improves lateral dynamic responses. Profile wear disturbs the normal contact situations between the wheel and switch rail and worsens the stress state of the switch rail.

  4. The effect of academic stress and attachment stress on stress-eaters and stress-undereaters.

    Science.gov (United States)

    Emond, Michael; Ten Eycke, Kayla; Kosmerly, Stacey; Robinson, Adele Lafrance; Stillar, Amanda; Van Blyderveen, Sherry

    2016-05-01

    It is well established that stress is related to changes in eating patterns. Some individuals are more likely to increase their overall food intake under conditions of stress, whereas others are more likely to consume less food when stressed. Attachment style has been linked to disordered eating and eating disorders; however, comparisons of eating behaviors under attachment versus other types of stress have yet to be explored. The present laboratory study examined the eating patterns in self-identified stress-undereaters and stress-eaters under various types of stress. More specifically, the study examined the effects of academic and attachment stress on calorie, carbohydrate and sugar consumption within these two groups. Under the guise of critiquing student films, university students viewed either one of two stress-inducing videos (academic stress or attachment stress, both designed to be emotionally arousing) or a control video (designed to be emotionally neutral), and their food intake was recorded. Results demonstrated that the video manipulations were effective in inducing stress. Differential patterns of eating were noted based on group and stress condition. Specifically, stress-undereaters ate fewer calories, carbohydrates and sugars than stress-eaters in the academic stress condition, but not in the attachment stress or control condition. Findings suggest that specific types of stressors may influence eating behaviors differently. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Propagating stress-pulses and wiggling transition revealed in string dynamics

    Science.gov (United States)

    Yao, Zhenwei

    2018-02-01

    Understanding string dynamics yields insights into the intricate dynamic behaviors of various filamentary thin structures in nature and industry covering multiple length scales. In this work, we investigate the planar dynamics of a flexible string where one end is free and the other end is subject to transverse and longitudinal motions. Under transverse harmonic motion, we reveal the propagating pulse structure in the stress profile over the string, and analyze its role in bringing the system into a chaotic state. For a string where one end is under longitudinal uniform acceleration, we identify the wiggling transition, derive the analytical wiggling solution from the string equations, and present the phase diagram.

  6. The effect of couple-stresses on the stress concentration around a moving crack

    Directory of Open Access Journals (Sweden)

    S. Itou

    1981-01-01

    Full Text Available The problem of a uniformly propagating finite crack in an infinite medium is solved within the linearized couple-stress theory. The self-equilibrated system of pressure is applied to the crack surfaces. The problem is reduced to dual integral equations and solved by a series-expansion method. The dynamic stress-intensity factor is computed numerically.

  7. Computational Psychometrics for Modeling System Dynamics during Stressful Disasters

    Directory of Open Access Journals (Sweden)

    Pietro Cipresso

    2017-08-01

    Full Text Available Disasters can be very stressful events. However, computational models of stress require data that might be very difficult to collect during disasters. Moreover, personal experiences are not repeatable, so it is not possible to collect bottom-up information when building a coherent model. To overcome these problems, we propose the use of computational models and virtual reality integration to recreate disaster situations, while examining possible dynamics in order to understand human behavior and relative consequences. By providing realistic parameters associated with disaster situations, computational scientists can work more closely with emergency responders to improve the quality of interventions in the future.

  8. Telomere dynamics in human mesenchymal stem cells after exposure to acute oxidative stress

    DEFF Research Database (Denmark)

    Harbo, M.; Koelvraa, S.; Serakinci, N.

    2012-01-01

    mesenchymal stem cells, either primary or hTERT immortalized, were exposed to sub-lethal doses of hydrogen peroxide, and the short term effect on telomere dynamics was monitored by Universal STELA and TRF measurements. Both telomere measures were then correlated with the percentage of senescent cells......A gradual shortening of telomeres due to replication can be measured using the standard telomere restriction fragments (TRF) assay and other methods by measuring the mean length of all the telomeres in a cell. In contrast, stress-induced telomere shortening, which is believed to be just...... estimated by senescence-associated beta-galactosidase staining. The exposure to acute oxidative stress resulted in an increased number of ultra-short telomeres, which correlated strongly with the percentage of senescent cells, whereas a correlation between mean telomere length and the percentage...

  9. Gene Expression Dynamics Accompanying the Sponge Thermal Stress Response.

    Science.gov (United States)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Marine sponges are important members of coral reef ecosystems. Thus, their responses to changes in ocean chemistry and environmental conditions, particularly to higher seawater temperatures, will have potential impacts on the future of these reefs. To better understand the sponge thermal stress response, we investigated gene expression dynamics in the shallow water sponge, Haliclona tubifera (order Haplosclerida, class Demospongiae), subjected to elevated temperature. Using high-throughput transcriptome sequencing, we show that these conditions result in the activation of various processes that interact to maintain cellular homeostasis. Short-term thermal stress resulted in the induction of heat shock proteins, antioxidants, and genes involved in signal transduction and innate immunity pathways. Prolonged exposure to thermal stress affected the expression of genes involved in cellular damage repair, apoptosis, signaling and transcription. Interestingly, exposure to sublethal temperatures may improve the ability of the sponge to mitigate cellular damage under more extreme stress conditions. These insights into the potential mechanisms of adaptation and resilience of sponges contribute to a better understanding of sponge conservation status and the prediction of ecosystem trajectories under future climate conditions.

  10. Dynamic airway pressure-time curve profile (Stress Index): a systematic review.

    Science.gov (United States)

    Terragni, Pierpaolo; Bussone, Guido; Mascia, Luciana

    2016-01-01

    The assessment of respiratory mechanics at the bedside is necessary in order to identify the most protective ventilatory strategy. Indeed in the last 20 years, adverse effects of positive ventilation to the lung structures have led to a reappraisal of the objectives of mechanical ventilation. The ventilator setting requires repeated readjustment over the period of mechanical ventilation dependency and careful respiratory monitoring to minimize the risks, preventing further injury and permitting the lung and airways healing. Among the different methods that have been proposed and validated, the analysis of dynamic P-t curve (named Stress Index, SI) represents an adequate tool available at the bedside, repeatable and, therefore, able to identify the amount of overdistension occurring in the daily clinical practice, when modifying positive end-expiratory pressure. In this review we will analyze the evidence that supports respiratory mechanics assessment at the bedside and the application of the dynamic P/t curve profile (SI) to optimize protective ventilation in patients with acute respiratory failure.

  11. Role of Reynolds stress and toroidal momentum transport in the dynamics of internal transport barriers

    International Nuclear Information System (INIS)

    Kim, S. S.; Jhang, Hogun; Diamond, P. H.

    2012-01-01

    We study the interplay between intrinsic rotation and internal transport barrier (ITB) dynamics through the dynamic change of the parallel Reynolds stress. Global flux-driven gyrofluid simulations are used for this study. In particular, we investigate the role of parallel velocity gradient instability (PVGI) in the ITB formation and the back transition. It is found that the excitation of PVGI is followed by a change in the Reynolds stress which drives a momentum redistribution. This significantly influences E×B shear evolution and subsequent ITB dynamics. Nonlocal interactions among fluctuations are also observed during the PVGI excitation, resulting in turbulence suppression at the ITB.

  12. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    Science.gov (United States)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    recorded in the years with highest NEE, but NEE was not a strong seasonal driver of stem increment. Recently developed terrestrial lidar scanners (VEGNET) monitored the daily changes in canopy dynamics with a comparable temporal resolution to dendrometer and eddy covariance measurements. Growth of each canopy stratum was distinctly seasonal, and we detected contrasting responses to climatic stress along the canopy height gradient. Leaf turnover was predominantly in summer and was initiated by prolonged heat stress and isolated storm events. Leaf shedding and replacement happened concurrently, with leaves being mainly discarded from the middle stratum and replaced in the top stratum. Due to our novel multi-instrument approach and the high temporal resolution of tree to ecosystem-scale growth dynamics we were able to demonstrate that above ground carbon allocation to stem and crown pools followed separate seasonal dynamics that did not necessarily follow the same seasonality as ecosystem scale carbon sequestration. Our findings will ultimately improve our understanding of the effects of short- and long-term variability in temperature and moisture stress on carbon allocation dynamics to the above ground biomass pools for broadleaf evergreen ecosystems.

  13. Performance enhancement in uniaxially tensile stressed GeSn n-channel fin tunneling field-effect transistor: Impact of stress direction

    Science.gov (United States)

    Wang, Hongjuan; Han, Genquan; Jiang, Xiangwei; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue

    2017-04-01

    In this work, the boosting effect on the performance of GeSn n-channel fin tunneling FET (nFinTFET) enabled by uniaxial tensile stress is investigated theoretically. As the fin rotates within the (001) plane, the uniaxial tensile stress is always along its direction. The electrical characteristics of tensile-stressed GeSn nFinTFETs with point and line tunneling modes are computed utilizing the technology computer aided design (TCAD) simulator in which the dynamic nonlocal band-to-band tunneling (BTBT) algorithm is employed. In comparison with the relaxed devices, tensile-stressed GeSn nFinTFETs achieve a substantial enhancement in band-to-band tunneling generation rate (G BTBT) and on-state current I ON owing to the reduced bandgap E G induced by the tensile stress. Performance improvement of GeSn nFinTFETs induced by tensile stress demonstrates a strong dependence on channel direction and tunneling modes. Under the same magnitude of stress, line-nFinTFETs obtain a more pronounced I ON enhancement over the transistors with point tunneling mode.

  14. Effects of cross-anisotropy and stress-dependency of pavement layers on pavement responses under dynamic truck loading

    Directory of Open Access Journals (Sweden)

    Rafiqul A. Tarefder

    2016-06-01

    Full Text Available Previous studies by the authors have determined pavement responses under dynamic loading considering cross-anisotropy in one layer only, either the cross-anisotropic viscoelastic asphalt concrete (AC layer or the cross-anisotropic stress-dependent base layer, but not both. This study evaluates pavement stress–strain responses considering cross-anisotropy in all layers, i.e. AC, base and subbase, using finite element modeling (FEM technique. An instrumented pavement section on Interstate I-40 near Albuquerque, New Mexico was used in ABAQUS framework as model geometry. Field asphalt cores were collected and tested in the laboratory to determine the cross-anisotropy (n-values defined by horizontal to vertical modulus ratio, and other viscoelastic parameters as inputs of the model incorporated through user defined material interface (UMAT functionality in ABAQUS. Field base and subbase materials were also collected and tested in the laboratory to determine stress-dependent nonlinear elastic model parameters, as inputs of the model, again incorporated through UMAT. The model validation task was carried out using field-measured deflections and strain values under falling weight deflectometer (FWD loads at the instrumented section. The validated model was then subjected to an actual truck loading for studying cross-anisotropic effects. It was observed that horizontal tensile strain at the bottom of the AC layer and vertical strains in all layers decreased with an increase in n-value of the asphalt layer, from n < 1 (anisotropy to n=1 (isotropy. This indicates that the increase in horizontal modulus caused the decrease in layer strains. It was also observed that if the base and subbase layers were considered stress-dependent instead of linear elastic unbound layers, the horizontal tensile strain at the bottom of the asphalt layer increased and vertical strains on top of the base and subbase also increased.

  15. Comparison of dynamic ultrasound and stress radiology for assessment of inferior glenohumeral laxity in asymptomatic shoulders

    International Nuclear Information System (INIS)

    Cheng, S.C.; Wallace, W.A.; Hulse, D.; Fairbairn, K.J.; Clarke, M.

    2008-01-01

    To determine the level of agreement between dynamic ultrasound imaging and stress radiography used for the measurement of inferior glenohumeral laxity in asymptomatic shoulders, and to determine the repeatability of the dynamic ultrasound technique. Using a custom-made stress device to apply an inferior displacement force of 90 N, we assessed 20 asymptomatic male subjects for inferior glenohumeral laxity, using stress radiography and dynamic ultrasound. Paired differences between the two methods were evaluated by the 95% limits of agreement method. At a separate session, 19 subjects had inferior glenohumeral laxity assessed by two observers, using dynamic ultrasound. Inter- and intra-observer repeatability was determined for the ultrasound technique. The mean [± standard deviation (SD)] inferior translation was 4.7 ± 4.1 mm by stress radiography and 4.4 ± 2.3 mm by dynamic ultrasound. The 95% limits of agreement showed good agreement between the two methods. The paired difference between the two measurement methods varied with the magnitude of the measurement (P < 0.001). Intra-observer repeatability of dynamic ultrasound was determined by the use of intra-class correlation coefficients and was 0.94 and 0.89 for the two investigators. Inter-observer repeatability was 0.85. The standard error of the measurement was 0.60 mm and 0.66 mm, for repeated measurements by the two investigators, and 0.85 mm between investigators. Repeatability coefficients demonstrated excellent consistency of measurement between sessions and good consistency between observers. Dynamic ultrasound is a valid and reproducible method for the assessment and quantification of inferior glenohumeral laxity. (orig.)

  16. Nonlinear cosmological consistency relations and effective matter stresses

    International Nuclear Information System (INIS)

    Ballesteros, Guillermo; Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin

    2012-01-01

    We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias

  17. Effects of neuronal loss in the dynamic model of neural networks

    International Nuclear Information System (INIS)

    Yoon, B-G; Choi, J; Choi, M Y

    2008-01-01

    We study the phase transitions and dynamic behavior of the dynamic model of neural networks, with an emphasis on the effects of neuronal loss due to external stress. In the absence of loss the overall results obtained numerically are found to agree excellently with the theoretical ones. When the external stress is turned on, some neurons may deteriorate and die; such loss of neurons, in general, weakens the memory in the system. As the loss increases beyond a critical value, the order parameter measuring the strength of memory decreases to zero either continuously or discontinuously, namely, the system loses its memory via a second- or a first-order transition, depending on the ratio of the refractory period to the duration of action potential

  18. Stability of cracked pipe under seismic/dynamic displacement-controlled stresses. Subtask 1.2 final report

    International Nuclear Information System (INIS)

    Kramer, G.; Veith, P.; Marschall, C.

    1997-06-01

    Results of displacement-controlled pipe fracture experiments, analyses, and material characterization efforts performed within the International Piping Integrity Research Group, IPIRG, Program Subtask 1.2 are discussed. Effects of dynamic versus quasi-static and monotonic versus cyclic loading were evaluated for ductile tearing of two materials, A106 Grade B ferritic steel and TP304 austenitic steel. Twelve through-wall-cracked pipe experiments were conducted on 6-inch diameter Schedule 120 pipe at 288 C (550 F). The results indicated dynamic loading at seismic strain rates marginally increased the load-carrying capacity of austenitic steel. The ferritic steel tested was sensitive to dynamic strain-aging, and consequently, its load-carrying capacity decreased at dynamic strain rates. Two parameters were found to affect the apparent ductile crack growth resistance during cyclic loading, load ratio (R) and incremental plastic displacement that occurs in a cycle. Cyclic (R = 0) loading had minimal effect on ductile tearing for both materials. However, fully reversed loading decreased the load-carrying capacity and toughness for both materials. The incremental plastic displacement can be as important as the load ratio; however, it is harder to quantify from design stress reports. Large plastic displacements will minimize the effect of negative load ratios

  19. Development of crankshaft dynamic stress prediction; Jitsudoji crankshaft oryoku yosoku shuho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, S; Iwamoto, A; Miyazawa, H; Sato, K; Ozaki, H [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    In this paper, the development of the simulation model which predicts the stress of the crankshaft under running condition precisely is described. This simulation model considers about the nonlinearity of the oil film stiffness in the main bearing, the dynamic characteristic of the crankshaft system including resonance and the cylinder block stiffness. By the development of this stress analysis simulation, the stress m each part of the crankshaft during durability testing could be precisely predicted. 1 ref., 10 figs.

  20. Nutrients versus emerging contaminants-Or a dynamic match between subsidy and stress effects on stream biofilms.

    Science.gov (United States)

    Aristi, I; Casellas, M; Elosegi, A; Insa, S; Petrovic, M; Sabater, S; Acuña, V

    2016-05-01

    Freshwater ecosystems are threatened by multiple anthropogenic stressors, which might be differentiated into two types: those that reduce biological activity at all concentrations (toxic contaminants), and those that subsidize biological activity at low concentrations and reduce it at high concentrations (assimilable contaminants). When occurring in mixtures, these contaminants can have either antagonistic, neutral or synergistic effects; but little is known on their joint effects. We assessed the interaction effects of a mixture of assimilable and toxic contaminants on stream biofilms in a manipulative experiment using artificial streams, and following a factorial design with three nutrient levels (low, medium or high) and either presence or absence of a mixture of emerging contaminants (ciprofloxacin, erythromycin, diclofenac, methylparaben, and sulfamethoxazole). We measured biofilm biomass, basal fluorescence, gross primary production and community respiration. Our initial hypotheses were that biofilm biomass and activity would: increase with medium nutrient concentrations (subsidy effect), but decrease with high nutrient concentrations (stress effect) (i); decrease with emerging contaminants, with the minimum decrease at medium nutrient concentrations (antagonistic interaction between nutrients subsidy and stress by emerging contaminants) and the maximum decrease at high nutrient concentrations (synergistic interaction between nutrients and emerging contaminants stress) (ii). All the measured variables responded linearly to the available nutrients, with no toxic effect at high nutrient concentrations. Emerging contaminants only caused weak toxic effects in some of the measured variables, and only after 3-4 weeks of exposure. Therefore, only antagonistic interactions were observed between nutrients and emerging contaminants, as medium and high nutrient concentrations partly compensated the harmful effects of emerging contaminants during the first weeks of the

  1. Dynamic stresses in a Francis model turbine at deep part load

    Science.gov (United States)

    Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri

    2017-04-01

    A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.

  2. Stresses and elastic constants of crystalline sodium, from molecular dynamics

    International Nuclear Information System (INIS)

    Schiferl, S.K.

    1985-02-01

    The stresses and the elastic constants of bcc sodium are calculated by molecular dynamics (MD) for temperatures to T = 340K. The total adiabatic potential of a system of sodium atoms is represented by pseudopotential model. The resulting expression has two terms: a large, strictly volume-dependent potential, plus a sum over ion pairs of a small, volume-dependent two-body potential. The stresses and the elastic constants are given as strain derivatives of the Helmholtz free energy. The resulting expressions involve canonical ensemble averages (and fluctuation averages) of the position and volume derivatives of the potential. An ensemble correction relates the results to MD equilibrium averages. Evaluation of the potential and its derivatives requires the calculation of integrals with infinite upper limits of integration, and integrand singularities. Methods for calculating these integrals and estimating the effects of integration errors are developed. A method is given for choosing initial conditions that relax quickly to a desired equilibrium state. Statistical methods developed earlier for MD data are extended to evaluate uncertainties in fluctuation averages, and to test for symmetry. 45 refs., 10 figs., 4 tabs

  3. [Dynamics of hormone secretion during chronic emotional stress].

    Science.gov (United States)

    Amiragova, M G; Kovalev, S V; Svirskaia, R I

    1979-05-01

    Study of spontaneous secretion of corticosteroids and thyroid hormones and the direct hormonal response to stress revealed the pathogenic effect of chronic combined emotional stress upon the hormonal function of adrenal glands. The hippocampus takes part in formation of the emotional tension in response to stress stimulus and of the following hormonal secretion.

  4. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-09-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, and obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular, the dynamic pore pressure and the combined static and dynamic effective stresses are presented.

  5. Investigation into Mechanism of Floor Dynamic Rupture by Evolution Characteristics of Stress and Mine Tremors: A Case Study in Guojiahe Coal Mine, China

    Directory of Open Access Journals (Sweden)

    Guangjian Liu

    2018-01-01

    Full Text Available In order to explore the mechanism of floor dynamic rupture, the current study adopts a thin plate model to further investigate the condition of floor failure. One of the possible explanations could be floor buckling due to high horizontal stress and dynamic disturbance ultimately leading to rapid and massive release of elastic energy thus inducing dynamic rupture. Seismic computed tomography and 3D location were employed to explore the evolution characteristics of floor stress distribution and positions of mine tremors. In the regions of floor dynamic rupture, higher P-wave velocity was recorded prior to the dynamic rupture. On the contrary, relatively lower reading was observed after the dynamic rupture thus depicting a high stress concentration condition. Meanwhile, evolution of mine tremors revealed the accumulation and subsequent release of energy during the dynamic rupture process. It was further revealed that dynamic rupture was induced due to the superposition of static and dynamic stresses: (i the high static stress concentration due to frontal and lateral abutment stress from coal pillar and (ii dynamic stress from the fracture and caving of coal pillar, hard roof, and key stratum. In the later part of this study, the floor dynamic rupture occurrence process would be reproduced through numerical simulations within a 0.6 sec time frame. The above-mentioned findings would be used to propose a feasible mechanism for prewarning and prevention of floor dynamic rupture using seismic computed tomography and mine tremors 3D location.

  6. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts

    Science.gov (United States)

    Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita

    2017-12-01

    Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.

  7. Stress, strain, and structural dynamics an interactive handbook of formulas, solutions, and Matlab toolboxes

    CERN Document Server

    Yang, Bingen

    2005-01-01

    Stress, Strain, and Structural Dynamics is a comprehensive and definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. This text integrates the development of fundamental theories, formulas and mathematical models with user-friendly interactive computer programs, written in the powerful and popular MATLAB. This unique merger of technical referencing and interactive computing allows instant solution of a variety of engineering problems

  8. The Role of Molecular Microtubule Motors and the Microtubule Cytoskeleton in Stress Granule Dynamics

    Directory of Open Access Journals (Sweden)

    Kristen M. Bartoli

    2011-01-01

    Full Text Available Stress granules (SGs are cytoplasmic foci that appear in cells exposed to stress-induced translational inhibition. SGs function as a triage center, where mRNAs are sorted for storage, degradation, and translation reinitiation. The underlying mechanisms of SGs dynamics are still being characterized, although many key players have been identified. The main components of SGs are stalled 48S preinitiation complexes. To date, many other proteins have also been found to localize in SGs and are hypothesized to function in SG dynamics. Most recently, the microtubule cytoskeleton and associated motor proteins have been demonstrated to function in SG dynamics. In this paper, we will discuss current literature examining the function of microtubules and the molecular microtubule motors in SG assembly, coalescence, movement, composition, organization, and disassembly.

  9. Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction

    Science.gov (United States)

    Hardebeck, J.

    2014-12-01

    Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although

  10. Stresses in a submarine topography under ocean waves

    Energy Technology Data Exchange (ETDEWEB)

    Mei, C.C.; McTigue, D.F.

    1984-01-01

    The problem of submarine slope stability is of interest to both offshore engineering and geology. In an uneven topography, the weight above a horizontal plane induces two-dimensional variation in the static stress field. The action of wave pressure, which changes with depth, further introduces excess pore pressure and dynamic stresses in the sea bottom. In the present paper, we combine a simple analytical theory for the static stress by the present authors, and the recent solution by Mei and Foda for wave-induced stresses in a plane poro-elastic sea bed to account for mild bottom slope and wave shoaling, to obtain the effective stress field in a submarine topography under sea waves. Sample results are given for a ridge and a canyon. In particular the dynamic pore pressure and the combined static and dynamic effective stresses are presented. 10 references, 11 figures.

  11. Effective long wavelength scalar dynamics in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)

    2017-05-01

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. The long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.

  12. Short-term salt stress strongly affects dynamic photosynthesis, but not steady-state photosynthesis, in tomato (Solanum lycopersicum)

    NARCIS (Netherlands)

    Zhang, Yuqi; Kaiser, Elias; Zhang, Yating; Yang, Qichang; Li, Tao

    2018-01-01

    Salt stress occurs worldwide due to widespread soil salinization. Also, plants are often subjected to rapidly alternating periods of sun and shade (sunflecks). Despite this combined occurrence of salt stress and sunflecks, dynamic photosynthetic responses to sunflecks under salt stress remain

  13. Using Mouse and Keyboard Dynamics to Detect Cognitive Stress During Mental Arithmetic

    OpenAIRE

    Ayesh, Aladdin, 1972-; Stacey, Martin; Lim, Yee Mei

    2015-01-01

    To build a personalized e-learning system that can deliver adaptive learning content based on student’s cognitive effort and efficiency, it is important to develop a construct that can help measuring perceived mental state, such as stress and cognitive load. The construct must be able to be quantified, computerized and automated. Our research investigates how mouse and keyboard dynamics analyses could be used to detect cognitive stress, which is induced by high mental arithmetic demand with t...

  14. Dynamics of Mount Somma-Vesuvius edifice: from stress field inversion to analogue and numerical modelling

    Science.gov (United States)

    De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele

    2017-04-01

    Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical

  15. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  16. A Laboratory Study of the Effect of Stress State on the Elastic Moduli of Sand

    Science.gov (United States)

    1990-01-01

    frequency. Drnevich (1967) investigated the effect of strain history on the dynamic properties of a dry Ottawa sand. One finding of his work was that the...2.2) in which jo = effective octahedral normal stress, e = void ratio, H = ambient stress and vibration history , S - de9,ee of saturation, To...zt) = ik[Cei(kz-wt) - De-i(kz+Wt) (3.20) dz I Substituting Eqs. 3.19 and 3.20 into the second boundary condition at z - L yields ikEA [Cei(kL-cot

  17. Mean-Field Scenario for the Athermal Creep Dynamics of Yield-Stress Fluids

    Science.gov (United States)

    Liu, Chen; Martens, Kirsten; Barrat, Jean-Louis

    2018-01-01

    We develop a theoretical description based on an existent mean-field model for the transient dynamics prior to the steady flow of yielding materials. The mean-field model not only reproduces the experimentally observed nonlinear time dependence of the shear-rate response to an external stress, but also allows for the determination of the different physical processes involved in the onset of the reacceleration phase after the initial slowing down and a distinct fluidization phase. The fluidization time displays a power-law dependence on the distance of the applied stress to an age-dependent yield stress, which is not universal but strongly dependent on initial conditions.

  18. Coupling effects of chemical stresses and external mechanical stresses on diffusion

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2009-01-01

    Interaction between diffusion and stress fields has been investigated extensively in the past. However, most of the previous investigations were focused on the effect of chemical stress on diffusion due to the unbalanced mass transport. In this work, the coupling effects of external mechanical stress and chemical stress on diffusion are studied. A self-consistent diffusion equation including the chemical stress and external mechanical stress gradient is developed under the framework of the thermodynamic theory and Fick's law. For a thin plate subjected to unidirectional tensile stress fields, the external stress coupled diffusion equation is solved numerically with the help of the finite difference method for one-side and both-side charging processes. Results show that, for such two types of charging processes, the external stress gradient will accelerate the diffusion process and thus increase the value of concentration while reducing the magnitude of chemical stress when the direction of diffusion is identical to that of the stress gradient. In contrast, when the direction of diffusion is opposite to that of the stress gradient, the external stress gradient will obstruct the process of solute penetration by decreasing the value of concentration and increasing the magnitude of chemical stress. For both-side charging process, compared with that without the coupling effect of external stress, an asymmetric distribution of concentration is produced due to the asymmetric mechanical stress field feedback to diffusion.

  19. Cardiorespiratory dynamic response to mental stress: a multivariate time-frequency analysis.

    Science.gov (United States)

    Widjaja, Devy; Orini, Michele; Vlemincx, Elke; Van Huffel, Sabine

    2013-01-01

    Mental stress is a growing problem in our society. In order to deal with this, it is important to understand the underlying stress mechanisms. In this study, we aim to determine how the cardiorespiratory interactions are affected by mental arithmetic stress and attention. We conduct cross time-frequency (TF) analyses to assess the cardiorespiratory coupling. In addition, we introduce partial TF spectra to separate variations in the RR interval series that are linearly related to respiration from RR interval variations (RRV) that are not related to respiration. The performance of partial spectra is evaluated in two simulation studies. Time-varying parameters, such as instantaneous powers and frequencies, are derived from the computed spectra. Statistical analysis is carried out continuously in time to evaluate the dynamic response to mental stress and attention. The results show an increased heart and respiratory rate during stress and attention, compared to a resting condition. Also a fast reduction in vagal activity is noted. The partial TF analysis reveals a faster reduction of RRV power related to (3 s) than unrelated to (30 s) respiration, demonstrating that the autonomic response to mental stress is driven by mechanisms characterized by different temporal scales.

  20. Noise effects on the health status in a dynamic failure model for living organisms

    Science.gov (United States)

    Kang, H.; Jo, J.; Choi, M. Y.; Choi, J.; Yoon, B.-G.

    2007-03-01

    We study internal and external noise effects on the healthy-unhealthy transition and related phenomena in a dynamic failure model for living organisms. It is found that internal noise makes the system weaker, leading to breakdown under smaller stress. The discontinuous healthy-unhealthy transition in a system with global load sharing below a critical point is naturally explained in terms of the bistability for the health status. External noise present in constant stress gives similar results; further, it induces resonance in response to periodic stress, regardless of load transfer. In the case of local load sharing, such periodic stress is revealed more hazardous than the constant stress.

  1. Long-range correlations and fractal dynamics in C. elegans: Changes with aging and stress

    Science.gov (United States)

    Alves, Luiz G. A.; Winter, Peter B.; Ferreira, Leonardo N.; Brielmann, Renée M.; Morimoto, Richard I.; Amaral, Luís A. N.

    2017-08-01

    Reduced motor control is one of the most frequent features associated with aging and disease. Nonlinear and fractal analyses have proved to be useful in investigating human physiological alterations with age and disease. Similar findings have not been established for any of the model organisms typically studied by biologists, though. If the physiology of a simpler model organism displays the same characteristics, this fact would open a new research window on the control mechanisms that organisms use to regulate physiological processes during aging and stress. Here, we use a recently introduced animal-tracking technology to simultaneously follow tens of Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively evaluate the effects of aging and temperature stress on nematode motility. Similar to human physiological signals, scaling analysis reveals long-range correlations in numerous motility variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of timescales. These properties change as a result of a superposition of age and stress-related adaptive mechanisms that regulate motility.

  2. Kinetics of interstitial defects in α-Fe: The effect from uniaxial stress

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Changwoo [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Wang, Qingyu [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-15

    Understanding defect kinetics in a stress field is important for multiscale modeling of materials degradation of nuclear materials. By means of molecular dynamics and molecular statics simulations, we calculate formation and migration energies of self-interstitial atoms (SIA) and SIA clusters (up to size of 5 interstitials) in alpha Fe and identify their stable configurations under uniaxial tensile strains. By applying uniaxial stress along [111], <111> oriented single SIA defects become more stable than <110> oriented SIA, which is opposite to stress-free condition. Diffusion of single SIA defects under [111] tensile stress is facilitated along [111] direction and the diffusion becomes one dimensional (1D). For SIA clusters, their diffusion under zero stress has gradual transition from three dimensional (3D) for small clusters to one dimensional (1D) for large clusters. Under the tensile stress along [111], the 3D to 1D transition is accelerated. For large SIA clusters, the stress effect is quickly saturated with less diffusivity enhancement in comparison with small SIA clusters.

  3. Reduced Insulin/IGF-1 Signaling Restores the Dynamic Properties of Key Stress Granule Proteins during Aging

    Directory of Open Access Journals (Sweden)

    Marie C. Lechler

    2017-01-01

    Full Text Available Summary: Low-complexity “prion-like” domains in key RNA-binding proteins (RBPs mediate the reversible assembly of RNA granules. Individual RBPs harboring these domains have been linked to specific neurodegenerative diseases. Although their aggregation in neurodegeneration has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics. We show that a wide variety of RNA granule components, including stress granule proteins, become highly insoluble with age in C. elegans and that reduced insulin/insulin-like growth factor 1 (IGF-1 daf-2 receptor signaling efficiently prevents their aggregation. Importantly, stress-granule-related RBP aggregates are associated with reduced fitness. We show that heat shock transcription factor 1 (HSF-1 is a main regulator of stress-granule-related RBP aggregation in both young and aged animals. During aging, increasing DAF-16 activity restores dynamic stress-granule-related RBPs, partly by decreasing the buildup of other misfolded proteins that seed RBP aggregation. Longevity-associated mechanisms found to maintain dynamic RBPs during aging could be relevant for neurodegenerative diseases. : Lechler et al. show that RNA-binding proteins (RBPs including stress granule proteins are prone to aggregate with age in C. elegans. Aggregation of stress granule RBPs with “prion-like” domains is associated with reduced fitness. Their aggregation is prevented by longevity pathways and promoted by the aggregation of other misfolded proteins. Keywords: neurodegenerative diseases, Caenorhabditis elegans, protein aggregation, aging, RNA-binding proteins, stress granules, HSF-1, DAF-2, longevity

  4. A study on the evaluation of dynamic stress intensity factor in repeated impact bending test

    International Nuclear Information System (INIS)

    Sim, Jae Ki; Cho, Gyu Jae; Han, Gill Young

    1988-01-01

    The purpose of the present paper was to establish the evaluation of the dynamic stress intensity factor in repeated impact three point bending test. Contact force between the impact bar and the cracked beam (simple supported beam) was analyzed by the using Hertz's contact law. In order to clarify the validity of theoretical analysis, experiments of dynamic stress intensity factir k I (t) are made on the cracked beam. The results obtained from this study are as follow: 1. In case of impact force analysis the theoretical result was obtained by the use of the Hertz's contact law. It's result was agreemant with the experimental result. Particularly, it was good agreement in the low impact velocity range. 2. The time variation of the dynamic stress intensity was determined by using the simple formula developed in this pqper. And the validity of it's result can be confirmed by experiment. Particlarly, this theoretical analysis was a good agreement to actual phenomena on from 0.3 msec to 0.65 msec. (Author)

  5. Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact

    International Nuclear Information System (INIS)

    Li Qing; Wang Tianshu; Ma Xingrui

    2009-01-01

    Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems

  6. Toxic Stress: Effects, Prevention and Treatment

    Directory of Open Access Journals (Sweden)

    Hillary A. Franke

    2014-11-01

    Full Text Available Children who experience early life toxic stress are at risk of long-term adverse health effects that may not manifest until adulthood. This article briefly summarizes the findings in recent studies on toxic stress and childhood adversity following the publication of the American Academy of Pediatrics (AAP Policy Report on the effects of toxic stress. A review of toxic stress and its effects is described, including factors of vulnerability, resilience, and the relaxation response. An integrative approach to the prevention and treatment of toxic stress necessitates individual, community and national focus.

  7. The effect of processing parameters on the dynamic recrystallisation behaviour of API-X70 pipeline steel

    International Nuclear Information System (INIS)

    Al Shahrani, Abdullah; Yazdipour, Nima; Dehghan-Manshadi, Ali; Gazder, Azdiar A.; Cayron, Cyril; Pereloma, Elena V.

    2013-01-01

    The effect of deformation temperature and strain rate on the dynamic recrystallisation (DRX) behaviour of X70 pipeline steel was investigated. DRX parameters such as the critical and peak stresses and strains as well as the deformation activation energy were determined in the temperature range between 925 °C and 1125 °C for strain rates of 0.1, 1 and 5 s −1 . The relationship between the peak stresses and strains with the Zener–Hollomon parameter was determined. The dynamically recrystallised volume fraction was computed as a function of the different temperatures and strain rates. The APRGE software was applied for the first time on electron back-scattering diffraction data of dynamically recrystallised microstructures in order to reconstruct the prior austenite from the as-quenched martensite phase. The dynamically recrystallised flow stress curves and microstructure were also predicted using cellular automata modelling. The results show an earlier onset of DRX with a decrease in strain rate or an increase in deformation temperature. The dynamically recrystallised grain size is also found to decrease with an increase in strain rate and a lowering of deformation temperature

  8. Characterizing the intra-urban spatiotemporal dynamics of High Heat Stress Zones (Hotspots)

    Science.gov (United States)

    Shreevastava, A.; Rao, P. S.; McGrath, G. S.

    2017-12-01

    In this study, we present an innovative framework to characterize the spatio-temporal dynamics of High Heat Stress Zones (Hot spots) created within an Urban area in the event of a Heat Wave. Heat waves are one of the leading causes of weather-related human mortality in many countries, and cities receive its worst brunt. The extreme heat stress within urban areas is often a synergistic combination of large-scale meteorological events, and the locally exacerbated impacts due to Urban Heat Islands (UHI). UHI is typically characterized as the difference between mean temperature of the urban and rural area. As a result, it fails to capture the significant variability that exists within the city itself. This variability arises from the diverse and complex spatial geometries of cities. Previous studies that have attempted to quantify the heat stress at an intra-urban scale are labor intensive, expensive, and difficult to emulate globally as they rely on availability of extensive data and their assimilation. The proposed study takes advantage of the well-established notion of fractal properties of cities to make the methods scalable to other cities where in-situ observational data might not be available. As an input, land surface temperatures are estimated using Landsat data. Using clustering analysis, we probe the emergence of thermal hotspots. The probability distributions (PD) of these hotspots are found to follow a power-law distribution in agreement with fractal characteristics of the city. PDs of several archetypical cities are then investigated to compare the effect of different spatial structures (e.g. monocentric v/s polycentric, sprawl v/s compact). Further, the temporal variability of the distributions on a diurnal as well as a seasonal scale is discussed. Finally, the spatiotemporal dynamics of the urban hotspots under a heat-wave (E.g. Delhi Heat wave, 2015) are compared against the non-heat wave scenarios. In summary, a technique that is globally adaptive and

  9. Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development.

    Science.gov (United States)

    Bai, Ge; Bee, Jared S; Biddlecombe, James G; Chen, Quanmin; Leach, W Thomas

    2012-02-28

    Agitation of small amounts of liquid is performed routinely in biopharmaceutical process, formulation, and packaging development. Protein degradation commonly results from agitation, but the specific stress responsible or degradation mechanism is usually not well understood. Characterization of the agitation stress methods is critical to identifying protein degradation mechanisms or specific sensitivities. In this study, computational fluid dynamics (CFD) was used to model agitation of 1 mL of fluid by four types of common laboratory agitation instruments, including a rotator, orbital shaker, magnetic stirrer and vortex mixer. Fluid stresses in the bulk liquid and near interfaces were identified, quantified and compared. The vortex mixer provides the most intense stresses overall, while the stir bar system presented locally intense shear proximal to the hydrophobic stir bar surface. The rotator provides gentler fluid stresses, but the air-water interfacial area and surface stresses are relatively high given its low rotational frequency. The orbital shaker provides intermediate-level stresses but with the advantage of a large stable platform for consistent vial-to-vial homogeneity. Selection of experimental agitation methods with targeted types and intensities of stresses can facilitate better understanding of protein degradation mechanisms and predictability for "real world" applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Experimental investigation of transient thermoelastic effects in dynamic fracture

    International Nuclear Information System (INIS)

    Rittel, D.

    1997-01-01

    Thermoelastic effects in fracture are generally considered to be negligible at the benefit of the conversion of plastic work into heat. For the case of dynamic crack initiation, the experimental and theoretical emphasis has been put on the temperature rise associated with crack-tip plasticity. Nevertheless, earlier experimental work with polymers has shown that thermoelastic cooling precedes the temperature rise at the tip of a propagating crack (Fuller et al., 1975). Transient thermoelastic effects at the tip of a dynamically loaded crack have been theoretically assessed and shown to be significant when thermal conductivity is initially neglected. However, the fundamental question of the relation between crack initiation and thermal fields, both of transient nature, is still open. In this paper, we present an experimental investigation of the thermoelastic effect at the tip of fatigue cracks subjected to mixed-mode (dominant mode 1) dynamic loading. The material is commercial polymethylmethacrylate as an example of 'brittle' material. The applied loads, crack-tip temperatures and fracture time are simultaneously monitored to provide a more complete image of dynamic crack initiation. The corresponding evolution of the stress intensity factors is calculated by a hybrid-experimental numerical model. The results show that substantial crack-tip cooling develops initially to an extent which corroborates theoretical estimates. This effect is followed by a temperature rise. Fracture is shown to initiate during the early cooling phase, thus emphasizing the relevance of the phenomenon to dynamic crack initiation in this material as probably in other materials. (author)

  11. Dynamics of seed germination, seedling growth and physiological responses of sweet corn under peg-induced water stress

    International Nuclear Information System (INIS)

    Li, W.; Zhang, X.; Li, G.; Suo, H.; Ashraf, U.; Mo, Z.

    2017-01-01

    Stress induced variations in seed germination of various crops has been well reported but germination potential of sweet corn seeds under osmotic stress with relation to time dynamics is still elusive. Present study explored the water absorption, germination potential and physiological indices and of sweet corn seeds exposed to five different levels of PEG-induced water stress i.e., 0, -0.3, -0.6, -0.9 and -1.2 M Pa water potential (Psi /sub w/) with respect to time dynamics. Results showed that enhanced water stress for prolonged time period (96 h) led to substantial reduction in water absorption and seed moisture contents, seed germination and vigor index as well as seedlings growth and fresh and dry biomass. Osmotic stress triggered antioxidant defense system like super-oxide dismutase (SOD), peroxidase (POD) and catalase (CAT) and accumulation of soluble sugars, proline and protein contents considerably. Initially, activities of SOD and CAT were higher but then reduced as stress persisted, however, POD showed a linear increase with respect to stress exposure time. Water stress also increased MDA contents up to 36 h then declined. Further, alpha-amylase activity and soluble protein showed significant correlations with maize seed germination. Overall, germination potential decreased with increase in osmotic stress in sweet corn seeds. (author)

  12. Carbon and Nitrogen dynamics in deciduous and broad leaf trees under drought stress

    Science.gov (United States)

    Joseph, Jobin; Schaub, Marcus; Arend, Matthias; Saurer, Matthias; siegwolf, Rolf; Weiler, Markus; Gessler, Arthur

    2017-04-01

    Climate change is projected to lead to an increased frequency and duration of severe drought events in future. Already within the last twenty years, however, drought stress related forest mortality has been increasing across the globe. Tree and forest die off events have multiple adverse effects on ecosystem functioning and might convert previous carbon sinks to act as carbon sources instead and can thus intensify the effect of climate change and global warming. Current predictions of forest's functioning under drought and thus forest mortality under future climatic conditions are constrained by a still incomplete picture of the trees' physiological reactions that allows some trees to survive drought periods while others succumb. Concerning the effects of drought on the carbon balance and on tree hydraulics our picture is getting more complete, but still interactions between abiotic factors and pest and diseases as well as the interaction between carbon and nutrient balances as factors affecting drought induced mortality are not well understood. Reduced carbon allocation from shoots to roots might cause a lack of energy for root nutrient uptake and to a shortage of carbon skeletons for nitrogen assimilation and thus to an impaired nutrient status of trees. To tackle these points, we have performed a drought stress experiment with six different plant species, 3 broad leaf (maple, beech and oak) and 3 deciduous (pine, fir and spruce). Potted two-year-old seedlings were kept inside a greenhouse for 5 months and 3 levels of drought stress (no stress (control), intermediate and intensive drought stress) were applied by controlling water supply. Gas exchange measurements were performed periodically to monitor photosynthesis, transpiration, stomatal conductance. At the pinnacle of drought stress, we applied isotopic pulse labelling: On the one hand we exposed trees to 13CO2 to investigate on carbon dynamics and the allocation of new assimilates within the plant. Moreover

  13. Salinity effects on the dynamics and patterns of desiccation cracks

    Science.gov (United States)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to

  14. The Role of Musculoskeletal Dynamics and Neuromuscular Control in Stress Development in Bone

    Science.gov (United States)

    DeWoody, Yssa

    1996-01-01

    The role of forces produced by the musculotendon units in the stress development of the long bones during gait has not been fully analyzed. It is well known that the musculotendons act as actuators producing the joint torques which drive the body. Although the joint torques required to perform certain motor tasks can be recovered through a kinematic analysis, it remains a difficult problem to determine the actual forces produced by each muscle that resulted in these torques. As a consequence, few studies have focused on the role of individual muscles in the development of stress in the bone. This study takes a control theoretic approach to the problem. A seven-link, eight degrees of freedom model of the body is controlled by various muscle groups on each leg to simulate gait. The simulations incorporate Hill-type models of muscles with activation and contraction dynamics controlled through neural inputs. This direct approach allows one to know the exact muscle forces exerted by each musculotendon throughout the gait cycle as well the joint torques and reaction forces at the ankle and knee. Stress and strain computed by finite element analysis on skeletal members will be related to these derived loading conditions. Thus the role of musculoskeletal dynamics and neuromuscular control in the stress development of the tibia during gait can be analyzed.

  15. Photoelastic stress investigation in underground large hole in permafrost soil (statics, thermoelasticity, dynamics, photoelastic strain-gauges)

    Science.gov (United States)

    Savostjanov, V. N.; Dvalishvili, V. V.; Sakharov, V. N.; Isajkin, A. S.; Frishter, L.; Starchevsky, A. V.

    1991-12-01

    The development of many-year-frost rock (MYFR) region hydrotechnic construction, the MYFR being quite a reliable construction based provided it is situated outside the seasonal temperature fluctuation layer, requires the rock stress-deformed state evaluating criteria working out with maximal possible account of static, dynamic, blast-hole drilling, and temperature effect on their properties. In estimating the hydroelectrical power station (HPS) underground building stress-deformed state the present work refers to experimental data and calculations, received by solving a linear task with further account of the building profile changing effect in the process of construction and the concrete and rock mechanic properties heterogeneity. The proposed order is justified, provided the rock mass defrosting depth value is small as compared to the rock separate block dimensions and it corresponds to the building construction period. The results are given for the Kolymskaya Hydroelectrical Power Station building cross-section, considered under flat deformation conditions.

  16. Nonlinear dynamics of a flexible rotor supported by turbulent journal bearings with couple stress fluid

    International Nuclear Information System (INIS)

    Lo, C.-Y.; Chang-Jian, C.-W.

    2008-01-01

    This study presents a dynamic analysis of a rotor supported by two turbulent flow model journal bearings and lubricated with couple stress fluid under nonlinear suspension. The dynamics of the rotor center and bearing center is studied. The dynamic equations are solved using the Runge-Kutta method. The analysis methods employed in this study is inclusive of the dynamic trajectories of the rotor center and bearing center, power spectra, Poincare maps and bifurcation diagrams. The maximum Lyapunov exponent analysis is also used to identify the onset of chaotic motion. The results show that the values of dimensionless parameters l* strongly influence dynamic motions of bearing and rotor centre. It is found that couple stress fluid improve the stability of the system when l* > 0.4 even if the flow of this system is turbulent. We also demonstrated that the dimensionless rotational speed ratios s and the dimensionless unbalance parameter β are also significant system parameters. The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided

  17. Simulation of bending stress variation in long buried thick-walled pipes under the earth’s movement using combined linear dynamics and beam theories

    Directory of Open Access Journals (Sweden)

    Salau Tajudeen A.O.

