WorldWideScience

Sample records for dynamic reliability analysis

  1. Prime implicants in dynamic reliability analysis

    International Nuclear Information System (INIS)

    Tyrväinen, Tero

    2016-01-01

    This paper develops an improved definition of a prime implicant for the needs of dynamic reliability analysis. Reliability analyses often aim to identify minimal cut sets or prime implicants, which are minimal conditions that cause an undesired top event, such as a system's failure. Dynamic reliability analysis methods take the time-dependent behaviour of a system into account. This means that the state of a component can change in the analysed time frame and prime implicants can include the failure of a component at different time points. There can also be dynamic constraints on a component's behaviour. For example, a component can be non-repairable in the given time frame. If a non-repairable component needs to be failed at a certain time point to cause the top event, we consider that the condition that it is failed at the latest possible time point is minimal, and the condition in which it fails earlier non-minimal. The traditional definition of a prime implicant does not account for this type of time-related minimality. In this paper, a new definition is introduced and illustrated using a dynamic flowgraph methodology model. - Highlights: • A new definition of a prime implicant is developed for dynamic reliability analysis. • The new definition takes time-related minimality into account. • The new definition is needed in dynamic flowgraph methodology. • Results can be represented by a smaller number of prime implicants.

  2. A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2015-01-01

    Dynamic reliability measures reliability of an engineered system considering time-variant operation condition and component deterioration. Due to high computational costs, conducting dynamic reliability analysis at an early system design stage remains challenging. This paper presents a confidence-based meta-modeling approach, referred to as double-loop adaptive sampling (DLAS), for efficient sensitivity-free dynamic reliability analysis. The DLAS builds a Gaussian process (GP) model sequentially to approximate extreme system responses over time, so that Monte Carlo simulation (MCS) can be employed directly to estimate dynamic reliability. A generic confidence measure is developed to evaluate the accuracy of dynamic reliability estimation while using the MCS approach based on developed GP models. A double-loop adaptive sampling scheme is developed to efficiently update the GP model in a sequential manner, by considering system input variables and time concurrently in two sampling loops. The model updating process using the developed sampling scheme can be terminated once the user defined confidence target is satisfied. The developed DLAS approach eliminates computationally expensive sensitivity analysis process, thus substantially improves the efficiency of dynamic reliability analysis. Three case studies are used to demonstrate the efficacy of DLAS for dynamic reliability analysis. - Highlights: • Developed a novel adaptive sampling approach for dynamic reliability analysis. • POD Developed a new metric to quantify the accuracy of dynamic reliability estimation. • Developed a new sequential sampling scheme to efficiently update surrogate models. • Three case studies were used to demonstrate the efficacy of the new approach. • Case study results showed substantially enhanced efficiency with high accuracy

  3. An integrated approach to human reliability analysis -- decision analytic dynamic reliability model

    International Nuclear Information System (INIS)

    Holmberg, J.; Hukki, K.; Norros, L.; Pulkkinen, U.; Pyy, P.

    1999-01-01

    The reliability of human operators in process control is sensitive to the context. In many contemporary human reliability analysis (HRA) methods, this is not sufficiently taken into account. The aim of this article is that integration between probabilistic and psychological approaches in human reliability should be attempted. This is achieved first, by adopting such methods that adequately reflect the essential features of the process control activity, and secondly, by carrying out an interactive HRA process. Description of the activity context, probabilistic modeling, and psychological analysis form an iterative interdisciplinary sequence of analysis in which the results of one sub-task maybe input to another. The analysis of the context is carried out first with the help of a common set of conceptual tools. The resulting descriptions of the context promote the probabilistic modeling, through which new results regarding the probabilistic dynamics can be achieved. These can be incorporated in the context descriptions used as reference in the psychological analysis of actual performance. The results also provide new knowledge of the constraints of activity, by providing information of the premises of the operator's actions. Finally, the stochastic marked point process model gives a tool, by which psychological methodology may be interpreted and utilized for reliability analysis

  4. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G.; Balan, I. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safetly, Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  5. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - II: Application to IFMIF reliability assessment

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Balan, I.; Ionescu-Bujor, M.

