WorldWideScience

Sample records for dynamic resource control

  1. Dynamic optimization model for allocating medical resources in epidemic controlling

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2013-03-01

    Full Text Available Purpose: The model proposed in this paper addresses a dynamic optimization model for allocating medical resources in epidemic controlling.Design/methodology/approach: In this work, a three-level and dynamic linear programming model for allocating medical resources based on epidemic diffusion model is proposed. The epidemic diffusion model is used to construct the forecasting mechanism for dynamic demand of medical resources. Heuristic algorithm coupled with MTLAB mathematical programming solver is adopted to solve the model. A numerical example is presented for testing the model’s practical applicability.Findings: The main contribution of the present study is that a discrete time-space network model to study the medical resources allocation problem when an epidemic outbreak is formulated. It takes consideration of the time evolution and dynamic nature of the demand, which is different from most existing researches on medical resources allocation.Practical implications: In our model, the medicine logistics operation problem has been decomposed into several mutually correlated sub-problems, and then be solved systematically in the same decision scheme. Thus, the result will be much more suitable for real operations.Originality/value: In our model, the rationale that the medical resources allocated in early periods will take effect in subduing the spread of the epidemic spread and thus impact the demand in later periods has been for the first time incorporated. A win-win emergency rescue effect is achieved by the integrated and dynamic optimization model. The total rescue cost is controlled effectively, and meanwhile, inventory level in each urban health departments is restored and raised gradually.

  2. CHEP2015: Dynamic Resource Allocation with arcControlTower

    CERN Document Server

    Filipcic, Andrej; The ATLAS collaboration; Nilsen, Jon Kerr

    2015-01-01

    Distributed computing resources available for high-energy physics research are becoming less dedicated to one type of workflow and researchers’ workloads are increasingly exploiting modern computing technologies such as parallelism. The current pilot job management model used by many experiments relies on static dedicated resources and cannot easily adapt to these changes. The model used for ATLAS in Nordic countries and some other places enables a flexible job management system based on dynamic resources allocation. Rather than a fixed set of resources managed centrally, the model allows resources to be requested on the fly. The ARC Computing Element (ARC-CE) and ARC Control Tower (aCT) are the key components of the model. The aCT requests jobs from the ATLAS job mangement system (Panda) and submits a fully-formed job description to ARC-CEs. ARC-CE can then dynamically request the required resources from the underlying batch system. In this paper we describe the architecture of the model and the experience...

  3. Dynamic Resource Allocation with the arcControlTower

    CERN Document Server

    Filipcic, Andrej; The ATLAS collaboration; Nilsen, Jon Kerr

    2015-01-01

    Distributed computing resources available for high-energy physics research are becoming less dedicated to one type of workflow and researchers’ workloads are increasingly exploiting modern computing technologies such as parallelism. The current pilot job management model used by many experiments relies on static dedicated resources and cannot easily adapt to these changes. The model used for ATLAS in Nordic countries and some other places enables a flexible job management system based on dynamic resources allocation. Rather than a fixed set of resources managed centrally, the model allows resources to be requested on the fly. The ARC Computing Element (ARC-CE) and ARC Control Tower (aCT) are the key components of the model. The aCT requests jobs from the ATLAS job management system (PanDA) and submits a fully-formed job description to ARC-CEs. ARC-CE can then dynamically request the required resources from the underlying batch system. In this paper we describe the architecture of the model and the experienc...

  4. Controlling collective dynamics in complex, minority-game resource-allocation systems

    CERN Document Server

    Zhang, Ji-Qiang; Huang, Zi-Gang; Huang, Liang; Huang, Tie-Qiao; Lai, Ying-Cheng

    2013-01-01

    Resource allocation takes place in various kinds of real-world complex systems, such as the traffic systems, social services institutions or organizations, or even the ecosystems. The fundamental principle underlying complex resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally limited and agents tend to choose the least used resource based on available information. A common but harmful dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a large majority of the agents compete for a few resources, leaving many other resources unused. Ac- companying the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving majority of the agents free, h...

  5. Controlling collective dynamics in complex minority-game resource-allocation systems.

    Science.gov (United States)

    Zhang, Ji-Qiang; Huang, Zi-Gang; Dong, Jia-Qi; Huang, Liang; Lai, Ying-Cheng

    2013-05-01

    Resource allocation takes place in various kinds of real-world complex systems, such as traffic systems, social services institutions or organizations, or even ecosystems. The fundamental principle underlying complex resource-allocation dynamics is Boolean interactions associated with minority games, as resources are generally limited and agents tend to choose the least used resource based on available information. A common but harmful dynamical behavior in resource-allocation systems is herding, where there are time intervals during which a large majority of the agents compete for a few resources, leaving many other resources unused. Accompanying the herd behavior is thus strong fluctuations with time in the number of resources being used. In this paper, we articulate and establish that an intuitive control strategy, namely pinning control, is effective at harnessing the herding dynamics. In particular, by fixing the choices of resources for a few agents while leaving the majority of the agents free, herding can be eliminated completely. Our investigation is systematic in that we consider random and targeted pinning and a variety of network topologies, and we carry out a comprehensive analysis in the framework of mean-field theory to understand the working of control. The basic philosophy is then that, when a few agents waive their freedom to choose resources by receiving sufficient incentives, the majority of the agents benefit in that they will make fair, efficient, and effective use of the available resources. Our work represents a basic and general framework to address the fundamental issue of fluctuations in complex dynamical systems with significant applications to social, economical, and political systems.

  6. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    Science.gov (United States)

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  7. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies.

    Directory of Open Access Journals (Sweden)

    Nils Giordano

    2016-03-01

    Full Text Available Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin's Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment.

  8. Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain

    Science.gov (United States)

    Virkar, Yogesh S.; Shew, Woodrow L.; Restrepo, Juan G.; Ott, Edward

    2016-10-01

    Learning and memory are acquired through long-lasting changes in synapses. In the simplest models, such synaptic potentiation typically leads to runaway excitation, but in reality there must exist processes that robustly preserve overall stability of the neural system dynamics. How is this accomplished? Various approaches to this basic question have been considered. Here we propose a particularly compelling and natural mechanism for preserving stability of learning neural systems. This mechanism is based on the global processes by which metabolic resources are distributed to the neurons by glial cells. Specifically, we introduce and study a model composed of two interacting networks: a model neural network interconnected by synapses that undergo spike-timing-dependent plasticity; and a model glial network interconnected by gap junctions that diffusively transport metabolic resources among the glia and, ultimately, to neural synapses where they are consumed. Our main result is that the biophysical constraints imposed by diffusive transport of metabolic resources through the glial network can prevent runaway growth of synaptic strength, both during ongoing activity and during learning. Our findings suggest a previously unappreciated role for glial transport of metabolites in the feedback control stabilization of neural network dynamics during learning.

  9. Adaptive dynamic resource allocation in annual eusocial insects: environmental variation will not necessarily promote graded control

    Directory of Open Access Journals (Sweden)

    Strohm Erhard

    2007-12-01

    Full Text Available Abstract Background According to the classical model of Macevicz and Oster, annual eusocial insects should show a clear dichotomous "bang-bang" strategy of resource allocation; colony fitness is maximised when a period of pure colony growth (exclusive production of workers is followed by a single reproductive period characterised by the exclusive production of sexuals. However, in several species graded investment strategies with a simultaneous production of workers and sexuals have been observed. Such deviations from the "bang-bang" strategy are usually interpreted as an adaptive (bet-hedging response to environmental fluctuations such as variation in season length or food availability. To generate predictions about the optimal investment pattern of insect colonies in fluctuating environments, we slightly modified Macevicz and Oster's classical model of annual colony dynamics and used a dynamic programming approach nested into a recurrence procedure for the solution of the stochastic optimal control problem. Results 1 The optimal switching time between pure colony growth and the exclusive production of sexuals decreases with increasing environmental variance. 2 Yet, for reasonable levels of environmental fluctuations no deviation from the typical bang-bang strategy is predicted. 3 Model calculations for the halictid bee Lasioglossum malachurum reveal that bet-hedging is not likely to be the reason for the graded allocation into sexuals versus workers observed in this species. 4 When environmental variance reaches a critical level our model predicts an abrupt change from dichotomous behaviour to graded allocation strategies, but the transition between colony growth and production of sexuals is not necessarily monotonic. Both, the critical level of environmental variance as well as the characteristic pattern of resource allocation strongly depend on the type of function used to describe environmental fluctuations. Conclusion Up to now bet

  10. Dynamic Behaviour of a Population of Controlled-by-price Demand Side Resources

    DEFF Research Database (Denmark)

    Sossan, Fabrizio; Han, Xue; Bindner, Henrik W.

    2014-01-01

    It is described that controlling or shedding by price the power consumption of a population of thermostatic loads introduces in the aggregate consumption dynamic effects th at cannot be disregarded if electrical flexible demand is meant to supply power system services. It is shown that inducing...

  11. Dynamic Communication Resource Negotiations

    Science.gov (United States)

    Chow, Edward; Vatan, Farrokh; Paloulian, George; Frisbie, Steve; Srostlik, Zuzana; Kalomiris, Vasilios; Apgar, Daniel

    2012-01-01

    Today's advanced network management systems can automate many aspects of the tactical networking operations within a military domain. However, automation of joint and coalition tactical networking across multiple domains remains challenging. Due to potentially conflicting goals and priorities, human agreement is often required before implementation into the network operations. This is further complicated by incompatible network management systems and security policies, rendering it difficult to implement automatic network management, thus requiring manual human intervention to the communication protocols used at various network routers and endpoints. This process of manual human intervention is tedious, error-prone, and slow. In order to facilitate a better solution, we are pursuing a technology which makes network management automated, reliable, and fast. Automating the negotiation of the common network communication parameters between different parties is the subject of this paper. We present the technology that enables inter-force dynamic communication resource negotiations to enable ad-hoc inter-operation in the field between force domains, without pre-planning. It also will enable a dynamic response to changing conditions within the area of operations. Our solution enables the rapid blending of intra-domain policies so that the forces involved are able to inter-operate effectively without overwhelming each other's networks with in-appropriate or un-warranted traffic. It will evaluate the policy rules and configuration data for each of the domains, then generate a compatible inter-domain policy and configuration that will update the gateway systems between the two domains.

  12. Dynamic Communication Resource Negotiations

    Science.gov (United States)

    Chow, Edward; Vatan, Farrokh; Paloulian, George; Frisbie, Steve; Srostlik, Zuzana; Kalomiris, Vasilios; Apgar, Daniel

    2012-01-01

    Today's advanced network management systems can automate many aspects of the tactical networking operations within a military domain. However, automation of joint and coalition tactical networking across multiple domains remains challenging. Due to potentially conflicting goals and priorities, human agreement is often required before implementation into the network operations. This is further complicated by incompatible network management systems and security policies, rendering it difficult to implement automatic network management, thus requiring manual human intervention to the communication protocols used at various network routers and endpoints. This process of manual human intervention is tedious, error-prone, and slow. In order to facilitate a better solution, we are pursuing a technology which makes network management automated, reliable, and fast. Automating the negotiation of the common network communication parameters between different parties is the subject of this paper. We present the technology that enables inter-force dynamic communication resource negotiations to enable ad-hoc inter-operation in the field between force domains, without pre-planning. It also will enable a dynamic response to changing conditions within the area of operations. Our solution enables the rapid blending of intra-domain policies so that the forces involved are able to inter-operate effectively without overwhelming each other's networks with in-appropriate or un-warranted traffic. It will evaluate the policy rules and configuration data for each of the domains, then generate a compatible inter-domain policy and configuration that will update the gateway systems between the two domains.

  13. Implementation of an Optical-Wireless Network with Spectrum Sensing and Dynamic Resource Allocation Using Optically Controlled Reconfigurable Antennas

    Directory of Open Access Journals (Sweden)

    E. Raimundo-Neto

    2014-01-01

    Full Text Available This work proposes the concept and reports the implementation of an adaptive and cognitive radio over fiber architecture. It is aimed at dealing with the new demands for convergent networks by means of simultaneously providing the functionalities of multiband radiofrequency spectrum sensing, dynamic resource allocation, and centralized processing capability, as well as the use of optically controlled reconfigurable antennas and radio over fiber technology. The performance of this novel and innovative architecture has been evaluated in a geographically distributed optical-wireless network under real conditions and for different fiber lengths. Experimental results demonstrate reach extension of more than 40 times and an enhancement of more than 30 dB in the carrier to interference plus noise ratio parameter.

  14. Resource Management in Constrained Dynamic Situations

    Science.gov (United States)

    Seok, Jinwoo

    Resource management is considered in this dissertation for systems with limited resources, possibly combined with other system constraints, in unpredictably dynamic environments. Resources may represent fuel, power, capabilities, energy, and so on. Resource management is important for many practical systems; usually, resources are limited, and their use must be optimized. Furthermore, systems are often constrained, and constraints must be satisfied for safe operation. Simplistic resource management can result in poor use of resources and failure of the system. Furthermore, many real-world situations involve dynamic environments. Many traditional problems are formulated based on the assumptions of given probabilities or perfect knowledge of future events. However, in many cases, the future is completely unknown, and information on or probabilities about future events are not available. In other words, we operate in unpredictably dynamic situations. Thus, a method is needed to handle dynamic situations without knowledge of the future, but few formal methods have been developed to address them. Thus, the goal is to design resource management methods for constrained systems, with limited resources, in unpredictably dynamic environments. To this end, resource management is organized hierarchically into two levels: 1) planning, and 2) control. In the planning level, the set of tasks to be performed is scheduled based on limited resources to maximize resource usage in unpredictably dynamic environments. In the control level, the system controller is designed to follow the schedule by considering all the system constraints for safe and efficient operation. Consequently, this dissertation is mainly divided into two parts: 1) planning level design, based on finite state machines, and 2) control level methods, based on model predictive control. We define a recomposable restricted finite state machine to handle limited resource situations and unpredictably dynamic environments

  15. Dynamic pricing of a resource

    KAUST Repository

    Al-Dawsari, Monther Abdullah

    2013-06-04

    A method of dynamic pricing of a resource is presented. For example, the method includes determining a set of anticipated demands for one or more users to acquire the resource according to uncertainty of the one or more users in preferring one or more certain time periods of a plurality of time periods for acquiring the resource. Prices for the resource differ between at least two of the plurality of time periods. Each anticipated demand of the set is associated with a different one of the plurality of time periods. The method further includes setting prices for the resource during each of the plurality of time periods according to the determined set of anticipated demands. The determining of the set of anticipated demands and/or the setting of prices are implemented as instruction code executed on a processor device.

  16. Dynamics & Control

    Science.gov (United States)

    2012-03-06

    DISTRIBUTION A: Approved for public release; distribution is unlimited. Quantum Linear Systems Theory : Matt James, Ian Peterson • Why Quantum Control? Is...Classical linear systems theory has a history going back some 50 years, to the birth of modern control theory with Kalman’s foundational work on filtering...and LQG optimal control. Gaussian Distributions play a fundamental role in classical linear systems theory . • The PIs have shown that classical

  17. Dynamic resource management using bandwidth brokers

    Institute of Scientific and Technical Information of China (English)

    Yu Chengzhi; Song Hantao; Hou Xianjun; Pan Chengsheng

    2006-01-01

    The admission control issue in the design of a centralized bandwidth broker model for dynamic control and management of QoS provisioning is studied. A two-phase differentiated flow treatment based dynamic admission control scheme under the centralized bandwidth broker model is proposed. In the proposed scheme, the flow requests are classified into two classes and get differentiated treatment according to their QoS demands. We demonstrate that this admission control scheme can not only improve the resource utilization but also guarantee the flows' QoS. Furthermore, the admission control is divided into two phases: edge admission control and interior admissio-n control. During the interior phase, the PoQ scheme is adopted, which enhances the call processing capability of the bandwidth broker. The simulation results show that the proposed scheme can result in lower flow blocking probability and higher resource utilization. And it also reduces the number of QoS state accesses/updates, thereby increasing the overall call processing capability of the bandwidth broker.

  18. DYNAMIC RESOURCES OF RIVER SEDIMENTS

    Institute of Scientific and Technical Information of China (English)

    George GERGOV; Tzviatka KARAGIOZOVA

    2005-01-01

    The currently enforced Bulgarian water legislation [the Water Act (1999),the Environmental Protection Act (2002),etc.] requires conducting special studies for accurate assessments of sand and gravel flux along the rivers,prior to the issue of the license for operation of the quarries,where they will be dredged. The activity of a quarry necessitates special investigations because of the large dimensions of the damages inflicted on the environment. Ours studies have shown that there are two types of river reaches,in which abstracion of sand and gravel is performed. The first one refers usually to the plain area river reaches. The other type is mountainous with high rate of sediment load,which consists of coarse solid matter. The "on-the-spot" study on the environmental impact of the sand and gravel dredging has revealed that in the area of the quarry the riverbed cuts into the alluvial sediments to about 6-7 m and this ditch has spread by attenuation at a distance of more than 25 km upstream. Downstream the pit the picture is replicated and at the 8th km a local scour on the riverbed,amounting to more than 1.80 - 2.00 m,has been measured near the foundation of a massive bridge in the centre of city of Plovdiv. Such assessments of dynamic resources of sand and gravel materials are expected to serve for the purposes of gradual limitation of this activity in river sections close to renewable resources. The amount of sediment load,which may be abstracted in the area of the Orizare quarry in Bulgaria on a yearly basis has been calculated as 6000 m3/a. It ensures that the resources will not be exhausted and irreversible distortion of the riverbed will be prevented. This is an environmentally safe limit.

  19. Cognitive radio networks dynamic resource allocation schemes

    CERN Document Server

    Wang, Shaowei

    2014-01-01

    This SpringerBrief presents a survey of dynamic resource allocation schemes in Cognitive Radio (CR) Systems, focusing on the spectral-efficiency and energy-efficiency in wireless networks. It also introduces a variety of dynamic resource allocation schemes for CR networks and provides a concise introduction of the landscape of CR technology. The author covers in detail the dynamic resource allocation problem for the motivations and challenges in CR systems. The Spectral- and Energy-Efficient resource allocation schemes are comprehensively investigated, including new insights into the trade-off

  20. Dynamic power flow controllers

    Science.gov (United States)

    Divan, Deepakraj M.; Prasai, Anish

    2017-03-07

    Dynamic power flow controllers are provided. A dynamic power flow controller may comprise a transformer and a power converter. The power converter is subject to low voltage stresses and not floated at line voltage. In addition, the power converter is rated at a fraction of the total power controlled. A dynamic power flow controller controls both the real and the reactive power flow between two AC sources having the same frequency. A dynamic power flow controller inserts a voltage with controllable magnitude and phase between two AC sources; thereby effecting control of active and reactive power flows between two AC sources.

  1. Dynamic cache resources allocation for energy efficiency

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-ming; ZOU Xue-cheng; LEI Jian-ming; LIU Zheng-lin

    2009-01-01

    This article proposes a mechanism of low overhead and less runtime, termed dynamic cache resources allocation (DCRA), which allocates each application with required cache resources. The mechanism collects cache hit-miss information at runtime and then analyzes the information and decides how many cache resources should be allocated to the current executing application. The amount of cache resources varies dynamically to reduce the total number of misses and energy consumption. The study of several applications from SPEC2000 shows that significant energy saving is achieved for the application based on the DCRA with an average of 39% savings.

  2. Natural resources and control processes

    CERN Document Server

    Wang, Mu-Hao; Hung, Yung-Tse; Shammas, Nazih

    2016-01-01

    This edited book has been designed to serve as a natural resources engineering reference book as well as a supplemental textbook. This volume is part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. It complements two other books in the series including Environmental and Natural Resources Engineering and Integrated Natural Resources Management that serve as a basis for advanced study or specialized investigation of the theory and analysis of various natural resources systems. This book covers the management of many waste sources including those from agricultural livestock, deep-wells, industries manufacturing dyes, and municipal solid waste incinerators. The purpose of this book is to thoroughly prepare the reader for understanding the sources, treatment and control methods of toxic wastes shown to have harmful effects on the environment. Chapters provide information ...

  3. Vehicle Dynamics and Control

    CERN Document Server

    Rajamani, Rajesh

    2012-01-01

    Vehicle Dynamics and Control provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicle. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability co...

  4. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  5. Quantum dynamics as a physical resource

    CERN Document Server

    Nielsen, M A; Dodd, J L; Gilchrist, A; Mortimer, D; Osborne, T J; Bremner, M J; Harrow, A W; Hines, A; Nielsen, Michael A.; Dawson, Christopher M.; Dodd, Jennifer L.; Gilchrist, Alexei; Mortimer, Duncan; Osborne, Tobias J.; Bremner, Michael J.; Harrow, Aram W.; Hines, Andrew

    2003-01-01

    How useful is a quantum dynamical operation for quantum information processing? Motivated by this question we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.

  6. Scheduling based on a dynamic resource connection

    Science.gov (United States)

    Nagiyev, A. E.; Botygin, I. A.; Shersntneva, A. I.; Konyaev, P. A.

    2017-02-01

    The practical using of distributed computing systems associated with many problems, including troubles with the organization of an effective interaction between the agents located at the nodes of the system, with the specific configuration of each node of the system to perform a certain task, with the effective distribution of the available information and computational resources of the system, with the control of multithreading which implements the logic of solving research problems and so on. The article describes the method of computing load balancing in distributed automatic systems, focused on the multi-agency and multi-threaded data processing. The scheme of the control of processing requests from the terminal devices, providing the effective dynamic scaling of computing power under peak load is offered. The results of the model experiments research of the developed load scheduling algorithm are set out. These results show the effectiveness of the algorithm even with a significant expansion in the number of connected nodes and zoom in the architecture distributed computing system.

  7. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  8. Auditing dynamic links to online information resources.

    Science.gov (United States)

    Li, Jianhua; Cimino, James J

    2007-10-11

    The Columbia University Infobutton Manager (IM) is a system that provides dynamically generated, context-specific links between clinical information systems and online information resources. The resources range from local documents, to commercially available document sets and search engines. The links provided by the IM can be reliably created, but there is no guarantee that they will function reliably, since the resources to which they point are subject to unannounced changes and failures. We have developed a set of tools to audit the links periodically to determine if the resources are available and if the IM has sufficient information to generate all the links needed by its users. These tools have been in use since February, 2006 and have provided timely warnings on many occasions. These warnings have allowed us to correct problems with resource access before they became apparent to our users and often before the resource maintainers were aware of the problems. The tools have thus helped us provide clinicians with a dependable level of service.

  9. Dynamic Resource Allocation in Desktop Grids

    Directory of Open Access Journals (Sweden)

    Bismi A S,

    2010-08-01

    Full Text Available Grid computing (or the use of computational grids is the application of several computers to a single problem at the same time. In grid computing ,the computing becomes pervasive and individual users(or client applicationgain access to computing resources (processors ,storage ,data,applications,and so onas needed with little or noknowledge of where those resources are located or what the underlying technologies, hardware ,operating system and so on. This paper address the problem of resource scheduling ,and there are so many resource scheduling algorithms .Resource scheduling algorithm may be centralized one and distributed one. One of the latest one is the multi-variable best fit algorithm, which deals with storage systems, and it enhanced in this work. and this algorithm is dealing withdata grids for blade servers. so, this algorithm is modified for computational grids, especially with desktop systems with minimum spanning algorithm for node selection and it is giving good results. In desktop grid environment, dynamic scheduling becomes very important and globus like toolkits are not having the scheduler as its own, and it needs other schedulers are not specially for computational grids.

  10. Dynamic Resource Allocation in Hybrid Access Femtocell Network

    Directory of Open Access Journals (Sweden)

    Afaz Uddin Ahmed

    2014-01-01

    Full Text Available Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femto-tier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP owners’ satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners’ satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network.

  11. Scheduled Controller Design of Congestion Control Considering Network Resource Constraints

    Science.gov (United States)

    Naito, Hiroyuki; Azuma, Takehito; Fujita, Masayuki

    In this paper, we consider a dynamical model of computer networks and derive a synthesis method for congestion control. First, we show a model of TCP/AQM (Transmission Control Protocol/Active Queue Management) as a dynamical model of computer networks. The dynamical model of TCP/AQM networks consists of models of TCP window size, queue length and AQM mechanisms. Second, we propose to describe the dynamical model of TCP/AQM networks as linear systems with self-scheduling parameters, which also depend on information delay. Here we focus on the constraints on the maximum queue length and TCP window-size, which are the network resources in TCP/AQM networks. We derive TCP/AQM networks as the LPV system (linear parameter varying system) with information delay and self-scheduling parameter. We design a memoryless state feedback controller of the LPV system based on a gain-scheduling method. Finally, the effectiveness of the proposed method is evaluated by using MATLAB and the well-known ns-2 (Network Simulator Ver.2) simulator.

  12. Control of Resources for Economic Development in Food Networks

    DEFF Research Database (Denmark)

    Brink, Tove

    2010-01-01

    of preferences on the control of resources, the significant benefit of oral instructions and the significant negative impact from supervising product quality on economic development in the context of the food networking SMEs. Previous level of knowledge has no significant influence on their economic development...... to control resources for innovation to add value and economic development. This paper reveals how crossing dynamic composite underlying boundaries can have an impact on control of resources for economic development in food networking SMEs .The analyses in this paper shows the broad and significant impact...

  13. Dynamic computing resource allocation in online flood monitoring and prediction

    Science.gov (United States)

    Kuchar, S.; Podhoranyi, M.; Vavrik, R.; Portero, A.

    2016-08-01

    This paper presents tools and methodologies for dynamic allocation of high performance computing resources during operation of the Floreon+ online flood monitoring and prediction system. The resource allocation is done throughout the execution of supported simulations to meet the required service quality levels for system operation. It also ensures flexible reactions to changing weather and flood situations, as it is not economically feasible to operate online flood monitoring systems in the full performance mode during non-flood seasons. Different service quality levels are therefore described for different flooding scenarios, and the runtime manager controls them by allocating only minimal resources currently expected to meet the deadlines. Finally, an experiment covering all presented aspects of computing resource allocation in rainfall-runoff and Monte Carlo uncertainty simulation is performed for the area of the Moravian-Silesian region in the Czech Republic.

  14. Reinforcement learning techniques for controlling resources in power networks

    Science.gov (United States)

    Kowli, Anupama Sunil

    As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.

  15. Dynamic Fractional Resource Scheduling vs. Batch Scheduling

    CERN Document Server

    Casanova, Henri; Vivien, Frédéric

    2011-01-01

    We propose a novel job scheduling approach for homogeneous cluster computing platforms. Its key feature is the use of virtual machine technology to share fractional node resources in a precise and controlled manner. Other VM-based scheduling approaches have focused primarily on technical issues or on extensions to existing batch scheduling systems, while we take a more aggressive approach and seek to find heuristics that maximize an objective metric correlated with job performance. We derive absolute performance bounds and develop algorithms for the online, non-clairvoyant version of our scheduling problem. We further evaluate these algorithms in simulation against both synthetic and real-world HPC workloads and compare our algorithms to standard batch scheduling approaches. We find that our approach improves over batch scheduling by orders of magnitude in terms of job stretch, while leading to comparable or better resource utilization. Our results demonstrate that virtualization technology coupled with light...

  16. Cognitive cost as dynamic allocation of energetic resources.

    Science.gov (United States)

    Christie, S Thomas; Schrater, Paul

    2015-01-01

    While it is widely recognized that thinking is somehow costly, involving cognitive effort and producing mental fatigue, these costs have alternatively been assumed to exist, treated as the brain's assessment of lost opportunities, or suggested to be metabolic but with implausible biological bases. We present a model of cognitive cost based on the novel idea that the brain senses and plans for longer-term allocation of metabolic resources by purposively conserving brain activity. We identify several distinct ways the brain might control its metabolic output, and show how a control-theoretic model that models decision-making with an energy budget can explain cognitive effort avoidance in terms of an optimal allocation of limited energetic resources. The model accounts for both subject responsiveness to reward and the detrimental effects of hypoglycemia on cognitive function. A critical component of the model is using astrocytic glycogen as a plausible basis for limited energetic reserves. Glycogen acts as an energy buffer that can temporarily support high neural activity beyond the rate supported by blood glucose supply. The published dynamics of glycogen depletion and repletion are consonant with a broad array of phenomena associated with cognitive cost. Our model thus subsumes both the "cost/benefit" and "limited resource" models of cognitive cost while retaining valuable contributions of each. We discuss how the rational control of metabolic resources could underpin the control of attention, working memory, cognitive look ahead, and model-free vs. model-based policy learning.

  17. Dynamics of a wellness program: a conservation of resources perspective.

    Science.gov (United States)

    Kim, Sung Doo; Hollensbe, Elaine C; Schwoerer, Catherine E; Halbesleben, Jonathon R B

    2015-01-01

    We leverage conservation of resources theory to explain possible dynamics through which a holistic wellness program results in positive longer-term outcomes. Specifically, we hypothesize that wellness self-efficacy at the end of a wellness program will create a positive resource gain spiral, increasing psychological availability (a sense of having cognitive, physical, and emotional resources to engage oneself) 6 months later, and career satisfaction, 1 year later. To test these hypotheses, using a time-lagged with control group design, we gathered questionnaire data from 160 Episcopal priests who participated in a 10-day off-site wellness program. We developed a scale measuring self-efficacy in the 4 wellness areas the program was designed to improve: physical, spiritual, financial, and vocational. Our findings provide evidence from a field setting of a relatively untested tenet of conservation of resources theory, resource gain spirals. The wellness program that we studied served as an opportunity for participants to gain new resources in the form of wellness self-efficacy, which in turn helped participants experience positive outcomes over time. We discuss theoretical and practical implications of the findings.

  18. Dynamics of immigration control.

    Science.gov (United States)

    Djajic, S

    1999-01-01

    This paper examines the dynamic implications of US border control policies and internal enforcement measures for the pattern of illegal immigration and the sectoral allocation of clandestine foreign workers. Efforts to counteract illegal immigration into the US have been increasing steadily following the passage of the Immigration Reform and Control Act of 1986. The purpose of the Act is to reduce illegal immigration with the aid of three instruments: 1) employer sanctions; 2) increased controls along the border; and 3) a legalization program designed to meet the existing demand for agricultural labor in geographic locations that are in proximity of Mexico, the principal source of clandestine foreign labor. The effect of tougher border control measures increases the cost of illegal entry, discouraging clandestine inflows. On the other hand, these measures induce migrants to increase their own anti-detection efforts, reducing the probability of detection and the deportation rate. If the latter effect should dominate, the steady-state stock of clandestine foreign labor will actually increase in response to more vigorous border control measures. Explicit consideration of the role of networks in the clandestine labor market suggests the need for a drastic policy change. This policy change should target illegal migration in areas with high concentrations of clandestine foreign workers. Complementary measures should accompany this policy change to prevent unbalanced enforcement measures.

  19. Consumer-resource dynamics: quantity, quality, and allocation.

    Directory of Open Access Journals (Sweden)

    Wayne M Getz

    Full Text Available BACKGROUND: The dominant paradigm for modeling the complexities of interacting populations and food webs is a system of coupled ordinary differential equations in which the state of each species, population, or functional trophic group is represented by an aggregated numbers-density or biomass-density variable. Here, using the metaphysiological approach to model consumer-resource interactions, we formulate a two-state paradigm that represents each population or group in a food web in terms of both its quantity and quality. METHODOLOGY AND PRINCIPAL FINDINGS: The formulation includes an allocation function controlling the relative proportion of extracted resources to increasing quantity versus elevating quality. Since lower quality individuals senescence more rapidly than higher quality individuals, an optimal allocation proportion exists and we derive an expression for how this proportion depends on population parameters that determine the senescence rate, the per-capita mortality rate, and the effects of these rates on the dynamics of the quality variable. We demonstrate that oscillations do not arise in our model from quantity-quality interactions alone, but require consumer-resource interactions across trophic levels that can be stabilized through judicious resource allocation strategies. Analysis and simulations provide compelling arguments for the necessity of populations to evolve quality-related dynamics in the form of maternal effects, storage or other appropriate structures. They also indicate that resource allocation switching between investments in abundance versus quality provide a powerful mechanism for promoting the stability of consumer-resource interactions in seasonally forcing environments. CONCLUSIONS/SIGNIFICANCE: Our simulations show that physiological inefficiencies associated with this switching can be favored by selection due to the diminished exposure of inefficient consumers to strong oscillations associated with the

  20. Resource Matchmaking Algorithm using Dynamic Rough Set in Grid Environment

    CERN Document Server

    Ataollahi, Iraj

    2009-01-01

    Grid environment is a service oriented infrastructure in which many heterogeneous resources participate to provide the high performance computation. One of the bug issues in the grid environment is the vagueness and uncertainty between advertised resources and requested resources. Furthermore, in an environment such as grid dynamicity is considered as a crucial issue which must be dealt with. Classical rough set have been used to deal with the uncertainty and vagueness. But it can just be used on the static systems and can not support dynamicity in a system. In this work we propose a solution, called Dynamic Rough Set Resource Discovery (DRSRD), for dealing with cases of vagueness and uncertainty problems based on Dynamic rough set theory which considers dynamic features in this environment. In this way, requested resource properties have a weight as priority according to which resource matchmaking and ranking process is done. We also report the result of the solution obtained from the simulation in GridSim s...

  1. Asteroid Control and Resource Utilization

    Science.gov (United States)

    Paterson, G.; Radice, G.; Sanchez, J.-P.

    Asteroids are materials rich small solar system bodies which are prime candidates for rendezvous and mining. Up until now much attention has been focused on methods of destroying or deflecting potentially hazardous asteroids from colliding with the Earth. Recently however the concept of asteroid capture has been suggested whereby the asteroid is returned to an orbit close to the Earth before mining can begin. This paper aims to provide a comprehensive introduction to the field for new researchers and to put forward a number of novel strategies for asteroid control.

  2. Multimode dynamics in a network with resource mediated coupling

    DEFF Research Database (Denmark)

    Postnov, D.E.; Sosnovtseva, Olga; Scherbakov, P.

    2008-01-01

    The purpose of this paper is to study the special forms of multimode dynamics that one can observe in systems with resource- mediated coupling, i. e., systems of self- sustained oscillators in which the coupling takes place via the distribution of primary resources that controls the oscillatory...... state of the individual unit. With this coupling, a spatially inhomogenous state with mixed high and lowamplitude oscillations in the individual units can arise. To examine generic phenomena associated with this type of interaction we consider a chain of resistively coupled electronic oscillators...... connected to a common power supply. The two- oscillator system displays antiphase synchronization, and it is interesting to note that two- mode oscillations continue to exist outside of the parameter range in which oscillations occur for the individual unit. At low coupling strengths, the multioscillator...

  3. Power system dynamics stability and control

    CERN Document Server

    Padiyar, K R

    2008-01-01

    Modern power systems tend to be very Complex not only due to increasing Demand for quality power, but also on Account of extensive interconnections and increasing dependence on control for optimum utilization for existing resources. A good Knowledge of system dynamics and control is Essential for secure operation of the system. This book is intended to serve the needs of the Student and practicing engineers. A Large number of illustrative examples are included to provide an insight into the application of the theory.

  4. Review of dynamic optimization methods in renewable natural resource management

    Science.gov (United States)

    Williams, B.K.

    1989-01-01

    In recent years, the applications of dynamic optimization procedures in natural resource management have proliferated. A systematic review of these applications is given in terms of a number of optimization methodologies and natural resource systems. The applicability of the methods to renewable natural resource systems are compared in terms of system complexity, system size, and precision of the optimal solutions. Recommendations are made concerning the appropriate methods for certain kinds of biological resource problems.

  5. HOW TO SELECT APPROPRIATE HUMAN RESOURCE CONTROLLING INDICATORS

    OpenAIRE

    Monika Dugelova; Mariana Strenitzerova

    2015-01-01

    Human resource controlling represents a company’s strategic method to support its role is planning, checking, and managing—including information supplement for human resources department. Human resource controlling helps with optimization and transformation of human resource functions and with general human resource management. Our survey deals with the implementation of human resource controlling in information technology companies. The selection of appropriate human resource controlling too...

  6. 一种动态带宽资源预留分配链路接入控制算法%A link access control algorithm based on dynamic bandwidth resource reservation allocation

    Institute of Scientific and Technical Information of China (English)

    郭小雪; 秦勇

    2012-01-01

    传统的基于带宽请求的固定资源预留链路接入控制算法(BRLAC)不能适应网络状态和业务需求的变化,针对该类算法接入成功率和系统带宽利用率不高的问题,基于概率分析了系统预留带宽的大小,并提出一种动态带宽资源预留分配链路接入控制算法(DBRRA),该算法通过判断业务流优先级允许动态地从其他业务流调整预留带宽。仿真实验证明,DBRRA算法有较高的接入成功率、系统带宽利用率和较好的时延特性。%The traditional static resource reservation link access control algorithm based on bandwidth request can not adapt to the network state and business requirements, aiming at problems of low access success rate and low utilization ratio of bandwidth resource, the paper analyses the probability of bandwidth reservation, and proposes a link access control algorithm based on dynamic bandwidth resource reservation allocation. The algorithm allows adjusting bandwidth from other low level business traffic dynamically by judging the priority of business traffic. The experimental results demonstrate that the algorithm can improve the link access success proportion, system bandwidth utilization and have better delay character.

  7. Study on Dynamic Information of Animal Genetic Resources in China

    Institute of Scientific and Technical Information of China (English)

    MA Yue-hui; XU Gui-fang; WANG Duan-yun; LIU Hai-liang; YANG Yan

    2003-01-01

    The dynamic information of 331 animal genetic resources in 17 important animal genetic re-source provinces (regions) was analyzed. According to the population inbreeding coefficient, combiningwith the information of population dynamic change trend and cross degree, these genetic resources forthreatened degrees were classified. The results indicated that the population size of 138 breeds had in-creased, 147 breeds had decreased, 3 breeds were constant, 7 breeds (or varieties) were extinct, 9 breeds(or varieties) were critically endangered and needed urgently conserve, 50 breeds (or varieties) were endan-gered and should be conserved. We put forward a conservation and utilization plan for animal genetic re-sources.

  8. Inhibition: Mental Control Process or Mental Resource?

    Science.gov (United States)

    Im-Bolter, Nancie; Johnson, Janice; Ling, Daphne; Pascual-Leone, Juan

    2015-01-01

    The current study tested 2 models of inhibition in 45 children with language impairment and 45 children with normally developing language; children were aged 7 to 12 years. Of interest was whether a model of inhibition as a mental-control process (i.e., executive function) or as a mental resource would more accurately reflect the relations among…

  9. NURSING HOME CONTROL OF PHYSICIAN RESOURCES (NHCOPR)

    Science.gov (United States)

    Intrator, Orna; Lima, Julie; Wetle, Terrie Fox

    2014-01-01

    Objective Physician services are increasingly recognized as important contributors to quality care provision in nursing homes (NHs), but knowledge of ways in which NHs manage/ control physician resources is lacking. Data Primary data from surveys of NH Administrators and Directors of Nursing from a nationally representative sample of 1,938 freestanding U.S. NHs in 2009–2010 matched to Online Survey Certification and Reporting (OSCAR), aggregated NH Minimum Data Set (MDS) assessments and Medicare claims, and data from the Area Resource File (ARF). Methods The concept of NH Control of Physician Resources (NHCOPR) was measured using NH Administrators’ reports of management implementation of rules, policies, and procedures aimed at coordinating work activities. The NHCOPR scale was based on measures of formal relationships, physician oversight and credentialing. Scale values ranged from weakest (0) to tightest (3) control. Several hypotheses of expected associations between NHCOPR and other measures of NH and market characteristics were tested. Principal Findings The full NHCOPR score averaged 1.58 (SD=0.77) on the 0–3 scale. Nearly 30% of NHs had weak control (NHCOPR 2). NHCOPR exhibited good face- and predictive-validity as exhibited by positive associations with more beds, more Medicare services, cross coverage and number of physicians in the market. Conclusions The NHCOPR scale capturing NH’s formal structure of control of physician resources can be useful in studying the impact of NH’s physician resources on residents’ outcomes with potential for targeted interventions by education and promotion of NH administration of physician staff. PMID:24508327

  10. Dynamical behavior of a discrete time Hogg-Huberman model with three resources

    Science.gov (United States)

    Inoue, M.; Tanaka, T.; Takagi, N.; Shibata, J.

    2002-09-01

    The dynamical behavior of a discrete time Hogg-Huberman model with three resources 1-3 is investigated. The payoff function of resource 3 is assumed to be the same function as that of resource 2. It is found that when the control parameter takes certain values there are various states which are called the monopoly state of resource 1, and synchronized and asynchronized chaotic states with respect to the fractions of agents using resources 2 and 3. The effect of a reward mechanism based on the actual performance of agents is also calculated in this system.

  11. Spacecraft attitude dynamics and control

    Science.gov (United States)

    Chobotov, Vladimir A.

    This overview of spacecraft dynamics encompasses the fundamentals of kinematics, rigid-body dynamics, linear control theory, orbital environmental effects, and the stability of motion. The theoretical treatment of each issue is complemented by specific references to spacecraft control systems based on spin, dual-spin, three-axis-active, and reaction-wheel methodologies. Also examined are control-moment-gyro, gravity-gradient, and magnetic control systems with attention given to key issues such as nutation damping, separation dynamics of spinning bodies, and tethers. Environmental effects that impinge on the application of spacecraft-attitude dynamics are shown to be important, and consideration is given to gravitation, solar radiation, aerodynamics, and geomagnetics. The publication gives analytical methods for examining the practical implementation of the control techniques as they apply to spacecraft.

  12. A DYNAMIC EVALUATION MODEL OF MINERAL RESOURCE PROPERTY

    Institute of Scientific and Technical Information of China (English)

    芮建伟; 冯志亮

    2000-01-01

    Based on the value theory of mineral resource, a dynamic evaluation model of mineral resource property is erected, which not only takes the factors of extractions into consideration but also those of explorations. The solution process of the model is described and the differential solution is presented. Then the paper comes to the conclusion that the differential solution is also the optimal depletion path of the resource.

  13. Resource allocation for epidemic control in metapopulations.

    Directory of Open Access Journals (Sweden)

    Martial L Ndeffo Mbah

    Full Text Available Deployment of limited resources is an issue of major importance for decision-making in crisis events. This is especially true for large-scale outbreaks of infectious diseases. Little is known when it comes to identifying the most efficient way of deploying scarce resources for control when disease outbreaks occur in different but interconnected regions. The policy maker is frequently faced with the challenge of optimizing efficiency (e.g. minimizing the burden of infection while accounting for social equity (e.g. equal opportunity for infected individuals to access treatment. For a large range of diseases described by a simple SIRS model, we consider strategies that should be used to minimize the discounted number of infected individuals during the course of an epidemic. We show that when faced with the dilemma of choosing between socially equitable and purely efficient strategies, the choice of the control strategy should be informed by key measurable epidemiological factors such as the basic reproductive number and the efficiency of the treatment measure. Our model provides new insights for policy makers in the optimal deployment of limited resources for control in the event of epidemic outbreaks at the landscape scale.

  14. Applying a Dynamic Resource Supply Model in a Smart Grid

    Directory of Open Access Journals (Sweden)

    Kaiyu Wan

    2014-09-01

    Full Text Available Dynamic resource supply is a complex issue to resolve in a cyber-physical system (CPS. In our previous work, a resource model called the dynamic resource supply model (DRSM has been proposed to handle resources specification, management and allocation in CPS. In this paper, we are integrating the DRSM with service-oriented architecture and applying it to a smart grid (SG, one of the most complex CPS examples. We give the detailed design of the SG for electricity charging request and electricity allocation between plug-in hybrid electric vehicles (PHEV and DRSM through the Android system. In the design, we explain a mechanism for electricity consumption with data collection and re-allocation through ZigBee network. In this design, we verify the correctness of this resource model for expected electricity allocation.

  15. World water dynamics: global modeling of water resources.

    Science.gov (United States)

    Simonovic, Slobodan P

    2002-11-01

    The growing scarcity of fresh and clean water is among the most important issues facing civilization in the 21st century. Despite the growing attention to a chronic, pernicious crisis in world's water resources our ability to correctly assess and predict global water availability, use and balance is still quite limited. An attempt is documented here in modeling global world water resources using system dynamics approach. Water resources sector (quantity and quality) is integrated with five sectors that drive industrial growth: population; agriculture; economy; nonrenewable resources; and persistent pollution. WorldWater model is developed on the basis of the last version of World3 model. Simulations of world water dynamics with WorldWater indicate that there is a strong relationship between the world water resources and future industrial growth of the world. It is also shown that the water pollution is the most important future water issue on the global level.

  16. Optimal Control of Evolutionary Dynamics

    CERN Document Server

    Chakrabarti, Raj; McLendon, George

    2008-01-01

    Elucidating the fitness measures optimized during the evolution of complex biological systems is a major challenge in evolutionary theory. We present experimental evidence and an analytical framework demonstrating how biochemical networks exploit optimal control strategies in their evolutionary dynamics. Optimal control theory explains a striking pattern of extremization in the redox potentials of electron transport proteins, assuming only that their fitness measure is a control objective functional with bounded controls.

  17. Dynamic PID loop control

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  18. Dynamic PID loop control

    CERN Document Server

    Pei, L; Theilacker, J; Soyars, W; Martinez, A; Bossert, R; DeGraff, B; Darve, C

    2012-01-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters' oscillation.

  19. Stochastic dynamics and control

    CERN Document Server

    Sun, Jian-Qiao; Zaslavsky, George

    2006-01-01

    This book is a result of many years of author's research and teaching on random vibration and control. It was used as lecture notes for a graduate course. It provides a systematic review of theory of probability, stochastic processes, and stochastic calculus. The feedback control is also reviewed in the book. Random vibration analyses of SDOF, MDOF and continuous structural systems are presented in a pedagogical order. The application of the random vibration theory to reliability and fatigue analysis is also discussed. Recent research results on fatigue analysis of non-Gaussian stress proc

  20. Dynamic Resource Management and Cyber Foraging

    DEFF Research Database (Denmark)

    Riva, Oriana; Kristensen, Mads Darø; Porras, Jari

    2009-01-01

    personal somputing devices of the future. However, although relatively poverful, mobile devices will always be constrained in terms of physical size, thus leading to limitations in their computing and communication capabilities, battery lifetime as well as screen and keyboard size. These constraints...... inhibit mobile devices from fully supporting increasingly demaniding mobile applications. Furthermore, althougt processing capabilities have followed Moore's law for the last 30 years, the more critical resource on mobile devices is battery energy density, which has shown the slowest trend in mobile...