    2014-01-01

    Full Text Available This study reported a simulation approach to the understanding of the interactions between a buried pipe and the soil system by computing the bending stress variation of harmonically-excited buried pipes. The established principles of linear dynamics theory and simple beam theory were utilised in the analysis of the problem of buried pipe bending stress accumulation and its dynamics. With regards to the parameters that influence the bending stress variations, the most important are the isolation factor, uniform external load, and the corresponding limiting conditions. The simulated mathematical expressions, containing static and dynamic parameters of the buried pipe and earth, were coded in Fortran programming language and applied in the simulation experiment. The results obtained showed that harmonically-excited buried thick-walled pipe became stable and effective when the ratio of the natural frequency of vibration to the forced frequency is greater than 2.0, whenever the damped factor is used as the control parameter for the maximum bending stress. The mirror image of the stress variation produces variation in the location of the maximum bending stress in quantitative terms. The acceptable pipe materials for the simulated cases must have yield strength in bending greater than or equal to 13.95 MPa. The results obtained in this work fill a gap in the literature and will be useful to pipeline engineers and designers, as well as to environmental scientists in initialising and controlling environmental issues and policy formulation concerning the influence of buried pipe on the soil and water in the environment.

  18. In stressful company – Changes in stress and work ties over time

    DEFF Research Database (Denmark)

    Waldstrøm, Christian; Parker, Andrew; Shah, Neha P.

    Recent research on stress and burnout has highlighted the collective aspects of stress symptoms, perceived stress, and coping mechanisms. Much of this work, however, is focused on group and team dynamics rather than how network factors shape individuals’ feelings of stress and burnout. We use...... a stress questionnaire and social network analysis at three time points in a Scandinavian biotechnology company to examine the interactions between stress and relationship development and maintenance over time. We show that individuals tend to form and maintain ties to people who are less stressed than...... they are, indicating that while misery might love company, stress does not. Given the longitudinal nature of the study, we’re able to disentangle the causal effects....

  19. Effect of applied stress on the compressive residual stress introduced by laser peening

    International Nuclear Information System (INIS)

    Sumiya, Rie; Tazawa, Toshiyuki; Narazaki, Chihiro; Saito, Toshiyuki; Kishimoto, Kikuo

    2016-01-01

    Peening is the process which is able to be generated compressive residual stress and is known to be effective for preventing SCC initiation and improvement of fatigue strength. Laser peening is used for the nuclear power plant components in order to prevent SCC initiation. Although it is reported that the compressive residual stress decreases due to applied stresses under general operating condition, the change of residual stress might be large under excessive loading such as an earthquake. The objectives of this study are to evaluate the relaxation behavior of the compressive residual stress due to laser peening and to confirm the surface residual stress after loading. Therefore laser peened round bar test specimens of SUS316L which is used for the reactor internals of nuclear power plant were loaded at room temperature and elevated temperature and then surface residual stresses were measured by X-ray diffraction method. In the results of this test, it was confirmed that the compressive residual stress remained after applying uniform stress larger than 0.2% proof stress, and the effect of cyclic loading on the residual stress was small. The effect of applying compressive stress on the residual stress relaxation was confirmed to be less than that of applying tensile stress. Plastic deformation through a whole cross section causes the change in the residual stress distribution. As a result, the surface compressive residual stress is released. It was shown that the effect of specimen size on residual stress relaxation and the residual stress relaxation behavior in the stress concentration region can be explained by assumed stress relaxation mechanism. (author)

  20. A potential model for drug screening by simulating the effect of shear stress in vivo on endothelium.

    Science.gov (United States)

    Xu, Yingqian; Wang, Bochu; Deng, Jia; Liu, Zerong; Zhu, Liancai

    2013-01-01

    The purpose of this paper was to research the potential of a dynamic cell model in drug screening by studying the influence of microvascular wall shear stress on the drug absorption of endothelial cells compared to that in the static state. The cells were grown and seeded on gelatin-coated glass slides and were pretreated with extracts of Salviae miltiorrhizae (200 μg/ml) for 1 h. Then oxidative stress damage was produced by H2O2 (300 μmol/l) for 0.5 h under the 1.5 dyn/cm2 shear stress incorporated in a parallel plate flow chamber. Morphological analysis was conducted with an inverted microscope and image analysis software, and high performance liquid chromatography-mass spectrometry was used for the detection of active compounds. We compared the drug absorption in the dynamic group with that in the static group. In the dynamic model, five compounds and two new metabolite peaks were detected. However, in the static model, four compounds were absorbed by cells, and one metabolite peak was found. This study indicated that there were some effects on the absorption and metabolism of drugs under the microvascular shear stress compared to that under stasis. We infer that shear stress in the microcirculation situation in vivo played a role in causing the differences between drug screening in vitro and in vivo.

  1. Stress Effects on Multiple Memory System Interactions

    Science.gov (United States)

    Ness, Deborah; Calabrese, Pasquale

    2016-01-01

    Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour. PMID:27034845

  2. Stress Effects on Multiple Memory System Interactions.

    Science.gov (United States)

    Ness, Deborah; Calabrese, Pasquale

    2016-01-01

    Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour.

  3. Stress Effects on Multiple Memory System Interactions

    Directory of Open Access Journals (Sweden)

    Deborah Ness

    2016-01-01

    Full Text Available Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour.

  4. Family matters: effects of birth order, culture, and family dynamics on surrogate decision-making.

    Science.gov (United States)

    Su, Christopher T; McMahan, Ryan D; Williams, Brie A; Sharma, Rashmi K; Sudore, Rebecca L

    2014-01-01

    Cultural attitudes about medical decision-making and filial expectations may lead some surrogates to experience stress and family conflict. Thirteen focus groups with racially and ethnically diverse English and Spanish speakers from county and Veterans Affairs hospitals, senior centers, and cancer support groups were conducted to describe participants' experiences making serious or end-of-life decisions for others. Filial expectations and family dynamics related to birth order and surrogate decision-making were explored using qualitative, thematic content analysis, and overarching themes from focus group transcripts were identified. The mean age of the 69 participants was 69 ± 14, and 29% were African American, 26% were white, 26% were Asian or Pacific Islander, and 19% were Latino. Seventy percent of participants engaged in unprompted discussions about birth order and family dynamics. Six subthemes were identified within three overarching categories: communication (unspoken expectations and discussion of death as taboo), emotion (emotional stress and feelings of loneliness), and conflict (family conflict and potential solutions to prevent conflict). These findings suggest that birth order and family dynamics can have profound effects on surrogate stress and coping. Clinicians should be aware of potential unspoken filial expectations for firstborns and help facilitate communication between the patient, surrogate, and extended family to reduce stress and conflict. © Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  5. Family Matters: Effects of Birth Order, Culture, and Family Dynamics on Surrogate Decision Making

    Science.gov (United States)

    Su, Christopher T.; McMahan, Ryan D.; Williams, Brie A.; Sharma, Rashmi K.; Sudore, Rebecca L.

    2014-01-01

    Cultural attitudes about medical decision making and filial expectations may lead some surrogates to experience stress and family conflict. Thirteen focus groups with racially and ethnically diverse English- and Spanish-speakers from county and Veterans hospitals, senior centers, and cancer support groups were conducted to describe participants’ experiences making serious or end-of-life decisions for others. Filial expectations and family dynamics related to birth order and surrogate decision making were explored using qualitative, thematic content analysis and overarching themes from focus group transcripts were identified. The mean age of the 69 participants was 69 years ± 14 and 29% were African American, 26% were White, 26% were Asian/Pacific Islander, and 19% were Latino. Seventy percent of participants engaged in unprompted discussions about birth order and family dynamics. Six subthemes were identified within 3 overarching categories of communication, emotion, and conflict: Communication – (1) unspoken expectations and (2) discussion of death as taboo; Emotion – (3) emotional stress and (4) feelings of loneliness; and Conflict – (5) family conflict and (6) potential solutions to prevent conflict. These findings suggest that birth order and family dynamics can have profound effects on surrogate stress and coping. Clinicians should be aware of potential unspoken filial expectations for firstborns and help facilitate communication between the patient, surrogate, and extended family to reduce stress and conflict. PMID:24383459

  6. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, M.M.; Fabricius, I.L.

    2012-01-01

    one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...... determined under uniaxial strain condition will be more relevant in reservoir studies. Copyright 2012 ARMA, American Rock Mechanics Association....

  7. Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics

    Science.gov (United States)

    Chaudhri, Anuj; Lukes, Jennifer R.

    2010-02-01

    The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.

  8. Unsteady exergy destruction of the neuron under dynamic stress conditions

    International Nuclear Information System (INIS)

    Genc, S.; Sorguven, E.; Ozilgen, M.; Aksan Kurnaz, I.

    2013-01-01

    Just like all physical systems, biological systems also obey laws of thermodynamics, and as such the useful work potential of a biological system is its exergy. In some studies, exergy of living systems is considered with respect to work performance of humans in offices or buildings; however the exergy analysis of biochemical reactions in a cell as a closed system goes largely untouched. In this study, exergy analysis was applied to glucose metabolism of a model neuron, and dynamic exergy destructions were calculated for four different conditions, namely normoxia, hypoxia, glucose starvation and excess glucose. Our results showed that neuronal metabolism achieved a new steady state under each condition within 5 min. This dynamic model predicts that, both exergy destruction and work potential rates increase with increasing blood glucose concentration. The ratio of exergy destruction rate to work potential rate increases logarithmically with increasing blood glucose concentration. The neuronal metabolism is thus found to function in an efficient way and switches to lower exergy destruction under stress conditions such as glucose starvation. This behavior seen in this exergy analysis study confirms the assumption of minimum entropy production in living systems. - Highlights: • Unsteady exergy analysis of glucose metabolism of a model neuron is performed. • Dynamic exergy losses were calculated for four different conditions: normoxia, hypoxia, glucose starvation and excess glucose. • Neuronal metabolism achieved a new steady state under each condition within 5 min. • Both exergy loss and work potential rates increase with increasing blood glucose concentration. • Neuronal metabolism functions in an efficient way and switches to lower exergy loss under stress conditions

  9. Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions

    Science.gov (United States)

    Vilotte, J. P.; Scala, A.; Festa, G.

    2017-12-01

    We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.

  10. The effect of continuous grouping of pigs in large groups on stress response and haematological parameters

    DEFF Research Database (Denmark)

    Damgaard, Birthe Marie; Studnitz, Merete; Jensen, Karin Hjelholt

    2009-01-01

    The consequences of an ‘all in-all out' static group of uniform age vs. a continuously dynamic group with litter introduction and exit every third week were examined with respect to stress response and haematological parameters in large groups of 60 pigs. The experiment included a total of 480 pigs...... from weaning at the age of 4 weeks to the age of 18 weeks after weaning. Limited differences were found in stress and haematological parameters between pigs in dynamic and static groups. The cortisol response to the stress test was increasing with the duration of the stress test in pigs from...... the dynamic group while it was decreasing in the static group. The health condition and the growth performance were reduced in the dynamic groups compared with the static groups. In the dynamic groups the haematological parameters indicated an activation of the immune system characterised by an increased...

  11. Scale and size effects in dynamic fracture of concretes and rocks

    Directory of Open Access Journals (Sweden)

    Petrov Y.

    2015-01-01

    Full Text Available Structural-temporal approach based on the notion of incubation time is used for interpretation of strain-rate effects in the fracture process of concretes and rocks. It is established that temporal dependences of concretes and rocks are calculated by the incubation time criterion. Experimentally observed different relations between ultimate stresses of concrete and mortar in static and dynamic conditions are explained. It is obtained that compressive strength of mortar at a low strain rate is greater than that of concrete, but at a high strain rate the opposite is true. Influence of confinement pressure on the mechanism of dynamic strength for concretes and rocks is discussed. Both size effect and scale effect for concrete and rocks samples subjected to impact loading are analyzed. Statistical nature of a size effect contrasts to a scale effect that is related to the definition of a spatio-temporal representative volume determining the fracture event on the given scale level.

  12. Elevated nonlinearity as an indicator of shifts in the dynamics of populations under stress.

    Science.gov (United States)

    Dakos, Vasilis; Glaser, Sarah M; Hsieh, Chih-Hao; Sugihara, George

    2017-03-01

    Populations occasionally experience abrupt changes, such as local extinctions, strong declines in abundance or transitions from stable dynamics to strongly irregular fluctuations. Although most of these changes have important ecological and at times economic implications, they remain notoriously difficult to detect in advance. Here, we study changes in the stability of populations under stress across a variety of transitions. Using a Ricker-type model, we simulate shifts from stable point equilibrium dynamics to cyclic and irregular boom-bust oscillations as well as abrupt shifts between alternative attractors. Our aim is to infer the loss of population stability before such shifts based on changes in nonlinearity of population dynamics. We measure nonlinearity by comparing forecast performance between linear and nonlinear models fitted on reconstructed attractors directly from observed time series. We compare nonlinearity to other suggested leading indicators of instability (variance and autocorrelation). We find that nonlinearity and variance increase in a similar way prior to the shifts. By contrast, autocorrelation is strongly affected by oscillations. Finally, we test these theoretical patterns in datasets of fisheries populations. Our results suggest that elevated nonlinearity could be used as an additional indicator to infer changes in the dynamics of populations under stress. © 2017 The Author(s).

  13. Effectiveness of a Dental Students Stress Management Program

    Directory of Open Access Journals (Sweden)

    Abdullah M. Alzahem

    2015-12-01

    Full Text Available The dental education stress effects and sources were explored thoroughly in the literature, but the effectiveness of stress management programs received less attention. This study introduced a new stress management program, named Dental Education Stress Management (DESM program. It showed its effectiveness in a quasi-experimental pretest-posttest-follow-up-control group design. The new program was based on the principle of psychoeducation and consisted of three 90-min sessions, to teach dental students how to better deal with their stress symptoms and to reduce their general stress level. Two instruments were used to assess the level of stress of the dental students, namely the Dental Environment Stress questionnaire (DES, and the Psychological Stress Measure (PSM-9. Results show that the DESM program has the desired effect of decreasing the stress levels of its participants, and these effects lasted for at least two weeks. Because of several methodological limitations of the study more research is needed to draw more generalizable conclusions.

  14. Impacts of the Mesoscale Ocean-Atmosphere Coupling on the Peru-Chile Ocean Dynamics: The Current-Induced Wind Stress Modulation

    Science.gov (United States)

    Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.

    2018-02-01

    The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.

  15. Stress accumulation and release at complex transform plate boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, D.; Furlong, K.P. (Pennsylvania State Univ., University Park (United States))

    1992-10-01

    Finite element methods are used to model the dynamics of deformation along complex transform plate boundaries, specifically the San Andreas fault system, California. Effects of mantle rheology and fault geometry on the stress buildup and release are investigated. No prior knowledge of the earthquake cycle time or amount of fault slip is assumed that the results suggest that the San Andreas fault slips at low shear stress (about 15 MPa). Although the maximum stress on the fault is 15 MPa, models with an upper mantle shear zone deforming entirely by dislocation creep accumulate stresses that exceed 100 MPa, a stress level high enough to drive localized dynamic recrystallization and a shift in dominant deformation mechanism to diffusion creep. Models in which the mantle shear zone deform locally by diffusion creep reach a dynamic steady state where lithospheric shear stresses never exceed the specified fault stress anywhere in the model and indicate that the strength of the upper mantle is an important parameter in the dynamics of plate boundary deformation. 17 refs.

  16. The effect of stress tolerance on dynamics of activity-travel behavior : numerical simulation results

    NARCIS (Netherlands)

    Psarra, I.; Arentze, T.A.; Timmermans, H.J.P.

    2014-01-01

    The primary and secondary effects of various spatial and transportation policies can be evaluated with models of activity–travel behavior. Whereas existing activity-based models of travel demand simulate a typical day, dynamic models simulate behavioral response to endogenous or exogenous change,

  17. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    Science.gov (United States)

    Chamine, Irina; Oken, Barry S.

    2015-01-01

    Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention. PMID:25802539

  18. Expectancy of Stress-Reducing Aromatherapy Effect and Performance on a Stress-Sensitive Cognitive Task

    Directory of Open Access Journals (Sweden)

    Irina Chamine

    2015-01-01

    Full Text Available Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG task performance and event related potentials (ERP components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions. Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime. GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress. Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude. Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.

  19. Forgiveness, Stress, and Health: a 5-Week Dynamic Parallel Process Study.

    Science.gov (United States)

    Toussaint, Loren L; Shields, Grant S; Slavich, George M

    2016-10-01

    Psychological stress is a well-known risk factor for poor health, and recent research has suggested that the emotion-focused coping process of forgiveness may help mitigate these effects. To date, however, no studies have examined how levels of forgiveness, stress, and health fluctuate and interrelate over time. We addressed this issue by examining how forgiveness, stress, and mental and physical health symptoms change and relate to one another over 5 weeks. We hypothesized that increases in state levels of forgiveness would be associated with decreases in perceptions of stress, which would in turn be related to decreases in mental and physical health symptoms. A reverse effects model was also tested. We recruited a large, community-based sample of 332 young, middle-aged, and older adults (16-79 years old; M age  = 27.9). Each week for 5 weeks, participants reported on their levels of state forgiveness, perceived stress, and mental and physical health symptoms. Levels of forgiveness, stress, and mental and physical health symptoms each showed significant change and individual variability in change over time. As hypothesized, increases in forgiveness were associated with decreases in stress, which were in turn related to decreases in mental (but not physical) health symptoms (i.e., forgiveness → stress → health). The reverse effects model (i.e., health → stress → forgiveness) provided a relatively poorer fit. This study is the first to provide prospective, longitudinal evidence showing that greater forgiveness is associated with less stress and, in turn, better mental health. Strategies for cultivating forgiveness may thus have beneficial effects on stress and health.

  20. QTAIM and Stress Tensor Characterization of Intramolecular Interactions Along Dynamics Trajectories of a Light-Driven Rotary Molecular Motor.

    Science.gov (United States)

    Wang, Lingling; Huan, Guo; Momen, Roya; Azizi, Alireza; Xu, Tianlv; Kirk, Steven R; Filatov, Michael; Jenkins, Samantha

    2017-06-29

    A quantum theory of atoms in molecules (QTAIM) and stress tensor analysis was applied to analyze intramolecular interactions influencing the photoisomerization dynamics of a light-driven rotary molecular motor. For selected nonadiabatic molecular dynamics trajectories characterized by markedly different S 1 state lifetimes, the electron densities were obtained using the ensemble density functional theory method. The analysis revealed that torsional motion of the molecular motor blades from the Franck-Condon point to the S 1 energy minimum and the S 1 /S 0 conical intersection is controlled by two factors: greater numbers of intramolecular bonds before the hop-time and unusually strongly coupled bonds between the atoms of the rotor and the stator blades. This results in the effective stalling of the progress along the torsional path for an extended period of time. This finding suggests a possibility of chemical tuning of the speed of photoisomerization of molecular motors and related molecular switches by reshaping their molecular backbones to decrease or increase the degree of coupling and numbers of intramolecular bond critical points as revealed by the QTAIM/stress tensor analysis of the electron density. Additionally, the stress tensor scalar and vector analysis was found to provide new methods to follow the trajectories, and from this, new insight was gained into the behavior of the S 1 state in the vicinity of the conical intersection.

  1. Effect of the plate surface characteristics and gap height on yield stresses of a magnetorheological fluid

    International Nuclear Information System (INIS)

    Jonkkari, I; Syrjala, S; Kostamo, E; Kostamo, J; Pietola, M

    2012-01-01

    Effects of the plate material, surface roughness and measuring gap height on static and dynamic yield stresses of a magnetorheological (MR) fluid were investigated with a commercial plate–plate magnetorheometer. Magnetic and non-magnetic plates with smooth (Ra ∼ 0.3 μm) and rough (Ra ∼ 10 μm) surface finishes were used. It was shown by Hall probe measurements and finite element simulations that the use of magnetic plates or higher gap heights increases the level of magnetic flux density and changes the shape of the radial flux density profile. The yield stress increase caused by these factors was determined and subtracted from the measured values in order to examine only the effect of the wall characteristics or the gap height. Roughening of the surfaces offered a significant increase in the yield stresses for non-magnetic plates. With magnetic plates the yield stresses were higher to start with, but roughening did not increase them further. A significant part of the difference in measured stresses between rough non-magnetic and magnetic plates was caused by changes in magnetic flux density rather than by better contact of the particles to the plate surfaces. In a similar manner, an increase in gap height from 0.25 to 1.00 mm can lead to over 20% increase in measured stresses due to changes in the flux density profile. When these changes were compensated the dynamic yield stresses generally remained independent of the gap height, even in the cases where it was obvious that the wall slip was present. This suggests that with MR fluids the wall slip cannot be reliably detected by comparison of flow curves measured at different gap heights. (paper)

  2. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    International Nuclear Information System (INIS)

    Mumaw, R.J.

    1994-08-01

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitive skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress

  3. The effects of stress on nuclear power plant operational decision making and training approaches to reduce stress effects

    Energy Technology Data Exchange (ETDEWEB)

    Mumaw, R.J.

    1994-08-01

    Operational personnel may be exposed to significant levels of stress during unexpected changes in plant state an plant emergencies. The decision making that identifies operational actions, which is strongly determined by procedures, may be affected by stress, and performance may be impaired. ER report analyzes potential effects of stress in nuclear power plant (NPP) settings, especially in the context of severe accident management (SAM). First, potential sources of stress in the NPP setting are identified. This analysis is followed by a review of the ways in which stress is likely to affect performance, with an emphasis on performance of cognitive skills that are linked to operational decision making. Finally, potential training approaches for reducing or eliminating stress effects are identified. Several training approaches have the potential to eliminate or mitigate stress effects on cognitive skill performance. First, the use of simulated events for training can reduce the novelty and uncertainty that can lead to stress and performance impairments. Second, training to make cognitive processing more efficient and less reliant on attention and memory resources can offset the reductions in these resources that occur under stressful conditions. Third, training that targets crew communications skills can reduce the likelihood that communications will fail under stress.

  4. Dynamic effective connectivity of inter-areal brain circuits.

    Directory of Open Access Journals (Sweden)

    Demian Battaglia

    Full Text Available Anatomic connections between brain areas affect information flow between neuronal circuits and the synchronization of neuronal activity. However, such structural connectivity does not coincide with effective connectivity (or, more precisely, causal connectivity, related to the elusive question "Which areas cause the present activity of which others?". Effective connectivity is directed and depends flexibly on contexts and tasks. Here we show that dynamic effective connectivity can emerge from transitions in the collective organization of coherent neural activity. Integrating simulation and semi-analytic approaches, we study mesoscale network motifs of interacting cortical areas, modeled as large random networks of spiking neurons or as simple rate units. Through a causal analysis of time-series of model neural activity, we show that different dynamical states generated by a same structural connectivity motif correspond to distinct effective connectivity motifs. Such effective motifs can display a dominant directionality, due to spontaneous symmetry breaking and effective entrainment between local brain rhythms, although all connections in the considered structural motifs are reciprocal. We show then that transitions between effective connectivity configurations (like, for instance, reversal in the direction of inter-areal interactions can be triggered reliably by brief perturbation inputs, properly timed with respect to an ongoing local oscillation, without the need for plastic synaptic changes. Finally, we analyze how the information encoded in spiking patterns of a local neuronal population is propagated across a fixed structural connectivity motif, demonstrating that changes in the active effective connectivity regulate both the efficiency and the directionality of information transfer. Previous studies stressed the role played by coherent oscillations in establishing efficient communication between distant areas. Going beyond these early

  5. Opposite Effects of Stress on Pain Modulation Depend on the Magnitude of Individual Stress Response.

    Science.gov (United States)

    Geva, Nirit; Defrin, Ruth

    2018-04-01

    The effect of acute stress on pain threshold and intolerance threshold are reported as producing either hypoalgesia or hyperalgesia. Yet, the contribution of individual stress reactivity in this respect has not been established. The aim was to test 2 pain modulation paradigms under acute stress manipulation, to our knowledge, for the first time, to study whether stress differentially affects pain modulation, and whether the effect is related to individual stress response. Participants were 31 healthy subjects. Conditioned pain modulation (CPM) and pain adaptation were measured before and after inducing an acute stress response using the Montreal Imaging Stress Task. Subjects' stress response was evaluated according to salivary cortisol, autonomic function, and perceived stress and anxiety. The Montreal Imaging Stress Task induced a validated stress response. On a group level, stress induced reduction in CPM magnitude and increase in pain adaptation compared with baseline. These responses correlated with stress reactivity. When the group was subdivided according to stress reactivity, only high stress responders exhibited reduced CPM whereas only low stress responders exhibited increased pain adaptation. The results suggest that acute stress may induce opposite effects on pain modulation, depending on individual stress reactivity magnitude, with an advantage to low stress responders. This study evaluated the effect of acute stress on pain modulation. Pain modulation under stress is affected by individual stress responsiveness; decreased CPM occurs in high stress responders whereas increased pain adaptation occurs in low stress responders. Identification of high stress responders may promote better pain management. Copyright © 2017 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. Psychological stress-relieving effects of chewing - Relationship between masticatory function-related factors and stress-relieving effects.

    Science.gov (United States)

    Tasaka, Akinori; Kikuchi, Manaki; Nakanishi, Kousuke; Ueda, Takayuki; Yamashita, Shuichiro; Sakurai, Kaoru

    2018-01-01

    The objective of the present study was to investigate the relationship between masticatory function-related factors (masticatory performance, occlusal contact area, maximum bite force, number of chewing strokes, and muscle activity) and the stress-relieving effects of chewing. A total of 28 healthy male subjects were instructed to rest or chew for 10min after 30min of stress loading with arithmetic calculations. Their stress state was assessed by measuring salivary cortisol levels. Saliva was collected at three time points: before stress loading, immediately after stress loading, and 10min after stress loading. Compared to resting, chewing produced a significantly greater reduction in the rate of change in salivary cortisol levels 10min after stress loading. A negative correlation was observed between the rate of decrease in salivary cortisol levels and the number of chewing strokes. No significant correlation was observed between the rate of decrease in salivary cortisol levels and other measurement items. In healthy dentulous people, the number of chewing strokes has been shown to be a masticatory function-related factor that affects stress relief from chewing, suggesting the possibility that more appropriate chewing would produce a greater effect psychological stress relief. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Dynamic fracture characterization of a pressure vessel steel

    International Nuclear Information System (INIS)

    Schmitt, W.; Boehme, W.; Klemm, W.; Memhard, D.; Winkler, S.

    1991-01-01

    Dynamic events are characterized by time and space-dependent stress and strain fields caused by wave or inertia effect. The dynamic effect at cracks may be originated from the rapid loading rate or impact loading of a structure containing a stationary crack or the time-dependent stress and strain fields of a propagating or arresting crack itself. Dynamic effects complicate the analysis of crack tip stress and strain fields, and usually considerable experimental effort and numerical technique are required. High loading rate influences the deformation and yield behavior and also the fracture toughness of materials. In order to know the propagation and arrest behavior of cracks, a heat of a German reactor pressure vessel steel was investigated, and the dynamic J-resistance curves were evaluated with large three-point bending specimens by impact loading, moreover, the crack propagation energy at large crack extension was determined with wide tension plates. The material tested was a ferritic pressure vessel steel, ASTM A 508 Cl 2. The dynamic J-resistance curves and numerical simulation and fractographic examination, and crack propagation energy are reported. (K.I.)

  8. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress

    Directory of Open Access Journals (Sweden)

    Da Li

    2017-10-01

    Full Text Available The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap–Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS. A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares–discriminate analysis (PLS-DA revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  9. The Application of Ultra-High-Performance Liquid Chromatography Coupled with a LTQ-Orbitrap Mass Technique to Reveal the Dynamic Accumulation of Secondary Metabolites in Licorice under ABA Stress.

    Science.gov (United States)

    Li, Da; Xu, Guojie; Ren, Guangxi; Sun, Yufeng; Huang, Ying; Liu, Chunsheng

    2017-10-20

    The traditional medicine licorice is the most widely consumed herbal product in the world. Although much research work on studying the changes in the active compounds of licorice has been reported, there are still many areas, such as the dynamic accumulation of secondary metabolites in licorice, that need to be further studied. In this study, the secondary metabolites from licorice under two different methods of stress were investigated by ultra-high-performance liquid chromatography coupled with hybrid linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS). A complex continuous coordination of flavonoids and triterpenoids in a network was modulated by different methods of stress during growth. The results showed that a total of 51 secondary metabolites were identified in licorice under ABA stress. The partial least squares-discriminate analysis (PLS-DA) revealed the distinction of obvious compounds among stress-specific districts relative to ABA stress. The targeted results showed that there were significant differences in the accumulation patterns of the deeply targeted 41 flavonoids and 10 triterpenoids compounds by PCA and PLS-DA analyses. To survey the effects of flavonoid and triterpenoid metabolism under ABA stress, we inspected the stress-specific metabolic changes. Our study testified that the majority of flavonoids and triterpenoids were elevated in licorice under ABA stress, while the signature metabolite affecting the dynamic accumulation of secondary metabolites was detected. Taken together, our results suggest that ABA-specific metabolite profiling dynamically changed in terms of the biosynthesis of flavonoids and triterpenoids, which may offer new trains of thought on the regular pattern of dynamic accumulation of secondary metabolites in licorice at the metabolite level. Our results also provide a reference for clinical applications and directional planting and licorice breeding.

  10. Stress Effects on Multiple Memory System Interactions

    OpenAIRE

    Ness, Deborah; Calabrese, Pasquale

    2016-01-01

    Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory syst...

  11. Ecosystem stress response : understanding effects on the benthic invertebrate community of Alberta oil-sands wetlands

    International Nuclear Information System (INIS)

    Wytrykush, C.M.; Ciborowski, J.J.H.

    2003-01-01

    The environmental stress response of invertebrates was examined using wetlands in the Alberta oil-sands region as a model. Wetlands in this region occur naturally or they have been affected by oil-sands mining process materials such as mine-tailings, or saline process water. These materials can be toxic to aquatic organisms due to their high concentrations of sulphate ions, ammonia, polycyclic aromatic hydrocarbons (PAHs) and naphthenic acids. Wetlands are classified as either young or mature, and as having low or high sediment organic content. This study examined food web dynamics and structure in wetlands using stable isotopes to determine the effects of stress on ecological communities. Primary and secondary production in the wetlands was measured along with invertebrate diversity in order to determine a relationship. The maximum trophic position was determined using stable carbon and nitrogen isotopes to indicate food chain length which is influenced by energetic constraints, ecosystem size and stressors. The study quantifies the dynamics of vital links between the responses to environmental pressures in aquatic systems and the effects on terrestrial ecosystems

  12. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  13. Effect of texture and grain size on the residual stress of nanocrystalline thin films

    Science.gov (United States)

    Cao, Lei; Sengupta, Arkaprabha; Pantuso, Daniel; Koslowski, Marisol

    2017-10-01

    Residual stresses develop in thin film interconnects mainly as a result of deposition conditions and multiple thermal loading cycles during the manufacturing flow. Understanding the relation between the distribution of residual stress and the interconnect microstructure is of key importance to manage the nucleation and growth of defects that can lead to failure under reliability testing and use conditions. Dislocation dynamics simulations are performed in nanocrystalline copper subjected to cyclic loading to quantify the distribution of residual stresses as a function of grain misorientation and grain size distribution. The outcomes of this work help to evaluate the effect of microstructure in thin films failure by identifying potential voiding sites. Furthermore, the simulations show how dislocation structures are influenced by texture and grain size distribution that affect the residual stress. For example, when dislocation loops reach the opposite grain boundary during loading, these dislocations remain locked during unloading.

  14. Gene expression dynamics in the oxidative stress response of fission yeast

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    Changes in the environment continuously challenge living organisms during their lifetime. A cell’s survival depends on its ability to coordinate a rapid and successful stress response when exposed to acute doses of damaging agents. Oxidative stress caused by an excess of reactive oxygen species......, especially using model organisms. The fission yeast Schizosaccharomyces pombe is a unicellular eukaryotic organism that possesses genome features and molecular pathways that are highly conserved in humans. Moreover, the limited redundancy of its genome make S. pombe well suited for phenotypic studies...... (HP, 0.5 mM). The applied experimental design allowed us to measure both the activation and recovery phases of the response at a sufficiently high time resolution to model transcription and translation dynamics. Absolute expression levels (copies per cell) and time-resolved expression profiles for 4...

  15. Effects of static pre-loading on the dynamic stability of a column on ...

    African Journals Online (AJOL)

    This paper presents, from strictly analytical consideration, the dynamic analysis of a finite column stressed by a step load but in the presence of a previously imposed static load. The results show that (a) the dynamic buckling load for this type of loading is relatively higher than that of a similar column stressed by a step load ...

  16. Effect of step width manipulation on tibial stress during running.

    Science.gov (United States)

    Meardon, Stacey A; Derrick, Timothy R

    2014-08-22

    Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (pstresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Effect of loading rate on dynamic fracture of reaction bonded silicon nitride

    Science.gov (United States)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1986-01-01

    Wedge-loaded, modified tapered double cantilever beam (WL-MTDCB) specimens under impact loading were used to determine the room temperature dynamic fracture response of reaction bonded silicon nitride (RBSN). The crack extension history, with the exception of the terminal phase, was similar to that obtained under static loading. Like its static counterpart, a distinct crack acceleration phase, which was not observed in dynamic fracture of steel and brittle polymers, was noted. Unlike its static counterpart, the crack continued to propagate at nearly its terminal velocity under a low dynamic stress intensity factor during the terminal phase of crack propagation. These and previously obtained results for glass and RBSN show that dynamic crack arrest under a positive dynamic stress intensity factor is unlikely in static and impact loaded structural ceramics.

  18. The Dynamics of Migration-Related Stress and Coping of Female Domestic Workers from the Philippines: An Exploratory Study

    NARCIS (Netherlands)

    van der Ham, A.J.; Ujano-Batangan, M.T.; Ignacio, R.; Wolffers, I.N.

    2015-01-01

    Female domestic workers face many migration-related stressors that affect their mental health, but we know little about the dynamics of stress and coping in different migration phases. This exploratory study aims to assess stress and coping of female migrant domestic workers from the Philippines in

  19. Calculation of dynamic stresses in viscoelastic sandwich beams using oma

    DEFF Research Database (Denmark)

    Pelayo, F.; Aenlle, M. L.; Ismael, G.

    2017-01-01

    The mechanical response of sandwich elements with viscoelastic core is time and temperature dependent. Laminated glass is a sandwich element where the mechanical behavior of the glass layers is usually considered linear-elastic material whereas the core is made of an amorphous thermoplastic which...... data. In simple structures, analytical mode shapes can be used alternatively to the numerical ones. In this paper, the dynamic stresses on the glass layers of a laminated glass beam have estimated using the experimental acceleration responses measured at 7 points of the beam, and the experimental mode...

  20. The Temporal Dynamics Model of Emotional Memory Processing: A Synthesis on the Neurobiological Basis of Stress-Induced Amnesia, Flashbulb and Traumatic Memories, and the Yerkes-Dodson Law

    OpenAIRE

    Diamond, David M.; Campbell, Adam M.; Park, Collin R.; Halonen, Joshua; Zoladz, Phillip R.

    2007-01-01

    We have reviewed research on the effects of stress on LTP in the hippocampus, amygdala and prefrontal cortex (PFC) and present new findings which provide insight into how the attention and memory-related functions of these structures are influenced by strong emotionality. We have incorporated the stress-LTP findings into our “temporal dynamics†model, which provides a framework for understanding the neurobiological basis of flashbulb and traumatic memories, as well as stress-induced ...

  1. Stat5 signaling specifies basal versus stress erythropoietic responses through distinct binary and graded dynamic modalities.

    Directory of Open Access Journals (Sweden)

    Ermelinda Porpiglia

    2012-08-01

    Full Text Available Erythropoietin (Epo-induced Stat5 phosphorylation (p-Stat5 is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a "knocked-in" EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the

  2. Effective stress law for anisotropic elastic deformation

    International Nuclear Information System (INIS)

    Carroll, M.M.

    1979-01-01

    An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee

  3. Using the Dynamic Model of Affect (DMA) to examine leisure time as a stress coping resource: Taking into account stress severity and gender difference

    Science.gov (United States)

    Qian, Xinyi Lisa; Yarnal, Careen M.; Almeida, David M.

    2014-01-01

    Affective complexity (AC) is a marker of psychological well-being. According to the Dynamic Model of Affect (DMA), stressful experiences reduce AC while positive events increase AC. One type of positive events is leisure, which was also identified as a coping resource. This study extended the DMA and leisure coping research by assessing gender difference in how daily stress severity and leisure time influence AC. Analyzing eight-day diary data, we found that females, compared to males, experienced greater decrease in AC with increase in stress severity but also bigger increase in AC with increase in leisure time. The finding highlights gender difference in affective reactivity to and coping with daily stress, the value of the DMA, and the importance of severity appraisal. PMID:25242824

  4. Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET

    International Nuclear Information System (INIS)

    Zhang Yue; Zhuo Qing-Qing; Liu Hong-Xia; Ma Xiao-Hua; Hao Yue

    2014-01-01

    The effect of the static negative bias temperature (NBT) stress on a p-channel power metal—oxide—semiconductor field-effect transistor (MOSFET) is investigated by experiment and simulation. The time evolution of the negative bias temperature instability (NBTI) degradation has the trend predicted by the reaction—diffusion (R—D) model but with an exaggerated time scale. The phenomena of the flat-roof section are observed under various stress conditions, which can be considered as the dynamic equilibrium phase in the R—D process. Based on the simulated results, the variation of the flat-roof section with the stress condition can be explained. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Stress and Memory: Behavioral Effects and Neurobiological Mechanisms

    Directory of Open Access Journals (Sweden)

    M. Teresa Pinelo-Nava

    2007-04-01

    Full Text Available Stress is a potent modulator of learning and memory processes. Although there have been a few attempts in the literature to explain the diversity of effects (including facilitating, impairing, and lack of effects described for the impact of stress on memory function according to single classification criterion, they have proved insufficient to explain the whole complexity of effects. Here, we review the literature in the field of stress and memory interactions according to five selected classifying factors (source of stress, stressor duration, stressor intensity, stressor timing with regard to memory phase, and learning type in an attempt to develop an integrative model to understand how stress affects memory function. Summarizing on those conditions in which there was enough information, we conclude that high stress levels, whether intrinsic (triggered by the cognitive challenge or extrinsic (induced by conditions completely unrelated to the cognitive task, tend to facilitate Pavlovian conditioning (in a linear-asymptotic manner, while being deleterious for spatial/explicit information processing (which with regard to intrinsic stress levels follows an inverted U-shape effect. Moreover, after reviewing the literature, we conclude that all selected factors are essential to develop an integrative model that defines the outcome of stress effects in memory processes. In parallel, we provide a brief review of the main neurobiological mechanisms proposed to account for the different effects of stress in memory function. Glucocorticoids were found as a common mediating mechanism for both the facilitating and impairing actions of stress in different memory processes and phases. Among the brain regions implicated, the hippocampus, amygdala, and prefrontal cortex were highlighted as critical for the mediation of stress effects.

  6. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar Rao, G.; Verma, Preeti [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Chakravartty, J.K. [Mechanical Metallurgy Group, Bhabha Atomic Research Center, Trombay 400 085, Mumbai (India); Nudurupati, Saibaba [Nuclear Fuel Complex, Hyderabad 500 062 (India); Mahobia, G.S.; Santhi Srinivas, N.C. [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Vakil, E-mail: vsingh.met@itbhu.ac.in [Center of Advanced Study, Department of Metallurgical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2015-02-15

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10{sup −2}, 10{sup −3}, and 10{sup −4} s{sup −1}. Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C.

  7. Inverse strain rate effect on cyclic stress response in annealed Zircaloy-2

    International Nuclear Information System (INIS)

    Sudhakar Rao, G.; Verma, Preeti; Chakravartty, J.K.; Nudurupati, Saibaba; Mahobia, G.S.; Santhi Srinivas, N.C.; Singh, Vakil

    2015-01-01

    Low cycle fatigue behavior of annealed Zircaloy-2 was investigated at 300 and 400 °C at different strain amplitudes and strain rates of 10 −2 , 10 −3 , and 10 −4 s −1 . Cyclic stress response showed initial hardening with decreasing rate of hardening, followed by linear cyclic hardening and finally secondary hardening with increasing rate of hardening for low strain amplitudes at both the temperatures. The rate as well the degree of linear hardening and secondary hardening decreased with decrease in strain rate at 300 °C, however, there was inverse effect of strain rate on cyclic stress response at 400 °C and cyclic stress was increased with decrease in strain rate. The fatigue life decreased with decrease in strain rate at both the temperatures. The occurrence of linear cyclic hardening, inverse effect of strain rate on cyclic stress response and deterioration in fatigue life with decrease in strain rate may be attributed to dynamic strain aging phenomena resulting from enhanced interaction of dislocations with solutes. Fracture surfaces revealed distinct striations, secondary cracking, and oxidation with decrease in strain rate. Deformation substructure showed parallel dislocation lines and dislocation band structure at 300 °C. Persistent slip band wall structure and development of fine Corduroy structure was observed at 400 °C

  8. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  9. Structural damping values as a function of dynamic response stress and deformation levels

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1980-01-01

    Damping as it is normally defined is the means by which the response motion of a structural system is reduced as the result of energy losses. However, as used in the context of nuclear plant design, the effects of changes in structural stiffness, geometry, support configuration, and modulus of elasticity are also usually lumped under the general heading of damping in current design methods. For convenience in structural design, damping in usually assumed as viscous in nature and in recognition of its use in modal response spectrum dynamic analysis is normally expressed as a percent of critical. In general, it should be understood that damping as used in design or analysis of nuclear plants is an experimentally determined factor which is used to make the results of linear elasticity analysis of dynamic systems agree reasonably well with observed experimental results. In this paper, damping data existing in the open literature applicable to nuclear power plant structures and equipment is summarized and statistically analyzed. Results of this analysis are used to develop damping trend curves which predict applicable damping values to be used in design at various levels of stress or deformation. (orig.)

  10. State of charge estimation for lithium-ion pouch batteries based on stress measurement

    International Nuclear Information System (INIS)

    Dai, Haifeng; Yu, Chenchen; Wei, Xuezhe; Sun, Zechang

    2017-01-01

    State of charge (SOC) estimation is one of the important tasks of battery management system (BMS). Being different from other researches, a novel method of SOC estimation for pouch lithium-ion battery cells based on stress measurement is proposed. With a comprehensive experimental study, we find that, the stress of the battery during charge/discharge is composed of the static stress and the dynamic stress. The static stress, which is the measured stress in equilibrium state, corresponds to SOC, this phenomenon facilitates the design of our stress-based SOC estimation. The dynamic stress, on the other hand, is influenced by multiple factors including charge accumulation or depletion, current and historical operation, thus a multiple regression model of the dynamic stress is established. Based on the relationship between static stress and SOC, as well as the dynamic stress modeling, the SOC estimation method is founded. Experimental results show that the stress-based method performs well with a good accuracy, and this method offers a novel perspective for SOC estimation. - Highlights: • A State of Charge estimator based on stress measurement is proposed. • The stress during charge and discharge is investigated with comprehensive experiments. • Effects of SOC, current, and operation history on battery stress are well studied. • A multiple regression model of the dynamic stress is established.

  11. How does stress affect human being—a molecular dynamic simulation study on cortisol and its glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-03-01

    Full Text Available Stress can be either positive or negative to human beings. Under stressful conditions, the mental and physical conditions of human can be affected. There exists certain relation between stress and illness. The cortisol and other glucocorticoids bind to the same receptor, which is called glucocorticoid receptor. Some evidences indicated that cortisol molecule binding to its glucocorticoid receptor was necessary for the stress response. Up to now, the structure–function relationships between cortisol molecule and its glucocorticoid receptor have not been deliberated from the atomic-level. In order to get a detailed understanding of the structure–function relationships between the cortisol molecule and glucocorticoids receptor, we have carried out molecular dynamic (MD simulations on glucocorticoid receptor (Apo system and cortisol with its glucocorticoid receptor complex (HCY system. On the basis of molecular dynamic simulations, a couple of key residues were identified, which were crucial for the binding of cortisol molecule. The results of binding free energy calculations are in good agreement with the experiment data. Our research gives clear insights from atomic-level into the structural–functional aspects of cortisol molecule and its glucocorticoid receptor, and also provides valuable information for the design of drug which can treat stress related illnesses.

  12. Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Repeated stress can trigger a range of psychiatric disorders, including anxiety. The propensity to develop abnormal behaviors after repeated stress is related to the severity, frequency and number of stressors. However, the pattern of stress exposure may contribute to the impact of stress. In addition, the anxiogenic nature of repeated stress exposure can be moderated by the degree of coping that occurs, and can be reflected in homotypic habituation to the repeated stress. However, expectations are not clear when a pattern of stress presentation is utilized that diminishes habituation. The purpose of these experiments is to test whether interrupted stress exposure decreases homotypic habituation and leads to greater effects on anxiety-like behavior in adult male rats. We found that repeated interrupted restraint stress resulted in less overall homotypic habituation compared to repeated daily restraint stress. This was demonstrated by greater production of fecal boli and greater corticosterone response to restraint. Furthermore, interrupted restraint stress resulted in a lower body weight and greater adrenal gland weight than daily restraint stress, and greater anxiety-like behavior in the elevated plus maze. Control experiments demonstrated that these effects of the interrupted pattern could not be explained by differences in the total number of stress exposures, differences in the total number of days that the stress periods encompased, nor could it be explained as a result of only the stress exposures after an interruption from stress. These experiments demonstrate that the pattern of stress exposure is a significant determinant of the effects of repeated stress, and that interrupted stress exposure that decreases habituation can have larger effects than a greater number of daily stress exposures. Differences in the pattern of stress exposure are therefore an important factor to consider when predicting the severity of the effects of repeated

  13. Modeling the Effects of Stress: An Approach to Training

    Science.gov (United States)

    Cuper, Taryn

    2010-01-01

    Stress is an integral element of the operational conditions experienced by combat medics. The effects of stress can compromise the performance of combat medics who must reach and treat their comrades under often threatening circumstances. Examples of these effects include tunnel vision, loss of motor control, and diminished hearing, which can result in an inability to perceive further danger, satisfactorily treat the casualty, and communicate with others. While many training programs strive to recreate this stress to aid in the experiential learning process, stress inducement may not always be feasible or desired. In addition, live simulations are not always a practical, convenient, and repeatable method of training. Instead, presenting situational training on a personal computer is proposed as an effective training platform in which the effects of stress can be addressed in a different way. We explore the cognitive and motor effects of stress, as well as the benefits of training for mitigating these effects in real life. While many training applications focus on inducing stress in order to "condition" the stress response, the author explores the possibilities of modeling stress to produce a similar effect. Can presenting modeled effects of stress help prepare or inoculate soldiers for stressful situations in which they must perform at a high level? This paper investigates feasibility of modeling stress and describes the preliminary design considerations of a combat medic training system that utilizes this method of battlefield preparation.