    2008-01-01

    In Part II of this work, the adjoint sensitivity analysis procedure developed in Part I is applied to perform sensitivity analysis of several dynamic reliability models of systems of increasing complexity, culminating with the consideration of the International Fusion Materials Irradiation Facility (IFMIF) accelerator system. Section II presents the main steps of a procedure for the automated generation of Markov chains for reliability analysis, including the abstraction of the physical system, construction of the Markov chain, and the generation and solution of the ensuing set of differential equations; all of these steps have been implemented in a stand-alone computer code system called QUEFT/MARKOMAG-S/MCADJSEN. This code system has been applied to sensitivity analysis of dynamic reliability measures for a paradigm '2-out-of-3' system comprising five components and also to a comprehensive dynamic reliability analysis of the IFMIF accelerator system facilities for the average availability and, respectively, the system's availability at the final mission time. The QUEFT/MARKOMAG-S/MCADJSEN has been used to efficiently compute sensitivities to 186 failure and repair rates characterizing components and subsystems of the first-level fault tree of the IFMIF accelerator system. (authors)

  6. The DYLAM approach for the dynamic reliability analysis of systems

    International Nuclear Information System (INIS)

    Cojazzi, Giacomo

    1996-01-01

    In many real systems, failures occurring to the components, control failures and human interventions often interact with the physical system evolution in such a way that a simple reliability analysis, de-coupled from process dynamics, is very difficult or even impossible. In the last ten years many dynamic reliability approaches have been proposed to properly assess the reliability of these systems characterized by dynamic interactions. The DYLAM methodology, now implemented in its latest version, DYLAM-3, offers a powerful tool for integrating deterministic and failure events. This paper describes the main features of the DYLAM-3 code with reference to the classic fault-tree and event-tree techniques. Some aspects connected to the practical problems underlying dynamic event-trees are also discussed. A simple system, already analyzed with other dynamic methods is used as a reference for the numerical applications. The same system is also studied with a time-dependent fault-tree approach in order to show some features of dynamic methods vs classical techniques. Examples including stochastic failures, without and with repair, failures on demand and time dependent failure rates give an extensive overview of DYLAM-3 capabilities

  7. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    International Nuclear Information System (INIS)

    Cacuci, D. G.; Cacuci, D. G.; Ionescu-Bujor, M.

    2008-01-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  8. Adjoint sensitivity analysis of dynamic reliability models based on Markov chains - I: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D. G. [Commiss Energy Atom, Direct Energy Nucl, Saclay, (France); Cacuci, D. G. [Univ Karlsruhe, Inst Nucl Technol and Reactor Safety, D-76021 Karlsruhe, (Germany); Ionescu-Bujor, M. [Forschungszentrum Karlsruhe, Fus Program, D-76021 Karlsruhe, (Germany)

    2008-07-01

    The development of the adjoint sensitivity analysis procedure (ASAP) for generic dynamic reliability models based on Markov chains is presented, together with applications of this procedure to the analysis of several systems of increasing complexity. The general theory is presented in Part I of this work and is accompanied by a paradigm application to the dynamic reliability analysis of a simple binary component, namely a pump functioning on an 'up/down' cycle until it fails irreparably. This paradigm example admits a closed form analytical solution, which permits a clear illustration of the main characteristics of the ASAP for Markov chains. In particular, it is shown that the ASAP for Markov chains presents outstanding computational advantages over other procedures currently in use for sensitivity and uncertainty analysis of the dynamic reliability of large-scale systems. This conclusion is further underscored by the large-scale applications presented in Part II. (authors)

  9. RADYBAN: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks

    International Nuclear Information System (INIS)

    Montani, S.; Portinale, L.; Bobbio, A.; Codetta-Raiteri, D.