  1. Dynamic resource allocation in conservation planning

    Science.gov (United States)

    Golovin, D.; Krause, A.; Gardner, B.; Converse, S.J.; Morey, S.

    2011-01-01

    Consider the problem of protecting endangered species by selecting patches of land to be used for conservation purposes. Typically, the availability of patches changes over time, and recommendations must be made dynamically. This is a challenging prototypical example of a sequential optimization problem under uncertainty in computational sustainability. Existing techniques do not scale to problems of realistic size. In this paper, we develop an efficient algorithm for adaptively making recommendations for dynamic conservation planning, and prove that it obtains near-optimal performance. We further evaluate our approach on a detailed reserve design case study of conservation planning for three rare species in the Pacific Northwest of the United States. Copyright ?? 2011, Association for the Advancement of Artificial Intelligence. All rights reserved.

  2. Approximate Dynamic Programming for Military Resource Allocation

    Science.gov (United States)

    2014-12-26

    combinatorial optimization, the DWTA prob- lem suffers from the curses of dimensionality and optimality is often computationally intractability. As such...exponentially. These are known as dynamic programming’s curses of dimensionality [82]. Much of the existing research focuses on solution techniques for...simultaneously. • The outcomes of each stage are observed prior to the following stage (this can either be perfect knowledge or stochastic, though Hosein [47

  3. Optimal control of renewable economic resources

    Energy Technology Data Exchange (ETDEWEB)

    Adelani, L.A.

    1987-01-01

    Two main problems are studied: economic optimization, and determination of the optimal age of harvest for an initially immature population which follows a Bertalanffy-type growth law. Conditions are derived on the economic parameters that make maximization of economic rent biologically superior to maximization of sustainable yield. A general equation is derived for the optimal equilibrium biomass size when maximization of present value is the control objective. Also, it is shown that under perfectly elastic demand for the resource, a critical price level exists beyond which economic optimization has to be sacrificed in order to enhance conservation of the resource. An equation is derived whose solution represents the optimal age of harvest for an initially immature population stock. In certain circumstances, analytic forms are obtained for the optimal age of harvest. Some properties of the optimal age of harvest are also investigated.

  4. Workload control dynamics in practice

    NARCIS (Netherlands)

    Soepenberg, G. D.; Land, M. J.; Gaalman, G. J. C.

    2012-01-01

    Workload control (WLC) is a well established production planning and control concept for make-to-order companies. The main insights into WLC are being gained from stationary simulation studies. Knowledge on its functioning in practice is limited, especially in a dynamic setting. The aim of this pape

  5. Multimode dynamics in a network with resource mediated coupling

    Science.gov (United States)

    Postnov, D. E.; Sosnovtseva, O. V.; Scherbakov, P.; Mosekilde, E.

    2008-03-01

    The purpose of this paper is to study the special forms of multimode dynamics that one can observe in systems with resource-mediated coupling, i.e., systems of self-sustained oscillators in which the coupling takes place via the distribution of primary resources that controls the oscillatory state of the individual unit. With this coupling, a spatially inhomogenous state with mixed high and low-amplitude oscillations in the individual units can arise. To examine generic phenomena associated with this type of interaction we consider a chain of resistively coupled electronic oscillators connected to a common power supply. The two-oscillator system displays antiphase synchronization, and it is interesting to note that two-mode oscillations continue to exist outside of the parameter range in which oscillations occur for the individual unit. At low coupling strengths, the multi-oscillator system shows high dimensional quasiperiodicity with little tendency for synchronization. At higher coupling strengths, one typically observes spatial clustering involving a few oscillating units. We describe three different scenarios according to which the cluster can slide along the chain as the bias voltage changes.

  6. Traffic jams: dynamics and control.

    Science.gov (United States)

    Orosz, Gábor; Wilson, R Eddie; Stépán, Gábor

    2010-10-13

    This introductory paper reviews the current state-of-the-art scientific methods used for modelling, analysing and controlling the dynamics of vehicular traffic. Possible mechanisms underlying traffic jam formation and propagation are presented from a dynamical viewpoint. Stable and unstable motions are described that may give the skeleton of traffic dynamics, and the effects of driver behaviour are emphasized in determining the emergent state in a vehicular system. At appropriate points, references are provided to the papers published in the corresponding Theme Issue.

  7. Resources

    Science.gov (United States)

    ... resources Alzheimer's - resources Anorexia nervosa - resources Arthritis - resources Asthma and allergy - resources Autism - resources Blindness - resources BPH - resources Breastfeeding - resources Bulimia - resources Burns - resources Cancer - resources Cerebral ...

  8. Allocation of Resources Dynamically In Cloud Systems

    Directory of Open Access Journals (Sweden)

    D. Sivapriyanka,

    2014-05-01

    Full Text Available Cloud Computing is a newly evolving platform that can be accessed as a service by the users. It is used as storage for files, applications and infrastructure through the Internet. User can access everything as a service in on-demand basis named as pay-as-you-go model. Service-oriented Architecture (SOA has been adopted in diverse circulated systems such as World Wide Web services, grid computing schemes, utility computing systems and cloud computing schemes. These schemes are called as Service Oriented Systems. One of the open issues is to prioritize service requests in dynamically altering environments where concurrent instances of processes may compete for assets. If we want to prioritize the request, we need to monitor the assets that the cloud services have and founded on the available assets the demanded assets can be assigned to the user. Hence, we propose an approach to find present status of the system by utilizing Dynamic Adaptation Approach. The major target of the research work is to prioritize the service demand, which maximizes the asset utilization in an effective kind that decreases the penalty function for the delayed service. The main concerns should be allotted to requests founded on promise violations of SLA objectives. While most existing work in the area of quality of service supervising and SLA modeling focuses normally on purely mechanical schemes, we consider service-oriented systems spanning both programs founded services and human actors. Our approach deals with these challenges and assigns priority to the requested service to avoid service delay using Prioritization Algorithm.

  9. Biped control via nonlinear dynamics

    Science.gov (United States)

    Hmam, Hatem M.

    1992-09-01

    This thesis applies nonlinear techniques to actuate a biped system and provides a rigorous analysis of the resulting motion. From observation of human locomotion, it is believed that the 'complex' dynamics developed by the aggregation of multiple muscle systems can be generated by a reduced order system which captures the rough details of the locomotion process. The investigation is begun with a simple model of a biped system. Since the locomotion process is cyclic in nature, we focus on applying the topologically similar concept of limit cycles to the simple model in order to generate the desired gaits. A rigorous analysis of the biped dynamics shows that the controlled motion is robust against dynamical disturbances. In addition, different biped gaits are generated by merely adjusting some of the limit cycle parameters. More dynamical and actuation complexities are then added for realism. First, two small foot components are added and the overall biped motion under the same control actuation is analyzed. Due to the physical constraints on the feet, it is shown using singular perturbation theory how the gross behavior of the biped dynamics are dictated by those of the reduced model. Next, an analysis of the biped dynamics under added nonlinear elasticities in the legs is carried out. Moreover, using a slightly modified model, forward motion is generated in the sagittal plane. At each step, a small amount of energy is consistently derived from the vertical plane and converted into a forward motion. Stability of the forward dynamics is guaranteed by appropriate foot placement. Finally, the robustness of the controlled biped dynamics is rigorously analyzed and illustrated through extensive computer simulations.

  10. Dynamic Controllability and Dispatchability Relationships

    Science.gov (United States)

    Morris, Paul Henry

    2014-01-01

    An important issue for temporal planners is the ability to handle temporal uncertainty. Recent papers have addressed the question of how to tell whether a temporal network is Dynamically Controllable, i.e., whether the temporal requirements are feasible in the light of uncertain durations of some processes. We present a fast algorithm for Dynamic Controllability. We also note a correspondence between the reduction steps in the algorithm and the operations involved in converting the projections to dispatchable form. This has implications for the complexity for sparse networks.

  11. Theory of controlled quantum dynamics

    CERN Document Server

    De Martino, S; Illuminati, F; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1997-01-01

    We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.

  12. A novel model on dynamic resource allocation in optical networks

    Institute of Scientific and Technical Information of China (English)

    TANG Yong; RAO Min; LI Lei; CHEN Yu; JIANG Jianfeng; ZHANG Mingde; SUN Xiaohan

    2005-01-01

    A novel model on dynamic resource allocation in the WDM optical networks is proposed, basing on the integrated considerations of the impacts of transmission impairments and service classification on dynamic resource allocation in the optical layer.In this model, the priorities of optical connection requests are mapped into different thresholds of transmission impairments, and a uniform method which is adopted to evaluate the virtual wavelength path (VWP) candidates is defined. The Advanced Preferred Wavelength Sets Algorithm (A-PWS) and the heuristic Dynamic Min-Cost & Optical Virtual Wavelength Path Algorithm (DMC-OVWP) are presented addressing the routing and wavelength assignment (RWA) problem based on dynamic traffic and multi priorities in wavelength-routed optical networks. For a received optical connection request,DMC-OVWP is employed to calculate a list of the VWP candidates, and an appropriate VWP which matches the request's priority is picked up to establish the lightpath by analyzing the transmission qualities of the VWP candidates.

  13. Learning for Dynamic Bidding in Cognitive Radio Resources

    CERN Document Server

    Fu, Fangwen

    2007-01-01

    In this paper, we model the various wireless users in a cognitive radio network as a collection of selfish, autonomous agents that strategically interact in order to acquire the dynamically available spectrum opportunities. Our main focus is on developing solutions for wireless users to successfully compete with each other for the limited and time-varying spectrum opportunities, given the experienced dynamics in the wireless network. We categorize these dynamics into two types: one is the disturbance due to the environment (e.g. wireless channel conditions, source traffic characteristics, etc.) and the other is the impact caused by competing users. To analyze the interactions among users given the environment disturbance, we propose a general stochastic framework for modeling how the competition among users for spectrum opportunities evolves over time. At each stage of the dynamic resource allocation, a central spectrum moderator auctions the available resources and the users strategically bid for the require...

  14. Dynamic Resource Access Using Graphical Game in Asymmetric Wireless Networks

    Directory of Open Access Journals (Sweden)

    Fangwei Li

    2013-08-01

    Full Text Available In order to improve the resource utilization in asymmetric wireless networks, a novel dynamic resource access algorithm was presented. As the asymmetry of information and the locality of users' actions in distributed wireless networks, the resource access problem was expressed as a simple graphical game model. Let the graphic topology indicate the internal game structure of the realistic environment. Then the Nash equilibrium was got by minimizing the individual regret instead of the system regret. The proposed algorithm realized efficient resource access through exchanging the active information and regret in the competitive community. Theoretical analysis and simulation results show that the algorithm can converge to a suitable pure strategy Nash equilibrium point quickly with less amount of calculation, avoids conflict effectively, and improves the system capacity and power utilization especially in the condition of insufficient resources

  15. A Dynamic and Interactive Monitoring System of Data Center Resources

    Directory of Open Access Journals (Sweden)

    Yu Ling-Fei

    2016-01-01

    Full Text Available To maximize the utilization and effectiveness of resources, it is very necessary to have a well suited management system for modern data centers. Traditional approaches to resource provisioning and service requests have proven to be ill suited for virtualization and cloud computing. The manual handoffs between technology teams were also highly inefficient and poorly documented. In this paper, a dynamic and interactive monitoring system for data center resources, ResourceView, is presented. By consolidating all data center management functionality into a single interface, ResourceView shares a common view of the timeline metric status, while providing comprehensive, centralized monitoring of data center physical and virtual IT assets including power, cooling, physical space and VMs, so that to improve availability and efficiency. In addition, servers and VMs can be monitored from several viewpoints such as clusters, racks and projects, which is very convenient for users.

  16. Voltage Controlled Dynamic Demand Response

    DEFF Research Database (Denmark)

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Mahat, Pukar

    2013-01-01

    . An adaptive dynamic model has been developed to determine composite voltage dependency of an aggregated load on feeder level. Following the demand dispatch or control signal, optimum voltage setting at the LV substation is determined based on the voltage dependency of the load. Furthermore, a new technique...

  17. Introducing Ecological Dynamics into Common-Pool Resource Experiments

    Directory of Open Access Journals (Sweden)

    Marco A. Janssen

    2010-06-01

    Full Text Available Case-study analysis shows that long-lasting social–ecological systems have institutional arrangements regulating where, when, and how to appropriate resources instead of how much. Those cases testify to the importance of the fit between ecological and institutional dynamics. Experiments are increasingly used to study decision making, test alternative behavioral models, and test policies. In typical commons dilemma experiments, the only possible decision is how much to appropriate. Therefore, conventional experiments restrict the option to study the interplay between ecological and institutional dynamics. Using a new real-time, spatial, renewable resource environment, we can study the informal norms that participants develop in an experimental resource dilemma setting. Do ecological dynamics affect the institutional arrangements they develop? We find that the informal institutions developed on when, where, and how to appropriate the resource vary with the ecological dynamics in the different treatments. Finally, we find that the amount and distribution of communication messages and not the content of the communication explains the differences between group performances.

  18. MANAGEMENT OF RESOURCES IN DYNAMICALLY CHANGING SECURITY ENVRIONMENT

    Directory of Open Access Journals (Sweden)

    Sevdalina Dimitrova

    2014-09-01

    Full Text Available The monograph recommends integration between science and practice, experts from national bodies and scientific research potential of academic community of military universities in the field of management of resources of security and defence in accordance to the challenges in security environment caused by its dynamic and often unpredictable changes.

  19. HOW TO SELECT APPROPRIATE HUMAN RESOURCE CONTROLLING INDICATORS

    Directory of Open Access Journals (Sweden)

    Monika Dugelova

    2015-09-01

    Full Text Available Human resource controlling represents a company’s strategic method to support its role is planning, checking, and managing—including information supplement for human resources department. Human resource controlling helps with optimization and transformation of human resource functions and with general human resource management. Our survey deals with the implementation of human resource controlling in information technology companies. The selection of appropriate human resource controlling tools is the most important part of implementation. This article deals with the problem of human resource indicators selection as the most frequently used human resource controlling tool. Many international authors have solved the problem of performance appraisal measurement, and there are numerous demonstrations on how to choose key performance indicators. Our motivation to draft the complex methodology of human resource indicators selection is based on non-existing solution among the authors. To solve the problem and find appropriate methodology, we use the methods comparison, abstraction, and concretization. The result is a creation of the right human resource indicators selection in line with human resource controlling aim. We use the Balanced Scorecard, Deloitte human resource strategy framework, and partial solution of Kleinhempel (2010. These results constitute the basis for our future research and for drafting the whole methodology of human resource controlling implementation in information technology companies.

  20. Shared resource control between human and computer

    Science.gov (United States)

    Hendler, James; Wilson, Reid

    1989-01-01

    The advantages of an AI system of actively monitoring human control of a shared resource (such as a telerobotic manipulator) are presented. A system is described in which a simple AI planning program gains efficiency by monitoring human actions and recognizing when the actions cause a change in the system's assumed state of the world. This enables the planner to recognize when an interaction occurs between human actions and system goals, and allows maintenance of an up-to-date knowledge of the state of the world and thus informs the operator when human action would undo a goal achieved by the system, when an action would render a system goal unachievable, and efficiently replans the establishment of goals after human intervention.

  1. Controlling dynamics in diatomic systems

    Indian Academy of Sciences (India)

    Praveen Kumar; Harjinder Singh

    2007-09-01

    Controlling molecular energetics using laser pulses is exemplified for nuclear motion in two different diatomic systems. The problem of finding the optimized field for maximizing a desired quantum dynamical target is formulated using an iterative method. The method is applied for two diatomic systems, HF and OH. The power spectra of the fields and evolution of populations of different vibrational states during transitions are obtained.

  2. Theory of controlled quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    De Martino, Salvatore; De Siena, Silvio; Illuminati, Fabrizio [Dipartimento di Fisica, Universita di Salerno, and INFN, Sezione di Napoli, Gruppo collegato di Salerno, Baronissi (Italy)

    1997-06-07

    We introduce a general formalism to obtain localized quantum wavepackets as dynamically controlled systems, in the framework of Nelson stochastic quantization. We show that in general the control is linear, and it amounts to introducing additional time-dependent terms in the potential. In this way one can construct for general systems either coherent packets following classical motion with constant dispersion, or coherent packets following classical motion whose time-dependent dispersion remains bounded for all times. We show that in the operatorial language our scheme amounts to introducing a suitable generalization to arbitrary potentials of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator. (author)

  3. Dynamic trajectory control of gliders

    CERN Document Server

    Dilão, Rui

    2013-01-01

    We propose a new dynamic control algorithm in order to direct the trajectory of a glider to a pre-assigned target point. The algorithms runs iteratively and the approach to the target point is self-correcting. The algorithm is applicable to any non-powered lift-enabled vehicle (glider) travelling in planetary atmospheres. As a proof of concept, we have applied the new algorithm to the command and control of the trajectory of the Space Shuttle during the Terminal Area Energy Management (TAEM) phase.

  4. A Semi-Preemptive Computational Service System with Limited Resources and Dynamic Resource Ranking

    Directory of Open Access Journals (Sweden)

    Fang-Yie Leu

    2012-03-01

    Full Text Available In this paper, we integrate a grid system and a wireless network to present a convenient computational service system, called the Semi-Preemptive Computational Service system (SePCS for short, which provides users with a wireless access environment and through which a user can share his/her resources with others. In the SePCS, each node is dynamically given a score based on its CPU level, available memory size, current length of waiting queue, CPU utilization and bandwidth. With the scores, resource nodes are classified into three levels. User requests based on their time constraints are also classified into three types. Resources of higher levels are allocated to more tightly constrained requests so as to increase the total performance of the system. To achieve this, a resource broker with the Semi-Preemptive Algorithm (SPA is also proposed. When the resource broker cannot find suitable resources for the requests of higher type, it preempts the resource that is now executing a lower type request so that the request of higher type can be executed immediately. The SePCS can be applied to a Vehicular Ad Hoc Network (VANET, users of which can then exploit the convenient mobile network services and the wireless distributed computing. As a result, the performance of the system is higher than that of the tested schemes.

  5. An Improved Dynamic Joint Resource Allocation Algorithm Based on SFR

    Directory of Open Access Journals (Sweden)

    Yibing Li

    2016-04-01

    Full Text Available Inter-cell interference (ICI is the main factor affecting system capacity and spectral efficiency. Effective spectrum resource management is an important and challenging issue for the design of wireless communication systems. The soft frequency reuse (SFR is regarded as an interesting approach to significantly eliminate ICI. However, the allocation of resource is fixed prior to system deployment in static SFR. To overcome this drawback, this paper adopts a distributed method and proposes an improved dynamic joint resource allocation algorithm (DJRA. The improved scheme adaptively adjusts resource allocation based on the real-time user distribution. DJRA first detects the edge-user distribution vector to determine the optimal scheme, which guarantees that all the users have available resources and the number of iterations is reduced. Then, the DJRA maximizes the throughput for each cell via optimizing resource and power allocation. Due to further eliminate interference, the sector partition method is used in the center region and in view of fairness among users, the novel approach adds the proportional fair algorithm at the end of DJRA. Simulation results show that the proposed algorithm outperforms previous approaches for improving the system capacity and cell edge user performance.

  6. A Hybrid Dynamic Programming Method for Concave Resource Allocation Problems

    Institute of Scientific and Technical Information of China (English)

    姜计荣; 孙小玲

    2005-01-01

    Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.

  7. Dynamic resource allocation in disaster response: tradeoffs in wildfire suppression.

    Directory of Open Access Journals (Sweden)

    Nada Petrovic

    Full Text Available Challenges associated with the allocation of limited resources to mitigate the impact of natural disasters inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of disaster phenomena, including oil spills and disease epidemics, where (1 the disaster evolves on the same timescale as the response effort, and (2 delays in response can lead to increased disaster severity and thus greater demand for resources. We introduce a minimal stochastic process to represent wildfire progression that nonetheless accurately captures the heavy tailed statistical distribution of fire sizes observed in nature. We then couple this model for fire spread to a series of response models that isolate fundamental tradeoffs both in the strength and timing of response and also in division of limited resources across multiple competing suppression efforts. Using this framework, we compute optimal strategies for decision making scenarios that arise in fire response policy.

  8. ON COMPLEX DYNAMIC CONTROL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    CHENG Daizhan

    2003-01-01

    This paper presents some recent works on the control of dynamic systems, which have certain complex properties caused by singularity of the nonlinear structures, structure-varyings, or evolution process etc. First, we consider the structure singularity of nonlinear control systems. It was revealed that the focus of researches on nonlinear control theory is shifting from regular systems to singular systems. The singularity of nonlinear systems causes certain complexity. Secondly, the switched systems are considered. For such systems the complexity is caused by the structure varying. We show that the switched systems have significant characteristics of complex systems. Finally, we investigate the evolution systems. The evolution structure makes complexity, and itself is a proper model for complex systems.

  9. Power system dynamics and control

    CERN Document Server

    Kwatny, Harry G

    2016-01-01

    This monograph explores a consistent modeling and analytic framework that provides the tools for an improved understanding of the behavior and the building of efficient models of power systems. It covers the essential concepts for the study of static and dynamic network stability, reviews the structure and design of basic voltage and load-frequency regulators, and offers an introduction to power system optimal control with reliability constraints. A set of Mathematica tutorial notebooks providing detailed solutions of the examples worked-out in the text, as well as a package that will enable readers to work out their own examples and problems, supplements the text. A key premise of the book is that the design of successful control systems requires a deep understanding of the processes to be controlled; as such, the technical discussion begins with a concise review of the physical foundations of electricity and magnetism. This is followed by an overview of nonlinear circuits that include resistors, inductors, ...

  10. Adaptive optimization of agile organization of command and control resource

    Institute of Scientific and Technical Information of China (English)

    Yang Chunhui; Liu Junxian; Chen Honghui; Luo Xueshan

    2009-01-01

    Adaptive optimization is one of the means that agile organization of command and control resource (AOC2R) adapts for the dynamic battlefield environment. A math model of the adaptive optimization of AOC2R is put forward by analyzing the interrelating concept and research. The model takes the adaptive process as a multi-stage decision making problem. The 2-phases method is presented to calculate the model, which obtains the related parameters by running the colored Petri net (CPN) model of AOC2R and then searches for the result by ant colony optimization (ACO) algorithm integrated with genetic optimization techniques. The simulation results demonstrate that the proposed algorithm greatly improves the performance of AOC2R.

  11. Dynamical resource nexus assessments: from accounting to sustainability approaches

    Science.gov (United States)

    Salmoral, Gloria; Yan, Xiaoyu

    2017-04-01

    Continued economic development and population growth result in increasing pressures on natural resources, from local to international levels, for meeting societal demands on water, energy and food. To date there are a few tools that link models to identify the relationships and to account for flows of water, energy and food. However, these tools in general can offer only a static view often at national level and with annual temporal resolution. Moreover, they can only account flows but cannot consider the required amounts and conditions of the natural capital that supplies and maintains these flows. With the emerging nexus thinking, our research is currently focused on promoting dynamical environmental analyses beyond the conventional silo mentalities. Our study aims to show new advancements in existing tools (e.g., dynamical life cycle assessment) and develop novel environmental indicators relevant for the resource nexus assessment. We aim to provide a step forward when sustainability conditions and resilience thresholds are aligned with flows under production (e.g., food, water and energy), process level under analysis (e.g., local production, transport, manufacturing, final consumption, reuse, disposal) and existing biophysical local conditions. This approach would help to embrace and better characterise the spatiotemporal dynamics, complexity and existing links between and within the natural and societal systems, which are crucial to evaluate and promote more environmentally sustainable economic activities.

  12. Dynamics and Control of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Won ko

    2006-06-01

    Full Text Available In this paper, dynamics of a Maglev vehicle was analyzed and controls utilizing an optimized damping and an LQR algorithms were designed to stabilize the vehicle. The dynamics of magnetically levitated and propelled Maglev vehicle are complex and inherently unstable. Moreover, 6-DOF system dynamics is highly nonlinear and coupled. The proposed control schemes provide the dynamic stability and controllability, which computer simulations confirmed the effectiveness.

  13. Controlling user access to electronic resources without password

    Science.gov (United States)

    Smith, Fred Hewitt

    2015-06-16

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes pre-determining an association of the restricted computer resource and computer-resource-proximal environmental information. Indicia of user-proximal environmental information are received from a user requesting access to the restricted computer resource. Received indicia of user-proximal environmental information are compared to associated computer-resource-proximal environmental information. User access to the restricted computer resource is selectively granted responsive to a favorable comparison in which the user-proximal environmental information is sufficiently similar to the computer-resource proximal environmental information. In at least some embodiments, the process further includes comparing user-supplied biometric measure and comparing it with a predetermined association of at least one biometric measure of an authorized user. Access to the restricted computer resource is granted in response to a favorable comparison.

  14. Analysis and control of complex dynamical systems robust bifurcation, dynamic attractors, and network complexity

    CERN Document Server

    Imura, Jun-ichi; Ueta, Tetsushi

    2015-01-01

    This book is the first to report on theoretical breakthroughs on control of complex dynamical systems developed by collaborative researchers in the two fields of dynamical systems theory and control theory. As well, its basic point of view is of three kinds of complexity: bifurcation phenomena subject to model uncertainty, complex behavior including periodic/quasi-periodic orbits as well as chaotic orbits, and network complexity emerging from dynamical interactions between subsystems. Analysis and Control of Complex Dynamical Systems offers a valuable resource for mathematicians, physicists, and biophysicists, as well as for researchers in nonlinear science and control engineering, allowing them to develop a better fundamental understanding of the analysis and control synthesis of such complex systems.

  15. NATURAL RESOURCE ABUNDANCE, EXPLOITATION AND AGITATION FOR RESOURCE CONTROL IN NIGERIA’S NIGER DELTA: A MARXIAN ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ogaboh AGBA

    2014-06-01

    Full Text Available Prolonged agitation for resource control in Nigeria’s Niger Delta has attracted increasing attention of academia and policy makers. Key issues are involved-fiscal federalism principles, resource control agitation strategies/intensities and politico-philosophical bases within constitutional and theoretical frameworks, past and present governments’ efforts aimed at resolving agitations by Niger Delta peoples for resource control have been examined from various traditional disciplinary perspectives in social sciences and humanities. This study explains conflicting postures of resources control, and dynamics of the struggle by applying fragments of the revolutionary Marxist ideology/ frameworks comprising Gramscian, Dialectical Materialism and the Frankfort School’s Critical Social and Neo-Marxist (conflict theoretical perspectives espoused by Lewis Coser and C. Wright Mills. We argue that sections of Nigeria’s laws (the Constitution, and 1978 Land Use Act that vested absolute land ownership/control authority on Nigeria’s Federal Government, among other obnoxious laws that promote marginalization of particular oppressed sections/strata of Nigeria’s population thereby provoking persistent conflicts, such laws are overdue for amendment. We recommend, among others, that: non-exploitative variety of federalism applied in Scandinavia (Norway, Switzerland, etc. should be implemented in Nigeria.

  16. Dynamic integration of remote cloud resources into local computing clusters

    Energy Technology Data Exchange (ETDEWEB)

    Fleig, Georg; Erli, Guenther; Giffels, Manuel; Hauth, Thomas; Quast, Guenter; Schnepf, Matthias [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (Germany)

    2016-07-01

    In modern high-energy physics (HEP) experiments enormous amounts of data are analyzed and simulated. Traditionally dedicated HEP computing centers are built or extended to meet this steadily increasing demand for computing resources. Nowadays it is more reasonable and more flexible to utilize computing power at remote data centers providing regular cloud services to users as they can be operated in a more efficient manner. This approach uses virtualization and allows the HEP community to run virtual machines containing a dedicated operating system and transparent access to the required software stack on almost any cloud site. The dynamic management of virtual machines depending on the demand for computing power is essential for cost efficient operation and sharing of resources with other communities. For this purpose the EKP developed the on-demand cloud manager ROCED for dynamic instantiation and integration of virtualized worker nodes into the institute's computing cluster. This contribution will report on the concept of our cloud manager and the implementation utilizing a remote OpenStack cloud site and a shared HPC center (bwForCluster located in Freiburg).

  17. On dynamic decoupling and dynamic path controllability in economic systems

    NARCIS (Netherlands)

    Nijmeijer, Henk

    1989-01-01

    In this paper the dynamic decouplability and dynamic path controllability of nonlinear discrete-time economic systems in state space form are discussed. Based on the observation that both properties are equivalent, a (theoretical) efficient way of target path controllability is proposed. This is ill

  18. Hierarchical Model Predictive Control for Resource Distribution

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2010-01-01

    This paper deals with hierarchichal model predictive control (MPC) of distributed systems. A three level hierachical approach is proposed, consisting of a high level MPC controller, a second level of so-called aggregators, controlled by an online MPC-like algorithm, and a lower level of autonomous...... facilitates plug-and-play addition of subsystems without redesign of any controllers. The method is supported by a number of simulations featuring a three-level smart-grid power control system for a small isolated power grid....

  19. Simulating Flexible-Spacecraft Dynamics and Control

    Science.gov (United States)

    Fedor, Joseph

    1987-01-01

    Versatile program applies to many types of spacecraft and dynamical problems. Flexible Spacecraft Dynamics and Control program (FSD) developed to aid in simulation of large class of flexible and rigid spacecraft. Extremely versatile and used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. Applicable to inertially oriented spinning, Earth-oriented, or gravity-gradient-stabilized spacecraft. Written in FORTRAN 77.

  20. On state-dependant sampling for nonlinear controlled systems sharing limited computational resources

    OpenAIRE

    Alamir, Mazen

    2007-01-01

    21 pages. soumis à la revue "IEEE Transactions on Automatic Control"; International audience; In this paper, a framework for dynamic monitoring of sampling periods for nonlinear controlled systems is proposed. This framework is particularly adapted to the context of controlled systems sharing limited computational resources. The proposed scheme can be used in a cascaded structure with any feedback scheduling design. Illustrative examples are given to assess the efficiency of the proposed fram...

  1. Multibody system dynamics, robotics and control

    CERN Document Server

    Gerstmayr, Johannes

    2013-01-01

    The volume contains 19 contributions by international experts in the field of multibody system dynamics, robotics and control. The book aims to bridge the gap between the modeling of mechanical systems by means of multibody dynamics formulations and robotics. In the classical approach, a multibody dynamics model contains a very high level of detail, however, the application of such models to robotics or control is usually limited. The papers aim to connect the different scientific communities in multibody dynamics, robotics and control. Main topics are flexible multibody systems, humanoid robots, elastic robots, nonlinear control, optimal path planning, and identification.

  2. Hierarchical control framework for integrated coordination between distributed energy resources and demand response

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Di; Lian, Jianming; Sun, Yannan; Yang, Tao; Hansen, Jacob

    2017-09-01

    Demand response is representing a significant but largely untapped resource that can greatly enhance the flexibility and reliability of power systems. In this paper, a hierarchical control framework is proposed to facilitate the integrated coordination between distributed energy resources and demand response. The proposed framework consists of coordination and device layers. In the coordination layer, various resource aggregations are optimally coordinated in a distributed manner to achieve the system-level objectives. In the device layer, individual resources are controlled in real time to follow the optimal power generation or consumption dispatched from the coordination layer. For the purpose of practical applications, a method is presented to determine the utility functions of controllable loads by taking into account the real-time load dynamics and the preferences of individual customers. The effectiveness of the proposed framework is validated by detailed simulation studies.

  3. Network resource control for grid workflow management systems

    NARCIS (Netherlands)

    Strijkers, R.J.; Cristea, M.; Korkhov, V.; Marchal, D.; Belloum, A.; Laat, C.de; Meijer, R.J.

    2010-01-01

    Grid workflow management systems automate the orchestration of scientific applications with large computational and data processing needs, but lack control over network resources. Consequently, the management system cannot prevent multiple communication intensive applications to compete for network

  4. Determinants of human resource investment in internal controls

    National Research Council Canada - National Science Library

    Jong-Hag Choi Joonil Lee Catherine Heyjung Sonu

    2013-01-01

    Using the unique reporting environment in Korea, this study investigates the determinants of human resource investment in internal controls for 1352 listed firms disclosing the number of personnel who...

  5. Dynamic Programming Method for Impulsive Control Problems

    Science.gov (United States)

    Balkew, Teshome Mogessie

    2015-01-01

    In many control systems changes in the dynamics occur unexpectedly or are applied by a controller as needed. The time at which a controller implements changes is not necessarily known a priori. For example, many manufacturing systems and flight operations have complicated control systems, and changes in the control systems may be automatically…

  6. Dynamic optimization and adaptive controller design

    Science.gov (United States)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  7. Nonlinear-dynamical arrhythmia control in humans.

    Science.gov (United States)

    Christini, D J; Stein, K M; Markowitz, S M; Mittal, S; Slotwiner, D J; Scheiner, M A; Iwai, S; Lerman, B B

    2001-05-08

    Nonlinear-dynamical control techniques, also known as chaos control, have been used with great success to control a wide range of physical systems. Such techniques have been used to control the behavior of in vitro excitable biological tissue, suggesting their potential for clinical utility. However, the feasibility of using such techniques to control physiological processes has not been demonstrated in humans. Here we show that nonlinear-dynamical control can modulate human cardiac electrophysiological dynamics by rapidly stabilizing an unstable target rhythm. Specifically, in 52/54 control attempts in five patients, we successfully terminated pacing-induced period-2 atrioventricular-nodal conduction alternans by stabilizing the underlying unstable steady-state conduction. This proof-of-concept demonstration shows that nonlinear-dynamical control techniques are clinically feasible and provides a foundation for developing such techniques for more complex forms of clinical arrhythmia.

  8. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  9. Dynamic Grid Scheduling with Job Migration and Rescheduling in the GridLab Resource Management System

    Directory of Open Access Journals (Sweden)

    K. Kurowski

    2004-01-01

    Full Text Available Grid computing has become one of the most important research topics that appeared in the field of computing in the last years. Simultaneously, we have noticed the growing popularity of new Web-based technologies which allow us to create application-oriented Grid middleware services providing capabilities required for dynamic resource and job management, monitoring, security, etc. Consequently, end users are able to get easier access to geographically distributed resources. In this paper we present the results of our experiments with the Grid(Lab Resource Management System (GRMS, which acts on behalf of end users and controls their computations efficiently using distributed heterogeneous resources. We show how resource matching techniques used within GRMS can be improved by the use of a job migration based rescheduling policy. The main aim of this policy is to shorten job pending times and reduce machine overloads. The influence of this method on application performance and resource utilization is studied in detail and compared with two other simple policies.

  10. Flight Dynamics and Controls Discipline Overview

    Science.gov (United States)

    Theodore, Colin R.

    2012-01-01

    This presentation will touch topics, including but not limited to, the objectives and challenges of flight dynamics and controls that deal with the pilot and the cockpit's technology, the flight dynamics and controls discipline tasks, and the full envelope of flight dynamics modeling. In addition, the LCTR 7x10-ft wind tunnel test will also be included along with the optimal trajectories for noise abatement and its investigations on handling quality. Furthermore, previous experiments and their complying results will also be discussed.

  11. Robot Arm Control Exploiting Natural Dynamics

    Science.gov (United States)

    1999-06-01

    and the approach taken in this thesis is the role of the robot dynamics . In traditional control, the robot is viewed as a general purpose manipulator...robot, and the robot control enforces that command. The robot dynamics are generally ignored or canceled, and certainly do not play a part in how the...task is planned. The approach taken in this thesis is the opposite: the robot dynamics are crucial for the performance of the task as they determine

  12. Neural dynamics for mobile robot adaptive control

    OpenAIRE

    Oubbati, Mohamed

    2006-01-01

    In this thesis, we investigate how dynamics in recurrent neural networks can be used to solve some specific mobile robot problems. We have designed a motion control approach based on a novel recurrent neural network. The advantage of this approach is that, no knowledge about the dynamic model is required, and no synaptic weight changing is needed in presence of time varying parameters. Furthermore, this approach allows a single fixed-weight network to act as a dynamic controller for several d...

  13. Dynamic Algorithm for LQGPC Predictive Control

    DEFF Research Database (Denmark)

    Hangstrup, M.; Ordys, A.W.; Grimble, M.J.

    1998-01-01

    In this paper the optimal control law is derived for a multi-variable state space Linear Quadratic Gaussian Predictive Controller (LQGPC). A dynamic performance index is utilized resulting in an optimal steady state controller. Knowledge of future reference values is incorporated into the control...

  14. Day-Ahead Scheduling Considering Demand Response as a Frequency Control Resource

    Directory of Open Access Journals (Sweden)

    Yu-Qing Bao

    2017-01-01

    Full Text Available The development of advanced metering technologies makes demand response (DR able to provide fast response services, e.g., primary frequency control. It is recognized that DR can contribute to the primary frequency control like thermal generators. This paper proposes a day-ahead scheduling method that considers DR as a frequency control resource, so that the DR resources can be dispatched properly with other resources. In the proposed method, the objective of frequency control is realized by defining a frequency limit equation under a supposed contingency. The frequency response model is used to model the dynamics of system frequency. The nonlinear frequency limit equation is transformed to a linear arithmetic equation by piecewise linearization, so that the problem can be solved by mixed integer linear programming (MILP. Finally, the proposed method is verified on numerical examples.

  15. Information Model for Resource of ASON Control Plane

    Institute of Scientific and Technical Information of China (English)

    XU Yun-bin; SONG Hong-sheng; GUI Xuan; ZHANG Jie; GU Wan-yi

    2004-01-01

    Automatic Switched Optical network (ASON) is the key technology for the next generation optical networks, and the recommendations for ASON were also developed by ITU-T. However, the recommendations for the management plane have not been made yet. In this paper, the management information model for the resources of control plane is proposed based on the management requirements of ASON for the first time. The managed objects for control plane could be used for the management of control Network Elements(NEs) and control channels, they can also be used for route areas division in control plane, parameter configuration and performance inspection for the control modules in a control NEs.

  16. Dynamic Control of Posture Across Locomotor Tasks

    OpenAIRE

    Earhart, Gammon M.

    2013-01-01

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment, and to ensure dynamic stability of the moving body. This paper provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks such as turning and backward walking. The impacts of aging and various ...

  17. Adaptive Resource Control in 2-hop Ad-Hoc Networks

    NARCIS (Netherlands)

    Yang, Y.; Heijenk, Gerhard J.; Haverkort, Boudewijn R.H.M.

    2009-01-01

    This paper presents a simple resource control mechanism with traffic scheduling for 2-hop ad-hoc networks, in which the Request-To-Send (RTS) packet is utilized to deliver feedback information. With this feedback information, the Transmission Opportunity (TXOP) limit of the sources can be controlled

  18. Species traits predict assemblage dynamics at ephemeral resource patches created by carrion.

    Science.gov (United States)

    Barton, Philip S; Cunningham, Saul A; Macdonald, Ben C T; McIntyre, Sue; Lindenmayer, David B; Manning, Adrian D

    2013-01-01

    Carrion is an ephemeral and spatially patchy resource that supports a diverse subset of species linked to nutrient cycling and the decomposition process. A number of studies have separately documented changes in the diversity of plants, arthropods and vertebrates at individual carcasses, but there are few studies that have examined how functional traits of different groups of organisms underpin their responses to carrion patches. We used a carrion addition experiment to compare changes in composition and functional traits of insect and plant assemblages at carcasses compared with control sites. We found that significant changes in insect assemblage evenness and heterogeneity was associated with species' dispersal traits, and that plant assemblage responses to subsequent soil nitrogen changes was most apparent among graminoids and exotic species. Beetles at carcasses were twice as large as their counterparts at control sites during the first week of carrion decomposition, and also had higher wing loadings. Plants with high specific leaf area responded faster to the carcass addition, and twice as many species recolonised the centre of carcasses in exotic-dominated grassland compared with carcasses in native-dominated grassland. These results provide an example of how traits of opportunist species enable them to exploit patchy and dynamic resources. This increases our understanding of how carcasses can drive biodiversity dynamics, and has implications for the way carrion might be managed in ecosystems, such as appropriate consideration of spatial and temporal continuity in carrion resources to promote heterogeneity in nutrient cycling and species diversity within landscapes.

  19. Species traits predict assemblage dynamics at ephemeral resource patches created by carrion.

    Directory of Open Access Journals (Sweden)

    Philip S Barton

    Full Text Available Carrion is an ephemeral and spatially patchy resource that supports a diverse subset of species linked to nutrient cycling and the decomposition process. A number of studies have separately documented changes in the diversity of plants, arthropods and vertebrates at individual carcasses, but there are few studies that have examined how functional traits of different groups of organisms underpin their responses to carrion patches. We used a carrion addition experiment to compare changes in composition and functional traits of insect and plant assemblages at carcasses compared with control sites. We found that significant changes in insect assemblage evenness and heterogeneity was associated with species' dispersal traits, and that plant assemblage responses to subsequent soil nitrogen changes was most apparent among graminoids and exotic species. Beetles at carcasses were twice as large as their counterparts at control sites during the first week of carrion decomposition, and also had higher wing loadings. Plants with high specific leaf area responded faster to the carcass addition, and twice as many species recolonised the centre of carcasses in exotic-dominated grassland compared with carcasses in native-dominated grassland. These results provide an example of how traits of opportunist species enable them to exploit patchy and dynamic resources. This increases our understanding of how carcasses can drive biodiversity dynamics, and has implications for the way carrion might be managed in ecosystems, such as appropriate consideration of spatial and temporal continuity in carrion resources to promote heterogeneity in nutrient cycling and species diversity within landscapes.

  20. Hybrid Predictive Control for Dynamic Transport Problems

    CERN Document Server

    Núñez, Alfredo A; Cortés, Cristián E

    2013-01-01

    Hybrid Predictive Control for Dynamic Transport Problems develops methods for the design of predictive control strategies for nonlinear-dynamic hybrid discrete-/continuous-variable systems. The methodology is designed for real-time applications, particularly the study of dynamic transport systems. Operational and service policies are considered, as well as cost reduction. The control structure is based on a sound definition of the key variables and their evolution. A flexible objective function able to capture the predictive behaviour of the system variables is described. Coupled with efficient algorithms, mainly drawn from the area of computational intelligence, this is shown to optimize performance indices for real-time applications. The framework of the proposed predictive control methodology is generic and, being able to solve nonlinear mixed-integer optimization problems dynamically, is readily extendable to other industrial processes. The main topics of this book are: ●hybrid predictive control (HPC) ...

  1. Controlling edge dynamics in complex networks

    CERN Document Server

    Nepusz, Tamás

    2011-01-01

    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges of a network, and demonstrate that the controllability properties of this process significantly differ from simple nodal dynamics. Evaluation of real-world networks indicates that most of them are more controllable than their randomized counterparts. We also find that transcriptional regulatory networks are particularly easy to control. Analytic calculations show that networks with scale-free degree distributions have better controllability properties than uncorrelated networks, and positively correlated in- and out-degre...

  2. Dynamics and control of technical systems

    CERN Document Server

    Balthazar, José M; Kaczmarczyk, Stefan

    2014-01-01

    The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: ""Vibration Problems in Vertical Transportation Systems"", ""Nonlinear Dynamics, Chaos and Control of Elastic Structures"" and ""New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control"". The discussion of real problems in aerospace and how these problems can be unde

  3. A noise-controlled dynamic bifurcation

    CERN Document Server

    Lythe, G D

    1997-01-01

    We consider a slow passage through a point of loss of stability. If the passage is sufficiently slow, the dynamics are controlled by additive random disturbances, even if they are extremely small. We derive expressions for the `exit value' distribution when the parameter is explicitly a function of time and the dynamics are controlled by additive Gaussian noise. We derive a new expression for the small correction introduced if the noise is coloured (exponentially correlated). There is good agreement with results obtained from simulation of sample paths of the appropriate stochastic differential equations. Multiplicative noise does not produce noise-controlled dynamics in this fashion.

  4. Dynamic control of posture across locomotor tasks.

    Science.gov (United States)

    Earhart, Gammon M

    2013-09-15

    Successful locomotion depends on postural control to establish and maintain appropriate postural orientation of body segments relative to one another and to the environment and to ensure dynamic stability of the moving body. This article provides a framework for considering dynamic postural control, highlighting the importance of coordination, consistency, and challenges to postural control posed by various locomotor tasks, such as turning and backward walking. The impacts of aging and various movement disorders on postural control are discussed broadly in an effort to provide a general overview of the field and recommendations for assessment of dynamic postural control across different populations in both clinical and research settings. Suggestions for future research on dynamic postural control during locomotion also are provided and include discussion of opportunities afforded by new and developing technologies, the need for long-term monitoring of locomotor performance in everyday activities, gaps in our knowledge of how targeted intervention approaches modify dynamic postural control, and the relative paucity of literature regarding dynamic postural control in movement disorder populations other than Parkinson's disease.

  5. Robust control synthesis for uncertain dynamical systems

    Science.gov (United States)

    Byun, Kuk-Whan; Wie, Bong; Sunkel, John

    1989-01-01

    This paper presents robust control synthesis techniques for uncertain dynamical systems subject to structured parameter perturbation. Both QFT (quantitative feedback theory) and H-infinity control synthesis techniques are investigated. Although most H-infinity-related control techniques are not concerned with the structured parameter perturbation, a new way of incorporating the parameter uncertainty in the robust H-infinity control design is presented. A generic model of uncertain dynamical systems is used to illustrate the design methodologies investigated in this paper. It is shown that, for a certain noncolocated structural control problem, use of both techniques results in nonminimum phase compensation.