  14. Stress effects on memory : An update and integration

    NARCIS (Netherlands)

    Schwabe, Lars; Joëls, Marian; Roozendaal, Benno; Wolf, Oliver T.; Oitzl, Melly S.

    It is well known that stressful experiences may affect learning and memory processes. Less clear is the exact nature of these stress effects on memory: both enhancing and impairing effects have been reported. These opposite effects may be explained if the different time courses of stress hormone, in

  15. Stress effects on memory: an update and integration

    NARCIS (Netherlands)

    Schwabe, L.; Joëls, M.; Roozendaal, B.; Wolf, O.T.; Oitzl, M.S.

    2012-01-01

    It is well known that stressful experiences may affect learning and memory processes. Less clear is the exact nature of these stress effects on memory: both enhancing and impairing effects have been reported. These opposite effects may be explained if the different time courses of stress hormone, in

  16. Effects of Pre-Encoding Stress on Brain Correlates Associated with the Long-Term Memory for Emotional Scenes

    Science.gov (United States)

    Wirkner, Janine; Weymar, Mathias; Löw, Andreas; Hamm, Alfons O.

    2013-01-01

    Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT) or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400–800 ms) during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant) pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant) scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes. PMID:24039697

  17. Effects of pre-encoding stress on brain correlates associated with the long-term memory for emotional scenes.

    Directory of Open Access Journals (Sweden)

    Janine Wirkner

    Full Text Available Recent animal and human research indicates that stress around the time of encoding enhances long-term memory for emotionally arousing events but neural evidence remains unclear. In the present study we used the ERP old/new effect to investigate brain dynamics underlying the long-term effects of acute pre-encoding stress on memory for emotional and neutral scenes. Participants were exposed either to the Socially Evaluated Cold Pressure Test (SECPT or a warm water control procedure before viewing 30 unpleasant, 30 neutral and 30 pleasant pictures. Two weeks after encoding, recognition memory was tested using 90 old and 90 new pictures. Emotional pictures were better recognized than neutral pictures in both groups and related to an enhanced centro-parietal ERP old/new difference (400-800 ms during recognition, which suggests better recollection. Most interestingly, pre-encoding stress exposure specifically increased the ERP old/new-effect for emotional (unpleasant pictures, but not for neutral pictures. These enhanced ERP/old new differences for emotional (unpleasant scenes were particularly pronounced for those participants who reported high levels of stress during the SECPT. The results suggest that acute pre-encoding stress specifically strengthens brain signals of emotional memories, substantiating a facilitating role of stress on memory for emotional scenes.

  18. The effect of emotional responses on endogenous dynamics of activity-travel behavior: numerical simulation results

    NARCIS (Netherlands)

    Psarra, I.; Arentze, T.A.; Timmermans, H.J.P.

    2014-01-01

    The current study aims at developing a model of endogenous dynamics of activity-travel behavior. Endogenous dynamics are induced by stress, which is regarded as dissatisfaction with current habits. It is assumed that people try to alleviate stress by hierarchically trying short-term and then

  19. Notch constraint effects on the dynamic fracture toughness of an unaged beta titanium alloy

    International Nuclear Information System (INIS)

    Rack, H.J.

    1975-01-01

    The influence of notch included angle and root radius on the apparent dynamic fracture toughness of an unaged metastable beta titanium alloy, Ti--3Al--8V--6Cr--4Zr--4Mo, has been examined. The apparent fracture toughness, K/sub Id/(rho), increases with both notch radius, rho and included angle, ω. These results have been compared with the theoretical predictions of Tetelman, et al. and Smith. The comparisons show that neither theory accurately describes the effect of varying notch constraint on the apparent dynamic fracture toughness. Although preliminary considerations indicate that qualitative descriptions of notch acuity effects may be given by recent finite element analysis of the stress and strain distributions below a notch root, there is presently no quantitative basis for determining the true dynamic fracture toughness of materials from the results of blunt notch experiments. (auth)

  20. Stress map for ion irradiation: Depth-resolved dynamic competition between radiation-induced viscoelastic phenomena in SiO2

    International Nuclear Information System (INIS)

    Dillen, T. van; Siem, M.Y.S.; Polman, A.

    2004-01-01

    The dynamic competition between structural transformation, Newtonian viscous flow, and anisotropic strain generation during ion irradiation of SiO 2 , leads to strongly depth-dependent evolution of the mechanical stress, ranging between compressive and tensile. From independent in situ stress measurements during irradiation, generic expressions are derived of the nuclear stopping dependence of both the structural transformation rate and the radiation-induced viscosity. Using these data we introduce and demonstrate the concept of a 'stress map' that predicts the depth-resolved saturation stress in SiO 2 for any irradiation up to several MeV

  1. Stress effects on mood, HPA axis, and autonomic response: comparison of three psychosocial stress paradigms.

    Directory of Open Access Journals (Sweden)

    Grace E Giles

    Full Text Available Extensive experimental psychology research has attempted to parse the complex relationship between psychosocial stress, mood, cognitive performance, and physiological changes. To do so, it is necessary to have effective, validated methods to experimentally induce psychosocial stress. The Trier Social Stress Test (TSST is the most commonly used method of experimentally inducing psychosocial stress, but it is resource intensive. Less resource intense psychosocial stress tasks include the Socially Evaluative Cold Pressor Task (SECPT and a computerized mental arithmetic task (MAT. These tasks effectively produce a physiological and psychological stress response and have the benefits of requiring fewer experimenters and affording data collection from multiple participants simultaneously. The objective of this study was to compare the magnitude and duration of these three experimental psychosocial stress induction paradigms. On each of four separate days, participants completed either a control non-stressful task or one of the three experimental stressors: the TSST, SECPT, or MAT. We measured mood, working memory performance, salivary cortisol and alpha-amylase (AA, and heart rate. The TSST and SECPT exerted the most robust effects on mood and physiological measures. TSST effects were generally evident immediately post-stress as well as 10- and 20-minutes after stress cessation, whereas SECPT effects were generally limited to the duration of the stressor. The stress duration is a key determinant when planning a study that utilizes an experimental stressor, as researchers may be interested in collecting dependent measures prior to stress cessation. In this way, the TSST would allow the investigator a longer window to administer tasks of interest.

  2. Hemodynamic Changes After Static and Dynamic Exercises and Treadmill Stress Test; Different Patterns in Patients with Primary Benign Exertional Headache?

    Directory of Open Access Journals (Sweden)

    Mohsen Rostami

    2012-06-01

    Full Text Available The pathophysiology of primary benign exertional headache (EH is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP and heart rate (HR of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15 and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12 were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.

  3. Hemodynamic changes after static and dynamic exercises and treadmill stress test; different patterns in patients with primary benign exertional headache?

    Science.gov (United States)

    Kordi, Ramin; Mazaheri, Reza; Rostami, Mohsen; Mansournia, Mohammad Ali

    2012-01-01

    The pathophysiology of primary benign exertional headache (EH) is not still clearly defined. Some researchers have suggested an impaired vascular response as the etiology of this disorder. In this study we investigated whether there are any differences in blood pressure (BP) and heart rate (HR) of the subjects in course of the static and dynamic exercises and the treadmill stress test between those with and without EH. From university students, 22 patients with EH (mean age: 19.8 ± 2.10, Female to Male: 7:15) and 20 normal subjects (mean age: 19.3 ± 1.97, Female: Male: 8:12) were recruited. All the subjects performed the static and dynamic exercises at 30 and 20 percent of the maximal voluntary contraction (MVC) and Bruce treadmill stress test according to the standard protocols. HR and BP of all the cases at the baseline and during and immediately after each test were measured. No significant difference was found between the mean rise of HR, systolic and diastolic BP of the subjects with and without EH in static and dynamic exercises and also treadmill stress test. It seems that between those with and without EH, there is no significant difference in rise of HR and BP response to static and dynamic exercises and treadmill stress test. Further studies are required to find the pathophysiology and risk factors of EH.

  4. The effect of stress on men's food selection.

    Science.gov (United States)

    Zellner, Debra A; Saito, Shin; Gonzalez, Johanie

    2007-11-01

    This study investigates the effect of stress on food choice among men. Two groups of men were given either solvable (no-stress) or unsolvable (stress) anagrams to solve. Four bowls of snack foods-two healthy (peanuts and grapes) and two unhealthy (potato chips and M&M chocolate candies)-were available and subjects were invited to snack on them. Men in the no-stress group ate significantly more of the unhealthy foods than did men in the stress group. This finding is quite different from that found with women [Zellner et al. (2006). Food selection changes under stress. Physiology & Behavior, 87, 789-793]. Women tended to eat more grapes when not stressed than when stressed and more M&Ms when stressed than when not stressed. Thus, the effect of stress level on food choice is different for men and women.

  5. Dynamic Fungal Cell Wall Architecture in Stress Adaptation and Immune Evasion.

    Science.gov (United States)

    Hopke, Alex; Brown, Alistair J P; Hall, Rebecca A; Wheeler, Robert T

    2018-04-01

    Deadly infections from opportunistic fungi have risen in frequency, largely because of the at-risk immunocompromised population created by advances in modern medicine and the HIV/AIDS pandemic. This review focuses on dynamics of the fungal polysaccharide cell wall, which plays an outsized role in fungal pathogenesis and therapy because it acts as both an environmental barrier and as the major interface with the host immune system. Human fungal pathogens use architectural strategies to mask epitopes from the host and prevent immune surveillance, and recent work elucidates how biotic and abiotic stresses present during infection can either block or enhance masking. The signaling components implicated in regulating fungal immune recognition can teach us how cell wall dynamics are controlled, and represent potential targets for interventions designed to boost or dampen immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. On the relation between quasi-static and dynamic stress induced reversible structural relaxation of amorphous alloys

    International Nuclear Information System (INIS)

    Krueger, P.; Stucky, T.; Boewe, M.; Neuhaeuser, H.

    1993-01-01

    Quasi-static stress relaxation and dynamic internal friction measurements of stress induced reversible structural relaxation were performed on the amorphous alloy Fe 40 Ni 40 B 20 . The kinetics can be well described by a stretched exponential Kohlrausch-Williams-Watts quasi-static relaxation. The thermally activated part of the internal friction shows an Arrhenius temperature behaviour for a fixed vibration frequency and an inverse power frequency behaviour for a fixed temperature. The activation energies calculated from the Arrhenius equation and from the frequency shift method are significantly different. In order to explain this discrepancy the relation between the quasi-static and the dynamic descriptions of the reversible relaxation is reexamined. In particular it is shown that these two activation energies are connected by the Kohlrausch exponent of the quasi-static relaxation. (orig.)

  7. The dynamic response and perturbation of magnetic field vector of orthotropic cylinders under various shock loads

    International Nuclear Information System (INIS)

    Dai, H.L.; Wang, X.

    2006-01-01

    In this paper, an analytical method is introduced to solve the problem for the dynamic stress-focusing and centred-effect of perturbation of the magnetic field vector in orthotropic cylinders under thermal and mechanical shock loads. Analytical expressions for the dynamic stresses and the perturbation of the magnetic field vector are obtained by means of finite Hankel transforms and Laplace transforms. The response histories of dynamic stresses and the perturbation of the field vector are also obtained. In practical examples, the dynamic focusing effect on both magnetoelastic stress and perturbation of the axial magnetic field vector in an orthotropic cylinder subjected to various shock loads is presented and discussed

  8. Non-Destructive Evaluation Method Based On Dynamic Invariant Stress Resultants

    Directory of Open Access Journals (Sweden)

    Zhang Junchi

    2015-01-01

    Full Text Available Most of the vibration based damage detection methods are based on changes in frequencies, mode shapes, mode shape curvature, and flexibilities. These methods are limited and typically can only detect the presence and location of damage. Current methods seldom can identify the exact severity of damage to structures. This paper will present research in the development of a new non-destructive evaluation method to identify the existence, location, and severity of damage for structural systems. The method utilizes the concept of invariant stress resultants (ISR. The basic concept of ISR is that at any given cross section the resultant internal force distribution in a structural member is not affected by the inflicted damage. The method utilizes dynamic analysis of the structure to simulate direct measurements of acceleration, velocity and displacement simultaneously. The proposed dynamic ISR method is developed and utilized to detect the damage of corresponding changes in mass, damping and stiffness. The objectives of this research are to develop the basic theory of the dynamic ISR method, apply it to the specific types of structures, and verify the accuracy of the developed theory. Numerical results that demonstrate the application of the method will reflect the advanced sensitivity and accuracy in characterizing multiple damage locations.

  9. The Direct Effect of Flexible Walls on Fontan Connection Fluid Dynamics

    Science.gov (United States)

    Tree, Mike; Fagan, Kiley; Yoganathan, Ajit

    2014-11-01

    The current standard treatment for sufferers of congenital heart defects is the palliative Fontan procedure. The Fontan procedure results in an anastomosis of major veins directly to the branched pulmonary arteries bypassing the dysfunctional ventricle. This total cavopulmonary connection (TCPC) extends life past birth, but Fontan patients still suffer long-term complications like decreased exercise capacity, protein-losing enteropathy, and pulmonary arteriovenous malformations (PAVM). These complications have direct ties to fluid dynamics within the connection. Previous experimental and computation studies of Fontan connection fluid dynamics employed rigid vessel models. More recent studies utilize flexible models, but a direct comparison of the fundamental fluid dynamics between rigid and flexible vessels only exists for a computational model, without a direct experimental validation. Thus, this study was a direct comparison of fluid dynamics within a rigid and two compliant idealized TCPCs. 2D particle image velocimetry measurements were collected at the connection center plane. Results include power loss, hepatic flow distribution, fluid shear stress, and flow structure recognition. The effect of flexible walls on these values and clinical impact will be discussed.

  10. Effect of Thickness Stress in Stretch-Bending

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Emmens, W.C.; Huetink, Han; Barlat, F; Moon, Y.H.; Lee, M.G.

    2010-01-01

    In any situation where a strip is pulled over a curved tool, locally a contact stress acts on the strip in thickness direction. This contact stress changes the stress state in the material, which will influence the deformation. One effect is that the yield stress in the plane of the strip is

  11. Cross-talk between lipid and protein carbonylation in a dynamic cardiomyocyte model of mild nitroxidative stress

    Directory of Open Access Journals (Sweden)

    Eva Griesser

    2017-04-01

    Full Text Available Reactive oxygen and nitrogen species (ROS/RNS play an important role in the regulation of cardiac function. Increase in ROS/RNS concentration results in lipid and protein oxidation and is often associated with onset and/or progression of many cardiovascular disorders. However, interplay between lipid and protein modifications has not been simultaneously studied in detail so far. Biomolecule carbonylation is one of the most common biomarkers of oxidative stress. Using a dynamic model of nitroxidative stress we demonstrated rapid changes in biomolecule carbonylation in rat cardiomyocytes. Levels of carbonylated species increased as early as 15 min upon treatment with the peroxynitrite donor, 3-morpholinosydnonimine (SIN-1, and decreased to values close to control after 16 h. Total (lipids+proteins vs. protein-specific carbonylation showed different dynamics, with a significant increase in protein-bound carbonyls at later time points. Treatment with SIN-1 in combination with inhibitors of proteasomal and autophagy/lysosomal degradation pathways allowed confirmation of a significant role of the proteasome in the degradation of carbonylated proteins, whereas lipid carbonylation increased in the presence of autophagy/lysosomal inhibitors. Electrophilic aldehydes and ketones formed by lipid peroxidation were identified and relatively quantified using LC-MS/MS. Molecular identity of reactive species was used for data-driven analysis of their protein targets. Combination of different enrichment strategies with LC-MS/MS analysis allowed identification of more than 167 unique proteins with 332 sites modified by electrophilic lipid peroxidation products. Gene ontology analysis of modified proteins demonstrated enrichment of several functional categories including proteins involved in cytoskeleton, extracellular matrix, ion channels and their regulation. Using calcium mobilization assays, the effect of nitroxidative stress on the activity of several ion

  12. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Weininger, Markus [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Schoepf, U. Joseph, E-mail: schoepf@musc.edu [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC (United States); Ramachandra, Ashok [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Fink, Christian [Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany); Rowe, Garrett W.; Costello, Philip [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Henzler, Thomas [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University (Germany)

    2012-12-15

    Purpose: Recent innovations in CT enable the evolution from mere morphologic imaging to dynamic and functional testing. We describe our initial experience performing myocardial stress perfusion CT in a clinical population with acute chest pain. Methods and materials: Myocardial stress perfusion CT was performed on twenty consecutive patients (15 men, 5 women; mean age 65 ± 8 years) who presented with acute chest pain and were clinically referred for stress/rest SPECT and cardiac MRI. Prior to CT each patient was randomly assigned either to Group A or to Group B in a consecutive order (10 patients per group). Group A underwent adenosine-stress dynamic real-time myocardial perfusion CT using a novel “shuttle” mode on a 2nd generation dual-source CT. Group B underwent adenosine-stress first-pass dual-energy myocardial perfusion CT using the same CT scanner in dual-energy mode. Two experienced observers visually analyzed all CT perfusion studies. CT findings were compared with MRI and SPECT. Results: In Group A 149/170 myocardial segments (88%) could be evaluated. Real-time perfusion CT (versus SPECT) had 86% (84%) sensitivity, 98% (92%) specificity, 94% (88%) positive predictive value, and 96% (92%) negative predictive value in comparison with perfusion MRI for the detection of myocardial perfusion defects. In Group B all myocardial segments were available for analysis. Compared with MRI, dual-energy myocardial perfusion CT (versus SPECT) had 93% (94%) sensitivity, 99% (98%) specificity, 92% (88%) positive predictive value, and 96% (94%) negative predictive value for detecting hypoperfused myocardial segments. Conclusion: Our results suggest the clinical feasibility of myocardial perfusion CT imaging in patients with acute chest pain. Compared to MRI and SPECT both, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT showed good agreement for the detection of myocardial perfusion defects.

  13. Adenosine-stress dynamic real-time myocardial perfusion CT and adenosine-stress first-pass dual-energy myocardial perfusion CT for the assessment of acute chest pain: Initial results

    International Nuclear Information System (INIS)

    Weininger, Markus; Schoepf, U. Joseph; Ramachandra, Ashok; Fink, Christian; Rowe, Garrett W.; Costello, Philip; Henzler, Thomas

    2012-01-01

    Purpose: Recent innovations in CT enable the evolution from mere morphologic imaging to dynamic and functional testing. We describe our initial experience performing myocardial stress perfusion CT in a clinical population with acute chest pain. Methods and materials: Myocardial stress perfusion CT was performed on twenty consecutive patients (15 men, 5 women; mean age 65 ± 8 years) who presented with acute chest pain and were clinically referred for stress/rest SPECT and cardiac MRI. Prior to CT each patient was randomly assigned either to Group A or to Group B in a consecutive order (10 patients per group). Group A underwent adenosine-stress dynamic real-time myocardial perfusion CT using a novel “shuttle” mode on a 2nd generation dual-source CT. Group B underwent adenosine-stress first-pass dual-energy myocardial perfusion CT using the same CT scanner in dual-energy mode. Two experienced observers visually analyzed all CT perfusion studies. CT findings were compared with MRI and SPECT. Results: In Group A 149/170 myocardial segments (88%) could be evaluated. Real-time perfusion CT (versus SPECT) had 86% (84%) sensitivity, 98% (92%) specificity, 94% (88%) positive predictive value, and 96% (92%) negative predictive value in comparison with perfusion MRI for the detection of myocardial perfusion defects. In Group B all myocardial segments were available for analysis. Compared with MRI, dual-energy myocardial perfusion CT (versus SPECT) had 93% (94%) sensitivity, 99% (98%) specificity, 92% (88%) positive predictive value, and 96% (94%) negative predictive value for detecting hypoperfused myocardial segments. Conclusion: Our results suggest the clinical feasibility of myocardial perfusion CT imaging in patients with acute chest pain. Compared to MRI and SPECT both, dynamic real-time perfusion CT and first-pass dual-energy perfusion CT showed good agreement for the detection of myocardial perfusion defects.

  14. Work-related social support modulates effects of early life stress on limbic reactivity during stress.

    Science.gov (United States)

    Leicht-Deobald, Ulrich; Bruch, Heike; Bönke, Luisa; Stevense, Amie; Fan, Yan; Bajbouj, Malek; Grimm, Simone

    2017-12-15

    Early life stress (ELS) affects stress- reactivity via limbic brain regions implicated such as hippocampus and amygdala. Social support is a major protective factor against ELS effects, while subjects with ELS experience reportedly perceive less of it in their daily life. The workplace, where most adults spend a substantial amount of time in their daily lives, might serve as a major resource for social support. Since previous data demonstrated that social support attenuates stress reactivity, we here used a psychosocial stress task to test the hypothesis that work-related social support modulates the effects of ELS. Results show decreased amygdala reactivity during stress in ELS subjects who report high levels of work- related social support, thereby indicating a signature for reduced stress reactivity. However, this effect was only observable on the neural, but not on the behavioral level, since social support had no buffering effect regarding the subjective experience of stress in daily life as well as regarding feelings of uncontrollability induced by the stress task. Accordingly, our data suggest that subjects with ELS experiences might benefit from interventions targeted at lowering their subjective stress levels by helping them to better perceive the availability of social support in their daily lives.

  15. Quantitative analysis of localized stresses in irradiated stainless steels using high resolution electron backscatter diffraction and molecular dynamics modeling

    International Nuclear Information System (INIS)

    Johnson, D.C.; Kuhr, B.; Farkas, D.; Was, G.S.

    2016-01-01

    Quantitative measurements of stress near dislocation channel–grain boundary (DC–GB) interaction sites were made using high resolution electron backscatter diffraction (HREBSD) and have been compared with molecular dynamics (MD) simulations. Tensile stress normal to the grain boundary was significantly elevated at discontinuous DC–GB intersections with peak magnitudes roughly an order of magnitude greater than at sites where slip transfer occurred. These results constitute the first measurement of stress amplification at DC–GB intersections and provide support to the theory that high normal stress at the grain boundary may be a key driver for the initiation of irradiation assisted stress corrosion cracks.

  16. SAP-4, Static and Dynamic Linear System Stress Analysis for Various Structures

    International Nuclear Information System (INIS)

    Zawadzki, S.

    1984-01-01

    1 - Description of problem or function: SAP4 is a structural analysis program for determining the static and dynamic response of linear systems. The structural systems to be analyzed may be composed of combinations of a number of different structural elements. Currently the program contains the following element types - (a) three-dimensional truss element, (b) three-dimensional beam element, (c) plane stress and plane strain element, (d) two-dimensional axisymmetric solid, (e) three-dimensional solid, (f) variable-number nodes thick shell and three-dimensional element, (g) thin-plate or thin-shell element, (h) boundary element, and (i) pipe element (tangent and bend). 2 - Method of solution: The formation of the structure matrices is carried out in the same way in a static or dynamic analysis. The static analysis is continued by solving the equations of equilibrium followed by the computation of element stresses. In a dynamic analysis the choice is between frequency calculations only, frequency calculations followed by response history analysis, frequency calculations followed by response spectrum analysis, or response history analysis by direct integration. To obtain the frequencies and vibration mode shapes, solution routines are used which calculate the required eigenvalues and eigenvectors directly without a transformation of the structure stiffness matrix and mass matrix to a reduced form. To perform the direct integration an unconditionally stable scheme is used, which also operates on the original structure stiffness matrix and mass matrix. In this manner the program operation and input data required for a dynamic analysis are simple extensions of those needed for a static analysis. 3 - Restrictions on the complexity of the problem: The capacity of the program depends mainly on the total number of nodal points in the system, the number of eigenvalues needed in the dynamic analysis, and the computer used. There is practically no restriction on the number of

  17. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    Science.gov (United States)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  18. Interactive effects of environmental stress and inbreeding on reproductive traits in a wild bird population.

    Science.gov (United States)

    Marr, A B; Arcese, P; Hochachka, W M; Reid, J M; Keller, L F

    2006-11-01

    1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.

  19. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19

    Science.gov (United States)

    Schott, Ann-Sophie; Behr, Jürgen; Quinn, Jennifer; Vogel, Rudi F.

    2016-01-01

    Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses. PMID:27783652

  20. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19.

    Directory of Open Access Journals (Sweden)

    Ann-Sophie Schott

    Full Text Available Lactic acid bacteria (LAB are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb. paracasei subsp. paracasei TMW 1.1434 (F19 to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress. We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS, which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC, it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.

  1. Thermal stress effects in intermetallic matrix composites

    Science.gov (United States)

    Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.

    1993-01-01

    Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.

  2. Effects of stress typicality during speeded grammatical classification.

    Science.gov (United States)

    Arciuli, Joanne; Cupples, Linda

    2003-01-01

    The experiments reported here were designed to investigate the influence of stress typicality during speeded grammatical classification of disyllabic English words by native and non-native speakers. Trochaic nouns and iambic gram verbs were considered to be typically stressed, whereas iambic nouns and trochaic verbs were considered to be atypically stressed. Experiments 1a and 2a showed that while native speakers classified typically stressed words individual more quickly and more accurately than atypically stressed words during differences reading, there were no overall effects during classification of spoken stimuli. However, a subgroup of native speakers with high error rates did show a significant effect during classification of spoken stimuli. Experiments 1b and 2b showed that non-native speakers classified typically stressed words more quickly and more accurately than atypically stressed words during reading. Typically stressed words were classified more accurately than atypically stressed words when the stimuli were spoken. Importantly, there was a significant relationship between error rates, vocabulary size and the size of the stress typicality effect in each experiment. We conclude that participants use information about lexical stress to help them distinguish between disyllabic nouns and verbs during speeded grammatical classification. This is especially so for individuals with a limited vocabulary who lack other knowledge (e.g., semantic knowledge) about the differences between these grammatical categories.

  3. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  4. Protective effects of carnosol against oxidative stress induced brain damage by chronic stress in rats.

    Science.gov (United States)

    Samarghandian, Saeed; Azimi-Nezhad, Mohsen; Borji, Abasalt; Samini, Mohammad; Farkhondeh, Tahereh

    2017-05-04

    Oxidative stress through chronic stress destroys the brain function. There are many documents have shown that carnosol may have a therapeutic effect versus free radical induced diseases. The current research focused the protective effect of carnosol against the brain injury induced by the restraint stress. The restraint stress induced by keeping animals in restrainers for 21 consecutive days. Thereafter, the rats were injected carnosol or vehicle for 21 consecutive days. At the end of experiment, all the rats were subjected to his open field test and forced swimming test. Afterwards, the rats were sacrificed for measuring their oxidative stress parameters. To measure the modifications in the biochemical aspects after the experiment, the activities of malondialdehyde (MDA), reduced glutathione (GSH), as well as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT) were evaluated in the whole brain. Our data showed that the animals received chronic stress had a raised immobility time versus the non-stressed animals (p < 0.01). Furthermore, chronic stress diminished the number of crossing in the animals that were subjected to the chronic stress versus the non-stressed rats (p < 0.01). Carnosol ameliorated this alteration versus the non-treated rats (p < 0.05). In the vehicle treated rats that submitted to the stress, the level of MDA levels was significantly increased (P < 0.001), and the levels of GSH and antioxidant enzymes were significantly decreased versus the non-stressed animals (P < 0.001). Carnosol treatment reduced the modifications in the stressed animals as compared with the control groups (P < 0.001). All of these carnosol effects were nearly similar to those observed with fluoxetine. The current research shows that the protective effects of carnosol may be accompanied with enhanced antioxidant defenses and decreased oxidative injury.

  5. Effect of Static-Dynamic Coupling Loading on Fracture Toughness and Failure Characteristics in Marble

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2014-03-01

    Full Text Available Fracture experiments in a notched semi-circular bend configuration were conducted to test the dynamic fracture toughness of a marble under static-dynamic coupling load using a modified split Hopkinson pressure bar. The fracture process of the specimen was monitored using a high speed (HS camera. Based on digital image correlation (DIC and strain gauges, the full-field strain fields and time-to-fracture of the marble were measured under static-dynamic coupling load. Experimental results show that dynamic fracture toughness was well determined, and the HS-DIC technique provides reliable full-field strain fields in the specimens under static-dynamic coupling loads. The failure characteristics of the marble under external impact were affected obviously by pre-compression stress. Increase of axial pre-compression stress was helpful to improve the crack propagation velocity, and dynamic crack initiation toughness was decreased.

  6. Stress vulnerability and the effects of moderate daily stress on sleep polysomnography and subjective sleepiness.

    Science.gov (United States)

    Petersen, Helena; Kecklund, Göran; D'Onofrio, Paolo; Nilsson, Jens; Åkerstedt, Torbjörn

    2013-02-01

    The purpose of this study was to investigate if and how sleep physiology is affected by naturally occurring high work stress and identify individual differences in the response of sleep to stress. Probable upcoming stress levels were estimated through weekly web questionnaire ratings. Based on the modified FIRST-scale (Ford insomnia response to stress) participants were grouped into high (n = 9) or low (n = 19) sensitivity to stress related sleep disturbances (Drake et al., 2004). Sleep was recorded in 28 teachers with polysomnography, sleep diaries and actigraphs during one high stress and one low stress condition in the participants home. EEG showed a decrease in sleep efficiency during the high stress condition. Significant interactions between group and condition were seen for REM sleep, arousals and stage transitions. The sensitive group had an increase in arousals and stage transitions during the high stress condition and a decrease in REM, whereas the opposite was seen in the resilient group. Diary ratings during the high stress condition showed higher bedtime stress and lower ratings on the awakening index (insufficient sleep and difficulties awakening). Ratings also showed lower cognitive function and preoccupation with work thoughts in the evening. KSS ratings of sleepiness increased during stress for the sensitive group. Saliva samples of cortisol showed no effect of stress. It was concluded that moderate daily stress is associated with a moderate negative effect on sleep sleep efficiency and fragmentation. A slightly stronger effect was seen in the sensitive group. © 2012 European Sleep Research Society.

  7. Stress in the zoo: Tracking the impact of stress on memory formation over time.

    Science.gov (United States)

    Vogel, Susanne; Schwabe, Lars

    2016-09-01

    Although stress is well known to modulate human memory, precisely how memory formation is altered by a stressful encounter remains unclear. Stress effects on cognition are mainly mediated by the rapidly acting sympathetic nervous system, resulting in the release of catecholamines, and the slower acting hypothalamus-pituitary-adrenal axis secreting cortisol, which induces its effects on cognition through fast, non-genomic actions and delayed, genomic actions. Importantly, these different waves of the physiological stress response are thought to dynamically alter neural processing in brain regions important for memory such as the amygdala and the hippocampus. However, the precise time course of stress effects on memory formation is still unclear. To track the development of stress effects on memory over time, we tested individuals who underwent a stressful experience or a control procedure before a 2-h walk through a zoo, while an automatic camera continuously photographed the events they encoded. In a recognition memory test one week later, participants were presented with target photographs of their own zoo tour and lure photographs from an alternate tour. Stressed participants showed better memory for the experimental treatment than control participants, and this memory enhancement for the stressful encounter itself was directly linked to the sympathetic stress response. Moreover, stress enhanced memory for events encoded 41-65min after stressor onset, which was associated with the cortisol stress response, most likely arising from non-genomic cortisol actions. However, memory for events encoded long after the stressor, when genomic cortisol actions had most likely developed, remained unchanged. Our findings provide novel insights into how stress effects on memory formation develop over time, depending on the activity of major physiological stress response systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effect of stress management interventions on job stress among nurses working in critical care units.

    Science.gov (United States)

    Light Irin, C; Bincy, R

    2012-01-01

    Stress in nurses affects their health and increases absenteeism, attrition rate, injury claims, infection rates and errors in treating patients. This in turn significantly increases the cost of employment in healthcare units. Proper management of stress ensures greater efficiency at work place and improved wellbeing of the employee. Therefore, a pre-experimental study was conducted among 30 Critical Care Unit nurses working inMedical College Hospital, Thiruvananthapuram, (Kerala) to assess the effect of stress management interventions such as Job Stress Awareness, Assertiveness Training, Time Management, andProgressive Muscle Relaxation on job stress. The results showed that caring for patients, general job requirements and workload were the major sources of stress for the nurses. The level of severe stress was reduced from 60 percent to 20 percent during post-test. The Stress Management Interventions were statistically effective in reducing the stress of nurses at p<0.001 level.

  9. No effects of psychosocial stress on intertemporal choice.

    Directory of Open Access Journals (Sweden)

    Johannes Haushofer

    Full Text Available Intertemporal choices - involving decisions which trade off instant and delayed outcomes - are often made under stress. It remains unknown, however, whether and how stress affects intertemporal choice. We subjected 142 healthy male subjects to a laboratory stress or control protocol, and asked them to make a series of intertemporal choices either directly after stress, or 20 minutes later (resulting in four experimental groups. Based on theory and evidence from behavioral economics and cellular neuroscience, we predicted a bidirectional effect of stress on intertemporal choice, with increases in impatience or present bias immediately after stress, but decreases in present bias or impatience when subjects are tested 20 minutes later. However, our results show no effects of stress on intertemporal choice at either time point, and individual differences in stress reactivity (changes in stress hormone levels over time are not related to individual differences in intertemporal choice. Together, we did not find support for the hypothesis that psychosocial laboratory stressors affect intertemporal choice.

  10. Dynamic Stresses in the LHC TCDS Diluter from 7 TeV Beam Loading

    CERN Document Server

    Goddard, B; Presland, A; Weterings, W

    2006-01-01

    In the event of an unsynchronised beam abort, the MSD extraction septum of the LHC beam dumping system is protected from damage by the TCDS diluter. The simultaneous constraints of obtaining sufficient beam dilution while ensuring the survival of the TCDS make the design difficult, with high thermally induced dynamic stresses occurring in the material needed to attenuate the particle showers induced by the primary beam impact. In this paper, full 3D simulations are described where the worst-case beam loading has been used to generate the local temperature rise and to follow the resulting time evolution of the mechanical stresses. The results and the accompanying design changes for the TCDS, to provide an adequate performance margin, are detailed.

  11. Investigating degradation behavior of InGaZnO thin-film transistors induced by charge-trapping effect under DC and AC gate bias stress

    International Nuclear Information System (INIS)

    Hsieh, Tien-Yu; Chang, Ting-Chang; Chen, Te-Chih; Tsai, Ming-Yen; Chen, Yu-Te

    2013-01-01

    This paper investigates the degradation mechanism of amorphous InGaZnO thin-film transistors under DC and AC gate bias stress. Comparing the degradation behavior at equal accumulated effective stress time, more pronounced threshold voltage shift under AC positive gate bias stress in comparison with DC stress indicates extra electron-trapping phenomenon that occurs in the duration of rising/falling time in pulse. Contrarily, illuminated AC negative gate bias stress exhibits much less threshold voltage shift than DC stress, suggesting that the photo-generated hole does not have sufficient time to drift to the interface of IGZO/gate insulator and causes hole-trapping under AC operation. Since the evolution of threshold voltage fits the stretched-exponential equation well, the different degradation tendencies under DC/AC stress can be attributed to the different electron- and hole-trapping efficiencies, and this is further verified by varying pulse waveform. - Highlights: ► Static and dynamic gate bias stresses are imposed on InGaZnO TFTs. ► Dynamic positive gate bias induces more pronounced threshold voltage shift. ► Static negative-bias illumination stress induces more severe threshold voltage shift. ► Evolution of threshold voltage fits the stretched-exponential equation well

  12. The Dichotomous Effect of Chronic Stress on Obesity.

    Science.gov (United States)

    Razzoli, Maria; Bartolomucci, Alessandro

    2016-07-01

    Obesity and metabolic diseases are linked to chronic stress and low socioeconomic status. The mechanistic link between stress and obesity has not been clarified, partly due to the inherent complexity exemplified by the bidirectional effect of stress on eating and body weight. Recent studies focusing on adaptive thermogenesis and brown adipose tissue (BAT) function support a dichotomous relation to explain the impact of stress on obesity: stress promotes obesity in the presence of hyperphagia and unchanged BAT function; stress results in weight loss and/or obesity resistance in the presence of hypophagia, or when hyperphagia is associated with BAT recruitment and enhanced thermogenesis. Mechanistically dissecting the bidirectional effects of stress on metabolic outcomes might open new avenues for innovative pharmacotherapies for the treatment of obesity-associated diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Numerical simulation of temperature and thermal stress for nuclear piping by using computational fluid dynamics analysis and Green’s function

    Energy Technology Data Exchange (ETDEWEB)

    Boo, Myung-Hwan [Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of); Oh, Chang-Kyun; Kim, Hyun-Su [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of); Choi, Choeng-Ryul [ELSOLTEC, Inc., Yongin (Korea, Republic of)

    2017-05-15

    Owing to the fact that thermal fatigue is a well-known damage mechanism in nuclear power plants, accurate stress and fatigue evaluation are highly important. Operating experience shows that the design condition is conservative compared to the actual one. Therefore, various fatigue monitoring methods have been extensively utilized to consider the actual operating data. However, defining the local temperature in the piping is difficult because temperature-measuring instruments are limited. The purpose of this paper is to define accurate local temperature in the piping and evaluate thermal stress using Green’s function (GF) by performing a series of computational fluid dynamics analyses considering the complex fluid conditions. Also, the thermal stress is determined by adopting GF and comparing it with that of the design condition. The fluid dynamics analysis result indicates that the fluid temperature slowly varies compared to the designed one even when the flow rate changes abruptly. In addition, the resulting thermal stress can significantly decrease when reflecting the actual temperature.

  14. Extraversion and cardiovascular responses to recurrent social stress: Effect of stress intensity.

    Science.gov (United States)

    Lü, Wei; Xing, Wanying; Hughes, Brian M; Wang, Zhenhong

    2017-10-28

    The present study sought to establish whether the effects of extraversion on cardiovascular responses to recurrent social stress are contingent on stress intensity. A 2×5×1 mixed-factorial experiment was conducted, with social stress intensity as a between-subject variable, study phase as a within-subject variable, extraversion as a continuous independent variable, and cardiovascular parameter (HR, SBP, DBP, or RSA) as a dependent variable. Extraversion (NEO-FFI), subjective stress, and physiological stress were measured in 166 undergraduate students randomly assigned to undergo moderate (n=82) or high-intensity (n=84) social stress (a public speaking task with different levels of social evaluation). All participants underwent continuous physiological monitoring while facing two consecutive stress exposures distributed across five laboratory phases: baseline, stress exposure 1, post-stress 1, stress exposure 2, post-stress 2. Results indicated that under moderate-intensity social stress, participants higher on extraversion exhibited lesser HR reactivity to stress than participants lower on extraversion, while under high-intensity social stress, they exhibited greater HR, SBP, DBP and RSA reactivity. Under both moderate- and high-intensity social stress, participants higher on extraversion exhibited pronounced SBP and DBP response adaptation to repeated stress, and showed either better degree of HR recovery or greater amount of SBP and DBP recovery after stress. These findings suggest that individuals higher on extraversion exhibit physiological flexibility to cope with social challenges and benefit from adaptive cardiovascular responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dynamic of bioelectric activity back hypothalamus changes in conditions of pyroxan application on the background of stress-reaction developmen

    Directory of Open Access Journals (Sweden)

    T. G. Chaus

    2005-04-01

    Full Text Available The dynamic of changes of capacity of electroencephalogram’s rhythms back hypothalamus at animals of control group and group in stress conditions in parallel with rats who on a background of stress development accepted pyroxan is analyzed. The submitted results have shown influence of a pharmacological preparation pyroxan on bioelectric activity of back hypothalamus in stress conditions that restoration of electric activity under action of this preparation was more shown at 3 weeks of its application.

  16. The effects of spatial dynamics on a wormhole throat

    Science.gov (United States)

    Alias, Anuar; Wan Abdullah, Wan Ahmad Tajuddin

    2018-02-01

    Previous studies on dynamic wormholes were focused on the dynamics of the wormhole itself, be it either rotating or evolutionary in character and also in various frameworks from classical to braneworld cosmological models. In this work, we modeled a dynamic factor that represents the spatial dynamics in terms of spacetime expansion and contraction surrounding the wormhole itself. Using an RS2-based braneworld cosmological model, we modified the spacetime metric of Wong and subsequently employed the method of Bronnikov, where it is observed that a traversable wormhole is easier to exist in an expanding brane universe, however it is difficult to exist in a contracting brane universe due to stress-energy tensors requirement. This model of spatial dynamic factor affecting the wormhole throat can also be applied on the cyclic or the bounce universe model.

  17. Non-linear hydrotectonic phenomena: Part I - fluid flow in open fractures under dynamical stress loading

    International Nuclear Information System (INIS)

    Archambeau, C.B.

    1994-01-01

    A fractured solid under stress loading (or unloading) can be viewed as behaving macroscopically as a medium with internal, hidden, degrees of freedom, wherein changes in fracture geometry (i.e. opening, closing and extension) and flow of fluid and gas within fractures will produce major changes in stresses and strains within the solid. Likewise, the flow process within fractures will be strongly coupled to deformation within the solid through boundary conditions on the fracture surfaces. The effects in the solid can, in part, be phenomenologically represented as inelastic or plastic processes in the macroscopic view. However, there are clearly phenomena associated with fracture growth and open fracture fluid flows that produce effects that can not be described using ordinary inelastic phenomenology. This is evident from the fact that a variety of energy release phenomena can occur, including seismic emissions of previously stored strain energy due to fracture growth, release of disolved gas from fluids in the fractures resulting in enhanced buoyancy and subsequent energetic flows of gas and fluids through the fracture system which can produce raid extension of old fractures and the creation of new ones. Additionally, the flows will be modulated by the opening and closing of fractures due to deformation in the solid, so that the flow process is strongly coupled to dynamical processes in the surrounding solid matrix, some of which are induced by the flow itself

  18. Stress distribution in dental prosthesis under an occlusal combined dynamic loading

    International Nuclear Information System (INIS)

    Merdji, A.; Bachir Bouiadjra, B.; Ould Chikh, B.; Mootanah, R.; Aminallah, L.; Serier, B.; Muslih, I.M.

    2012-01-01

    Highlights: ► The mechanical stress reaches the highest in areas of cortical bones. ► The mechanical stress in the cancellous bone reaches greatest in the bottom of the dental implant. ► Implant with low-volume bone might cause increased stress concentration in the cortical bone. -- Abstract: The biomechanical behavior of osseointegrated dental prostheses systems plays an important role in its functional longevity inside the bone. Simulation of these systems requires an accurate modeling of the prosthesis components, the jaw bone, the implant–bone interface, and the response of the system to different types of applied forces. The purpose of this study was to develop a new three-dimensional model of an osseointegrated molar dental prosthesis and to carry out finite element analysis to evaluate stress distributions in the bone and the dental prosthesis compounds under an occlusal combined dynamic load was applied to the top of the occlusale face of the prosthesis crown. The jaw bone model containing cortical bone and cancellous bone was constructed by using computer tomography scan pictures and Computer Aided Design tools. The dental prosthesis compounds were constructed, simulating the commercially available cylindrical implant of 4.8 mm diameter and 10 mm length. Both finite element models were created in Abaqus finite element software. All materials used in the models were considered to be isotropic, homogeneous and linearly elastic. The elastic properties, loads and constraints used in the model were taken from published data. Results of our finite element analyses, indicated that the maximum stresses were located around the mesial neck of the implant, in the marginal bone. Thus, this area should be preserved clinically in order to maintain the bone–implant interface structurally and functionally.

  19. Overcoming the effects of stress on reactor operator performance

    International Nuclear Information System (INIS)

    He Xuhong; Wei Li; Zhao Bingquan

    2003-01-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  20. Overcoming the effects of stress on reactor operator performance

    Energy Technology Data Exchange (ETDEWEB)

    He Xuhong; Wei Li; Zhao Bingquan [Tsinghua Univ., Nuclear Power Plant Simulation Training Center, Beijing (China)

    2003-03-01

    Reactor operators may be exposed to significant levels of stress during plant emergencies and their performance may be affected by the stress. This paper first identified the potential sources of stress in the nuclear power plant, then discussed the ways in which stress is likely to affect the reactor operators, and finally identified several training approaches for reducing or eliminating stress effects. The challenges for effective stress reducing training may seem daunting, yet the challenges are real and must be addressed. This paper reviewed researches in training design, knowledge and skill acquisition, and training transfer point to a number of strategies that can be used to address these challenges and lead to more effective training and development. (author)

  1. The 1911 M ~6.6 Calaveras earthquake: Source parameters and the role of static, viscoelastic, and dynamic coulomb stress changes imparted by the 1906 San Francisco earthquake

    Science.gov (United States)

    Doser, D.I.; Olsen, K.B.; Pollitz, F.F.; Stein, R.S.; Toda, S.

    2009-01-01

    The occurrence of a right-lateral strike-slip earthquake in 1911 is inconsistent with the calculated 0.2-2.5 bar static stress decrease imparted by the 1906 rupture at that location on the Calaveras fault, and 5 yr of calculated post-1906 viscoelastic rebound does little to reload the fault. We have used all available first-motion, body-wave, and surface-wave data to explore possible focal mechanisms for the 1911 earthquake. We find that the event was most likely a right-lateral strikeslip event on the Calaveras fault, larger than, but otherwise resembling, the 1984 Mw 6.1 Morgan Hill earthquake in roughly the same location. Unfortunately, we could recover no unambiguous surface fault offset or geodetic strain data to corroborate the seismic analysis despite an exhaustive archival search. We calculated the static and dynamic Coulomb stress changes for three 1906 source models to understand stress transfer to the 1911 site. In contrast to the static stress shadow, the peak dynamic Coulomb stress imparted by the 1906 rupture promoted failure at the site of the 1911 earthquake by 1.4-5.8 bar. Perhaps because the sample is small and the aftershocks are poorly located, we find no correlation of 1906 aftershock frequency or magnitude with the peak dynamic stress, although all aftershocks sustained a calculated dynamic stress of ???3 bar. Just 20 km to the south of the 1911 epicenter, we find that surface creep of the Calaveras fault at Hollister paused for ~17 yr after 1906, about the expected delay for the calculated static stress drop imparted by the 1906 earthquake when San Andreas fault postseismic creep and viscoelastic relaxation are included. Thus, the 1911 earthquake may have been promoted by the transient dynamic stresses, while Calaveras fault creep 20 km to the south appears to have been inhibited by the static stress changes.

  2. On the Stress Transfer of Nanoscale Interlayer with Surface Effects

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    2018-01-01

    Full Text Available An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.

  3. Study of stress, self-esteem and depression in medical students and effect of music on perceived stress.

    Science.gov (United States)

    Baste, Vrushali S; Gadkari, Jayashree V

    2014-01-01

    Medical students are exposed to many stressors and if stress is perceived negatively or becomes excessive can affect academic performance and health adversely. The objective of this study was to assess stress, predominant stressor and effect of music on perceived stress. 90 undergraduate students were selected randomly. A written questionnaire about personal information, stressful factors, ways to cope up stress, Rosenberg self-esteem scale (Rosenberg, 1965) and 'Quick Inventory of Depressive Symptomatology' self-rated 16 (QIDS-SR-16) was given.45.6% Students had mild stress, 7.7% students had moderate stress and 1.1% students had severe stress. Academic factors were the predominant cause of stress in most students, followed by physical, social and emotional. On Rosenberg self-esteem scale (Rosenberg, 1965) 85.6% students had high self-esteem and on QIDS-SR16 50% students had depression. Effect of music on perceived stress was statistically significant. Medical curriculum is associated with increased stress in students. Music can be used as simple, inexpensive and effective therapy for stress.

  4. Effects of stress on heart rate complexity--a comparison between short-term and chronic stress.

    Science.gov (United States)

    Schubert, C; Lambertz, M; Nelesen, R A; Bardwell, W; Choi, J-B; Dimsdale, J E

    2009-03-01

    This study examined chronic and short-term stress effects on heart rate variability (HRV), comparing time, frequency and phase domain (complexity) measures in 50 healthy adults. The hassles frequency subscale of the combined hassles and uplifts scale (CHUS) was used to measure chronic stress. Short-term stressor reactivity was assessed with a speech task. HRV measures were determined via surface electrocardiogram (ECG). Because respiration rate decreased during the speech task (pshort-term stress decreased HR D2 (calculated via the pointwise correlation dimension PD2) (pshort-term stress. Partial correlation adjusting for respiration rate showed that HR D2 was associated with chronic stress (r=-.35, p=.019). Differential effects of chronic and short-term stress were observed on several HRV measures. HR D2 decreased under both stress conditions reflecting lowered functionality of the cardiac pacemaker. The results confirm the importance of complexity metrics in modern stress research on HRV.

  5. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    OpenAIRE

    Roselinde Kaiser Henderson; Hannah R. Snyder; Tina eGupta; Marie T. Banich; Marie T. Banich

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding ...

  6. When Does Stress Help or Harm? The Effects of Stress Controllability and Subjective Stress Response on Stroop Performance

    OpenAIRE

    Henderson, Roselinde K.; Snyder, Hannah R.; Gupta, Tina; Banich, Marie T.

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, r...

  7. Effects of magnetized walls on the particle structure and the yield stress of magnetorheological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianfeng, E-mail: zhoujianfeng@njtech.edu.cn [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu (China); Mo, Jingwen [Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Shao, Chunlei [School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu (China); Li, Zhigang [Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)

    2015-09-01

    In this work, we investigate the quasi-static shear deformation of magnetic particles (MPs) in a Couette flow of magnetorheological (MR) fluids through Stokesian dynamic simulations. The magnetized walls are modeled by a congregation of magnetic dipoles and their effects on the MPs are considered. The simple shear flow of the base fluid with linear velocity distribution is used to generate the shear deformation of the MP structure and the yield stresses under different shear rates are obtained. Comparing with the relatively long chains forming in base fluid without the effect of magnetized walls, the initial structure of MPs is mainly in the form of short chains due to the attractive force of walls. At the beginning of the shear deformation of the MP structure, the concentration of MPs near the walls is found. As the shear deformation develops, however, the chains concentrate at the center of the simulation domain and the MPs near wall boundaries are attracted to the center. The yield stress depends on the initial structure of MPs which is affected by the magnetized walls. It is revealed that the larger shear rate of base fluid results in the larger yield stress, and the effects of the magnetization intensity of the walls and their space distance on the yield stress are also investigated. - Highlights: • We model a Couette flow of magnetorheological fluid considering magnetized walls. • The walls are modeled by a congregation of magnetic dipoles. • Initial structure of MPs is remarkably affected by the walls, so is yield stress. • Larger base fluid shear rate causes the larger shear deformation and larger yield stress.

  8. Effects of magnetized walls on the particle structure and the yield stress of magnetorheological fluids

    International Nuclear Information System (INIS)

    Zhou, Jianfeng; Mo, Jingwen; Shao, Chunlei; Li, Zhigang

    2015-01-01

    In this work, we investigate the quasi-static shear deformation of magnetic particles (MPs) in a Couette flow of magnetorheological (MR) fluids through Stokesian dynamic simulations. The magnetized walls are modeled by a congregation of magnetic dipoles and their effects on the MPs are considered. The simple shear flow of the base fluid with linear velocity distribution is used to generate the shear deformation of the MP structure and the yield stresses under different shear rates are obtained. Comparing with the relatively long chains forming in base fluid without the effect of magnetized walls, the initial structure of MPs is mainly in the form of short chains due to the attractive force of walls. At the beginning of the shear deformation of the MP structure, the concentration of MPs near the walls is found. As the shear deformation develops, however, the chains concentrate at the center of the simulation domain and the MPs near wall boundaries are attracted to the center. The yield stress depends on the initial structure of MPs which is affected by the magnetized walls. It is revealed that the larger shear rate of base fluid results in the larger yield stress, and the effects of the magnetization intensity of the walls and their space distance on the yield stress are also investigated. - Highlights: • We model a Couette flow of magnetorheological fluid considering magnetized walls. • The walls are modeled by a congregation of magnetic dipoles. • Initial structure of MPs is remarkably affected by the walls, so is yield stress. • Larger base fluid shear rate causes the larger shear deformation and larger yield stress

  9. Acute stress does not affect the impairing effect of chronic stress on memory retrieval

    Science.gov (United States)

    Ozbaki, Jamile; Goudarzi, Iran; Salmani, Mahmoud Elahdadi; Rashidy-Pour, Ali

    2016-01-01

    Objective(s): Due to the prevalence and pervasiveness of stress in modern life and exposure to both chronic and acute stresses, it is not clear whether prior exposure to chronic stress can influence the impairing effects of acute stress on memory retrieval. This issue was tested in this study. Materials and Methods: Adult male Wistar rats were randomly assigned to the following groups: control, acute, chronic, and chronic + acute stress groups. The rats were trained with six trials per day for 6 consecutive days in the water maze. Following training, the rats were either kept in control conditions or exposed to chronic stress in a restrainer 6 hr/day for 21 days. On day 22, a probe test was done to measure memory retention. Time spent in target and opposite areas, platform location latency, and proximity were used as indices of memory retention. To induce acute stress, 30 min before the probe test, animals received a mild footshock. Results: Stressed animals spent significantly less time in the target quadrant and more time in the opposite quadrant than control animals. Moreover, the stressed animals showed significantly increased platform location latency and proximity as compared with control animals. No significant differences were found in these measures among stress exposure groups. Finally, both chronic and acute stress significantly increased corticosterone levels. Conclusion: Our results indicate that both chronic and acute stress impair memory retrieval similarly. Additionally, the impairing effects of chronic stress on memory retrieval were not influenced by acute stress. PMID:27635201

  10. Effects of CFRP Strengthening on Dynamic and Fatigue Responses of Composite Bridge

    Directory of Open Access Journals (Sweden)

    Kittisak Kuntiyawichai

    2014-01-01

    Full Text Available This paper investigates the effect of CFRP strengthening on dynamic and fatigue responses of composite bridge using finite element program ABAQUS. Dynamic and fatigue responses of composite bridge due to truck load based on AASHTO standard are investigated. Two types of CFRP strengthening techniques, CFRP sheets and CFRP deck, are applied to both the damaged and undamaged bridges. For the case of damaged bridge, two through-thickness crack sizes, 3 mm and 6 mm in depth, are assumed at midspan of the steel girders. Furthermore, effects of the number of steel girders on the dynamic and fatigue responses are also considered. The results show that the maximum responses of composite bridges occur for dual lane cases. By using CFRP as a strengthening material, the maximum stress and deflection of the steel girders reduce and consequently increase the fatigue life of the girders. After introducing initial crack into the steel girders of the composite bridges, the fatigue life of the bridges is dramatically reduced. However, the overall performance of the damaged composite bridge can be improved by using CFRP, albeit with less effectiveness. Therefore, if cracks are found, steel welding must be performed before strengthening the composite bridge by CFRP.

  11. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    International Nuclear Information System (INIS)

    Cao, Shuying; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei

    2015-01-01

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device

  12. Dynamic hysteretic sensing model of bending-mode Galfenol transducer

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shuying, E-mail: shuying-cao@hebut.edu.cn; Zheng, Jiaju; Sang, Jie; Zhang, Pengfei; Wang, Bowen; Huang, Wenmei [Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130 (China)

    2015-05-07

    A dynamic hysteretic sensing model has been developed to predict the dynamic responses of the magnetic induction, the stress, and the output voltage for a bending-mode Galfenol unimorph transducer subjected simultaneously to acceleration and bias magnetic field. This model is obtained by coupling the hysteretic Armstrong model and the structural dynamic model of the Galfenol unimorph beam. The structural dynamic model of the beam is founded based on the Euler-Bernouli beam theory, the nonlinear constitutive equations, and the Faraday law of electromagnetic induction. Comparisons between the calculated and measured results show the model can describe dynamic nonlinear voltage characteristics of the device, and can predict hysteretic behaviors between the magnetic induction and the stress. Moreover, the model can effectively analyze the effects of the bias magnetic field, the acceleration amplitude, and frequency on the root mean square voltage of the device.

  13. Sex differences in stress effects on emotional learning.

    Science.gov (United States)

    Merz, Christian J; Wolf, Oliver T

    2017-01-02

    Stress influences emotional learning and memory processes. These effects are thought to underlie stress-associated mental disorders. Sex differences in stress reactivity and in central nervous system stress sensitivity illustrate the important modulatory role of sex hormones. This Review outlines how stress hormones influence different stages of the fear conditioning process, such as fear acquisition, extinction, and retrieval. Results will be compared with findings on the impact of stress on episodic memory. The focus is on the available human data on sex differences and the impact sex hormones have on the stress effects on emotional learning and memory. It will become apparent that the menstrual cycle but also the intake of hormonal contraceptives modulates the impact of stress on brain and behavior. Additional basic research is needed for a deeper insight regarding the interplay between stress and sex hormones in emotion and cognition. In addition, new treatment options might be derived to optimize existing strategies such as exposure therapy, which relies on the principles of fear conditioning. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Stress Symptoms: Effects on Your Body and Behavior

    Science.gov (United States)

    ... heart disease, obesity and diabetes. Common effects of stress on your body Headache Muscle tension or pain ... drive Stomach upset Sleep problems Common effects of stress on your mood Anxiety Restlessness Lack of motivation ...

  15. Estimation of spacial geo-stress components in rock samples by using the Kaiser effect of acoustic emission

    International Nuclear Information System (INIS)

    Kanagawa, Tadashi; Hayashi, Masao; Nakasa, Hiroyasu.

    1976-01-01

    The spacial remaining stress component of the rock core sample is experimentally obtained by using Kaiser effect of acoustic emission (AE), and the estimated ground pressure is compared with the natural ground pressure measured by the conventional over-coring method, in order to see the feasiblity of AE method. In this experiments of AE, 111 specimens were cut out in all directions of the rock cores (tuff) sampled from the place where the ground pressure was measured by the over-coring method, and the generation of AE caused by the load was measured. Whereby, the stress components in three directions are determined. As a result of comparison, t the AE method is proved to be effective enough to estimate the ground pressure of rock geo-dynamically. In the application of the Kaiser effect to the estimation of the geo-stress in rock samples, one of the most difficult problems is how to eliminate the obstruction of erroneous AE signals caused by the strong stress concentration at the end corners of the rock specimen. As the result of comparison, the values obtained by the AE method have a tendency of greater than the values obtained by the over-coring method. It is conceived that the AE method can easily detect the maximum stress value for geo historical long time, and that the stress concentration is apt to mix in AE method by boring. (Iwakiri, K.)

  16. The Coupled Effect of Loading Rate and Grain Size on Tensile Strength of Sandstones under Dynamic Disturbance

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-01-01

    Full Text Available It is of significance to comprehend the effects of rock microstructure on the tensile strength under different loading rates caused by mining disturbance. So, in this paper, three kinds of sandstones drilled from surrounding rocks in Xiao Jihan Coal to simulate the in situ stress state, whose average grain size is 30 μm (fine grain, FG, 105 μm (medium grain, MG, and 231 μm (Coarse grain, CG, are selected with the calculation of optical microscopic technique and moreover processed to Brazilian disc (BD to study the mechanical response of samples. The dynamic Brazilian tests of samples with three kinds of grain sizes are conducted with the Split Hopkinson Pressure Bar (SHPB driven by pendulum hammer, which can produce four different velocities (V=2.0 m/s, 2.5 m/s, 3.3 m/s, and 4.2 m/s when the incident bar is impacted by pendulum hammer. The incident wave produced by pendulum hammer is a slowly rising stress wave, which allows gradual stress accumulation in the specimen and maintains the load at both ends of the specimen in an equilibrium state. The results show that the dynamic strength of three kinds of BD samples represented loading rates dependence, and FG sandstones are more sensitive for loading rates than MG and CG samples. Moreover, the peak strength is observed to increase linearly with an increasing stress rates, and the relationship between the dynamic BD strength and stress rates can be built through a linear equation. Finally, the failure modes of different grain sizes are discussed and explained by microfailure mechanism.

  17. Hemodynamic mechanisms of the attenuated blood pressure response to mental stress after a single bout of maximal dynamic exercise in healthy subjects

    Directory of Open Access Journals (Sweden)

    F.J. Neves

    2012-07-01

    Full Text Available To determine the hemodynamic mechanisms responsible for the attenuated blood pressure response to mental stress after exercise, 26 healthy sedentary individuals (age 29 ± 8 years underwent the Stroop color-word test before and 60 min after a bout of maximal dynamic exercise on a treadmill. A subgroup (N = 11 underwent a time-control experiment without exercise. Blood pressure was continuously and noninvasively recorded by infrared finger photoplethysmography. Stroke volume was derived from pressure signals, and cardiac output and peripheral vascular resistance were calculated. Perceived mental stress scores were comparable between mental stress tests both in the exercise (P = 0.96 and control (P = 0.24 experiments. After exercise, the blood pressure response to mental stress was attenuated (pre: 10 ± 13 vs post: 6 ± 7 mmHg; P 0.05. In conclusion, a single bout of maximal dynamic exercise attenuates the blood pressure response to mental stress in healthy subjects, along with lower stroke volume and cardiac output, denoting an acute modulatory action of exercise on the central hemodynamic response to mental stress.

  18. Dynamic deformation and failure characteristic of rock foundation by means of effect of cyclic shear loading

    International Nuclear Information System (INIS)

    Fujiwara, Yoshikazu; Hibino, Satoshi; Kanagawa, Tadashi; Komada, Hiroya; Nakagawa, Kameichiro

    1984-01-01

    The main structures of nuclear power plants are built on hard and soft rocks. The rock-dynamic properties used for investigating the stability of the structures have been determined so far by laboratory tests for soft rocks. In hard rocks, however, joints and cracks exist, and the test including these effects is not able to be performed in laboratories at present. Therefore, a dynamic repeating shearing test equipment to be used under the condition including the joints and cracks of actual ground has been made for a base rock of tuff breccia. In this paper, the test results are reported as follows. The geological features of the testing site and the arrangement of tested rocks, the preparation for tests, test equipment, loading method, measuring method, analysis, and the result and the examination. The results of dynamic deformation and failure characteristics were as follows: (1) the dynamic shear-elasticity-modulus Gd of the base rock showed greater values as the normal stress increased, while Gd decreased and showed the strain dependence as the dynamic shear strain amplitude γ increased; (2) the relationship between Gd and γ was well represented with the equation proposed by Hardin-Drnevich; (3) damping ratio increased as γ increased, and decreased as normal stress increased; (4) When a specimen was about to break, γ suddenly increased, and the dynamic shear strain amplitude at yield point was in the range of approximately (3.4 to 4.1) x 10 -3 . (Wakatsuki, Y.)

  19. Stretching the stress boundary: Linking air pollution health effects to a neurohormonal stress response.

    Science.gov (United States)

    Kodavanti, Urmila P

    2016-12-01

    Inhaled pollutants produce effects in virtually all organ systems in our body and have been linked to chronic diseases including hypertension, atherosclerosis, Alzheimer's and diabetes. A neurohormonal stress response (referred to here as a systemic response produced by activation of the sympathetic nervous system and hypothalamus-pituitary-adrenal (HPA)-axis) has been implicated in a variety of psychological and physical stresses, which involves immune and metabolic homeostatic mechanisms affecting all organs in the body. In this review, we provide new evidence for the involvement of this well-characterized neurohormonal stress response in mediating systemic and pulmonary effects of a prototypic air pollutant - ozone. A plethora of systemic metabolic and immune effects are induced in animals exposed to inhaled pollutants, which could result from increased circulating stress hormones. The release of adrenal-derived stress hormones in response to ozone exposure not only mediates systemic immune and metabolic responses, but by doing so, also modulates pulmonary injury and inflammation. With recurring pollutant exposures, these effects can contribute to multi-organ chronic conditions associated with air pollution. This review will cover, 1) the potential mechanisms by which air pollutants can initiate the relay of signals from respiratory tract to brain through trigeminal and vagus nerves, and activate stress responsive regions including hypothalamus; and 2) the contribution of sympathetic and HPA-axis activation in mediating systemic homeostatic metabolic and immune effects of ozone in various organs. The potential contribution of chronic environmental stress in cardiovascular, neurological, reproductive and metabolic diseases, and the knowledge gaps are also discussed. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Published by Elsevier B.V.

  20. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Effect of the weld joint configuration on stressed components, residual stresses and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cevik, Bekir; Oezer, Alpay; Oezcatalbas, Yusuf [Gazi Univ., Ankara (Turkey)

    2014-03-01

    The effect of the weld joint configuration on components has been studied, which are under service loads, under repair or construction and the residual stresses as well as the mechanical properties of the joint have been determined. For this purpose, a horizontal positioned tensile testing device and a semi-automatic MIG welding machine have been used and then the weld joints of the plates were subjected to different elastic stresses. When the temperature of the joined elements decreased to room temperature, applied elastic stresses were released. By this means, the effects of the existing tensile stresses in the joined parts and the tensile stresses created by the welding processes were investigated. The tensile stresses occurring in the joined elements were determined by using the photo-elasticity analysis method and the hole-drilling method. Also, tensile-shear tests were applied in order to determine the effect of permanent tensile loads on the mechanical properties of the joint. Experimental results showed that the application of corner welded lap joints for components under tensile loading significantly decrease the shear strength and yielding capacities of the joint. (orig.)

  2. Effects of stress on nursing integrity.

    Science.gov (United States)

    McIntosh, Bryan; Sheppy, Bruce

    This article looks at the relationship between stress, nursing integrity and patient care. It has been argued that the professional integrity of nurses has been eroded and consequently they have become more susceptible to anxiety, stress and exhaustion, potentially affecting care delivery. The authors suggest that the goal of providing high professional standards is threatened by increased service demands, and there is therefore a need for nurses to develop effective coping strategies to manage stress resulting from competing tensions in the workplace.

  3. Adverse effects of stress on microbiota

    Science.gov (United States)

    The complex communities of microorganisms that colonize the gastrointestinal tract impact the health status of an animal. The health of an animal as well as production traits are also affected by exposure to stress. The aim of present study was to evaluate the effects of dehorning stress on the gut ...

  4. Probabilistic molecular dynamics evaluation of the stress-strain behavior of polyethylene

    International Nuclear Information System (INIS)

    Stowe, J.Q.; Predecki, P.K.; Laz, P.J.; Burks, B.M.; Kumosa, M.

    2009-01-01

    The primary goal of this study was to utilize molecular dynamics to predict the mechanical behavior of polyethylene. In particular, stress-strain relationships, the Young's modulus and Poisson ratio were predicted for low-density polyethylene at several molecular weights and polymer configurations with the number of united CH 2 atoms ranging between 500 and 5000. Probabilistic Monte Carlo methods were also used to identify the extent of uncertainty in mechanical property predictions. In general, asymptotic behavior was observed for stress and the Young's modulus as the molecular weight of the models increased. At the same time, significant variability, of the order of 1000% of the mean, in the stress-strain relationships and the Young's modulus predictions was observed, especially for low molecular weight models. The variability in the Young's modulus predictions ranged from 17.9 to 3.2 GPa for the models ranging from 100 to 5000 CH 2 atom models. However, it was also found that the mean value of the Young's modulus approached a physically possible value of 194 MPa for the 5000 atom model. Poisson ratio predictions also resulted in significant variability, from 200% to 425% of the mean, and ranged from 0.75 to 1.30. The mean value of the Poisson ratios calculated in this study ranged from 0.32 to 0.44 for the 100 to 5000 atom models, respectively.

  5. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2+

    Directory of Open Access Journals (Sweden)

    Joseph B. Rayman

    2018-01-01

    Full Text Available Summary: Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1. Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. : Rayman et al. show that Zn2+ is a stress-inducible second messenger that triggers self-multimerization and phase separation of TIA-1 and regulates dynamic recruitment of TIA-1 into stress granules. This mechanism is part of an adaptive cellular response to environmental adversity. Keywords: TIA-1, TIA1, stress granules, cellular stress, functional prion, phase separation, zinc regulation

  6. Stress tensor and viscosity of water: Molecular dynamics and generalized hydrodynamics results

    Science.gov (United States)

    Bertolini, Davide; Tani, Alessandro

    1995-08-01

    The time correlation functions (CF's) of diagonal and off-diagonal components of the stress tensor of water have been calculated at 245 and 298 K in a molecular dynamics (MD) study on 343 molecules in the microcanonical ensemble. We present results obtained at wave number k=0 and at a few finite values of k, in the atomic and molecular formalism. In all cases, more than 98% of these functions are due to the potential term of the stress tensor. At k=0, their main features are a fast oscillatory initial decay, followed by a long-time tail more apparent in the supercooled region. Bulk and shear viscosities, calculated via Green-Kubo integration of the relevant CF at k=0, are underestimated with respect to experimental data, mainly at low temperature, but their ratio (~=2) is correctly reproduced. Both shear and bulk viscosity decrease as a function of k, the latter more rapidly, so that they become almost equal at ~=1 Å-1. Also, both viscosities drop rapidly from their maximum at ω=0. This behavior has been related to the large narrowing observed in the acoustic band, mainly in the supercooled region. The infinite frequency bulk and shear rigidity moduli have been shown to be in fair agreement with the experimental data, provided the MD value used for comparison is that corresponding to the frequency range relevant to ultrasonic measurements. The MD results of stress-stress CF's compare well with those predicted by Bertolini and Tani [Phys. Rev. E 51, 1091 (1995)] at k=0, by an application of generalized hydrodynamics [de Schepper et al., Phys. Rev. A 38, 271 (1988)] in the molecular formalism, to the same model of water (TIP4P) [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)]. These CF's are essentially equal in the atomic and molecular formalism, the only minor difference being restricted to the high frequency librational region of the shear function. By a comparison of atomic and molecular results, we show here that neglecting libration has no effect on the

  7. When does stress help or harm? The effects of stress controllability and subjective stress response on stroop performance.

    Science.gov (United States)

    Henderson, Roselinde K; Snyder, Hannah R; Gupta, Tina; Banich, Marie T

    2012-01-01

    The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual's response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low) responses can lead to impaired performance. The present studies tested the hypothesis that (1) learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that (2) this improvement emerges specifically for people who report moderate (subjective) responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n = 109). People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n = 90), we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest Stroop

  8. Dynamics of food availability, body condition and physiological stress response in breeding Black-legged Kittiwakes

    Science.gov (United States)

    Kitaysky, A.S.; Wingfield, J.C.; Piatt, John F.

    1999-01-01

    1. The seasonal dynamics of body condition (BC), circulating corticosterone levels (baseline, BL) and the adrenocortical response to acute stress (SR) were examined in long-lived Black-legged Kittiwakes, Rissa tridactyla, breeding at Duck (food-poor colony) and Gull (food-rich colony) Islands in lower Cook Inlet, Alaska. It was tested whether the dynamics of corticosterone levels reflect a seasonal change in bird physiological condition due to reproduction and/or variation in foraging conditions. 2. BC declined seasonally, and the decline was more pronounced in birds at the food-poor colony. BL and SR levels of corticosterone rose steadily through the reproductive season, and BL levels were significantly higher in birds on Duck island compared with those on Gull Island. During the egg-laying and chick-rearing stages, birds had lower SR on Duck Island than on Gull Island. 3. The results suggest that, in addition to a seasonal change in bird physiology during reproduction, local ecological factors such as food availability affect circulating levels of corticosterone and adrenal response to acute stress.

  9. The dynamics of migration-related stress and coping of female domestic workers from the Philippines: an exploratory study.

    Science.gov (United States)

    van der Ham, Alida Joanna; Ujano-Batangan, Maria Theresa; Ignacio, Raquel; Wolffers, Ivan

    2015-01-01

    Female domestic workers face many migration-related stressors that affect their mental health, but we know little about the dynamics of stress and coping in different migration phases. This exploratory study aims to assess stress and coping of female migrant domestic workers from the Philippines in different phases of the migration process; prior to migration, in the country of destination and upon return to the Philippines. Data were collected in 2010 using questionnaires (N = 500). Validation of findings took place in a work shop (23 participants) and two focus groups (13 and 8 participants). Stress levels of women were significantly higher abroad than in the Philippines. Stress and coping in the Philippines was primarily related to financial issues, while stress and coping abroad related more strongly loneliness, working conditions and employers. Findings from this study provide insight in the phase-specific and transnational dimensions of stress and coping.

  10. Dynamic thermo-chemo-mechanical strain of Zircaloy-4 slotted rings for evaluating strategies that mitigate stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Ferrier, G.A.; Metzler, J.; Farahani, M.; Chan, P.K.; Corcoran, E.C. [Royal Military College of Canada, Kingston, ON (Canada)

    2014-07-01

    Stress corrosion cracking (SCC) in Zircaloy-4 fuel sheaths has been investigated by static loading of slotted ring samples under hot and corrosive conditions. However, in nuclear reactors, power ramps can have short (e.g., 10-20 minutes) and recurring time frames due to dynamic processes such as on-power refuelling, adjuster rod manoeuvres, and load following. Therefore, to enable out-reactor dynamic testing, an apparatus was designed to dynamically strain slotted ring samples under SCC conditions. This apparatus can additionally be used to test fatigue properties. Unique capabilities of this apparatus and preliminary results obtained from static and dynamic tests are presented. (author)

  11. Effects of mindfulness-based stress reduction on depression, anxiety, stress and mindfulness in Korean nursing students.

    Science.gov (United States)

    Song, Yeoungsuk; Lindquist, Ruth

    2015-01-01

    Nursing students often experience depression, anxiety, stress and decreased mindfulness which may decrease their patient care effectiveness. Mindfulness-based stress reduction (MBSR) effectively reduced depression, anxiety and stress, and increased mindfulness in previous research with other populations, but there is sparse evidence regarding its effectiveness for nursing students in Korea. To examine the effects of MBSR on depression, anxiety, stress and mindfulness in Korean nursing students. A randomized controlled trial. Fifty (50) nursing students at KN University College of Nursing in South Korea were randomly assigned to two groups. Data from 44 students, MBSR (n=21) and a wait list (WL) control (n=23) were analyzed. The MBSR group practiced mindfulness meditation for 2 h every week for 8 weeks. The WL group did not receive MBSR intervention. Standardized self-administered questionnaires of depression, anxiety, stress and mindfulness were administered at the baseline prior to the MBSR program and at completion (at 8 weeks). Compared with WL participants, MBSR participants reported significantly greater decreases in depression, anxiety and stress, and greater increase in mindfulness. A program of MBSR was effective when it was used with nursing students in reducing measures of depression, anxiety and stress, and increasing their mindful awareness. MBSR shows promise for use with nursing students to address their experience of mild depression, anxiety and stress, and to increase mindfulness in academic and clinical work, warranting further study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress

    Directory of Open Access Journals (Sweden)

    Philip A. Gillibrand

    2016-10-01

    Full Text Available We apply a three-dimensional hydrodynamic model to consider the potential effects of energy extraction by an array of tidal turbines on the ambient near-bed velocity field and local bed shear stress in a coastal channel with strong tidal currents. Local bed shear stress plays a key role in local sediment dynamics. The model solves the Reynold-averaged Navier-Stokes (RANS equations on an unstructured mesh using mixed finite element and finite volume techniques. Tidal turbines are represented through an additional form drag in the momentum balance equation, with the thrust imparted and power generated by the turbines being velocity dependent with appropriate cut-in and cut-out velocities. Arrays of 1, 4 and 57 tidal turbines, each of 1.5 MW capacity, were simulated. Effects due to a single turbine and an array of four turbines were negligible. The main effect of the array of 57 turbines was to cause a shift in position of the jet through the tidal channel, as the flow was diverted around the tidal array. The net effect of this shift was to increase near-bed velocities and bed shear stress along the northern perimeter of the array by up to 0.8 m·s−1 and 5 Pa respectively. Within the array and directly downstream, near-bed velocities and bed shear stress were reduced by similar amounts. Changes of this magnitude have the potential to modify the known sand and shell banks in the region. Continued monitoring of the sediment distributions in the region will provide a valuable dataset on the impacts of tidal energy extraction on local sediment dynamics. Finally, the mean power generated per turbine is shown to decrease as the turbine array increased in size.

  13. Framing of task performance strategies: effects on performance in a multiattribute dynamic decision making environment.

    Science.gov (United States)

    Nygren, T E

    1997-09-01

    It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.

  14. The dichotomous effect of chronic stress on obesity

    OpenAIRE

    Razzoli, Maria; Bartolomucci, Alessandro

    2016-01-01

    Obesity and metabolic diseases are linked to chronic stress and low socio-economic status. The mechanistic link between stress and obesity has not been clarified, partly due to the inherent complexity exemplified by the bidirectional effect of stress on eating and body weight. Recent studies focusing on adaptive-thermogenesis and brown adipose tissue (BAT) function support a dichotomous relationship to explain the impact of stress on obesity: stress promotes obesity in the presence of hyperph...

  15. Love-type wave propagation in a pre-stressed viscoelastic medium influenced by smooth moving punch

    Science.gov (United States)

    Singh, A. K.; Parween, Z.; Chatterjee, M.; Chattopadhyay, A.

    2015-04-01

    In the present paper, a mathematical model studying the effect of smooth moving semi-infinite punch on the propagation of Love-type wave in an initially stressed viscoelastic strip is developed. The dynamic stress concentration due to the punch for the force of a constant intensity has been obtained in the closed form. Method based on Weiner-hopf technique which is indicated by Matczynski has been employed. The study manifests the significant effect of various affecting parameters viz. speed of moving punch associated with Love-type wave speed, horizontal compressive/tensile initial stress, vertical compressive/tensile initial stress, frequency parameter, and viscoelastic parameter on dynamic stress concentration due to semi-infinite punch. Moreover, some important peculiarities have been traced out and depicted by means of graphs.

  16. Macro design effects on stress distribution around implants: a photoelastic stress analysis.

    Science.gov (United States)

    Ozkir, Serhat Emre; Terzioglu, Hakan

    2012-01-01

    Biomechanics is one of the main factors for achieving long-term success of implant supported prostheses. Long-term failures mostly depend on biomechanical complications. It is important to distinguish the effects of macro design of the implants. In this study, the photoelastic response of four different types of implants that were inserted with different angulations were comparatively analyzed. The implant types investigated were screw cylinder (ITI, Straumann AG, Basel, Switzerland), stepped cylinder (Frialit2, Friadent GmbH, Manheim, Germany), root form (Camlog Rootline, Alatatec, Wilshelm, Germany), and cylindrical implant, with micro-threads on the implant neck (Astra, AstraTech, Mölndal, Sweden). In the test models, one of the implants was inserted straight, while the other one was aligned mesially with 15° angles. The superstructures were prepared as single crowns. A 150N loading was applied to the restorations throughout the test. A comparison of the implant designs showed that there were no significant differences between the straight implants; however, between the inclined implants, the most favorable stress distribution was seen with the stepped cylinder implants. The least favorable stress concentration was observed around the root formed implants. Microthreads around the implant neck appeared to be effective in a homogenous stress distribution. Observations showed that misaligned implants caused less stress than straight implants, but the stress concentrations were not homogenous. As there were observable differences between the implant types, straight placed cylindrical implants showed better stress distribution characteristics, while inclined tapering implants had better stress distribution characteristics.

  17. Negative affect reduces team awareness: the effects of mood and stress on computer-mediated team communication.

    Science.gov (United States)

    Pfaff, Mark S

    2012-08-01

    This article presents research on the effects of varying mood and stress states on within-team communication in a simulated crisis management environment, with a focus on the relationship between communication behaviors and team awareness. Communication plays a critical role in team cognition along with cognitive factors such as attention, memory, and decision-making speed. Mood and stress are known to have interrelated effects on cognition at the individual level, but there is relatively little joint exploration of these factors in team communication in technologically complex environments. Dyadic communication behaviors in a distributed six-person crisis management simulation were analyzed in a factorial design for effects of two levels of mood (happy, sad) and the presence or absence of a time pressure stressor. Time pressure and mood showed several specific impacts on communication behaviors. Communication quantity and efficiency increased under time pressure, though frequent requests for information were associated with poor performance. Teams in happy moods showed enhanced team awareness, as revealed by more anticipatory communication patterns and more detailed verbal responses to teammates than those in sad moods. Results show that the attention-narrowing effects of mood and stress associated with individual cognitive functions demonstrate analogous impacts on team awareness and information-sharing behaviors and reveal a richer understanding of how team dynamics change under adverse conditions. Disentangling stress from mood affords the opportunity to target more specific interventions that better support team awareness and task performance.

  18. Tianeptine, olanzapine and fluoxetine show similar restoring effects on stress induced molecular changes in mice brain: An FT-IR study

    Science.gov (United States)

    Türker-Kaya, Sevgi; Mutlu, Oğuz; Çelikyurt, İpek K.; Akar, Furuzan; Ulak, Güner

    2016-05-01

    Chronic stress which can cause a variety of disorders and illness ranging from metabolic and cardiovascular to mental leads to alterations in content, structure and dynamics of biomolecules in brain. The determination of stress-induced changes along with the effects of antidepressant treatment on these parameters might bring about more effective therapeutic strategies. In the present study, we investigated unpredictable chronic mild stress (UCMS)-induced changes in biomolecules in mouse brain and the restoring effects of tianeptine (TIA), olanzapine (OLZ) and fluoxetine (FLX) on these variations, by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that chronic stress causes different membrane packing and an increase in lipid peroxidation, membrane fluidity. A significant increment for lipid/protein, Cdbnd O/lipid, CH3/lipid, CH2/lipid, PO-2/lipid, COO-/lipid and RNA/protein ratios but a significant decrease for lipid/protein ratios were also obtained. Additionally, altered protein secondary structure components were estimated, such as increment in random coils and beta structures. The administration of TIA, OLZ and FLX drugs restored these stress-induced variations except for alterations in protein structure and RNA/protein ratio. This may suggest that these drugs have similar restoring effects on the consequences of stress activity in brain, in spite of the differences in their action mechanisms. All findings might have importance in understanding molecular mechanisms underlying chronic stress and contribute to studies aimed for drug development.

  19. The combined influence of irradiation and stress on antibody formation in mice

    International Nuclear Information System (INIS)

    Surinov, B.P.; Karpova, N.A.

    1996-01-01

    Disturbances in humoral immune response to sheep erythrocytes after separate and combined effect of ionizing radiation (2 and 4 Gy) and stress (swimming for 10 of 60 min) was studied in mice. The increase in sensitivity to stress was found in irradiated mice. Superposition of undulating dynamics of post-stress immunosuppression on dynamics of post-radiation disorder was revealed. This is due to the different mechanisms of disturbances: redistribution of precursors of immunocompetent cells between immune organs in the first case and destruction of cells in the second case. 17 refs., 2 figs

  20. Dynamic MRI confirms support of the mid-urethra by TVT and TVT-O surgery for stress incontinence.

    Science.gov (United States)

    Rinne, Kirsi; Kainulainen, Sakari; Aukee, Sinikka; Heinonen, Seppo; Nilsson, Carl G

    2011-06-01

    To study changes in mid-urethral function with dynamic MRI in stress urinary incontinent women undergoing either tension-free vaginal tape (TVT) or TVT-obturator sling operations. Prospective clinical study. University hospital. Forty-two parous women with stress urinary incontinence recruited to dynamic magnetic resonance imaging before and after mid-urethral sling surgery. Control group of 16 healthy women. Dynamic magnetic resonance imaging at rest, during pelvic floor muscle contraction, coughing and voiding with a bladder volume of 200-300 ml. X- and Y- coordinates were used to determine the location of the mid-urethra during these activities. Changes in mid-urethral position after TVT and TVT-obturator operations during the different activities. Postoperatively the women could elevate their mid-urethra by pelvic floor muscle contraction significantly higher than before the operation (pTVT and the TVT-O mid-urethral slings, we could not see any differences in the movement patterns. Mid-urethral slings support the mid-urethra and restrict downward movement during different activities. Movement patterns are similar after TVT and TVT-O operations. © 2011 The Authors Acta Obstetricia et Gynecologica Scandinavica© 2011 Nordic Federation of Societies of Obstetrics and Gynecology.

  1. Fatigue life estimation of welded components considering welding residual stress relaxation and its mean stress effect

    International Nuclear Information System (INIS)

    Han, Seung Ho; Han, Jeong Woo; Shin, Byung Chun; Kim, Jae Hoon

    2003-01-01

    The fatigue life of welded joints is sensitive to welding residual stress and complexity of their geometric shapes. To predict the fatigue life more reasonably, the effects of welding residual stress and its relaxation on their fatigue strengths should be considered quantitatively, which are often regarded to be equivalent to the effects of mean stresses by external loads. The hot-spot stress concept should be also adopted which can reduce the dependence of fatigue strengths for various welding details. Considering the factors mentioned above, a fatigue life prediction model using the modified Goodman's diagram was proposed. In this model, an equivalent stress was introduced which is composed of the mean stress based on the hot-spot stress concept and the relaxed welding residual stress. From the verification of the proposed model to real welding details, it is proved that this model can be applied to predict reasonably their fatigue lives

  2. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  3. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  4. Effects of stress on health and aging: Two paradoxes

    OpenAIRE

    Aldwin, Carolyn M; Yancura, Loriena A.

    2010-01-01

    Although older adults are thought to experience more stress and to be more vulnerable to its adverse effects, they often report less stress than younger adults and sometimes show more resilience. Paradoxically, while stress sometimes has long-term positive effects on well-being, studies differ as to whether this increases or decreases with age. We conclude that older individuals have learned to appraise and cope differently with stress. This protects them in spite of their increased physiolog...

  5. Stress-oriented driver assistance system for electric vehicles.

    Science.gov (United States)

    Athanasiou, Georgia; Tsotoulidis, Savvas; Mitronikas, Epaminondas; Lymberopoulos, Dimitrios

    2014-01-01

    Stress is physiological and physical reaction that appears in highly demanding situations and affects human's perception and reaction capability. Occurrence of stress events within highly dynamic road environment could lead to life-threatening situation. With the perspective of safety and comfort driving provision to anxious drivers, in this paper a stress-oriented Driver Assistance System (DAS) is proposed. The DAS deployed on Electric Vehicle. This novel DAS customizes driving command signal in respect to road context, when stress is detected. The effectiveness of this novel DAS is verified by simulation in MATLAB/SIMULINK environment.

  6. Effect of stress on turbine fish passage mortality estimates

    International Nuclear Information System (INIS)

    Ruggles, C.P.

    1993-01-01

    Tests were conducted with juvenile alewife to determine the effects of four experimental protocols upon turbine fish passage mortality estimates. Three protocols determined the effect of cumulative stresses upon fish, while the fourth determined the effect of long range truck transportation prior to release into the penstock or tailrace. The wide range in results were attributed to the presence or absence of additional stress factors associated with the experiments. For instance, fish may survive passage through a turbine, or non-turbine related stresses imposed by the investigator; however, when both are imposed, the cumulative stresses may be lethal. The impact of protocol stress on turbine mortality estimates becomes almost exponential after control mortality exceeds 10%. Valid turbine related mortalities may be determined only after stresses associated with experimental protocol are adequately reduced. This is usually indicated by a control mortality of less than 10%. 14 refs., 5 figs., 6 tabs

  7. Effect of Silica Nanoparticles on the Local Segmental Dynamics in Polyvinylacetate

    Science.gov (United States)

    Bogoslovov, R. B.; Roland, C. M.; Ellis, A. R.; Randall, A. M.; Robertson, C. G.

    2008-07-01

    The effect of nanosized silica particles on the properties of polyvinylacetate (PVAc) was investigated for a range of silica concentrations encompassing the filler network percolation threshold. The quantity of polymer adsorbed to the particles ("bound rubber") increased systematically with silica content and was roughly equal to the quantity shielded from shear stresses ("occluded rubber"). A variety of experimental techniques was employed including pressure-volume-temperature measurements, broadband dielectric spectroscopy, thermal analysis (modulated DSC), dynamic-mechanical spectroscopy, viscometry. The glass transition properties of PVAc, i.e. the glass transition temperature and the changes in the thermal expansion coefficient and heat capacity at Tg, as well as the isothermal compressibility and the volume sensitivity of the local segmental dynamics of the polymer chains in the presence of the polymer-filler interface are discussed. The implication of this result and possible directions for new research are considered.

  8. Dynamic, large-deflection, inelastic and thermal stress analysis by the finite element method

    International Nuclear Information System (INIS)

    Haisler, W.E.; Stricklin, J.A.

    1975-01-01

    A finite element theory and computer program have been developed for predicting the dynamic, large displacement, inelastic and thermal response of stiffened and layered structures. The dependence of material properties on temperature is explicitly accounted for and any arbitrary, transient mechanical or thermal load history is allowed. The shell may have internal or external stiffeners and be constructed with up to three layers. The equations of motion are developed by using the pseudo force approach to represent all nonlinearities and are then solved by using either the Houbolt method or central differences. Moderately large rotations are allowed. The program is based on an incremental theory of plasticity using the Von Mises yield condition and associated flow rule. The post yield or work-hardening behavior is idealized with either the isotropic hardening or mechanical sublayer models. Two models are utilized since it has been found through comparison with experimental results that isotropic hardening is best for simple loading conditions while the mechanical sublayer model is better for reverse and cyclic loading. Strain-rate effects are also accounted for in the program by using a power-law type model based on the strain rate. The dependence of material properties on temperature is taken into account in the pseudo forces. Young's modulus, Poisson's ratio, thermal coefficient of expansion, the yield stress, and the entire stress strain curve are treated as functions of the applied temperature. Containment vessels subjected to transient and shock-type mechanical and thermal loads have been analyzed

  9. Nonlinear dynamic analysis of framed structures including soil-structure interaction effects

    International Nuclear Information System (INIS)

    Mahmood, M.N.; Ahmed, S.Y.

    2008-01-01

    The role of oil-structure interaction on seismic behavior of reinforced concrete structures is investigated in this paper. A finite element approach has been adopted to model the interaction system that consists of the reinforced concrete plane frame, soil deposit and interface which represents the frictional between foundation of the structure and subsoil. The analysis is based on the elasto-plastic behavior of the frame members (beams and columns) that is defined by the ultimate axial force-bending moment interaction curve, while the cap model is adopted to govern the elasto-plastic behavior of the soil material. Mohr-Coulomb failure law is used to determine the initiation of slippage at the interface, while the separation is assumed to determine the initiation of slippage at the interface, while the separation is assumed to occur when the stresses at the interface becomes tension stresses. New-Mark's Predictor-Corrector algorithm is adopted for nonlinear dynamic analysis. The main aim of present work is to evaluate the sensitivity of structures to different behavior of the soil and interface layer when subjected to an earthquake excitation. Predicted results of the dynamic analysis of the interaction system indicate that the soil-structure interaction problem can have beneficial effects on the structural behavior when different soil models (elastic and elasto-plastic) and interface conditions (perfect bond and permitted slip)are considered. (author)

  10. Effects of Stress Inoculation Training on Anxiety, Stress, and Academic Performance among Adolescents.

    Science.gov (United States)

    Kiselica, Mark S.; And Others

    1994-01-01

    Examined effectiveness of preventive stress inoculation program for adolescents (n=48) that consisted of progressive muscle relaxation, cognitive restructuring, and assertiveness training. Compared with control subjects, trainees showed significantly greater improvements on self-report measures of trait anxiety and stress-related symptoms at…

  11. Strain-energy effects on dynamic fragmentation

    International Nuclear Information System (INIS)

    Glenn, L.A.; Chudnovsky, A.

    1986-01-01

    Grady's model of the dynamic fragmentation process, in which the average fragment size is determined by balancing the local kinetic energy and the surface energy, is modified to include the stored elastic (strain) energy. The revised model predicts that the strain energy should dominate for brittle materials, with low fracture toughness and high fracture-initiation stress. This conclusion is not borne out, however, by limited experimental data on brittle steels, even when the kinetic-energy density is small compared with the strain-energy density

  12. Resistance to early-life stress in mice: effects of genetic background and stress duration

    Directory of Open Access Journals (Sweden)

    Helene M. Savignac

    2011-04-01

    Full Text Available Early-life stress can induce marked behavioural and physiological impairments in adulthood including cognitive deficits, depression, anxiety and gastrointestinal dysfunction. Although robust rat models of early-life stress exist there are few established effective paradigms in the mouse. Genetic background and protocol parameters used are two critical variables in such model development.Thus we investigated the impact of two different early-life stress protocols in two commonly used inbred mouse strains. C57BL/6 and innately anxious BALB/c male mice were maternally deprived 3 hrs daily, either from postnatal day 1 to 14 (Protocol 1 or 6 to 10 (Protocol 2. Animals were assessed in adulthood for cognitive performance (spontaneous alternation behaviour test, anxiety (open field, light/dark box and elevated plus maze tests and depression-related behaviours (forced swim test in addition to stress-sensitive physiological changes. Overall, the results showed that early-life stressed mice from both strains displayed good cognitive ability and no elevations in anxiety. However, paradoxical changes occurred in C57BL/6 mice as the longer protocol (protocol 1 decreased anxiety in the light-dark box and increased exploration in the elevated plus maze. In BALB/c mice there were also limited effects of maternal separation with both separation protocols inducing reductions in stress-induced defecation and protocol 1 reducing the colon length. These data suggest that, independent of stress duration, mice from both strains were on the whole resilient to the maladaptive effects of early-life stress. Thus maternal-separation models of brain-gut axis dysfunction should rely on either different stressor protocols or other strains of mice.