  6. Controlling edge dynamics in complex networks

    OpenAIRE

    Nepusz, Tamás; Vicsek, Tamás

    2012-01-01

    The interaction of distinct units in physical, social, biological and technological systems naturally gives rise to complex network structures. Networks have constantly been in the focus of research for the last decade, with considerable advances in the description of their structural and dynamical properties. However, much less effort has been devoted to studying the controllability of the dynamics taking place on them. Here we introduce and evaluate a dynamical process defined on the edges ...

  7. Using Spare Logic Resources To Create Dynamic Test Points

    Science.gov (United States)

    Katz, Richard; Kleyner, Igor

    2011-01-01

    A technique has been devised to enable creation of a dynamic set of test points in an embedded digital electronic system. As a result, electronics contained in an application specific circuit [e.g., gate array, field programmable gate array (FPGA)] can be internally probed, even when contained in a closed housing during all phases of test. In the present technique, the test points are not fixed and limited to a small number; the number of test points can vastly exceed the number of buffers or pins, resulting in a compact footprint. Test points are selected by means of spare logic resources within the ASIC(s) and/or FPGA(s). A register is programmed with a command, which is used to select the signals that are sent off-chip and out of the housing for monitoring by test engineers and external test equipment. The register can be commanded by any suitable means: for example, it could be commanded through a command port that would normally be used in the operation of the system. In the original application of the technique, commanding of the register is performed via a MIL-STD-1553B communication subsystem.

  8. DYNAMIC RESOURCE ALLOCATION SCHEME UNDER TRAFFIC CONDITION IN SATELLITE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    Yu Jia; Zong Peng

    2012-01-01

    As the traffic distribution in China mainland is far from uniform,a new traffic model in China mainland is presented on the basis of per-capita Gross Domestic Product (GDP) and density of population.Based on this characteristic traffic model,a new Traffic Dependent Dynamic Channel Allocation and Reservation (TDDCAR) technique is proposed,the simulation model is built,and the strategies' performance is evaluated through computer simulation.The simulation results show that,compared to the conventional Fixed Channel Allocation (FCA),TDDCAR estimates the traffic conditions in every spot beam and frequently adjusts the traffic according to current traffic conditions.Ithas achieved a significant improvement in new call blocking probability,handover blocking probability,and fair index,particularly,in heavy traffic conditions.The building of traffic model in China mainland and the analysis of the simulation results has been a key foundation for the study of resource allocation schemes in the future.

  9. Flexible access control for dynamic collaborative environments

    NARCIS (Netherlands)

    Dekker, Mari Antonius Cornelis

    2009-01-01

    Access control is used in computer systems to control access to confidential data. In this thesis we focus on access control for dynamic collaborative environments where multiple users and systems access and exchange data in an ad hoc manner. In such environments it is difficult to protect confident

  10. State estimation for integrated vehicle dynamics control

    NARCIS (Netherlands)

    Zuurbier, J.; Bremmer, P.

    2002-01-01

    This paper discusses a vehicle controller and a state estimator that was implemented and tested in a vehicle equipped with a combined braking and chassis control system to improve handling. The vehicle dynamics controller consists of a feed forward body roll compensation and a feedback stability con

  11. Multidimensional optimal droop control for wind resources in DC microgrids

    Science.gov (United States)

    Bunker, Kaitlyn J.

    Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.

  12. Coherent control of quantum systems as a resource theory

    Science.gov (United States)

    Matera, J. M.; Egloff, D.; Killoran, N.; Plenio, M. B.

    2016-08-01

    Control at the interface between the classical and the quantum world is fundamental in quantum physics. In particular, how classical control is enhanced by coherence effects is an important question both from a theoretical as well as from a technological point of view. In this work, we establish a resource theory describing this setting and explore relations to the theory of coherence, entanglement and information processing. Specifically, for the coherent control of quantum systems, the relevant resources of entanglement and coherence are found to be equivalent and closely related to a measure of discord. The results are then applied to the DQC1 protocol and the precision of the final measurement is expressed in terms of the available resources.

  13. Control of robot dynamics using acceleration control

    Science.gov (United States)

    Workman, G. L.; Prateru, S.; Li, W.; Hinman, Elaine

    1992-01-01

    Acceleration control of robotic devices can provide improvements to many space-based operations using flexible manipulators and to ground-based operations requiring better precision and efficiency than current industrial robots can provide. This paper reports on a preliminary study of acceleration measurement on robotic motion during parabolic flights on the NASA KC-135 and a parallel study of accelerations with and without gravity arising from computer simulated motions using TREETOPS software.

  14. Controllability of open quantum systems with Kraus-map dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wu Rong; Pechen, Alexander; Brif, Constantin; Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, NJ 08544 (United States)

    2007-05-25

    This paper presents a constructive proof of complete kinematic state controllability of finite-dimensional open quantum systems whose dynamics are represented by Kraus maps. For any pair of states (pure or mixed) on the Hilbert space of the system, we explicitly show how to construct a Kraus map that transforms one state into another. Moreover, we prove by construction the existence of a Kraus map that transforms all initial states into a predefined target state (such a process may be used, for example, in quantum information dilution). Thus, in sharp contrast to unitary control, Kraus-map dynamics allows for the design of controls which are robust to variations in the initial state of the system. The capabilities of non-unitary control for population transfer between pure states illustrated for an example of a two-level system by constructing a family of non-unitary Kraus maps to transform one pure state into another. The problem of dynamic state controllability of open quantum systems (i.e., controllability of state-to-state transformations, given a set of available dynamical resources such as coherent controls, incoherent interactions with the environment, and measurements) is also discussed.

  15. Solved problems in dynamical systems and control

    CERN Document Server

    Tenreiro-Machado, J; Valério, Duarte; Galhano, Alexandra M

    2016-01-01

    This book presents a collection of exercises on dynamical systems, modelling and control. Each topic covered includes a summary of the theoretical background, problems with solutions, and further exercises.

  16. Resource use dynamics and interactions in the tropics: Scaling up in space and time

    NARCIS (Netherlands)

    Giller, K.E.; Rowe, E.C.; Ridder, de N.; Keulen, van H.

    2006-01-01

    We discuss the temporal and spatial dynamics of nutrient resources and water within cropping and livestock systems, their interactions and those with other resources such as labour. Short-term dynamics (within season) revolve around nutrient availability and losses as a function of soil moisture dyn

  17. Dynamic Resource Management and Job Scheduling for High Performance Computing

    OpenAIRE

    2016-01-01

    Job scheduling and resource management plays an essential role in high-performance computing. Supercomputing resources are usually managed by a batch system, which is responsible for the effective mapping of jobs onto resources (i.e., compute nodes). From the system perspective, a batch system must ensure high system utilization and throughput, while from the user perspective it must ensure fast response times and fairness when allocating resources across jobs. Parallel jobs can be divide...

  18. Dynamics and Controls in Maglev Systems

    Science.gov (United States)

    1992-09-01

    and Alscher, H. 1986. "The Magnetic Train Transrapid 06," Proc. Int. Conf. Maglev and Linear Drives, May 14-16, 1986, Vancouver, B.C., Canada, Publ. by...AD-A263 087 ANL-92/43It Il~l Iif IIt[11 Materials and Components Dynamics and Controls Technology Division Materials and Components in Maglev ...Argonne, Illinois 60439 Distribution Category: All Transportation Systems Reports (UC-330) Dynamics and Controls in Maglev Systems by Y. Cai and S. S

  19. A Dynamic Ubiquitous Learning Resource Model with Context and Its Effects on Ubiquitous Learning

    Science.gov (United States)

    Chen, Min; Yu, Sheng Quan; Chiang, Feng Kuang

    2017-01-01

    Most ubiquitous learning researchers use resource recommendation and retrieving based on context to provide contextualized learning resources, but it is the kind of one-way context matching. Learners always obtain fixed digital learning resources, which present all learning contents in any context. This study proposed a dynamic ubiquitous learning…

  20. Panel Data Based Dynamic Evaluation of Agricultural Resource Utilization Efficiency: A Case Study of Hebei Province

    Institute of Scientific and Technical Information of China (English)

    Yajuan; TIAN; Li; ZHEN

    2013-01-01

    Resource utilization efficiency is one of important factors influencing modern agricultural development. This paper evaluates agricultural resource utilization efficiency of Hebei Province in the Eleventh Five-Year Plan period by dynamic comprehensive evaluation method. Evaluation results indicate that regional disparity in agricultural resource utilization efficiency is significant, and the disparity is increasing year by year.

  1. A Dynamic Ubiquitous Learning Resource Model with Context and Its Effects on Ubiquitous Learning

    Science.gov (United States)

    Chen, Min; Yu, Sheng Quan; Chiang, Feng Kuang

    2017-01-01

    Most ubiquitous learning researchers use resource recommendation and retrieving based on context to provide contextualized learning resources, but it is the kind of one-way context matching. Learners always obtain fixed digital learning resources, which present all learning contents in any context. This study proposed a dynamic ubiquitous learning…

  2. Resilience and Controllability of Dynamic Collective Behaviors

    CERN Document Server

    Komareji, Mohammad

    2014-01-01

    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous e...

  3. Discrete Control Processes, Dynamic Games and Multicriterion Control Problems

    Directory of Open Access Journals (Sweden)

    Dumitru Lozovanu

    2002-07-01

    Full Text Available The discrete control processes with state evaluation in time of dynamical system is considered. A general model of control problems with integral-time cost criterion by a trajectory is studied and a general scheme for solving such classes of problems is proposed. In addition the game-theoretical and multicriterion models for control problems are formulated and studied.

  4. A Novel Smart Meter Controlling System with Dynamic IP Addresses

    DEFF Research Database (Denmark)

    Manembu, Pinrolinvic; Welang, Brammy; Kalua Lapu, Aditya

    2017-01-01

    Smart meters are the electronic devices for measuring energy consumption in real time. Usually, static public IP addresses are allocated to realize the point-to-point (P2P) communication and remote controlling for smart metering systems. This, however, restricts the wide deployment of smart meters......, due to the deficiency of public IP resources. This paper proposes a novel subscription-based communication architecture for the support of dynamic IP addresses and group controlling of smart meters. The paper evaluates the proposed architecture by comparing the traditional P2P architecture......, and validate its effectiveness to interact with smart meters....

  5. Optimal control of natural resources in mining industry

    Institute of Scientific and Technical Information of China (English)

    Petrov Nikolay; Tanev Angel

    2015-01-01

    The paper focuses on the optimal control of natural resources in mining industry. The purpose is to pro-pose an optimal extraction series of these resources during the lifetime of the Mine’s maintenance. Fol-lowing the proposed optimal control model, a sensitivity analysis has been performed that includes the interest rate impact on the optimal solution. This study shows that the increasing of the interest rate sti-mulates faster extraction of the resources. The discounting factor induces that the resource has to be extracted faster but this effect is counterbalanced by the diminishing returns of the annual cash flow. At higher parameters of‘alpha’ close to one of the power function about 80%from the whole resource will be extracted during the first 4 years of object/mine maintenance. An existence of unique positive root with respect to return of investment has been proposed and proved by two ways: by the ‘method of chords’ and by using specialized software.

  6. Dynamic Resource Coordination and Interference Management for Femtocell Networks

    CERN Document Server

    Liang, Yan; Yang, Chunliang

    2010-01-01

    Femtocell is emerging as a key technology to secure the coverage and capacity in indoor environments. However the deployment of a new femtocell layer may originate undesired interference to the whole system. This paper investigates spectrum resource coordination and interference management for the femtocell networks. A resource coordination scheme based on broadcasting resource coordination request messages by the femto mobile is proposed to reduce the system interference.

  7. Resilience and controllability of dynamic collective behaviors.

    Science.gov (United States)

    Komareji, Mohammad; Bouffanais, Roland

    2013-01-01

    The network paradigm is used to gain insight into the structural root causes of the resilience of consensus in dynamic collective behaviors, and to analyze the controllability of the swarm dynamics. Here we devise the dynamic signaling network which is the information transfer channel underpinning the swarm dynamics of the directed interagent connectivity based on a topological neighborhood of interactions. The study of the connectedness of the swarm signaling network reveals the profound relationship between group size and number of interacting neighbors, which is found to be in good agreement with field observations on flock of starlings [Ballerini et al. (2008) Proc. Natl. Acad. Sci. USA, 105: 1232]. Using a dynamical model, we generate dynamic collective behaviors enabling us to uncover that the swarm signaling network is a homogeneous clustered small-world network, thus facilitating emergent outcomes if connectedness is maintained. Resilience of the emergent consensus is tested by introducing exogenous environmental noise, which ultimately stresses how deeply intertwined are the swarm dynamics in the physical and network spaces. The availability of the signaling network allows us to analytically establish for the first time the number of driver agents necessary to fully control the swarm dynamics.

  8. Modeling, Analysis, and Control of Demand Response Resources

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L. [Univ. of California, Berkeley, CA (United States)

    2012-05-01

    While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role in power systems via Demand Response (DR), defined by the Department of Energy (DOE) as “a tariff or program established to motivate changes in electric use by end-use customers in response to changes in the price of electricity over time, or to give incentive payments designed to induce lower electricity use at times of high market prices or when grid reliability is jeopardized” [29]. DR can provide a variety of benefits including reducing peak electric loads when the power system is stressed and fast timescale energy balancing. Therefore, DR can improve grid reliability and reduce wholesale energy prices and their volatility. This dissertation focuses on analyzing both recent and emerging DR paradigms. Recent DR programs have focused on peak load reduction in commercial buildings and industrial facilities (C&I facilities). We present methods for using 15-minute-interval electric load data, commonly available from C&I facilities, to help building managers understand building energy consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally, we present a regression-based model of whole building electric load, i.e., a baseline model, which allows us to quantify DR performance. We use this baseline model to understand the performance of 38 C&I facilities participating in an automated dynamic pricing DR program in California. In this program, facilities are expected to exhibit the same response each DR event. We find that baseline model error makes it difficult to precisely quantify changes in electricity consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. Therefore, we present a method to compute baseline model error and a metric to determine how much observed DR variability results from baseline model error rather than real

  9. Dynamic control of chaotic resonators

    KAUST Repository

    Di Falco, A.

    2016-02-16

    We report on the all-optical control of chaotic optical resonators based on silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behavior via intense optical pump- ing, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip. © 2016 SPIE.

  10. Intelligent control algorithm for ship dynamic positioning

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2014-12-01

    Full Text Available Ship motion in the sea is a complex nonlinear kinematics. The hydrodynamic coefficients of ship model are very difficult to accurately determine. Establishing accurate mathematical model of ship motion is difficult because of changing random factors in the marine environment. Aiming at seeking a method of control to realize ship positioning, intelligent control algorithms are adopt utilizing operator's experience. Fuzzy controller and the neural network controller are respectively designed. Through simulations and experiments, intelligent control algorithm can deal with the complex nonlinear motion, and has good robustness. The ship dynamic positioning system with neural network control has high positioning accuracy and performance.

  11. A Dynamic Pricing Reverse Auction-Based Resource Allocation Mechanism in Cloud Workflow Systems

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2016-01-01

    Full Text Available Market-oriented reverse auction is an efficient and cost-effective method for resource allocation in cloud workflow systems since it can dynamically allocate resources depending on the supply-demand relationship of the cloud market. However, during the auction the price of cloud resource is usually fixed, and the current resource allocation mechanisms cannot adapt to the changeable market properly which results in the low efficiency of resource utilization. To address such a problem, a dynamic pricing reverse auction-based resource allocation mechanism is proposed. During the auction, resource providers can change prices according to the trading situation so that our novel mechanism can increase the chances of making a deal and improve efficiency of resource utilization. In addition, resource providers can improve their competitiveness in the market by lowering prices, and thus users can obtain cheaper resources in shorter time which would decrease monetary cost and completion time for workflow execution. Experiments with different situations and problem sizes are conducted for dynamic pricing-based allocation mechanism (DPAM on resource utilization and the measurement of Time⁎Cost (TC. The results show that our DPAM can outperform its representative in resource utilization, monetary cost, and completion time and also obtain the optimal price reduction rates.

  12. Efficient Control Channel Resource Allocation for VoIP in OFDMA-Based Packet Radio Networks

    Directory of Open Access Journals (Sweden)

    Fan Yong

    2011-01-01

    Full Text Available We propose an efficient control channel resource allocation approach to enhance the performance of voice-over-IP (VoIP in orthogonal frequency division multiple access- (OFDMA- based next generation mobile communication systems. As the long-term evolution (LTE of universal terrestrial radio access network (UTRAN, evolved UTRAN (E-UTRAN is the first OFDMA-based packet radio network and thus selected in this paper as an application example. Our proposed physical downlink control channel (PDCCH resource allocation approach for E-UTRAN is composed of bidirectional power control, inner loop link adaptation (ILLA, and outer loop link adaptation (OLLA algorithms. Its effectiveness is validated through large-scale radio system level simulations, and simulation results confirm that VoIP capacity with dynamic scheduling can be further enhanced with this PDCCH resource allocation approach. Moreover, the VoIP performance requirements for international mobile telecommunications-advanced (IMT-Advanced radio interface technologies can be met with dynamic scheduling together with proposed PDCCH resource allocation. Besides E-UTRAN, this approach can be introduced to other OFDMA-based mobile communication systems for VoIP performance enhancement as well.

  13. Controlling user access to electronic resources without password

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Fred Hewitt

    2017-08-22

    Described herein are devices and techniques for remotely controlling user access to a restricted computer resource. The process includes obtaining an image from a communication device of a user. An individual and a landmark are identified within the image. Determinations are made that the individual is the user and that the landmark is a predetermined landmark. Access to a restricted computing resource is granted based on the determining that the individual is the user and that the landmark is the predetermined landmark. Other embodiments are disclosed.

  14. Dynamic optical resource allocation for mobile core networks with software defined elastic optical networking.

    Science.gov (United States)

    Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo

    2016-07-25

    Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.

  15. Dynamics and Control of DNA Sequence Amplification

    CERN Document Server

    Marimuthu, Karthikeyan

    2014-01-01

    DNA amplification is the process of replication of a specified DNA sequence \\emph{in vitro} through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction (PCR) as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal tempe...

  16. Cluster-based control of nonlinear dynamics

    CERN Document Server

    Kaiser, Eurika; Spohn, Andreas; Cattafesta, Louis N; Morzynski, Marek

    2016-01-01

    The ability to manipulate and control fluid flows is of great importance in many scientific and engineering applications. Here, a cluster-based control framework is proposed to determine optimal control laws with respect to a cost function for unsteady flows. The proposed methodology frames high-dimensional, nonlinear dynamics into low-dimensional, probabilistic, linear dynamics which considerably simplifies the optimal control problem while preserving nonlinear actuation mechanisms. The data-driven approach builds upon a state space discretization using a clustering algorithm which groups kinematically similar flow states into a low number of clusters. The temporal evolution of the probability distribution on this set of clusters is then described by a Markov model. The Markov model can be used as predictor for the ergodic probability distribution for a particular control law. This probability distribution approximates the long-term behavior of the original system on which basis the optimal control law is de...

  17. Learning Dynamic Control of Body Roll Orientation

    OpenAIRE

    Vimal, Vivekanand Pandey; Lackner, James R.; DiZio, Paul

    2015-01-01

    Our objective was to examine how the control of orientation is learned in a task involving dynamically balancing about an unstable equilibrium point, the gravitational vertical, in the absence of leg reflexes and muscle stiffness. Subjects (n=10) used a joystick to set themselves to the gravitational vertical while seated in a multi-axis rotation system device (MARS) programmed with inverted pendulum dynamics. The MARS is driven by powerful servomotors and can faithfully follow joystick comma...

  18. Determinants of human resource investment in internal controls

    Directory of Open Access Journals (Sweden)

    Jong-Hag Choi

    2013-09-01

    Full Text Available Using the unique reporting environment in Korea, this study investigates the determinants of human resource investment in internal controls for 1352 listed firms disclosing the number of personnel who are in charge of internal control-related tasks (IC personnel from 2005 to 2008. We find that the number of IC personnel within a firm and several key departments increase with firm size, number of employees, complexity and for Chaebols, and decrease in rapidly growing firms. Additional analysis reveals that the factors influencing internal control systems have an accentuated effect on firms with relatively larger firm size.

  19. Users’ classification-based call admission control with adaptive resource reservation for LTE-A networks

    Directory of Open Access Journals (Sweden)

    Salman Ali AlQahtani

    2017-01-01

    In this paper, we introduce the user’s privileges and traffic maximum delay tolerance as additional dimensions in the call admission control processes to efficiently control the utilization of LTE-A network resources. Based on this idea, we propose an efficient call admission control scheme named “delay aware and user categorizing-based CAC with adaptive resource reservation (DA–UC-ARR”, where the user priority is adjusted dynamically based on the current network conditions and the users’ categorizations and traffic delay tolerances, to increase the network’s resource utilization and at the same time to maximize the operators’ revenue. In this proposed scheme, the users are classified into Golden users and Silver users, and the type of service per user is classified as real time (RT and non-real time (NRT services. We compare the performance of the proposed scheme with the corresponding results of previous schemes, referred to as the adaptive resource reservation-based call admission control (ARR-CAC (Andrews et al., 2010; AlQahtani, 2014, where user categorization and delay were not taken into consideration in the call admission control process. Simulation results indicate the superiority of the proposed scheme because it is able to achieve a better balance between system utilization, users’ privileges provided by network operators and QoS provisioning compared to the ARR-CAC scheme.

  20. Dynamic control of metamaterials at terahertz frequencies

    Science.gov (United States)

    Shrekenhamer, David

    Progress in the field of metamaterials has started coming to a point where the field may finally begin to emerge as a viable solution to many electromagnetic challenges facing the community. No where is that more true then at terahertz frequencies where there lies an immense opportunity for growth. The development of mature technologies within this region of the electromagnetic spectrum would provide a valuable resource to become available for a multitude of applications. In order to achieve this, the necessary first steps of identifying viable materials and paths to integrate these with metamaterials will need to be completed. In this dissertation, we examine several different paths to achieve dynamic metamaterial electromagnetic response at terahertz frequencies, and demonstrate several paths to package these devices into imaging systems. In Chapter 1, we introduce the basic theory and design principles of metamaterials. We also describe the experimental techniques involved in the study of terahertz metamaterials. Chapter 2 presents a computational and experimental study investigating the integration of high electron mobility transistors with metamaterials allowing for high speed modulation of incident terahertz radiation. In Chapters 3 and 4, we investigate several different paths to create tunable terahertz metamaterial absorbers. Chapter 3 presents an investigation where we encapsulate a metametarial absorber unit cell with liquid crystals. We study both computationally and experimentally the tuning mechanism of the absorber as the liquid crystal refractive index is controlled as a function of the applied electric field strength and modulation frequency. In Chapter 4, we form a doped semiconducting metamaterial spatial light modulator with multi-color super-pixels composed of arrays of electronically controlled terahertz metamaterial absorbers. We computationally and experimentally study the independent tunability of each pixel in the spatial array and

  1. Approaches to Learning to Control Dynamic Uncertainty

    Directory of Open Access Journals (Sweden)

    Magda Osman

    2015-10-01

    Full Text Available In dynamic environments, when faced with a choice of which learning strategy to adopt, do people choose to mostly explore (maximizing their long term gains or exploit (maximizing their short term gains? More to the point, how does this choice of learning strategy influence one’s later ability to control the environment? In the present study, we explore whether people’s self-reported learning strategies and levels of arousal (i.e., surprise, stress correspond to performance measures of controlling a Highly Uncertain or Moderately Uncertain dynamic environment. Generally, self-reports suggest a preference for exploring the environment to begin with. After which, those in the Highly Uncertain environment generally indicated they exploited more than those in the Moderately Uncertain environment; this difference did not impact on performance on later tests of people’s ability to control the dynamic environment. Levels of arousal were also differentially associated with the uncertainty of the environment. Going beyond behavioral data, our model of dynamic decision-making revealed that, in actual fact, there was no difference in exploitation levels between those in the highly uncertain or moderately uncertain environments, but there were differences based on sensitivity to negative reinforcement. We consider the implications of our findings with respect to learning and strategic approaches to controlling dynamic uncertainty.

  2. Dynamically Authorized Role-Based Access Control for Grid Applications

    Institute of Scientific and Technical Information of China (English)

    YAO Hanbing; HU Heping; LU Zhengding; LI Ruixuan

    2006-01-01

    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations". The heterogeneous, dynamic and multi-domain nature of these environments makes challenging security issues that demand new technical approaches. Despite the recent advances in access control approaches applicable to Grid computing, there remain issues that impede the development of effective access control models for Grid applications. Among them there are the lack of context-based models for access control, and reliance on identity or capability-based access control schemes. An access control scheme that resolve these issues is presented, and a dynamically authorized role-based access control (D-RBAC) model extending the RBAC with context constraints is proposed. The D-RABC mechanisms dynamically grant permissions to users based on a set of contextual information collected from the system and user's environments, while retaining the advantages of RBAC model. The implementation architecture of D-RBAC for the Grid application is also described.

  3. Human resources for the control of road traffic injury.

    Science.gov (United States)

    Mock, Charles; Kobusingye, Olive; Anh, Le Vu; Afukaar, Francis; Arreola-Risa, Carlos

    2005-04-01

    The definition of the ideal numbers and distribution of human resources required for control of road traffic injury (RTI) is not as advanced as for other health problems. We can nonetheless identify functions that need to be addressed across the spectrum of injury control: surveillance; road safety (including infrastructure, vehicle design, and behaviour); and trauma care. Many low-cost strategies to improve these functions in low- or middle-income countries can be identified. For all these strategies, there is need for adequate institutional capacity, including funding, legal authority, and human resources. Several categories of human resources need to be developed: epidemiologists who can handle injury data, design surveillance systems, and undertake research; engineers and planners versed in safety aspects of road design, traffic flow, urban planning, and vehicle design; police and lawyers who understand the health impact of traffic law; clinicians who can develop cost-effective improvements in the entire system of trauma treatment; media experts to undertake effective behaviour change and social marketing; and economists to assist with cost-effectiveness evaluations. RTI control can be strengthened by enhancing such training in these disciplines, as well as encouraging retention of those who have the needed skills. Mechanisms to enhance collaboration between these different fields need to be promoted. Finally, the burden of RTI is borne disproportionately by the poor; in addition to technical issues, more profound equity issues must be addressed. This mandates that people from all professional backgrounds who work for RTI control should develop skills in advocacy and politics.

  4. Dynamic Surface Control and Its Application to Lateral Vehicle Control

    Directory of Open Access Journals (Sweden)

    Bongsob Song

    2014-01-01

    Full Text Available This paper extends the design and analysis methodology of dynamic surface control (DSC in Song and Hedrick, 2011, for a more general class of nonlinear systems. When rotational mechanical systems such as lateral vehicle control and robot control are considered for applications, sinusoidal functions are easily included in the equation of motions. If such a sinusoidal function is used as a forcing term for DSC, the stability analysis faces the difficulty due to highly nonlinear functions resulting from the low-pass filter dynamics. With modification of input variables to the filter dynamics, the burden of mathematical analysis can be reduced and stability conditions in linear matrix inequality form to guarantee the quadratic stability via DSC are derived for the given class of nonlinear systems. Finally, the proposed design and analysis approach are applied to lateral vehicle control for forward automated driving and backward parallel parking at a low speed as well as an illustrative example.

  5. Controlling Chemistry in Dynamic Nanoscale Systems

    DEFF Research Database (Denmark)

    Jesorka, Aldo; Lizana, Ludvig; Konkoli, Zoran

    2011-01-01

    Spatial organization and shape dynamics are inherent properties of biological cells and cell interiors. There are strong indications that these features are important for the in vivo control of reaction parameters in biochemical transformations. Nanofluidic model devices founded on surfactant...... of the concept. Controlled release of chol-DNA molecules from SU-8 surfaces gives the possibility to dynamically change surface and/or solution properties in micro and nanoreactor applications, opening access to stable 2D chemistry on surface-based devices with potential for easy interfacing with conventional...

  6. Dynamic control of the space tethered system

    Science.gov (United States)

    Malashin, A. A.; Smirnov, N. N.; Bryukvina, O. Yu.; Dyakov, P. A.

    2017-02-01

    We discuss the problem of simultaneous dynamical stabilization and suppression of transverse and longitudinal vibrations of the space tethered system deployed along a certain trajectory. The dynamics of the system is described by a system of nonlinear partial differential equations for the longitudinal and transverse waves and we consider a non-classical version of the problem with one moving boundary. We formulate a mathematical model and perform the analytic and numerical analysis of the boundary control problem based on the Lyapunov method. A scheme of the deployment mechanism is suggested. It includes a control torque and transverse displacement of the boundary and ensures stable deployment of the whole system.

  7. Adaptive workflow scheduling in grid computing based on dynamic resource availability

    Directory of Open Access Journals (Sweden)

    Ritu Garg

    2015-06-01

    Full Text Available Grid computing enables large-scale resource sharing and collaboration for solving advanced science and engineering applications. Central to the grid computing is the scheduling of application tasks to the resources. Various strategies have been proposed, including static and dynamic strategies. The former schedules the tasks to resources before the actual execution time and later schedules them at the time of execution. Static scheduling performs better but it is not suitable for dynamic grid environment. The lack of dedicated resources and variations in their availability at run time has made this scheduling a great challenge. In this study, we proposed the adaptive approach to schedule workflow tasks (dependent tasks to the dynamic grid resources based on rescheduling method. It deals with the heterogeneous dynamic grid environment, where the availability of computing nodes and links bandwidth fluctuations are inevitable due to existence of local load or load by other users. The proposed adaptive workflow scheduling (AWS approach involves initial static scheduling, resource monitoring and rescheduling with the aim to achieve the minimum execution time for workflow application. The approach differs from other techniques in literature as it considers the changes in resources (hosts and links availability and considers the impact of existing load over the grid resources. The simulation results using randomly generated task graphs and task graphs corresponding to real world problems (GE and FFT demonstrates that the proposed algorithm is able to deal with fluctuations of resource availability and provides overall optimal performance.

  8. Infection control resources in New York State hospitals, 2007.

    Science.gov (United States)

    Stricof, Rachel L; Schabses, Karolina A; Tserenpuntsag, Boldtsetseg

    2008-12-01

    In July 2005, New York State legislation requiring the mandatory reporting of specific hospital-associated infections (HAIs) was passed by the legislature and signed by the governor. In an effort to measure the impact of this legislation on infection control resources, the New York State Department of Health (NYSDOH) conducted a baseline survey in March 2007. This report presents an overview of the methods and results of this survey. An electronic survey of infection control resources and responsibilities was conducted by the NYSDOH on their secure data network. The survey contained questions regarding the number and percent time for infection prevention and control professional (ICP) and hospital epidemiologist (HE) staff members, ICP/HE educational background and certification, infection control program support services, activities and responsibilities of infection prevention and control program staff, and estimates of time dedicated to various activities, including surveillance. Practitioners in 222 of 224 acute care hospitals (99%) responded. The average number of ICPs per facility depended on the average daily census of acute care beds and ranged from a mean of 0.64 full-time equivalent (FTE) ICP in facilities with an average daily census of or = 900 beds. Averaging the ICP resources over the health care settings for which they were responsible revealed that the "average full-time ICP" was responsible for 151 acute care facility beds, 1.3 intensive care units (ICUs) (average, 16 ICU beds), 21 long-term care facility beds, 0.6 dialysis centers, 0.5 ambulatory surgery centers, 4.8 ambulatory/outpatient clinics, and 1.1 private practice offices. The ICPs reported that 45% of their time is dedicated to surveillance. Other activities for which ICPs reported at least partial responsibility include staff education, quality assurance, occupational health, emergency preparedness, construction, central supply/processing, and risk management. This survey was designed to

  9. Regulation and controlled synchronization for complex dynamical systems

    NARCIS (Netherlands)

    Huijberts, H.J.C.; Nijmeijer, Henk; Willems, R.M.A.

    2000-01-01

    In this paper we investigate the problem of controlled synchronization as a regulator problem. In controlled synchronization one is given autonomous transmitter dynamics and controlled receiver dynamics. The question is to find a (output) feedback controller that achieves matching between

  10. Virtual Control Policy for Binary Ordered Resources Petri Net Class

    Directory of Open Access Journals (Sweden)

    Carlos A. Rovetto

    2016-08-01

    Full Text Available Prevention and avoidance of deadlocks in sensor networks that use the wormhole routing algorithm is an active research domain. There are diverse control policies that will address this problem being our approach a new method. In this paper we present a virtual control policy for the new specialized Petri net subclass called Binary Ordered Resources Petri Net (BORPN. Essentially, it is an ordinary class constructed from various state machines that share unitary resources in a complex form, which allows branching and joining of processes. The reduced structure of this new class gives advantages that allow analysis of the entire system’s behavior, which is a prohibitive task for large systems because of the complexity and routing algorithms.

  11. Participation of non-conventional energy resources in power system frequency control

    Science.gov (United States)

    Aghazadeh Tabrizi, Mehriar

    Frequency control is one of the key issues in designing, planning and reliably operating a power system and is becoming more challenging as new complexities and uncertainties are introduced into the modern power systems. Traditionally, power system frequency has been controlled using conventional generation units' capabilities namely inertial, primary and secondary frequency responses. Limited fossil-based fuel resources, ever-increasing energy consumption and rising public awareness for environmental protection have created growing interest in use of non-conventional energy resources such as Wind Generation Resources (WGRs) and Solar Generation Resources (SGRs) which have unfavorable characteristics in comparison with conventional generation units such as lack of frequency response. The more conventional generation units are replaced by these resources, the more challenges power system operators will face in terms of power system frequency control. These challenges are further compounded due to less system inertia during off-peak hours or within small power systems. This dissertation mainly focuses on participation of SGRs and Interior Permanent Magnet Synchronous Generator (IPMSG) based WGRs in power system frequency control. Detailed information regarding dynamic modeling of power system including conventional generation units, SGRs and IPMSG based WGRs is provided. The frequency response of conventional generation units is compared with that of SGRs and IPMSG based WGRs. The control systems associated with IPMSG based WGR and SGR are modified in order to improve their frequency response capabilities. The effectiveness of the proposed control strategies is evaluated and confirmed via MATLAB based time-domain simulations for different scenarios. Moreover, application of Battery Energy Storage Systems (BESSs) in power system frequency regulation is discussed. The detailed dynamic model of BESSs is utilized to develop a simplified model suitable for Automatic

  12. Information Modeling for Direct Control of Distributed Energy Resources

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Stoustrup, Jakob

    2013-01-01

    a desired accumulated response. In this paper, we design such an information model based on the markets that the aggregator participates in and based on the flexibility characteristics of the remote controlled DERs. The information model is constructed in a modular manner making the interface suitable...... for a whole range of different DERs. The devised information model can serve as input to the international standardization efforts on distributed energy resources....

  13. STAFF PERFORMANCE CONTROL AND SECURITY OF CORPORATE INFORMATION RESOURCES

    Directory of Open Access Journals (Sweden)

    Elena Alexandrovna MAXIMOVA

    2014-01-01

    Full Text Available The paper considered the study of corporate manpower’ operation and information security for corporate data resources that evidenced necessity of controlling opera-tion of employees for both productive work performance and the secured corporate database as well. The study suggested the monitoring of work performance’ efficien-cy in the staff done with a specific technique, with a symbolic model drafted for soft wiring.

  14. Dynamic Tracking and Comprehensive Evaluation on the Natural Resources Security Elements and System in China

    Institute of Scientific and Technical Information of China (English)

    Yao Yulong; Zhou Hong

    2010-01-01

    System theory,pressure-state-response and drivingpressure-state-impact-response model have been applied to establishing China's dynamic tracking evaluation system of natural resources security in this article.Based on analytic hierarchy process and Delphi methods,the natural resources security situation has been evaluated systematically from 1991 to 2007.The result showed that the overall level of China's natural resources security presented a downtrend from 1991 to 2007.The basic reasons are the pressure indicators such as population,GDP,natural resources trade increased gradually,resulting in tension and fragility of natural resources security.

  15. Aspiration dynamics and the sustainability of resources in the public goods dilemma

    Science.gov (United States)

    Du, Jinming; Wu, Bin; Wang, Long

    2016-04-01

    How to exploit public non-renewable resources is a public goods dilemma. Individuals can choose to limit the depletion in order to use the resource for a longer time or consume more goods to benefit themselves. When the resource is used up, there is no benefit for the future generations any more, thus the evolutionary process ends. Here we investigate what mechanisms can extend the use of resources in the framework of evolutionary game theory under two updating rules based on imitation and aspiration, respectively. Compared with imitation process, aspiration dynamics may prolong the sustainable time of a public resource.

  16. Control theory of digitally networked dynamic systems

    CERN Document Server

    Lunze, Jan

    2013-01-01

    The book gives an introduction to networked control systems and describes new modeling paradigms, analysis methods for event-driven, digitally networked systems, and design methods for distributed estimation and control. Networked model predictive control is developed as a means to tolerate time delays and packet loss brought about by the communication network. In event-based control the traditional periodic sampling is replaced by state-dependent triggering schemes. Novel methods for multi-agent systems ensure complete or clustered synchrony of agents with identical or with individual dynamic

  17. Controlling Complex Systems and Developing Dynamic Technology

    Science.gov (United States)

    Avizienis, Audrius Victor

    In complex systems, control and understanding become intertwined. Following Ilya Prigogine, we define complex systems as having control parameters which mediate transitions between distinct modes of dynamical behavior. From this perspective, determining the nature of control parameters and demonstrating the associated dynamical phase transitions are practically equivalent and fundamental to engaging with complexity. In the first part of this work, a control parameter is determined for a non-equilibrium electrochemical system by studying a transition in the morphology of structures produced by an electroless deposition reaction. Specifically, changing the size of copper posts used as the substrate for growing metallic silver structures by the reduction of Ag+ from solution under diffusion-limited reaction conditions causes a dynamical phase transition in the crystal growth process. For Cu posts with edge lengths on the order of one micron, local forces promoting anisotropic growth predominate, and the reaction produces interconnected networks of Ag nanowires. As the post size is increased above 10 microns, the local interfacial growth reaction dynamics couple with the macroscopic diffusion field, leading to spatially propagating instabilities in the electrochemical potential which induce periodic branching during crystal growth, producing dendritic deposits. This result is interesting both as an example of control and understanding in a complex system, and as a useful combination of top-down lithography with bottom-up electrochemical self-assembly. The second part of this work focuses on the technological development of devices fabricated using this non-equilibrium electrochemical process, towards a goal of integrating a complex network as a dynamic functional component in a neuromorphic computing device. Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial "atomic switches": silver-silver sulfide junctions, which exhibit

  18. Chaotic dynamics of controlled electric power systems

    Science.gov (United States)

    Kozlov, V. N.; Trosko, I. U.

    2016-12-01

    The conditions for appearance of chaotic dynamics of electromagnetic and electromechanical processes in energy systems described by the Park-Gorev bilinear differential equations with account for lags of coordinates and restrictions on control have been formulated. On the basis of classical equations, the parameters of synchronous generators and power lines, at which the chaotic dynamics of energy systems appears, have been found. The qualitative and quantitative characteristics of chaotic processes in energy associations of two types, based on the Hopf theorem, and methods of nonstationary linearization and decompositions are given. The properties of spectral characteristics of chaotic processes have been investigated, and the qualitative similarity of bilinear equations of power systems and Lorentz equations have been found. These results can be used for modernization of the systems of control of energy objects. The qualitative and quantitative characteristics for power energy systems as objects of control and for some laws of control with the feedback have been established.

  19. [Making Decisions on the Resources for Cancer Control

    Science.gov (United States)

    Gróf, Agnes

    2000-12-01

    We aim at modelling the strategic decision making process in case of devoting resources to a governmental cancer control program. We use a model based on the theory of Analytic Hierarchy Process. In this article we describe the characteristic features of such a decision making process and reveal the complexity of the problem underlying the decisions. A second article will present and discuss the results from the application of the AHP model. Interventions which are capable of decreasing the burden of cancer in a society need strategic approach. Decisions on interventions seem inevitable to be based on and balance between the priorities and the available resources. There is not much doubt about it that the reason for setting the priorities arises on the one hand from the scarcity of resources. On the other hand, priorities evolve on other bases, and are supposed to "guide" health policy makers devoting the scarce resources. In general, a strategic mode of thought has been based on assumptions, which, in case of cancer control enhance the necessity to assess information on cancer and cancer patients, and to understand the factors contributing towards better health. The capabilities of the NCCP achieving its aims by preventing the development of cancer diseases (primary prevention), by making use of the means of early detection and appropriate therapy (secondary prevention), and by providing modern (comprehensive) tertiary prevention are inevitably affected by the priorities. Health policy should assume a responsibility for enforcing certain priorities and should be aware of the long-term interest of the population. To solve the problem we restrict the model to a simple three level one, representing the goals, the criteria, and the alternatives of the resource allocation. We determine "decreasing the burden of cancer" as the overall goal. "Distributive justice" "cost-effectiveness", "human rights", "evidences", and "standpoints of a community" serve as criteria, while

  20. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly......How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  1. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  2. Design and control of swarm dynamics

    CERN Document Server

    Bouffanais, Roland

    2016-01-01

    The book is about the key elements required for designing, building and controlling effective artificial swarms comprised of multiple moving physical agents. Therefore this book presents the fundamentals of each of those key elements in the particular frame of dynamic swarming, specifically exposing the profound connections between these elements and establish some general design principles for swarming behaviors. This scientific endeavor requires an inter-disciplinary approach: biomimetic inspiration from ethology and ecology, study of social information flow, analysis of temporal and adaptive signaling network of interaction, considerations of control of networked real-time systems, and lastly, elements of complex adaptive dynamical systems. This book offers a completely new perspective on the scientific understanding of dynamic collective behaviors thanks to its multi-disciplinary approach and its focus on artificial swarm of physical agents. Two of the key problems in understanding the emergence of swarm ...

  3. Dynamic Control of Kinematically Redundant Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Erling Lunde

    1987-07-01

    Full Text Available Several methods for task space control of kinematically redundant manipulators have been proposed in the literature. Most of these methods are based on a kinematic analysis of the manipulator. In this paper we propose a control algorithm in which we are especially concerned with the manipulator dynamics. The algorithm is particularly well suited for the class of redundant manipulators consisting of a relatively small manipulator mounted on a larger positioning part.

  4. Determinants of human resource investment in internal controls

    Institute of Scientific and Technical Information of China (English)

    Jong-Hag; Choi; Joonil; Lee; Catherine; Heyjung; Sonu

    2013-01-01

    Using the unique reporting environment in Korea, this study investigates the determinants of human resource investment in internal controls for 1352 listed firms disclosing the number of personnel who are in charge of internal controlrelated tasks(IC personnel) from 2005 to 2008. We find that the number of IC personnel within a firm and several key departments increase with firm size,number of employees, complexity and for Chaebols, and decrease in rapidly growing firms. Additional analysis reveals that the factors influencing internal control systems have an accentuated effect on firms with relatively larger firm size.

  5. The Matrix exponential, Dynamic Systems and Control

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2004-01-01

    The matrix exponential can be found in various connections in analysis and control of dynamic systems. In this short note we are going to list a few examples. The matrix exponential usably pops up in connection to the sampling process, whatever it is in a deterministic or a stochastic setting...

  6. Controlling Chemistry in Dynamic Nanoscale Systems

    DEFF Research Database (Denmark)

    Jesorka, Aldo; Lizana, Ludvig; Konkoli, Zoran

    2011-01-01

    of the concept. Controlled release of chol-DNA molecules from SU-8 surfaces gives the possibility to dynamically change surface and/or solution properties in micro and nanoreactor applications, opening access to stable 2D chemistry on surface-based devices with potential for easy interfacing with conventional...

  7. The Matrix exponential, Dynamic Systems and Control

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2004-01-01

    The matrix exponential can be found in various connections in analysis and control of dynamic systems. In this short note we are going to list a few examples. The matrix exponential usably pops up in connection to the sampling process, whatever it is in a deterministic or a stochastic setting...

  8. The Statistical Dynamics of Nonequilibrium Control

    Science.gov (United States)

    Rotskoff, Grant Murray

    Living systems, even at the scale of single molecules, are constantly adapting to changing environmental conditions. The physical response of a nanoscale system to external gradients or changing thermodynamic conditions can be chaotic, nonlinear, and hence difficult to control or predict. Nevertheless, biology has evolved systems that reliably carry out the cell's vital functions efficiently enough to ensure survival. Moreover, the development of new experimental techniques to monitor and manipulate single biological molecules has provided a natural testbed for theoretical investigations of nonequilibrium dynamics. This work focuses on developing paradigms for both understanding the principles of nonequilibrium dynamics and also for controlling such systems in the presence of thermal fluctuations. Throughout this work, I rely on a perspective based on two central ideas in nonequilibrium statistical mechanics: large deviation theory, which provides a formalism akin to thermodynamics for nonequilibrium systems, and the fluctuation theorems which identify time symmetry breaking with entropy production. I use the tools of large deviation theory to explore concepts like efficiency and optimal coarse-graining in microscopic dynamical systems. The results point to the extreme importance of rare events in nonequilibrium dynamics. In the context of rare dynamical events, I outline a formal approach to predict efficient control protocols for nonequilibrium systems and develop computational tools to solve the resulting high dimensional optimization problems. The final chapters of this work focus on applications to self-assembly dynamics. I show that the yield of desired structures can be enhanced by driving a system away from equilibrium, using analysis inspired by the theory of the hydrophobic effect. Finally, I demonstrate that nanoscale, protein shells can be modeled and controlled to robustly produce monodisperse, nonequilibrium structures strikingly similar to the

  9. Managing Dynamic User Communities in a Grid of Autonomous Resources

    CERN Document Server

    Alfieri, R; Gianoli, A; Spataro, F; Ciaschini, Vincenzo; dell'Agnello, L; Bonnassieux, F; Broadfoot, P; Lowe, G; Cornwall, L; Jensen, J; Kelsey, D; Frohner, A; Groep, DL; Som de Cerff, W; Steenbakkers, M; Venekamp, G; Kouril, D; McNab, A; Mulmo, O; Silander, M; Hahkala, J; Lhorentey, K

    2003-01-01

    One of the fundamental concepts in Grid computing is the creation of Virtual Organizations (VO's): a set of resource consumers and providers that join forces to solve a common problem. Typical examples of Virtual Organizations include collaborations formed around the Large Hadron Collider (LHC) experiments. To date, Grid computing has been applied on a relatively small scale, linking dozens of users to a dozen resources, and management of these VO's was a largely manual operation. With the advance of large collaboration, linking more than 10000 users with a 1000 sites in 150 counties, a comprehensive, automated management system is required. It should be simple enough not to deter users, while at the same time ensuring local site autonomy. The VO Management Service (VOMS), developed by the EU DataGrid and DataTAG projects[1, 2], is a secured system for managing authorization for users and resources in virtual organizations. It extends the existing Grid Security Infrastructure[3] architecture with embedded VO ...