  13. No effect of stress on false recognition.

    Science.gov (United States)

    Beato, María Soledad; Cadavid, Sara; Pulido, Ramón F; Pinho, María Salomé

    2013-02-01

    The present study aimed to analyze the effect of acute stress on false recognition in the Deese/Roediger-McDermott (DRM) paradigm. In this paradigm, lists of words associated with a non-presented critical lure are studied and, in a subsequent memory test, critical lures are often falsely remembered. In two experiments, participants were randomly assigned to either the stress group (Trier Social Stress Test) or the no-stress control group. Because we sought to control the level-of-processing at encoding, in Experiment 1, participants created a visual mental image for each presented word (deep encoding). In Experiment 2, participants performed a shallow encoding (to respond whether each word contained the letter "o"). The results indicated that, in both experiments, as predicted, heart rate and STAI-S scores increased only in the stress group. However, false recognition did not differ across stress and no-stress groups. Results suggest that, although psychosocial stress was successfully induced, it does not enhance the vulnerability of individuals with acute stress to DRM false recognition, regardless of the level of processing.

  14. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    Science.gov (United States)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-08-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.

  15. Irradiation effects on tensile ductility and dynamic toughness of ferritic-martensitic 7-12 Cr steels

    International Nuclear Information System (INIS)

    Preininger, D.

    2006-01-01

    The superimposed effect of irradiation-induced hardening by small defects (clusters, dislocation loops) and chromium-rich - precipitate formations on tensile ductility and Charpy-impact behaviour of various ferritic-martensitic (7-13)CrWVTa(Ti)-RAFM steels have been examined by micro-mechanical deformation and ductile/dynamic fracture models. Analytical relations have been deduced describing irradiation-induced changes of uniform ductility and fracture strain as well as ductile-to-brittle transition temperature DBTT and ductile upper shelf energy USE observed from impact tests. The models apply work-hardening with competitive action of relevant dislocation multiplication and annihilation reactions. The impact model takes into account stress intensity with local plasticity and fracture within the damage zone of main crack. Especially, the influences of radiation-induced changes in ductile and dynamic fracture stresses have been considered together with effects from strain rate sensitivity of strength, precipitate morphology as mean size dp and volume fraction fv as well as deformation temperature and strain rate. For these, particularly the correlation between tensile ductility and impact properties have been examined. Strengthening by clusters and loops generally reduces uniform ductility, and more stronger fracture strain as well as ductile upper shelf energy USE and additionally increases DBTT for constant fracture stresses. A superimposed precipitation hardening by formation of 3-6 nm, f v 6 nm, which clear above the sharable limit of coherent precipitates increases with increasing fraction fv and but strongly reduces with increasing matrix strength due to full martensitic structure, higher C, N alloying contents and pronounced hardening by irradiation-induced cluster and loop formations. A combined increase of fracture stresses due to irradiation-induced changes of the grain boundary structure diminishes the strength-induced increase in DBTT and more stronger

  16. Angiogenin enhances cell migration by regulating stress fiber assembly and focal adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Saisai Wei

    Full Text Available Angiogenin (ANG acts on both vascular endothelial cells and cancer cells, but the underlying mechanism remains elusive. In this study, we carried out a co-immunoprecipitation assay in HeLa cells and identified 14 potential ANG-interacting proteins. Among these proteins, β-actin, α-actinin 4, and non-muscle myosin heavy chain 9 are stress fiber components and involved in cytoskeleton organization and movement, which prompted us to investigate the mechanism of action of ANG in cell migration. Upon confirmation of the interactions between ANG and the three proteins, further studies revealed that ANG co-localized with β-actin and α-actinin 4 at the leading edge of migrating cells. Down-regulation of ANG resulted in fewer but thicker stress fibers with less dynamics, which was associated with the enlargements of focal adhesions. The focal adhesion kinase activity and cell migration capacity were significantly decreased in ANG-deficient cells. Taken together, our data demonstrated that the existence of ANG in the cytoplasm optimizes stress fiber assembly and focal adhesion formation to accommodate cell migration. The finding that ANG promoted cancer cell migration might provide new clues for tumor metastasis research.

  17. Music Listening and Stress in Daily Life-a Matter of Timing.

    Science.gov (United States)

    Linnemann, Alexandra; Wenzel, Mario; Grammes, Jennifer; Kubiak, Thomas; Nater, Urs M

    2018-04-01

    Despite increasing evidence suggesting that music listening in daily life has stress-reducing effects, studies mostly rely on subjective, retrospective data on music listening. Thus, the temporal dynamics underlying the stress-reducing effect of music listening remain unclear. Therefore, we aimed to examine the temporal dynamics of the associations between stress and music listening by assessing subjective and objective data on music in daily life. An exploratory Ambulatory Assessment study examining a total of 60 participants (37 women), aged 18 to 34 years (M = 22.4 years, SD = 3.5) was conducted. For 1 week, participants answered questions on music listening and stress six times per day via an electronic diary device, which additionally objectively sampled the exact time point of music listening and its duration. Self-reports on mere music listening were associated with lower stress reports, whereas objectively assessed data was not. However, concerning duration of music listening, both subjective and objective data on music listening showed associations between a minimum of 20 min of music listening and lower stress reports. Concerning the latency, objective data on music listening revealed that the association between stress reports and music listening occurs in a time-delayed manner. Although the study design does not allow for causal inferences, substantial associations among subjectively and objectively assessed data on music listening were found to differentially affect the experience of stress after music listening. In particular, when focusing on the temporal dynamics, objectively assessed data allowed for a more fine-grained analysis. In consequence, subjectively and objectively reported data on music listening should be assessed jointly when investigating effects of music listening on health. Experimental research with rigorous methodological control is required in order to corroborate our findings in a laboratory setting.

  18. Dislocation-cavity interaction in Fe: a comparison between molecular dynamics and dislocation dynamics

    International Nuclear Information System (INIS)

    Hafez Haghighat, S.M.; Schaeublin, R.; Fivel, M.C.

    2007-01-01

    Full text of publication follows: multi-scale modeling, including molecular dynamics (MD) and discrete dislocation dynamics (DDD) methods, appears as a significant tool for the description of plasticity and mechanical properties of materials. This research is on the investigation of the subsequence effects of irradiation on the plasticity of pure Fe and focuses on the interaction of a single dislocation and a spherical cavity, as void or He bubble. Extensive MD simulations of the interaction under imposed strain rate [1, 2] have shown that various temperatures and cavity sizes result in different release stresses depending on dislocation bow out. It appears that a temperature increase and cavity size decrease reduce the cavity strength. MD simulation shows that the elastic field around the cavity is largely anisotropic. This anisotropy may influence the way the dislocation unpins from the cavity. Following the MD simulations, the interaction of a single dislocation and a spherical cavity is now simulated using a DDD discrete dislocation dynamics model. The simulation accounts for the non-Schmidt effect induced by the bcc structure of Fe through local rules derived from MD simulations [3]. The cavity is introduced in the simulation by computing the image forces using a finite element technique. The effective stress applied on the dislocation is then obtained as the superimposition of the applied stress field, the image stress field and the internal stresses. Note that such a model only uses elasticity theory and no core effect of dislocations is taken into account. One of the objectives of this work is to check whether elasticity is responsible of the behaviour observed by MD. Several cases are tested. First an edge dislocation in a (110) plane is pushed against the cavity under a pure shear loading. The local reaction of the dislocations and the cavity are compared to the MD simulations. Then, the case of a screw dislocation is studied. Finally, other loading

  19. Long-Term Effectiveness of Stress Management at Work: Effects of the Changes in Perceived Stress Reactivity on Mental Health and Sleep Problems Seven Years Later.

    Science.gov (United States)

    Herr, Raphael M; Barrech, Amira; Riedel, Natalie; Gündel, Harald; Angerer, Peter; Li, Jian

    2018-02-03

    The reduction of stress reactivity resulting from stress management interventions prevents disorders and improves mental health, however, its long-term sustainability has been little examined. The objective of this study was, therefore, to determine the effectiveness of a stress management intervention, designed to improve stress reactivity, for mental health and sleep problems seven years later, using longitudinal data from 101 male industrial workers. Linear regressions estimated the adjusted effects of the changes in stress reactivity in general as well as in its six subdimensions (work overload, social conflict, social stress, failure at work, and anticipatory and prolonged reactivity) on depression, anxiety, and sleep problems seven years later. The improvement of the prolonged reactivity had positive effects on depression, anxiety, and sleep problems (unstandardized regression coefficients [ Bs ] ≥ 0.35, all p -values ≤ 0.01). Depression and sleep problems were further improved by a reduction of the reactivity to social conflicts ( Bs ≥ 0.29, p -values stress reactivity resulting from a work stress intervention was effective and generally long-lasting in preventing mental health and sleep problems. The reduction of the prolonged reactivity seems of particular importance and efficient in inhibiting negative stress manifestations.

  20. Excitonic dynamical Franz-Keldysh effect

    DEFF Research Database (Denmark)

    Nordstrøm, K.B.; Johnsen, Kristinn; Allen, S.J.

    1998-01-01

    The dynamical Franz-Keldysh effect is exposed by exploring near-band-gap absorption in the presence of intense THz electric fields. It bridges the gap between the de Franz-Keldysh effect and multiphoton absorption and competes with the THz ac Stark effect in shifting the energy of the excitonic...... resonance. A theoretical model which includes the strong THz field nonperturbatively via a nonequilibrium Green functions technique is able to describe the dynamical Franz-Keldysh effect in the presence of excitonic absorption....

  1. The influence of stress responses on surgical performance and outcomes: Literature review and the development of the surgical stress effects (SSE) framework.

    Science.gov (United States)

    Chrouser, Kristin L; Xu, Jie; Hallbeck, Susan; Weinger, Matthew B; Partin, Melissa R

    2018-02-22

    Surgical adverse events persist despite several decades of system-based quality improvement efforts, suggesting the need for alternative strategies. Qualitative studies suggest stress-induced negative intraoperative interpersonal dynamics might contribute to performance errors and undesirable patient outcomes. Understanding the impact of intraoperative stressors may be critical to reducing adverse events and improving outcomes. We searched MEDLINE, psycINFO, EMBASE, Business Source Premier, and CINAHL databases (1996-2016) to assess the relationship between negative (emotional and behavioral) responses to acute intraoperative stressors and provider performance or patient surgical outcomes. Drawing on theory and evidence from reviewed studies, we present the Surgical Stress Effects (SSE) framework. This illustrates how emotional and behavioral responses to stressors can influence individual surgical provider (e.g. surgeon, nurse) performance, team performance, and patient outcomes. It also demonstrates how uncompensated intraoperative threats and errors can lead to adverse events, highlighting evidence gaps for future research efforts. Published by Elsevier Inc.

  2. Environmental stresses can alleviate the average deleterious effect of mutations

    Directory of Open Access Journals (Sweden)

    Leibler Stanislas

    2003-05-01

    Full Text Available Abstract Background Fundamental questions in evolutionary genetics, including the possible advantage of sexual reproduction, depend critically on the effects of deleterious mutations on fitness. Limited existing experimental evidence suggests that, on average, such effects tend to be aggravated under environmental stresses, consistent with the perception that stress diminishes the organism's ability to tolerate deleterious mutations. Here, we ask whether there are also stresses with the opposite influence, under which the organism becomes more tolerant to mutations. Results We developed a technique, based on bioluminescence, which allows accurate automated measurements of bacterial growth rates at very low cell densities. Using this system, we measured growth rates of Escherichia coli mutants under a diverse set of environmental stresses. In contrast to the perception that stress always reduces the organism's ability to tolerate mutations, our measurements identified stresses that do the opposite – that is, despite decreasing wild-type growth, they alleviate, on average, the effect of deleterious mutations. Conclusions Our results show a qualitative difference between various environmental stresses ranging from alleviation to aggravation of the average effect of mutations. We further show how the existence of stresses that are biased towards alleviation of the effects of mutations may imply the existence of average epistatic interactions between mutations. The results thus offer a connection between the two main factors controlling the effects of deleterious mutations: environmental conditions and epistatic interactions.

  3. Effects of stress on swelling in reactor fuel cladding

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1977-01-01

    The purpose of this report is to describe the effect of stress on swelling in both annealed and 20% cold worked 316 stainless steel. An effect of stress on swelling in irradiated metals has been postulated for some time. Low fluence data confirmed that indeed a tensile stress can increase swelling in irradiated annealed 316 stainless steel and that the maximum swelling occurs at an intermediate stress level which is approximately equal to the proportional elastic limit of the material. The specimens discussed above were examined by transmission electron microscopy and an effect of stress on the microstructure of the annealed and 20% cold worked 316 specimens has been observed. Howver, as yet, copious swelling had not occurred in the 20% cold worked material. Specimens of 20% cold worked 316 fabricated from the same heat of material as those described above have now been irradiated to sufficiently high neutron fluences that swelling has occurred in both the annealed and cold worked conditions. Swelling increases linearly with stress for both materials. However, for solution annealed 316, swelling reaches a maximum at approximately 136 MPa, whereupon further increases in stress result in reduced swelling. It is felt that this reduction in swelling is related to the onset of plastic yielding in the material. The swelling observed in the 20% CW 316 and the solution annealed 316 below the maximum swelling stress can be adequately described by an equation of the form: S = S 0 (1 + Psigma). No strong effect of stress on changing the incubation period associated with void nucleation was found. (Auth.)

  4. Friction stress effects on mode I crack growth predictions

    NARCIS (Netherlands)

    Chen, Q.; Deshpande, V.S.; Giessen, E. van der; Needleman, A.

    2003-01-01

    The effect of a lattice friction stress on the monotonic growth of a plane strain mode I crack under small-scale yielding conditions is analyzed using discrete dislocation plasticity. When the friction stress is increased from zero to half the dislocation nucleation stress, the crack tip stress

  5. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    Science.gov (United States)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  6. The effective stress concept in saturated sand-clay buffer

    International Nuclear Information System (INIS)

    Graham, J.; Oswell, J.M.; Gray, M.N.

    1992-01-01

    Tests were performed on mixtures of sand and bentonite, to investigate whether the behavior of the mixture can be expressed in terms of effective stresses, defined as the tensor difference between externally applied total stresses and pore water pressures measured outside the cell. Within acceptable bounds of experimental error, the tests show that effective stress can be used to describe consolidation and shear behaviour. However, because part of the effective stress in the clay is derived from net interparticle repulsive (unit) forces seated in diffuse double layers around aggregations of bentonite particles, the applicability of the concept has at this stage been restricted to conditions of constant volume (or possibly constant straining rate), constant chemistry, and constant temperature

  7. Effect of twin boundary on nanoimprint process of bicrystal Al thin film studied by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Xie Yue-Hong; Xu Jian-Gang; Zhang Yun-Guang; Song Hai-Yang

    2015-01-01

    The effects of a twin boundary (TB) on the mechanical properties of two types of bicrystal Al thin films during the nanoimprint process are investigated by using molecular dynamics simulations. The results indicate that for the TB direction parallel to the imprinting direction, the yield stress reaches the maximum for the initial dislocation nucleation when the mould directly imprints to the TB, and the yield stress first decreases with the increase of the marker interval and then increases. However, for the TB direction perpendicular to the imprinting direction, the effect of the TB location to the imprinting forces is very small, and the yield stress is greater than that with the TB direction parallel to the imprinting direction. The results also demonstrate that the direction of the slip dislocations and the deformation of the thin film caused by spring-back are different due to various positions and directions of the TB. (paper)

  8. Individual and crossover effects of stress on adjustment in medical student marriages.

    Science.gov (United States)

    Katz, J; Monnier, J; Libet, J; Shaw, D; Beach, S R

    2000-07-01

    High-stress individuals may benefit from social support, although their support providers may be adversely affected via stress crossover effects. Individual and crossover effects of perceived stress within medical student marriages (n = 30) were investigated. Perceived spousal support was positively associated with individuals' own marital and emotional adjustment, attenuating stress effects. With regard to crossover effects, medical students' perceived stress was significantly associated with their spouses' emotional adjustment. Further, medical students' own emotional adjustment fully mediated this crossover effect. Results suggest that the contagion of negative affect may serve as a key mechanism through which stress crossover effects operate in marriage.

  9. Mental Health Effects of Stress over the Life Span of Refugees.

    Science.gov (United States)

    Hollifield, Michael; Warner, Teddy D; Krakow, Barry; Westermeyer, Joseph

    2018-02-06

    Information about the relative impact of stressful events across the lifespan on the mental health of refugees is needed. Cross-sectional data from a community sample of 135 Kurdish and 117 Vietnamese refugees were fit to a path model about the effects of non-war stress, war-related stress, and post-migration stress on mental health. Kurdish and Vietnamese data were generally consistent with the model. However, war-related stress produced no direct but a large indirect effect through post-migration stress on mental health in Kurds. Vietnamese data indicated a modest direct war-related stress effect but no indirect influence through post-migration stress. Different types of stressful events lead to adverse mental health of displaced refugees in a somewhat group-dependent manner. Implications for prevention and treatment are discussed.

  10. Mental Health Effects of Stress over the Life Span of Refugees

    Directory of Open Access Journals (Sweden)

    Michael Hollifield

    2018-02-01

    Full Text Available Information about the relative impact of stressful events across the lifespan on the mental health of refugees is needed. Cross-sectional data from a community sample of 135 Kurdish and 117 Vietnamese refugees were fit to a path model about the effects of non-war stress, war-related stress, and post-migration stress on mental health. Kurdish and Vietnamese data were generally consistent with the model. However, war-related stress produced no direct but a large indirect effect through post-migration stress on mental health in Kurds. Vietnamese data indicated a modest direct war-related stress effect but no indirect influence through post-migration stress. Different types of stressful events lead to adverse mental health of displaced refugees in a somewhat group-dependent manner. Implications for prevention and treatment are discussed.

  11. Prosocial Behavior Mitigates the Negative Effects of Stress in Everyday Life.

    Science.gov (United States)

    Raposa, Elizabeth B; Laws, Holly B; Ansell, Emily B

    2016-07-01

    Recent theories of stress reactivity posit that, when stressed, individuals tend to seek out opportunities to affiliate with and nurture others in order to prevent or mitigate the negative effects of stress. However, few studies have tested empirically the role of prosocial behavior in reducing negative emotional responses to stress. The current analyses used daily diary data to investigate whether engaging in prosocial behavior buffered the negative effects of naturally-occurring stressors on emotional well-being. Results showed that on a given day, prosocial behavior moderated the effects of stress on positive affect, negative affect, and overall mental health. Findings suggest that affiliative behavior may be an important component of coping with stress, and indicate that engaging in prosocial behavior might be an effective strategy for reducing the impact of stress on emotional functioning.

  12. The relative impact of work-related stress, life stress and driving environment stress on driving outcomes.

    Science.gov (United States)

    Rowden, Peter; Matthews, Gerald; Watson, Barry; Biggs, Herbert

    2011-07-01

    Previous research has shown the association between stress and crash involvement. The impact of stress on road safety may also be mediated by behaviours including cognitive lapses, errors, and intentional traffic violations. This study aimed to provide a further understanding of the impact that stress from different sources may have upon driving behaviour and road safety. It is asserted that both stress extraneous to the driving environment and stress directly elicited by driving must be considered part of a dynamic system that may have a negative impact on driving behaviours. Two hundred and forty-seven public sector employees from Queensland, Australia, completed self-report measures examining demographics, subjective work-related stress, daily hassles, and aspects of general mental health. Additionally, the Driver Behaviour Questionnaire (DBQ) and the Driver Stress Inventory (DSI) were administered. All participants drove for work purposes regularly, however the study did not specifically focus on full-time professional drivers. Confirmatory factor analysis of the predictor variables revealed three factors: DSI negative affect; DSI risk taking; and extraneous influences (daily hassles, work-related stress, and general mental health). Moderate intercorrelations were found between each of these factors confirming the 'spillover' effect. That is, driver stress is reciprocally related to stress in other domains including work and domestic life. Structural equation modelling (SEM) showed that the DSI negative affect factor influenced both lapses and errors, whereas the DSI risk-taking factor was the strongest influence on violations. The SEMs also confirmed that daily hassles extraneous to the driving environment may influence DBQ lapses and violations independently. Accordingly, interventions may be developed to increase driver awareness of the dangers of excessive emotional responses to both driving events and daily hassles (e.g. driving fast to 'blow off steam

  13. ANSYS Modeling of Hydrostatic Stress Effects

    Science.gov (United States)

    Allen, Phillip A.

    1999-01-01

    Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.

  14. Modelling of the PELE fragmentation dynamics

    Science.gov (United States)

    Verreault, J.

    2014-05-01

    The Penetrator with Enhanced Lateral Effect (PELE) is a type of explosive-free projectile that undergoes radial fragmentation upon an impact with a target plate. This type of projectile is composed of a brittle cylindrical shell (the jacket) filled in its core with a material characterized with a large Poisson's ratio. Upon an impact with a target, the axial compression causes the filling to expand in the radial direction. However, due to the brittleness of the jacket material, very little radial deformation can occur which creates a radial stress between the two materials and a hoop stress in the jacket. Fragmentation of the jacket occurs if the hoop stress exceeds the material's ultimate stress. The PELE fragmentation dynamics is explored via Finite-Element Method (FEM) simulations using the Autodyn explicit dynamics hydrocode. The numerical results are compared with an analytical model based on wave interactions, as well as with the experimental investigation of Paulus and Schirm (1996). The comparison is based on the mechanical stress in the filling and the qualitative fragmentation of the jacket.

  15. Modelling of the PELE fragmentation dynamics

    International Nuclear Information System (INIS)

    Verreault, J

    2014-01-01

    The Penetrator with Enhanced Lateral Effect (PELE) is a type of explosive-free projectile that undergoes radial fragmentation upon an impact with a target plate. This type of projectile is composed of a brittle cylindrical shell (the jacket) filled in its core with a material characterized with a large Poisson's ratio. Upon an impact with a target, the axial compression causes the filling to expand in the radial direction. However, due to the brittleness of the jacket material, very little radial deformation can occur which creates a radial stress between the two materials and a hoop stress in the jacket. Fragmentation of the jacket occurs if the hoop stress exceeds the material's ultimate stress. The PELE fragmentation dynamics is explored via Finite-Element Method (FEM) simulations using the Autodyn explicit dynamics hydrocode. The numerical results are compared with an analytical model based on wave interactions, as well as with the experimental investigation of Paulus and Schirm (1996). The comparison is based on the mechanical stress in the filling and the qualitative fragmentation of the jacket.

  16. Communicating Intrapersonally about Stress: The Dynamics on Self.

    Science.gov (United States)

    Edson, Belle A.

    When designing a workshop about communication and stress, it is important to consider the medical definition--that stress is a physiological reaction to an external force that is interpreted by the individual--and the psychological definition--which suggests that through communication with self one can change the stress in one's life. Stress can…

  17. Better executive function under stress mitigates the effects of recent life stress exposure on health in young adults.

    Science.gov (United States)

    Shields, Grant S; Moons, Wesley G; Slavich, George M

    2017-01-01

    Executive function is a neuropsychological construct that enables controlled cognitive processing, which has been hypothesized to enhance individuals' resilience to stress. However, little empirical work has directly examined how executive function under different conditions mitigates the negative effects of stress exposure on health. To address this issue, we recruited 110 healthy young adults and assessed their recent life stress exposure, executive function in either a stressful or non-stressful context, and current health complaints. Based on existing research, we hypothesized that individuals exhibiting better executive function following a laboratory-based stressor (but not a control task) would demonstrate weaker associations between recent stress exposure and health because they perceived recent life stressors as being less severe. Consistent with this hypothesis, better executive function during acute stress, but not in the absence of stress, was associated with an attenuated link between participants' recent life stress exposure and their current health complaints. Moreover, this attenuating effect was mediated by lesser perceptions of stressor severity. Based on these data, we conclude that better executive function under stress is associated with fewer health complaints and that these effects may occur by reducing individuals' perceptions of stressor severity. The data thus suggest the possibility of reducing stress-related health problems by enhancing executive function.

  18. Effective stress, friction and deep crustal faulting

    Science.gov (United States)

    Beeler, N.M.; Hirth, Greg; Thomas, Amanda M.; Burgmann, Roland

    2016-01-01

    Studies of crustal faulting and rock friction invariably assume the effective normal stress that determines fault shear resistance during frictional sliding is the applied normal stress minus the pore pressure. Here we propose an expression for the effective stress coefficient αf at temperatures and stresses near the brittle-ductile transition (BDT) that depends on the percentage of solid-solid contact area across the fault. αf varies with depth and is only near 1 when the yield strength of asperity contacts greatly exceeds the applied normal stress. For a vertical strike-slip quartz fault zone at hydrostatic pore pressure and assuming 1 mm and 1 km shear zone widths for friction and ductile shear, respectively, the BDT is at ~13 km. αf near 1 is restricted to depths where the shear zone is narrow. Below the BDT αf = 0 is due to a dramatically decreased strain rate. Under these circumstances friction cannot be reactivated below the BDT by increasing the pore pressure alone and requires localization. If pore pressure increases and the fault localizes back to 1 mm, then brittle behavior can occur to a depth of around 35 km. The interdependencies among effective stress, contact-scale strain rate, and pore pressure allow estimates of the conditions necessary for deep low-frequency seismicity seen on the San Andreas near Parkfield and in some subduction zones. Among the implications are that shear in the region separating shallow earthquakes and deep low-frequency seismicity is distributed and that the deeper zone involves both elevated pore fluid pressure and localization.

  19. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  20. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats.

    Science.gov (United States)

    Fride, E; Dan, Y; Feldon, J; Halevy, G; Weinstock, M

    1986-01-01

    This study investigated the hypotheses that unpredictable prenatal stress has effects on the offspring, similar to those induced by perinatal administration of glucocorticoids and increases the vulnerability to stressful situations at adulthood. Rats were exposed to random noise and light stress throughout pregnancy. Offspring were tested for the development of spontaneous alternation behavior (SA) and at adulthood, their response to novel or aversive situations, open field, extinction and punishment following acquisition of an appetitive response and two-way active avoidance, were assessed. In prenatally stressed rats, the development of SA was significantly delayed. On repeated exposure to an open field they were less active; control rats had elevated plasma corticosterone (CCS) on days 2 and 4 of open field exposure, while prenatally stressed rats had significantly raised plasma CCS after each exposure (days 1-8). Furthermore, punishment-induced suppression of an appetitive response was enhanced. Acquisition of active avoidance was faciliated in female but reduced in male prenatally stressed offspring. It is suggested that random prenatal noise and light stress may cause impairment of development of hippocampal function which lasts into adulthood. This impairment is manifested as an increase in vulnerability and a decrease in habituation to stressful stimuli.

  1. Effects of Added Mass and Structural Damping on Dynamic Responses of a 3D Wedge Impacting on Water

    Directory of Open Access Journals (Sweden)

    Pengyao Yu

    2018-05-01

    Full Text Available The impact between the wave and the bottom of a high-speed vessel is often simplified as water-entry problems of wedges. Most investigations focus on the water entry of two dimensional (2D wedges. The effects of added mass and structural damping are still not fully investigated. By combining the normal mode method, the hydrodynamic impact model of rigid wedges and the potential flow theory, a dynamic model for predicting the response of a three dimensional (3D wedge impacting on water with a constant velocity is established in this paper. The present model can selectively consider the effects of the added mass and the structural damping. The present method has been validated through comparisons with results of published literatures and commercial software. It is found that the added mass can increase the stress response before the flow separation, and reduce the vibration frequency after the flow separation. Due to the effect of the added mass, the stress response of some positions after the flow separation is even higher than that before the flow separation. The structural damping has a negligible effect on the stress before the flow separation, but it can reduce vibration stress after the flow separation.

  2. Dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel

    International Nuclear Information System (INIS)

    Wei, Hai-lian; Liu, Guo-quan; Xiao, Xiang; Zhang, Ming-he

    2013-01-01

    The dynamic recrystallization behavior of a medium carbon vanadium microalloyed steel was systematically investigated at the temperatures from 900 °C to 1100 °C and strain rates from 0.01 s −1 to 10 s −1 on a Gleeble-1500 thermo-simulation machine. The flow stress constitutive equation of hot deformation for this steel was developed with the activation energy Q being about 273 kJ/mol, which is in reasonable agreement with those reported before. Activation energy analysis showed that vanadium addition in microalloyed steels seemed not to affect the activation energy much. The effect of Zener–Hollomon parameter on the characteristic points of flow curves was studied using the power law relation, and the dependence of critical strain (stress) on peak strain (stress) obeyed a linear equation. Dynamic recrystallization is the most important softening mechanism for the experimental steel during hot compression. The dynamic recrystallization kinetics model of this steel was established based on flow stress and a frequently-used dynamic recrystallization kinetics equation. Dynamic recrystallization microstructure under different deformation conditions was also observed and the dependence of steady-state grain size on the Zener–Hollomon parameter was plotted

  3. Dynamic changes in saliva after acute mental stress

    Science.gov (United States)

    Naumova, Ella A.; Sandulescu, Tudor; Bochnig, Clemens; Khatib, Philipp Al; Lee, Wing-Kee; Zimmer, Stefan; Arnold, Wolfgang H.

    2014-01-01

    Stress-related variations of fluoride concentration in supernatant saliva and salivary sediment, salivary cortisol, total protein and pH after acute mental stress were assessed. The hypothesis was that stress reactions have no influence on these parameters. Thirty-four male students were distributed into two groups: first received the stress exposure followed by the same protocol two weeks later but without stress exposure, second underwent the protocol without stress exposure followed by the stress exposure two weeks later. The stressor was a public speech followed by tooth brushing. Saliva was collected before, immediately after stress induction and immediately, at 10, 30 and 120 min. after tooth brushing. Cortisol concentrations, total protein, intraoral pH, and fluoride content in saliva were measured. The data were analyzed statistically. Salivary sediment was ca 4.33% by weight of whole unstimulated saliva. Fluoride bioavailability was higher in salivary sediment than in supernatant saliva. The weight and fluoride concentration was not altered during 2 hours after stress exposure. After a public speech, the salivary cortisol concentration significantly increased after 20 minutes compared to the baseline. The salivary protein concentration and pH also increased. Public speaking influences protein concentration and salivary pH but does not alter the fluoride concentration of saliva. PMID:24811301

  4. Dissecting long-term adjustments of photoprotective and photo-oxidative stress acclimation occurring in dynamic light environments

    Directory of Open Access Journals (Sweden)

    Shizue Matsubara

    2016-11-01

    Full Text Available Changes in light intensity directly affect the performance of the photosynthetic apparatus. Light energy absorbed in excess of cells’ needs leads to production of reactive oxygen species and photo-oxidative damage. Excess light in both constant and dynamic environments induces photoprotective acclimation in plants. Distinct sets of signals and regulatory mechanisms are involved in acclimatory adjustment of photoprotection and photosynthesis under constant and dynamic (fluctuating light conditions. We are still far away from drawing a comprehensive picture of acclimatory signal transduction pathways, particularly in dynamic environments. In this perspective article, we propose the use of Arabidopsis plants that produce H2O2 in chloroplasts (GO plants under atmospheric CO2 levels as a tool to study the mechanisms of long-term acclimation to photo-oxidative stress. In our opinion there are new avenues to future investigations on acclimatory adjustments and signal transduction occurring in plants under dynamic light environments.

  5. Static and dynamic bending has minor effects on xylem hydraulics of conifer branches (Picea abies, Pinus sylvestris).

    Science.gov (United States)

    Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara

    2014-09-01

    The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  6. Effects of heat stress on baroreflex function in humans

    Science.gov (United States)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  7. Stress Effects on Stop Bursts in Five Languages

    Directory of Open Access Journals (Sweden)

    Marija Tabain

    2016-11-01

    Full Text Available This study examines the effects of stress on the stop burst in five languages differing in number of places of articulation, as reflected in burst duration, spectral centre of gravity, and ­spectral standard deviation. The languages studied are English (three places of articulation /p t k/, the Indonesian language Makasar (four places /p t c k/, and the Central Australian languages ­Pitjantjatjara, Warlpiri (both five places /p t ʈ c k/, and Arrernte (six places /p t̪ t ʈ c k/. We find that languages differ in how they manifest stress on the consonant, with Makasar not ­showing any effect of stress at all, and Warlpiri showing an effect on burst duration, but not on the ­spectral measures. For the other languages, the velar /k/ has a “darker” quality (i.e., lower spectral centre of gravity, and/or a less diffuse spectrum (i.e., lower standard deviation under stress; while the alveolar /t/ has a “lighter” quality under stress. In addition, the dental /t̪/ has a more diffuse spectrum under stress. We suggest that this involves enhancement of the features [grave] and [diffuse] under stress, with velars being [+grave] and [–diffuse], alveolars being [–grave], and dentals being [+diffuse]. We discuss the various possible spectral effects of enhancement of these features. Finally, in the languages with five or six places of articulation, the stop burst is longer only for the palatal /c/ and the velar /k/, which have intrinsically long burst durations, and not for the anterior coronals /t̪ t ʈ/, which have intrinsically short burst durations. We suggest that in these systems, [burst duration] is a feature that separates these two groups of consonants.

  8. Stress anisotropy and stress gradient in magnetron sputtered films with different deposition geometries

    International Nuclear Information System (INIS)

    Zhao, Z.B.; Yalisove, S.M.; Bilello, J.C.

    2006-01-01

    Mo films were deposited via magnetron sputtering with two different deposition geometries: dynamic deposition (moving substrate) and static deposition (fixed substrate). The residual stress and structural morphologies of these films were investigated, with particular focus on in-plane anisotropy of the biaxial stress and stress gradient across the film thickness. The results revealed that the Mo films developed distinct states of residual stress, which depended on both deposition geometry and film thickness. With the dynamic geometry, the Mo films generally exhibited anisotropic stress. Both the degree of anisotropy and the magnitude of stress varied as functions of film thickness. The variation of stress was linked to the evolution of anisotropic microstructures in the films. The Mo films from the static geometry developed isotropic residual stress, which was more compressive and noticeably larger in magnitude than that of the Mo films from the dynamic geometry. Aside from these disparities, the two types of Mo films (i.e., anisotropic and isotropic) exhibited notably similar trends of stress variation with film thickness. Depth profiling indicated the presence of large stress gradients for the Mo films, irrespective of the deposition geometries. This observation seems to be consistent with the premise that Mo films develop a zone T structure, which is inherently inhomogeneous along the film thickness. Moreover, the largest stress gradient for both types of deposition geometries arises at roughly the same film depth (∼240 nm from substrate), where the stresses sharply transits from highly compressive to less compressive or even tensile. This appears to correspond to the boundary region that separates two distinct stages of microstructural evolution, a feature unique to zone T-type structure

  9. Influence of effective stress on swelling pressure of expansive soils

    Directory of Open Access Journals (Sweden)

    Baille Wiebke

    2016-01-01

    Full Text Available The volume change and shear strength behaviour of soils are controlled by the effective stress. Recent advances in unsaturated soil mechanics have shown that the effective stress as applicable to unsaturated soils is equal to the difference between the externally applied stress and the suction stress. The latter can be established based on the soil-water characteristic curve (SWCC of the soil. In the present study, the evolution of swelling pressure in compacted bentonite-sand mixtures was investigated. Comparisons were made between magnitudes of applied suction, suction stress, and swelling pressure.

  10. Mean stress effects on high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649 degree C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs

  11. Biological effects of laser-induced stress waves

    International Nuclear Information System (INIS)

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-01-01

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress

  12. Dynamic behaviour of the icosahedral Al–Pd–Mn quasicrystal with a Griffith crack

    International Nuclear Information System (INIS)

    Xiao-Fang, Wang; Ai-Yu, Zhu; Tian-You, Fan

    2009-01-01

    The dynamic response of an icosahedral Al–Pd–Mn quasicrystal with a Griffith crack to impact loading is investigated in this paper. The elastohydrodynamic model for the wave propagation and diffusion together with their interaction is adopted. Numerical results of stress, displacement and dynamic stress intensity factors are obtained by using the finite difference method. The effects of wave propagation, diffusion and phonon–phason coupling on the quasicrystal in the dynamic process are discussed in detail, where the phason dynamics is explored particularly. (condensed matter: structure, thermal and mechanical properties)

  13. Social support moderates the effects of stress on sleep in adolescents.

    Science.gov (United States)

    van Schalkwijk, Frank J; Blessinga, Agaath N; Willemen, Agnes M; Van Der Werf, Ysbrand D; Schuengel, Carlo

    2015-08-01

    Academic expectations and demands become primary sources of stress during adolescence, negatively affecting sleep. To cope with stress, adolescents may turn to social support figures. The present study tested the extent of main and moderating effects of various sources of social support on the association between stress and sleep. Adolescents (n = 202, meanage 14.6 years, standard deviation = 0.71) reported on academic stress, sleep, and support using questionnaires during a low- and high-stress period, defined by the absence or presence of examinations, respectively. Inquiries were made regarding social support from parents, friends, and class supervisor. During both stress periods, academic stress was associated negatively with sleep quality and positively with sleep reduction. Social support increased sleep quality and lowered sleep reduction. In addition, social support moderated the effects of academic stress on sleep, thus improving sleep quality and lowering sleep reduction. Moderating effects were stronger during a period of high stress. The present study showed that adolescents can benefit from stress moderation through social support by improvements of sleep quality and sleep reduction. Such moderating effects should be taken into account when studying stress and sleep. Implications and recommendations based on these findings are discussed. © 2015 European Sleep Research Society.

  14. Stress Analysis and Fatigue Behaviour of PTFE-Bronze Layered Journal Bearing under Real-Time Dynamic Loading

    Science.gov (United States)

    Duman, M. S.; Kaplan, E.; Cuvalcı, O.

    2018-01-01

    The present paper is based on experimental studies and numerical simulations on the surface fatigue failure of the PTFE-bronze layered journal bearings under real-time loading. ‘Permaglide Plain Bearings P10’ type journal bearings were experimentally tested under different real time dynamic loadings by using real time journal bearing test system in our laboratory. The journal bearing consists of a PTFE-bronze layer approximately 0.32 mm thick on the steel support layer with 2.18 mm thick. Two different approaches have been considered with in experiments: (i) under real- time constant loading with varying bearing widths, (ii) under different real-time loadings at constant bearing widths. Fatigue regions, micro-crack dispersion and stress distributions occurred at the journal bearing were experimentally and theoretically investigated. The relation between fatigue region and pressure distributions were investigated by determining the circumferential pressure distribution under real-time dynamic loadings for the position of every 10° crank angles. In the theoretical part; stress and deformation distributions at the surface of the journal bearing analysed by using finite element methods to determine the relationship between stress and fatigue behaviour. As a result of this study, the maximum oil pressure and fatigue cracks were observed in the most heavily loaded regions of the bearing surface. Experimental results show that PTFE-Bronze layered journal bearings fatigue behaviour is better than the bearings include white metal alloy.

  15. Hole Defects Affect the Dynamic Fracture Behavior of Nearby Running Cracks

    Directory of Open Access Journals (Sweden)

    R. S. Yang

    2018-01-01

    Full Text Available Effects of defects on the dynamic fracture behavior of engineering materials cannot be neglected. Using the experimental system of digital laser dynamic caustics, the effects of defects on the dynamic fracture behavior of nearby running cracks are studied. When running cracks propagate near to defects, the crack path deflects toward the defect; the degree of deflection is greater for larger defect diameters. When the running crack propagates away from the defect, the degree of deflection gradually reduces and the original crack path is restored. The intersection between the caustic spot and the defect is the direct cause of the running crack deflection; the intersection area determines the degree of deflection. In addition, the defect locally inhibits the dynamic stress intensity factor of running cracks when they propagate toward the defect and locally promotes the dynamic stress intensity factor of running cracks when they propagate away from the defect.

  16. Oxidative stress and nitrite dynamics under maximal load in elite athletes: relation to sport type.

    Science.gov (United States)

    Cubrilo, Dejan; Djordjevic, Dusica; Zivkovic, Vladimir; Djuric, Dragan; Blagojevic, Dusko; Spasic, Mihajlo; Jakovljevic, Vladimir

    2011-09-01

    Maximal workload in elite athletes induces increased generation of reactive oxygen/nitrogen species (RONS) and oxidative stress, but the dynamics of RONS production are not fully explored. The aim of our study was to examine the effects of long-term engagement in sports with different energy requirements (aerobic, anaerobic, and aerobic/anaerobic) on oxidative stress parameters during progressive exercise test. Concentrations of lactates, nitric oxide (NO) measured through stabile end product-nitrites (NO(2) (-)), superoxide anion radical (O(2) (•-)), and thiobarbituric reactive substances (TBARS) as index of lipid peroxidation were determined in rest, after maximal workload, and at 4 and 10th min of recovery in blood plasma of top level competitors in rowing, cycling, and taekwondo. Results showed that sportmen had similar concentrations of lactates and O(2) (•-) in rest. Nitrite concentrations in rest were the lowest in taekwondo fighters, while rowers had the highest levels among examined groups. The order of magnitude for TBARS level in the rest was bicycling > taekwondo > rowing. During exercise at maximal intensity, the concentration of lactate significantly elevated to similar levels in all tested sportsmen and they were persistently elevated during recovery period of 4 and 10 min. There were no significant changes in O(2) (•-), nitrite, and TBARS levels neither at the maximum intensity of exercise nor during the recovery period comparing to the rest period in examined individuals. Our results showed that long term different training strategies establish different basal nitrites and lipid peroxidation levels in sportmen. However, progressive exercise does not influence basal nitrite and oxidative stress parameters level neither at maximal load nor during the first 10 min of recovery in sportmen studied.

  17. Effects of nutrient and light stress on some morphological ...

    African Journals Online (AJOL)

    Tomato seedlings were subjected to light and nutrient stress to determine the effects of each of these stress factors as well as their combined effects on some morphological parameters of the plant. A two-way Analysis of Variance (ANOVA) carried out on the data obtained showed that light produced significant effect on all ...

  18. Studies of earthquakes stress drops, seismic scattering, and dynamic triggering in North America

    Science.gov (United States)

    Escudero Ayala, Christian Rene

    at 1.5, 3, 5, 7.5, 10.5, and 13.5 Hz. Coda Q present a great correlation with tectonic and geology setting, as well as the crustal thickness. I analyze global and Middle American Subduction Zone (MASZ) seismicity from 1998 to 2008 to quantify the transient stresses effects at teleseismic distances. I use the Bulletin of the International Seismological Centre Catalog (ISCCD) published by the Incorporated Research Institutions for Seismology (IRIS). To identify MASZ seismicity changes due to distant, large (Mw ¿ 7) earthquakes, I first identify local earthquakes that occurred before and after the mainshocks. I then group the local earthquakes within a cluster radius between 75 to 200 km. I obtain statistics based on characteristics of both mainshocks and local earthquakes clusters, such as cluster-mainshock azimuth, mainshock focal mechanism, and local earthquakes clusters within the MASZ. Based on the lateral variations of the dip along the subducted oceanic plate, I divide the Mexican subduction zone into four segments. I then apply the Paired Samples Statistical Test (PSST) to the sorted data to identify increment, decrement or either in the local seismicity associated with distant large earthquakes passage of surface waves. I identify dynamic triggering for all MASZ segments produced by large earthquakes emerging from specific azimuths, as well as, a decrease for some cases. I find no dependence of seismicity changes on mainshock focal mechanism.

  19. A low cycle fatigue model for low carbon manganese steel including the effect of dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle [Université Paris Ouest Nanterre La Défense (France); Wang, Qing Yuan; Khan, Muhammad Kashif [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean–Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320, Chatillon (France)

    2016-01-27

    Carbon–manganese steel A48 (French standards) is used in steam generator pipes of the nuclear power plant where it is subjected to the cyclic thermal load. The Dynamic Strain Aging (DSA) influences the mechanical behavior of the steel in low cycle fatigue (LCF) at favorable temperature and strain rate. The peak stress of A48 steel experiences hardening–softening–hardening (HSH) evolution at 200 °C and 0.4% s{sup −1} strain rate in fatigue loading. In this study, isotropic and kinematic hardening rules with DSA effect have been modified. The HSH evolution of cyclic stress associated with cumulative plastic deformation has also been estimated.

  20. Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic

    Science.gov (United States)

    Bourke, Chase H.; Neigh, Gretchen N.

    2011-01-01

    Evidence suggests that women are more susceptible to stress-related disorders than men. Animal studies demonstrate a similar female sensitivity to stress and have been used to examine the underlying neurobiology of sex-specific effects of stress. Although our understanding of the sex-specific effects of chronic adolescent stress has grown in recent years, few studies have reported the effects of adolescent stress on depressive-like behavior. The purpose of this study was to determine if a chronic mixed modality stressor (consisting of isolation, restraint, and social defeat) during adolescence (PND37-49) resulted in differential and sustained changes in depressive-like behavior in male and female Wistar rats. Female rats exposed to chronic adolescent stress displayed decreased sucrose consumption, hyperactivity in the elevated plus maze, decreased activity in the forced swim test, and a blunted corticosterone response to an acute forced swim stress compared to controls during both adolescence (PND48-57) and adulthood (PND96-104). Male rats exposed to chronic adolescent stress did not manifest significant behavioral changes at either the end of adolescence or in adulthood. These data support the proposition that adolescence may be a stress sensitive period for females and exposure to stress during adolescence results in behavioral effects that persist in females. Studies investigating the sex-specific effects of chronic adolescent stress may lead to a better understanding of the sexually dimorphic incidence of depressive and anxiety disorders in humans and ultimately improve prevention and treatment strategies. PMID:21466807

  1. Micromagnetic modeling of the effects of stress on magnetic properties

    International Nuclear Information System (INIS)

    Zhu, B.; Lo, C. C. H.; Lee, S. J.; Jiles, D. C.

    2001-01-01

    A micromagnetic model has been developed for investigating the effect of stress on the magnetic properties of thin films. This effect has been implemented by including the magnetoelastic energy term into the Landau - Lifshitz - Gilbert equation. Magnetization curves of a nickel film were calculated under both tensile and compressive stresses of various magnitudes applied along the field direction. The modeling results show that coercivity increased with increasing compressive stress while remanence decreased with increasing tensile stress. The results are in agreement with the experimental data in the literature and can be interpreted in terms of the effects of the applied stress on the irreversible rotation of magnetic moments during magnetization reversal under an applied field. [copyright] 2001 American Institute of Physics

  2. Nature-Based Stress Management Course for Individuals at Risk of Adverse Health Effects from Work-Related Stress—Effects on Stress Related Symptoms, Workability and Sick Leave

    Directory of Open Access Journals (Sweden)

    Eva Sahlin

    2014-06-01

    Full Text Available Sick leave due to stress-related disorders is increasing in Sweden after a period of decrease. To avoid that individuals living under heavy stress develop more severe stress-related disorders, different stress management interventions are offered. Self-assessed health, burnout-scores and well-being are commonly used as outcome measures. Few studies have used sick-leave to compare effects of stress interventions. A new approach is to use nature and garden in a multimodal stress management context. This study aimed to explore effects on burnout, work ability, stress-related health symptoms, and sick leave for 33 women participating in a 12-weeks nature based stress management course and to investigate how the nature/garden activities were experienced. A mixed method approach was used. Measures were taken at course start and three follow-ups. Results showed decreased burnout-scores and long-term sick leaves, and increased work ability; furthermore less stress-related symptoms were reported. Tools and strategies to better handle stress were achieved and were widely at use at all follow-ups. The garden and nature content played an important role for stress relief and for tools and strategies to develop. The results from this study points to beneficial effects of using garden activities and natural environments in a stress management intervention.

  3. Nature-Based Stress Management Course for Individuals at Risk of Adverse Health Effects from Work-Related Stress—Effects on Stress Related Symptoms, Workability and Sick Leave

    Science.gov (United States)

    Sahlin, Eva; Ahlborg, Gunnar; Vega Matuszczyk, Josefa; Grahn, Patrik

    2014-01-01

    Sick leave due to stress-related disorders is increasing in Sweden after a period of decrease. To avoid that individuals living under heavy stress develop more severe stress-related disorders, different stress management interventions are offered. Self-assessed health, burnout-scores and well-being are commonly used as outcome measures. Few studies have used sick-leave to compare effects of stress interventions. A new approach is to use nature and garden in a multimodal stress management context. This study aimed to explore effects on burnout, work ability, stress-related health symptoms, and sick leave for 33 women participating in a 12-weeks nature based stress management course and to investigate how the nature/garden activities were experienced. A mixed method approach was used. Measures were taken at course start and three follow-ups. Results showed decreased burnout-scores and long-term sick leaves, and increased work ability; furthermore less stress-related symptoms were reported. Tools and strategies to better handle stress were achieved and were widely at use at all follow-ups. The garden and nature content played an important role for stress relief and for tools and strategies to develop. The results from this study points to beneficial effects of using garden activities and natural environments in a stress management intervention. PMID:25003175

  4. Effect of personal and work stress on burnout, job satisfaction and ...

    African Journals Online (AJOL)

    Abstract. The majority of studies to date have focused on the effects of work stress in the nursing environment, with the effect of personal stress in nursing being less explored. This study sought to determine whether personal stress is a more significant predictor of burnout, job satisfaction and general health than work stress.

  5. Emotional effects of dynamic textures

    NARCIS (Netherlands)

    Toet, A.; Henselmans, M.; Lucassen, M.P.; Gevers, T.

    2011-01-01

    This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely

  6. Salubrious effects of oxytocin on social stress-induced deficits

    Science.gov (United States)

    Smith, Adam S.; Wang, Zuoxin

    2012-01-01

    Social relationships are a fundamental aspect of life, affecting social, psychological, physiological, and behavioral functions. While social interactions can attenuate stress and promote health, disruption, confrontations, isolation, or neglect in the social environment can each be major stressors. Social stress can impair the basal function and stress-induced activation of the hypothalamic-pituitary-adrenal (HPA) axis, impairing function of multiple biological systems and posing a risk to mental and physical health. In contrast, social support can ameliorate stress-induced physiological and immunological deficits, reducing the risk of subsequent psychological distress and improving an individual's overall well-being. For better clinical treatment of these physiological and mental pathologies, it is necessary to understand the regulatory mechanisms of stress-induced pathologies as well as determine the underlying biological mechanisms that regulate social buffering of the stress system. A number of ethologically relevant animal models of social stress and species that form strong adult social bonds have been utilized to study the etiology, treatment, and prevention of stress-related disorders. While undoubtedly a number of biological pathways contribute to the social buffering of the stress response, the convergence of evidence denotes the regulatory effects of oxytocin in facilitating social bond-promoting behaviors and their effect on the stress response. Thus, oxytocin may be perceived as a common regulatory element of the social environment, stress response, and stress-induced risks on mental and physical health. PMID:22178036

  7. Combinatorial stresses kill pathogenic Candida species

    Science.gov (United States)

    Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.

    2012-01-01

    Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109

  8. A Method to Estimate the Dynamic Displacement and Stress of a Multi-layered Pavement with Bituminous or Concrete Materials

    Directory of Open Access Journals (Sweden)

    Zheng LU

    2014-12-01

    Full Text Available In this research work, a method to estimate the dynamic characteristics of a multilayered pavement with bituminous or concrete materials is proposed. A mechanical model is established to investigate the dynamic displacement and stress of the multi-layered pavement structure. Both the flexible and the rigid pavements, corresponding to bituminous materials and concrete materials, respectively, are studied. The theoretical solutions of the multi-layered pavement structure are deduced considering the compatibility condition at the interface of the structural layers. By introducing FFT (Fast Fourier Transform algorithm, some numerical results are presented. Comparisons of the theoretical and experimental result implied that the proposed method is reasonable in predicting the stress and displacement of a multi-layered pavement with bituminous or concrete materials. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6071

  9. Work Stress

    OpenAIRE

    Roeters, Anne

    2014-01-01

    Most of us agree that stress is a growing problem within organizations. We hear about the postal workers who had killed fellow employees and supervisors, and then hear that a major cause of tension is at work. Friends tell us that they are stressed due to increased workload and he has to work overtime because the company is restructured. We read the polls that employees complain about the stress in trying to balance family life with the work. Stress is a dynamic condition in which an individu...

  10. Projections of rising heat stress over the western Maritime Continent from dynamically downscaled climate simulations

    Science.gov (United States)

    Im, Eun-Soon; Kang, Suchul; Eltahir, Elfatih A. B.

    2018-06-01

    This study assesses the future changes in heat stress in response to different emission scenarios over the western Maritime Continent. To better resolve the region-specific changes and to enhance the performance in simulating extreme events, the MIT Regional Climate Model with a 12-km horizontal resolution is used for the dynamical downscaling of three carefully selected CMIP5 global projections forced by two Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Daily maximum wet-bulb temperature (TWmax), which includes the effect of humidity, is examined to describe heat stress as regulated by future changes in temperature and humidity. An ensemble of projections reveals robust pattern in which a large increase in temperature is accompanied by a reduction in relative humidity but a significant increase in wet-bulb temperature. This increase in TWmax is relatively smaller over flat and coastal regions than that over mountainous region. However, the flat and coastal regions characterized by warm and humid present-day climate will be at risk even under modest increase in TWmax. The regional extent exposed to higher TWmax and the number of days on which TWmax exceeds its threshold value are projected to be much higher in RCP8.5 scenario than those in RCP4.5 scenario, thus highlighting the importance of controlling greenhouse gas emissions to reduce the adverse impacts on human health and heat-related mortality.

  11. Non equilibrium effects in nuclear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Papa, M.; Arena, N.; Cardella, G.; Lanzano, G.; Filippo, E. de; Lanzalone, G.; Pagano, A.; Pirrone, S.; Politi, G. [Catania Univ., INFN Catania and Dipartimento di Fisica e Astronomia (Italy); Amorini, F.; Anzalone, A.; Bonasera, A.; Cavallaro, S.; Di Pietro, A.; Figuera, P.; Giustolisi, F.; Iacono Manno, M.; La Guidara, E.; Maiolino, C.; Porto, F.; Rizzo, F.; Sperduto, M.L. [Catania Univ., INFN-LNS and Dipartimento di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipartimento di Fisica (Italy)

    2003-07-01

    A Constraint Molecular Dynamics (CoMD) approach is used to study dynamical effects related to both the average dynamics and the fluctuations around it. Data obtained in the REVERSE and in TRASMARAD experiments were compared with the theoretical simulations. The concept of temperature, as derived from a fully dynamical description of the GDR (giant dipole resonance) mode, is also discussed. In this contribution we have discussed the comparison between the CoMD model and two classes of phenomena, induced by heavy ion collisions. The first one is related to the IMF (intermediate mass fragment) production in semi-peripheral collisions for the {sup 124}Sn + {sup 64}Ni system at 35 MeV/nucleon. The comparison put in evidence clear preequilibrium effects in the fragment production mechanism which are essentially related to the behavior of the average dynamics. The second one concerns the high {gamma}-ray productions, due to dipolar resonant mechanisms, in the {sup 40}Ca + {sup 48}Ca system at 25 MeV/nucleon. In this case the comparisons with the model allows to put in evidence preequilibrium effects related both to the average dynamics and to the fluctuating one.

  12. Dynamic aspects of dislocation motion: atomistic simulations

    International Nuclear Information System (INIS)

    Bitzek, Erik; Gumbsch, Peter

    2005-01-01

    Atomistic simulations of accelerating edge and screw dislocations were carried out to study the dynamics of dislocations in a face centered cubic metal. Using two different embedded atom potentials for nickel and a simple slab geometry, the Peierls stress, the effective mass, the line tension and the drag coefficient were determined. A dislocation intersecting an array of voids is used to study dynamic effects in dislocation-obstacle interactions. A pronounced effect caused by inertial overshooting is found. A dynamic line tension model is developed which reproduces the simulation results. The model can be used to easily estimate the magnitude of inertial effects in the interaction of dislocations with localized obstacles for different obstacle strengths, -spacings and temperatures

  13. Maximal Fluctuations of Confined Actomyosin Gels: Dynamics of the Cell Nucleus.

    Science.gov (United States)

    Rupprecht, J-F; Singh Vishen, A; Shivashankar, G V; Rao, M; Prost, J

    2018-03-02

    We investigate the effect of stress fluctuations on the stochastic dynamics of an inclusion embedded in a viscous gel. We show that, in nonequilibrium systems, stress fluctuations give rise to an effective attraction towards the boundaries of the confining domain, which is reminiscent of an active Casimir effect. We apply this generic result to the dynamics of deformations of the cell nucleus, and we demonstrate the appearance of a fluctuation maximum at a critical level of activity, in agreement with recent experiments [E. Makhija, D. S. Jokhun, and G. V. Shivashankar, Proc. Natl. Acad. Sci. U.S.A. 113, E32 (2016)PNASA60027-842410.1073/pnas.1513189113].

  14. Does Leisure Time as a Stress Coping Resource Increase Affective Complexity? Applying the Dynamic Model of Affect (DMA)

    Science.gov (United States)

    Qian, Xinyi (Lisa); Yarnal, Careen M.; Almeida, David M.

    2013-01-01

    Affective complexity, a manifestation of psychological well-being, refers to the relative independence between positive and negative affect (PA, NA). According to the Dynamic Model of Affect (DMA), stressful situations lead to highly inverse PA-NA relationship, reducing affective complexity. Meanwhile, positive events can sustain affective complexity by restoring PA-NA independence. Leisure, a type of positive events, has been identified as a coping resource. This study used the DMA to assess whether leisure time helps restore affective complexity on stressful days. We found that on days with more leisure time than usual, an individual experienced less negative PA-NA relationship after daily stressful events. The finding demonstrates the value of leisure time as a coping resource and the DMA’s contribution to coping research. PMID:24659826

  15. Effects of stress and MDMA on hippocampal gene expression.

    Science.gov (United States)

    Weber, Georg F; Johnson, Bethann N; Yamamoto, Bryan K; Gudelsky, Gary A

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.

  16. Effects of thermal cracking on the dynamic behavior of reinforced concrete containment structures

    International Nuclear Information System (INIS)

    Castellani, A.; Fontana, A.

    1977-01-01

    Thick concrete cylinders acted on by horizontal dynamic forces are analyzed. According to the dimensions they may simulate a containment structure or a reactor core support. In particular, the effects of thermal cracking on their dynamic behavior are investigated; up to now the tests are confined to vertical cracking which is likely to appear under a thermal gradient of approximately 35 to 45 0 C on the wall. At higher temperatures, the number and extension of these cracks increase, till a stabilized crack pattern is reached. This is the main subject of the present investigation. The horizontal forces call for a shear transmission along the crack. According to the literature, shear stresses can be transmitted by aggregate interlock, by shear friction, and by the dowel action provided by horizontal reinforcement. These effects may accomodate the shear transmission along the crack required to resist a given distribution of horizontal forces. On the other hand, the shear rigidity of the structure may be negatively affected by the cracking, depending on the crack width and distribution and on the amplitude of the applied forces. In this case a dynamic behavior of the structure is to be analyzed with proper consideration to the existing cracking

  17. Loneliness and sleep quality: dyadic effects and stress effects.

    Science.gov (United States)

    Segrin, Chris; Burke, Tricia J

    2015-01-01

    The aims of this investigation are to determine whether loneliness is associated with a person's own sleep quality and sleep quality of their partner, and to test stress as a potential mediator. Participants were 255 couples in married (75%) or cohabiting relationships who completed self-report measures of loneliness, sleep quality, stress, and depression. Results of Actor-Partner Interdependence analyses replicated findings in the literature showing an association between loneliness and poor sleep quality. The more lonely a male participant was, the lower his partner's sleep quality. In addition, the more lonely participants were, the higher they rated their partner's sleep disturbance. There were significant indirect effects of loneliness on poor sleep quality through increased stress, even after controlling for depression.

  18. Dynamics effects on a wooden footbridge

    Directory of Open Access Journals (Sweden)

    Vašková Veronika

    2017-01-01

    Full Text Available The timber is the current trend for the construction of many footbridges because of many reasons as price, aesthetics and ecology. Most of these structures are designed using simple static models and massive elements. However, there are implemented more complicated constructions including suspended footbridge in Příbor in Czech Republic. This construction with efficient use of material is more susceptible to dynamic effect. The article describes monitoring of dynamics effects at the construction with result of installation dynamics dampers.

  19. Effects of location, thermal stress and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    McLean, J.L.; Cohen, L.M.; Besuner, P.M.

    1979-01-01

    The stress intensity factors (K 1 ) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure and a fluid quench in the nozzle. Conditions both with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute K 1 values from the uncracked stress distribution. For each type of loading K 1 values are given for cracks at 15 nozzle locations and for 6 crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced K 1 values. Comparisons are made to determine the effect on K 1 of crack location, thermal stress and residual stress, as compared with pressure stress. For the thermal transient it is shown that K 1 for small crack depths is maximised early in the transient, while K 1 for large cracks is maximised later under steady state conditions. Computation should, therefore, be made for several transient time points and the maximum K 1 for a given crack depth should be used for design analysis. It is concluded that the effects on K 1 of location, thermal stresses and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The utilised combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (author)

  20. Effectiveness of a Comprehensive Stress Management Program to Reduce Work-Related Stress in a Medium-Sized Enterprise

    Science.gov (United States)

    2014-01-01

    Objectives To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. Methods A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker’s Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. Results Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. Conclusions In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan. PMID:24524591

  1. Effectiveness of a comprehensive stress management program to reduce work-related stress in a medium-sized enterprise.

    Science.gov (United States)

    Kim, Shin-Ae; Suh, Chunhui; Park, Mi-Hee; Kim, Kunhyung; Lee, Chae-Kwan; Son, Byung-Chul; Kim, Jeong-Ho; Lee, Jong-Tae; Woo, Kuck-Hyun; Kang, Kabsoon; Jung, Hyunjin

    2014-01-01

    To assess the effectiveness of a comprehensive workplace stress management program consisting of participatory action-oriented training (PAOT) and individual management. A comprehensive workplace stress management program was conducted in a medium-sized enterprise. The baseline survey was conducted in September 2011, using the Korean Occupational Stress Scale (KOSS) and Worker's Stress Response Inventory (WSRI). After implementing both organizational and individual level interventions, the follow up evaluation was conducted in November 2011. Most of the workers participated in the organizational level PAOT and made Team-based improvement plans. Based on the stress survey, 24 workers were interviewed by a researcher. After the organizational and individual level interventions, there was a reduction of several adverse psychosocial factors and stress responses. In the case of blue-collar workers, psychosocial factors such as the physical environment, job demands, organizational system, lack of rewards, and occupational climate were significantly improved; in the case of white-collar workers, the occupational climate was improved. In light of these results, we concluded that the comprehensive stress management program was effective in reducing work-related stress in a short-term period. A persistent long-term follow up is necessary to determine whether the observed effects are maintained over time. Both team-based improvement activities and individual interviews have to be sustainable and complementary to each other under the long-term plan.

  2. Effective Stress Management: A Model of Emotional Intelligence, Self-Leadership, and Student Stress Coping

    Science.gov (United States)

    Houghton, Jeffery D.; Wu, Jinpei; Godwin, Jeffrey L.; Neck, Christopher P.; Manz, Charles C.

    2012-01-01

    This article develops and presents a model of the relationships among emotional intelligence, self-leadership, and stress coping among management students. In short, the authors' model suggests that effective emotion regulation and self-leadership, as mediated through positive affect and self-efficacy, has the potential to facilitate stress coping…

  3. Timing effects of heat-stress on plant physiological characteristics and growth: a field study with prairie vegetation

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-11-01

    Full Text Available More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic agricultural, economic and ecological impacts. This field study examined how plant responded to heat-stress (HS treatment at different timing in naturally-occurring vegetation. HS treatment (5 days at 40.5 ºC were applied to 12 1m2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass and Solidago canadensis (warm-season C3 forb at different growing stages. During and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn, quantum yield of photosystem II (ФPSII, stomatal conductance (gs, and internal CO2 level (Ci of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species was determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii, indicated by negative heat stress effect on both physiological and growth responses. There were significant timing effect of heat stress on the two species, with greater reductions in the photosynthesis and productivity occurred when heat stress was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that heat stress, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe heat stress occur in the future.

  4. Soil microbial communities buffer physiological responses to drought stress in three hardwood species.

    Science.gov (United States)

    Kannenberg, Steven A; Phillips, Richard P

    2017-03-01

    Trees possess myriad adaptations for coping with drought stress, but the extent to which their drought responses are influenced by interactions with soil microbes is poorly understood. To explore the role of microbes in mediating tree responses to drought stress, we exposed saplings of three species (Acer saccharum, Liriodendron tulipifera, and Quercus alba) to a four week experimental drought in mesocosms. Half of the pots were inoculated with a live soil slurry (i.e., a microbial inoculum derived from soils beneath the canopies of mature A. saccharum, L. tulipifera or Q. alba stands), while the other half of the pots received a sterile soil slurry. Soil microbes ameliorated drought stress in L. tulipifera by minimizing reductions in leaf water potential and by reducing photosynthetic declines. In A. saccharum, soil microbes reduced drought stress by lessening declines in leaf water potential, though these changes did not buffer the trees from declining photosynthetic rates. In Q. alba, soil microbes had no effects on leaf physiological parameters during drought stress. In all species, microbes had no significant effects on dynamic C allocation during drought stress, suggesting that microbial effects on plant physiology were unrelated to source-sink dynamics. Collectively, our results suggest that soil microbes have the potential to alter key parameters that are used to diagnose drought sensitivity (i.e., isohydry or anisohydry). To the extent that our results reflect dynamics occurring in forests, a revised perspective on plant hydraulic strategies that considers root-microbe interactions may lead to improved predictions of forest vulnerability to drought.

  5. Dynamical Franz-Keldysh Effect

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Johnsen, Kristinn

    1996-01-01

    We introduce and analyze the properties of dynamical Franz-Keldysh effect, i.e., the change of density of states, or absorption spectra, of semiconductors under the influence of time-dependent electric fields. In the case of a harmonic time dependence, we predict the occurrence of significant fin...... structure, both below and above the zero-field band gap, which should be experimentally observable.......We introduce and analyze the properties of dynamical Franz-Keldysh effect, i.e., the change of density of states, or absorption spectra, of semiconductors under the influence of time-dependent electric fields. In the case of a harmonic time dependence, we predict the occurrence of significant fine...

  6. Analysis of Nanoparticle Additive Couple Stress Fluids in Three-layered Journal Bearing

    International Nuclear Information System (INIS)

    Rao, T V V L N; Sufian, S; Mohamed, N M

    2013-01-01

    The present theoretical study investigates the load capacity and friction coefficient in a three-layered journal bearing lubricated with nanoparticle additive couple stress fluids. The couple stresses effects are analyzed based on Stokes micro-continuum theory. The nondimensional pressure and shear stress expressions are derived using modified Reynolds equation. The nondimensional load capacity increases and the coefficient of friction decreases using nanoparticle additive lubricants with couple stress effects. The three-layered journal bearing performance characteristics are improved with increase in both (i) surface adsorbent fluid film layer thickness and (ii) dynamic viscosity ratio of surface to core layer.

  7. Study of dynamic strain aging in dual phase steel

    International Nuclear Information System (INIS)

    Queiroz, R.R.U.; Cunha, F.G.G.; Gonzalez, B.M.

    2012-01-01

    Highlights: ► Characterization of the high temperature mechanical behavior of a dual phase steel. ► Determination of the effect of dynamic strain aging on the strain hardening rate. ► Identification of the mechanism associated with dynamic strain aging. ► The value of the interaction energy carbon–dislocation in ferrite was confirmed. - Abstract: The susceptibility to dynamic strain aging of a dual phase steel was evaluated by the variation of mechanical properties in tension with the temperature and the strain rate. The tensile tests were performed at temperatures varying between 25 °C and 600 °C and at strain rates ranging from 10 −2 to 5 × 10 −4 s −1 . The studied steel presented typical manifestations related to dynamic strain aging: serrated flow (the Portevin–Le Chatelier effect) for certain combinations of temperature and strain rates; the presence of a plateau in the variation of yield stress with temperature; a maximum in the curves of tensile strength, flow stress, and work hardening exponent as a function of temperature; and a minimum in the variation of total elongation with temperature. The determined apparent activation energy values, associated with the beginning of the Portevin–Le Chatelier effect and the maximum in the variation of flow stress with temperature, were 83 kJ/mol and 156 kJ/mol, respectively. These values suggest that the mechanism responsible for dynamic strain aging in the dual phase steel is the locking of dislocations by carbon atoms in ferrite and that the formation of clusters and/or transition carbides and carbide precipitation in martensite do not interfere with the dynamic strain aging process.

  8. Effects of work stress and home stress on autonomic nervous function in Japanese male workers.

    Science.gov (United States)

    Maeda, Eri; Iwata, Toyoto; Murata, Katsuyuki

    2015-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the electrocardiogram along with blood pressure and heart rate. Participants provided self-reported information about the presence/absence of work/home stress and the possible confounders affecting QT indicators. Home stress was related positively to QT index (p=0.040) after adjusting for the possible confounders, though work stress did not show a significant relation to QTc interval or QT index. The odds ratio of home stress to elevated QT index (≥105) was 2.677 (95% CI, 1.050 to 6.822). Work/home stress showed no significant relation to blood pressure or heart rate. These findings suggest that autonomic imbalance, readily assessed by QT indicators, can be induced by home stress in Japanese workers. Additional research is needed to identify different types of home stress that are strongly associated with autonomic imbalance.

  9. Uniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study

    International Nuclear Information System (INIS)

    Zong, Hongxiang; Ding, Xiangdong; Lookman, Turab; Li, Ju; Sun, Jun

    2015-01-01

    Stress-driven grain boundary (GB) migration has been evident as a dominant mechanism accounting for plastic deformation in crystalline solids. Using molecular dynamics (MD) simulations on a Ti bicrystal model, we show that a uniaxial stress-driven coupling is associated with the recently observed 90° GB reorientation in shock simulations and nanopillar compression measurements. This is not consistent with the theory of shear-induced coupled GB migration. In situ atomic configuration analysis reveals that this GB motion is accompanied by the glide of two sets of parallel dislocation arrays, and the uniaxial stress-driven coupling is explained through a composite action of symmetrically distributed dislocations and deformation twins. In addition, the coupling factor is calculated from MD simulations over a wide range of temperatures. We find that the coupled motion can be thermally damped (i.e., not thermally activated), probably due to the absence of the collective action of interface dislocations. This uniaxial coupled mechanism is believed to apply to other hexagonal close-packed metals

  10. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States); State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yu, Haiyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 (China); Yan, Shirley ShiDu, E-mail: shidu@ku.edu [Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS, 66047 (United States)

    2015-12-25

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activity and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.

  11. Ultraviolet-B and water stress effects on growth, gas exchange and oxidative stress in sunflower plants.

    Science.gov (United States)

    Cechin, Inês; Corniani, Natália; de Fátima Fumis, Terezinha; Cataneo, Ana Catarina

    2008-07-01

    The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline

  12. Effect of stress level on static young's modulus of certain structural materials

    International Nuclear Information System (INIS)

    Vojtenko, A.F.; Skripnik, Yu.D.; Solov'eva, N.G.; Nadezhdin, G.N.

    1982-01-01

    Certain steels, titanium and aluminium alloys have been studied for their dynamic and static Young moduli. It is shown that a stress rise in materials to the level of microplastic strain realization results in a significant reduction of the static modulus of elasticity in the materials studied

  13. Experimental Study on Wing Crack Behaviours in Dynamic-Static Superimposed Stress Field Using Caustics and High-Speed Photography

    Directory of Open Access Journals (Sweden)

    L.Y. Yang

    2014-07-01

    Full Text Available During the drill-and-blast progress in rock tunnel excavation of great deep mine, rock fracture is evaluated by both blasting load and pre-exiting earth stress (pre-compression. Many pre-existing flaws in the rock mass, like micro-crack, also seriously affect the rock fracture pattern. Under blasting load with pre-compression, micro-cracks initiate, propagate and grow to be wing cracks. With an autonomous design of static-dynamic loading system, dynamic and static loads were applied on some PMMA plate specimen with pre-existing crack, and the behaviour of the wing crack was tested by caustics corroding with a high-speed photography. Four programs with different static loading modes that generate different pre-compression fields were executed, and the length, velocity of the blasting wing crack and dynamic stress intensity factor (SIF at the wing crack tip were analyzed and discussed. It is found that the behaviour of blasting-induced wing crack is affected obviously by blasting and pre-compression. And pre-compression, which is vertical to the direction of the wing crack propagation, hinders the crack propagation. Furthermore, the boundary constraint condition plays an important role on the behaviour of blasting induced crack during the experiment.

  14. Effects of Social Defeat Stress on Sleep in Mice

    OpenAIRE

    Henderson, Fiona; Vialou, Vincent; El Mestikawy, Salah; Fabre, Véronique

    2017-01-01

    Stress plays a key role in the development of psychiatric disorders and has a negative impact on sleep integrity. In mice, chronic social defeat stress (CSDS) is an ethologically valid model of stress-related disorders but little is known about its effects on sleep regulation. Here, we investigated the immediate and long-term effects of 10 consecutive days of social defeat (SD) on vigilance states in C57Bl/6J male mice. Social behavior was assessed to identify susceptible mice, i.e., mice tha...

  15. Effect of insulin pump infusion on comprehensive stress state of ...

    African Journals Online (AJOL)

    Effect of insulin pump infusion on comprehensive stress state of patients with diabetic ketoacidosis. ... Relevant diabetes-associated serum indices, oxidative stress and stress hormone levels were compared between the ... from 32 Countries:.

  16. Sex differences in stress effects on response and spatial memory formation.

    Science.gov (United States)

    Guenzel, Friederike M; Wolf, Oliver T; Schwabe, Lars

    2014-03-01

    Stress and stress hormones are known to affect learning and memory processes. However, although effects of stress on hippocampus-dependent declarative learning and memory are well-documented, relatively little attention has been paid to the impact of stress on striatum-dependent stimulus-response (S-R) learning and memory. Recent evidence indicates that glucocorticoid stress hormones shortly after learning enhance S-R memory consolidation, whereas stress prior to retention testing impairs S-R memory retrieval. Whether stress affects also the acquisition of S-R memories in humans remains unclear. For this reason, we examined here the effects of acute stress on S-R memory formation and contrasted these stress effects with those on hippocampus-dependent spatial memory. Healthy men and women underwent a stressor (socially evaluated cold pressor test, SECPT) or a control manipulation before they completed an S-R task and two spatial learning tasks. Memory was assessed one week later. Our data showed that stress impaired S-R memory performance in men but not in women. Conversely, spatial memory was impaired by stress in women but not in men. These findings provide further evidence that stress may alter learning and memory processes beyond the hippocampus. Moreover, our data underline that participants' sex may play a critical role in the impact of stress on multiple memory systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Effect of coal stress on grain size of the gotten

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Tront, A

    1988-09-01

    Presents investigation results on the effect of seam stress and strain state on winning as measured by the grain size of the gotten. The investigations were carried out at the Institute of Mining Mechanization of the Silesian Politechnical where the relations between parameters of seams and cutters and their effect on coal grain size and energy consumption have been studied for several years. The effect was examined on coal samples taken from 4 mines in the Upper Silesian coal basin using a model of the system: seam - cutter. Cubic samples (400x400x400 mm) were tested on the CMG KOMAG test stand equipped with the POS-1 cutting apparatus. Two types of coal were distinguished: that particularly sensitive to increased pressure on seam and that only negligibly susceptible. Corresponding graphs of coal grain size versus vertical pressure are shown. A function has been developed that characterizes this sensitivity depending on a material parameter that can be determined by workability tests. The relationship between coal strength and grain size yield greater than 10 mm in the gotten depending on dynamic crushability of coal is shown in graphs. 6 refs.

  18. The effects of propolis extract on ovarian tissue and oxidative stress in rats with maternal separation stress

    Directory of Open Access Journals (Sweden)

    Atefeh Arabameri

    2017-09-01

    Full Text Available Abstract Background: Stress in infancy has dramatic effects on different systems, including the nervous system, endocrine, immune, reproductive and etc. Objective: The purpose of this study was to investigate the effects of extract of Iranian propolis (EIP on ovarian tissue and oxidative stress in rats with maternal separation stress. Materials and Methods: 48 immature female rats were divided randomly into six groups. 1 Control group, 2 Control group+saline, 3 Stress group, includes infants that were separated from their mothers 6 hr/day, the 4th, 5th and 6th groups consisted of infants who in addition to daily stress received 50, 100 and 200 mg/kg of EIP, respectively. Then serum corticosterone, 17-beta-estradiol, malondialdehyde, total superoxide dismutase, glutathione peroxidase and ferric reducing antioxidant power levels were measured. The ovarian sections were stained by H&E, PAS, and TUNEL methods and were studied with optical microscopy. Results: Stress increased the blood serum corticosterone levels and 17-beta-estradiol reduced significantly (p<0.001 and EIP prevented from this changes (p<0.01. EIP significantly increased the number of ovarian follicles, oocytes and oocytes diameter in neonatal rat following stress (p<0.01. EIP also significantly decreased the number of atretic follicles, TUNEL+granulosa cells, malondialdehyde levels and increased ferric reducing antioxidant power, total superoxide dismutase and glutathione peroxidase serum levels in neonatal rats following stress. The dose of 200 mg/kg EIP was more effective. Conclusion: This Study showed that the Iranian Propolis significantly could prevent oxidative stress and histopathological changes in the ovary of the neonatal rat the following stress.

  19. Calculation of Debye-Scherrer diffraction patterns from highly stressed polycrystalline materials

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Vorberger, J. [Helmholtz Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Gamboa, E. J.; Glenzer, S. H.; Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [Climate and Space Sciences and Engineering, Applied Physics, and Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-06-07

    Calculations of Debye-Scherrer diffraction patterns from polycrystalline materials have typically been done in the limit of small deviatoric stresses. Although these methods are well suited for experiments conducted near hydrostatic conditions, more robust models are required to diagnose the large strain anisotropies present in dynamic compression experiments. A method to predict Debye-Scherrer diffraction patterns for arbitrary strains has been presented in the Voigt (iso-strain) limit [Higginbotham, J. Appl. Phys. 115, 174906 (2014)]. Here, we present a method to calculate Debye-Scherrer diffraction patterns from highly stressed polycrystalline samples in the Reuss (iso-stress) limit. This analysis uses elastic constants to calculate lattice strains for all initial crystallite orientations, enabling elastic anisotropy and sample texture effects to be modeled directly. The effects of probing geometry, deviatoric stresses, and sample texture are demonstrated and compared to Voigt limit predictions. An example of shock-compressed polycrystalline diamond is presented to illustrate how this model can be applied and demonstrates the importance of including material strength when interpreting diffraction in dynamic compression experiments.

  20. Effects of Stress and MDMA on Hippocampal Gene Expression

    Directory of Open Access Journals (Sweden)

    Georg F. Weber

    2014-01-01

    Full Text Available MDMA (3,4-methylenedioxymethamphetamine is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD. On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT nerve terminals that have been viewed as indicative of 5-HT neurotoxicity. Exposure to chronic stress has been shown to augment MDMA-induced 5-HT neurotoxicity. Here, we examine the transcriptional responses in the hippocampus to MDMA treatment of control rats and rats exposed to chronic stress. MDMA altered the expression of genes that regulate unfolded protein binding, protein folding, calmodulin-dependent protein kinase activity, and neuropeptide signaling. In stressed rats, the gene expression profile in response to MDMA was altered to affect sensory processing and responses to tissue damage in nerve sheaths. Subsequent treatment with MDMA also markedly altered the genetic responses to stress such that the stress-induced downregulation of genes related to the circadian rhythm was reversed. The data support the view that MDMA-induced transcriptional responses accompany the persistent effects of this drug on neuronal structure/function. In addition, MDMA treatment alters the stress-induced transcriptional signature.

  1. When does stress help or harm? The effects of stress controllability and subjective stress response on Stroop performance.

    Directory of Open Access Journals (Sweden)

    Roselinde Kaiser Henderson

    2012-06-01

    Full Text Available The ability to engage in goal-directed behavior despite exposure to stress is critical to resilience. Questions of how stress can impair or improve behavioral functioning are important in diverse settings, from athletic competitions to academic testing to clinical therapy. Previous research suggests that controllability is a key factor in the impact of stress on behavior: learning how to control stressors buffers people from the negative effects of stress on subsequent cognitively demanding tasks. In addition, research suggests that the impact of stress on cognitive functioning depends on an individual’s response to stressors: moderate responses to stress can lead to improved performance while extreme (high or low responses can lead to impaired performance. The present studies tested the hypothesis that 1 learning to behaviorally control stressors leads to improved performance on a test of general executive functioning, the color-word Stroop, and that 2 this improvement emerges specifically for people who report moderate (subjective responses to stress. Experiment 1: Stroop performance, measured before and after a stress manipulation, was compared across groups of undergraduate participants (n=109. People who learned to control a noise stressor and received accurate performance feedback demonstrated reduced Stroop interference compared with people exposed to uncontrollable noise stress and feedback indicating an exaggerated rate of failure. In the group who learned behavioral control, those who reported moderate levels of stress showed the greatest reduction in Stroop interference. In contrast, in the group exposed to uncontrollable events, self-reported stress failed to predict performance. Experiment 2: In a second sample (n=90, we specifically investigated the role of controllability by keeping the rate of failure feedback constant across groups. In the group who learned behavioral control, those who reported moderate levels of stress

  2. Synergetic effects of radiation stress and hot-carrier stress on the current gain of npn bipolar junction transistors

    International Nuclear Information System (INIS)

    Witczak, S.C.; Kosier, S.L.; Schrimpf, R.D.; Galloway, K.F.

    1994-01-01

    The combined effects of ionizing radiation and hot-carrier stress on the current gain of npn bipolar junction transistors were investigated. The analysis was carried out experimentally by examining the consequences of interchanging the order in which the two stress types were applied to identical transistors which were stressed to various levels of damage. The results indicate that the hot-carrier response of the transistor is improved by radiation damage, whereas hot-carrier damage has little effect on subsequent radiation stress. Characterization of the temporal progression of hot-carrier effects revealed that hot-carrier stress acts initially to reduce excess base current and improve current gain in irradiated transistors. PISCES simulations show that the magnitude of the peak electric-field within the emitter-base depletion region is reduced significantly by net positive oxide charges induced by radiation. The interaction of the two stress types is explained in a qualitative model based on the probability of hot-carrier injection determined by radiation damage and on the neutralization and compensation of radiation-induced positive oxide charges by injected electrons. The result imply that a bound on damage due to the combined stress types is achieved when hot-carrier stress precedes any irradiation

  3. Psychophysiological effects of yoga on stress in college students.

    Science.gov (United States)

    Tripathi, Mahesh Narain; Kumari, Sony; Ganpat, Tikhe Sham

    2018-01-01

    College students are vulnerable to a critical period in developmental maturation, facing rigorous academic work, and learning how to function independently. Physical activities such as running and bicycling have been shown to improve mood and relieve stress. However, college students often have low levels of physical activity. Yoga is an ancient physical and mental activity that affects mood and stress. However, studies examining the psychophysiological effects of yoga are rare in peer-reviewed journals. The aim of this study is to establish preliminary evidence for the psychophysiological effects of yoga on stress in young-adult college students. The present study suggests that yoga has positive effects on a psychophysiological level that leads to decreased levels of stress in college student. Further research is needed to examine the extent to which different types of yogic practices address the needs of different college subpopulations (e.g., overweight, sedentary, and smokers).

  4. Psychophysiological effects of yoga on stress in college students

    Directory of Open Access Journals (Sweden)

    Mahesh Narain Tripathi

    2018-01-01

    Full Text Available College students are vulnerable to a critical period in developmental maturation, facing rigorous academic work, and learning how to function independently. Physical activities such as running and bicycling have been shown to improve mood and relieve stress. However, college students often have low levels of physical activity. Yoga is an ancient physical and mental activity that affects mood and stress. However, studies examining the psychophysiological effects of yoga are rare in peer-reviewed journals. The aim of this study is to establish preliminary evidence for the psychophysiological effects of yoga on stress in young-adult college students. The present study suggests that yoga has positive effects on a psychophysiological level that leads to decreased levels of stress in college student. Further research is needed to examine the extent to which different types of yogic practices address the needs of different college subpopulations (e.g., overweight, sedentary, and smokers.

  5. Effects of stress on decisions under uncertainty: A meta-analysis.

    Science.gov (United States)

    Starcke, Katrin; Brand, Matthias

    2016-09-01

    [Correction Notice: An Erratum for this article was reported in Vol 142(9) of Psychological Bulletin (see record 2016-39486-001). It should have been reported that the inverted u-shaped relationship between cortisol stress responses and decision-making performance was only observed in female, but not in male participants as suggested by the study by van den Bos, Harteveld, and Stoop (2009). Corrected versions of the affected sentences are provided.] The purpose of the present meta-analysis was to quantify the effects that stress has on decisions made under uncertainty. We hypothesized that stress increases reward seeking and risk taking through alterations of dopamine firing rates and reduces executive control by hindering optimal prefrontal cortex functioning. In certain decision situations, increased reward seeking and risk taking is dysfunctional, whereas in others, this is not the case. We also assumed that the type of stressor plays a role. In addition, moderating variables are analyzed, such as the hormonal stress response, the time between stress onset and decisions, and the participants' age and gender. We included studies in the meta-analysis that investigated decision making after a laboratory stress-induction versus a control condition (k = 32 datasets, N = 1829 participants). A random-effects model revealed that overall, stress conditions lead to decisions that can be described as more disadvantageous, more reward seeking, and more risk taking than nonstress conditions (d = .17). In those situations in which increased reward seeking and risk taking is disadvantageous, stress had significant effects (d = .26), whereas in other situations, no effects were observed (d = .01). Effects were observed under processive stressors (d = .19), but not under systemic ones (d = .09). Moderation analyses did not reveal any significant results. We concluded that stress deteriorates overall decision-making performance through the mechanisms proposed. The effects differ

  6. Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress

    DEFF Research Database (Denmark)

    Gülez, Gamze; Dechesne, Arnaud; Workman, Christopher

    2012-01-01

    Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψm) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates...... into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized...... porous surface model (PPSM), which allows creation of thin liquid films by controlling Ψm, we examined the transcriptome dynamics of Pseudomonas putida KT2440. We identified the differentially expressed genes in cells exposed to a mild matric stress (–0.4 MPa) for 4, 24, or 72 h. The major response...

  7. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress.

    Science.gov (United States)

    Dinis, L-T; Bernardo, S; Luzio, A; Pinto, G; Meijón, M; Pintó-Marijuan, M; Cotado, A; Correia, C; Moutinho-Pereira, J

    2018-01-01

    The foliar exogenous application of kaolin, a radiation-reflecting inert mineral, has proven to be an effective short-term climate change mitigation strategy for Mediterranean vineyards. In this work, we address the hypothesis that kaolin could improve both the hormonal dynamics and physiological responses of grapevines growing in Douro Region, northern Portugal. For this purpose, the leaf water potential, gas exchange and chlorophyll a fluorescence parameters were monitored, as well as the abscisic acid (ABA) and indole-3-acetic acid (IAA) quantification and immunolocalization were assessed. The study revealed a slight decrease in ABA and an increase in IAA in the kaolin treatment, which in turn were associated with the improvement of physiological performance. A month after spraying, kaolin improves the water potential respectively, 30% and 17% in the predawn and midday periods. Besides, plants treated with kaolin showed higher values of stomatal conductance, net CO 2 assimilation rate and intrinsic water use efficiency. Kaolin also ameliorates the effective PSII efficiency (67%), as well as the maximum quantum efficiency of photosystem II and the photosynthetic electron transport rate (>73%). These results were consistent with the higher photochemical quenching and the lower non-photochemical quenching observed in treated leaves and with the better performance obtained by the JIP test parameters. Physiological and hormonal analysis confirmed that kaolin effectively enhance grapevine summer stress tolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Dynamic Mechanical Behaviors of 6082-T6 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Peng Yibo

    2013-01-01

    Full Text Available The structural components of high speed trains are usually made of aluminum alloys, for example, 6082. The dynamic mechanical behavior of the material is one of key factors considered in structural design and safety assessment. In this paper, dynamic mechanical experiments were conducted with strain rate ranging from 0.001 s−1 to 100 s−1 using Instron tensile testing machine. The true stress-strain curves were fitted based on experimental data. Johnson-Cook model of 6082-T6 aluminum alloy was built to investigate the effect of strain and strain rate on flow stress. It has shown that the flow stress was sensitive to the strain rate. Yield strength and tensile strength increased with a high strain rate, which showed strain rate effect to some extent. Fracture analysis was carried out by using Backscattered Electron imaging (BSE. As strain rate increased, more precipitates were generated in fracture.

  9. The temporal dynamics of the stress response

    NARCIS (Netherlands)

    Koolhaas, J.M.; Meerlo, P; de Boer, S.F.; Strubbe, J.H.; Bohus, B.G J

    1997-01-01

    This paper summarises the available evidence that failure of defense mechanisms in (semi)-natural social groups of animals may lead to serious forms of stress pathology. Hence the study of social stress may provide animal models with a high face validity. However, most of the animal models of human

  10. Effect of correction of aberration dynamics on chaos in human ocular accommodation.

    Science.gov (United States)

    Hampson, Karen M; Cufflin, Matthew P; Mallen, Edward A H

    2013-11-15

    We used adaptive optics to determine the effect of monochromatic aberration dynamics on the level of chaos in the accommodation control system. Four participants viewed a stationary target while the dynamics of their aberrations were either left uncorrected, defocus was corrected, or all aberrations except defocus were corrected. Chaos theory analysis was used to discern changes in the accommodative microfluctuations. We found a statistically significant reduction in the chaotic nature of the accommodation microfluctuations during correction of defocus, but not when all aberrations except defocus were corrected. The Lyapunov exponent decreased from 0.71 ± 0.07 D/s (baseline) to 0.55 ± 0.03 D/s (correction of defocus fluctuations). As the reduction of chaos in physiological signals is indicative of stress to the system, the results indicate that for the participants included in this study, fluctuations in defocus have a more profound effect than those of the other aberrations. There were no changes in the power spectrum between experimental conditions. Hence chaos theory analysis is a more subtle marker of changes in the accommodation control system and will be of value in the study of myopia onset and progression.

  11. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...... and on isotropically consolidated, cubical specimens, both tested in triaxial compression and extension, clearly showed the influence of the undisturbed fabric as well as the effect of the initial consolidation stress states. While the K0-consolidated specimens appeared to retain their original fabric and exhibit...

  12. Molecular dynamics simulation of effect of hydrogen atoms on crack propagation behavior of α-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Song, H.Y., E-mail: gsfshy@sohu.com; Zhang, L.; Xiao, M.X.

    2016-12-16

    The effect of the hydrogen concentration and hydrogen distribution on the mechanical properties of α-Fe with a pre-existing unilateral crack under tensile loading is investigated by molecular dynamics simulation. The results reveal that the models present good ductility when the front region of crack tip has high local hydrogen concentration. The peak stress of α-Fe decreases with increasing hydrogen concentration. The studies also indicate that for the samples with hydrogen atoms, the crack propagation behavior is independent of the model size and boundaries. In addition, the crack propagation behavior is significantly influenced by the distribution of hydrogen atoms. - Highlights: • The distribution of hydrogen plays a critical role in the crack propagation. • The peak stress decrease with the hydrogen concentration increasing. • The crack deformation behavior is disclosed and analyzed.

  13. Effect of magnetic attachment with stress breaker on lateral stress to abutment tooth under overdenture.

    Science.gov (United States)

    Gonda, T; Ikebe, K; Ono, T; Nokubi, T

    2004-10-01

    Recently, a newly developed magnetic attachment with stress breaker was used in retentive components in overdentures. Excessive lateral stress has a more harmful effect on natural teeth than axial stress, and the magnetic attachment with stress breaker is expected to reduce lateral forces on abutment teeth and protect it teeth from excessive stress. However, the properties of this retainer have not yet been determined experimentally. This study compares the lateral forces on abutment teeth for three retainers under loading on the denture base in a model study. A mandibular simulation model is constructed to measure lateral stress. Three types of retentive devices are attached to the canine root. These devices include the conventional root coping, the conventional magnetic attachment and the new magnetic attachment with stress breaker. For each retentive device, load is generated on the occlusal table of the model overdenture, and the lateral stress on the canine root and the displacement of the overdenture measured. The magnetic attachment with stress breaker does not displace the denture and exhibits lower lateral stress in the canine root than conventional root coping and magnetic attachments.

  14. Residual stress effects in LMFBR fracture assessment procedures

    International Nuclear Information System (INIS)

    Hooton, D.G.