  10. Dynamic evaluation of groundwater resources in Zhangye Basin

    Institute of Scientific and Technical Information of China (English)

    LiNa Mi; HongLang Xiao; ZhengLiang Yin; ShengChun Xiao

    2016-01-01

    Groundwater resource is vital to the sustainable development of socio-economics in arid and semi-arid regions of Northwest China. An estimation of the groundwater resources variation in Zhangye Basin was made during 1985–2013 based on long-term groundwater observation data and geostatistical method. The results show that from 1985 to 2013, groundwater storage exhibited tremendous dissimilarity on temporal and spatial scale for the whole Zhangye Basin, especially before and after implementation of the water diversion policy. Trend of groundwater storage varied from quick to slow decline or increase. The accumulative groundwater storage decreased nearly 47.52×108 m3, and annual average depletion rate reached 1.64×108 m3/a. Among which, the accumulative groundwater storage of the river and well water mixed irrigation district decreased by 37.48×108 m3, accounting for about 78.87% of the total groundwater depletion of the Zhangye Basin. Accumulative depletion of groundwater storage varied in respective irrigation districts. Though groundwater resources depletion rate slowed down from 2005, the overall storage in the whole basin and re-spective districts during 1985–2013 was still in a severe deficit such that, the groundwater resource was in a rather negative balance, which could threaten the local aquifer. This is the joint effect of climate change and human activities, however human activities, such as water diversion policy and groundwater exploitation, became increasingly intense. Our research results could provide a reasonable estimation for the groundwater balance in Zhangye Basin, providing a scientific basis for water resources unified planning and, this method can provide a relatively reliable way of estimation for large scale groundwater resources.

  11. Dynamic Resource Management under Weak Property Rights : A Tale of Thieves and Trespassers

    NARCIS (Netherlands)

    Rodriguez Acosta, Mauricio; Smulders, Sjak

    2016-01-01

    Using a dynamic framework with strategic interactions, we study the management of a non-renewable natural resource when property rights are generally weak. Under generally weak property rights both the resource stock and the revenues from exploiting it are imperfectly protected, due to trespassing a

  12. From Static Content to Dynamic Communities: The Evolution of Networked Educational Resources.

    Science.gov (United States)

    Jacobs, Neil; Huxley, Lesly

    2002-01-01

    Discusses Web-based educational resources in the United Kingdom, focusing on current challenges of linking content with community and static information with dynamic news. Describes the evolution of three social sciences resources and examines sustainability, the need for collaboration, and data protection and privacy concerns. (Author/LRW)

  13. Estimating the Wind Resource in Uttarakhand: Comparison of Dynamic Downscaling with Doppler Lidar Wind Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J. K.; Pukayastha, A.; St. Martin, C.; Newsom, R.

    2014-03-01

    Previous estimates of the wind resources in Uttarakhand, India, suggest minimal wind resources in this region. To explore whether or not the complex terrain in fact provides localized regions of wind resource, the authors of this study employed a dynamic down scaling method with the Weather Research and Forecasting model, providing detailed estimates of winds at approximately 1 km resolution in the finest nested simulation.

  14. Dynamic Probing for Intrusion Detection under Resource Constraints

    Science.gov (United States)

    2013-06-01

    performance measure of regret, defined as the performance loss compared to that of a genie who knows the entire attack processes a priori and probes...performance as that of the omniscient genie . Index Terms—Intrusion detection, dynamic probing, non- stochastic multi-armed bandit, regret. I...dynamic probing strategy under the performance measure of regret, de ned as the performance loss compared to that of a genie who knows the entire attack

  15. Dynamics of the Coordination of Economy-Society and Resource-Environment in Shandong Peninsula, China

    Institute of Scientific and Technical Information of China (English)

    Han Rongqing; Zhao Minghua

    2012-01-01

    Shandong Peninsula, as a more developed region in Shandong Province even the east coast of China, is facing challenges from resources and environment pressures. This paper tried to track and assess the coordination status and the dynamic between resource-environment and economy-society systems in Shandong Peninsula during 2001-2008 in order to provide deci- sion support for regional sustainability. An appraisal index system was built including five aspects of harmony degree (A), sustain- ability degree (B), opening degree (C), stability degree (D) and controllability degree (E). The results showed that: 1) The coor- dination level of resource-environment and economy-society in Shandong Peninsula has continuously grown, and it has undergone three stages: no coordinated degree (2001-2002), weak coordi- nated degree (2003-2006) and basically coordinated degree (2007- 2008). 2) Five indexes of criterion hierarchy also increased overall, but each index showed different trends. Harmony degree, sustain- ability degree and opening degree rose all the time, while stability degree and controllability degree alternately rose and fell. The improvement of controllability degree was the slowest. 3) The ag- gravating trend of environmental pollution was slowing down. The economic growth was driven by industrial growth and urbanization typically and investment was still the main force to pull the regional economic growth. At the same time, technology and education were becoming more and more important for economic growth. The level of foreign capital utility declined and the geographical advantage of Shandong Peninsula was exerted. Meanwhile some characteristics of knowledge economy were presenting. Water re- sources become the main constraint factor of fast development in Shandong Peninsula. It is necessary to further strengthen the coordination ability of government on regional sustainable development.

  16. Towards Intelligent Dynamic Deployment of Mobile Sensors in Complex Resource-Bounded Environments

    Energy Technology Data Exchange (ETDEWEB)

    Ng, B M; Hanley, W G

    2007-05-08

    Decision-making in the face of uncertainty requires an understanding of the probabilistic mechanisms that govern the complex behavior of these systems. This issue applies to many domains: financial investments, disease control, military planning and homeland security. In each of these areas, there is a practical need for efficient resource-bounded reasoning capabilities to support optimal decision-making. Specifically, given a highly complex system, with numerous random variables and their dynamic interactions, how do we monitor such a system and detect crucial events that might impact our decision making process? More importantly, how do we perform this reasoning efficiently--to an acceptable degree of accuracy in real time--when there are only limited computational power and sensory capabilities? These questions encapsulate nontrivial key issues faced by many high-profile Laboratory missions: the problem of efficient inference and dynamic sensor deployment for risk/uncertainty reduction. By leveraging solid ideas such as system decomposition into loosely coupled subsystems and smart resource allocation among these subsystems, we can parallelize inference and data acquisition for faster and improved computational performance. In this report, we propose technical approaches for developing algorithmic tools to enable future scientific and engineering endeavors to better achieve the optimal use of limited resources for maximal return of information on a complex system. The result of the proposed research effort will be an efficient reasoning framework that would enable mobile sensors to work collaboratively as teams of adaptive and responsive agents, whose joint goal is to gather useful information that would assist in the inference process.

  17. Dynamics and control of DNA sequence amplification

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, Karthikeyan [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054 (United States)

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  18. Adaptive dynamics of competition for nutritionally complementary resources: character convergence, displacement, and parallelism.

    Science.gov (United States)

    Vasseur, David A; Fox, Jeremy W

    2011-10-01

    Consumers acquire essential nutrients by ingesting the tissues of resource species. When these tissues contain essential nutrients in a suboptimal ratio, consumers may benefit from ingesting a mixture of nutritionally complementary resource species. We investigate the joint ecological and evolutionary consequences of competition for complementary resources, using an adaptive dynamics model of two consumers and two resources that differ in their relative content of two essential nutrients. In the absence of competition, a nutritionally balanced diet rarely maximizes fitness because of the dynamic feedbacks between uptake rate and resource density, whereas in sympatry, nutritionally balanced diets maximize fitness because competing consumers with different nutritional requirements tend to equalize the relative abundances of the two resources. Adaptation from allopatric to sympatric fitness optima can generate character convergence, divergence, and parallel shifts, depending not on the degree of diet overlap but on the match between resource nutrient content and consumer nutrient requirements. Contrary to previous verbal arguments that suggest that character convergence leads to neutral stability, coadaptation of competing consumers always leads to stable coexistence. Furthermore, we show that incorporating costs of consuming or excreting excess nonlimiting nutrients selects for nutritionally balanced diets and so promotes character convergence. This article demonstrates that resource-use overlap has little bearing on coexistence when resources are nutritionally complementary, and it highlights the importance of using mathematical models to infer the stability of ecoevolutionary dynamics.

  19. Dynamics and control of underactuated multibody spacecraft

    Science.gov (United States)

    Cho, Sangbum

    In this dissertation, we develop equations of motion for a class of multibody spacecraft consisting of a rigid base body and multiple rigid appendages connected to the base body. There has been much prior research on this topic; however, much of this research is not appropriate for nonlinear control design purposes. The motion of a multibody spacecraft is described by the position and attitude of a base body in an inertial frame and by the relative position and attitude of the attached bodies with respect to the base body; these latter quantities define the shape of the multibody spacecraft. Our aim is to develop equations of motion that reveal important nonlinear coupling effects between the translation, rotation and shape dynamics, but are simple enough for control design purposes. A rotation matrix is used to represent the attitude of the spacecraft. This allows us to avoid complexity related to the use of parameter representations such as Euler angles. Hamilton's variational principle gives three sets of nonlinear equations of motion. The latter part of this dissertation presents results of control problems for several underactuated multibody spacecraft examples. These include spacecraft with an unactuated internal sliding mass, spacecraft with unactuated fuel slosh dynamics, tethered spacecraft with attachment point actuation and the triaxial attitude control testbed with two proof mass actuation devices. These examples illustrate important features related to the dynamics and control of various underactuated multibody spacecraft. Differences in geometries of the spacecraft and gravitational assumptions require adoption of different types of control schemes. We use the multibody equations in this dissertation to formulate control equations for the models and to construct feedback controllers that achieves asymptotic stability (or convergence) to the desired (relative) equilibrium manifolds. Computer simulations demonstrate the effectiveness of the controllers.

  20. Fluid dynamic constraints on resource acquisition in small pelagic organisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2016-01-01

    by the application of formal fluid physics. Here, I examine resource acquisition mechanisms in small aquatic organisms, ranging from uptake of dissolved molecules to feeding on suspended particulate prey, and examine how organism behaviors and morphologies may be shaped by the often non-intuitive small-scale fluid...

  1. Run-time mapping: dynamic resource allocation in embedded systems

    NARCIS (Netherlands)

    Braak, ter Timon David

    2016-01-01

    Many desired features of computing platforms, such as increased fault tolerance, variable quality of service, and improved energy efficiency, can be achieved by postponing resource management decisions from design-time to run-time. While multiprocessing has been widespread in embedded systems for q

  2. Run-time mapping: dynamic resource allocation in embedded systems

    NARCIS (Netherlands)

    ter Braak, T.D.

    2016-01-01

    Many desired features of computing platforms, such as increased fault tolerance, variable quality of service, and improved energy efficiency, can be achieved by postponing resource management decisions from design-time to run-time. While multiprocessing has been widespread in embedded systems for

  3. A Dynamic Slack Management Technique for Real-Time Distributed Embedded System with Enhanced Fault Tolerance and Resource Constraints

    Directory of Open Access Journals (Sweden)

    Santhi Baskaran,

    2011-01-01

    Full Text Available This project work aims to develop a dynamic slack management technique, for real-time distributed embedded systems to reduce the total energy consumption in addition to timing, precedence and resource constraints. The Slack Distribution Technique proposed considers a modified Feedback Control Scheduling (FCS algorithm. This algorithm schedules dependent tasks effectively with precedence and resource constraints. It further minimizes the schedule length and utilizes the available slack to increase the energy efficiency. A fault tolerant mechanism uses a deferred-active-backup scheme increases the schedulability and provides reliability to the system.

  4. Optimal Control of Isometric Muscle Dynamics

    Directory of Open Access Journals (Sweden)

    Robert Rockenfeller

    2015-03-01

    Full Text Available We use an indirect optimal control approach to calculate the optimal neural stimulation needed to obtain measured isometric muscle forces. The neural stimulation of the nerve system is hereby considered to be a control function (input of the system ’muscle’ that solely determines the muscle force (output. We use a well-established muscle model and experimental data of isometric contractions. The model consists of coupled activation and contraction dynamics described by ordinary differential equations. To validate our results, we perform a comparison with commercial optimal control software.

  5. Controlling complex Langevin dynamics at finite density

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, Gert; Bongiovanni, Lorenzo [Swansea University, Department of Physics, College of Science, Swansea (United Kingdom); Seiler, Erhard [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Sexty, Denes [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Stamatescu, Ion-Olimpiu [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); FEST, Heidelberg (Germany)

    2013-07-15

    At nonzero chemical potential the numerical sign problem in lattice field theory limits the use of standard algorithms based on importance sampling. Complex Langevin dynamics provides a possible solution, but it has to be applied with care. In this review, we first summarise our current understanding of the approach, combining analytical and numerical insight. In the second part we study SL(N,C) gauge cooling, which was introduced recently as a tool to control complex Langevin dynamics in nonabelian gauge theories. We present new results in Polyakov chain models and in QCD with heavy quarks and compare various adaptive cooling implementations. (orig.)

  6. Modeling, Analysis, and Control of Demand Response Resources

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Johanna L. [Univ. of California, Berkeley, CA (United States)

    2012-05-01

    While the traditional goal of an electric power system has been to control supply to fulfill demand, the demand-side can plan an active role in power systems via Demand Response (DR), defined by the Department of Energy (DOE) as “a tariff or program established to motivate changes in electric use by end-use customers in response to changes in the price of electricity over time, or to give incentive payments designed to induce lower electricity use at times of high market prices or when grid reliability is jeopardized” [29]. DR can provide a variety of benefits including reducing peak electric loads when the power system is stressed and fast timescale energy balancing. Therefore, DR can improve grid reliability and reduce wholesale energy prices and their volatility. This dissertation focuses on analyzing both recent and emerging DR paradigms. Recent DR programs have focused on peak load reduction in commercial buildings and industrial facilities (C&I facilities). We present methods for using 15-minute-interval electric load data, commonly available from C&I facilities, to help building managers understand building energy consumption and ‘ask the right questions’ to discover opportunities for DR. Additionally, we present a regression-based model of whole building electric load, i.e., a baseline model, which allows us to quantify DR performance. We use this baseline model to understand the performance of 38 C&I facilities participating in an automated dynamic pricing DR program in California. In this program, facilities are expected to exhibit the same response each DR event. We find that baseline model error makes it difficult to precisely quantify changes in electricity consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. Therefore, we present a method to compute baseline model error and a metric to determine how much observed DR variability results from baseline model error rather than real

  7. Success Stories in Control: Nonlinear Dynamic Inversion Control

    Science.gov (United States)

    Bosworth, John T.

    2010-01-01

    NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.

  8. Towards Resource Consumption Accounting and Control in Java: a Practical Experience

    OpenAIRE

    Guidec, Frédéric; Le Sommer, Nicolas

    2002-01-01

    International audience; All software components are not equivalent as far as resource access and consumption are concerned. Some components can do very well with sparse or even missing resources, while others require guaranteed access to the resources they need. In order to deal with non-functional requirements pertaining to resource utilisation we propose a contractual approach of resource management and access control.

  9. Evolutionary game dynamics of controlled and automatic decision-making

    Science.gov (United States)

    Toupo, Danielle F. P.; Strogatz, Steven H.; Cohen, Jonathan D.; Rand, David G.

    2015-07-01

    We integrate dual-process theories of human cognition with evolutionary game theory to study the evolution of automatic and controlled decision-making processes. We introduce a model in which agents who make decisions using either automatic or controlled processing compete with each other for survival. Agents using automatic processing act quickly and so are more likely to acquire resources, but agents using controlled processing are better planners and so make more effective use of the resources they have. Using the replicator equation, we characterize the conditions under which automatic or controlled agents dominate, when coexistence is possible and when bistability occurs. We then extend the replicator equation to consider feedback between the state of the population and the environment. Under conditions in which having a greater proportion of controlled agents either enriches the environment or enhances the competitive advantage of automatic agents, we find that limit cycles can occur, leading to persistent oscillations in the population dynamics. Critically, however, these limit cycles only emerge when feedback occurs on a sufficiently long time scale. Our results shed light on the connection between evolution and human cognition and suggest necessary conditions for the rise and fall of rationality.

  10. Dynamic Resource Reservation and Connectivity Tracking to Support Real-Time Communication among Mobile Units

    Directory of Open Access Journals (Sweden)

    Almeida Luis

    2005-01-01

    Full Text Available Wireless communication technology is spreading quickly in almost all the information technology areas as a consequence of a gradual enhancement in quality and security of the communication, together with a decrease in the related costs. This facilitates the development of relatively low-cost teams of autonomous (robotic mobile units that cooperate to achieve a common goal. Providing real-time communication among the team units is highly desirable for guaranteeing a predictable behavior in those applications in which the robots have to operate autonomously in unstructured environments. This paper proposes a MAC protocol for wireless communication that supports dynamic resource reservation and topology management for relatively small networks of cooperative units (10–20 units. The protocol uses a slotted time-triggered medium access transmission control that is collision-free, even in the presence of hidden nodes. The transmissions are scheduled according to the earliest deadline first scheduling policy. An adequate admission control guarantees the timing constraints of the team communication requirements, including when new nodes dynamically join or leave the team. The paper describes the protocol focusing on the consensus procedure that supports coherent changes in the global system. We also introduce a distributed connectivity tracking mechanism that is used to detect network partition and absent or crashed nodes. Finally, a set of simulation results are shown that illustrate the effectiveness of the proposed approaches.

  11. Using location types to control interferences in mobile resources

    Institute of Scientific and Technical Information of China (English)

    FU Cheng; YOU Jin-yuan

    2005-01-01

    This paper presents a type system, called Location System (L-S), to control the interferences in the ambient-like calculi. The L-S allows well-behaved (non-interfering) processes to run in parallel if they do not access shared location during their execution life cycle. This approach is designed for a variant of Mobile Ambient (MA), called Safe Mobile Resources (SR), but it can be also used in other ambient-like calculi which are also discussed in this paper.

  12. Hybrid dynamical systems observation and control

    CERN Document Server

    Defoort, Michael

    2015-01-01

    This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems – systems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study ...

  13. Numerical Investigations of Dynamic Stall Control

    Directory of Open Access Journals (Sweden)

    Florin FRUNZULICA

    2014-04-01

    Full Text Available In this paper we investigated numerically the dynamic stall phenomenon and the possibilities to control it, with application to vertical axis wind turbines (for urban users. The Phenomenon appear at low tip speed ratio (TSR<4 and it has a great impact on structural integrity of the wind turbine and power performances. For this reason we performed a computational study of dynamic stall around NACA 0012 airfoil in pitching motion at relative low Reynolds number (105. Also, we performed the same analysis for four flow control methods: two passive (Gurney flap and slot and two active (blowing jet on the rounded trailing edge and synthetic jet periodically activated. The Results are compared to those of an existing experimental case test.

  14. Electron dynamics controlled via self-interaction

    CERN Document Server

    Tamburini, Matteo; Di Piazza, Antonino

    2013-01-01

    The dynamics of an electron in a strong laser field can be significantly altered by radiation reaction. This usually results in a strongly damped motion, with the electron losing a large fraction of its initial energy. Here we show that the electron dynamics in a bichromatic laser pulse can be indirectly controlled by a comparatively small radiation reaction force through its interplay with the Lorentz force. By changing the relative phase between the two frequency components of the bichromatic laser field, an ultrarelativistic electron bunch colliding head-on with the laser pulse can be deflected in a controlled way, with the deflection angle being independent of the initial electron energy. The effect is predicted to be observable with intensities available at upcoming laser facilities.

  15. Energy Management Dynamic Control Topology In MANET

    Science.gov (United States)

    Madhusudan, G.; Kumar, TNR

    2017-08-01

    Topology management via per-node transmission power adjustment has been shown effective in extending network lifetime. The existing algorithms constructs static topologies which fail to take the residual energy of network nodes, and cannot balance energy consumption efficiently. To address this problem, a Light Weighted Distributed Topology Control algorithm EMDCT(Energy Management Dynamic Control Topology ) is proposed in this paper. Based on the link metric of the network, both the energy consumption rate level and residual energy levels at the two end nodes are considered. EMDCT generates a Dynamic Topology that changes with the variation of node energy without the aid of location information, each node determines its transmission power according to local network information, which reduces the overhead complexity of EMDCT greatly. The experiment results show that EMDCT preserves network connectivity and manitains minimum-cost property of the network also it can extend network lifetime more remarkably.

  16. Dynamics of Dengue epidemics using optimal control

    CERN Document Server

    Rodrigues, Helena Sofia; Torres, Delfim F M

    2010-01-01

    We present an application of optimal control theory to Dengue epidemics. This epidemiologic disease is an important theme in tropical countries due to the growing number of infected individuals. The dynamic model is described by a set of nonlinear ordinary differential equations, that depend on the dynamic of the Dengue mosquito, the number of infected individuals, and the people's motivation to combat the mosquito. The cost functional depends not only on the costs of medical treatment of the infected people but also on the costs related to educational and sanitary campaigns. Two approaches to solve the problem are considered: one using optimal control theory, another one by discretizing first the problem and then solving it with nonlinear programming. The results obtained with OC-ODE and IPOPT solvers are given and discussed. We observe that with current computational tools it is easy to obtain, in an efficient way, better solutions to Dengue problems, leading to a decrease of infected mosquitoes and individ...

  17. Dynamic Characteristics of Explicit Control Protocol

    Institute of Scientific and Technical Information of China (English)

    CHENG Shuang-mei; LI Jian-hua; GUO Chuan-xiong

    2008-01-01

    The dynamic characteristics of eplicit control protocol (XCP) were investigated with single bottle-neck on the microscopic time-scale. Analysis and simulation results show that the bandwidth utilization of an XCP bottleneck link converges to 1 at exponential rate, persistent congestion cannot occur at the bottleneck link, and throughput of an arbitrary subset of XCP flows at the bottleneck link converges to its fair share in exponential rate. The XCP has high bandwidth utilization and good fairness properties.

  18. Performance, Career Dynamics, and Span of Control

    DEFF Research Database (Denmark)

    Smeets, Valerie Anne Rolande; Waldman, Michael; Warzynski, Frederic Michel Patrick

    . In this paper we first extend the theoretical literature on the scale-of-operations effect to allow firms’ beliefs concerning a manager’s ability to evolve over the manager’s career, where much of our focus is the determinants of span of control. We then empirically investigate testable predictions from......There is an extensive theoretical literature based on what is called the scale-of-operations effect, i.e., the idea that the return to managerial ability is higher the more resources the manager influences with his or her decisions. This idea leads to various testable predictions including...... that higher ability managers should supervise more subordinates, or equivalently, have a larger span of control. And although some of this theory’s predictions have been empirically investigated, there has been little systematic investigation of the theory’s predictions concerning span of control...

  19. INVENTORY CONTROL OF A MULTIPRODUCT SYSTEM WITH A LIMITED PRODUCTION RESOURCE,

    Science.gov (United States)

    INVENTORY CONTROL , MANAGEMENT ENGINEERING), (*MANAGEMENT ENGINEERING, INDUSTRIAL PRODUCTION), (*MANAGEMENT PLANNING AND CONTROL, MATHEMATICAL MODELS), OPERATIONS RESEARCH, DYNAMIC PROGRAMMING, COSTS, EQUATIONS

  20. Resource-based view and dynamic capabilities - Achieving competitive advantage through internal resources and competences

    OpenAIRE

    Enriquez de la O, José Francisco

    2015-01-01

    Strategy has always been important for success. Whether strategy is applied for military purposes, in large firms, or even for personal objectives, there are certain key characteristics that every successful strategy carries on: clear, objective and simple goals; deep knowledge and understanding of the competitive environment; objective understanding and exploitation of resources; and an effective plan implementation. In this paper, the author’s attention will be focused on the role ...

  1. Neuromechanical tuning of nonlinear postural control dynamics

    Science.gov (United States)

    Ting, Lena H.; van Antwerp, Keith W.; Scrivens, Jevin E.; McKay, J. Lucas; Welch, Torrence D. J.; Bingham, Jeffrey T.; DeWeerth, Stephen P.

    2009-06-01

    Postural control may be an ideal physiological motor task for elucidating general questions about the organization, diversity, flexibility, and variability of biological motor behaviors using nonlinear dynamical analysis techniques. Rather than presenting "problems" to the nervous system, the redundancy of biological systems and variability in their behaviors may actually be exploited to allow for the flexible achievement of multiple and concurrent task-level goals associated with movement. Such variability may reflect the constant "tuning" of neuromechanical elements and their interactions for movement control. The problem faced by researchers is that there is no one-to-one mapping between the task goal and the coordination of the underlying elements. We review recent and ongoing research in postural control with the goal of identifying common mechanisms underlying variability in postural control, coordination of multiple postural strategies, and transitions between them. We present a delayed-feedback model used to characterize the variability observed in muscle coordination patterns during postural responses to perturbation. We emphasize the significance of delays in physiological postural systems, requiring the modulation and coordination of both the instantaneous, "passive" response to perturbations as well as the delayed, "active" responses to perturbations. The challenge for future research lies in understanding the mechanisms and principles underlying neuromechanical tuning of and transitions between the diversity of postural behaviors. Here we describe some of our recent and ongoing studies aimed at understanding variability in postural control using physical robotic systems, human experiments, dimensional analysis, and computational models that could be enhanced from a nonlinear dynamics approach.

  2. Dynamic nonprehensile manipulation: Controllability, planning, and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, K.M. [Northwestern Univ., Evanston, IL (United States). Dept. of Mechanical Engineering; Mason, M.T. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Robotics Inst.

    1999-01-01

    The authors are interested in using low-degree-of-freedom robots to perform complex tasks by nonprehensile manipulation (manipulation without a form- or force-closure grasp). By not grasping, the robot can use gravitational, centrifugal, and Coriolis forces as virtual motors to control more degrees of freedom of the part. The part`s extra motion freedoms are exhibited as rolling, slipping, and free flight. This paper describes controllability, motion planning, and implementation of planar dynamic nonprehensile manipulation. The authors show that almost any planar object is controllable by point contact, and the controlling robot requires only two degrees of freedom (a point translating in the plane). They then focus on a one-joint manipulator (with a two-dimensional state space), and show that even this simplest of robots, by using slipping and rolling, can control a planar object to a full-dimensional subset of its six-0dimensional state space. The authors have developed a one-joint robot to perform a variety of dynamic tasks, including snatching an object from a table, rolling an object on the surface of the arm, and throwing and catching. Nonlinear optimization is used to plan robot trajectories that achieve the desired object motion via coupling forces through the nonprehensile contact.

  3. Chaos control applied to heart rhythm dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Borem Ferreira, Bianca, E-mail: biaborem@gmail.com [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil); Souza de Paula, Aline, E-mail: alinedepaula@unb.br [Universidade de Brasi' lia, Department of Mechanical Engineering, 70.910.900 Brasilia, DF (Brazil); Amorim Savi, Marcelo, E-mail: savi@mecanica.ufrj.br [Universidade Federal do Rio de Janeiro, COPPE, Department of Mechanical Engineering, P.O. Box 68.503, 21.941.972 Rio de Janeiro, RJ (Brazil)

    2011-08-15

    Highlights: > A natural cardiac pacemaker is modeled by a modified Van der Pol oscillator. > Responses related to normal and chaotic, pathological functioning of the heart are investigated. > Chaos control methods are applied to avoid pathological behaviors of heart dynamics. > Different approaches are treated: stabilization of unstable periodic orbits and chaos suppression. - Abstract: The dynamics of cardiovascular rhythms have been widely studied due to the key aspects of the heart in the physiology of living beings. Cardiac rhythms can be either periodic or chaotic, being respectively related to normal and pathological physiological functioning. In this regard, chaos control methods may be useful to promote the stabilization of unstable periodic orbits using small perturbations. In this article, the extended time-delayed feedback control method is applied to a natural cardiac pacemaker described by a mathematical model. The model consists of a modified Van der Pol equation that reproduces the behavior of this pacemaker. Results show the ability of the chaos control strategy to control the system response performing either the stabilization of unstable periodic orbits or the suppression of chaotic response, avoiding behaviors associated with critical cardiac pathologies.

  4. Controlling Proton Delivery through Catalyst Structural Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Allan Jay P. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; 221 Science Center, State University of New York at Fredonia, Fredonia NY 14063 USA; Ginovska, Bojana [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Kumar, Neeraj [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Hou, Jianbo [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Raugei, Simone [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Helm, Monte L. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Appel, Aaron M. [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; Bullock, R. Morris [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA; O' Hagan, Molly [Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999, K2-57 Richland WA 99352 USA

    2016-09-27

    The fastest synthetic molecular catalysts for production and oxidation of H2 emulate components of the active site of natural hydrogenases. The role of controlled structural dynamics is recognized as a critical component in the catalytic performance of many enzymes, including hydrogenases, but is largely neglected in the design of synthetic molecular cata-lysts. In this work, the impact of controlling structural dynamics on the rate of production of H2 was studied for a series of [Ni(PPh2NC6H4-R2)2]2+ catalysts including R = n-hexyl, n-decyl, n-tetradecyl, n-octadecyl, phenyl, or cyclohexyl. A strong correlation was observed between the ligand structural dynamics and the rates of electrocatalytic hydrogen production in acetonitrile, acetonitrile-water, and protic ionic liquid-water mixtures. Specifically, the turnover frequencies correlate inversely with the rates of ring inversion of the amine-containing ligand, as this dynamic process dictates the positioning of the proton relay in the second coordination sphere and therefore governs protonation at either catalytically productive or non-productive sites. This study demonstrates that the dynamic processes involved in proton delivery can be controlled through modifications of the outer coordination sphere of the catalyst, similar to the role of the protein architecture in many enzymes. The present work provides new mechanistic insight into the large rate enhancements observed in aqueous protic ionic liquid media for the [Ni(PPh2NR2)]2+ family of catalysts. The incorporation of controlled structural dynamics as a design parameter to modulate proton delivery in molecular catalysts has enabled H2 production rates that are up to three orders of magnitude faster than the [Ni(PPh2NPh2)]2+complex. The observed turnover frequencies are up to 106 s-1 in acetonitrile-water, and over 107 s-1 in protic ionic liquid-water mixtures, with a minimal increase in overpotential. This material is based upon work supported as part of

  5. Distributed Energy Resources and Dynamic Microgrid: An Integrated Assessment

    Science.gov (United States)

    Shang, Duo Rick

    The overall goal of this thesis is to improve understanding in terms of the benefit of DERs to both utility and to electricity end-users when integrated in power distribution system. To achieve this goal, a series of two studies was conducted to assess the value of DERs when integrated with new power paradigms. First, the arbitrage value of DERs was examined in markets with time-variant electricity pricing rates (e.g., time of use, real time pricing) under a smart grid distribution paradigm. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage over a five-year period. The optimization process involves two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with different assumptions on technology performance, electricity market and PHEV owner types. The simulation results indicate that expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services without more favorable policy and PHEV battery technologies. Subsidy or change in electricity tariff or both are needed. Second, it examined the concept of dynamic microgrid as a measure to improve distribution resilience, and estimates the prices of this emerging service. An economic load dispatch (ELD) model is developed to estimate the market-clearing price in a hypothetical community with single bid auction electricity market. The results show that the electricity market clearing price on the dynamic microgrid is predominantly decided by power output and cost of electricity of each type of DGs. At circumstances where CHP is the only source, the electricity market clearing price in the island is even cheaper than the on-grid electricity price at normal times. Integration of PHEVs in the dynamic microgrid will increase electricity market clearing prices. It demonstrates that dynamic microgrid is an economically viable alternative to enhance grid resilience.

  6. Adaptive Dynamic Surface Control for Generator Excitation Control System

    Directory of Open Access Journals (Sweden)

    Zhang Xiu-yu

    2014-01-01

    Full Text Available For the generator excitation control system which is equipped with static var compensator (SVC and unknown parameters, a novel adaptive dynamic surface control scheme is proposed based on neural network and tracking error transformed function with the following features: (1 the transformation of the excitation generator model to the linear systems is omitted; (2 the prespecified performance of the tracking error can be guaranteed by combining with the tracking error transformed function; (3 the computational burden is greatly reduced by estimating the norm of the weighted vector of neural network instead of the weighted vector itself; therefore, it is more suitable for the real time control; and (4 the explosion of complicity problem inherent in the backstepping control can be eliminated. It is proved that the new scheme can make the system semiglobally uniformly ultimately bounded. Simulation results show the effectiveness of this control scheme.

  7. Distributed Resource Exploitation for Autonomous Mobile Sensor Agents in Dynamic Environments

    Science.gov (United States)

    Doumit, Sarjoun; Minai, Ali

    This paper studies the distributed resource exploitation problem (DREP) where many resources are distributed across an unknown environment, and several agents move around in it with the goal to exploit/visit the resources. A resource may be anything that can be harvested/sensed/acted upon by an agent when the agent visits that resource's physical location. A sensory agent (SA) is a mobile and autonomous sensory entity that has the capability of sensing a resource's attribute and therefore determining the exploitatory gain factor or profitability when this resource is visited. This type of problem can be seen as a combination of two well-known problems: the Dynamic Traveling Salesman Problem (DTSP) [8] and the Vehicle Routing Problem (VRP) [1]. But the DREP differs significantly from these two. In the DTSP we have a single agent that needs to visit many fixed cities that have costs associated to their pairwise links, so it is an optimization of paths on a static graph with time-varying costs. In VRP on the other hand, we have a number of vehicles with uniform capacity, a common depot, and several stationary customers scattered around an environment, so the goal is to find the set of routes with overall minimum route cost to service all the customers. In our problem, we have multiple SAs deployed in an unknown environment with multiple dynamic resources each with a dynamically varying value. The goal of the SAs is to adapt their paths collaboratively to the dynamics of the resources in order to maximize the general profitability of the system.

  8. Wake flow control using a dynamically controlled wind turbine

    Science.gov (United States)

    Castillo, Ricardo; Wang, Yeqin; Pol, Suhas; Swift, Andy; Hussain, Fazle; Westergaard, Carsten; Texas Tech University Team

    2016-11-01

    A wind tunnel based "Hyper Accelerated Wind Farm Kinematic-Control Simulator" (HAWKS) is being built at Texas Tech University to emulate controlled wind turbine flow physics. The HAWKS model turbine has pitch, yaw and speed control which is operated in real model time, similar to that of an equivalent full scale turbine. Also, similar to that of a full scale wind turbine, the controls are developed in a Matlab Simulink environment. The current diagnostic system consists of power, rotor position, rotor speed measurements and PIV wake characterization with four cameras. The setup allows up to 7D downstream of the rotor to be mapped. The purpose of HAWKS is to simulate control strategies at turnaround times much faster than CFD and full scale testing. The fundamental building blocks of the simulator have been tested, and demonstrate wake steering for both static and dynamic turbine actuation. Parameters which have been studied are yaw, rotor speed and combinations hereof. The measured wake deflections for static yaw cases are in agreement with previously reported research implying general applicability of the HAWKS platform for the purpose of manipulating the wake. In this presentation the general results will be introduced followed by an analysis of the wake turbulence and coherent structures when comparing static and dynamic flow cases. The outcome of such studies could ultimately support effective wind farm wake flow control strategies. Texas Emerging Technology Fund (ETF).

  9. Learning Dynamics for Robot Control under Varying Contexts

    OpenAIRE

    Petkos, Georgios

    2008-01-01

    High fidelity, compliant robot control requires a sufficiently accurate dynamics model. Often though, it is not possible to obtain a dynamics model sufficiently accurately or at all using analytical methods. In such cases, an alternative is to learn the dynamics model from movement data. This thesis discusses the problems specific to dynamics learning for control under nonstationarity of the dynamics. We refer to the cause of the nonstationarity as the context of the dynamics. ...

  10. Magnetic Field Control of Combustion Dynamics

    Science.gov (United States)

    Barmina, I.; Valdmanis, R.; Zake, M.; Kalis, H.; Marinaki, M.; Strautins, U.

    2016-08-01

    Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the flame reaction zone with swirl-enhanced mixing of the axial flow of volatiles with cold air swirl, by cooling the flame reaction zone and by limiting the thermo-chemical conversion of volatiles. Mathematical modelling of magnetic field effect on the formation of the flame dynamics confirms that the electromagnetic force, which is induced by the electric current surrounding the flame, leads to field-enhanced increase of flow vorticity by enhancing mixing of the reactants. The magnetic field effect on the flame temperature and rate of reactions leads to conclusion that field-enhanced increase of the flow vorticity results in flame cooling by limiting the chemical conversion of the reactants.

  11. A dynamic new group within Human Resources Division

    CERN Multimedia

    2003-01-01

    Since 1st May CERN's training and development and personnel management teams have been fused into a new group called Personnel Management and Development. The new Personnel Management and Development Group is responsible for career advancement and management, recruitment, remuneration and for language, communication, management, academic and technical training, keys to a sense of greater well-being and to career progression. The new group was born on 1st May out of the fusion of the "Personnel Management" and "Training and Development" Groups within CERN's Human Resources Division. Its aim is to offer a practical and easily accessible service to assist the members of the personnel and supervisors to manage careers more harmoniously, to make progress and to continue to learn on the job. With Sue Foffano as its Group Leader, the Group comprises four sections: Academic and Technical Training under the guiding hand of Mick Storr; Management, Communication and Language Training headed by Sudeshna Datta-Cockeril...

  12. The BOXES Methodology Black Box Dynamic Control

    CERN Document Server

    Russell, David W

    2012-01-01

    Robust control mechanisms customarily require knowledge of the system’s describing equations which may be of the high order differential type.  In order to produce these equations, mathematical models can often be derived and correlated with measured dynamic behavior.  There are two flaws in this approach one is the level of inexactness introduced by linearizations and the other when no model is apparent.  Several years ago a new genre of control systems came to light that are much less dependent on differential models such as fuzzy logic and genetic algorithms. Both of these soft computing solutions require quite considerable a priori system knowledge to create a control scheme and sometimes complicated training program before they can be implemented in a real world dynamic system. Michie and Chambers’ BOXES methodology created a black box system that was designed to control a mechanically unstable system with very little a priori system knowledge, linearization or approximation.  All the method need...

  13. NSLS-II Control of Dynamic Aperture

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson,J.

    2008-10-31

    We have outlined how, by an intuitive approach, the on- and off-momentum dynamic aperture for a synchrotron light source can be estimated from a nonlinear system of algebraic equations for the sextupole/multipole strengths. The approach has only two free parameters: the relative weight for resonance vs. tune shift terms and the tune footprint for stable trajectories in a modern third generation synchrotron light source. In other words, we have established a control theory approach for the medium term (10{sup 3} turns) stability for a dynamic system described by a nonlinear system of ordinary differential equations. Equipped with a predictive, quantitative model for stability, we have then evaluated how to improve the control of the dynamics by analyzing and modifying the properties of the corresponding algebraic system. In particular, by changing the number- and characteristics of the parameters, i.e., we have not evaluated how the underlying (linear) optics could be improved. We have also validated our conjectures by numerical simulations with a realistic model. Presumably, our conclusions, summarized in Section 1.0, are a direct result of the presented analysis and observations.

  14. Dynamic scheduling model of computing resource based on MAS cooperation mechanism

    Institute of Scientific and Technical Information of China (English)

    JIANG WeiJin; ZHANG LianMei; WANG Pu

    2009-01-01

    Allocation of grid resources aims at improving resource utility and grid application performance. Currently, the algorithms proposed for this purpose do not fit well the autonomic, dynamic, distributive and heterogeneous features of the grid environment. According to MAS (multi-agent system) cooperation mechanism and market bidding game rules, a model of allocating allocation of grid resources based on market economy is introduced to reveal the relationship between supply and demand. This model can make good use of the studying and negotiating ability of consumers' agent and takes full consideration of the consumer's behavior, thus rendering the application and allocation of resource of the consumers rational and valid. In the meantime, the utility function of consumer Is given; the existence and the uniqueness of Nash equilibrium point in the resource allocation game and the Nash equilibrium solution are discussed. A dynamic game algorithm of allocating grid resources is designed. Experimental results demonstrate that this algorithm diminishes effectively the unnecessary latency, improves significantly the smoothness of response time, the ratio of throughput and resource utility, thus rendering the supply and demand of the whole grid resource reasonable and the overall grid load balanceable.

  15. Adaptive call admission control and resource allocation in multi server wireless/cellular network

    Science.gov (United States)

    Jain, Madhu; Mittal, Ragini

    2016-11-01

    The ever increasing demand of the subscribers has put pressure on the capacity of wireless networks around the world. To utilize the scare resources, in the present paper we propose an optimal allocation scheme for an integrated wireless/cellular model with handoff priority and handoff guarantee services. The suggested algorithm optimally allocates the resources in each cell and dynamically adjust threshold to control the admission. To give the priority to handoff calls over the new calls, the provision of guard channels and subrating scheme is taken into consideration. The handoff voice call may balk and renege from the system while waiting in the buffer. An iterative algorithm is implemented to generate the arrival rate of the handoff calls in each cell. Various performance indices are established in term of steady state probabilities. The sensitivity analysis has also been carried out to examine the tractability of algorithms and to explore the effects of system descriptors on the performance indices.

  16. Context-Based Orchestration for Control of Resource-Efficient Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Michael Schwarz

    2012-08-01

    Full Text Available The increasing competition between manufacturers, the shortening of innovation cycles and the growing importance of resource-efficient manufacturing demand a higher versatility of factory automation. Service-oriented approaches depict a promising possibility to realize new control architectures by encapsulating the functionality of mechatronic devices into services. An efficient discovery, context-based selection and dynamic orchestration of these services are the key features for the creation of highly adaptable manufacturing processes. We describe a semantic service discovery and ad-hoc orchestration system, which is able to react to new process variants and changed contextual information (e.g., failure of field devices, requirements on the consumption of resources. Because a standardized vocabulary, especially for the description of mechatronic functionalities, is still missing in the manufacturing domain, the semantic description of services, processes and manufacturing plants as well as the semantic interpretation of contextual information play an important part.

  17. Spacecraft Dynamics and Control Program at AFRPL

    Science.gov (United States)

    Das, A.; Slimak, L. K. S.; Schloegel, W. T.

    1986-01-01

    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.

  18. Attosecond VUV Coherent Control of Molecular Dynamics

    CERN Document Server

    Ranitovic, P; Riviere, P; Palacios, A; Tong, X M; Toshima, N; Gonzalez-Castrillo, A; Martin, L; Martin, F; Murnane, M M; Kapteyn, H C

    2014-01-01

    High harmonic light sources make it possible to access attosecond time-scales, thus opening up the prospect of manipulating electronic wave packets for steering molecular dynamics. However, two decades after the birth of attosecond physics, the concept of attosecond chemistry has not yet been realized. This is because excitation and manipulation of molecular orbitals requires precisely controlled attosecond waveforms in the deep ultraviolet, which have not yet been synthesized. Here, we present a novel approach using attosecond vacuum ultraviolet pulse-trains to coherently excite and control the outcome of a simple chemical reaction in a deuterium molecule in a non-Born Oppenheimer regime. By controlling the interfering pathways of electron wave packets in the excited neutral and singly-ionized molecule, we unambiguously show that we can switch the excited electronic state on attosecond timescales, coherently guide the nuclear wave packets to dictate the way a neutral molecule vibrates, and steer and manipula...

  19. Nonsmooth mechanics models, dynamics and control

    CERN Document Server

    Brogliato, Bernard

    2016-01-01

    Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...

  20. System dynamics model of Suzhou water resources carrying capacity and its application

    Directory of Open Access Journals (Sweden)

    Li CHENG

    2010-06-01

    Full Text Available A model of Suzhou water resources carrying capacity (WRCC was set up using the method of system dynamics (SD. In the model, three different water resources utilization programs were adopted: (1 continuity of existing water utilization, (2 water conservation/saving, and (3 water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.

  1. Is Political Behavior a Viable Coping Strategy to Perceived Organizational Politics? Unveiling the Underlying Resource Dynamics.

    Science.gov (United States)

    Sun, Shuhua; Chen, Huaizhong

    2017-05-22

    We conduct a theory-driven empirical investigation on whether political behavior, as a coping strategy to perceived organizational politics, creates resource trade-offs in moderating the relationship between perceived organizational politics and task performance. Drawing on conservation of resources theory, we hypothesize that political behavior mitigates the adverse effect of perceived organizational politics on task performance via psychological empowerment, yet exacerbates its adverse effect on task performance via emotional exhaustion. Three-wave multisource data from a sample of 222 employees and their 75 supervisors were collected for hypothesis testing. Findings supported our hypotheses. Our study enhances understandings of the complex resource dynamics of using political behavior to cope with perceived organizational politics and highlights the need to move stress-coping research from a focus on the stress-buffering effect of coping on outcomes to a focus on the underlying competing resource dynamics. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. System dynamics model of Suzhou water resources carrying capacity and its application

    Institute of Scientific and Technical Information of China (English)

    Li CHENG

    2010-01-01

    A model of Suzhou water resources carrying capacity (WRCC) was set up using the method of system dynamics (SD).In the model, three different water resources utilization programs were adopted: (1) continuity of existing water utilization, (2) water conservation/saving, and (3) water exploitation.The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors.The corresponding Suzhou WRCC values for several target years were calculated by the model.Based on these results, proper ways to improve the Suzhou WRCC are proposed.The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.