    1984-01-01

    Two post-yield fracture mechanics methods, which have been developed into fully detailed failure assessment procedures for ferritic structures, have been reviewed from the point of view of the manner in which as-welded residual stress effects are incorporated, and comparisons then made with finite element and theoretical models of centre-cracked plates containing residual/thermal stresses in the form of crack-driving force curves. Applying the procedures to austenitic structures, comparisons are made in terms of failure assessment curves and it is recommended that the preferred method for the prediction of critical crack sizes in LMFBR austenitic structures containing as-welded residual stresses is the CEGB-R6 procedure based on a flow stress defined at 3% strain in the parent plate. When the prediction of failure loads in such structures is required, it is suggested that the CEGB-R6 procedure be used with residual/thermal stresses factored to give a maximum total stress of flow stress magnitude

  15. Effects of dynamical quarks in UKQCD simulations

    International Nuclear Information System (INIS)

    Allton, Chris

    2002-01-01

    Recent results from the UKQCD Collaboration's dynamical simulations are presented. The main feature of these ensembles is that they have a fixed lattice spacing and volume, but varying sea quark mass from infinite (corresponding to the quenched simulation) down to roughly that of the strange quark mass. The main aim of this work is to uncover dynamical quark effects from these 'matched' ensembles. We obtain some evidence of dynamical quark effects in the static quark potential with less effects in the hadronic spectrum

  16. The effect of salinity and moisture stress on pea plant

    International Nuclear Information System (INIS)

    Abdalla, A.Abd-El Ghany

    1985-01-01

    Four experiments were carried out in the green house in Inchas, Atomic Energy Establishment, to study the effect os salinity and moisture stress on pea plants. Salinity experiments were conducted in 1981/1982, 1982/1983 and 1983/1984 seasons to study the effect of NaCl and/or CaC l 2 as single or mixed salts and radiation combined with salinity. Water stress studies were conducted in 1983/1984 growing season to investigate the effect of soil moisture stress on growth, yield and water use efficiency

  17. Allee effects on population dynamics with delay

    International Nuclear Information System (INIS)

    Celik, C.; Merdan, H.; Duman, O.; Akin, O.

    2008-01-01

    In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay

  18. The effects of strain rate and carbon concentration on the dynamic strain aging of cold rolled Ni-based alloy in high temperature water

    International Nuclear Information System (INIS)

    Kuang, Wenjun; Was, Gary S.

    2015-01-01

    Graphical abstract: The stress amplitude of serrations first increases with decreasing strain rate and then gradually saturates. The matrix carbon concentration affects the stress amplitude and the tendency to saturation. - Abstract: The effect of strain rate on dynamic strain aging of cold-rolled Ni-based alloy was investigated. With decreasing strain rate, the stress amplitude of serrations first increased and then saturated. Compared with the solution-annealed condition, the thermally-treated condition produced smaller stress amplitudes that saturated at a lower strain rate. Observations are consistent with a mechanism in which the locking strength of solute atmospheres first increases with increasing solute atom arrival at dislocations and gradually saturates as solute reaches a critical level

  19. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  20. The Effect of Music on the Human Stress Response

    Science.gov (United States)

    Thoma, Myriam V.; La Marca, Roberto; Brönnimann, Rebecca; Finkel, Linda; Ehlert, Ulrike; Nater, Urs M.

    2013-01-01

    Background Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response. Methods Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters. Results The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups. Conclusion Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the

  1. Dynamics of the association of heat shock protein HSPA6 (Hsp70B') and HSPA1A (Hsp70-1) with stress-sensitive cytoplasmic and nuclear structures in differentiated human neuronal cells.

    Science.gov (United States)

    Shorbagi, Sadek; Brown, Ian R

    2016-11-01

    Heat shock proteins (Hsps) are cellular repair agents that counter the effects of protein misfolding that is a characteristic feature of neurodegenerative diseases. HSPA1A (Hsp70-1) is a widely studied member of the HSPA (Hsp70) family. The little-studied HSPA6 (Hsp70B') is present in the human genome and absent in mouse and rat; hence, it is missing in current animal models of neurodegenerative diseases. Differentiated human neuronal SH-SY5Y cells were employed to compare the dynamics of the association of YFP-tagged HSPA6 and HSPA1A with stress-sensitive cytoplasmic and nuclear structures. Following thermal stress, live-imaging confocal microscopy and Fluorescence Recovery After Photobleaching (FRAP) demonstrated that HSPA6 displayed a prolonged and more dynamic association, compared to HSPA1A, with centrioles that play critical roles in neuronal polarity and migration. HSPA6 and HSPA1A also targeted nuclear speckles, rich in RNA splicing factors, and the granular component of the nucleolus that is involved in rRNA processing and ribosomal subunit assembly. HSPA6 and HSPA1A displayed similar FRAP kinetics in their interaction with nuclear speckles and the nucleolus. Subsequently, during the recovery from neuronal stress, HSPA6, but not HSPA1A, localized with the periphery of nuclear speckles (perispeckles) that have been characterized as transcription sites. The stress-induced association of HSPA6 with perispeckles displayed the greatest dynamism compared to the interaction of HSPA6 or HSPA1A with other stress-sensitive cytoplasmic and nuclear structures. This suggests involvement of HSPA6 in transcriptional recovery of human neurons from cellular stress that is not apparent for HSPA1A.

  2. Early life stress determines the effects of glucocorticoids and stress on hippocampal function: Electrophysiological and behavioral evidence respectively.

    Science.gov (United States)

    Pillai, Anup G; Arp, Marit; Velzing, Els; Lesuis, Sylvie L; Schmidt, Mathias V; Holsboer, Florian; Joëls, Marian; Krugers, Harm J

    2018-05-01

    Exposure to early-life adversity may program brain function to prepare individuals for adaptation to matching environmental contexts. In this study we tested this hypothesis in more detail by examining the effects of early-life stress - induced by raising offspring with limited nesting and bedding material from postnatal days 2-9 - in various behavioral tasks and on synaptic function in adult mice. Early-life stress impaired adult performance in the hippocampal dependent low-arousing object-in-context recognition memory task. This effect was absent when animals were exposed to a single stressor before training. Early-life stress did not alter high-arousing context and auditory fear conditioning. Early-life stress-induced behavioral modifications were not associated with alterations in the dendritic architecture of hippocampal CA1 pyramidal neurons or principal neurons of the basolateral amygdala. However, early-life stress reduced the ratio of NMDA to AMPA receptor-mediated excitatory postsynaptic currents and glutamate release probability specifically in hippocampal CA1 neurons, but not in the basolateral amygdala. These ex vivo effects in the hippocampus were abolished by acute glucocorticoid treatment. Our findings support that early-life stress can hamper object-in-context learning via pre- and postsynaptic mechanisms that affect hippocampal function but these effects are counteracted by acute stress or elevated glucocorticoid levels. Copyright © 2018. Published by Elsevier Ltd.

  3. Physiologic stress interventions in cardiac imaging

    International Nuclear Information System (INIS)

    Buda, A.J.

    1985-01-01

    Physiologic stress interventions are designed to assess the reserve capability of coronary flow and myocardial function. In the normal individual, a sufficiently intense physiologic stress may increase coronary flow and cardiac output by 500% to 600%. However, in patients with cardiac disease, these reserve responses may be absent, or considerably blunted. Thus, physiologic stress testing has proved extremely helpful in detecting cardiac abnormalities when resting cardiac function appears normal. Although dynamic exercise remains the standard approach to physiologic stress testing, a number of other interventions have been used, including: (1) isometric exercise, (2) atrial pacing, (3) cold pressor testing, (4) postextrasystolic potentiation, (5) volume loading, and (6) negative intrathoracic pressure. Each of these may be considered an alternative physiologic intervention whenever dynamic exercise is not feasible. These alternative approaches are important since, in our experience, 20% to 30% of subjects are unable to perform dynamic exercise, or exercise inadequately to produce a sufficiently intense cardiac stress. This chapter reviews physiologic considerations, indications, contraindications, protocols, and results of these physiologic stress interventions when used in combination with cardiac radionuclide procedures

  4. Modeling fish dynamics and effects of stress in a hydrologically pulsed ecosystem

    Science.gov (United States)

    DeAngelis, Donald L.; Loftus, William F.; Trexler, Joel C.; Ulanowicz, Robert E.

    1997-01-01

    Many wetlands undergo seasonal cycles in precipitation and water depth.This environmental seasonality is echoed in patterns of production of fishbiomass, which, in turn, influence the phenology of other components of thefood web, including wading birds. Human activities, such as drainage orother alterations of the hydrology, can exacerbate these natural cycles andresult in detrimental stresses on fish production and the higher trophic levels dependent on this production. In this paper we model theseasonal pattern of fish production in a freshwater marsh, with specialreference to the Everglades/Big Cypress region of southern Florida.The model illustrates the temporal pattern of production through theyear, which can result in very high densities of fish at the end of ahydroperiod (period of flooding), aswell as the importance of ponds and other deep depressions, both as refugia and sinks during dry periods. The model predicts that: (1) there is an effective threshold in the length of the hydroperiod that must beexceeded for high fish-population densities to be produced, (2) large,piscivorous fishes do not appear tohave a major impact on smaller fishes in the marsh habitat, and (3) therecovery of small-fish populations in the marsh following a major droughtmay require up to a year. The last of these results is relevant toassessing anthropogenic impacts on marsh production, as these effectsmay increase the severity and frequency of droughts.

  5. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Directory of Open Access Journals (Sweden)

    Koen J F Verhoeven

    Full Text Available Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  6. Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion.

    Science.gov (United States)

    Verhoeven, Koen J F; van Gurp, Thomas P

    2012-01-01

    Heritable epigenetic modulation of gene expression is a candidate mechanism to explain parental environmental effects on offspring phenotypes, but current evidence for environment-induced epigenetic changes that persist in offspring generations is scarce. In apomictic dandelions, exposure to various stresses was previously shown to heritably alter DNA methylation patterns. In this study we explore whether these induced changes are accompanied by heritable effects on offspring phenotypes. We observed effects of parental jasmonic acid treatment on offspring specific leaf area and on offspring interaction with a generalist herbivore; and of parental nutrient stress on offspring root-shoot biomass ratio, tissue P-content and leaf morphology. Some of the effects appeared to enhance offspring ability to cope with the same stresses that their parents experienced. Effects differed between apomictic genotypes and were not always consistently observed between different experiments, especially in the case of parental nutrient stress. While this context-dependency of the effects remains to be further clarified, the total set of results provides evidence for the existence of transgenerational effects in apomictic dandelions. Zebularine treatment affected the within-generation response to nutrient stress, pointing at a role of DNA methylation in phenotypic plasticity to nutrient environments. This study shows that stress exposure in apomictic dandelions can cause transgenerational phenotypic effects, in addition to previously demonstrated transgenerational DNA methylation effects.

  7. Municipal solid waste effective stress analysis

    International Nuclear Information System (INIS)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-01-01

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  8. Protective effects of flavonoids from corn silk on oxidative stress ...

    African Journals Online (AJOL)

    Protective effects of flavonoids from corn silk on oxidative stress induced by ... The present study aims at exploring the effects of flavonoids from corn silk (FCS) on oxidative stress induced by exhaustive exercise in mice. ... from 32 Countries:.

  9. The influence of rail surface irregularities on contact forces and local stresses

    Science.gov (United States)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-01-01

    The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.

  10. Effects of Stress on Students' Physical and Mental Health and Academic Success

    Science.gov (United States)

    Shankar, Nilani L.; Park, Crystal L.

    2016-01-01

    Stress affects students in multiple ways. This article provides a conceptual overview of the direct (e.g., psychoneuroimmunological, endocrine) and indirect (health behavior) pathways through which stress affects physical health, the psychological effects of stress on mental health, and the cognitive effects of stress (e.g., attention,…

  11. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    Science.gov (United States)

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  12. Effects of Hospital Workers’ Friendship Networks on Job Stress

    Science.gov (United States)

    Shin, Sung Yae; Lee, Sang Gyu

    2016-01-01

    Background This study attempted to identify the sources of job stress according to job position and investigate how friendship networks affect job stress. Methods Questionnaires based on The Health Professions Stress Inventory (HPSI) developed by Wolfgang experienced by healthcare providers were collected from 420 nurses, doctors and radiological technologists in two general hospitals in Korea by a multistage cluster sampling method. Multiple regression analysis was used to examine the effects of friendship networks on job stress after controlling for other factors. Results The severity of job stress differed according to level of job demands (p = .006); radiologic technologists experienced the least stress (45.4), nurses experienced moderate stress (52.4), and doctors experienced the most stress (53.6). Those with long-term friendships characterized by strong connections reported lower levels of stress than did those with weak ties to friends among nurses (1.3, p job stress experienced by nurses (8.2, p job stress (9.2, p job stress. Conclusion The strength and density of such friendship networks were related to job stress. Life information support from their friendship network was the primary positive contributor to control of job stress. PMID:26900945

  13. A dynamic cellular vertex model of growing epithelial tissues

    Science.gov (United States)

    Lin, Shao-Zhen; Li, Bo; Feng, Xi-Qiao

    2017-04-01

    Intercellular interactions play a significant role in a wide range of biological functions and processes at both the cellular and tissue scales, for example, embryogenesis, organogenesis, and cancer invasion. In this paper, a dynamic cellular vertex model is presented to study the morphomechanics of a growing epithelial monolayer. The regulating role of stresses in soft tissue growth is revealed. It is found that the cells originating from the same parent cell in the monolayer can orchestrate into clustering patterns as the tissue grows. Collective cell migration exhibits a feature of spatial correlation across multiple cells. Dynamic intercellular interactions can engender a variety of distinct tissue behaviors in a social context. Uniform cell proliferation may render high and heterogeneous residual compressive stresses, while stress-regulated proliferation can effectively release the stresses, reducing the stress heterogeneity in the tissue. The results highlight the critical role of mechanical factors in the growth and morphogenesis of epithelial tissues and help understand the development and invasion of epithelial tumors.

  14. Effect of food intake on left ventricular wall stress

    OpenAIRE

    Gårdinger, Ylva; Hlebowicz, Joanna; Björgell, Ola; Dencker, Magnus

    2014-01-01

    Objective: Left ventricular wall stress has been investigated in a variety of populations, but the effect of food intake has not been evaluated. We assessed whether left ventricular wall stress is affected by food intake in healthy subjects. Methods: Twenty-three healthy subjects aged 25.6 +/- 4.5 years were investigated. Meridional end-systolic wall stress (ESS) and circumferential end-systolic wall stress (cESS) were measured before, 30 minutes after, and 110 minutes after a standardised me...

  15. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    Science.gov (United States)

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  16. Effectiveness of stress management training on stress reduction in pregnant women

    Directory of Open Access Journals (Sweden)

    Mahboobeh Shirazi

    2016-10-01

    .1 for moderated level stress (P= 0.001 and 40.1 to 16.6 for high level of stress (P= 0.0001 respectively. Conclusion: First trimester of pregnancy is a crucial stage of fetal growth and development. Based on our findings, stress management training in this period has beneficial effects on stress reduction and enhances maternal health status.

  17. Stress-induced state transitions in flexible liquid-crystal devices

    International Nuclear Information System (INIS)

    Ho, I-Lin; Chang, Yia-Chung

    2012-01-01

    This work studies the stress-strain dynamics for the transient optoelectronic characteristics of flexible liquid-crystal (LC) devices. Due to the fast response of LC directors, the configuration of the LC is assumed to be in quasi-equilibrium during the process of elastic deformations of the flexible structures. The LC medium hence can be treated effectively as a thin-film layer and can approximately follow the strain-stress mechanism in the solids. Relevant theoretical algorithms are studied in this work, and numerical results present the stress-induced state transitions in the π cell.

  18. [Effects of nurses' mentoring on turnover intention: focused on the mediating effects role stress and burnout].

    Science.gov (United States)

    Han, Sangsook; Kim, Ohsook; Joo, Yunsu; Choi, Eunduck; Han, Jeongwon

    2013-10-01

    The purpose of this study was to investigate the casual relationship between nurses' mentoring and turnover intention and to verify the goodness of fit between a hypothetical model and actual data in order to suggest an adequate model. The survey was conducted with 434 nurses working in general hospitals in Seoul. Data were collected during February 2013, and analyzed with SPSS Windows 18.0 and AMOS 7.0. Mentoring was found to have a direct effect on decrease in role stress. Role stress had a direct effect on increase in burnout and mentoring, with role stress as a mediator, there was an indirect effect on burnout. Burnout had a direct effect on increase in turnover intention, and role stress, with burnout as a mediator, and mentoring, through role stress and burnout, an indirect effect was found on increase in turnover intention. The results of this study indicate that nursing managers should put effort into reducing role stress and burnout, while seeking to establish a more efficient mentoring system so that for nurses, there will be a lowering of turnover intention.

  19. The effects of age on the spontaneous low-frequency oscillations in cerebral and systemic cardiovascular dynamics

    International Nuclear Information System (INIS)

    Peng, Tingying; Rowley, Alex B; Payne, Stephen J; Ainslie, Philip N; Murrell, Carissa; Thomas, Kate; Cotter, James D; Williams, Michael J A; George, Keith; Shave, Rob

    2008-01-01

    Although the effects of ageing on cardiovascular control and particularly the response to orthostatic stress have been the subject of many studies, the interaction between the cardiovascular and cerebral regulation mechanisms is still not fully understood. Wavelet cross-correlation is used here to assess the coupling and synchronization between low-frequency oscillations (LFOs) observed in cerebral hemodynamics, as measured using cerebral blood flow velocity (CBFV) and cerebral oxygenation (O 2 Hb), and systemic cardiovascular dynamics, as measured using heart rate (HR) and arterial blood pressure (ABP), in both old and young healthy subjects undergoing head-up tilt table testing. Statistically significant increases in correlation values are found in the interaction of cerebral and cardiovascular LFOs for young subjects (P 2 Hb and ABP–O 2 Hb), but not in old subjects under orthostatic stress. The coupling between the cerebrovascular and wider cardiovascular systems in response to orthostatic stress thus appears to be impaired with ageing

  20. Investigating the effects of different physical and chemical stress ...

    African Journals Online (AJOL)

    2018-04-09

    Apr 9, 2018 ... bacteria from extreme physical and chemical stress conditions. Additionally .... by inducing stress response genes, become more tolerant phenotypes ..... biofilm, monochloramine is more effective than free chlorine over long ...

  1. Effects of couple stresses on MHD Couette flow

    International Nuclear Information System (INIS)

    Soundalgekar, V.M.; Aranake, R.N.

    1978-01-01

    An exact analysis of the effects of the couple stresses on the MHD Couette flow of an electrically conducting, viscous incompressible fluid is carried out. Closed form solutions are derived for the velocity, the current density, the skin-friction at the lower plate, the force to move the upper plate, and the coefficient of mass flux for (i) A→infinity, and (ii) 2M/A 1, where a is the couple stress parameter and M is the Hartmann number. These are shown graphically followed by a discussion. During the course of discussion the effects of A are quantitatively compared with those in the ordinary case. It is observed that in the presence of a magnetic field the skin friction is affected by the couple stresses. (Auth.)

  2. Effects of anger regulation and social anxiety on perceived stress

    Directory of Open Access Journals (Sweden)

    Ayano Yamaguchi

    2015-08-01

    Full Text Available The mediating role of social anxiety was explored within the effect of anger regulation on perceived stress in the national sample of American and Japanese older adults. Results indicated that anger suppression is a significant factor in perceived stress mediated by social anxiety. Anger suppression was also directly related to perceived stress. The correlation of anger suppression with social anxiety was stronger in Japan than in the United States. Understanding both universal and culture-specific aspects of emotion regulation and perceived stress will be essential for the development of sound theory, future research, and effective prevention and intervention efforts.

  3. Temporal dynamics of the response to Al stress in Eucalyptus grandis × Eucalyptus camaldulensis

    Directory of Open Access Journals (Sweden)

    Berenice K. de Alcântara

    2015-06-01

    Full Text Available Lipid peroxidation and root elongation of Eucalyptus grandis × Eucalyptus camaldulensis were studied under stress conditions in response to aluminum (Al, a metal known to limit agricultural productivity in acidic soils primarily due to reduced root elongation. In Brazil, the Grancam 1277 hybrid (E. grandis × E. camaldulensis has been planted in the "Cerrado", a region of the country with a wide occurrence of acidic soils. The present study demonstrated that the hybrid exhibited root growth reduction and increased levels of lipid peroxidation after 24h of treatment with 100 µM of Al, which was followed by a reduction in lipid peroxidation levels and the recovery of root elongation after 48h of Al exposure, suggesting a rapid response to the early stressful conditions induced by Al. The understanding of the temporal dynamics of Al tolerance may be useful for selecting more tolerant genotypes and for identifying genes of interest for applications in bioengineering.

  4. Infrared thermography based studies on the effect of age on localized cold stress induced thermoregulation in human

    Science.gov (United States)

    Lahiri, B. B.; Bagavathiappan, S.; Nishanthi, K.; Mohanalakshmi, K.; Veni, L.; Saumya; Yacin, S. M.; Philip, John

    2016-05-01

    Thermoregulatory control of blood flow plays an important role in maintaining the human body temperature and it provides physiological resistance against extreme environmental thermal stresses. To understand the role of age on thermal signals from veins and the thermoregulatory mechanism, the dynamic variation of the vein temperature on the hands of 17 human subjects, under a localized cold stress, was studied using infrared thermography. It was observed that the vein temperature of the stimulated hand initially decreased with time up to a time interval (called 'inversion time'), which was attributed to the localized cutaneous vasoconstriction. Beyond inversion time, a rise in the vein temperature of the stimulated hand was observed. A shift in the inversion time to higher values was observed for the older subjects, which was attributed to the reduced efficiency and responsiveness of the cutaneous vasoconstriction mechanism in these subjects. Our studies indicated that the inversion time increased linearly with subject age with strong positive Pearson's correlation coefficient of 0.94. It was also observed that the contralateral symmetry in vasoconstriction was much lower in older subjects than the younger subjects. The absolute difference between the left and right inversion time varied between 11-118 s and 5-28 s for the older and younger subjects, respectively. Our study clearly demonstrated that infrared thermography is one of the most effective experimental tool for studying dynamic variation in vein pixel temperature under localized thermal stresses.

  5. [Unpredictable chronic mild stress effects on antidepressants activities in forced swim test].

    Science.gov (United States)

    Kudryashov, N V; Kalinina, T S; Voronina, T A

    2015-02-01

    The experiments has been designed to study unpredictable chronic mild stress effect on anti-depressive activities of amitriptyline (10 mg/kg) and fluoxetine (20 mg/kg) in forced swim test in male outbred mice. It is shown that acute treatment with fluoxetine does not produce any antidepressant effects in mice following stress of 14 days while the sub-chronic injections of fluoxetine result in more deep depressive-like behavior. In 28 daily stressed mice, antidepressant effect of fluoxetine is observed independently of the injection rates. Amitriptyline demonstrates the antidepressant activity regardless of the duration of stress or administration scheduling, but at the same time the severity of anti-immobilization effect of amitriptyline in stressed mice is weaker in compare to non-stressed trails. Thus, the injection rates and duration of unpredictable mild chronic stress are the parameters that determine the efficiency of antidepressants in the mouse forced swimming test.

  6. Effect of childhood physical abuse on cortisol stress response.

    Science.gov (United States)

    Carpenter, Linda L; Shattuck, Thaddeus T; Tyrka, Audrey R; Geracioti, Thomas D; Price, Lawrence H

    2011-03-01

    Abuse and neglect are highly prevalent in children and have enduring neurobiological effects. Stressful early life environments perturb the hypothalamic-pituitary-adrenal (HPA) axis, which in turn may predispose to psychiatric disorders in adulthood. However, studies of childhood maltreatment and adult HPA function have not yet rigorously investigated the differential effects of maltreatment subtypes, including physical abuse. In this study, we sought to replicate our previous finding that childhood maltreatment was associated with attenuated cortisol responses to stress and determine whether the type of maltreatment was a determinant of the stress response. Salivary cortisol response to the Trier Social Stress Test (TSST) was examined in a non-clinical sample of women (n = 110). Subjects had no acute medical problems and were not seeking psychiatric treatment. Effects of five maltreatment types, as measured by the Childhood Trauma Questionnaire, on cortisol response to the TSST were investigated. To further examine the significant (p < 0.005) effect of one maltreatment type, women with childhood physical abuse (PA) (n = 20) were compared to those without past PA (n = 90). Women reporting childhood PA displayed a significantly blunted cortisol response to the TSST compared with subjects without PA, after controlling for estrogen use, age, other forms of maltreatment, and other potential confounds. There were no differences between PA and control groups with regard to physiological arousal during the stress challenge. In a non-clinical sample of women with minimal or no current psychopathology, physical abuse is associated with a blunted cortisol response to a psychosocial stress task.

  7. Effect of Dynamic Meditation on Mental Health.

    Science.gov (United States)

    Iqbal, Naved; Singh, Archana; Aleem, Sheema

    2016-02-01

    Although traditional meditation has been found to be effective in improving physical and mental health of subjects, there was a paucity of research of the effect of active or dynamic meditation on these variables. Therefore, the present study was aimed at studying the effect of dynamic meditation on mental health of the subjects. Total sample of the present study comprised 60 subjects, 30 each in experimental and control group. Subjects in experimental group were given 21-day training in dynamic meditation. Mental health of the experimental and control group subjects was measured in pre- and post-condition with the help of Mental Health Inventory developed by Jagadish and Srivastava (Mental Health inventory, Manovaigyanik Parikshan Sansthan, Varanasi, 1983). Obtained data were analyzed with the help of ANCOVA. In post-condition, experimental group scored better than control group on integration of personality, autonomy and environmental mastery. Effect sizes of dynamic meditation on these dimensions of mental health were large. However, experimental group and control group did not differ significantly on positive self-evaluation, perception of reality and group-oriented attitude dimensions of mental health in post-condition. Overall, dynamic meditation training was effective in improving mental health of the subjects.

  8. Effect of food intake on left ventricular wall stress.

    Science.gov (United States)

    Gårdinger, Ylva; Hlebowicz, Joanna; Björgell, Ola; Dencker, Magnus

    2014-01-28

    Left ventricular wall stress has been investigated in a variety of populations, but the effect of food intake has not been evaluated. We assessed whether left ventricular wall stress is affected by food intake in healthy subjects. Twenty-three healthy subjects aged 25.6 ± 4.5 years were investigated. Meridional end-systolic wall stress (ESS) and circumferential end-systolic wall stress (cESS) were measured before, 30 minutes after, and 110 minutes after a standardised meal. Both ESS and cESS decreased significantly (P stress is affected by food intake in healthy subjects.

  9. Dynamic Boiler Performance

    DEFF Research Database (Denmark)

    Sørensen, Kim

    Traditionally, boilers have been designed mainly focussing on the static operation of the plant. The dynamic capability has been given lower priority and the analysis has typically been limited to assuring that the plant was not over-stressed due to large temperature gradients. New possibilities...... developed. Analyzing boilers for dynamic operation gives rise to a number of opposing aims: shrinking and swelling, steam quality, stress levels, control system/philosophy, pressurization etc. Common for these opposing aims is that an optimum can be found for selected operation conditions. The framework has...... for buying and selling energy has increased the focus on the dynamic operation capability, efciency, emissions etc. For optimizing the design of boilers for dynamic operation a quantication of the dynamic capability is needed. A framework for optimizing design of boilers for dynamic operation has been...

  10. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis, is employed to compute Ksub(I) values from the uncracked structure's stress distribution. For each type of loading Ksub(I) values are given for cracks at 15 nozzle locations and for six crack depths. Reasonable agreement is noted between calculated and previously published pressure-induced Ksub(I) values. Comparisons are made to determine the effect on Ksub(I) of crack location, thermal stress, and residual stress as compared to pressure stress. For the thermal transient it is shown that Ksub(I) for small crack depths is maximized early in the transient while Ksub(I) for large cracks is maximized later, under steady state conditions. Ksub(I) computations should, therefore, be made for several transient time points and the maximum Ksub(I) for a given crack depth should be used for design analysis. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evalute without advanced numerical procedures. The utilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated

  11. An investigation of dynamic mechanical behaviour of Ti6Al4V titanium alloy at room temperature

    Directory of Open Access Journals (Sweden)

    Ran Chun

    2016-01-01

    Full Text Available To study the high strain rate shear behaviour of Ti6Al4V titanium alloy, a series of dynamic compression experiments has been performed by split Hopkinson pressure bar (SHPB using Flat Hat-shaped specimen at room temperature. Macro true shear stress-true strain curves were obtained under different strain rate loading conditions at room temperature. The effects of strain hardening and strain rate hardening on the dynamic mechanical properties of Ti6Al4V titanium alloy were discussed. Results indicate that a The higher the strain rate, the higher the flow stress, therefore, the material has obvious strain rate hardening effect, b It is ductile failure for Ti6Al4V titanium alloy under quasi-static loading condition, c For dynamical tests, the values for true shear stress increase with increasing true strain till the maximum true shear stress, on the contrary, the values for true shear stress decrease with increasing the true strain after the maximum true shear stress and d The flow stress increases with increasing the true strain under quasi-static loading condition during the plastic deformation.

  12. The effect of stress on core and peripheral body temperature in humans.

    Science.gov (United States)

    Vinkers, Christiaan H; Penning, Renske; Hellhammer, Juliane; Verster, Joris C; Klaessens, John H G M; Olivier, Berend; Kalkman, Cor J

    2013-09-01

    Even though there are indications that stress influences body temperature in humans, no study has systematically investigated the effects of stress on core and peripheral body temperature. The present study therefore aimed to investigate the effects of acute psychosocial stress on body temperature using different readout measurements. In two independent studies, male and female participants were exposed to a standardized laboratory stress task (the Trier Social Stress Test, TSST) or a non-stressful control task. Core temperature (intestinal and temporal artery) and peripheral temperature (facial and body skin temperature) were measured. Compared to the control condition, stress exposure decreased intestinal temperature but did not affect temporal artery temperature. Stress exposure resulted in changes in skin temperature that followed a gradient-like pattern, with decreases at distal skin locations such as the fingertip and finger base and unchanged skin temperature at proximal regions such as the infra-clavicular area. Stress-induced effects on facial temperature displayed a sex-specific pattern, with decreased nasal skin temperature in females and increased cheek temperature in males. In conclusion, the amplitude and direction of stress-induced temperature changes depend on the site of temperature measurement in humans. This precludes a direct translation of the preclinical stress-induced hyperthermia paradigm, in which core temperature uniformly rises in response to stress to the human situation. Nevertheless, the effects of stress result in consistent temperature changes. Therefore, the present study supports the inclusion of body temperature as a physiological readout parameter of stress in future studies.

  13. Diffusion-stress coupling in liquid phase during rapid solidification of binary mixtures

    International Nuclear Information System (INIS)

    Sobolev, S.L.

    2014-01-01

    An analytical model has been developed to describe the diffusion-viscous stress coupling in the liquid phase during rapid solidification of binary mixtures. The model starts with a set of evolution equations for diffusion flux and viscous pressure tensor, based on extended irreversible thermodynamics. It has been demonstrated that the diffusion-stress coupling leads to non-Fickian diffusion effects in the liquid phase. With only diffusive dynamics, the model results in the nonlocal diffusion equations of parabolic type, which imply the transition to complete solute trapping only asymptotically at an infinite interface velocity. With the wavelike dynamics, the model leads to the nonlocal diffusion equations of hyperbolic type and describes the transition to complete solute trapping and diffusionless solidification at a finite interface velocity in accordance with experimental data and molecular dynamic simulation. -- Highlights: •We propose the diffusion-stress coupling model for binary solidification. •The coupling arises at deep undercooling. •With diffusive dynamics, the models result in parabolic transfer equations. •With the wavelike dynamics, the models lead to hyperbolic transfer equations. •The coupling strongly affects the solute partition coefficient

  14. Altered oscillatory brain dynamics after repeated traumatic stress

    Directory of Open Access Journals (Sweden)

    Ruf Martina

    2007-10-01

    Full Text Available Abstract Background Repeated traumatic experiences, e.g. torture and war, lead to functional and structural cerebral changes, which should be detectable in cortical dynamics. Abnormal slow waves produced within circumscribed brain regions during a resting state have been associated with lesioned neural circuitry in neurological disorders and more recently also in mental illness. Methods Using magnetoencephalographic (MEG-based source imaging, we mapped abnormal distributions of generators of slow waves in 97 survivors of torture and war with posttraumatic stress disorder (PTSD in comparison to 97 controls. Results PTSD patients showed elevated production of focally generated slow waves (1–4 Hz, particularly in left temporal brain regions, with peak activities in the region of the insula. Furthermore, differential slow wave activity in right frontal areas was found in PTSD patients compared to controls. Conclusion The insula, as a site of multimodal convergence, could play a key role in understanding the pathophysiology of PTSD, possibly accounting for what has been called posttraumatic alexithymia, i.e., reduced ability to identify, express and regulate emotional responses to reminders of traumatic events. Differences in activity in right frontal areas may indicate a dysfunctional PFC, which may lead to diminished extinction of conditioned fear and reduced inhibition of the amygdala.

  15. Dynamic magnetic resonance imaging of the behavior of the mid-urethra in healthy and stress incontinent women.

    Science.gov (United States)

    Rinne, Kirsi Marja; Kainulainen, Sakari; Aukee, Sinikka; Heinonen, Seppo; Nilsson, Carl Gustaf

    2010-03-01

    Support of the mid-urethra is thought to be an essential element of urinary continence in the female. Our aim was to image the behavior of the mid-urethra in healthy volunteers and in stress urinary incontinence (SUI) patients by dynamic magnetic resonance imaging (MRI). Prospective study. Gynecology outpatient clinic association with Department of Radiology in University Hospital of Kuopio, Finland. Fifteen healthy volunteers and 40 SUI women underwent dynamic MRI at rest, during pelvic floor muscle contraction, coughing and voiding with a bladder volume of 200 ml. Our aim was to determine the precise location and movement of the mid-urethra during these activities. The co-ordinate location and movement of the mid-urethra. Continent volunteers can elevate their mid-urethra significantly higher than incontinent women. Moreover, the mid-urethra of incontinent women rotated significantly more dorsocaudally during straining and coughing than in continent women. Elevation of the mid-urethra was more marked in continent compared to urinary incontinent women on pelvic floor muscle contraction suggesting sufficient support of the urethra. Downward movement of the mid-urethra was more significant in stress incontinent women than in continent volunteers.

  16. Source properties of dynamic rupture pulses with off-fault plasticity

    KAUST Repository

    Gabriel, A.-A.

    2013-08-01

    Large dynamic stresses near earthquake rupture fronts may induce an inelastic response of the surrounding materials, leading to increased energy absorption that may affect dynamic rupture. We systematically investigate the effects of off-fault plastic energy dissipation in 2-D in-plane dynamic rupture simulations under velocity-and-state-dependent friction with severe weakening at high slip velocity. We find that plasticity does not alter the nature of the transitions between different rupture styles (decaying versus growing, pulse-like versus crack-like, and subshear versus supershear ruptures) but increases their required background stress and nucleation size. We systematically quantify the effect of amplitude and orientation of background shear stresses on the asymptotic properties of self-similar pulse-like ruptures: peak slip rate, rupture speed, healing front speed, slip gradient, and the relative contribution of plastic strain to seismic moment. Peak slip velocity and rupture speed remain bounded. From fracture mechanics arguments, we derive a nonlinear relation between their limiting values, appropriate also for crack-like and supershear ruptures. At low background stress, plasticity turns self-similar pulses into steady state pulses, for which plastic strain contributes significantly to the seismic moment. We find that the closeness to failure of the background stress state is an adequate predictor of rupture speed for relatively slow events. Our proposed relations between state of stress and earthquake source properties in the presence of off-fault plasticity may contribute to the improved interpretation of earthquake observations and to pseudodynamic source modeling for ground motion prediction.

  17. The Effects of Discrimination Experience on Life Satisfaction of North Korean Refugees: Mediating Effect of Stress.

    Science.gov (United States)

    Noh, Jin-Won; Park, Hyunchun; Kim, Minji; Kwon, Young Dae; Kim, Jin-Seok; Yu, Shieun

    2018-01-01

    This study investigated the mediation effect of stress between the experience of discrimination and life satisfaction among North Korean refugees who resettled in South Korea. The findings of the current study provide empirical evidence for the need of social interventions to mitigate adverse effects of stress on North Korean refugees who are subject to social discrimination on a daily basis. In this study, we included 500 subjects among 2,138 North Korean refugees who took refuge in South Korea in 2007. The interview started from April 6th 2009 and finished on May 25th 2009. We conducted moderator effect analysis with Path analysis was conducted because we confirm the experience of discrimination was affected by life satisfaction and stress can affected life satisfaction as a moderator. The experience of discrimination significantly affects stress and stress significantly affects life satisfaction. However, the experience of discrimination was not directly related to life satisfaction. The more stress the study respondents experienced, the lower the life satisfaction they reported. The present finding suggests that the effects of discriminating experiences on the life satisfaction of North Korean refugees in South Korea were mediated by their own perceived stress.

  18. Influence of effective stress coefficient on mechanical failure of chalk

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke; Hjuler, M.L.

    2012-01-01

    The Effective stress coefficient is a measure of how chalk grains are connected with each other. The stiffness of chalk may decrease if the amount of contact cements between the grains decreases, which may lead to an increase of the effective stress coefficient. We performed CO2 injection in chal...... precise failure strength of chalk during changed stress state and under the influence of chemically reactive fluids during production of hydrocarbon and geological storage CO2....

  19. Further study on the wheel-rail impact response induced by a single wheel flat: the coupling effect of strain rate and thermal stress

    Science.gov (United States)

    Jing, Lin; Han, Liangliang

    2017-12-01

    A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.

  20. Prenatal noise and restraint stress interact to alter exploratory behavior and balance in juvenile rats, and mixed stress reverses these effects.

    Science.gov (United States)

    Badache, Soumeya; Bouslama, Slim; Brahmia, Oualid; Baïri, Abdel Madjid; Tahraoui, Abdel Krim; Ladjama, Ali

    2017-05-01

    We aimed to investigate in adolescent rats the individual and combined effects of prenatal noise and restraint stress on balance control, exploration, locomotion and anxiety behavior. Three groups of pregnant rats were exposed to daily repeated stress from day 11 to day 19 of pregnancy: 3 min noise (Noise Stress, NS); 10 min restraint (restraint stress, RS); or 3 min noise followed by 10 min restraint (mixed stress, MS). On postnatal days (PND) 44, 45 and 46, four groups of male rats (Control, NS, RS:, MS; 16 rats each), were tested as follows: (1) beam walking (BW), (2) open field (OF) and (3) elevated plus maze (EPM). Our results show that the NS group had significantly impaired balance control, locomotion and both horizontal and vertical exploration (p time in EPM open arms: p time to complete BW: p < .05). Hence, combined prenatal stressors exert non-additive effects on locomotion, exploration and balance control, but induce greater anxiety through additive effects. Terminal plasma ACTH concentration was increased by prenatal stress, especially noise, which group had the largest adrenal glands. Overall, contrary to expectation, combined prenatal stressors can interact to increase anxiety level, but diminish alteration of exploration, locomotion and impaired balance control, which were strongly induced by noise stress. Lay summary: Experience of stress in pregnancy can have negative effects on the offspring that are long-lasting. Here, we used laboratory rats to see whether repeated episodes of exposure to loud noise or preventing free movement, alone or together, during pregnancy had different effects on behaviors of the adolescent offspring. Using standard tests, we found the prenatal stresses caused the offspring to be anxious, and not to balance when moving around as well as normal offspring; the degree of impairment depended on the type of stress - loud noise exposure had the greatest effects, but if the stresses were combined the effects

  1. Effective stress law for the permeability and deformation of four porous limestones

    Science.gov (United States)

    Wang, Y.; Meng, F.; Wang, X.; Baud, P.; Wong, T. F.

    2017-12-01

    The effective stress behavior of a rock is related to the geometric of its pore space. In a microscopically homogeneous assemblage, effective stress coefficients for permeability, volumetric strain and porosity change are predicted to be equal to or less than unity. Experimental measurements are in basic agreement with this prediction, with exceptions particularly in clay-rich sandstones, for which effective stress coefficient for permeability up to 7 was documented. Little is known about carbonates, but Ghabezloo et al. [2009] studied the permeability of an oolitic limestone (from Nimes, France) with 17% porosity and reported effective stress coefficients up to 2.4. We investigated this phenomenon in Indiana, Leitha, Purbeck, and Thala limestones with porosities of 13-30%. Measurements were made at room temperature on water-saturated samples at confining and pore pressures of 7-15 MPa and 1-3 MPa, respectively. Unlike previous studies limited to the permeability, we also determined the effective stress coefficients for volumetric strain and porosity change. Indiana limestone is oolitic, and not surprisingly its behaviour was similar to Nimes limestone, with an effective stress coefficient for permeability of 2.5. Our Indiana limestone data showed that whereas the effective stress coefficient for volumetric strain was 1. Measurements on Purbeck and Thala limestones are consistent with these inequalities, with effective stress coefficients for permeability and porosity change >1 and that for volumetric strain <1. Even though Purbeck and Thala limestones are micritic with appreciable amount of quartz and dolomite, microstructural and mercury porosimetry data showed that their pore spaces are similar to the oolitic limestones, in that the pore size distribution is bimodal with significant fractions of both macropores and micropores. Berryman [1992] analyzed theoretically a rock made up of two porous constituents. Our new data are in agreement with inequalities he

  2. Odors as effective retrieval cues for stressful episodes.

    Science.gov (United States)

    Wiemers, Uta S; Sauvage, Magdalena M; Wolf, Oliver T

    2014-07-01

    Olfactory information seems to play a special role in memory due to the fast and direct processing of olfactory information in limbic areas like the amygdala and the hippocampus. This has led to the assumption that odors can serve as effective retrieval cues for autobiographic memories, especially emotional memories. The current study sought to investigate whether an olfactory cue can serve as an effective retrieval cue for memories of a stressful episode. A total of 95 participants were exposed to a psychosocial stressor or a well matching but not stressful control condition. During both conditions were visual objects present, either bound to the situation (central objects) or not (peripheral objects). Additionally, an ambient odor was present during both conditions. The next day, participants engaged in an unexpected object recognition task either under the influence of the same odor as was present during encoding (congruent odor) or another odor (non-congruent odor). Results show that stressed participants show a better memory for all objects and especially for central visual objects if recognition took place under influence of the congruent odor. An olfactory cue thus indeed seems to be an effective retrieval cue for stressful memories. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Summary of calculations of dynamic response characteristics and design stress of the 1/5 scale PSE torus

    International Nuclear Information System (INIS)

    Arthur, D.

    1977-01-01

    The Lawrence Livermore Laboratory is currently involved in a 1/5 scale testing program on the Mark I BWR pressure suppression system. A key element of the test setup is a pressure vessel that is a 90 0 sector of a torus. Proper performance of the 90 0 torus depends on its structural integrity and structural dynamic characteristics. It must sustain the internal pressurization of the planned tests, and its dynamic response to the transient test loads should be minimal. If the structural vibrations are too great, interpretation of important load cell and pressure transducer data will be difficult. The purpose of the report is to bring together under one cover calculations pertaining to the structural dynamic characteristics and structural integrity of 90 0 torus. The report is divided into the following sections: (1) system description in which the torus and associated hardware are briefly described; (2) structural dynamics in which calculations of natural frequency and dynamic response are presented; and (3) structural integrity in which stress calculations for design purposes are presented; and an appendix which contains an LLL internal report comparing the expected load cell response for a three and four-point supported torus

  4. Noise and stress effects on preschool personnel

    Directory of Open Access Journals (Sweden)

    Fredrik Sjödin

    2012-01-01

    Full Text Available The aim of the study was to analyze the presence of stress-related health problems among preschool employees and the way in which these reactions are related to noise and other work parameters. The investigation included 101 employees at 17 preschools in Umeå County, located in northern Sweden. Individual noise recordings and recordings in dining rooms and play halls were made at two departments from each preschool. The adverse effects on the employees were analyzed by use of different validated questionnaires and by saliva cortisol samples. Stress and energy output were pronounced among the employees, and about 30% of the staff experienced strong burnout syndromes. Mental recovery after work was low, indicated by remaining high levels of stress after work. The burnout symptoms were associated with reduced sleep quality and morning sleepiness. Cortisol levels supported the conclusion about pronounced daily stress levels of the preschool employees.

  5. Strain rate effects in stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Parkins, R.N. (Newcastle upon Tyne Univ. (UK). Dept. of Metallurgy and Engineering Materials)

    1990-03-01

    Slow strain rate testing (SSRT) was initially developed as a rapid, ad hoc laboratory method for assessing the propensity for metals an environments to promote stress corrosion cracking. It is now clear, however, that there are good theoretical reasons why strain rate, as opposed to stress per se, will often be the controlling parameter in determining whether or not cracks are nucleated and, if so, are propagated. The synergistic effects of the time dependence of corrosion-related reactions and microplastic strain provide the basis for mechanistic understanding of stress corrosion cracking in high-pressure pipelines and other structures. However, while this may be readily comprehended in the context of laboratory slow strain tests, its extension to service situations may be less apparent. Laboratory work involving realistic stressing conditions, including low-frequency cyclic loading, shows that strain or creep rates give good correlation with thresholds for cracking and with crack growth kinetics.

  6. Effects of overload on the threshold stress intensity factor for SCC

    International Nuclear Information System (INIS)

    Takahashi, Koji; Ando, Kotoji; Miyazaki, Yuji; Hashikura, Yasuaki

    2009-01-01

    The effects of overload on the threshold stress intensity factor for stress corrosion crack (K ISCC ) of stainless steel were studied. Tensile overload was applied to a wedge opening loaded (WOL) specimen of SUS316. Then, SCC tests were carried out to determine the resultant K ISCC . As a result, the apparent value of K ISCC increases as increasing a stress intensity factor by tensile overload (K OV ). The effects of tensile overload on K ISCC and the threshold stress intensity factor range for fatigue (ΔK th ) were compared. It was found that the effects of tensile overload on K ISCC were larger than that on ΔK th . (author)

  7. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    Science.gov (United States)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  8. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex ... Journal Home > Vol 10, No 50 (2011) > ... The aim of this work was to investigate some enzymatic systems response of this plant to copper stress.

  9. [Mediating effect of mental elasticity on occupational stress and depression in female nurses].