  3. Exploring dynamic mechanisms of learning networks for resource conservation

    Directory of Open Access Journals (Sweden)

    Petr Matous

    2015-06-01

    Full Text Available The importance of networks for social-ecological processes has been recognized in the literature; however, existing studies have not sufficiently addressed the dynamic nature of networks. Using data on the social learning networks of 265 farmers in Ethiopia for 2011 and 2012 and stochastic actor-oriented modeling, we explain the mechanisms of network evolution and soil conservation. The farmers' preferences for information exchange within the same social groups support the creation of interactive, clustered, nonhierarchical structures within the evolving learning networks, which contributed to the diffusion of the practice of composting. The introduced methods can be applied to determine whether and how social networks can be used to facilitate environmental interventions in various contexts.

  4. Heuristic algorithm for single resource constrained project scheduling problem based on the dynamic programming

    Directory of Open Access Journals (Sweden)

    Stanimirović Ivan

    2009-01-01

    Full Text Available We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm, as well as with Microsoft Project.

  5. GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Korkali, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Min, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-30

    The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.

  6. Dynamic resource allocation scheme for distributed heterogeneous computer systems

    Science.gov (United States)

    Liu, Howard T. (Inventor); Silvester, John A. (Inventor)

    1991-01-01

    This invention relates to a resource allocation in computer systems, and more particularly, to a method and associated apparatus for shortening response time and improving efficiency of a heterogeneous distributed networked computer system by reallocating the jobs queued up for busy nodes to idle, or less-busy nodes. In accordance with the algorithm (SIDA for short), the load-sharing is initiated by the server device in a manner such that extra overhead in not imposed on the system during heavily-loaded conditions. The algorithm employed in the present invention uses a dual-mode, server-initiated approach. Jobs are transferred from heavily burdened nodes (i.e., over a high threshold limit) to low burdened nodes at the initiation of the receiving node when: (1) a job finishes at a node which is burdened below a pre-established threshold level, or (2) a node is idle for a period of time as established by a wakeup timer at the node. The invention uses a combination of the local queue length and the local service rate ratio at each node as the workload indicator.

  7. Control-volume representation of molecular dynamics.

    Science.gov (United States)

    Smith, E R; Heyes, D M; Dini, D; Zaki, T A

    2012-05-01

    A molecular dynamics (MD) parallel to the control volume (CV) formulation of fluid mechanics is developed by integrating the formulas of Irving and Kirkwood [J. Chem. Phys. 18, 817 (1950)] over a finite cubic volume of molecular dimensions. The Lagrangian molecular system is expressed in terms of an Eulerian CV, which yields an equivalent to Reynolds' transport theorem for the discrete system. This approach casts the dynamics of the molecular system into a form that can be readily compared to the continuum equations. The MD equations of motion are reinterpreted in terms of a Lagrangian-to-control-volume (LCV) conversion function ϑ(i) for each molecule i. The LCV function and its spatial derivatives are used to express fluxes and relevant forces across the control surfaces. The relationship between the local pressures computed using the volume average [Lutsko, J. Appl. Phys. 64, 1152 (1988)] techniques and the method of planes [Todd et al., Phys. Rev. E 52, 1627 (1995)] emerges naturally from the treatment. Numerical experiments using the MD CV method are reported for equilibrium and nonequilibrium (start-up Couette flow) model liquids, which demonstrate the advantages of the formulation. The CV formulation of the MD is shown to be exactly conservative and is, therefore, ideally suited to obtain macroscopic properties from a discrete system.

  8. Dynamical Models of Interactions between Herds Forage and Water Resources in Sahelian Region

    Directory of Open Access Journals (Sweden)

    Jean Jules Tewa

    2014-01-01

    Full Text Available Optimal foraging is one of the capital topics nowadays in Sahelian region. The vast majority of feed consumed by ruminants in Sahelian region is still formed by natural pastures. Pastoral constraints are the high variability of available forage and drinking water in space and especially in time (highly seasonal, interannual variability and the scarcity of water resources. The mobility is the main functional and opportunistic adaptation to these constraints. Our goal in this paper is to formalize two dynamical models for interactions between a herd of domesticate animals, forage resources, and water resources inside a given Sahelian area, in order to confirm, explain, and predict by mathematical models some observations about pastoralism in Sahelian region. These models in some contexts can be similar to predator-prey models as forage and water resources can be considered as preys and herd’s animals as predators. These models exhibit very rich dynamics, since it predicts abrupt changes in consumer behaviour and disponibility of forage or water resources. The dynamics exhibits a possible coexistence between herd, resources, and water with alternative peaks in their trajectories.

  9. Advances in dynamical systems and control

    CERN Document Server

    Zgurovsky, Mikhail

    2016-01-01

    Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields. .

  10. Neural network based dynamic controllers for industrial robots.

    Science.gov (United States)

    Oh, S Y; Shin, W C; Kim, H G

    1995-09-01

    The industrial robot's dynamic performance is frequently measured by positioning accuracy at high speeds and a good dynamic controller is essential that can accurately compute robot dynamics at a servo rate high enough to ensure system stability. A real-time dynamic controller for an industrial robot is developed here using neural networks. First, an efficient time-selectable hidden layer architecture has been developed based on system dynamics localized in time, which lends itself to real-time learning and control along with enhanced mapping accuracy. Second, the neural network architecture has also been specially tuned to accommodate servo dynamics. This not only facilitates the system design through reduced sensing requirements for the controller but also enhances the control performance over the control architecture neglecting servo dynamics. Experimental results demonstrate the controller's excellent learning and control performances compared with a conventional controller and thus has good potential for practical use in industrial robots.

  11. Towards a Dynamic Resource-Based View: Insights from Austrian capital and Entrepreneurship Theory

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Ishikawa, Ibuki

    The dominant view in the strategic management field is the resource-based view ("RBV"). It has often been observed that the RBV is lacking in the dynamic dimension. For example, processes of building competitive advantages by means of combining existing complementary resources in novel ways...... of complex systems pioneered by Herbert Simon. We draw a number of implications for strategic management from this synthesis, notably into resource value and sustainability of competitive advantage.JEL Code: B53, D21, L23, M1...

  12. Reducing traffic in DHT-based discovery protocols for dynamic resources

    Science.gov (United States)

    Carlini, Emanuele; Coppola, Massimo; Laforenza, Domenico; Ricci, Laura

    Existing peer-to-peer approaches for resource location based on distributed hash tables focus mainly on optimizing lookup query resolution. The underlying assumption is that the arrival ratio of lookup queries is higher than the ratio of resource publication operations. We propose a set of optimization strategies to reduce the network traffic generated by the data publication and update process when resources have dynamic-valued attributes. We aim at reducing the publication overhead of supporting multi-attribute range queries. We develop a model predicting the bandwidth reduction, and we assign proper values to the model variables on the basis of real data measurements. We further validate these results by a set of simulations. Our experiments are designed to reproduce the typical behaviour of the resulting scheme within large distributed resource location system, like the resource location service of the XtreemOS Grid-enabled Operating System.

  13. Dynamics and control of morphing aircraft

    Science.gov (United States)

    Seigler, Thomas Michael

    The following work is directed towards an evaluation of aircraft that undergo structural shape change for the purpose of optimized flight and maneuvering control authority. Dynamical equations are derived for a morphing aircraft based on two primary representations; a general non-rigid model and a multi-rigid-body. A simplified model is then proposed by considering the altering structural portions to be composed of a small number of mass particles. The equations are then extended to consider atmospheric flight representations where the longitudinal and lateral equations are derived. Two aspects of morphing control are considered. The first is a regulation problem in which it is desired to maintain stability in the presence of large changes in both aerodynamic and inertial properties. From a baseline aircraft model various wing planform designs were constructed using Datcom to determine the required aerodynamic contributions. Based on nonlinear numerical evaluations adequate stabilization control was demonstrated using a robust linear control design. In maneuvering, divergent characteristics were observed at high structural transition rates. The second aspect considered is the use of structural changes for improved flight performance. A variable span aircraft is then considered in which asymmetric wing extension is used to effect the rolling moment. An evaluation of the variable span aircraft is performed in the context of bank-to-turn guidance in which an input-output control law is implemented.

  14. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    Science.gov (United States)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  15. Dynamic Discontinuous Control for Active Control of Mechanical Vibrations

    Directory of Open Access Journals (Sweden)

    Orestes Llanes Santiago

    2010-02-01

    Full Text Available This article shows the use of the discontinuous control using dynamic sliding modes for the active isolation of vibrations in mechanical systems. This type of control law constitutes a robust feedback control policy due to its insensitivity to external disturbance inputs, certain immunity to model parameter variations, within known bounds, and to the ever present modelling errors.  The whole theoretical analysis is applied to a lineal model of two degrees of freedom of the vehicle's suspension where the irregularities of the land represent of direct  way the external interferences to the system . To carry out the isolation an electro-hydraulic operator it is used. Simulations are performed which validate the proposed approach.

  16. NASA Armstrong Flight Research Center Dynamics and Controls Branch

    Science.gov (United States)

    Jacobson, Steve

    2015-01-01

    NASA Armstrong continues its legacy of exciting work in the area of Dynamics and Control of advanced vehicle concepts. This presentation describes Armstrongs research in control of flexible structures, peak seeking control and adaptive control in the Spring of 2015.

  17. Popularity and Resource Control Goals as Predictors of Adolescent Indirect Aggression.

    Science.gov (United States)

    Dyches, Karmon D; Mayeux, Lara

    2015-01-01

    Resource Control Theory conceptualizes aggression as a behavior that allows access to, and control of, limited resources (P. H. Hawley, 1999 ). This study investigated the associations of adolescents' indirect aggression with their resource control goals, or goals related to controlling social resources such as dating opportunities and peer status, and with their levels of popularity and social intelligence. Participants were 109 seventh-graders (52% girls) who completed a resource control goals measure, the Tromsø Social Intelligence Scale, and peer nominations of popularity and indirect aggression. Results indicated positive associations between resource control goals and peer-nominated indirect aggression, with popularity further moderating these associations. These findings suggest that the resource control goals of adolescents can be a motivating force to engage in hurtful behaviors. They provide a context from which peer relations researchers can improve their understanding and prevention of adolescents' indirect aggression.

  18. Dynamic congestion control mechanisms for MPLS networks

    Science.gov (United States)

    Holness, Felicia; Phillips, Chris I.

    2001-02-01

    Considerable interest has arisen in congestion control through traffic engineering from the knowledge that although sensible provisioning of the network infrastructure is needed, together with sufficient underlying capacity, these are not sufficient to deliver the Quality of Service required for new applications. This is due to dynamic variations in load. In operational Internet Protocol (IP) networks, it has been difficult to incorporate effective traffic engineering due to the limited capabilities of the IP technology. In principle, Multiprotocol Label Switching (MPLS), which is a connection-oriented label swapping technology, offers new possibilities in addressing the limitations by allowing the operator to use sophisticated traffic control mechanisms. This paper presents a novel scheme to dynamically manage traffic flows through the network by re-balancing streams during periods of congestion. It proposes management-based algorithms that will allow label switched routers within the network to utilize mechanisms within MPLS to indicate when flows are starting to experience frame/packet loss and then to react accordingly. Based upon knowledge of the customer's Service Level Agreement, together with instantaneous flow information, the label edge routers can then instigate changes to the LSP route and circumvent congestion that would hitherto violate the customer contacts.

  19. Spacecraft formation flying: Dynamics, control and navigation

    Science.gov (United States)

    Alfriend, Kyle Terry; Vadali, Srinivas Rao; Gurfil, Pini; How, Jonathan; Breger, Louis S.

    2009-12-01

    Space agencies are now realizing that much of what has previously been achieved using hugely complex and costly single platform projects - large unmanned and manned satellites (including the present International Space Station) - can be replaced by a number of smaller satellites networked together. The key challenge of this approach, namely ensuring the proper formation flying of multiple craft, is the topic of this second volume in Elsevier's Astrodynamics Series, Spacecraft Formation Flying: Dynamics, control and navigation. In this unique text, authors Alfriend et al. provide a coherent discussion of spacecraft relative motion, both in the unperturbed and perturbed settings, explain the main control approaches for regulating relative satellite dynamics, using both impulsive and continuous maneuvers, and present the main constituents required for relative navigation. The early chapters provide a foundation upon which later discussions are built, making this a complete, standalone offering. Intended for graduate students, professors and academic researchers in the fields of aerospace and mechanical engineering, mathematics, astronomy and astrophysics, Spacecraft Formation Flying is a technical yet accessible, forward-thinking guide to this critical area of astrodynamics.

  20. Controls of interaction dynamics of orbital assembly

    Science.gov (United States)

    Su, Renjeng

    1991-01-01

    Building structures and spacecraft in orbit will require technologies for positioning, docking/berthing, and joining orbital structures. A fundamental problem underlying the operation of docking and berthing is that of controlling the contact dynamics of mechanical structures actuated by active mechanisms such as robotic devices. Control systems must be designed to control these active mechanisms so that both the free space motions and contact motions are stable and satisfy specifications on position accuracy and bounds on contact forces. For the large orbital structures of the future, the problem of interactive dynamics and control is fundamentally different in several ways than it was for spacecraft docking in the past. First, future space structures must be treated as flexible structures - the operations of docking, berthing, and assembly will need to respect the vibrations of the structures. Second, the assembly of these structures will require multiple-point contact, rather than the essentially single-point positioning of conventional spacecraft docking. Third, some assembly operations require the subassemblies to be brought and held in contact so that successful joining can be accomplished. A preliminary study of contact stability and compliance control design has resulted in the development of an analytical method and a design method to analyze stability. The analytical method analyzes the problem of stability when an actively-controlled structure contacts a passive structure. This method makes it possible to accurately estimate the stiffness of the passive structures with which the contact motion will become unstable. The analytic results suggest that passivity is neither achievable in practice, nor necessary as a design concept. A contact control system need only be passive up to a certain frequency; beyond that frequency the system can be stabilized with sufficiently small gains. With this concept the Center developed a design methodology for achieving

  1. Dynamic Resource Management in 802.11 Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    George Athanasiou

    2012-01-01

    Full Text Available The association/handoff procedures are important components in a balanced operation of 802.11-based wireless mesh networks. In this paper, we introduce the concept of cooperative association where the stations (STA can share useful information in order to improve the performance of the association/reassociation procedures. Furthermore, in this work we introduce a load balancing mechanism that can be applied in mesh networks. This mechanism operates in a cross-layer manner taking into account uplink and downlink channel information, routing information, and congestion-based information. Our load balancing mechanism is based on a fairness index that is measured at each access point (AP neighborhood. This index reflects the way the communication load is shared in the neighboring APs. The iterative heuristic algorithms that we propose controls the communication load of each mesh AP in a distributed manner. We evaluate the performance of our mechanisms through OPNET simulations.

  2. Bandwidth Resource Dynamic Allocation in Differentiated Services Model%Diffserv中带宽代理BB的实现

    Institute of Scientific and Technical Information of China (English)

    邱瑜; 朱淼良

    2003-01-01

    To employ Differentiated Services, efficient and flexible resource allocation mechanism is needed. Static bandwidth resource allocation Is not suitable for the situations in which traffic varies greatly with times. If customers bought bandwidth according to their highest traffic demands, some resource will be wasted when traffic load is light. On the other hand, the static allocated bandwidth may not satisfy the growing traffic demands. So it is necessary to allocate bandwidth resource in dynamic way. We bring up a prototype of BB, discussing the necessary components to realize the dynamic bandwidth resource allocation and further more, our BB can provides advanced reservation for bandwidth resource. Simulation tests show our design is feasible.

  3. Electron dynamics and its control in molecules

    Science.gov (United States)

    de Vivie-Riedle, Regina

    2014-03-01

    The accessibility of few femtosecond or even attoseconds pulses opens the door to direct observation of electron dynamics. The idea to steer chemical reactions by localization of electronic wavepackets is intriguing, since electrons are directly involved in bond breaking and formation. The formation of a localized electronic wavepacket requires the superposition of two or more appropriate electronic states. Its guidance is only possible within the coherence time of the system and has to be synchronized with the vibrational molecular motions. In theoretical studies we elucidate the role of electron wavepacket motion for the control of molecular processes. We give three examples with direct connection to experiments. From our analysis, we extract the systems requirements defining the time window for intramolecular electronic coherence, the basis for efficient control. Based on these findings we map out a photoreaction that allows direct control by guiding electronic wavepackets. The carrier envelope of a femtosecond few cycle IR pulse is the control parameter that steers the photoreaction through a conical intersection.

  4. Adaptive control of force microscope cantilever dynamics

    Science.gov (United States)

    Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.

    2007-09-01

    Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).

  5. Optimizing Dynamical Network Structure for Pinning Control

    Science.gov (United States)

    Orouskhani, Yasin; Jalili, Mahdi; Yu, Xinghuo

    2016-04-01

    Controlling dynamics of a network from any initial state to a final desired state has many applications in different disciplines from engineering to biology and social sciences. In this work, we optimize the network structure for pinning control. The problem is formulated as four optimization tasks: i) optimizing the locations of driver nodes, ii) optimizing the feedback gains, iii) optimizing simultaneously the locations of driver nodes and feedback gains, and iv) optimizing the connection weights. A newly developed population-based optimization technique (cat swarm optimization) is used as the optimization method. In order to verify the methods, we use both real-world networks, and model scale-free and small-world networks. Extensive simulation results show that the optimal placement of driver nodes significantly outperforms heuristic methods including placing drivers based on various centrality measures (degree, betweenness, closeness and clustering coefficient). The pinning controllability is further improved by optimizing the feedback gains. We also show that one can significantly improve the controllability by optimizing the connection weights.

  6. Hybrid optimization of dynamic deployment for networked fire control system

    Institute of Scientific and Technical Information of China (English)

    Chen Chen; Jie Chen; Bin Xin

    2013-01-01

    With applying the information technology to the military field, the advantages and importance of the networked combat are more and more obvious. In order to make ful use of limited battle-field resources and maximal y destroy enemy targets from arbitrary angle in a limited time, the research on firepower nodes dynamic deployment becomes a key problem of command and control. Con-sidering a variety of tactical indexes and actual constraints in air defense, a mathematical model is formulated to minimize the ene-my target penetration probability. Based on characteristics of the mathematical model and demands of the deployment problems, an assistance-based algorithm is put forward which combines the ar-tificial potential field (APF) method with a memetic algorithm. The APF method is employed to solve the constraint handling prob-lem and generate feasible solutions. The constrained optimization problem transforms into an optimization problem of APF para-meters adjustment, and the dimension of the problem is reduced greatly. The dynamic deployment is accomplished by generation and refinement of feasible solutions. The simulation results show that the proposed algorithm is effective and feasible in dynamic situation.

  7. Managing time-substitutable electricity usage using dynamic controls

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan

    2017-02-21

    A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.

  8. Managing time-substitutable electricity usage using dynamic controls

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan

    2017-02-07

    A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.

  9. Managing time-substitutable electricity usage using dynamic controls

    Science.gov (United States)

    Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan

    2017-02-07

    A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.

  10. Aspiration dynamics and the sustainability of resources in the public goods dilemma

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jinming, E-mail: jmdu@pku.edu.cn [Center for Systems and Control, College of Engineering, Peking University, Beijing 100871 (China); Wu, Bin, E-mail: bin.wu@evolbio.mpg.de [School of Science, Beijing University of Posts and Communications, Beijing 100876 (China); Department of Evolutionary Theory, Max-Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön (Germany); Wang, Long, E-mail: longwang@pku.edu.cn [Center for Systems and Control, College of Engineering, Peking University, Beijing 100871 (China)

    2016-04-01

    How to exploit public non-renewable resources is a public goods dilemma. Individuals can choose to limit the depletion in order to use the resource for a longer time or consume more goods to benefit themselves. When the resource is used up, there is no benefit for the future generations any more, thus the evolutionary process ends. Here we investigate what mechanisms can extend the use of resources in the framework of evolutionary game theory under two updating rules based on imitation and aspiration, respectively. Compared with imitation process, aspiration dynamics may prolong the sustainable time of a public resource. - Highlights: • We establish a game model to capture the sustainable time of public goods. • We propose a theoretical method to study how fast an evolutionary process ends. • Strong selection shortens the evolutionary time of public resource dilemma. • Compared with imitation process, aspiration dynamics prolong the sustainable time. • The sustainable time is the shortest for the intermediate aspiration level.

  11. How Resource Dynamics Explain Accumulating Developmental and Health Disparities for Teen Parents’ Children

    Science.gov (United States)

    Mollborn, Stefanie; Lawrence, Elizabeth; James-Hawkins, Laurie; Fomby, Paula

    2014-01-01

    This study examines the puzzle of disparities experienced by U.S. teen parents’ young children, whose health and development increasingly lag behind those of peers while their parents are simultaneously experiencing socioeconomic improvements. Using the nationally representative Early Childhood Longitudinal Study-Birth Cohort (2001–2007; N ≈ 8,600), we assess four dynamic patterns in socioeconomic resources that might account for these growing developmental and health disparities throughout early childhood and then test them in multilevel growth curve models. Persistently low socioeconomic resources constituted the strongest explanation, given that consistently low income, maternal education, and assets fully or partially account for growth in cognitive, behavioral, and health disparities experienced by teen parents’ children from infancy through kindergarten. That is, although teen parents gained socioeconomic resources over time, those resources remained relatively low, and the duration of exposure to limited resources explains observed growing disparities. Results suggest that policy interventions addressing the time dynamics of low socioeconomic resources in a household, in terms of both duration and developmental timing, are promising for reducing disparities experienced by teen parents’ children. PMID:24802282

  12. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    Science.gov (United States)

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  13. A consumer-resource approach to the density-dependent population dynamics of mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  14. Approximate Dynamic Programming for Self-Learning Control

    Institute of Scientific and Technical Information of China (English)

    Derong Liu

    2005-01-01

    This paper introduces a self-learning control approach based on approximate dynamic programming. Dynamic programming was introduced by Bellman in the 1950's for solving optimal control problems of nonlinear dynamical systems. Due to its high computational complexity, the applications of dynamic programming have been limited to simple and small problems. The key step in finding approximate solutions to dynamic programming is to estimate the performance index in dynamic programming. The optimal control signal can then be determined by minimizing (or maximizing) the performance index. Artificial neural networks are very efficient tools in representing the performance index in dynamic programming. This paper assumes the use of neural networks for estimating the performance index in dynamic programming and for generating optimal control signals, thus to achieve optimal control through self-learning.

  15. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth.

    Directory of Open Access Journals (Sweden)

    Chrystel Feller

    Full Text Available Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake and the shoot (photosynthesis, and their interactions through the exchange of the substrates sugar and phosphate (Pi. The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.

  16. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth.

    Science.gov (United States)

    Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C; Gabriel, Jean-Pierre; Reinhardt, Didier

    2015-01-01

    Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.

  17. Dynamic control of knee axial deformities

    Directory of Open Access Journals (Sweden)

    E. E. Malyshev

    2013-01-01

    Full Text Available The authors have evaluated the clinical examination of the patients with axial malalignments in the knee by the original method and device which was named varovalgometer. The measurements were conducted by tension of the cord through the spina iliaca anterior superior and the middle of the lower pole of patella. The deviation of the center of the ankle estimated by metal ruler which was positioned perpendicular to the lower leg axis on the level of the ankle joint line. The results of comparison of our method and computer navigation in 53 patients during the TKA show no statistically significant varieties but they differ by average 5° of valgus in clinical examination in comparison with mechanical axis which was identified by computer navigation. The dynamic control of axial malalignment can be used in clinical practice for estimation of the results of treatment of pathology with axial deformities in the knee; for the control of reduction and secondary displacement of the fractures around the knee; for assessment of instability; in planning of correctional osteotomies and intraoperative control of deformity correction; for estimation of Q angle in subluxation and recurrent dislocation of patella; in planning of TKA; during the growth of child it allows to assess the progression of deformity.

  18. Modeling Robot Dynamic Performance for Endpoint Force Control

    Science.gov (United States)

    1988-08-01

    Task Dynamics 55 2.5.1 The Dynamic Workpiece Model 55 2.5.2 Adding Robot Dynamics 56 2.5.3 Adding Actuator Dynamics 56 Tabie I o iiau 6 2.6 Grip...motion control system. Robot dynamics couple with the task dynamics in a very complex way. When the robot makes contact with the environment, the impact...robot flexibility or actuator dynamics. 2.5.2 Adding Robot Dynamics Figure 2.29 shows the robot now represented by two lumped masses, as in the robot

  19. DYNAMIC CONGESTION CONTROL IN WDM OPTICAL NETWORK

    Directory of Open Access Journals (Sweden)

    Sangita Samajpati

    2013-02-01

    Full Text Available This paper is based on Wavelength Division Multiplexing (WDM optical networking. In this optical networking, prior to data transfer, lightpath establishment between source and destination nodes is usually carried out through a wavelength reservation protocol. This wavelength is reserved corresponding to a route between the source and destination and the route is chosen following any standard routing protocol based on shortest path. The backward reservation protocol is implemented initially. A fixed connected and weighted network is considered. The inputs of this implementation are the fixed network itself and its corresponding shortest path matrix. After this initial level of implementation, the average node usage over a time period is calculated and various thresholds for node usage are considered. Above threshold value, request arriving at that path selects its next shortest path. This concept is implemented on various wavelengths. The output represents the performance issues of dynamic congestion control.

  20. Adaptive control model of water resources regulation in the Yellow River

    Institute of Scientific and Technical Information of China (English)

    WEI; Jiahua; WANG; Guangqian; WENG; Wenbin; CAI; Zhiguo; C

    2004-01-01

    According to the principle of procedure control and the characteristic of stochastic of inflow and water demands, this paper deals with the application of adaptive control to a water resources regulation system. The main control objective is to approach the vested target of water resources allocation by controlling the reservoir discharge and water demand. The adaptive control implemented is based on the linear quadratic control approach. Models of water balance, reservoir adjusted model and allocation model are used for the control purposes. The results show the performance of this adaptive scheme and its ability to control the water resources allocation process.

  1. Space station freedom resource nodes internal thermal control system

    Science.gov (United States)

    Merhoff, Paul; Dellinger, Brent; Taggert, Shawn; Cornwell, John

    1993-01-01

    This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2. A SINDA/FLUINT math model of the ITCS is described, and results of analyses for an MTC and a PMC case are shown and discussed.

  2. Dynamics and control of tethered spacecraft - A brief overview

    Science.gov (United States)

    Modi, V. J.; Lakshmanan, P. K.; Misra, A. K.

    1990-01-01

    Work related to the dynamics of tether connected orbiting systems and their control during deployment, operational, and retrieval phases is briefly reviewed. In particular, attention is given to the modeling of tether dynamics and control, end bodies tethered at point masses, deployment dynamics and tension control, and thruster and offset control. Directions of future efforts aimed at gaining a better understanding of the performance of tethered systems are outlined.

  3. First field demonstration of cloud datacenter workflow automation employing dynamic optical transport network resources under OpenStack and OpenFlow orchestration.

    Science.gov (United States)

    Szyrkowiec, Thomas; Autenrieth, Achim; Gunning, Paul; Wright, Paul; Lord, Andrew; Elbers, Jörg-Peter; Lumb, Alan

    2014-02-10

    For the first time, we demonstrate the orchestration of elastic datacenter and inter-datacenter transport network resources using a combination of OpenStack and OpenFlow. Programmatic control allows a datacenter operator to dynamically request optical lightpaths from a transport network operator to accommodate rapid changes of inter-datacenter workflows.

  4. Laminar separation bubbles: Dynamics and control

    Indian Academy of Sciences (India)

    Sourabh S Diwan; O N Ramesh

    2007-02-01

    This work is an experimental investigation of the dynamics and control of the laminar separation bubbles which are typically present on the suction surface of an aerofoil at a large angle of attack. A separation bubble is produced on the upper surface of a flat plate by appropriately contouring the top wall of the wind tunnel. First, a basic (unforced) separation bubble is obtained to set a benchmark for further experiments. Parametric study is done where the reference velocity is decreased to quantify its effect on the aspect ratio of the bubble. It is found that with decrease in Reynolds number, the height of the bubble increases at a greater rate than the length. This feature could be useful in characterising separation bubbles especially from the point of view of low Reynolds number aerofoil design. Artificial disturbance is introduced at two different initial amplitudes (infinitesimal and finite) upstream of separation location and hotwire anemometry is used to trace the wave packet as it is advected downstream. The evolution of wave packets is seen to take place in two distinct stages. Finite amplitude forcing causes periodic quenching of the bubble. Interestingly, even an infinitesimally small forcing is seen to modify and thereby control the separation bubble.

  5. Advanced Communication and Control Solutions of Distributed Energy Resources (DER)

    Energy Technology Data Exchange (ETDEWEB)

    Asgeirsson, Haukur; Seguin, Richard; Sherding, Cameron; de Bruet, Andre, G.; Broadwater, Robert; Dilek, Murat

    2007-01-10

    This report covers work performed in Phase II of a two phase project whose objective was to demonstrate the aggregation of multiple Distributed Energy Resources (DERs) and to offer them into the energy market. The Phase I work (DE-FC36-03CH11161) created an integrated, but distributed, system and procedures to monitor and control multiple DERs from numerous manufacturers connected to the electric distribution system. Procedures were created which protect the distribution network and personnel that may be working on the network. Using the web as the communication medium for control and monitoring of the DERs, the integration of information and security was accomplished through the use of industry standard protocols such as secure SSL,VPN and ICCP. The primary objective of Phase II was to develop the procedures for marketing the power of the Phase I aggregated DERs in the energy market, increase the number of DER units, and implement the marketing procedures (interface with ISOs) for the DER generated power. The team partnered with the Midwest Independent System Operator (MISO), the local ISO, to address the energy market and demonstrate the economic dispatch of DERs in response to market signals. The selection of standards-based communication technologies offers the ability of the system to be deployed and integrated with other utilities’ resources. With the use of a data historian technology to facilitate the aggregation, the developed algorithms and procedures can be verified, audited, and modified. The team has demonstrated monitoring and control of multiple DERs as outlined in phase I report including procedures to perform these operations in a secure and safe manner. In Phase II, additional DER units were added. We also expanded on our phase I work to enhance communication security and to develop the market model of having DERs, both customer and utility owned, participate in the energy market. We are proposing a two-part DER energy market model--a utility

  6. Diversity and dynamics of management of gum and resin resources in Ethiopia: a trade-off between domestication and degradation

    NARCIS (Netherlands)

    Lemenih, M.; Wiersum, K.F.; Teshale Woldeamanuel Habebo, Teshale; Bongers, F.

    2014-01-01

    Although the human domestication of forest and tree resources is often considered to result in resource degradation, it may also lead to improved resource potentials. This paper assesses the nature and dynamics of gum and resin focused woodland exploitation and management systems in Ethiopia in the

  7. A DYNAMIC APPROACH TO CALCULATE SHADOW PRICES OF WATER RESOURCES FOR NINE MAJOR RIVERS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Jing HE; Xikang CHEN; Yong SHI

    2006-01-01

    China is experiencing from serious water issues. There are many differences among the Nine Major Rivers basins of China in the construction of dikes, reservoirs, floodgates, flood discharge projects, flood diversion projects, water ecological construction, water conservancy management, etc.The shadow prices of water resources for Nine Major Rivers can provide suggestions to the Chinese government. This article develops a dynamic shadow prices approach based on a multiperiod input-output optimizing model. Unlike previous approaches, the new model is based on the dynamic computable general equilibrium (DCGE) model to solve the problem of marginal long-term prices of water resources.First, definitions and algorithms of DCGE are elaborated. Second, the results of shadow prices of water resources for Nine Major Rivers in 1949-2050 in China using the National Water Conservancy input-holding-output table for Nine Major Rivers in 1999 are listed. A conclusion of this article is that the shadow prices of water resources for Nine Major Rivers are largely based on the extent of scarcity.Selling prices of water resources should be revised via the usage of parameters representing shadow prices.

  8. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  9. Trucks tires resource controlling by control of process of their wearing-out

    Directory of Open Access Journals (Sweden)

    Alexander KRAVCHENKO

    2014-03-01

    Full Text Available Intensity and form of wear of tire′s tread depends on the technical state of assemblies of car suspension. The database according to the information of control of the height of the protector picture is forming. On its basis on the developed system of maintenance of tires setting of norms, prognostication and optimization of resource of tires is made, necessary repair influences of tires and assemblies of suspension are appointed.

  10. STUDY ON STRATEGY OF DYNAMIC JOINT ROUTING AND RESOURCE ALLOCATION IN LAYERED OPTICAL TRANSPORT NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Su Yang; Xu Zhanqi; Zhao Ruiqin; Liu Zengji

    2008-01-01

    A layered network model for optical transport networks is proposed in this paper, which involves Internet Protocol (IP), Synchronous Digital Hierarchy (SDH) and Wavelength Division Multiplexing (WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation (DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA optimizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively, which is in contrast to the classical separate sequential routing and resource allocation solutions.

  11. Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

    Science.gov (United States)

    Heinrichs, Julie; Aldridge, Cameron; O'Donnell, Michael; Schumaker, Nathan

    2017-01-01

    Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population

  12. The Model and Control Methods of Access to Information and Technology Resources of Automated Control Systems in Water Supply Industry

    Science.gov (United States)

    Rytov, M. Yu; Spichyack, S. A.; Fedorov, V. P.; Petreshin, D. I.

    2017-01-01

    The paper describes a formalized control model of access to information and technological resources of automated control systems at water supply enterprises. The given model considers the availability of various communication links with information systems and technological equipment. There are also studied control methods of access to information and technological resources of automated control systems at water supply enterprises. On the basis of the formalized control model and appropriate methods there was developed a software-hardware complex for rapid access to information and technological resources of automated control systems, which contains an administrator’s automated workplace and ultimate users.

  13. Equivalence Between Approximate Dynamic Inversion and Proportional-Integral Control

    Science.gov (United States)

    2008-09-29

    Hovakimyan, E. Lavretsky, and C. Cao, “Dynamic inversion of multi- input nonaffine systems via time-scale separation,” in Proceedings of the American Control Conference , Minneapolis...Adaptive dynamic inversion for nonaffine-in-control systems via time-scale separation: Part II,” in Proceedings of the American Control Conference , Portland

  14. Towards a new approach to natural resources and development: the role of learning, innovation and linkage dynamics

    DEFF Research Database (Denmark)

    Andersen, Allan Dahl

    2012-01-01

    It is a stylised fact in economics that natural resources are harmful for economic development. Still, one can find several examples of natural-resource-based development. This apparent paradox reflects an unsatisfactory conceptualisation of natural resources. This paper suggests a new evolutionary......-institutional approach to studying natural resources and their role in economic development with focus on learning and linkage dynamics. The paper reviews the literature with a focus on the underlying perception of natural resources as the key for understanding its shortcomings. Most approaches perceive natural...... resources as finite and exogenous to the economic system. These assumptions constitute the pillars of the law of diminishing returns which inter alia states that natural resources cannot lead development. Others argue that natural resources are endogenous to the economy and can develop important dynamic...

  15. The role of implicit affective responses and trait self-control in ego resource management.

    Science.gov (United States)

    Buczny, Jacek; Layton, Rebekah L; Muraven, Mark

    Exertion of self-control requires reliance on ego resources. Impaired performance typically results once those resources have been depleted by previous use. Yet the mechanism behind the depletion processes is little understood. Beliefs, motivation, and physiological changes have been implicated, yet the source behind these remains unknown. We propose that implicit may form the fundamental building blocks that these processes rely upon to operate. Implicit affective responses to energy may trigger management of ego resources after depletion. Findings suggest that inhibitory trait self-control may interact with the depletion effect, indicating the importance of taking individual differences in chronic availability of ego-resources into account. After depletion, individuals high in trait self-control may be less motivated to conserve remaining resources than those low in self-control. This mechanism may also help explain the conservation of resources observed when expecting multiple tasks requiring self-control.

  16. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    Science.gov (United States)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2016-12-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  17. Impulsive Stabilization of Uncertain Dynamical Systems and Chaos Control

    Institute of Scientific and Technical Information of China (English)

    LIUBin; YAOJian; FANGJinqing; LIUXinzhi

    2004-01-01

    In this paper, a general impulsive control problem for uncertain dynamical systems is investigated.By utilizing the method of Lyapunov functions, a set of stability criteria for uncertain impulsive dynamical systems are established. These obtained results are then appliedto derive conditions under which an uncertain dynamical system can be robustly stabilized by an impulsive control law. Finally, we demonstrate our method by controlling the famous Lorenz system with uncertain perturbation.

  18. Efficient Quantum Private Communication Based on Dynamic Control Code Sequence

    Science.gov (United States)

    Cao, Zheng-Wen; Feng, Xiao-Yi; Peng, Jin-Ye; Zeng, Gui-Hua; Qi, Jin

    2017-04-01

    Based on chaos and quantum properties, we propose a quantum private communication scheme with dynamic control code sequence. The initial sequence is obtained via chaotic systems, and the control code sequence is derived by grouping, XOR and extracting. A shift cycle algorithm is designed to enable the dynamic change of control code sequence. Analysis shows that transmission efficiency could reach 100 % with high dynamics and security.

  19. Dynamics and control of tethered spacecraft during deployment and retrieval

    Science.gov (United States)

    Modi, V. J.; Lakshmanan, P. K.; Misra, A. K.

    The potential of tether-connected orbiting systems has led to numerous studies of their dynamics and control during deployment, operational (stationkeeeping), and retrieval phases. This paper examines some of the important aspects of the studies, including the modeling of tether dynamics and control, and system dynamics and control. Significant conclusions based on these studies are discussesd, and future research that would aid in a better understanding of the system performance is outlined.

  20. Dynamics and Control of a Disordered System in Space

    Science.gov (United States)

    Quadrelli, Marco B.

    2013-01-01

    , each grain is considered to be a highly miniaturized spacecraft which has limited size and mass, hence it has limited actuation, limited propulsive capability, limited power, limited sensing, limited communication, limited computational resources, limited range of motion, limited lifetime, and may be expendable. The modeling and dynamics of clouds of vehicles is more challenging than with conventional vehicles because we are faced with a probabilistic vehicle composed of a large number of physically disconnected vehicles. First, different scales of motion occur simultaneously in a cloud: translations and rotations of the cloud as a whole (macro-dynamics), relative rotation and translation of one cloud member with respect to another (meso-dynamics), and individual cloud member dynamics (micro-dynamics). Second, the control design needs to be tolerant of the system complexity, of the system architecture (centralized vs. decentralized large scale system control) as well as robust to un-modeled dynamics and noise sources. Figure 1, top left, shows the kinematic parameters of a 1000 element cloud in orbit. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) orbiting reference frame (x,y,z)=F(sub ORF) of origin O(sub ORF) which rotates with mean motion omega and orbital semi-major axis R(sub 0). The orbital geometry at the initial time is defined in terms of its six orbital elements, and the orbital dynamics equation for point O(sub ORF) is propagated forward in time under the influence of the gravitational field of the primary and other external perturbations, described below. The origin of this frame coincides with the initial position of the center of mass of the system, and the coordinate axes are z along the local vertical, x toward the flight direction, and y in the orbit normal direction. The assumptions we used to model the dynamics are as follows: 1) The inertial frame is fixed at Earth's center. 2) The orbiting Frame ORF

  1. A heuristic method for consumable resource allocation in multi-class dynamic PERT networks

    Science.gov (United States)

    Yaghoubi, Saeed; Noori, Siamak; Mazdeh, Mohammad Mahdavi

    2013-06-01

    This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a node of the network with exponential distribution according to its class. Indeed, each project arrives to the first service station and continues its routing according to precedence network of its class. Such system can be represented as a queuing network, while the discipline of queues is first come, first served. On the basis of presented method, a multi-class system is decomposed into several single-class dynamic PERT networks, whereas each class is considered separately as a minisystem. In modeling of single-class dynamic PERT network, we use Markov process and a multi-objective model investigated by Azaron and Tavakkoli-Moghaddam in 2007. Then, after obtaining the resources allocated to service stations in every minisystem, the final resources allocated to activities are calculated by the proposed method.

  2. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts

    Science.gov (United States)

    Tommasi, Desiree; Stock, Charles A.; Hobday, Alistair J.; Methot, Rick; Kaplan, Isaac C.; Eveson, J. Paige; Holsman, Kirstin; Miller, Timothy J.; Gaichas, Sarah; Gehlen, Marion; Pershing, Andrew; Vecchi, Gabriel A.; Msadek, Rym; Delworth, Tom; Eakin, C. Mark; Haltuch, Melissa A.; Séférian, Roland; Spillman, Claire M.; Hartog, Jason R.; Siedlecki, Samantha; Samhouri, Jameal F.; Muhling, Barbara; Asch, Rebecca G.; Pinsky, Malin L.; Saba, Vincent S.; Kapnick, Sarah B.; Gaitan, Carlos F.; Rykaczewski, Ryan R.; Alexander, Michael A.; Xue, Yan; Pegion, Kathleen V.; Lynch, Patrick; Payne, Mark R.; Kristiansen, Trond; Lehodey, Patrick; Werner, Francisco E.

    2017-03-01

    Recent developments in global dynamical climate prediction systems have allowed for skillful predictions of climate variables relevant to living marine resources (LMRs) at a scale useful to understanding and managing LMRs. Such predictions present opportunities for improved LMR management and industry operations, as well as new research avenues in fisheries science. LMRs respond to climate variability via changes in physiology and behavior. For species and systems where climate-fisheries links are well established, forecasted LMR responses can lead to anticipatory and more effective decisions, benefitting both managers and stakeholders. Here, we provide an overview of climate prediction systems and advances in seasonal to decadal prediction of marine-resource relevant environmental variables. We then describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months to decades, before highlighting a range of pioneering case studies using climate predictions to inform LMR decisions. The success of these case studies suggests that many additional applications are possible. Progress, however, is limited by observational and modeling challenges. Priority developments include strengthening of the mechanistic linkages between climate and marine resource responses, development of LMR models able to explicitly represent such responses, integration of climate driven LMR dynamics in the multi-driver context within which marine resources exist, and improved prediction of ecosystem-relevant variables at the fine regional scales at which most marine resource decisions are made. While there are fundamental limits to predictability, continued advances in these areas have considerable potential to make LMR managers and industry decision more resilient to climate variability and help sustain valuable resources. Concerted dialog between scientists, LMR managers and industry is essential to realizing this potential.

  3. Method for resource control in parallel environments using program organization and run-time support

    Science.gov (United States)

    Ekanadham, Kattamuri (Inventor); Moreira, Jose Eduardo (Inventor); Naik, Vijay Krishnarao (Inventor)

    2001-01-01

    A system and method for dynamic scheduling and allocation of resources to parallel applications during the course of their execution. By establishing well-defined interactions between an executing job and the parallel system, the system and method support dynamic reconfiguration of processor partitions, dynamic distribution and redistribution of data, communication among cooperating applications, and various other monitoring actions. The interactions occur only at specific points in the execution of the program where the aforementioned operations can be performed efficiently.

  4. Toward Control of Universal Scaling in Critical Dynamics

    Science.gov (United States)

    2016-01-27

    to synergistically combine two powerful and very successful theories for non-linear stochastic dynamics of cooperative multi-component systems , namely...we have now defined various tractable theoretical model systems that will allow the external control of universal dynamical scaling features through...competition models in evolutionary game theory and population dynamics . His calculations specifically address the purported mapping of these systems

  5. Identification and stochastic control of helicopter dynamic modes

    Science.gov (United States)

    Molusis, J. A.; Bar-Shalom, Y.

    1983-01-01

    A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.

  6. New Highly Dynamic Approach for Thrust Vector Control

    Science.gov (United States)

    Hecht, M.; Ettl, J.; Grothe, D.; Hrbud, I.

    2015-09-01

    For a new launcher system a thrust vector control system is needed. This launch vehicle system consists of two rockets which are namely the VS-50 (two-stage suborbital vehicle) and the VLM-1 (three-stage microsatellite launch vehicle). VLM-1 and VS-50 are developed in a cooperation between the German Aerospace Center (DLR) and the Brazilian Aeronautics and Space Institute (IAE). To keep these two rockets on its trajectory during flight a highly dynamic thrust vector control system is required. For the purpose of developing such a highly dynamic thrust vector control system a master thesis was written by the author. The development includes all mechanical constructions as well as control algorithms and electronics design. Moreover an optimization of control algorithms was made to increase the dynamic capabilities of the thrust vector control system. The composition of the right components plus the sophisticated control algorithm make the thrust vector control system highly dynamic.

  7. VR-Cluster: Dynamic Migration for Resource Fragmentation Problem in Virtual Router Platform

    Directory of Open Access Journals (Sweden)

    Xianming Gao

    2016-01-01

    Full Text Available Network virtualization technology is regarded as one of gradual schemes to network architecture evolution. With the development of network functions virtualization, operators make lots of effort to achieve router virtualization by using general servers. In order to ensure high performance, virtual router platform usually adopts a cluster of general servers, which can be also regarded as a special cloud computing environment. However, due to frequent creation and deletion of router instances, it may generate lots of resource fragmentation to prevent platform from establishing new router instances. In order to solve “resource fragmentation problem,” we firstly propose VR-Cluster, which introduces two extra function planes including switching plane and resource management plane. Switching plane is mainly used to support seamless migration of router instances without packet loss; resource management plane can dynamically move router instances from one server to another server by using VR-mapping algorithms. Besides, three VR-mapping algorithms including first-fit mapping algorithm, best-fit mapping algorithm, and worst-fit mapping algorithm are proposed based on VR-Cluster. At last, we establish VR-Cluster protosystem by using general X86 servers, evaluate its migration time, and further analyze advantages and disadvantages of our proposed VR-mapping algorithms to solve resource fragmentation problem.