    Science.gov (United States)

    Wang, Y W; Liu, G Z; Zhou, X T; Sheng, P J; Cui, F F; Shi, T

    2017-06-20

    Objective: To investigate the interaction between mental elasticityand occupational stress and depressionin female nurses and the mediating effect of mental elasticity, as well as the functioning way of mental elasticity in occupational stress-depression. Methods: From August to October, 2015, cluster sampling was used to select 122 female nurses in a county-level medical institution as study subjects. The Connor-Davidson Resilience Scale (CD-RISC) , Occupational Stress Inventory-Revised Edition (OSI-R) , and Self-Rating Depression Scale (SDS) were used to collect the data on mental elasticity, occupational stress, and depression and analyze their correlation and mediating effect. Results: The 122 female nurses had a mean mental elasticity score of 62.4±15.1, which was significantly lower than the Chinese norm (65.4±13.9) ( P occupational stress and depression ( r =-0.559 and -0.559, both P Occupational stress and the two subscales mental stress reaction and physical stress reaction were positively correlated with depression ( r =0.774, 0.734, and 0.725, all P occupational stress had a positive predictive effect on depression ( β =0.744, P occupational stress on depression and a significant mediating effect of mental elasticity ( a =-0.527, b =-0.227, c =0.744, c '=0.627; all P occupational stress and depression and can alleviate the adverse effect of occupational stress and reduce the development of depression.

  10. Stress from daily hassles in couples: its effects on intradyadic stress, relationship satisfaction, and physical and psychological well-being.

    Science.gov (United States)

    Falconier, Mariana K; Nussbeck, Fridtjof; Bodenmann, Guy; Schneider, Hulka; Bradbury, Thomas

    2015-04-01

    According to the systemic-transactional stress model (STM; G. Bodenmann, European Review of Applied Psychology, 1997; 47: 137), extradyadic stress from daily hassles can have a negative impact on the individual psychological and physical health and the couple's relationship. This study is the first one to test the STM propositions in a model that includes both partners' individual and relational outcomes simultaneously. The model also includes actor and partner effects as well as the interdependence between partners' processes. Cross-sectional, self-report data were collected from 110 community couples in Switzerland. Consistent with STM predictions, results from the path model analysis indicate that for actor effects extradyadic stress from daily hassles relates directly to lower psychological (increase in anxiety symptoms) and physical well-being and only indirectly to lower relationship satisfaction through increased intradyadic stress from relationship problems and also through more depressive symptomatology in men. The female extradyadic stress and intradyadic stress had partner effects on the male intradyadic stress and the male relationship satisfaction, respectively. Limitations as well as research and clinical implications for marriage and family therapists are discussed. © 2014 American Association for Marriage and Family Therapy.

  11. The effects of shear and normal stress paths on rock friction

    International Nuclear Information System (INIS)

    Olsson, W.A.

    1990-01-01

    The effect of variable normal stress on the coefficient of friction of smooth artificial surfaces in welded tuff was studied. The shear stress response to changes in normal stress during constant-velocity sliding suggests that friction depends on the history of the normal stress; or, more generally, the path in shear/normal stress space. 6 refs., 5 figs

  12. Dynamic high-temperature characterization of an iridium alloy in tension

    Energy Technology Data Exchange (ETDEWEB)

    Song, Bo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nelson, Kevin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jin, Helena [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Lipinski, Ronald J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ulrich, G. B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, E. P. [Ruhr Univ., Bochum (Germany)

    2015-09-01

    Iridium alloys have been utilized as structural materials for certain high-temperature applications, due to their superior strength and ductility at elevated temperatures. The mechanical properties, including failure response at high strain rates and elevated temperatures of the iridium alloys need to be characterized to better understand high-speed impacts at elevated temperatures. A DOP-26 iridium alloy has been dynamically characterized in compression at elevated temperatures with high-temperature Kolsky compression bar techniques. However, the dynamic high-temperature compression tests were not able to provide sufficient dynamic high-temperature failure information of the iridium alloy. In this study, we modified current room-temperature Kolsky tension bar techniques for obtaining dynamic tensile stress-strain curves of the DOP-26 iridium alloy at two different strain rates (~1000 and ~3000 s-1) and temperatures (~750°C and ~1030°C). The effects of strain rate and temperature on the tensile stress-strain response of the iridium alloy were determined. The DOP-26 iridium alloy exhibited high ductility in stress-strain response that strongly depended on both strain rate and temperature.

  13. Immediate effects of chest physiotherapy on hemodynamic, metabolic, and oxidative stress parameters in subjects with septic shock.

    Science.gov (United States)

    dos Santos, Rafael S; Donadio, Márcio V F; da Silva, Gabriela V; Blattner, Clarissa N; Melo, Denizar A S; Nunes, Fernanda B; Dias, Fernando S; Squizani, Eamim D; Pedrazza, Leonardo; Gadegast, Isabella; de Oliveira, Jarbas R

    2014-09-01

    Septic shock presents as a continuum of infectious events, generating tissue hypoxia and hypovolemia, and increased oxidative stress. Chest physiotherapy helps reduce secretion, improving dynamic and static compliance, as well as improving secretion clearance and preventing pulmonary complications. The purpose of this study was to evaluate the immediate effect of chest physiotherapy on hemodynamic, metabolic, inflammatory, and oxidative stress parameters in subjects in septic shock. We conducted a quasi-experimental study in 30 subjects in septic shock, who underwent chest physiotherapy, without associated heart diseases and with vasopressors stress were evaluated before and 15 min after physiotherapy. Thirty subjects with a mean age of 61.8 ± 15.9 y and Sequential Organ Failure Assessment of 8 (range 6-10) were included. Chest physiotherapy caused a normalization of pH (P = .046) and P(aCO2) (P = .008); reduction of lactate (P = .001); and an increase in P(aO2) (P = .03), arterial oxygen saturation (P = .02), and P(aO2)/F(IO2) (P = .034), 15 min after it was applied. The results indicate that chest physiotherapy has immediate effects, improving oxygenation and reducing lactate and oxidative damage in subjects in septic shock. However, it does not cause alterations in the inflammatory and hemodynamic parameters. Copyright © 2014 by Daedalus Enterprises.

  14. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  15. Effective Stress Law in Unconventional Reservoirs under Different Boundary Conditions

    Science.gov (United States)

    Saurabh, S.; Harpalani, S.

    2017-12-01

    Unconventional reservoirs have attracted a great deal of research interest worldwide during the past two decades. Low permeability and specialized techniques required to exploit these resources present opportunities for improvement in both production rates and ultimate recovery. Understanding subsurface stress modifications and permeability evolution are valuable when evaluating the prospects of unconventional reservoirs. These reservoir properties are functions of effective stress. As a part of this study, effective stress law, specifically the variation of anisotropic Biot's coefficient under various boundary conditions believed to exist in gas reservoirs by different researchers, has been established. Pressure-dependent-permeability (PdK) experiments were carried out on San Juan coal under different boundary conditions, that is, uniaxial strain condition and constant volume condition. Stress and strain in the vertical and horizontal directions were monitored throughout the experiment. Data collected during the experiments was used to determine the Biot's coefficient in vertical and horizontal directions under these two boundary conditions, treating coal as transversely isotropic. The variation of Biot's coefficient was found to be well correlated with the variation in coal permeability. Based on the estimated values of Biot's coefficients, a theory of variation in its value is presented for other boundary conditions. The findings of the study shed light on the inherent behavior of Biot's coefficient under different reservoir boundary conditions. This knowledge can improve the modeling work requiring estimation of effective stress in reservoirs, such as, pressure-/stress- dependent permeability. At the same time, if the effective stresses are known with more certainty by other methods, it enables assessment of the unknown reservoir boundary conditions.

  16. Stressful life events and depression symptoms: the effect of childhood emotional abuse on stress reactivity.

    Science.gov (United States)

    Shapero, Benjamin G; Black, Shimrit K; Liu, Richard T; Klugman, Joshua; Bender, Rachel E; Abramson, Lyn Y; Alloy, Lauren B

    2014-03-01

    Stressful life events are associated with an increase in depressive symptoms and the onset of major depression. Importantly, research has shown that the role of stress changes over the course of depression. The present study extends the current literature by examining the effects of early life stress on emotional reactivity to current stressors. In a multiwave study (N = 281, mean age = 18.76; 68% female), we investigated the proximal changes that occur in depressive symptoms when individuals are faced with life stress and whether a history of childhood emotional abuse moderates this relationship. Results support the stress sensitivity hypothesis for early emotional abuse history. Individuals with greater childhood emotional abuse severity experienced greater increases in depressive symptoms when confronted with current dependent stressors, controlling for childhood physical and sexual abuse. This study highlights the importance of emotional abuse as an indicator for reactivity to stressful life events. © 2013 Wiley Periodicals, Inc.

  17. Microsecond molecular dynamics simulations of intrinsically disordered proteins involved in the oxidative stress response.

    Directory of Open Access Journals (Sweden)

    Elio A Cino

    Full Text Available Intrinsically disordered proteins (IDPs are abundant in cells and have central roles in protein-protein interaction networks. Interactions between the IDP Prothymosin alpha (ProTα and the Neh2 domain of Nuclear factor erythroid 2-related factor 2 (Nrf2, with a common binding partner, Kelch-like ECH-associated protein 1(Keap1, are essential for regulating cellular response to oxidative stress. Misregulation of this pathway can lead to neurodegenerative diseases, premature aging and cancer. In order to understand the mechanisms these two disordered proteins employ to bind to Keap1, we performed extensive 0.5-1.0 microsecond atomistic molecular dynamics (MD simulations and isothermal titration calorimetry experiments to investigate the structure/dynamics of free-state ProTα and Neh2 and their thermodynamics of bindings. The results show that in their free states, both ProTα and Neh2 have propensities to form bound-state-like β-turn structures but to different extents. We also found that, for both proteins, residues outside the Keap1-binding motifs may play important roles in stabilizing the bound-state-like structures. Based on our findings, we propose that the binding of disordered ProTα and Neh2 to Keap1 occurs synergistically via preformed structural elements (PSEs and coupled folding and binding, with a heavy bias towards PSEs, particularly for Neh2. Our results provide insights into the molecular mechanisms Neh2 and ProTα bind to Keap1, information that is useful for developing therapeutics to enhance the oxidative stress response.

  18. impact of workload induced stress on the professional effectiveness

    African Journals Online (AJOL)

    PROF EKWUEME

    aids, evaluation of students, learning motivation, classroom management, supervision of co-curricular activities and ... of workload. KEYWORDS; Stress, Workload, Professional effectiveness, Teachers, Cross River State .... determining the relationship between workload ..... adapted to cope with the stress that could have.

  19. Scale effect in fatigue resistance under complex stressed state

    International Nuclear Information System (INIS)

    Sosnovskij, L.A.

    1979-01-01

    On the basis the of the fatigue failure statistic theory obtained is the formula for calculated estimation of probabillity of failure under complex stressed state according to partial probabilities of failure under linear stressed state with provision for the scale effect. Also the formula for calculation of equivalent stress is obtained. The verification of both formulae using literary experimental data for plane stressed state torsion has shown that the error of estimations does not exceed 10% for materials with the ultimate strength changing from 61 to 124 kg/mm 2

  20. Developmental post-natal stress can alter the effects of pre-natal stress on the adult redox balance.

    Science.gov (United States)

    Marasco, Valeria; Spencer, Karen A; Robinson, Jane; Herzyk, Pawel; Costantini, David

    2013-09-15

    Across diverse vertebrate taxa, stressful environmental conditions during development can shape phenotypic trajectories of developing individuals, which, while adaptive in the short-term, may impair health and survival in adulthood. Regardless, the long-lasting benefits or costs of early life stress are likely to depend on the conditions experienced across differing stages of development. Here, we used the Japanese quail (Coturnix coturnix japonica) to experimentally manipulate exposure to stress hormones in developing individuals. We tested the hypothesis that interactions occurring between pre- and post-natal developmental periods can induce long-term shifts on the adult oxidant phenotype in non-breeding sexually mature individuals. We showed that early life stress can induce long-term alterations in the basal antioxidant defences. The magnitude of these effects depended upon the timing of glucocorticoid exposure and upon interactions between the pre- and post-natal stressful stimuli. We also found differences among tissues with stronger effects in the erythrocytes than in the brain in which the long-term effects of glucocorticoids on antioxidant biomarkers appeared to be region-specific. Recent experimental work has demonstrated that early life exposure to stress hormones can markedly reduce adult survival (Monaghan et al., 2012). Our results suggest that long-term shifts in basal antioxidant defences might be one of the potential mechanisms driving such accelerated ageing processes and that post-natal interventions during development may be a potential tool to shape the effects induced by pre-natally glucococorticoid-exposed phenotypes. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A new formulation of mean stress effects in fatigue

    Science.gov (United States)

    Manson, S. S.; Heidmann, K. R.

    1987-01-01

    A common method of treating the mean stress effect on fatigue life is to displace the elastic line on a Manson-Coffin-Basquin diagram while retaining the position of the plastic line. Manson and Halford pointed out that this procedure implies that mean stress significantly affects the cyclic stress-strain curve. Actually, however, they showed experimentally and by more general reasoning, that mean stress has little, if any, effect on the cyclic stress-strain curve. Thus, they concluded that it is necessary to displace the plastic line as well as the elastic line in order to keep the cyclic stress-strain curve unaltered. Another way to express the common displacement of the two lines is to keep the lines in place and change the horizontal coordinate to include a term relating to the displacement. Thus, instead of life, 2N sub f, as the horizontal coordinate, a new coordinate can become 2N sub f (1-sigma sub m/sigma sub f) superscript 1/b, thereby displacing both the elastic and plastic lines by an amount (1-sigma sub m/sigma sub f) superscript 1/b where sigma sub m is the mean stress and sigma sub f is the intercept of the elastic line at N sub f = 1/2 cycles and b is the slope of the elastic line.

  2. Oil prices and financial stress: A volatility spillover analysis

    International Nuclear Information System (INIS)

    Nazlioglu, Saban; Soytas, Ugur; Gupta, Rangan

    2015-01-01

    This paper examines whether there is a volatility transmission between oil prices and financial stress by means of the volatility spillover test. We employ WTI crude oil prices and Cleveland financial stress index for the period 1991–2014 and divide the sample into pre-crisis, in-crisis, and post-crisis periods due to the downward trend in oil price in 2008. The volatility model estimations indicate that oil prices and financial stress index are dominated by long-run volatility. The volatility spillover causality test supports evidence on risk transfer from oil prices to financial stress before the crisis and from financial stress to oil prices after the crisis. The impulse response analysis shows that the volatility transmission pattern has similar dynamics before and after the crisis and is characterized by higher and long-lived effects during the crisis. Our results have implications for both policy makers and investors, and for future work. -- Highlights: •Volatility spillover between oil prices and financial stress index is examined. •Analysis is conducted for sub-periods: pre-crisis, in-crisis, and post-crisis •Oil prices spill on financial stress before the crisis, but spillover reversed after the crisis. •Volatility transmission pattern has similar dynamics before and after the crisis. •Implications for investors and policy makers are discussed

  3. Effect of Applied Stress and Temperature on Residual Stresses Induced by Peening Surface Treatments in Alloy 600

    Science.gov (United States)

    Telang, A.; Gnäupel-Herold, T.; Gill, A.; Vasudevan, V. K.

    2018-04-01

    In this study, the effects of applied tensile stress and temperature on laser shock peening (LSP) and cavitation shotless peening (CSP)-induced compressive residual stresses were investigated using neutron and x-ray diffraction. Residual stresses on the surface, measured in situ, were lower than the applied stress in LSP- and CSP-treated Alloy 600 samples (2 mm thick). The residual stress averaged over the volume was similar to the applied stress. Compressive residual stresses on the surface and balancing tensile stresses in the interior relax differently due to hardening induced by LSP. Ex situ residual stress measurements, using XRD, show that residual stresses relaxed as the applied stress exceeded the yield strength of the LSP- and CSP-treated Alloy 600. Compressive residual stresses induced by CSP and LSP decreased by 15-25% in magnitude, respectively, on exposure to 250-450 °C for more than 500 h with 10-11% of relaxation occurring in the first few hours. Further, 80% of the compressive residual stresses induced by LSP and CSP treatments in Alloy 600 were retained even after long-term aging at 350 °C for 2400 h.

  4. Protective Effect against Oxidative Stress in Medicinal Plant Extracts

    International Nuclear Information System (INIS)

    Kim, Jeong Hee; Lee, Eun Ju; Shin, Dong O; Hong, Sung Eun; Kim, Jin Kyu

    2000-01-01

    Protective effect of medicinal plant extracts against oxidative stress were screened in this study. Methanol extracts from 48 medicinal plants, which were reported to have antioxidative or anti-inflammatory effect were prepared and screened for their protective activity against chemically-induced and radiation-induced oxidative stress by using MTT assay. Thirty three samples showed protective activity against chemically-induced oxidative stress in various extent. Among those samples, extract of Glycyrrhiza uralensis revealed the strongest activity (25.9% at 100 μg/ml) with relatively lower cytotoxicity. Seven other samples showed higher than 20% protection at 100 μg/ml. These samples were tested for protection activity against radiation-induced oxidative stress. Methanol extract of Alpina officinarum showed the highest activity (17.8% at 20 μg/ml). Five fractions were prepared from the each 10 methanol extracts which showed high protective activity against oxidative stress. Among those fraction samples butanol fractions of Areca catechu var. dulcissima and Spirodela polyrrhiza showed the highest protective activities (78.8% and 77.2%, respectively, at 20 μg/ml)

  5. Dynamic ocean topography from CryoSat-2: examining recent changes in ice-ocean stress and advancing a theory for Beaufort Gyre stabilization

    Science.gov (United States)

    Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.

    2017-12-01

    Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.

  6. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  7. A Dynamic Model of Post-Traumatic Stress Disorder for Military Personnel and Veterans.

    Directory of Open Access Journals (Sweden)

    Navid Ghaffarzadegan

    Full Text Available Post-traumatic stress disorder (PTSD stands out as a major mental illness; however, little is known about effective policies for mitigating the problem. The importance and complexity of PTSD raise critical questions: What are the trends in the population of PTSD patients among military personnel and veterans in the postwar era? What policies can help mitigate PTSD? To address these questions, we developed a system dynamics simulation model of the population of military personnel and veterans affected by PTSD. The model includes both military personnel and veterans in a "system of systems." This is a novel aspect of our model, since many policies implemented at the military level will potentially influence (and may have side effects on veterans and the Department of Veterans Affairs. The model is first validated by replicating the historical data on PTSD prevalence among military personnel and veterans from 2000 to 2014 (datasets from the Department of Defense, the Institute of Medicine, the Department of Veterans Affairs, and other sources. The model is then used for health policy analysis. Our results show that, in an optimistic scenario based on the status quo of deployment to intense/combat zones, estimated PTSD prevalence among veterans will be at least 10% during the next decade. The model postulates that during wars, resiliency-related policies are the most effective for decreasing PTSD. In a postwar period, current health policy interventions (e.g., screening and treatment have marginal effects on mitigating the problem of PTSD, that is, the current screening and treatment policies must be revolutionized to have any noticeable effect. Furthermore, the simulation results show that it takes a long time, on the order of 40 years, to mitigate the psychiatric consequences of a war. Policy and financial implications of the findings are discussed.

  8. A Dynamic Model of Post-Traumatic Stress Disorder for Military Personnel and Veterans

    Science.gov (United States)

    Ghaffarzadegan, Navid; Ebrahimvandi, Alireza; Jalali, Mohammad S.

    2016-01-01

    Post-traumatic stress disorder (PTSD) stands out as a major mental illness; however, little is known about effective policies for mitigating the problem. The importance and complexity of PTSD raise critical questions: What are the trends in the population of PTSD patients among military personnel and veterans in the postwar era? What policies can help mitigate PTSD? To address these questions, we developed a system dynamics simulation model of the population of military personnel and veterans affected by PTSD. The model includes both military personnel and veterans in a “system of systems.” This is a novel aspect of our model, since many policies implemented at the military level will potentially influence (and may have side effects on) veterans and the Department of Veterans Affairs. The model is first validated by replicating the historical data on PTSD prevalence among military personnel and veterans from 2000 to 2014 (datasets from the Department of Defense, the Institute of Medicine, the Department of Veterans Affairs, and other sources). The model is then used for health policy analysis. Our results show that, in an optimistic scenario based on the status quo of deployment to intense/combat zones, estimated PTSD prevalence among veterans will be at least 10% during the next decade. The model postulates that during wars, resiliency-related policies are the most effective for decreasing PTSD. In a postwar period, current health policy interventions (e.g., screening and treatment) have marginal effects on mitigating the problem of PTSD, that is, the current screening and treatment policies must be revolutionized to have any noticeable effect. Furthermore, the simulation results show that it takes a long time, on the order of 40 years, to mitigate the psychiatric consequences of a war. Policy and financial implications of the findings are discussed. PMID:27716776

  9. Using the Dynamic Model to develop an evidence-based and theory-driven approach to school improvement

    NARCIS (Netherlands)

    Creemers, B.P.M.; Kyriakides, L.

    2010-01-01

    This paper refers to a dynamic perspective of educational effectiveness and improvement stressing the importance of using an evidence-based and theory-driven approach. Specifically, an approach to school improvement based on the dynamic model of educational effectiveness is offered. The recommended

  10. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. The effect of mechanical stress on lateral-effect position-sensitive detector characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, H.A. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)]. E-mail: Henrik.Andersson@miun.se; Mattsson, C.G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Thungstroem, G. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden); Lundgren, A. [SiTek Electro Optics, Ogaerdesvaegen 13A 433 30 Partille (Sweden); Nilsson, H.-E. [Department of Information Technology and Media, Mid-Sweden University, SE-85170 Sundsvall (Sweden)

    2006-07-01

    Position-sensitive detectors (PSDs) are widely used in noncontact measurement systems. In order to minimize the size of such systems, interest has increased in mounting the PSD chip directly onto printed circuit boards (PCBs). Stress may be induced in the PSD because of the large differences in thermal expansion coefficients, as well as the long-term geometrical stability of the chip packaging. Mechanical stress has previously been shown to have an effect on the performance of semiconductors. The accuracy, or linearity, of a lateral effect PSD is largely dependent on the homogeneity of the resistive layer. Variations of the resistivity over the active area of the PSD will result in an uneven distribution of photo-generated current, and hence an error in the readout position. In this work experiments were performed to investigate the influence of anisotropic mechanical stress in terms of nonlinearity. PSD chips of 60x3 mm active area were subjected, respectively, to different amounts of compressive and tensile stress to determine the influence on the linearity.

  12. The effects of location, thermal stress, and residual stress on corner cracks in nozzles with cladding

    International Nuclear Information System (INIS)

    Besuner, P.M.; Cohen, L.M.; McLean, J.L.

    1977-01-01

    The stress intensity factors (Ksub(I)) for corner cracks in a boiling water reactor feedwater nozzle with stainless steel cladding are obtained for loading by internal pressure, and a fluid quench in the nozzle. Conditions with and without residual stress in the component are considered. The residual stress is simulated by means of a reference temperature change. The stress distribution for the uncracked structure is obtained from a three-dimensional finite element model. A three-dimensional influence function (IF) method, in conjunction with the boundary-integral equation method for structural analysis is employed to compute Ksub(I) values from the uncracked structure's stress distribution. It is concluded that the effects on Ksub(I) of location, thermal stresses, and residual stresses are significant and generally too complex to evaluate without advanced numerical procedures. The ulilized combination of finite element analysis of the uncracked structure and three-dimensional influence function analysis of the cracked structure is demonstrated and endorsed. (Auth.)

  13. A combination of high stress-induced tense and energetic arousal compensates for impairing effects of stress on memory retrieval in men.

    Science.gov (United States)

    Boehringer, Andreas; Schwabe, Lars; Schachinger, Hartmut

    2010-09-01

    Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.

  14. Effect of Stress-Response Psycho-Training on the Stress Levels of Mothers with Autistic Children

    Science.gov (United States)

    Karaman, Ömer

    2018-01-01

    The aim of the study was to assess the effect of stress-response psycho-training on the stress levels of mothers with autistic children. The research was experimental in design encompassing a pretest-posttest model with control and placebo groups. Participation in the study was voluntary with a total of 28 mothers of autistic children included…

  15. Effect of tensile stress on cavitation damage formation in mercury

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Takashi, E-mail: naoe.takashi@jaea.go.j [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kogawa, Hiroyuki [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Yamaguchi, Yoshihito [Nuclear Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Futakawa, Masatoshi [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2010-03-15

    Cavitation erosion or so called pitting damage was investigated under tensile stress conditions in mercury. In MW-class liquid metal spallation targets, pitting damage is a critical issue to satisfy required power and/or lifetime of the target vessel. Cavitation occurs by negative pressure which is induced through pressure wave propagation due to proton beam injection. Pitting damage is formed by microjet and/or shock wave during cavitation bubble collapse. A mercury target vessel suffers tensile stress due to thermal stress or welding. In order to investigate the effect of tensile stress on pitting damage formation, cavitation erosion tests were performed using stress imposed specimens in mercury. An ultrasonic vibratory horn and electro-Magnetic IMpact Testing Machine (MIMTM) were used to vary the cavitation intensity. In the incubation period of pitting damage, damaged area was slightly increased with increasing imposed tensile stress. In the steady state period, a mean depth of erosion was increased by the tensile stress. Additionally, in order to quantitatively evaluate the effect of tensile stress, an indentation test with Vickers indenter was carried out to quasi-statically simulate the impact load. From the measurement of the diagonal length of the indent aspect ratio and hardness, it is recognized that the threshold of the deformation, i.e. pitting damage formation, was decreased by the tensile stress.

  16. The central effect of biological Amines on immunosuppressive effect of restraint stress in rat

    Directory of Open Access Journals (Sweden)

    Zeraati F

    2000-10-01

    Full Text Available The effects of some histaminergic agents were evaluated on stress- induced immunosuppression in immunized nale rats. In rat immunized with sheep red blood cells ( SRBCs. Restraint stress (RS prevented the booster-induced rise in anti-SRBC antibody titre and cell immunity response. Intracerebroventicular (I.C>V injection of histamine (150 µg/rat induced a similar effect with RS. Pretreatment with chlorpheniramine (50 µg/rat reduced the inhibitory effect of Ras on immune function. Also histamine could inhibit the effect of RS on immune function. Also histamine could inhibitory the effect of chlorpheniramine when injected simultaneously. Pretreatment with ranidine (10 µg/rat had not a significant effect. Serotonin (3 µg/rat and dopamine (0.2 µg/rat could reverse the effects of chlorpheniromine when injected with chlorpheniramine (P<0.05. Epinephrine (0.2 µg/rat had not a significant effect. The results indicate that histamine mediates the immunosuppression of restraint stress by influencing the histamine H1 receptor in the brain and this effects of histamine may be modulated by serotoninergic and dopaminergic system.

  17. Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves

    Directory of Open Access Journals (Sweden)

    Hua Xu

    2014-01-01

    Full Text Available Dynamic stress concentration in tunnels and underground structures during earthquakes often leads to serious structural damage. A series solution of wave equation for dynamic response of underground circular lining tunnels subjected to incident plane P waves is presented by Fourier-Bessel series expansion method in this paper. The deformation and stress fields of the whole medium of surrounding rock and tunnel were obtained by solving the equations of seismic wave propagation in an elastic half space. Based on the assumption of a large circular arc, a series of solutions for dynamic stress were deduced by using a wave function expansion approach for a circular lining tunnel in an elastic half space rock medium subjected to incident plane P waves. Then, the dynamic response of the circular lining tunnel was obtained by solving a series of algebraic equations after imposing its boundary conditions for displacement and stress of the circular lining tunnel. The effects of different factors on circular lining rock tunnels, including incident frequency, incident angle, buried depth, rock conditions, and lining stiffness, were derived and several application examples are presented. The results may provide a good reference for studies on the dynamic response and aseismic design of tunnels and underground structures.

  18. Dynamic fatigue of a machinable glass-ceramic

    Science.gov (United States)

    Smyth, K. K.; Magida, M. B.

    1983-01-01

    To assess the stress-corrosion susceptibility of a machinable glass-ceramic, its dynamic fatigue behavior was investigated by measuring its strength as a function of stress rate. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for components of this material. This material was concluded to have only moderate resistance (N = 30) to stress corrosion in ambient conditions. The effects of specimen size on strength were assessed for the material used in this study; it was concluded that the Weibull edge-flaw scaling law adequately describes the observed strength-size relation.

  19. [Effect of occupational stress on oxidation/antioxidant capacity in nurses].

    Science.gov (United States)

    Cao, Lili; Tian, Honger; Zhang, Qingdong; Zhu, Xinyun; Zhan, Yongguo; Su, Jingguo; Xu, Tian; Zhu, Huabin; Liu, Ling

    2014-02-01

    To investigate the effect of occupational stress on the oxidation/antioxidant capacity in nurses. A total of 131 nurses were included as study subjects. The occupational health information collection system (based on the Internet of things) was used for measurement of occupational stress. Levels of hydroxyl free radicals and antioxidant enzymes were determined. The serum level of superoxide dismutase (SOD) was the highest in nurses under the age of 30 and the lowest in those over 45 (P occupational stress factors for SOD. Job hazards were negative occupational stress factors for POD. Psychological satisfaction was negative occupational stress reaction for hydroxyl free radicals. Calmness was positive occupational stress reaction for SOD, and daily stress was a negative one. The positive occupational stress reactions for GSH-Px were psychological satisfaction and job satisfaction, and daily stress was negative reaction. Nurses with higher occupational stress have stronger oxidation and weaker antioxidant capacity, which intensifies oxidant-antioxidant imbalance and leads to oxidative stress damage.

  20. Effects of the van der Waals Force on the Dynamics Performance for a Micro Resonant Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2016-01-01

    Full Text Available The micro resonant pressure sensor outputs the frequency signals where the distortion does not take place in a long distance transmission. As the dimensions of the sensor decrease, the effects of the van der Waals forces should be considered. Here, a coupled dynamic model of the micro resonant pressure sensor is proposed and its coupled dynamic equation is given in which the van der Waals force is considered. By the equation, the effects of the van der Waals force on the natural frequencies and vibration amplitudes of the micro resonant pressure sensor are investigated. Results show that the natural frequency and the vibrating amplitudes of the micro resonant pressure sensor are affected significantly by van der Waals force for a small clearance between the film and the base plate, a small initial tension stress of the film, and some other conditions.

  1. Financial stress spillovers in advanced economies

    NARCIS (Netherlands)

    Apostolakis, G.; Papadopoulos, A.

    2014-01-01

    Financial stress co-movements are positively associated with crisis periods. Dynamic conditional correlations increase during periods of high uncertainty. The US is the dominant transmitter of financial stress spillovers. The total stress spillover index explains 19.9% of the forecast error

  2. Effects of Stress and MDMA on Hippocampal Gene Expression

    OpenAIRE

    Weber, Georg F.; Johnson, Bethann N.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2014-01-01

    MDMA (3,4-methylenedioxymethamphetamine) is a substituted amphetamine and popular drug of abuse. Its mood-enhancing short-term effects may prompt its consumption under stress. Clinical studies indicate that MDMA treatment may mitigate the symptoms of stress disorders such as posttraumatic stress syndrome (PTSD). On the other hand, repeated administration of MDMA results in persistent deficits in markers of serotonergic (5-HT) nerve terminals that have been viewed as indicative of 5-HT neuro...

  3. Geomechanical effects of stress shadow created by large-scale destress blasting

    Directory of Open Access Journals (Sweden)

    Isaac Vennes

    2017-12-01

    Full Text Available This study aims to determine if large-scale choked panel destress blasting can provide sufficient beneficial stress reduction in highly-stressed remnant ore pillar that is planned for production. The orebody is divided into 20 stopes over 2 levels, and 2 panels are choke-blasted in the hanging wall to shield the ore pillar by creating a stress shadow around it. A linear-elastic model of the mining system is constructed with finite difference code FLAC3D. The effect of destress blasting in the panels is simulated by applying a fragmentation factor (α to the rock mass stiffness and a stress reduction factor (β to the current state of stress in the region occupied by the destress panels. As an extreme case, the destress panel is also modeled as a void to obtain the maximum possible beneficial effects of destressing and stress shadow. Four stopes are mined in the stress shadow of the panels in 6 lifts and then backfilled. The effect of destress blasting on the remnant ore pillar is quantified based on stress change and brittle shear ratio (BSR in the stress shadow zone compared to the base case without destress blasting. To establish realistic rock fragmentation and stress reduction factors, model results are compared to measured stress changes reported for case studies at Fraser and Brunswick mines. A 1.5 MPa immediate stress decrease was observed 20 m away from the panel at Fraser Mine, and a 4 MPa immediate stress decrease was observed 25 m away at Brunswick Mine. Comparable results are obtained from the current model with a rock fragmentation factor α of 0.2 and a stress reduction factor β of 0.8. It is shown that a destress blasting with these parameters reduces the major principal stress in the nearest stopes by 10–25 MPa. This yields an immediate reduction of BSR, which is deemed sufficient to reduce volume of ore at risk in the pillar.

  4. Inertial effects on the stress generation of active fluids

    Science.gov (United States)

    Takatori, S. C.; Brady, J. F.

    2017-09-01

    Suspensions of self-propelled bodies generate a unique mechanical stress owing to their motility that impacts their large-scale collective behavior. For microswimmers suspended in a fluid with negligible particle inertia, we have shown that the virial swim stress is a useful quantity to understand the rheology and nonequilibrium behaviors of active soft matter systems. For larger self-propelled organisms such as fish, it is unclear how particle inertia impacts their stress generation and collective movement. Here we analyze the effects of finite particle inertia on the mechanical pressure (or stress) generated by a suspension of self-propelled bodies. We find that swimmers of all scales generate a unique swim stress and Reynolds stress that impact their collective motion. We discover that particle inertia plays a similar role as confinement in overdamped active Brownian systems, where the reduced run length of the swimmers decreases the swim stress and affects the phase behavior. Although the swim and Reynolds stresses vary individually with the magnitude of particle inertia, the sum of the two contributions is independent of particle inertia. This points to an important concept when computing stresses in computer simulations of nonequilibrium systems: The Reynolds and the virial stresses must both be calculated to obtain the overall stress generated by a system.

  5. Stress: a concept analysis.

    Science.gov (United States)

    Goodnite, Patricia M

    2014-01-01

    To analyze the concept of stress and provide an operational definition of stress. Literature review revealed that stress is a commonly used, but often ambiguous, term. Findings supported a definition of stress entailing an individual's perception of a stimulus as overwhelming, which in turn elicits a measurable response resulting in a transformed state. This analysis adopts a dynamic definition of stress that may serve to encourage communication, promote reflection, and enhance concept understanding. This definition may provide direction for future work, as well as enhance efforts to serve patients affected by stress. © 2013 Wiley Periodicals, Inc.

  6. Anti-stress effect of ethyl acetate soluble fraction of Morus alba in chronic restraint stress.

    Science.gov (United States)

    Nade, Vandana S; Yadav, Adhikrao V

    2010-09-01

    Restraint stress is a well-known method to induce chronic stress which leads to alterations in various behavioral and biochemical parameters. The present work was designed to study anti-stress effects of Morus alba in chronic restraint stress (RS)-induced perturbations in behavioral, biochemical and brain oxidative stress status. The stress was produced by restraining the animals inside an adjustable cylindrical plastic tube for 3 h once daily for ten consecutive days. The ethyl acetate soluble fraction of Morus alba (EASF) 25, 50, 100 mg/kg and diazepam (1 mg/kg) per day was administered 60 min prior to the stress procedure. The behavioral and biochemical parameters such as open field, cognitive dysfunction; leucocytes count; blood glucose and corticosteroid levels were determined. On day 10, the rats were sacrificed and biochemical assessment of superoxide dismutase (SOD), lipid peroxidation (LPO), catalase (CAT), and glutathione reductase (GSH) in whole rat brain were performed. Chronic restraint stress produced cognitive dysfunction, altered behavioral parameters, increased leucocytes count, SOD, LPO, glucose and corticosterone levels, with concomitant decrease in CAT and GSH activities. Gastric ulceration, adrenal gland and spleen weights were also used as the stress indices. All these RS induced perturbations were attenuated by EASF of Morus alba. The results of the study suggest that in addition to its classically established pharmacological activities, the plant also has immense potential as an anti-stress agent of great therapeutic relevance. This study indicates the beneficial role of Morus alba for the treatment of oxidative stress-induced disorders.

  7. Effect of residual stress induced by cold expansion on fatigue crack ...

    African Journals Online (AJOL)

    Fatigue life and fatigue crack growth rate are controlled by stress ratio, stress level, orientation of crack, temper-ature, residual stress, corrosion, etc. The effects of residual stress on fatigue crack growth in aluminium (Al) alloy 2024-T351 by Mode I crack were investigated by applying constant amplitude cycles based on ...

  8. Study of the effect of the stress on CdTe nuclear detectors

    International Nuclear Information System (INIS)

    Ayoub, M.; Radley, I.; Mullins, J. T.; Hage-Ali, M.

    2013-01-01

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given

  9. Study of the effect of the stress on CdTe nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ayoub, M.; Radley, I.; Mullins, J. T. [Kromek, Thomas Wright way, TS21 3FD, Sedgefield, County Durham (United Kingdom); Hage-Ali, M. [CLEA, Airport road, Beirut (Lebanon)

    2013-09-14

    CdTe detectors are commonly used for X and γ ray applications. The performance of these detectors is strongly affected by different types of mechanical stress; such as that caused by differential expansion between the semiconductor and its intimate metallic contacts and that caused by applied pressure during the bonding process. The aim of this work was to study the effects of stress on the performance of CdTe detectors. A difference in expansion coefficients induces transverse stress under the metallic contact, while contact pressure induces longitudinal stress. These stresses have been simulated by applying known static pressures. For the longitudinal case, the pressure was applied directly to the metallic contact; while in the transverse case, it was applied to the side. We have studied the effect of longitudinal and transverse stresses on the electrical characteristics including leakage current measurements and γ-ray detection performance. We have also investigated induced defects, their nature, activation energies, cross sections, and concentrations under the applied stress by using photo-induced current transient spectroscopy and thermoelectric effect spectroscopy techniques. The operational stress limit is also given.

  10. Effects of lifetime stress exposure on mental and physical health in young adulthood: How stress degrades and forgiveness protects health.

    Science.gov (United States)

    Toussaint, Loren; Shields, Grant S; Dorn, Gabriel; Slavich, George M

    2016-06-01

    To examine risk and resilience factors that affect health, lifetime stress exposure histories, dispositional forgiveness levels, and mental and physical health were assessed in 148 young adults. Greater lifetime stress severity and lower levels of forgiveness each uniquely predicted worse mental and physical health. Analyses also revealed a graded Stress × Forgiveness interaction effect, wherein associations between stress and mental health were weaker for persons exhibiting more forgiveness. These data are the first to elucidate the interactive effects of cumulative stress severity and forgiveness on health, and suggest that developing a more forgiving coping style may help minimize stress-related disorders. © The Author(s) 2014.

  11. Change in Biot's effective stress coefficient of chalk during pore collapse

    DEFF Research Database (Denmark)

    Alam, M. Monzurul; Fabricius, Ida Lykke

    2013-01-01

    the grains could also change during elastic deformation of the grains in a rock mechanics test. Diagenetic change in grain contact cement of chalk can be compared with stress-induced change in the laboratory. The change in porosity is studied with reference to the change in effective stress on grain contacts...... and porosity reduces at a slower rate. We noticed that presence of non carbonates and hydrocarbon could increase σ'm. During rock mechanics test in the lab, with increased applied stress, σ'm increases, Biot's effective stress coefficient shows a decreasing trend, while a minor porosity reduction was observed......Biot's effective stress coefficient (α) is a measure of how well grains in the rocks are connected with each other. The amount of contact cements between the grains determines the stiffness of rocks. Change in grain contact occurs during natural diagenesis of sedimentary rock. Contact between...

  12. Dextran's effects on stressed lenses: water, electrolyte, and radioisotope studies

    International Nuclear Information System (INIS)

    Sanders, D.R.; Bokosky, J.; Peyman, G.A.; Gray, D.

    1979-01-01

    To evaluate the beneficial effects of dextran 40 as an additive to infusion solutions, we studied an experimental model of lens stress with use of buffered, low calcium (Ca ++ )-containing solutions. Incubation in low Ca ++ solutions (pCa = 10.7) for ten hours (stress period) resulted in lens swelling and electrolyte imbalances that were irreversible even with reincubation in physiologic, normal Ca ++ -containing media (pCa = 2.7) (recovery period). The addition of 6% or more of dextran to the media inhibited lens water gain during the stress period. It also rendered the resultant electrolyte imbalances reversible during the recovery period, thus exerting a protective effect. Radioisotope-tracer studies showed that dextran improved the ability of the lens to accumulate rubidium chloride Rb 86 and reduced its efflux during both the stress and recovery periods. Dextran did not markedly decrease sodium chloride Na 22 uptake by lenses under stress

  13. Dynamical role of Ekman pumping in rapidly rotating convection

    Science.gov (United States)

    Stellmach, Stephan; Julien, Keith; Cheng, Jonathan; Aurnou, Jonathan

    2015-04-01

    The exact nature of the mechanical boundary conditions (i.e. no-slip versus stress-free) is usually considered to be of secondary importance in the rapidly rotating parameter regime characterizing planetary cores. While they have considerable influence for the Ekman numbers achievable in today's global simulations, for planetary values both the viscous Ekman layers and the associated secondary flows are generally expected to become negligibly small. In fact, usually the main purpose of using stress-free boundary conditions in numerical dynamo simulations is to suppress unrealistically large friction and pumping effects. In this study, we investigate the influence of the mechanical boundary conditions on core convection systematically. By restricting ourselves to the idealized case of rapidly rotating Rayleigh-Bénard convection, we are able to combine results from direct numerical simulations (DNS), laboratory experiments and asymptotic theory into a coherent picture. Contrary to the general expectation, we show that the dynamical effects of Ekman pumping increase with decreasing Ekman number over the investigated parameter range. While stress-free DNS results converge to the asymptotic predictions, both no-slip simulations and laboratory experiments consistently reveal increasingly large deviations from the existing asymptotic theory based on dynamically passive Ekman layers. The implications of these results for core dynamics are discussed briefly.

  14. [Effect of occupational stress on neurotransmitters in petroleum workers].

    Science.gov (United States)

    Jiang, Yu; Lian, Yulong; Tao, Ning; Ge, Hua; Liu, Jiwen

    2015-09-01

    To explore the effects of occupational stress on neurotransmitters in petroleum workers. 178 petroleum workers with the length of service ≥ 1 year were recruited to the subjects by the questionnaire of OSI-R. The levels of 5-hydroxy tryptamine (5-HT), norepinephrine (NE), neuropeptide Y (NPY) and substance P (SP) in serum were measured. The subjects were classified into 3 groups according to the scores of occupational stress. The levels of 5-HT NE and SP for over 15 working years were higher than those of less than 15 years (P occupational stress degree groups, multiple comparison showed high. occupational stress group was higher than those of low occupational stress group. Multivariate correlation analysis showed that the occupational stress and sleep quality component scores correlated positively with the 5-HT, NE and SP (P Occupational stress in petroleum workers is correlated with serum monoamine and neuropeptides neurotransmitters, and it may affect serum levels of monoamine and neuropeptides neurotransmitters.

  15. Dynamic Response and Fracture of Composite Gun Tubes

    Directory of Open Access Journals (Sweden)

    Jerome T. Tzeng

    2001-01-01

    Full Text Available The fracture behavior due to dynamic response in a composite gun tube subjected to a moving pressure has been investigated. The resonance of stress waves result in very high amplitude and frequency strains in the tube at the instant and location of pressure front passage as the velocity of the projectile approaches a critical value. The cyclic stresses can accelerate crack propagation in the gun tube with an existing imperfection and significantly shorten the fatigue life of gun tubes. The fracture mechanism induced by dynamic amplification effects is particularly critical for composite overwrap barrels because of a multi-material construction, anisotropic material properties, and the potential of thermal degradation.

  16. Effect of abiotic stress under light and dark conditions on carotenoid ...

    African Journals Online (AJOL)

    The aim of this study was to observe the effect of abiotic stress under light and dark conditions on pumpkin calluses carotenoid. Plant elicitors used to create abiotic stress in this study were Polyethylene Glycol 4000 for drought stress, Jasmonic Acid and Salicylic Acid for hormones stress and Murashige and Skoog Salt for ...

  17. Optimization Design of Structures Subjected to Transient Loads Using First and Second Derivatives of Dynamic Displacement and Stress

    Directory of Open Access Journals (Sweden)

    Qimao Liu

    2012-01-01

    Full Text Available This paper developed an effective optimization method, i.e., gradient-Hessian matrix-based method or second order method, of frame structures subjected to the transient loads. An algorithm of first and second derivatives of dynamic displacement and stress with respect to design variables is formulated based on the Newmark method. The inequality time-dependent constraint problem is converted into a sequence of appropriately formed time-independent unconstrained problems using the integral interior point penalty function method. The gradient and Hessian matrixes of the integral interior point penalty functions are also computed. Then the Marquardt's method is employed to solve unconstrained problems. The numerical results show that the optimal design method proposed in this paper can obtain the local optimum design of frame structures and sometimes is more efficient than the augmented Lagrange multiplier method.

  18. [Study on the health effect of the occupational stress in aircrew].

    Science.gov (United States)

    Zhou, L P; Tian, H E; Liu, L L; Ma, L; Zhang, H; Zhang, Q D; Zhu, X Y; Zhu, H B

    2017-02-20

    Objective: To explore the relationship between occupational stress and physiological and biochemical indexes, to research the health effect of the occupational stress in aircrew. Methods: 450 aircrews were conducted with the OSI-R questionnaire survey, examine the level of blood pressure, blood routine, ALT and UA. Results: The concentration of HB was positively related with task conflict and entertainment and leisure ( β =0.262 and 0.106, both P stress reactions were negatively related with HB ( β =-0.163, -0.102, and -0.137, all P stress reactions and social support were negatively related with RBC ( β =-0.157, -0.119, and -0.113, all P stress reactions and social support had a negative relationship with ALT ( β =-0.176, -0.096, and -0.102, all P stress reactions and social support were negatively related with SBP ( β =-0.093, -0.103, and -0.111, all P Occupational stress of the aircrew is significantly related with blood pressure, RBC, ALT and UA, occupational stress can make effects on the health of aircrew.

  19. Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    OpenAIRE

    Cui, Ranji; Li, Bingjin; Suemaru, Katsuya; Araki, Hiroaki

    2007-01-01

    In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock) and psychological stress (non-foot shock) induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM) sleep and total non-REM sleep we...

  20. Memory function after stress : the effects of acute stress and cortisol on memory and the inhibition of emotional distraction

    NARCIS (Netherlands)

    Oei, Nicole Yü Lan

    2010-01-01

    The present thesis contains five experimental studies into the effects of stress on memory I healthy males. Hydrocortisone (and propranolol) administration or the induction of social stress are used to heighten cortisol levels, and consequently to study its effects on working memory performance and