  8. Dynamic Resource Allocation Using Virtual Machines and Parallel Data Processing in the Cloud

    Directory of Open Access Journals (Sweden)

    Y.Bharath Bhushan

    2015-11-01

    Full Text Available The main enabling technology for cloud computing is virtualization which generalize the physical infrastructure and makes it easy to use and manage. Virtualization is used to allocate resources based on their needs and also supports green computing concept. Parallel data processing has emerged to be one of the killer applications for Infrastructure-as-a-Service (IaaS clouds. The processing frameworks which are currently used have been designed for static, homogeneous cluster setups and disregard the particular nature of a cloud. The allocated compute resources may be inadequate for big parts of the submitted job and unnecessarily increase processing time and cost. In this paper we are applying the concept of “SKEWNESS” to measure the unevenness in the multi-dimensional resource utilization of a server. By minimizing skewness, we can combine different types of workloads and improve the overall utilization of server resources and discuss the opportunities and challenges for efficient parallel data processing in clouds using “NEPHELE’S ARCHITECTURE”.  Nephel’s architecture offers efficient parallel data processing in clouds. It is the first data processing framework for the dynamic resource allocation offered by today’s IaaS clouds for both, task scheduling and execution

  9. Minority Threat, Crime Control, and Police Resource Allocation in the Southwestern United States

    Science.gov (United States)

    Holmes, Malcolm D.; Smith, Brad W.; Freng, Adrienne B.; Munoz, Ed A.

    2008-01-01

    Numerous studies have examined political influences on communities' allocations of fiscal and personnel resources to policing. Rational choice theory maintains that these resources are distributed in accordance with the need for crime control, whereas conflict theory argues that they are allocated with the aim of controlling racial and ethnic…

  10. Model based control of dynamic atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chibum [Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Salapaka, Srinivasa M., E-mail: salapaka@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  11. Model based control of dynamic atomic force microscope.

    Science.gov (United States)

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  12. Adaptive Control of Robot Manipulators With Uncertain Kinematics and Dynamics

    OpenAIRE

    Wang, Hanlei

    2014-01-01

    In this paper, we investigate the adaptive control problem for robot manipulators with both the uncertain kinematics and dynamics. We propose two adaptive control schemes to realize the objective of task-space trajectory tracking irrespective of the uncertain kinematics and dynamics. The proposed controllers have the desirable separation property, and we also show that the first adaptive controller with appropriate modifications can yield improved performance, without the expense of conservat...

  13. Health service resource needs for pandemic influenza in developing countries: a linked transmission dynamics, interventions and resource demand model.

    Science.gov (United States)

    Krumkamp, R; Kretzschmar, M; Rudge, J W; Ahmad, A; Hanvoravongchai, P; Westenhoefer, J; Stein, M; Putthasri, W; Coker, R

    2011-01-01

    We used a mathematical model to describe a regional outbreak and extrapolate the underlying health-service resource needs. This model was designed to (i) estimate resource gaps and quantities of resources needed, (ii) show the effect of resource gaps, and (iii) highlight which particular resources should be improved. We ran the model, parameterized with data from the 2009 H1N1v pandemic, for two provinces in Thailand. The predicted number of preventable deaths due to resource shortcomings and the actual resource needs are presented for two provinces and for Thailand as a whole. The model highlights the potentially huge impact of health-system resource availability and of resource gaps on health outcomes during a pandemic and provides a means to indicate where efforts should be concentrated to effectively improve pandemic response programmes.

  14. Resource availability controls fungal diversity across a plant diversity gradient

    Science.gov (United States)

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  15. The Resource Control Debate: Enthroning Parasitism or Instituting ...

    African Journals Online (AJOL)

    User

    Conceptualized within the context of Nigerian polity, “Resource Control” describes the drive ... years have constituted remarkable means for socioeconomic advancement. .... from 100% to 50%, in the immediate post independence era as was enshrined ... mineral oil and natural gas under or upon the territorial water and the.

  16. Collaborative Corrections with Spelling Control: Digital Resources and Peer Assistance

    Science.gov (United States)

    Cekaite, Asta

    2009-01-01

    The present study has explored how pairs of students deployed digital tools (spelling software) as resources in spontaneously occurring corrections of spelling errors. Drawing on the sociocultural theory of learning and ethnomethodological (Conversation Analytic) insights into social interaction, it has identified a range of consistent practices…

  17. Planning for Water Resources of South Florida: A system dynamics modeling approach

    Science.gov (United States)

    Ahmad, S.

    2006-12-01

    With enormous growth in population, changes in land use, substantial agriculture activity, and need to protect vital environmental resources such as Everglades, south Florida presents a very challenging case for water resources planning. Working with stakeholders to meet challenges of water resources planning in south Florida, we are exploring important questions: (a) What are some major changes in terms of population growth, land use, water demand, and water availability that can be expected in south Florida in the short and long term?; (b) What would be the major hydrologic effects of climate variability and change on south Florida's water system?; (c) How could Florida's water system adapt to anticipated population growth, urban sprawl, and climate change?; and (d) What are the most promising (cost effective) policies for south Florida's water management in response to growth and climate change? We are developing a decision support (DS) framework, using system dynamics modeling approach, to evaluate and compare different short and long term water management policies. Besides climate information, the integrated DS framework considers other major factors that influence water demand and availability including: demographic changes, land use changes, economy, and environment. We analyze how increased or better use of climate information can lead to better, more cost-effective decisions for sustainable management of water resources. Using games/scenarios involving decision makers, we evaluate cost-effectiveness of different policy choices for short and long term water management in the region. We evaluate policies based on both demand side management through efficiency and conservation (low flow appliances, xeriscaping, pricing) and supply side management (desalination, water reuse). The outcome is a framework for exploring cost-effectiveness of alternative water management policies. The research advances work on water resources planning considering the impacts of

  18. Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-04-01

    Full Text Available In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.

  19. Dynamics and Control of Humanoid Robots: A Geometrical Approach

    CERN Document Server

    Ivancevic, Vladimir G

    2011-01-01

    his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoid's configuration manifold, which is a set of all robot's active joint angles. Based on the `covariant force law', the general humanoid's dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space', while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space'. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamics

  20. An Analytical Dynamics Approach to the Control of Mechanical Systems

    Science.gov (United States)

    Mylapilli, Harshavardhan

    A new and novel approach to the control of nonlinear mechanical systems is presented in this study. The approach is inspired by recent results in analytical dynamics that deal with the theory of constrained motion. The control requirements on the dynamical system are viewed from an analytical dynamics perspective and the theory of constrained motion is used to recast these control requirements as constraints on the dynamical system. Explicit closed form expressions for the generalized nonlinear control forces are obtained by using the fundamental equation of mechanics. The control so obtained is optimal at each instant of time and causes the constraints to be exactly satisfied. No linearizations and/or approximations of the nonlinear dynamical system are made, and no a priori structure is imposed on the nature of nonlinear controller. Three examples dealing with highly nonlinear complex dynamical systems that are chosen from diverse areas of discrete and continuum mechanics are presented to demonstrate the control approach. The first example deals with the energy control of underactuated inhomogeneous nonlinear lattices (or chains), the second example deals with the synchronization of the motion of multiple coupled slave gyros with that of a master gyro, and the final example deals with the control of incompressible hyperelastic rubber-like thin cantilever beams. Numerical simulations accompanying these examples show the ease, simplicity and the efficacy with which the control methodology can be applied and the accuracy with which the desired control objectives can be met.

  1. A Dynamic Resource Allocation Method for Parallel DataProcessing in Cloud Computing

    Directory of Open Access Journals (Sweden)

    V. V. Kumar

    2012-01-01

    Full Text Available Problem statement: One of the Cloud Services, Infrastructure as a Service(IaaS provides a Compute resourses for demand in various applications like Parallel Data processing. The computer resources offered in the cloud are extremely dynamic and probably heterogeneous. Nephele is the first data processing framework to explicitly exploit the dynamic resource allocation offered by today’s IaaS clouds for both, task scheduling and execution. Particular tasks of processing a job can be assigned to different types of virtual machines which are automatically instantiated and terminated during the job execution. However, the current algorithms does not consider the resource overload or underutilization during the job execution. In this study, we have focussed on increasing the efficacy of the scheduling algorithm for the real time Cloud Computing services. Approach: Our Algorithm utilizes the Turnaround time Utility effieciently by differentiating it into a gain function and a loss function for a single task. The algorithm also assigns high priority for task of early completion and less priority for abortions /deadlines issues of real time tasks. Results: The algorithm has been implemented on both preemptive and Non-premptive methods. The experimental results shows that it outperfoms the existing utility based scheduling algorithms and also compare its performance with both preemptive and Non-preemptive scheduling methods. Conculsion: Hence, a novel Turnaround time utility scheduling approach which focuses on both high priority and the low priority tasks that arrives for scheduling is proposed.

  2. Advances in analysis and control of timedelayed dynamical systems

    CERN Document Server

    Sun, Jianqiao

    2013-01-01

    Analysis and control of timedelayed systems have been applied in a wide range of applications, ranging from mechanical, control, economic, to biological systems. Over the years, there has been a steady stream of interest in timedelayed dynamic systems, this book takes a snap shot of recent research from the world leading experts in analysis and control of dynamic systems with time delay to provide a bird's eye view of its development. The topics covered in this book include solution methods, stability analysis and control of periodic dynamic systems with time delay, bifurcations, stochastic dy

  3. Dynamic range control of audio signals by digital signal processing

    Science.gov (United States)

    Gilchrist, N. H. C.

    It is often necessary to reduce the dynamic range of musical programs, particularly those comprising orchestral and choral music, for them to be received satisfactorily by listeners to conventional FM and AM broadcasts. With the arrival of DAB (Digital Audio Broadcasting) a much wider dynamic range will become available for radio broadcasting, although some listeners may prefer to have a signal with a reduced dynamic range. This report describes a digital processor developed by the BBC to control the dynamic range of musical programs in a manner similar to that of a trained Studio Manager. It may be used prior to transmission in conventional broadcasting, replacing limiters or other compression equipment. In DAB, it offers the possibility of providing a dynamic range control signal to be sent to the receiver via an ancillary data channel, simultaneously with the uncompressed audio, giving the listener the option of the full dynamic range or a reduced dynamic range.

  4. Coupled dynamic systems and Le Chatelier's principle in noise control

    Science.gov (United States)

    Maidanik, G.; Becker, K. J.

    2004-05-01

    Investigation of coupling an externally driven dynamic system-a master dynamic system-to a passive one-an adjunct dynamic system-reveals that the response of the adjunct dynamic system affects the precoupled response of the master dynamic system. The responses, in the two dynamic systems when coupled, are estimated by the stored energies (Es) and (E0), respectively. Since the adjunct dynamic system, prior to coupling, was with zero (0) stored energy, E0s=0, the precoupled stored energy (E00) in the master dynamic system is expected to be reduced to (E0) when coupling is instituted; i.e., one expects E0control of the master dynamic system would result from the coupling. It is argued that the change in the disposition of the stored energies as just described may not be the only change. The coupling may influence the external input power into the master dynamic system which may interfere with the expected noise control. Indeed, the coupling may influence the external input power such that the expected beneficial noise control may not materialize. Examples of these kinds of noise control reversals are cited.

  5. Optimal control of HIV/AIDS dynamic: Education and treatment

    Science.gov (United States)

    Sule, Amiru; Abdullah, Farah Aini

    2014-07-01

    A mathematical model which describes the transmission dynamics of HIV/AIDS is developed. The optimal control representing education and treatment for this model is explored. The existence of optimal Control is established analytically by the use of optimal control theory. Numerical simulations suggest that education and treatment for the infected has a positive impact on HIV/AIDS control.

  6. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment.

    Directory of Open Access Journals (Sweden)

    Gonzalo M Vazquez-Prokopec

    Full Text Available Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization. This need is of particular relevance for developing countries, since they host the majority of the global urban population and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS data-loggers to track the fine-scale (within city mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We used ∼2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels. Most (∼80% movements occurred within 1 km of an individual's home. Potential hourly contacts among individuals were highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace, where an individual repeatedly spent significant amount of time increased an epidemic's final size and effective reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease dynamics. More generally, this study

  7. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment.

    Science.gov (United States)

    Vazquez-Prokopec, Gonzalo M; Bisanzio, Donal; Stoddard, Steven T; Paz-Soldan, Valerie; Morrison, Amy C; Elder, John P; Ramirez-Paredes, Jhon; Halsey, Eric S; Kochel, Tadeusz J; Scott, Thomas W; Kitron, Uriel

    2013-01-01

    Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization. This need is of particular relevance for developing countries, since they host the majority of the global urban population and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS) data-loggers to track the fine-scale (within city) mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We used ∼2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels. Most (∼80%) movements occurred within 1 km of an individual's home. Potential hourly contacts among individuals were highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace, where an individual repeatedly spent significant amount of time) increased an epidemic's final size and effective reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease dynamics. More generally, this study emphasizes the need for

  8. Output tracking control of mobile manipulators based on dynamical sliding-mode control

    Institute of Scientific and Technical Information of China (English)

    WU Yuxiang; FENG Ying; HU Yueming

    2007-01-01

    A dynamical sliding-mode controller is devised to track the output of mobile manipulators. During the investi- gation, firstly a reduced dynamic model considering the dynamics of the driving motor is developed for mobile manipulators. Then, the system is decomposed into four lower-dimensional subsystems by means of diffeomorphism and nonlinear input transformation. Moreover, a design method of the dynamical sliding-mode controller that is applied to the output tracking of mobile manipulators is proposed. The simulation results indicate that the dynamical sliding-mode controller can not only track the given trajec- tory correctly but also reduce the chattering of sliding-mode control system considerably.

  9. DYNAMICS BASED CONTROL OF A SKID STEERING MOBILE ROBOT

    Directory of Open Access Journals (Sweden)

    Osama Elshazly

    2016-06-01

    Full Text Available In this paper, development of a reduced order, augmented dynamics-drive model that combines both the dynamics and drive subsystems of the skid steering mobile robot (SSMR is presented. A Linear Quadratic Regulator (LQR control algorithm with feed-forward compensation of the disturbances part included in the reduced order augmented dynamics-drive model is designed. The proposed controller has many advantages such as its simplicity in terms of design and implementation in comparison with complex nonlinear control schemes that are usually designed for this system. Moreover, the good performance is also provided by the controller for the SSMR comparable with a nonlinear controller based on the inverse dynamics which depends on the availability of an accurate model describing the system. Simulation results illustrate the effectiveness and enhancement provided by the proposed controller.

  10. Do resources or natural enemies drive bee population dynamics in fragmented habitats?

    Science.gov (United States)

    Steffan-Dewenter, Ingolf; Schiele, Susanne

    2008-05-01

    The relative importance of bottom-up or top-down forces has been mainly studied for herbivores but rarely for pollinators. Habitat fragmentation might change driving forces of population dynamics by reducing the area of resource-providing habitats, disrupting habitat connectivity, and affecting natural enemies more than their host species. We studied spatial and temporal population dynamics of the solitary bee Osmia rufa (Hymenoptera: Megachilidae) in 30 fragmented orchard meadows ranging in size from 0.08 to 5.8 ha in an agricultural landscape in central Germany. From 1998 to 2003, we monitored local bee population size, rate of parasitism, and rate of larval and pupal mortality in reed trap nests as an accessible and standardized nesting resource. Experimentally enhanced nest site availability resulted in a steady increase of mean local population size from 80 to 2740 brood cells between 1998 and 2002. Population size and species richness of natural enemies increased with habitat area, whereas rate of parasitism and mortality only varied among years. Inverse density-dependent parasitism in three study years with highest population size suggests rather destabilizing instead of regulating effects of top-down forces. Accordingly, an analysis of independent time series showed on average a negative impact of population size on population growth rates but provides no support for top-down regulation by natural enemies. We conclude that population dynamics of O. rufa are mainly driven by bottom-up forces, primarily nest site availability.

  11. Dynamic Primitives in the Control of Locomotion

    Directory of Open Access Journals (Sweden)

    Neville eHogan

    2013-06-01

    Full Text Available Humans achieve locomotor dexterity that far exceeds the capability of modern robots, yet this is achieved despite slower actuators, imprecise sensors and vastly slower communication. We propose that this spectacular performance arises from encoding motor commands in terms of dynamic primitives. We propose three primitives as a foundation for a comprehensive theoretical framework that can embrace a wide range of upper- and lower-limb behaviors. Building on previous work that suggested discrete and rhythmic movements as elementary dynamic behaviors, we define submovements and oscillations: As discrete movements cannot be combined with sufficient flexibility, we argue that suitably-defined submovements are primitives. As the term rhythmic may be ambiguous, we define oscillations as the corresponding class of primitives. We further propose mechanical impedances as a third class of dynamic primitives, necessary for interaction with the physical environment. Combination of these three classes of primitive requires care. One approach is through a generalized equivalent network: a virtual trajectory composed of simultaneous and/or sequential submovements and/or oscillations that interacts with mechanical impedances to produce observable forces and motions. Reliable experimental identification of these dynamic primitives presents challenges: Identification of mechanical impedances is exquisitely sensitive to assumptions about their dynamic structure; identification of submovements and oscillations is sensitive to their assumed form and to details of the algorithm used to extract them. Some methods to address these challenges are presented. Some implications of this theoretical framework for locomotor rehabilitation are considered.

  12. Dynamic-Phasor-Based Nonlinear Modelling of AC Islanded Microgrids Under Droop Control

    DEFF Research Database (Denmark)

    Mariani, Valerio; Vasca, Francesco; Guerrero, Josep M.

    2014-01-01

    dynamics that are also affected by the control parameters. This paper shows how a dynamic phasor approach can be used to derive a closed loop model of the microgrid and then to perform an eigenvalues analysis that highlights how instabilities arise for suitable values of the frequency droop control...... parameter. Further, it is shown that the full order system is well approximated by a reduced order system which captures the inverters phase and line currents dynamics.......Droop controlled inverters are widely used in islanded microgrids to interface distributed energy resources and to provide for the loads active and reactive powers demand. In this scenario, an important issue is to assess the stability of the microgrids taking into account the network and currents...

  13. Dynamic decoupling nonlinear control method for aircraft gust alleviation

    Science.gov (United States)

    Lv, Yang; Wan, Xiaopeng; Li, Aijun

    2008-10-01

    A dynamic decoupling nonlinear control method for MIMO system is presented in this paper. The dynamic inversion method is used to decouple the multivariable system. The nonlinear control method is used to overcome the poor decoupling effect when the system model is inaccurate. The nonlinear control method has correcting function and is expressed in analytic form, it is easy to adjust the parameters of the controller and optimize the design of the control system. The method is used to design vertical transition mode of active control aircraft for gust alleviation. Simulation results show that the designed vertical transition mode improves the gust alleviation effect about 34% comparing with the normal aircraft.

  14. Linking dynamic habitat selection with wading bird foraging distributions across resource gradients

    Science.gov (United States)

    Beerens, James M.; Noonberg, Erik G.; Gawlik, Dale E.

    2015-01-01

    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.

  15. Linking Dynamic Habitat Selection with Wading Bird Foraging Distributions across Resource Gradients.

    Science.gov (United States)

    Beerens, James M; Noonburg, Erik G; Gawlik, Dale E

    2015-01-01

    Species distribution models (SDM) link species occurrence with a suite of environmental predictors and provide an estimate of habitat quality when the variable set captures the biological requirements of the species. SDMs are inherently more complex when they include components of a species' ecology such as conspecific attraction and behavioral flexibility to exploit resources that vary across time and space. Wading birds are highly mobile, demonstrate flexible habitat selection, and respond quickly to changes in habitat quality; thus serving as important indicator species for wetland systems. We developed a spatio-temporal, multi-SDM framework using Great Egret (Ardea alba), White Ibis (Eudocimus albus), and Wood Stork (Mycteria Americana) distributions over a decadal gradient of environmental conditions to predict species-specific abundance across space and locations used on the landscape over time. In models of temporal dynamics, species demonstrated conditional preferences for resources based on resource levels linked to differing temporal scales. Wading bird abundance was highest when prey production from optimal periods of inundation was concentrated in shallow depths. Similar responses were observed in models predicting locations used over time, accounting for spatial autocorrelation. Species clustered in response to differing habitat conditions, indicating that social attraction can co-vary with foraging strategy, water-level changes, and habitat quality. This modeling framework can be applied to evaluate the multi-annual resource pulses occurring in real-time, climate change scenarios, or restorative hydrological regimes by tracking changing seasonal and annual distribution and abundance of high quality foraging patches.

  16. Planning for Regional Water Resources in Northwest China Using a Dynamic Simulation Model

    Science.gov (United States)

    Chen, C.; Kalra, A.; Ahmad, S.

    2014-12-01

    Problem of water scarcity is prominent in northwest China due to its typical desert climate. Exceedence of sustainable yield of groundwater resources has resulted in groundwater depletion, which has raised a series of issues such as drying wells, increasing pumping costs and environmental damage. With a rapid agricultural and economic development, population increase has added extra stress on available water resources by increasing municipal, agricultural and industrial demands. This necessitates efficient water resources management strategies with better understanding of the causes of water stress and options for sustainable development of economy and management of environment. This study focuses on simulating the water supply and demand, under the influence of changing climate, for Shanshan County, located in northwest of China. A dynamic simulation model is developed using the modeling tool Stella for monthly water balance for the period ranging from 2000-2030. Different future water demand and supply scenarios are developed to represent: (1) base scenario- with current practices; (2) change of the primary water source; (3) improvement of irrigation efficiency; (4) reduction of irrigation area; and (5) reduction of industrial water demand. The results indicate that besides growing demand, the low water use efficiency and low level of water reuse are the primary concerns for water scarcity. Groundwater recharge and abstraction could be balanced by 2030, by reducing industrial demand by 50% and using high efficiency irrigation for agriculture. The model provided a better understanding of the effect of different policies and can help in identifying water resources management strategies.

  17. ANCS: Achieving QoS through Dynamic Allocation of Network Resources in Virtualized Clouds

    Directory of Open Access Journals (Sweden)

    Cheol-Ho Hong

    2016-01-01

    Full Text Available To meet the various requirements of cloud computing users, research on guaranteeing Quality of Service (QoS is gaining widespread attention in the field of cloud computing. However, as cloud computing platforms adopt virtualization as an enabling technology, it becomes challenging to distribute system resources to each user according to the diverse requirements. Although ample research has been conducted in order to meet QoS requirements, the proposed solutions lack simultaneous support for multiple policies, degrade the aggregated throughput of network resources, and incur CPU overhead. In this paper, we propose a new mechanism, called ANCS (Advanced Network Credit Scheduler, to guarantee QoS through dynamic allocation of network resources in virtualization. To meet the various network demands of cloud users, ANCS aims to concurrently provide multiple performance policies; these include weight-based proportional sharing, minimum bandwidth reservation, and maximum bandwidth limitation. In addition, ANCS develops an efficient work-conserving scheduling method for maximizing network resource utilization. Finally, ANCS can achieve low CPU overhead via its lightweight design, which is important for practical deployment.

  18. Dynamic Evaluation of Water Quality Improvement Based on Effective Utilization of Stockbreeding Biomass Resource

    Directory of Open Access Journals (Sweden)

    Jingjing Yan

    2014-11-01

    Full Text Available The stockbreeding industry is growing rapidly in rural regions of China, carrying a high risk to the water environment due to the emission of huge amounts of pollutants in terms of COD, T-N and T-P to rivers. On the other hand, as a typical biomass resource, stockbreeding waste can be used as a clean energy source by biomass utilization technologies. In this paper, we constructed a dynamic linear optimization model to simulate the synthetic water environment management policies which includes both the water environment system and social-economic situational changes over 10 years. Based on the simulation, the model can precisely estimate trends of water quality, production of stockbreeding biomass energy and economic development under certain restrictions of the water environment. We examined seven towns of Shunyi district of Beijing as the target area to analyse synthetic water environment management policies by computer simulation based on the effective utilization of stockbreeding biomass resources to improve water quality and realize sustainable development. The purpose of our research is to establish an effective utilization method of biomass resources incorporating water environment preservation, resource reutilization and economic development, and finally realize the sustainable development of the society.

  19. Dynamic Intelligent Feedback Scheduling in Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Hui-ying Chen

    2013-01-01

    Full Text Available For the networked control system with limited bandwidth and flexible workload, a dynamic intelligent feedback scheduling strategy is proposed. Firstly, a monitor is used to acquire the current available network bandwidth. Then, the new available bandwidth in the next interval is predicted by using LS_SVM approach. At the same time, the dynamic performance indices of all control loops are obtained with a two-dimensional fuzzy logic modulator. Finally, the predicted network bandwidth is dynamically allocated by the bandwidth manager and the priority allocator in terms of the loops' dynamic performance indices. Simulation results show that the sampling periods and priorities of control loops are adjusted timely according to the network workload condition and the dynamic performance of control loops, which make the system running in the optimal state all the time.

  20. Structure-based control of complex networks with nonlinear dynamics

    CERN Document Server

    Zañudo, Jorge G T; Albert, Réka

    2016-01-01

    Given the network of interactions underlying a complex system, what can we learn about controlling such a system solely from its structure? Over a century of research in control theory has given us tools to answer this question, which were widely applied in science and engineering. Yet the current tools do not always consider the inherently nonlinear dynamics of real systems and the naturally occurring system states in their definition of "control", a term whose interpretation varies across disciplines. Here we use a new mathematical framework for structure-based control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors and which are guaranteed to be effective regardless of the dynamic details and parameters of the underlying system. We use this framework on several real networks, compar...

  1. Dynamic inflow compensation for pitch controlled wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Van Engelen, T.G.; Van der Hooft, E.L. [ECN Wind Energy, Petten (Netherlands)

    2004-11-01

    An algorithm has been developed that provides filter parameters for pitch control loops in order to compensate for dynamic inflow effects. This improves the loop stability, especially near rated conditions. The filter behaviour reflects the 'inverse of the normalised' rotor-integral dynamic wake behaviour in accordance with the ECN differential equation wake model. Any (existing) pitch controller can be upgraded with such a filter. The algorithm has been implemented and incorporated in the ECN controlled design tool.

  2. Dynamic Teams and Decentralized Control Problems with Substitutable Actions

    OpenAIRE

    Asghari, Seyed Mohammad; Nayyar, Ashutosh

    2016-01-01

    This paper considers two problems -- a dynamic team problem and a decentralized control problem. The problems we consider do not belong to the known classes of "simpler" dynamic team/decentralized control problems such as partially nested or quadratically invariant problems. However, we show that our problems admit simple solutions under an assumption referred to as the substitutability assumption. Intuitively, substitutability in a team (resp. decentralized control) problem means that the ef...

  3. Dynamics and Control of a Class of Underactuated Mechanical Systems

    OpenAIRE

    Reyhanoglu, Mahmut; van der Schaft, Arjan; McClamroch, N. Harris; Kolmanovsky, Ilya

    1999-01-01

    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; t...

  4. Control of Exciton Dynamics in Nanodots for Quantum Operations

    Science.gov (United States)

    Chen, Pochung; Piermarocchi, C.; Sham, L. J.

    2001-08-01

    We present a theory to further a new perspective of proactive control of exciton dynamics in the quantum limit. Circularly polarized optical pulses in a semiconductor nanodot are used to control the dynamics of two interacting excitons of opposite polarizations. Shaping of femtosecond laser pulses keeps the quantum operation within the decoherence time. Computation of the fidelity of the operations and application to the complete solution of a minimal quantum computing algorithm demonstrate in theory the feasibility of quantum control.

  5. Approximate Dynamic Programming in Tracking Control of a Robotic Manipulator

    OpenAIRE

    Marcin Szuster; Piotr Gierlak

    2016-01-01

    This article focuses on the implementation of an approximate dynamic programming algorithm in the discrete tracking control system of the three-degrees of freedom Scorbot-ER 4pc robotic manipulator. The controlled system is included in an articulated robots group which uses rotary joints to access their work space. The main part of the control system is a dual heuristic dynamic programming algorithm that consists of two structures designed in the form of neural networks: an actor and a critic...

  6. Chaos control of chaotic dynamical systems using backstepping design

    Energy Technology Data Exchange (ETDEWEB)

    Yassen, M.T. [Mathematics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)] e-mail: mtyassen@yahoo.com

    2006-01-01

    This work presents chaos control of chaotic dynamical systems by using backstepping design method. This technique is applied to achieve chaos control for each of the dynamical systems Lorenz, Chen and Lue systems. Based on Lyapunov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical simulations are shown to verify the results.

  7. Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils

    OpenAIRE

    Ching-Yu Huang; Grizelle González; Paul F. Hendrix

    2016-01-01

    Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (invasive endogeic Pontoscolex corethrurus, native anecic Estherella sp, and native endogeic Onychochaeta borincana) and their effects on soil C and N dynamics in Puerto Rican soils in a 22-day laboratory experiment. Chan...

  8. Discrete-Time Controllability for Feedback Quantum Dynamics

    CERN Document Server

    Albertini, Francesca

    2010-01-01

    Controllability properties for discrete-time, Markovian quantum dynamics are investigated. We find that, while in general the controlled system is not finite-time controllable, feedback control allows for arbitrary asymptotic state-to-state transitions. Under further assumption on the form of the measurement, we show that finite-time controllability can be achieved in a time that scales linearly with the dimension of the system, and we provide an iterative procedure to design the unitary control actions.

  9. The Dynamic Model of Allocation Control in Venture Capital

    Institute of Scientific and Technical Information of China (English)

    TIAN Zeng-rui

    2008-01-01

    The allocation of control and stock in venture capital is the key point of the venture capital project. This paper develops a dynamic model of control and stock and profoundly analyses how to allocate the control between the entrepreneur and the venture capitalist. The model reveals the relationship of control and stock's structure, the time and the degree of imparting the control to the entrepreneur or the venture capitalist, the condition of retracting the control and compensation accordingly.

  10. Controlling carrier dynamics at the nanoscale

    Science.gov (United States)

    Cánovas, Enrique; Bonn, Mischa

    2016-10-01

    This Special issue is motivated by the occasion of the International Conference on Charge Carrier Dynamics at the Nanoscale (CCDNano), held in Santiago de Compostela (Spain) in September 2015. As chairs for the CCDNano meeting, we aimed at bringing together experts from different scientific fields in order to trigger interdisciplinary discussions and collaborations; the ultimate goal of the conference was to serve as a platform to advance and help unifying methodologies and theories from different research sub-fields. We also aimed at a deeper understanding of charge dynamics to contribute to the development of improved or novel nanostructured devices. This special issue keeps that spirit, and intends to provide an overview of ongoing research efforts regarding charge carrier dynamics at the nanoscale.

  11. Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia;

    2015-01-01

    of stochastic dynamic programming, to optimize water resources management in the Ziya River basin. Natural runoff from the upper basin was estimated with a rainfall-runoff model autocalibrated using in situ measured discharge. The runoff serial correlation was described by a Markov chain and used as input...... for the optimization model. This model was used to assess the economic impacts of ecosystem minimum flow constraints, limited groundwater pumping, and the middle route of the South–North Water Transfer Project (SNWTP). A regional climate shift has exacerbated water scarcity and increased water values, resulting...... in stricter water management. The results show that the SNWTP reduces the impacts of water scarcity and impacts optimal water management in the basin. The presented modeling framework provides an objective basis for the development of tools to avoid overpumping groundwater resources at minimum costs....

  12. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas (Open Grid Computing, Inc., Austin, TX); Thompson, David

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.

  13. The Quadrotor Dynamic Modeling and Indoor Target Tracking Control Method

    Directory of Open Access Journals (Sweden)

    Dewei Zhang

    2014-01-01

    Full Text Available A reliable nonlinear dynamic model of the quadrotor is presented. The nonlinear dynamic model includes actuator dynamic and aerodynamic effect. Since the rotors run near a constant hovering speed, the dynamic model is simplified at hovering operating point. Based on the simplified nonlinear dynamic model, the PID controllers with feedback linearization and feedforward control are proposed using the backstepping method. These controllers are used to control both the attitude and position of the quadrotor. A fully custom quadrotor is developed to verify the correctness of the dynamic model and control algorithms. The attitude of the quadrotor is measured by inertia measurement unit (IMU. The position of the quadrotor in a GPS-denied environment, especially indoor environment, is estimated from the downward camera and ultrasonic sensor measurements. The validity and effectiveness of the proposed dynamic model and control algorithms are demonstrated by experimental results. It is shown that the vehicle achieves robust vision-based hovering and moving target tracking control.

  14. Methodology for Dynamic Learning Resources Discovery and Retrieval from Social Media

    DEFF Research Database (Denmark)

    Petreski, Hristijian; Tsekeridou, Sofia; Prasad, Neeli R.

    2014-01-01

    . The emergence and increased popularity of social media further contribute to these new trends of informal types of knowledge sharing and learning. Such types of online social interactions and user-generated data exchanges are felt by many as more familiar, more personal, free, friendlier, and in some cases even...... more understandable. Recognizing the impact that social media and UGC exchanges have had on creating new more engaging, more natural and more motivating ways of online learning, the paper presents a well-thought methodology for dynamically discovering content, shared within social media communities......, of significant educational value to be retrieved as learning resources in specific learning contexts....

  15. Reliable Dynamic Voltage Scaling for Real-Time Systems with Uncertain Execution Time and Resource Constraints

    Directory of Open Access Journals (Sweden)

    G. AZHAGUNILA,

    2011-02-01

    Full Text Available The main aim of this work is to develop a Dynamic Voltage Scaling (DVS algorithm for real- time system with resource constraints and the system thus developed is fault tolerant as well. The system is assumed to contain independent periodic tasks. Earliest Deadline Firstscheduling algorithm is considered in this. The algorithm helps in meeting the deadlines of all the tasks and also ensures that the total power consumption is minimized. The other objective is to develop a fault tolerant system. The proposed system is designed to handle hardware faults. Thus the proposed system is energy efficient and reliable.

  16. Environmental and physiological control of dynamic photosynthesis

    NARCIS (Netherlands)

    Kaiser, M.E.

    2016-01-01

    Irradiance is the main driver of photosynthesis. In natural conditions, irradiance incident on a leaf often fluctuates, due to the movement of leaves, clouds and the sun. These fluctuations force photosynthesis to respond dynamically, however with delays that are subject to rate constants of underly

  17. System and Method for Dynamic Aeroelastic Control

    Science.gov (United States)

    Suh, Peter M. (Inventor)

    2015-01-01

    The present invention proposes a hardware and software architecture for dynamic modal structural monitoring that uses a robust modal filter to monitor a potentially very large-scale array of sensors in real time, and tolerant of asymmetric sensor noise and sensor failures, to achieve aircraft performance optimization such as minimizing aircraft flutter, drag and maximizing fuel efficiency.

  18. Dynamic formation control for autonomous underwater vehicles

    Institute of Scientific and Technical Information of China (English)

    燕雪峰; 古锋; 宋琛; 胡晓琳; 潘毅

    2014-01-01

    Path planning and formation structure forming are two of the most important problems for autonomous underwater vehicles (AUVs) to collaborate with each other. In this work, a dynamic formation model was proposed, in which several algorithms were developed for the complex underwater environment. Dimension changeable particle swarm algorithm was used to find an optimized path by dynamically adjusting the number and the distribution of the path nodes. Position relationship based obstacle avoidance algorithm was designed to detour along the edges of obstacles. Virtual potential point based formation-keeping algorithm was employed by incorporating dynamic strategies which were decided by the current states of the formation. The virtual potential point was used to keep the formation structure when the AUV or the formation was deviated. Simulation results show that an optimal path can be dynamically planned with fewer path nodes and smaller fitness, even with a concave obstacle. It has been also proven that different formation-keeping strategies can be adaptively selected and the formation can change its structure in a narrow area and restore back after passing the obstacle.

  19. Dynamic Control of a Space Robot System With No Thrust Jets Controlled Base

    Science.gov (United States)

    1991-08-01

    properties of the system are studied. It is found that the free-flying space robot dynamics cannot be linearly expressed in terms of dynamic parameters...control. Nearly all of these algorithms are based on the property of linwar parameterization in the robot dynamics , i.e., possibility of selecting a...proper set of equivalent parameters such that the robot dynamics depends linearly on these parameters. These controllers can take full consideration

  20. Supply-demand 3D dynamic model in water resources evaluation: taking Lebanon as an example

    Science.gov (United States)

    Fang, Hong; Hou, Zhimin

    2017-05-01

    In this paper, supply-demand 3D dynamic model is adopted to create a measurement of a region’s capacity to provide available water to meet the needs of its population. First of all, we draw a diagram between supply and demand. Then taking the main dynamic factors into account, we establish an index to evaluate the balance of supply and demand. The three dimension vector reflects the scarcity of industrial, agricultural and residential water. Lebanon is chosen as the object of case study, and we do quantitative analysis of its current situation. After data collecting and processing, we calculate the 3D vector in 2012, which reveals that agriculture is susceptible to water scarcity. Water resources of Lebanon are “physical rich” but “economic scarcity” according to the correlation chart and other statistical analysis.

  1. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo

    2014-01-01

    costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate......, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two....... A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...

  2. Distributed multisensor processing, decision making, and control under constrained resources for remote health and environmental monitoring

    Science.gov (United States)

    Talukder, Ashit; Sheikh, Tanwir; Chandramouli, Lavanya

    2004-04-01

    Previous field-deployable distributed sensing systems for health/biomedical applications and environmental sensing have been designed for data collection and data transmission at pre-set intervals, rather than for on-board processing These previous sensing systems lack autonomous capabilities, and have limited lifespans. We propose the use of an integrated machine learning architecture, with automated planning-scheduling and resource management capabilities that can be used for a variety of autonomous sensing applications with very limited computing, power, and bandwidth resources. We lay out general solutions for efficient processing in a multi-tiered (three-tier) machine learning framework that is suited for remote, mobile sensing systems. Novel dimensionality reduction techniques that are designed for classification are used to compress each individual sensor data and pass only relevant information to the mobile multisensor fusion module (second-tier). Statistical classifiers that are capable of handling missing/partial sensory data due to sensor failure or power loss are used to detect critical events and pass the information to the third tier (central server) for manual analysis and/or analysis by advanced pattern recognition techniques. Genetic optimisation algorithms are used to control the system in the presence of dynamic events, and also ensure that system requirements (i.e. minimum life of the system) are met. This tight integration of control optimisation and machine learning algorithms results in a highly efficient sensor network with intelligent decision making capabilities. The applicability of our technology in remote health monitoring and environmental monitoring is shown. Other uses of our solution are also discussed.

  3. DRACULA: Dynamic range control for broadcasting and other applications

    Science.gov (United States)

    Gilchrist, N. H. C.

    The BBC has developed a digital processor which is capable of reducing the dynamic range of audio in an unobtrusive manner. It is ideally suited to the task of controlling the level of musical programs. Operating as a self-contained dynamic range controller, the processor is suitable for controlling levels in conventional AM or FM broadcasting, or for applications such as the compression of program material for in-flight entertainment. It can, alternatively, be used to provide a supplementary signal in DAB (digital audio broadcasting) for optional dynamic compression in the receiver.

  4. Control of stage by stage changing linear dynamic systems

    Directory of Open Access Journals (Sweden)

    Barseghyan V.R.

    2012-01-01

    Full Text Available In this paper, the control problems of linear dynamic systems stage by stage changing and the optimal control with the criteria of quality set for the whole range of time intervals are considered. The necessary and sufficient conditions of total controllability are also stated. The constructive solving method of a control problem is offered, as well as the definitions of conditions for the existence of programmed control and motions. The explicit form of control action for a control problem is constructed. The method for solving optimal control problem is offered, and the solution of optimal control of a specific target is brought.

  5. SDN-Enabled Dynamic Feedback Control and Sensing in Agile Optical Networks

    Science.gov (United States)

    Lin, Likun

    monitoring sensors. In order to maintain signal quality while optimizing network resources, we find that it is essential to model and update estimates of the physical link impairments in real-time. In this thesis, we consider the key elements required to enable an agile optical network, with contributions as follows: • Control Framework: extended the SDN concept to include the optical transport network through extensions to the OpenFlow (OF) protocol. A unified SDN control plane is built to facilitate control and management capability across the electrical/packet-switched and optical/circuit-switched portions of the network seamlessly. The SDN control plane serves as a platform to abstract the resources of multilayer/multivendor networks. Through this platform, applications can dynamically request the network resources to meet their service requirements. • Use of In-situ Monitors: enabled real-time physical impairment sensing in the control plane using in-situ Optical Performance Monitoring (OPM) and bit error rate (BER) analyzers. OPM and BER values are used as quantitative indicators of the link status and are fed to the control plane through a high-speed data collection interface to form a closed-loop feedback system to enable adaptive resource allocation. • Predictive Network Model: used a network model embedded in the control layer to study the link status. The estimated results of network status is fed into the control decisions to precompute the network resources. The performance of the network model can be enhanced by the sensing results. • Real-Time Control Algorithms: investigated various dynamic resource allocation mechanisms supporting an agile optical network. Intelligent routing and wavelength switching for recovering from traffic impairments is achieved experimentally in the agile optical network within one second. A distance-adaptive spectrum allocation scheme to address transmission impairments caused by cascaded Wavelength Selective Switches (WSS

  6. Dynamic analysis and control of novel moving mass flight vehicle

    Science.gov (United States)

    Li, Jianqing; Gao, Changsheng; Jing, Wuxing; Wei, Pengxin

    2017-02-01

    In terms of the moving mass control technology, the configuration of internal moving masses is a key challenge. In order to reduce the complexity of configuring these moving masses in a flight vehicle, a combination bank-to-turn control mode with the single moving mass and reaction jet is proposed in this paper. To investigate the dynamics and the potential of the control mechanism, an attitude dynamic model with single moving mass is generated. The dynamic analysis indicates that the control stability, control authority and dynamic behavior of the pitch channel are determined by the mass ratio of the moving mass to the system and the difference between the mass center of the moving mass and the mass center of the vehicle body. Interestingly, control authority increases proportionally with increasing mass ratio and also with decreasing the magnitude of the static margin. To deal with the coupling caused by the additional inertia moment which is generated by the motion of the moving mass, an adaptive control law by using dynamic inversion theory and the extended state observer is designed. Also, a compensator is designed for eliminating the influence of the servo actuator's dynamics on attitude of the flight vehicle. Finally, the simulation results validate the quality of the proposed adaptive controller which ensures a good performance in the novel configuration with internal moving mass.

  7. EDITORIAL: Quantum control theory for coherence and information dynamics Quantum control theory for coherence and information dynamics

    Science.gov (United States)

    Viola, Lorenza; Tannor, David

    2011-08-01

    Precisely characterizing and controlling the dynamics of realistic open quantum systems has emerged in recent years as a key challenge across contemporary quantum sciences and technologies, with implications ranging from physics, chemistry and applied mathematics to quantum information processing (QIP) and quantum engineering. Quantum control theory aims to provide both a general dynamical-system framework and a constructive toolbox to meet this challenge. The purpose of this special issue of Journal of Physics B: Atomic, Molecular and Optical Physics is to present a state-of-the-art account of recent advances and current trends in the field, as reflected in two international meetings that were held on the subject over the last summer and which motivated in part the compilation of this volume—the Topical Group: Frontiers in Open Quantum Systems and Quantum Control Theory, held at the Institute for Theoretical Atomic, Molecular and Optical Physics (ITAMP) in Cambridge, Massachusetts (USA), from 1-14 August 2010, and the Safed Workshop on Quantum Decoherence and Thermodynamics Control, held in Safed (Israel), from 22-27 August 2010. Initial developments in quantum control theory date back to (at least) the early 1980s, and have been largely inspired by the well-established mathematical framework for classical dynamical systems. As the above-mentioned meetings made clear, and as the burgeoning body of literature on the subject testifies, quantum control has grown since then well beyond its original boundaries, and has by now evolved into a highly cross-disciplinary field which, while still fast-moving, is also entering a new phase of maturity, sophistication, and integration. Two trends deserve special attention: on the one hand, a growing emphasis on control tasks and methodologies that are specifically motivated by QIP, in addition and in parallel to applications in more traditional areas where quantum coherence is nevertheless vital (such as, for instance

  8. Active Control of Solar Array Dynamics During Spacecraft Maneuvers

    Science.gov (United States)

    Ross, Brant A.; Woo, Nelson; Kraft, Thomas G.; Blandino, Joseph R.

    2016-01-01

    Recent NASA mission plans require spacecraft to undergo potentially significant maneuvers (or dynamic loading events) with large solar arrays deployed. Therefore there is an increased need to understand and possibly control the nonlinear dynamics in the spacecraft system during such maneuvers. The development of a nonlinear controller is described. The utility of using a nonlinear controller to reduce forces and motion in a solar array wing during a loading event is demonstrated. The result is dramatic reductions in system forces and motion during a 10 second loading event. A motion curve derived from the simulation with the closed loop controller is used to obtain similar benefits with a simpler motion control approach.

  9. MLR will Continue to Control the Total Exploitation Quantity of Advantageous Mineral Resources Including Rare Earth

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>According to Wang Min,Vice Minister of Land and Resources and chief of China Geological Survey,for some time to come the MLR will continue to implement the policy of controlling the total exploitation quantity of advantageous mineral resources,exercising

  10. Dynamic land cover information: bridging the gap between remote sensing and natural resource management

    Directory of Open Access Journals (Sweden)

    Richard Thackway

    2013-03-01

    Full Text Available Environmental decision-makers are increasingly demanding detailed spatial coverages with high temporal frequency to assess trends and changes in the extent and condition of wetlands, species habitats, farmlands, forests, rangelands, soil, water, and vegetation. Dynamic land cover information can substantially meet these requirements. Access to satellite-based time series information provides an unprecedented opportunity to better focus natural resource management (NRM in Australia. Opportunities include assessing the extent and condition of key assets, prioritizing investment in key localities and time periods, improving targeting of scarce public funding, and monitoring and evaluating the outcome of this investment to assist land managers in improving land management practices to meet wider community social, economic, and environmental goals. We illustrate how these key “decision points” can be enhanced by linking dynamic land cover information to a stepped “cycle” model. We use the stepped cycle model to present two case studies, the management of fire and soil erosion, which demonstrate the application of dynamic land cover information to improve NRM decision-making across three broad stakeholder groups (national, regional, local. We use the case studies to highlight how accurate dynamic land cover information has been used to improve the design and reporting of national NRM programs.

  11. Evaluation model coupling exploitable groundwater resources and land subsidence control in regional loose sediments

    Science.gov (United States)

    Luo, Z. J.; Zhao, S. J.; Jin, WZ; Ma, Q. S.; Wu, X. H.

    2016-08-01

    The loose sediments in the Yangtze River Delta, the North China Plain, the plain of Northern Jiangsu and other districts in China are of great thickness, complex in structure and abundant in groundwater. Groundwater overexploitation easily results in geological disasters of land subsidence. Aiming at the issues, assessment models coupling exploitable groundwater resources and land subsidence control in regional loose sediments were brought up in this paper. The two models were: (1) a three dimensional groundwater seepage model with land subsidence based on the one dimensional Terzaghi consolidation theory; (2) a three dimensional full coupling model on groundwater seepage and land subsidence based on the Biot consolidation theory to simulate and calculate. It can be used to simulate and calculate the problems in real situations. Thus, the groundwater seepage and land subsidence were coupled together in the model to evaluate the amount of exploitable groundwater under the specific requirements of land subsidence control. The full coupling model, which considers the non-linear characteristics of soil mass and the dynamic changes of soil permeability with stress state based on the Biot consolidation theory, is more coincident with the variation characteristics of the hydraulic and mechanical properties of soil mass during the pumping process, making the evaluation results more scientific and reasonable.

  12. Dynamic aspects of segmented mirror position control

    Science.gov (United States)

    Kaercher, Hans J.

    2006-02-01

    Extreme large optical telescopes will operate in an open environment and may be excited by wind effects. The position control of the mirror segments may need fast control, and the position actuators and the related control loops may be separated in a conventional slow, iso-static and a fast reaction-mass type system. There exists some experience with wind excitations of airborne telescopes, e.g. the Stratospheric Observatory for Infrared Astronomy SOFIA. The pointing control system of that telescope is equipped with several dedicated design features, as a vibration isolations system, a flexible body control system and an active mass damper system to handle excitations in different frequency ranges. These features may be transferred to the position control systems of segmented mirrors. The paper will give some system engi-neers recommendations for designing those systems.

  13. Environmental and physiological control of dynamic photosynthesis

    OpenAIRE

    Kaiser, M. E.

    2016-01-01

    Irradiance is the main driver of photosynthesis. In natural conditions, irradiance incident on a leaf often fluctuates, due to the movement of leaves, clouds and the sun. These fluctuations force photosynthesis to respond dynamically, however with delays that are subject to rate constants of underlying processes, such as regulation of electron transport, activation states of enzymes in the Calvin cycle, and stomatal conductance (gs). For example, in leaves adapted to low irradiance that are s...

  14. Nonlinear Dynamics and Control of Flexible Structures

    Science.gov (United States)

    1991-03-01

    Freedom," Ph.D. Thesis, Department of Theoretical and Applied Mechanics, Cornell University, in preparation. 5I I URI Reorts Islam , Saiful and Mircea...Theoretical and Applied Mechanics I S. Islam Civil and Environmental Engineering I 2! I 3 URI Accomplishments 3 -Nonlinear Dynamics and Chaos in Flexible...Structures with Symmetry," 31 (1991) 265-285. Islam , S. and M. Grigoriu, "Nonlinear Random Vibration of Pin-Jointed Trusses with Imperfections," in

  15. Unmodeled Dynamics in Robust Nonlinear Control

    Science.gov (United States)

    2000-08-01

    IEEE Transactions on Automatic Control , vol. 44, pp. 1975–1981, 1999. [6] D. Bestle...systems,” IEEE Transactions on Automatic Control , vol. 41, pp. 876–880, 1996. 95 [9] C.I. Byrnes and A. Isidori, “New results and examples in...Output-feedback stochastic nonlinear stabilization,” IEEE Transactions on Automatic Control , vol. 44, pp. 328–333, 1999. [14] J. Eker and K.J.

  16. DYNAMICAL VARIABLE STRUCTURE CONTROL OF A HELICOPTER IN VERTICAL FLIGHT

    OpenAIRE

    Sira-Ramirez, Hebertt; Zribi, Mohamed; Ahmad, Shaheen

    1991-01-01

    In this article, a dynamical multivariable discontinuous feedback control strategy of the sliding nlode type is proposed for the altitude stabilization of a nonlinear helicopter model in vertical flight. Vlrhile retaining the basic robustness features associated to sliding mode control policies, the proposed approach also results in smoothed out (i.e., non-chattering) input trajectories and controlled state variable responses.

  17. Dynamic stabilization methods for bilateral control of remote manipulation

    Science.gov (United States)

    Handlykken, M.

    1982-01-01

    This paper discusses and analyses several control strategies for generalized, bilateral master/slave manipulator systems. In these manipulators the two arms have different dynamic/kinematic properties which implies a more difficult control problem. Attention is focused on torque/force driven arms. Required performance for the necessary control computer(s) is discussed.

  18. Dynamics and Control of Adaptive Shells with Curvature Transformations

    OpenAIRE

    1995-01-01

    Adaptive structures with controllable geometries and shapes are rather useful in many engineering applications, such as adaptive wings, variable focus mirrors, adaptive machines, micro-electromechanical systems, etc. Dynamics and feedback control effectiveness of adaptive shells whose curvatures are actively controlled and continuously changed are evaluated. An adaptive piezoelectric laminated cylindrical shell composite with continuous curvature changes is studied, and its natural frequencie...

  19. Dynamical Epidemic Suppression Using Stochastic Prediction and Control

    Science.gov (United States)

    2004-10-28

    reduce the rate of input of susceptibles. By using the PDF flux, we are able to distinguish regions used in other chaos control schemes that are...use this information in a control algo- stochastic chaos control methods that account specifically for rithm to prevent bursting dynamics (that is, to

  20. Satellite Dynamic Damping via Active Force Control Augmentation

    Science.gov (United States)

    Varatharajoo, Renuganth

    2012-07-01

    An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC

  1. Incremental approximate dynamic programming for nonlinear flight control design

    NARCIS (Netherlands)

    Zhou, Y.; Van Kampen, E.J.; Chu, Q.P.

    2015-01-01

    A self-learning adaptive flight control design for non-linear systems allows reliable and effective operation of flight vehicles in a dynamic environment. Approximate dynamic programming (ADP) provides a model-free and computationally effective process for designing adaptive linear optimal

  2. Dynamic Control of Completely Free-Flying Space Robot System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.J. [Korea Advanced Energy Research Inst., Daeduk-Danji (Korea, Republic of). Korea Nuclear Safety Center; Xu, Y.; Kanade, T. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Robotics Inst.

    1993-03-01

    In this paper we discuss dynamic control of a completely- free-flying space robot system where the base attitude is not controlled. We first derive the system dynamic formulations in joint space and in inertia space, based on Lagrangian dynamics and linear and angular momentum conservation laws. The properties of completely free-flying robot system dynamics are studied. The nonlinear parameterization, one of the most important properties of the system dynamics, is demonstrated in theory and by a case study. Based on the system dynamic model in inertial space, globally stable dynamics control schemes are then proposed. Two algorithms are presented for the normal regulation problem and trajectory tracking applications. The PD algorithm is simple and easy to implement. The dynamic control algorithm has a fast and accurate system response even for the system with small mass/inertia ratio of the base with respect to the robot. The effectiveness of proposed algorithms is demonstrated by simulation studies. Future research work is identified. (author). 22 refs., 10 figs.

  3. Importance of Dynamic Inflow Model Predictive Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Knudsen, Torben; Overgaard, Anders;

    2015-01-01

    The efficiency of including dynamic inflow in the model based design of wind turbine controller has been discussed for many years in the wind energy community with out getting to a safe conclusion. This paper delivers a good argument in favor of including dynamic inflow. The main contributions...

  4. Improving the Dynamics of Suspension Bridges using Active Control Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular...

  5. Kinematics and Dynamics of Motion Control Based on Acceleration Control

    Science.gov (United States)

    Ohishi, Kiyoshi; Ohba, Yuzuru; Katsura, Seiichiro

    The first IEEE International Workshop on Advanced Motion Control was held in 1990 pointed out the importance of physical interpretation of motion control. The software servoing technology is now common in machine tools, robotics, and mechatronics. It has been intensively developed for the numerical control (NC) machines. Recently, motion control in unknown environment will be more and more important. Conventional motion control is not always suitable due to the lack of adaptive capability to the environment. A more sophisticated ability in motion control is necessary for compliant contact with environment. Acceleration control is the key technology of motion control in unknown environment. The acceleration control can make a motion system to be a zero control stiffness system without losing the robustness. Furthermore, a realization of multi-degree-of-freedom motion is necessary for future human assistance. A human assistant motion will require various control stiffness corresponding to the task. The review paper focuses on the modal coordinate system to integrate the various control stiffness in the virtual axes. A bilateral teleoperation is a good candidate to consider the future human assistant motion and integration of decentralized systems. Thus the paper reviews and discusses the bilateral teleoperation from the control stiffness and the modal control design points of view.

  6. Resource Considerations during Parallel Scheduling of Large Control Flow Dominated Applications

    DEFF Research Database (Denmark)

    Grode, Jesper Nicolai Riis; Madsen, Jan

    1995-01-01

    This paper presents a technique to determine the possible parallelism between different control-structures in large hierarchical Control- and Data-Flow Graphs (CDFGs). The technique is based on a hierarchical bottom-up heuristic, which after resolving data- and control-dependencies between control......-structures, parallelizes selected control-structures , subject to minimizing resource consumption. The purpose of the technique is to be able to predict resource consumption and estimate execution time for large CDFGs. The technique has been tested on several CDFGs with up to 1442 nodes. The results indicate...

  7. Dynamics systems vs. optimal control--a unifying view.

    Science.gov (United States)

    Schaal, Stefan; Mohajerian, Peyman; Ijspeert, Auke

    2007-01-01

    In the past, computational motor control has been approached from at least two major frameworks: the dynamic systems approach and the viewpoint of optimal control. The dynamic system approach emphasizes motor control as a process of self-organization between an animal and its environment. Nonlinear differential equations that can model entrainment and synchronization behavior are among the most favorable tools of dynamic systems modelers. In contrast, optimal control approaches view motor control as the evolutionary or development result of a nervous system that tries to optimize rather general organizational principles, e.g., energy consumption or accurate task achievement. Optimal control theory is usually employed to develop appropriate theories. Interestingly, there is rather little interaction between dynamic systems and optimal control modelers as the two approaches follow rather different philosophies and are often viewed as diametrically opposing. In this paper, we develop a computational approach to motor control that offers a unifying modeling framework for both dynamic systems and optimal control approaches. In discussions of several behavioral experiments and some theoretical and robotics studies, we demonstrate how our computational ideas allow both the representation of self-organizing processes and the optimization of movement based on reward criteria. Our modeling framework is rather simple and general, and opens opportunities to revisit many previous modeling results from this novel unifying view.

  8. A summary of the Dynamics Explorer /DE/-2 spacecraft attitude control operations and dynamics

    Science.gov (United States)

    Stengle, T. H.

    1982-01-01

    A summary of attitude control operations and observed attitude dynamics for the Dynamics Explorer (DE)-2 spacecraft is presented. By performing a systematic analysis of spacecraft drift and through optimization of modeling parameters in dynamics simulators, insight is given into spacecraft dynamics, techniques for reducing drift, and methods for streamlining operational procedures. This paper discusses how attitude and momentum drift were reduced for DE-2 by changing spacecraft geometry, altering operational procedures and making timely use of the control modes available. Attempts to correlate spacecraft drift activity with known environmental variables are made with only limited success.

  9. Optimal Control of Renewable Resources Based on the Effective Utilization Rate

    Directory of Open Access Journals (Sweden)

    Rui Wu

    2015-01-01

    Full Text Available The effective utilization rate of exploited renewable resources affects the final total revenue and the further exploitation of renewable resources. Considering the effective utilization rate, we propose an optimal control model for the exploitation of the renewable resources in this study. Firstly, we can prove that the novel model is nonsingular compared with the singular basic model. Secondly, we solve the novel model and obtain the optimal solution by Bang-Bang theory. Furthermore, we can determine the optimal total resources and the maximal total revenue. Finally, a numerical example is provided to verify the obtained theoretical results.

  10. Use of Local Dynamic Electricity Prices for Indirect Control of DER Power Units

    DEFF Research Database (Denmark)

    Nørgård, Per Bromand; Isleifsson, Fridrik Rafn

    2013-01-01

    The regulation capability that may be provided by the individual small-scale distributed energy resources (DER power units) may be insignificant. However, the aggregated response from a large number of DER power units can be significant and thereby provide valuable system services to the power...... wind power, solar power, flexible load and electrical storage. The local power price generation is based on the actual Nord Pool DK2 Spot prices on hourly basis as the quasi-stationary global electricity price, and the local SYSLAB's power exchange with the national grid as basis for the dynamic price...... electricity prices for indirect control of active power. The local, dynamic electricity prices are realised as dynamic adjustments of the quasi-stationary global power price. The aims of the dynamic price adjustments are to prevent overloading of the grid, to reduce the grid power losses and to regulate...

  11. Comprehensive benefit of flood resources utilization through dynamic successive fuzzy evaluation model: A case study

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Taking the flood resources utilization in Baicheng, Jilin during 2002–2007 as the research background, and based on the entropy weight and multi-level & multi-objective fuzzy optimization theory, this research established a multi-level & semi-constructive index system and dynamic successive evaluation model for comprehensive benefit evaluation of regional flood resources utilization. With the year 2002 as the base year, the analyzing results showed that there existed a close positive correlation between flood utilization volume and its benefits, comprehensive evaluation value and its comparison increment. Within the six successive evaluation years, the comprehensive benefit of 2003 was the best, in which the benefit evaluation increment reached 82.8% whereas the year of 2004 was the worst, in which the increment was only 18.2%. Thus the sustainability and correctness of the evaluation were verified by six years successive evaluation and increment comparison. The analyzing results showed that the economic benefits, ecological benefits and social benefits of flood utilization were remarkable, and that the comprehensive benefit could be improved by increasing flood utilization capacity, which would promote the regional sustainable development as well. The established dynamic successive evaluation provides a stable theoretical basis and technical support for further flood utilization.

  12. Nonlinear Dynamics and Control of Flexible Structures

    Science.gov (United States)

    1990-10-10

    control problem is to drive the outputs asymptotically to zero. Since output regulation problem seeks to enforce the set of constraints I hi() = , i = 1...K an m x m constant matrix, solves the output regulation problem if sliding can be achieved. In sliding the equivalent control is, Uq = -B(x)-KAz - B

  13. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  14. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  15. Adaptive prediction model accuracy in the control of residential energy resources

    NARCIS (Netherlands)

    Negenborn, R.R.; Houwing, M.; De Schutter, B.; Hellendoorn, H.

    2008-01-01

    With the increasing use of distributed energy resources and intelligence in the electricity infrastructure, the possibilities for minimizing costs of household energy consumption increase. Technology is moving toward a situation in which automated energy management systems could control domestic

  16. The effects of control of resources on magnitudes of sex differences in human mate preferences.

    Science.gov (United States)

    Moore, Fhionna; Cassidy, Clare; Perrett, David I

    2010-12-03

    We tested the hypothesis that magnitudes of sex differences in human mate preferences would be inversely related to control of resources. Specifically, we predicted that the ideal partner age, maximum and minimum partner ages tolerated and preferences for "physical attractiveness" over "good financial prospects" of female participants would approach parity with that of men with increasing control of resources. In a sample of 3770 participants recruited via an online survey, the magnitudes of sex differences in age preferences increased with resource control whereas the sex difference in preferences for "physical attractiveness" over "good financial prospects" disappeared when resource control was high. Results are inconsistent, and are discussed in the context of adaptive tradeoff and biosocial models of sex differences in human mate preferences.

  17. The Effects of Control of Resources on Magnitudes of Sex Differences in Human Mate Preferences

    Directory of Open Access Journals (Sweden)

    Fhionna Moore

    2010-10-01

    Full Text Available We tested the hypothesis that magnitudes of sex differences in human mate preferences would be inversely related to control of resources. Specifically, we predicted that the ideal partner age, maximum and minimum partner ages tolerated and preferences for “physical attractiveness” over “good financial prospects” of female participants would approach parity with that of men with increasing control of resources. In a sample of 3770 participants recruited via an online survey, the magnitudes of sex differences in age preferences increased with resource control whereas the sex difference in preferences for “physical attractiveness” over “good financial prospects” disappeared when resource control was high. Results are inconsistent, and are discussed in the context of adaptive tradeoff and biosocial models of sex differences in human mate preferences.

  18. Chattering-Free Sliding Mode Control with Unmodeled Dynamics

    Science.gov (United States)

    Krupp, Don; Shtessel, Yuri B.

    1999-01-01

    Sliding mode control systems are valued for their robust accommodation of uncertainties and their ability to reject disturbances. In this paper, a design methodology is proposed to eliminate the chattering phenomenon affecting sliding mode controlled plants with input unmodeled actuator dynamics of second order or greater. The proposed controller design is based on the relative degrees of the plant and the unmodeled actuator dynamics and the ranges of the uncertainties of the plant and actuator. The controller utilizes the pass filter characteristics of the physical actuating device to provide a smoothing effect on the discontinuous control signal rather than introducing any artificial dynamics into the controller design thus eliminating chattering in the system's output response.

  19. Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Luo; Zhi-Hao Zhu; Xin-Ping Guan

    2009-01-01

    In this paper, a robust adaptive fuzzy dynamic surface control for a class of uncertain nonlinear systems is proposed. A novel adaptive fuzzy dynamic surface model is built to approximate the uncertain nonlinear functions by only one fuzzy logic system. The approximation capability of this model is proved and the model is implemented to solve the problem that too many approximators are used in the controller design of uncertain nonlinear systems. The shortage of "explosion of complexity" in backstepping design procedure is overcome by using the proposed dynamic surface control method. It is proved by constructing appropriate Lyapunov candidates that all signals of closed-loop systems are semi-globaily uniformly ultimate bounded. Also, this novel controller stabilizes the states of uncertain nonlinear systems faster than the adaptive sliding mode controller (SMC). Two simulation examples are provided to illustrate the effectiveness of the control approach proposed in this paper.

  20. Nonlinear dynamics and global indeterminacy in an overlapping generations model with environmental resources

    Science.gov (United States)

    Antoci, Angelo; Gori, Luca; Sodini, Mauro

    2016-09-01

    We analyse the dynamics of an economy formed of overlapping generations of individuals whose well-being depends on leisure, consumption of a private good and a free access environmental resource. The production activity of the private good deteriorates the environmental resource. Individuals may defend themselves from environmental degradation by increasing consumption of the private good, which may be perceived as a "substitute" for services provided by the environmental resource. However, the resulting increase in production and consumption of the private good generates a further increase in environmental deterioration leading economic agents to increase production and consumption of the private good itself. This substitution mechanism is clearly self-reinforcing and may fuel an undesirable economic growth process according to which an increase in consumption of the private good - and the resulting increase in Gross Domestic Product - is associated with a reduction in individuals' well-being. The article shows the emergence of several global phenomena, and individuals' expectations about the future evolution of the environmental quality can give rise to (local and global) indeterminacy about the growth path the economy will follow starting from a given initial position.

  1. Dynamical Systems and Control Theory Inspired by Molecular Biology

    Science.gov (United States)

    2014-10-02

    in both bacterial and eukaryotic signaling pathways. A common theme in the systems biology literature is that certain systems whose output variables...AFRL-OSR-VA-TR-2014-0282 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY Eduardo Sontag RUTGERS THE STATE UNIVERSITY OF NEW JERSEY...Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY AFOSR FA9550-11-1-0247

  2. Robustified time-optimal control of uncertain structural dynamic systems

    Science.gov (United States)

    Liu, Qiang; Wie, Bong

    1991-01-01

    A new approach for computing open-loop time-optimal control inputs for uncertain linear dynamical systems is developed. In particular, the single-axis, rest-to-rest maneuvering problem of flexible spacecraft in the presence of uncertainty in model parameters is considered. Robustified time-optimal control inputs are obtained by solving a parameter optimization problem subject to robustness constraints. A simple dynamical system with a rigid-body mode and one flexible mode is used to illustrate the concept.

  3. Dynamic control of the flow of terahertz light

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    Guided propagation of THz light has been intensely developed recently. We describe our efforts towards dynamic, optical control of the flow of light in waveguide structures, enabling reconfigurable photonic components for the terahertz frequency range.......Guided propagation of THz light has been intensely developed recently. We describe our efforts towards dynamic, optical control of the flow of light in waveguide structures, enabling reconfigurable photonic components for the terahertz frequency range....

  4. Smart packet access and call admission control for efficient resource management in advanced wireless networks

    OpenAIRE

    Phan, V. V. (Vinh V.)

    2005-01-01

    Abstract Efficient management of rather limited resources, including radio spectrum and mobile-terminal battery power, has been the fundamental design challenge of wireless networks and one of the most widespread research problems over the years. MAC (Medium Access Control) for packet access and CAC (Call Admission Control) for connection-oriented service domains are commonly used as effective tools to manage radio resources, capacity and performance of wireless networks while providing ad...

  5. Intrinsic dynamics induce global symmetry in network controllability.

    Science.gov (United States)

    Zhao, Chen; Wang, Wen-Xu; Liu, Yang-Yu; Slotine, Jean-Jacques

    2015-02-12

    Controlling complex networked systems to desired states is a key research goal in contemporary science. Despite recent advances in studying the impact of network topology on controllability, a comprehensive understanding of the synergistic effect of network topology and individual dynamics on controllability is still lacking. Here we offer a theoretical study with particular interest in the diversity of dynamic units characterized by different types of individual dynamics. Interestingly, we find a global symmetry accounting for the invariance of controllability with respect to exchanging the densities of any two different types of dynamic units, irrespective of the network topology. The highest controllability arises at the global symmetry point, at which different types of dynamic units are of the same density. The lowest controllability occurs when all self-loops are either completely absent or present with identical weights. These findings further improve our understanding of network controllability and have implications for devising the optimal control of complex networked systems in a wide range of fields.

  6. Handbook of electrical power system dynamics modeling, stability, and control

    CERN Document Server

    Eremia, Mircea

    2013-01-01

    Complete guidance for understanding electrical power system dynamics and blackouts This handbook offers a comprehensive and up-to-date treatment of power system dynamics. Addressing the full range of topics, from the fundamentals to the latest technologies in modeling, stability, and control, Handbook of Electrical Power System Dynamics provides engineers with hands-on guidance for understanding the phenomena leading to blackouts so they can design the most appropriate solutions for a cost-effective and reliable operation. Focusing on system dynamics, the book details

  7. Information and Communications Systems for Control-by-Price of Distributed Energy Resources and Flexible Demand

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob

    2011-01-01

    The control-by-price concept fits well with controlling small-scale generation, storage and demand. In this paper, we investigate the required information and communications systems that are needed to realize the control-by-price concept for such units. We first present a proposal for overall...... distributed energy resources and flexible demand as a regulating resource. Furthermore, the results illustrate and verify the applicability of the concept and the proposed infrastructure for controlling distributed energy resources and flexible demand....... infrastructure and subsystem design and secondly focus on the design and implementation of the end-user price-responsive controller, interfaces, and communications. The design and its applicability on existing devices is verified through laboratory tests with two cases: electric space heating thermostat control...

  8. Fuzzy controller for an uncertain dynamical system

    DEFF Research Database (Denmark)

    Kulczycki, P.; Wisniewski, Rafal

    2002-01-01

    The present paper deals with the time-optimal control for mechanical systems with uncertain load. A fuzzy approach is used in the design of suboptimal feedback controllers, robust with respect to the load. Statistical kernel estimators are used for the specification of crucial parameters. The met......The present paper deals with the time-optimal control for mechanical systems with uncertain load. A fuzzy approach is used in the design of suboptimal feedback controllers, robust with respect to the load. Statistical kernel estimators are used for the specification of crucial parameters....... The methodology proposed in this work may be easily adopted to other modeling uncertainties of mechanical systems, e.g. motion resistance....

  9. Control problems of discrete-time dynamical systems

    CERN Document Server

    Hasegawa, Yasumichi

    2013-01-01

    This monograph deals with control problems of discrete-time dynamical systems which include linear and nonlinear input/output relations. It will be of popular interest to researchers, engineers and graduate students who specialized in system theory. A new method which produces manipulated inputs is presented in the sense of state control and output control. This monograph provides new results and their extensions which can also be more applicable for nonlinear dynamical systems. To present the effectiveness of the method, many numerical examples of control problems are  provided as well.

  10. Resource Form Factor and Installation of GFA Controllers

    Energy Technology Data Exchange (ETDEWEB)

    DeSteese, John G.; Hammerstrom, Donald J.

    2009-11-15

    The focus of this task is to optimize the form and placement of a controller comprising the Grid Friendly™ appliance (GFA) controller, power supply and power relay (and/or a solid-state power electronic switch) that would command a domestic water heater to shed its load in response to stress on the electric power grid. The GFA controller would disconnect the water heater from its supply circuit whenever it senses a low voltage signal or other indicators of system stress communicated via the electric power distribution system. Power would be reconnected to the appliance when the GFA controller senses the absence of these signals. This project has also considered more frequent cycling of this controller’s relay switch to perform demand-side frequency regulation. The principal criteria considered in this optimization are reliability, cost and life expectancy of the GFA components. The alternative embodiments of the GFA equipment under consideration are: Option 1- installation inside the insulation space of the water heater between the tank and jacket Option 2 containment in a separate nearby electrical enclosure Option 3 - as a modification or adjunct to the distribution panel housing and/or the breaker that protects the water heater supply circuit.

  11. Control-Theoretic Formulation of Operating Systems Resource Management Policies.

    Science.gov (United States)

    1978-05-01

    algorithm) controls the transfer of pages from virtual memory (disk or drum) to primary memory, and so on. - - - -- i nt roductlocn Pige 1-3 log in Rqet...the primary memory. Til : situation is called " pige fault". On a page fault, the demanded page is brought in to the core. Space for the incoming page

  12. Space Network Control (SNC) Conference on Resource Allocation Concepts and Approaches. Overview

    Science.gov (United States)

    1991-01-01

    In session 1 of the conference, Concepts for space network resource allocation was the main topic. In session 2, Space Network Control and user payload operations and control center human-computer interface, was the topic of discussion. The topic of session 3 was Resource allocation tools, technology, and algorithms. Some of the stated goals for the conference are as follows: to survey existing resource allocation concepts and approaches; to identify solutions applicable to the SN problem; to identify fruitful avenues of study in support of SNC development; and to capture knowledge in proceedings and make available to bidders on the SNC concept definition procurement.

  13. Controlling chaos in dynamical systems described by maps

    Energy Technology Data Exchange (ETDEWEB)

    Crispin, Y.; Marduel, C. [Embry-Riddle Aeronautical Univ., Daytona Beach, FL (United States)

    1994-12-31

    The problem of suppressing chaotic behavior in dynamical systems is treated using a feedback control method with limited control effort. The proposed method is validated on archetypal systems described by maps, i.e. discrete-time difference equations. The method is also applicable to dynamical systems described by flows, i.e. by systems of ordinary differential equations. Results are presented for the one-dimensional logistic map and for a two-dimensional Lotka-Volterra map describing predator-prey population dynamics. It is shown that chaos can be suppressed and the system stabilized about a period-1 fixed point of the maps.

  14. Controlling the dynamic range of a Josephson parametric amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, Christopher; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)

    2014-12-01

    One of the central challenges in the development of parametric amplifiers is the control of the dynamic range relative to its gain and bandwidth, which typically limits quantum limited amplification to signals which contain only a few photons per inverse bandwidth. Here, we discuss the control of the dynamic range of Josephson parametric amplifiers by using Josephson junction arrays. We discuss gain, bandwidth, noise, and dynamic range properties of both a transmission line and a lumped element based parametric amplifier. Based on these investigations we derive useful design criteria, which may find broad application in the development of practical parametric amplifiers. (orig.)

  15. Dynamic Flow Control Strategies of Vehicle SCR Urea Dosing System

    Institute of Scientific and Technical Information of China (English)

    LIN Wei; ZHANG Youtong; ASIF Malik

    2015-01-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine’s operating conditions. That will lead to low NOX conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between–8%and 10%to–4%and 2%and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms . The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NOX emission remains almost unchanged. The trade-off between NOX conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine’s operating conditions quickly.

  16. Torque-stiffness-controlled dynamic walking with central pattern generators.

    Science.gov (United States)

    Huang, Yan; Vanderborght, Bram; Van Ham, Ronald; Wang, Qining

    2014-12-01

    Walking behavior is modulated by controlling joint torques in most existing passivity-based bipeds. Controlled Passive Walking with adaptable stiffness exhibits controllable natural motions and energy efficient gaits. In this paper, we propose torque-stiffness-controlled dynamic bipedal walking, which extends the concept of Controlled Passive Walking by introducing structured control parameters and a bio-inspired control method with central pattern generators. The proposed walking paradigm is beneficial in clarifying the respective effects of the external actuation and the internal natural dynamics. We present a seven-link biped model to validate the presented walking. Effects of joint torque and joint stiffness on gait selection, walking performance and walking pattern transitions are studied in simulations. The work in this paper develops a new solution of motion control of bipedal robots with adaptable stiffness and provides insights of efficient and sophisticated walking gaits of humans.

  17. A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,an adaptive dynamic control scheme based on a fuzzy neural network is presented,that presents utilizes both feed-forward and feedback controller elements.The former of the two elements comprises a neural network with both identification and control role,and the latter is a fuzzy neural algorithm,which is introduced to provide additional control enhancement.The feedforward controller provides only coarse control,whereas the feedback oontroller can generate on-line conditional proposition rule automatically to improve the overall control action.These properties make the design very versatile and applicable to a range of industrial applications.

  18. Dynamics and control of trajectory tubes theory and computation

    CERN Document Server

    Kurzhanski, Alexander B

    2014-01-01

    This monograph presents theoretical methods involving the Hamilton–Jacobi–Bellman formalism in conjunction with set-valued techniques of nonlinear analysis to solve significant problems in dynamics and control. The emphasis is on issues of reachability, feedback control  synthesis under complex state constraints, hard or double bounds on controls, and performance in finite time. Guaranteed state estimation, output feedback control, and hybrid dynamics are also discussed. Although the focus is on systems with linear structure, the authors indicate how to apply each approach to nonlinear and nonconvex systems. The main theoretical results lead to computational schemes based on extensions of ellipsoidal calculus that provide complete solutions to the problems. These computational schemes in turn yield software tools that can be applied effectively to high-dimensional systems. Dynamics and Control of Trajectory Tubes: Theory and Computation will interest graduate and senior undergraduate students, as well as...

  19. Complex systems and networks dynamics, controls and applications

    CERN Document Server

    Yu, Xinghuo; Chen, Guanrong; Yu, Wenwu

    2016-01-01

    This elementary book provides some state-of-the-art research results on broad disciplinary sciences on complex networks. It presents an in-depth study with detailed description of dynamics, controls and applications of complex networks. The contents of this book can be summarized as follows. First, the dynamics of complex networks, for example, the cluster dynamic analysis by using kernel spectral methods, community detection algorithms in bipartite networks, epidemiological modeling with demographics and epidemic spreading on multi-layer networks, are studied. Second, the controls of complex networks are investigated including topics like distributed finite-time cooperative control of multi-agent systems by applying homogenous-degree and Lyapunov methods, composite finite-time containment control for disturbed second-order multi-agent systems, fractional-order observer design of multi-agent systems, chaos control and anticontrol of complex systems via Parrondos game and many more. Third, the applications of ...

  20. Yaw control for active damping of structural dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, T. [Chalmers Univ. of Technology, Goeteborg (Sweden). Control Engineering Lab.

    1996-12-01

    Yaw torque control for reduction of structural dynamic loads in a two-bladed wind turbine is investigated. The models are obtained using rigid-body mechanics. Linear quadratic control theory is utilized for design and analysis. The analysis of two simple examples, where the teeter angle and the tower lateral bending motion are regarded, shows that a time-varying controller has some advantages compared with a time-invariant controller. 6 refs, 9 figs

  1. Nonlineat observer-controller design for dynamic positioning of ships

    Institute of Scientific and Technical Information of China (English)

    何黎明; 田作华; 施颂椒

    2004-01-01

    The main focus is nonlinear model-based dynamic positioning (DP) control system design. A nonlinear uniform global exponential stability (UGES) observer produces noise-free estimates of the position, the slowly varying environmental disturbances and the velocity, which are used in a proportional-derivative (PD) + feedforward control law. The stability of this observer-controller system is proved by introducing a specific nonlinear cascaded system. The simulation results have successfully demonstrated the performance of designed DP control system.

  2. Control uncertain continuous-time chaotic dynamical system

    Institute of Scientific and Technical Information of China (English)

    齐冬莲; 赵光宙

    2003-01-01

    The new chaos control method presented in this paper is useful for taking advantage of chaos. Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaotic system, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' parameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.

  3. Control uncertain continuous-time chaotic dynamical system.

    Science.gov (United States)

    Qi, Dong-Lian; Zhao, Guang-Zhou

    2003-01-01

    The new chaos control method presented in this paper is useful for taking advantage of chaos. Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaotic system, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' parameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.

  4. Dynamics and Controls of a Conceptual Jovian Moon Tour Spacecraft

    Science.gov (United States)

    Quadrelli, Marco B.; Mettler, Edward; Langmaier, Jerry K.

    2004-01-01

    The dynamics and control challenges presented by a conceptual Jovian Moon Tour spacecraft are summarized in this paper. Attitude and orbital dynamics interactions are present due to the designed low-thrust trajectory, and controls structure interactions are also present due to the non-collocated sensor-actuator pairs on board the flexible spacecraft. A finite-element based simulation model is described which is capable of handling the complex orbital and attitude dynamics arising during the low-thrust spiraling maneuvers of the spacecraft. A few numerical simulations demonstrate that some of the challenges hitherto identified can be faced via integrated dynamics and control analysis, and that reasonable assessments of the pointing performance can be made.

  5. Dedicated EGR engine with dynamic load control

    Science.gov (United States)

    Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.

    2016-09-06

    An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.

  6. Attitude Dynamics and Control of Solar Sails

    Science.gov (United States)

    Sperber, Evan

    Solar sails are space vehicles that rely on solar radiation pressure in order to generate forces for thrust and attitude control torques. They exhibit characteristics such as large moments of inertia, fragility of various system components, and long mission durations that make attitude control a particularly difficult engineering problem. Thrust vector control (TVC) is a family of sailcraft attitude control techniques that is on a short list of strategies thought to be suitable for the primary attitude control of solar sails. Every sailcraft TVC device functions by manipulating the relative locations of the composite mass center (cm) of the sailcraft and the center of pressure (cp) of at least one of its reflectors. Relative displacement of these two points results in body torques that can be used to steer the sailcraft. This dissertation presents a strategy for the large-angle reorientation of a sailcraft using TVC. Two forms of TVC, namely the panel and ballast mass translation methods are well represented in the literature, while rigorous studies regarding a third form, gimballed mass rotation, are conspicuously absent. The gimballed mass method is physically realized by placing a ballast mass, commonly the sailcraft's scientific payload, at the tip of a gimballed boom that has its base fixed at some point on the sailcraft. A TVC algorithm will then strategically manipulate the payload boom's gimbal angles, thereby changing the projection of the sailcraft cm in the plane of the sail. This research demonstrates effective three-axis attitude control of a model sailcraft using numerical simulation of its nonlinear equations of motion. The particular TVC algorithm developed herein involves two phases---the first phase selects appropriate gimbal rates with the objective that the sailcraft be placed in the neighborhood of its target orientation. It was discovered, however that concomitantly minimizing attitude error as well as residual body rate was not possible using

  7. Solar Dynamic Power System Stability Analysis and Control

    Science.gov (United States)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  8. OPTIMAL DYNAMICAL BALANCE HARVESTING FOR A CLASS OF RENEWABLE RESOURCES SYSTEM

    Institute of Scientific and Technical Information of China (English)

    何泽荣; 王绵森; 王峰

    2004-01-01

    An optimal utilization problem for a class of renewable resources system is investigated. Firstly, a control problem was proposed by introducing a new utility function which depends on the harvesting effort and the stock of resources.Secondly, the existence of optimal solution for the problem was discussed. Then, using a maximum principle for infinite horizon problem, a nonlinear four-dimensional differential equations system was attained. After a detailed analysis of the unique positive equilibrium solution, the existence of limit cycles for the system is demonstrated. Next a reduced system on the central manifold is carefully derived, which assures the stability of limit cycles. Finally significance of the results in bioeconomics is explained.

  9. Control of Orbit and Control of Chaos in a Class of Dynamic System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The problem of control of orbit for the dynamic system ~ + x ( 1 -x ) ( x - a ) = 0 is discussed. Any unbounded orbit of the dynamic system can be controlled to become a bounded periodic orbit by adding a periodic stepexcitation to the system. By using a nonlinear feedback control law presented in this paper the chaos of the dynamicsystem with excitation and damping is stabilized. This method is more effectual than the linear feedback control

  10. Forced dynamic position control of PMSM with DTC utilization

    Science.gov (United States)

    Malek, Michal

    2012-11-01

    Almost one and a half century after the publication of Maxwell’s On Governors, feedback theory with PID controllers in cascade structure is still an essential part of control structures of most controlled electric drives. There are a few control strategies which are “ready” to replace it but they usually miss one of the essential fundamentals of every successful approach - simplicity hand in hand with lucidity. But there is one close relative which is simple and powerful at the same time, is not excessively abstract and without complicated mathematics. The name of this technique is Forced Dynamic Control. In this paper forced dynamic control is presented together with direct torque controlled PMSM drive as unique combination of simple algorithms for inner and outer loop of cascade structure.

  11. Entanglement dynamics in the presence of controlled unital noise.

    Science.gov (United States)

    Shaham, A; Halevy, A; Dovrat, L; Megidish, E; Eisenberg, H S

    2015-06-10

    Quantum entanglement is notorious for being a very fragile resource. Significant efforts have been put into the study of entanglement degradation in the presence of a realistic noisy environment. Here, we present a theoretical and an experimental study of the decoherence properties of entangled pairs of qubits. The entanglement dynamics of maximally entangled qubit pairs is shown to be related in a simple way to the noise representation in the Bloch sphere picture. We derive the entanglement level in the case when both qubits of a Bell state are transmitted through any arbitrary unital Pauli channel, and compare it to the case when the channel is applied only to one of the qubits. The dynamics of both cases was verified experimentally using an all-optical setup. We further investigated the evolution of partially entangled initial states. Different dynamics was observed for initial mixed and pure states of the same entanglement level.

  12. Study of Multimedia Streams Dynamic Rate Control Based on Fuzzy Adaptive PID

    Institute of Scientific and Technical Information of China (English)

    SUN Yan-fei; ZHANG Shun-yi; SHI Jin; WANG Jiang-tao

    2005-01-01

    A Multimedia streams dynamic rate control algorithm based on Fuzzy adaptive PID (MFPID) has been proposed to implement multimedia streams' end sending rate on-line self-regulating and smoothing, and to track system resources in time, so that it can avoid system's regulating oscillation and guarantee system's stability. And, some work has been done to analyze adaptive session model of multimedia streams, to implement future available bandwidth estimation of IP network, to achieve PID parameters' on-line self-tuning by fuzzy controlling. Simulation validated the theoretical results of MFPID.

  13. Secure Dynamic access control scheme of PHR in cloud computing.

    Science.gov (United States)

    Chen, Tzer-Shyong; Liu, Chia-Hui; Chen, Tzer-Long; Chen, Chin-Sheng; Bau, Jian-Guo; Lin, Tzu-Ching

    2012-12-01

    With the development of information technology and medical technology, medical information has been developed from traditional paper records into electronic medical records, which have now been widely applied. The new-style medical information exchange system "personal health records (PHR)" is gradually developed. PHR is a kind of health records maintained and recorded by individuals. An ideal personal health record could integrate personal medical information from different sources and provide complete and correct personal health and medical summary through the Internet or portable media under the requirements of security and privacy. A lot of personal health records are being utilized. The patient-centered PHR information exchange system allows the public autonomously maintain and manage personal health records. Such management is convenient for storing, accessing, and sharing personal medical records. With the emergence of Cloud computing, PHR service has been transferred to storing data into Cloud servers that the resources could be flexibly utilized and the operation cost can be reduced. Nevertheless, patients would face privacy problem when storing PHR data into Cloud. Besides, it requires a secure protection scheme to encrypt the medical records of each patient for storing PHR into Cloud server. In the encryption process, it would be a challenge to achieve accurately accessing to medical records and corresponding to flexibility and efficiency. A new PHR access control scheme under Cloud computing environments is proposed in this study. With Lagrange interpolation polynomial to establish a secure and effective PHR information access scheme, it allows to accurately access to PHR with security and is suitable for enormous multi-users. Moreover, this scheme also dynamically supports multi-users in Cloud computing environments with personal privacy and offers legal authorities to access to PHR. From security and effectiveness analyses, the proposed PHR access

  14. Optimal control methods for controlling bacterial populations with persister dynamics

    Science.gov (United States)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  15. Understanding the dynamical control of animal movement

    Science.gov (United States)

    Edwards, Donald

    2008-03-01

    Over the last 50 years, neurophysiologists have described many neural circuits that transform sensory input into motor commands, while biomechanicians and behavioral biologists have described many patterns of animal movement that occur in response to sensory input. Attempts to link these two have been frustrated by our technical inability to record from the necessary neurons in a freely behaving animal. As a result, we don't know how these neural circuits function in the closed loop context of free behavior, where the sensory and motor context changes on a millisecond time-scale. To address this problem, we have developed a software package, AnimatLab (www.AnimatLab.com), that enables users to reconstruct an animal's body and its relevant neural circuits, to link them at the sensory and motor ends, and through simulation, to test their ability to reproduce appropriate patterns of the animal's movements in a simulated Newtonian world. A Windows-based program, AnimatLab consists of a neural editor, a body editor, a world editor, stimulus and recording facilities, neural and physics engines, and an interactive 3-D graphical display. We have used AnimatLab to study three patterns of behavior: the grasshopper jump, crayfish escape, and crayfish leg movements used in postural control, walking, reaching and grasping. In each instance, the simulation helped identify constraints on both nervous function and biomechanical performance that have provided the basis for new experiments. Colleagues elsewhere have begun to use AnimatLab to study control of paw movements in cats and postural control in humans. We have also used AnimatLab simulations to guide the development of an autonomous hexapod robot in which the neural control circuitry is downloaded to the robot from the test computer.

  16. Preschool Power Play: Resource Control Strategies Associated with Health

    Directory of Open Access Journals (Sweden)

    Amber R. Massey

    2014-01-01

    Full Text Available Background. This exploratory study uses a multimethod approach to examine the relationship between social strategy usage and overall health in preschool children. Methods. Children's temperament, social strategies, and health assessments were obtained via reported behavior from parents and teachers. In addition, children's use of prosocial and coercive strategies was observed and recorded via one-way windows in the preschool facility. Results. Results revealed that the temperament characteristic of effortful control was related to the observed use of coercive strategies and that coercive strategies were not observed by teachers, who viewed these children as primarily prosocial. The reported use of both coercive and prosocial strategies was also related to decrease in illness. Conclusion. These findings in relation to previous work suggest that using both prosocial and coercive strategies can elevate status as well as maintain health even in young children.

  17. Dynamic consistency for Stochastic Optimal Control problems

    CERN Document Server

    Carpentier, Pierre; Cohen, Guy; De Lara, Michel; Girardeau, Pierre

    2010-01-01

    For a sequence of dynamic optimization problems, we aim at discussing a notion of consistency over time. This notion can be informally introduced as follows. At the very first time step $t_0$, the decision maker formulates an optimization problem that yields optimal decision rules for all the forthcoming time step $t_0, t_1, ..., T$; at the next time step $t_1$, he is able to formulate a new optimization problem starting at time $t_1$ that yields a new sequence of optimal decision rules. This process can be continued until final time $T$ is reached. A family of optimization problems formulated in this way is said to be time consistent if the optimal strategies obtained when solving the original problem remain optimal for all subsequent problems. The notion of time consistency, well-known in the field of Economics, has been recently introduced in the context of risk measures, notably by Artzner et al. (2007) and studied in the Stochastic Programming framework by Shapiro (2009) and for Markov Decision Processes...

  18. Descending corticospinal control of intersegmental dynamics.

    Science.gov (United States)

    Gritsenko, Valeriya; Kalaska, John F; Cisek, Paul

    2011-08-17

    To make an accurate movement, the CNS has to overcome the inherent complexities of the multijoint limb. For example, interaction torques arise when motion of individual arm segments propagates to adjacent segments causing their movement without any muscle contractions. Since these passive joint torques significantly add to the overall torques generated by active muscular contractions, they must be taken into account during planning or execution of goal-directed movements. We investigated the role of the corticospinal tract in compensating for the interaction torques during arm movements in humans. Twelve subjects reached to visual targets with their arm supported by a robotic exoskeleton. Reaching to one target was accompanied by interaction torques that assisted the movement, while reaching to the other target was accompanied by interaction torques that resisted the movement. Corticospinal excitability was assessed at different times during movement using single-pulse transcranial magnetic stimulation (TMS) over the upper-arm region of M1 (primary motor cortex). We found that TMS responses in shoulder monoarticular and elbow-shoulder biarticular muscles changed together with the interaction torques during movements in which the interaction torques were resistive. In contrast, TMS responses did not correlate with assistive interaction torques or with co-contraction. This suggests that the descending motor command includes compensation for passive limb dynamics. Furthermore, our results suggest that compensation for interaction torques involves the biarticular muscles, which span both shoulder and elbow joints and are in a biomechanically advantageous position to provide such compensation.

  19. Dynamics and control of a class of underactuated mechanical systems

    NARCIS (Netherlands)

    Reyhanoglu, Mahmut; Schaft, van der Arjan; McClamroch, N. Harris; Kolmanovsky, Ilya

    1999-01-01

    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized b

  20. Dynamics and Control of a Class of Underactuated Mechanical Systems

    NARCIS (Netherlands)

    Reyhanoglu, Mahmut; Schaft, Arjan van der; McClamroch, N. Harris; Kolmanovsky, Ilya

    1999-01-01

    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized b

  1. Study of optimal control problems for hybrid dynamical systems

    Institute of Scientific and Technical Information of China (English)

    Gao Rui; Wang Lei; Wang Yuzhen

    2006-01-01

    From the viewpoint of continuous systems, optimal control problem is proposed for a class of controlled Hybrid dynamical systems. Then a mathematical method- HDS minimum principle is put forward, which can solve the above problem. The HDS minimum principle is proved by means of Ekeland's variational principle.

  2. Dynamic modelling and process control of ZnS precipitation

    NARCIS (Netherlands)

    König, J.; Keesman, K.J.; Veeken, A.H.M.; Lens, P.N.L.

    2006-01-01

    This paper presents the dynamic modelling and design of a control strategy for the ZnS precipitation process. During lab¿scale experiments, the sulfide concentration in a precipitator was controlled at a prespecified pS value by manipulating the flow from a buffer vessel. Batch tests showed that the

  3. Modeling and Dynamical Analysis of the Water Resources Supply-Demand System: A Case Study in Haihe River Basin

    Directory of Open Access Journals (Sweden)

    Chongli Di

    2014-01-01

    Full Text Available The relationship between water resources supply and demand is very complex and exhibits nonlinear characteristics, which leads to fewer models that can adequately manage the dynamic evolution process of the water resources supply-demand system. In this paper, we propose a new four-dimensional dynamical model to simulate the internal dynamic evolution process and predict future trends of water supply and demand. At the beginning, a new four-dimensional dynamical model with uncertain parameters is established. Then, the gray code hybrid accelerating genetic algorithm (GHAGA is adopted to identify the unknown parameters of the system based on the statistic data (1998–2009. Finally, the dynamical analysis of the system is further studied by Lyapunov-exponent, phase portraits, and Lyapunov exponent theory. Numerical simulation results demonstrate that the proposed water resources supply-demand system is in a steady state and is suitable for simulating the dynamical characteristics of a complex water supply and demand system. According to the trends of the water supply and demand of several nonlinear simulation cases, the corresponding measures can be proposed to improve the steady development of the water resources supply-demand system.

  4. On the control of opinion dynamics in social networks

    Science.gov (United States)

    Liu, Zhihong; Ma, Jianfeng; Zeng, Yong; Yang, Li; Huang, Qiping; Wu, Hongliang

    2014-09-01

    This paper presents a framework to analyze the controllability of opinion dynamics in social networks using DeGroot model (DeGroot, 1974). We show how the opinion, or attitude about some common questions of interest in a population can be controlled by a committed node who consistently proselytizes the opposing opinion and is immune to influence. Some criteria are established to guarantee that opinion dynamics of networks can be perfectly or partially controlled. We also find that the opinion fluctuation is determined by the smallest negative eigenvalue of an influence matrix.

  5. On the minimax feedback control of uncertain dynamic systems.

    Science.gov (United States)

    Bertsekas, D. P.; Rhodes, I. B.

    1971-01-01

    In this paper the problem of optimal feedback control of uncertain discrete-time dynamic systems is considered where the uncertain quantities do not have a stochastic description but instead are known to belong to given sets. The problem is converted to a sequential minimax problem and dynamic programming is suggested as a general method for its solution. The notion of a sufficiently informative function, which parallels the notion of a sufficient statistic of stochastic optimal control, is introduced, and conditions under which the optimal controller decomposes into an estimator and an actuator are identified.

  6. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  7. Pulse Control Assisted Dynamical Decoupling in a Central Spin Model

    Science.gov (United States)

    Li, Zhao-Yan; Wei, Yong-Bo; Wang, Zhao-Ming; Gu, Yong-Jian; Li, Wen-Dong; Ma, Xiao-Ping

    2017-02-01

    We study pulse control assisted dynamical decoupling through a central spin model in a total Hilbert space. We find that the effective decoupling can be realized by applying a sequence of external pulses. Compared with the bang-bang control which needs infinite strength and infinitesimal short pulses, we show that there is a large parameter space that allows an effective nonperturbative dynamical control. Furthermore, our numerical calculation shows that the reliability can be held for random pulses, such as random pulse time interval or random strength.

  8. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  9. Dual adaptive dynamic control of mobile robots using neural networks.

    Science.gov (United States)

    Bugeja, Marvin K; Fabri, Simon G; Camilleri, Liberato

    2009-02-01

    This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

  10. Positive explorers: modeling dynamic control in normal aging.

    Science.gov (United States)

    Glass, Brian D; Osman, Magda

    2017-01-01

    Situations in which there are multiple changes occurring all at once and which demand complex decisions to be made are common throughout life, but little is known about how normal aging influences performance on these types of scenarios. To determine performance differences associated with normal aging, we test older and younger adults in a dynamic control task. The task involves the control of a single output variable over time via multiple and uncertain input controls. The Single Limited Input, Dynamic Exploratory Responses (SLIDER) computational model, is implemented to determine the behavioral characteristics associated with normal aging in a dynamic control task. Model-based analysis demonstrates a unique performance signature profile associated with normal aging. Specifically, older adults exhibit a positivity effect in which they are more influenced by positively valenced feedback, congruent with previous research, as well as enhanced exploratory behavior.

  11. Position Control of Linear Synchronous Motor Drives with Exploitation of Forced Dynamics Control Principles

    Directory of Open Access Journals (Sweden)

    Jan Vittek

    2004-01-01

    Full Text Available Closed-loop position control of mechanisms directly driven by linear synchronous motors with permanent magnets is presented. The control strategy is based on forced dynamic control, which is a form of feedback linearisation, yielding a non-liner multivariable control law to obtain a prescribed linear speed dynamics together with the vector control condition of mutal orthogonality between the stator current and magnetic flux vectors (assuming perfect estimates of the plant parameters. Outer position control loop is closed via simple feedback with proportional gain. Simulations of the design control sysstem, including the drive with power electronic switching, predict the intended drive performance.

  12. Modelling and Simulation Methodology for Dynamic Resources Assignment System in Container Terminal

    Directory of Open Access Journals (Sweden)

    Lu Bo

    2016-10-01

    Full Text Available As the competition among international container terminals has become increasingly fierce, every port is striving to maintain the competitive edge and provide satisfactory services to port users. By virtue of information technology enhancement, many efforts to raise port competitiveness through an advanced operation system are actively being made, and judging from the viewpoint of investment effect, these efforts are more preferable than infrastructure expansion and additional equipment acquisition. Based on simulation, this study has tried to prove that RFID-based real-time location system (RTLS data collection and dynamic operation of transfer equipment brings a positive effect on the productivity improvement and resource utilization enhancement. Moreover, this study on the demand for the real-time data for container terminal operation have been made, and operation processes have been redesigned along with the collection of related data, and based on them, simulations have been conducted. As a result of them, much higher productivity improvement could be expected.

  13. Chronic inhibition, self-control and eating behavior: test of a 'resource depletion' model.

    Science.gov (United States)

    Hagger, Martin S; Panetta, Giulia; Leung, Chung-Ming; Wong, Ging Ging; Wang, John C K; Chan, Derwin K C; Keatley, David A; Chatzisarantis, Nikos L D

    2013-01-01

    The current research tested the hypothesis that individuals engaged in long-term efforts to limit food intake (e.g., individuals with high eating restraint) would have reduced capacity to regulate eating when self-control resources are limited. In the current research, body mass index (BMI) was used as a proxy for eating restraint based on the assumption that individuals with high BMI would have elevated levels of chronic eating restraint. A preliminary study (Study 1) aimed to provide evidence for the assumed relationship between eating restraint and BMI. Participants (N = 72) categorized into high or normal-range BMI groups completed the eating restraint scale. Consistent with the hypothesis, results revealed significantly higher scores on the weight fluctuation and concern for dieting subscales of the restraint scale among participants in the high BMI group compared to the normal-range BMI group. The main study (Study 2) aimed to test the hypothesized interactive effect of BMI and diminished self-control resources on eating behavior. Participants (N = 83) classified as having high or normal-range BMI were randomly allocated to receive a challenging counting task that depleted self-control resources (ego-depletion condition) or a non-depleting control task (no depletion condition). Participants then engaged in a second task in which required tasting and rating tempting cookies and candies. Amount of food consumed during the taste-and-rate task constituted the behavioral dependent measure. Regression analyses revealed a significant interaction effect of these variables on amount of food eaten in the taste-and-rate task. Individuals with high BMI had reduced capacity to regulate eating under conditions of self-control resource depletion as predicted. The interactive effects of BMI and self-control resource depletion on eating behavior were independent of trait self-control. Results extend knowledge of the role of self-control in regulating eating behavior and

  14. Potential International Approaches to Ownership/Control of Human Genetic Resources.

    Science.gov (United States)

    Rhodes, Catherine

    2016-09-01

    In its governance activities for genetic resources, the international community has adopted various approaches to their ownership, including: free access; common heritage of mankind; intellectual property rights; and state sovereign rights. They have also created systems which combine elements of these approaches. While governance of plant and animal genetic resources is well-established internationally, there has not yet been a clear approach selected for human genetic resources. Based on assessment of the goals which international governance of human genetic resources ought to serve, and the implications for how they will be accessed and utilised, it is argued that common heritage of mankind will be the most appropriate approach to adopt to their ownership/control. It does this with the aim of stimulating discussion in this area and providing a starting point for deeper consideration of how a common heritage of mankind, or similar, regime for human genetic resources would function and be implemented.

  15. Maximal entanglement achievable by controlled dynamics

    CERN Document Server

    Serafini, Alessio

    2009-01-01

    We consider the feedback control of quantum systems comprised of any number of bosonic degrees of freedom. We derive a general upper bound for the logarithmic negativity achievable, at steady state, with continuous Gaussian measurements on the environment and linear driving on the system. Our results apply to rotating wave system-bath couplings and to any quadratic system's Hamiltonian. Furthermore, we apply this upper bound to parametric processes, show it to be tight, and compare it to feedback strategies limited to local measurements.

  16. Information quality and dynamics of patients' interactions on tonsillectomy web resources

    Directory of Open Access Journals (Sweden)

    Marianne Arsenault

    2016-05-01

    Full Text Available Information technologies have drastically altered the way patients gather health-related information. By analysing web resources on tonsillectomy, we expose information quality and dynamics of patients' interactions in the online continuum. Readability was assessed using Flesch Reading Ease (FRE, Flesch Kincaid Grade Level (FKGL, Simple Measure of Gobbledygook (SMOG, and Gunning Fog Index (GFI. Comprehensibility and actionability were assessed using the Patient Education Materials Assessment Tool (PEMAT. Metrics of forums included author characteristics (level of disclosure, gender, age, avatar image, etc., posts' motive (community support vs. medical information and content (word count, emoticon use, number of replies, etc.. Analysis of 6 professional medical websites, of 10 health information portals, and of 3 discussion forums totalizing 1369 posts on 358 threads, from January 1, 2007 to December 31, 2014, reveals that online resources exceed understandability recommendations. Women were more present on online health forums (68.2% of authors disclosing their gender and invested themselves more in their avatar. Authors replying were significantly older than authors of original posts (39.7 ± 0.8 years vs. 29.2 ± 0.9 years, p < 0.001. The degree of self-disclosure was inversely proportional to the requests for medical information (p < 0.001. Men and women were equally seeking medical information (men: 74.0%, women: 77.0% and community support (men: 65.7%, women: 70.4%, however women responded more supportively (women 86.2%, men 59.1%, p < 0.001. The dynamics of patients' interactions used to overcome accessibility difficulties encountered is complex. This work outlines the necessity for comprehensible medical information to adequately answer patients' needs.

  17. On the quasi-controllability of continuous-time dynamic fuzzy control systems

    Energy Technology Data Exchange (ETDEWEB)

    Feng Yuhu [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)]. E-mail: yhfeng@dhu.edu.cn; Hu Liangjian [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)

    2006-10-15

    This paper gives the controllability analysis of continuous-time dynamic fuzzy control system from the aspect of fuzzy differential equations. The fuzzy state is different from the crisp state, as the counterpart of the controllability concept in the classical control theory, the controllable target state must be restricted within some limits. Hence, the concepts of admissible controllable state subset and quasi-controllability are introduced to describe the controllability property for fuzzy control system. The sufficient and necessary conditions for the fuzzy control system to be quasi-controllable are obtained and some examples are given to demonstrate the problems discussed in this paper.

  18. Novel coupling scheme to control dynamics of coupled discrete systems

    Science.gov (United States)

    Shekatkar, Snehal M.; Ambika, G.

    2015-08-01

    We present a new coupling scheme to control spatio-temporal patterns and chimeras on 1-d and 2-d lattices and random networks of discrete dynamical systems. The scheme involves coupling with an external lattice or network of damped systems. When the system network and external network are set in a feedback loop, the system network can be controlled to a homogeneous steady state or synchronized periodic state with suppression of the chaotic dynamics of the individual units. The control scheme has the advantage that its design does not require any prior information about the system dynamics or its parameters and works effectively for a range of parameters of the control network. We analyze the stability of the controlled steady state or amplitude death state of lattices using the theory of circulant matrices and Routh-Hurwitz criterion for discrete systems and this helps to isolate regions of effective control in the relevant parameter planes. The conditions thus obtained are found to agree well with those obtained from direct numerical simulations in the specific context of lattices with logistic map and Henon map as on-site system dynamics. We show how chimera states developed in an experimentally realizable 2-d lattice can be controlled using this scheme. We propose this mechanism can provide a phenomenological model for the control of spatio-temporal patterns in coupled neurons due to non-synaptic coupling with the extra cellular medium. We extend the control scheme to regulate dynamics on random networks and adapt the master stability function method to analyze the stability of the controlled state for various topologies and coupling strengths.

  19. Adaptive Dynamic Programming for Control Algorithms and Stability

    CERN Document Server

    Zhang, Huaguang; Luo, Yanhong; Wang, Ding

    2013-01-01

    There are many methods of stable controller design for nonlinear systems. In seeking to go beyond the minimum requirement of stability, Adaptive Dynamic Programming for Control approaches the challenging topic of optimal control for nonlinear systems using the tools of  adaptive dynamic programming (ADP). The range of systems treated is extensive; affine, switched, singularly perturbed and time-delay nonlinear systems are discussed as are the uses of neural networks and techniques of value and policy iteration. The text features three main aspects of ADP in which the methods proposed for stabilization and for tracking and games benefit from the incorporation of optimal control methods: • infinite-horizon control for which the difficulty of solving partial differential Hamilton–Jacobi–Bellman equations directly is overcome, and  proof provided that the iterative value function updating sequence converges to the infimum of all the value functions obtained by admissible control law sequences; • finite-...

  20. Conditions for global dynamic stability of a class of resource-bounded model ecosystems.

    Science.gov (United States)

    Seymour, Robert M; Knight, Gwenan; Fung, Tak

    2010-11-01

    This paper studies a class of dynamical systems that model multi-species ecosystems. These systems are 'resource bounded' in the sense that species compete to utilize an underlying limiting resource or substrate. This boundedness means that the relevant state space can be reduced to a simplex, with coordinates representing the proportions of substrate utilized by the various species. If the vector field is inward pointing on the boundary of the simplex, the state space is forward invariant under the system flow, a requirement that can be interpreted as the presence of non-zero exogenous recruitment. We consider conditions under which these model systems have a unique interior equilibrium that is globally asymptotically stable. The systems we consider generalize classical multi-species Lotka-Volterra systems, the behaviour of which is characterized by properties of the community (or interaction) matrix. However, the more general systems considered here are not characterized by a single matrix, but rather a family of matrices. We develop a set of 'explicit conditions' on the basis of a notion of 'uniform diagonal dominance' for such a family of matrices, that allows us to extract a set of sufficient conditions for global asymptotic stability based on properties of a single, derived matrix. Examples of these explicit conditions are discussed.

  1. A methodology for determining the dynamic exchange of resources in nuclear fuel cycle simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gidden, Matthew J., E-mail: gidden@iiasa.ac.at [International Institute for Applied Systems Analysis, Schlossplatz 1, A-2361 Laxenburg (Austria); University of Wisconsin – Madison, Department of Nuclear Engineering and Engineering Physics, Madison, WI 53706 (United States); Wilson, Paul P.H. [University of Wisconsin – Madison, Department of Nuclear Engineering and Engineering Physics, Madison, WI 53706 (United States)

    2016-12-15

    Highlights: • A novel fuel cycle simulation entity interaction mechanism is proposed. • A framework and implementation of the mechanism is described. • New facility outage and regional interaction scenario studies are described and analyzed. - Abstract: Simulation of the nuclear fuel cycle can be performed using a wide range of techniques and methodologies. Past efforts have focused on specific fuel cycles or reactor technologies. The CYCLUS fuel cycle simulator seeks to separate the design of the simulation from the fuel cycle or technologies of interest. In order to support this separation, a robust supply–demand communication and solution framework is required. Accordingly an agent-based supply-chain framework, the Dynamic Resource Exchange (DRE), has been designed implemented in CYCLUS. It supports the communication of complex resources, namely isotopic compositions of nuclear fuel, between fuel cycle facilities and their managers (e.g., institutions and regions). Instances of supply and demand are defined as an optimization problem and solved for each timestep. Importantly, the DRE allows each agent in the simulation to independently indicate preference for specific trading options in order to meet both physics requirements and satisfy constraints imposed by potential socio-political models. To display the variety of possible simulations that the DRE enables, example scenarios are formulated and described. Important features include key fuel-cycle facility outages, introduction of external recycled fuel sources (similar to the current mixed oxide (MOX) fuel fabrication facility in the United States), and nontrivial interactions between fuel cycles existing in different regions.

  2. Adolescent Resource Control: Associations with Physical and Relational Aggression, Prosocial and Withdrawn Behaviors, and Peer Regard

    Science.gov (United States)

    Findley, Danielle; Ojanen, Tiina

    2013-01-01

    This study examined adolescent coercive and prosocial resource control strategies in relation to various indices of peer-reported behaviors and peer regard ("N" = 384; 12-14 years). Coercive control was uniquely positively related to physical and relational aggression and peer disliking, and negatively to prosocial behaviors when…

  3. Adolescent Resource Control: Associations with Physical and Relational Aggression, Prosocial and Withdrawn Behaviors, and Peer Regard

    Science.gov (United States)

    Findley, Danielle; Ojanen, Tiina

    2013-01-01

    This study examined adolescent coercive and prosocial resource control strategies in relation to various indices of peer-reported behaviors and peer regard ("N" = 384; 12-14 years). Coercive control was uniquely positively related to physical and relational aggression and peer disliking, and negatively to prosocial behaviors when…

  4. Joint Resource Allocation and Admission Control Mechanism for an OFDMA-Based System

    DEFF Research Database (Denmark)

    Meucci, Filippo; Mihovska, Albena D.; Anggorojati, Bayu;

    2008-01-01

    This paper describes a Call Admission Control (CAC) mechanism that adapts the type of admitted users based on a proposed resource allocation strategy that responds to changes in the channel conditions. The admission control decides to admit new services according to the load of the cell and based...

  5. Feasibility of Applying Controllable Lubrication to Dynamically Loaded Journal Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    A multibody dynamic model of the main mechanical components of a hermetic reciprocating compressor is presented in this work. Considering that some of the mechanical elements are interconnected via thin fluid films, the multibody dynamic model is coupled to the equations from the dynamics...... levels, wear and power losses of the system components. From the point of view of actively controlled lubrication and specifically for the case of dynamically loaded journal bearings, the injection pressure should be controlled in time domain. However, taking into account that the gas pressure...... and reaction forces in a reciprocating compressor have a cyclic behavior, periodic oil pressure injection rules based on the instantaneous crank angle and load bearing condition can be established. In this paper, several bearing configurations working under different oil pressure injection rules conditions...

  6. Dynamic Model and Control of a New Underwater Three-Degree-of-Freedom Tidal Energy Converter

    Directory of Open Access Journals (Sweden)

    José A. Somolinos

    2015-01-01

    Full Text Available There is currently a growing interest in developing devices that can be used to exploit energy from oceans. In the recent past, the search for oil and gas at ever-greater depths has led to the evolution of devices with which these resources are extracted. These devices range from those that simply rest on the seabed to those that are fully floating and anchored to it. This trend can be considered as the basis needed to understand the future evolution of devices for harnessing depth renewable resources. This paper presents a simple dynamic modeling and a nonlinear multivariable control model-based system for a new three-degree-of-freedom underwater generator with which energy from depth marine currents is harnessed when reference trajectory tracking for the emersion maneuvers needed to carry out maintenance tasks is performed. The goodness of both the model and the proposed controller has been demonstrated through the development of various simulations in the MATLAB-Simulink environment. Additionally, the validation of the control algorithms was carried out by using the dynamic model offered by the simulation environment Orcina OrcaFlex (software for the dynamic analysis for offshore marine systems through the MATLAB-OrcaFlex interface.

  7. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng

    2017-01-01

    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  8. System Dynamics and Adaptive Control for MEMS Gyroscope Sensor

    OpenAIRE

    Juntao Fei; Hongfei Ding

    2010-01-01

    This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS) z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the propo...

  9. System Dynamics and Adaptive Control for MEMS Gyroscope Sensor

    OpenAIRE

    Juntao Fei; Hongfei Ding

    2011-01-01

    This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS) z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the propo...

  10. On Chattering-Free Dynamic Sliding Mode Controller Design

    OpenAIRE

    Jeang-Lin Chang

    2012-01-01

    For a class of linear MIMO uncertain systems, a dynamic sliding mode control algorithm that avoids the chattering problem is proposed in this paper. Without using any differentiator, we develop a modified asymptotically stable second-order sliding mode control law in which the proposed controller can guarantee the finite time convergence to the sliding mode and can show that the system states asymptotically approach to zero. Finally, a numerical example is explained for demonstrating the appl...

  11. Climate-Based Models for Pulsed Resources Improve Predictability of Consumer Population Dynamics: Outbreaks of House Mice in Forest Ecosystems

    OpenAIRE

    2015-01-01

    Accurate predictions of the timing and magnitude of consumer responses to episodic seeding events (masts) are important for understanding ecosystem dynamics and for managing outbreaks of invasive species generated by masts. While models relating consumer populations to resource fluctuations have been developed successfully for a range of natural and modified ecosystems, a critical gap that needs addressing is better prediction of resource pulses. A recent model used change in summer temperatu...

  12. Controllable subspace of edge dynamics in complex networks

    Science.gov (United States)

    Pang, Shao-Peng; Hao, Fei

    2017-09-01

    For the edge dynamics in some real networks, it may be neither feasible nor necessary to be fully controlled. An accompanying issue is that, when the external signal is applied to a few nodes or even a single node, how many edges can be controlled? In this paper, for the edge dynamics system, we propose a theoretical framework to determine the controllable subspace and calculate its generic dimension based on the integer linear programming. This framework allows us not only to analyze the control centrality, i.e., the ability of a node to control, but also to uncover the controllable centrality, i.e., the propensity of an edge to be controllable. The simulation results and analytic calculation show that dense and homogeneous networks tend to have larger control centrality of nodes and controllable centrality of edges, but the negatively correlated in- and out-degrees of nodes or edges can reduce the two centrality. The positive correlation between the control centrality of node and its out-degree leads to that the distribution of control centrality, instead of that of controllable centrality, is encoded by the out-degree distribution of networks. Meanwhile, the positive correlation indicates that the nodes with high out-degree tend to play more important roles in control.

  13. Adaptive control of ROVs with actuator dynamics and saturation

    Directory of Open Access Journals (Sweden)

    Ola-Erik Fjellstad

    1992-07-01

    Full Text Available A direct model reference adaptive controller (MRAC is derived for an underwater vehicle with significant thruster dynamics and limited thruster power. The reference model decomposition (RMD technique is used to compensate for the thruster dynamics. A reference model adjustment (RMA technique modifying the reference model acceleration is used to avoid thruster saturation. The design methods are simulated for the yawing motion of an underwater vehicle.

  14. Media access control and resource allocation for next generation passive optical networks

    CERN Document Server

    Ansari, Nirwan

    2013-01-01

    This book focuses on various Passive optical networks (PONs)  types, including currently deployed Ethernet PON (EPON) and Gigabit PON (GPON) as well as next generation WDM PON and OFDM PON. Also this book examines the integrated optical and wireless access networks. Concentrating on two issues in these networks: media access control (MAC) and resource allocation. These two problems can greatly affect performances of PONs such as network resource utilization and QoS of end users. Finally this book will discuss various solutions to address the MAC and resource allocation issues in various PON networks.

  15. Power-Controlled MAC Protocols with Dynamic Neighbor Prediction for Ad hoc Networks

    Institute of Scientific and Technical Information of China (English)

    LI Meng; ZHANG Lin; XIAO Yong-kang; SHAN Xiu-ming

    2004-01-01

    Energy and bandwidth are the scarce resources in ad hoc networks because most of the mobile nodes are battery-supplied and share the exclusive wireless medium. Integrating the power control into MAC protocol is a promising technique to fully exploit these precious resources of ad hoc wireless networks. In this paper, a new intelligent power-controlled Medium Access Control (MAC) (iMAC) protocol with dynamic neighbor prediction is proposed. Through the elaborate design of the distributed transmit-receive strategy of mobile nodes, iMAC greatly outperforms the prevailing IEEE 802.11 MAC protocols in not only energy conservation but also network throughput. Using the Dynamic Neighbor Prediction (DNP), iMAC performs well in mobile scenes. To the best of our knowledge, iMAC is the first protocol that considers the performance deterioration of power-controlled MAC protocols in mobile scenes and then proposes a solution. Simulation results indicate that DNP is important and necessary for power-controlled MAC protocols in mobile ad hoc networks.

  16. Energy Accounting and Control with SLURM Resource and Job Management System

    OpenAIRE

    Georgiou, Yiannis; Cadeau, Thomas; Glesser, David; Auble, Danny; Jette, Morris; Hautreux, Matthieu

    2014-01-01

    International audience; Energy consumption has gradually become a very important parameter in High Performance Computing platforms. The Resource and Job Management System (RJMS) is the HPC middleware that is responsible for distributing computing power to applications and has knowledge of both the underlying resources and jobs needs. Therefore it is the best candidate for monitoring and controlling the energy consumption of the computations according to the job specifications. The integration...

  17. Request Stream Control for the Access to Broadband Multimedia Educational Resources in the Distance Learning System

    Directory of Open Access Journals (Sweden)

    Irina Pavlovna Bolodurina

    2013-10-01

    Full Text Available This article presents a model of queuing system for broadband multimedia educational resources, as well as a model of access to a hybrid cloud system storage. These models are used to enhance the efficiency of computing resources in a distance learning system. An additional OpenStack control module has been developed to achieve the distribution of request streams and balance the load between cloud nodes.

  18. Impulsive and hybrid dynamical systems stability, dissipativity, and control

    CERN Document Server

    Haddad, Wassim M; Nersesov, Sergey G

    2014-01-01

    This book develops a general analysis and synthesis framework for impulsive and hybrid dynamical systems. Such a framework is imperative for modern complex engineering systems that involve interacting continuous-time and discrete-time dynamics with multiple modes of operation that place stringent demands on controller design and require implementation of increasing complexity--whether advanced high-performance tactical fighter aircraft and space vehicles, variable-cycle gas turbine engines, or air and ground transportation systems. Impulsive and Hybrid Dynamical Systems goes beyond similar

  19. Impact of Land-use Dynamics on Water Resources of Upper Kharun Catchment (UKC), India

    Science.gov (United States)

    Kumar, N.

    2015-12-01

    Land-use and its spatial pattern and dynamics strongly influence water resources and demand which are the crucial elements to be considered in water management. The core of integrated water resources management consists of coordinating water supply and demand in a given socio-economic-ecological context and guided by a set of objectives (for example: sustainability, equity, impact awareness, stakeholder involvement). Fulfilling the coordinating function requires reliable information on the water balance components today and future developments which are under the strong influence of land-use dynamics. The information needs to be gained by simulation runs based on hydrological modeling tools with high resolution input regarding land-use (and further features of the basin relevant to runoff generation and precipitation). This research combines the Soil and Water Assessment Tool (SWAT) and an advanced procedure for spatio-temporal land-use mapping that considers and integrates the intra annual variation within a single map and hence better represents an area with different level of urbanization and multiple crop rotations. Due to its relevant impact on the water balance special attention is paid to aspects of irrigation. The study reveals that an increasing pumping rate of groundwater for irrigation is the main reason for decreasing the groundwater contribution to streamflow and subsequently a lowering in discharge and water yield. On the other hand, annual surface runoff is increased significantly by an expansion in built up areas over the decades in the respective parts of the study area. On the UKC scale, the impact of land-use change on the water balance until 2021 is small. However, the impact on water resources is clearly visible and significant at sub-catchment level (increase: surface runoff; decrease: percolation; decrease: groundwater contribution to streamflow and increase: actual evapotranspiration), where expanding urban areas and intensification of

  20. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.; Landuyt, W.

    2015-12-01

    The bioenergy crops, Corn, Miscanthus and switchgrass have a potential to meet future energy demands in the US and mitigate climate change by partially replacing fossil fuels. However, the large-scale cultivation of these bioenergy crops may also impact climate change through changes in albedo, evapotranspiration (ET), and greenhouse gas (GHG) emissions. Whether these climate effects will mitigate or exacerbate climate change in the short and long terms is uncertain. The uncertainties come from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data- modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  1. System Dynamics and Adaptive Control for MEMS Gyroscope Sensor

    Directory of Open Access Journals (Sweden)

    Juntao Fei

    2011-01-01

    Full Text Available This paper presents an adaptive control approach for Micro-Electro-Mechanical Systems (MEMS z-axis gyroscope sensor. The dynamical model of MEMS gyroscope sensor is derived and adaptive state tracking control for MEMS gyroscope is developed. The proposed adaptive control approaches can estimate the angular velocity and the damping and stiffness coefficients including the coupling terms due to the fabrication imperfection. The stability of the closed-loop systems is established with the proposed adaptive control strategy. Numerical simulation is investigated to verify the effectiveness of the proposed control scheme.

  2. The dynamics and control of large flexible space structures

    Science.gov (United States)

    Bainum, P. M.; Krishna, R.; Kumar, V. K.; Reddy, A. S. S. R.

    1981-01-01

    The dynamics and attitude and shape control of very large, inherently flexible spacecraft systems were investigated. Increasingly more complex examples were examined, beginning with a uniform free-free beam, next a free-free uniform plate/platform and finally by considering a thin shallow spherical shell structure in orbit. The effects devices were modeled. For given sets of assumed actuator locations, the controllability of these systems was first established. Control laws for each of the actuators were developed based on decoupling techniques (including distributed modal control) pole placement algorithms and a application of the linear regulator problem for optical control theory.

  3. Hybrid internal model control and proportional control of chaotic dynamical systems

    Institute of Scientific and Technical Information of China (English)

    齐冬莲; 姚良宾

    2004-01-01

    A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy.

  4. Hybrid internal model control and proportional control of chaotic dynamical systems.

    Science.gov (United States)

    Qi, Dong-lian; Yao, Liang-bin

    2004-01-01

    A new chaos control method is proposed to take advantage of chaos or avoid it. The hybrid Internal Model Control and Proportional Control learning scheme are introduced. In order to gain the desired robust performance and ensure the system's stability, Adaptive Momentum Algorithms are also developed. Through properly designing the neural network plant model and neural network controller, the chaotic dynamical systems are controlled while the parameters of the BP neural network are modified. Taking the Lorenz chaotic system as example, the results show that chaotic dynamical systems can be stabilized at the desired orbits by this control strategy.

  5. Modeling and Simulating Dynamics of Missiles with Deflectable Nose Control

    Institute of Scientific and Technical Information of China (English)

    Gao Yuan; Gu Liangxian; Pan Lei

    2009-01-01

    This article investigates the dynamic characteristics of deflectable nose missiles with rotary single-channel control. After introduction of effective attack and sideslip angles as well as quasi-body coordinates based on the spin characteristics of the missile's body, an integrated rigid kinetic model of missile with deflectable nose control is set up in the quasi-body coordinates considering the interaction between the missile's nose and body by using rootless multi-rigid-body system dynamics and is linearized. Then an analysis with simulation is conducted to investigate the coupling characteristics between the channels, the influences of nose deflection on the body and the dynamic characteristics of missile's body. The results indicate that various channels of missiles with deflectable nose control are coupled cross-linked; the nose deflection tends to make the body move in the opposite direction and, finally, evidences the correctness and reasonability of the kinetic model proposed by this article.

  6. Controllability of Weighted and Directed Networks with Nonidentical Node Dynamics

    Directory of Open Access Journals (Sweden)

    Linying Xiang

    2013-01-01

    Full Text Available The concept of controllability from control theory is applied to weighted and directed networks with heterogenous linear or linearized node dynamics subject to exogenous inputs, where the nodes are grouped into leaders and followers. Under this framework, the controllability of the controlled network can be decomposed into two independent problems: the controllability of the isolated leader subsystem and the controllability of the extended follower subsystem. Some necessary and/or sufficient conditions for the controllability of the leader-follower network are derived based on matrix theory and graph theory. In particular, it is shown that a single-leader network is controllable if it is a directed path or cycle, but it is uncontrollable for a complete digraph or a star digraph in general. Furthermore, some approaches to improving the controllability of a heterogenous network are presented. Some simulation examples are given for illustration and verification.

  7. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    Science.gov (United States)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2014-05-01

    Optimal management of conjunctive use of surface water and groundwater has been attempted with different algorithms in the literature. In this study, a hydro-economic modelling approach to optimize conjunctive use of scarce surface water and groundwater resources under uncertainty is presented. A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment costs. As in traditional SDP approaches, one step-ahead sub-problems are solved to find the optimal management at any time knowing the inflow scenario and reservoir/aquifer storage levels. These non-linear sub-problems are solved using a genetic algorithm (GA) that minimizes the sum of the immediate and future costs for given surface water reservoir and groundwater aquifer end storages. The immediate cost is found by solving a simple linear allocation sub-problem, and the future costs are assessed by interpolation in the total cost matrix from the following time step. Total costs for all stages, reservoir states, and inflow scenarios are used as future costs to drive a forward moving simulation under uncertain water availability. The use of a GA to solve the sub-problems is computationally more costly than a traditional SDP approach with linearly interpolated future costs. However, in a two-reservoir system the future cost function would have to be represented by a set of planes, and strict convexity in both the surface water and groundwater dimension cannot be maintained

  8. Model-based dynamic control and optimization of gas networks

    Energy Technology Data Exchange (ETDEWEB)

    Hofsten, Kai

    2001-07-01

    This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum

  9. A geometrical approach to control and controllability of nonlinear dynamical networks.

    Science.gov (United States)

    Wang, Le-Zhi; Su, Ri-Qi; Huang, Zi-Gang; Wang, Xiao; Wang, Wen-Xu; Grebogi, Celso; Lai, Ying-Cheng

    2016-04-14

    In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains an outstanding problem. Here we develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability. The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically meaningful, we consider restricted parameter perturbation by imposing two constraints: it must be experimentally realizable and applied only temporarily. We introduce the concept of attractor network, which allows us to formulate a quantifiable controllability framework for nonlinear dynamical networks: a network is more controllable if the attractor network is more strongly connected. We test our control framework using examples from various models of experimental gene regulatory networks and demonstrate the beneficial role of noise in facilitating control.

  10. A System Dynamics Model to Improve Water Resources Allocation in the Conchos River

    Science.gov (United States)

    Gastelum, J. R.; Valdes, J. B.; Stewart, S.

    2005-12-01

    The Conchos river located in Chihuahua state on a semiarid region is the most important Mexican river contributing water deliveries to USA as established by the Water treaty of 1944 signed between Mexico and USA. Historically, Mexico has delivered to UNITED STATES 550 Hm3 (445,549.5 ACF) per year of water since the treaty was established, which is 25% above the yearly water volume Mexico is required to deliver. The Conchos river has contributed with 54% of the historic Mexican water treaty deliveries to the UNITED STATES, which represents the highest percentage of the 6 Mexican rivers considered on the water treaty. However, during drought situations the basin has proven to be vulnerable, for instance, because of the severe drought of the 90's, several cities in 1992 on Chihuahua state where declared disaster areas, and from 1992 to 2001 Mexico had accumulated a water treaty deficit of 2111.6 Hm3 (1,710,586 ACF). This has conduced to economic, social, and political difficulties in both countries. Because of the cited problematic and considering the poor understanding of the relationship between water supply and demand factors on the basin, a decision support system (DSS) has been developed aimed to improve the decision making process related with the water resources allocation process. This DSS has been created using System Dynamics (SD). It is a semi-distributed model and is running on monthly time step basis. For both the short and long term, three important water resources management strategies have been evaluated: several water allocation policies from reservoirs to water users; bulk water rights transfers inside and outside Irrigation Districts; and improvement of water distribution efficiencies. The model results have provided very useful regard to gain more quantitative understanding of the different strategies being implemented. They have also indicated that the different water resources alternatives change its degree of importance according to the

  11. Resource control in ATLAS distributed data management: Rucio Accounting and Quotas

    CERN Document Server

    Barisits, Martin-Stefan; The ATLAS collaboration; Garonne, Vincent; Lassnig, Mario; Beermann, Thomas Alfons; Vigne, Ralph

    2015-01-01

    The ATLAS Distributed Data Management system manages more than 160PB of physics data across more than 130 sites globally. Rucio, the next generation Distributed Data Management system of the ATLAS experiment, replaced DQ2 in December 2014 and will manage the experiments data throughout Run 2 of the LHC and beyond. The previous data management system pursued a rather simplistic approach for resource management, but with the increased data volume and more dynamic handling of data workflows required by the experiment, a more elaborate approach to this issue is needed. Rucio was delivered with an initial quota system, but during the first months of operation it turned out to not fully satisfy the collaborations resource management needs. We consequently introduce a new concept of declaring quota policies (limits) for accounts in Rucio. This new quota concept is based on accounts and RSE (Rucio storage element) expressions, which allows the definition of hierarchical quotas in a dynamic way. This concept enables t...

  12. Resource control in ATLAS distributed data management: Rucio Accounting and Quotas

    CERN Document Server

    Barisits, Martin-Stefan; The ATLAS collaboration

    2015-01-01

    The ATLAS Distributed Data Management system stores more than 160PB of physics data across more than 130 sites globally. Rucio, the next-generation data management system of ATLAS has been introduced to cope with the anticipated workload of the coming decade. The previous data management system DQ2 pursued a rather simplistic approach for resource management, but with the increased data volume and more dynamic handling of data workflows required by the experiment, a more elaborate approach to this issue is needed. This document describes how resources, like storage, accounts and replication requests, are accounted in Rucio. Especially the measurement of used logical storage space is fundamentally different in Rucio than it’s predecessor DQ2. We introduce a new concept of declaring quota policies (limits) for accounts in Rucio. This new quota concept is based on accounts and RSE (Rucio storage element) expressions, which allows the definition of account limits in a dynamic way. This concept enables the opera...

  13. Switch Control between Different Speeds for a Passive Dynamic Walker

    Directory of Open Access Journals (Sweden)

    Limei Liu

    2012-12-01

    Full Text Available To make a biped robot walk stably at various speeds, a novel switch control approach is proposed to make the gaits switch smoothly between different walking speeds. The switch controller is designed based on the Lyapunov stability theory and the sufficient condition is given to make the closed-loop system stable. This controller can allow the robot to reach the stable gaits corresponding to the various speeds and improve the robustness of switch process. Potential energy compensation control has been studied in the dynamic model of a passive dynamic walking robot with knees. The functional relationship between the initial states and the walking speed is obtained. Numerical simulations are provided to verify the effectiveness of the control strategy.

  14. Switch Control Between Different Speeds for a Passive Dynamic Walker

    Directory of Open Access Journals (Sweden)

    Limei Liu

    2012-12-01

    Full Text Available To make a biped robot walk stably at various speeds, a novel switch control approach is proposed to make the gaits switch smoothly between different walking speeds. The switch controller is designed based on the Lyapunov stability theory and the sufficient condition is given to make the closed‐loop system stable. This controller can allow the robot to reach the stable gaits corresponding to the various speeds and improve the robustness of switch process. Potential energy compensation control has been studied in the dynamic model of a passive dynamic walking robot with knees. The functional relationship between the initial states and the walking speed is obtained. Numerical simulations are provided to verify the effectiveness of the control strategy.

  15. Z Number Based Fuzzy Inference System for Dynamic Plant Control

    Directory of Open Access Journals (Sweden)

    Rahib H. Abiyev

    2016-01-01

    Full Text Available Frequently the reliabilities of the linguistic values of the variables in the rule base are becoming important in the modeling of fuzzy systems. Taking into consideration the reliability degree of the fuzzy values of variables of the rules the design of inference mechanism acquires importance. For this purpose, Z number based fuzzy rules that include constraint and reliability degrees of information are constructed. Fuzzy rule interpolation is presented for designing of an inference engine of fuzzy rule-based system. The mathematical background of the fuzzy inference system based on interpolative mechanism is developed. Based on interpolative inference process Z number based fuzzy controller for control of dynamic plant has been designed. The transient response characteristic of designed controller is compared with the transient response characteristic of the conventional fuzzy controller. The obtained comparative results demonstrate the suitability of designed system in control of dynamic plants.

  16. Dynamics and Control of Adaptive Shells with Curvature Transformations

    Directory of Open Access Journals (Sweden)

    H.S. Tzou

    1995-01-01

    Full Text Available Adaptive structures with controllable geometries and shapes are rather useful in many engineering applications, such as adaptive wings, variable focus mirrors, adaptive machines, micro-electromechanical systems, etc. Dynamics and feedback control effectiveness of adaptive shells whose curvatures are actively controlled and continuously changed are evaluated. An adaptive piezoelectric laminated cylindrical shell composite with continuous curvature changes is studied, and its natural frequencies and controlled damping ratios are evaluated. The curvature change of the adaptive shell starts from an open shallow shell (30° and ends with a deep cylindrical shell (360°. Dynamic characteristics and control effectiveness (via the proportional velocity feedback of this series of shells are investigated and compared at every 30° curvature change. Analytical solutions suggest that the lower modes are sensitive to curvature changes and the higher modes are relatively insensitive.

  17. Improvements and applications of entrainment control for nonlinear dynamical systems.

    Science.gov (United States)

    Liu, Fang; Song, Qiang; Cao, Jinde

    2008-12-01

    This paper improves the existing entrainment control approaches and develops unified schemes to chaos control and generalized (lag, anticipated, and complete) synchronization of nonlinear dynamical systems. By introducing impulsive effects to the open-loop control method, we completely remove its restrictions on goal dynamics and initial conditions, and derive a sufficient condition to estimate the upper bound of impulsive intervals to ensure the global asymptotic stability. We then propose two effective ways to implement the entrainment strategy which combine open-loop and closed-loop control, and we prove that the feedback gains can be chosen according to a lower bound or be tuned with an adaptive control law. Numerical examples are given to verify the theoretical results and to illustrate their applications.

  18. Dynamics and control strategies for a butanol fermentation process.

    Science.gov (United States)

    Mariano, Adriano Pinto; Costa, Caliane Bastos Borba; Maciel, Maria Regina Wolf; Maugeri Filho, Francisco; Atala, Daniel Ibraim Pires; de Angelis, Dejanira de Franceschi; Maciel Filho, Rubens

    2010-04-01

    In this work, mathematical modeling was employed to assess the dynamic behavior of the flash fermentation process for the production of butanol. This process consists of three interconnected units as follows: fermentor, cell retention system (tangential microfiltration), and vacuum flash vessel (responsible for the continuous recovery of butanol from the broth). Based on the study of the dynamics of the process, suitable feedback control strategies [single input/single output (SISO) and multiple input/multiple output (MIMO)] were elaborated to deal with disturbances related to the process. The regulatory control consisted of keeping sugar and/or butanol concentrations in the fermentor constant in the face of disturbances in the feed substrate concentration. Another objective was the maintenance of the proper operation of the flash tank (maintenance of the thermodynamic equilibrium of the liquid and vapor phases) considering that oscillations in the temperature in the tank are expected. The servo control consisted of changes in concentration set points. The performance of an advanced controller, the dynamic matrix control, and the classical proportional-integral controller was evaluated. Both controllers were able to regulate the operating conditions in order to accommodate the perturbations with the lowest possible alterations in the process outputs. However, the performance of the PI controller was superior because it showed quicker responses without oscillations.

  19. Multi-Scale Dynamics, Control, and Simulation of Granular Spacecraft

    Science.gov (United States)

    Quadrelli, Marco B.; Basinger, Scott; Swartzlander, Grover

    2013-01-01

    In this paper, we present some ideas regarding the modeling, dynamics and control aspects of granular spacecraft. Granular spacecraft are complex multibody systems composed of a spatially disordered distribution of a large number of elements, for instance a cloud of grains in orbit. An example of application is a spaceborne observatory for exoplanet imaging, where the primary aperture is a cloud instead of a monolithic aperture. A model is proposed of a multi-scale dynamics of the grains and cloud in orbit, as well as a control approach for cloud shape maintenance and alignment, and preliminary simulation studies are carried out for the representative imaging system.

  20. Transactive control: a framework for operating power systems characterized by high penetration of distributed energy resources

    DEFF Research Database (Denmark)

    Hu, Junjie; Yang, Guangya; Kok, Koen

    2016-01-01

    The increasing number of distributed energy resources connected to power systems raises operational challenges for the network operator, such as introducing grid congestion and voltage deviations in the distribution network level, as well as increasing balancing needs at the whole system level......, followed by a literature review and demonstration projects that apply to transactive control. Cases are then presented to illustrate the transactive control framework. At the end, discussions and research directions are presented, for applying transactive control to operating power systems, characterized...