    2008-01-01

    In this paper, we present RADYBAN (Reliability Analysis with DYnamic BAyesian Networks), a software tool which allows to analyze a dynamic fault tree relying on its conversion into a dynamic Bayesian network. The tool implements a modular algorithm for automatically translating a dynamic fault tree into the corresponding dynamic Bayesian network and exploits classical algorithms for the inference on dynamic Bayesian networks, in order to compute reliability measures. After having described the basic features of the tool, we show how it operates on a real world example and we compare the unreliability results it generates with those returned by other methodologies, in order to verify the correctness and the consistency of the results obtained

  10. Creation and Reliability Analysis of Vehicle Dynamic Weighing Model

    Directory of Open Access Journals (Sweden)

    Zhi-Ling XU

    2014-08-01

    Full Text Available In this paper, it is modeled by using ADAMS to portable axle load meter of dynamic weighing system, controlling a single variable simulation weighing process, getting the simulation weighing data under the different speed and weight; simultaneously using portable weighing system with the same parameters to achieve the actual measurement, comparative analysis the simulation results under the same conditions, at 30 km/h or less, the simulation value and the measured value do not differ by more than 5 %, it is not only to verify the reliability of dynamic weighing model, but also to create possible for improving algorithm study efficiency by using dynamic weighing model simulation.

  11. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations

    International Nuclear Information System (INIS)

    Do, Duy Minh; Gao, Wei; Song, Chongmin; Tangaramvong, Sawekchai

    2014-01-01

    This paper presents the non-deterministic dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Random ground acceleration from earthquake motion is adopted to illustrate the stochastic process force. The exact change ranges of natural frequencies, random vibration displacement and stress responses of structures are investigated under the interval analysis framework. Formulations for structural reliability are developed considering the safe boundary and structural random vibration responses as interval parameters. An improved particle swarm optimization algorithm, namely randomised lower sequence initialized high-order nonlinear particle swarm optimization algorithm, is employed to capture the better bounds of structural dynamic characteristics, random vibration responses and reliability. Three numerical examples are used to demonstrate the presented method for interval random vibration analysis and reliability assessment of structures. The accuracy of the results obtained by the presented method is verified by the randomised Quasi-Monte Carlo simulation method (QMCSM) and direct Monte Carlo simulation method (MCSM). - Highlights: • Interval uncertainty is introduced into structural random vibration responses. • Interval dynamic reliability assessments of structures are implemented. • Boundaries of structural dynamic response and reliability are achieved

  12. Development of Markov model of emergency diesel generator for dynamic reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Young Ho; Choi, Sun Yeong; Yang, Joon Eon [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-02-01

    The EDG (Emergency Diesal Generator) of nuclear power plant is one of the most important equipments in mitigating accidents. The FT (Fault Tree) method is widely used to assess the reliability of safety systems like an EDG in nuclear power plant. This method, however, has limitations in modeling dynamic features of safety systems exactly. We, hence, have developed a Markov model to represent the stochastic process of dynamic systems whose states change as time moves on. The Markov model enables us to develop a dynamic reliability model of EDG. This model can represent all possible states of EDG comparing to the FRANTIC code developed by U.S. NRC for the reliability analysis of standby systems. to access the regulation policy for test interval, we performed two simulations based on the generic data and plant specific data of YGN 3, respectively by using the developed model. We also estimate the effects of various repair rates and the fractions of starting failures by demand shock to the reliability of EDG. And finally, Aging effect is analyzed. (author). 23 refs., 19 figs., 9 tabs.

  13. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  14. Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures

    International Nuclear Information System (INIS)

    Xing Liudong; Shrestha, Akhilesh; Dai Yuanshun

    2011-01-01

    Many real-life fault-tolerant systems are subjected to sequence-dependent failure behavior, in which the order in which the fault events occur is important to the system reliability. Such systems can be modeled by dynamic fault trees (DFT) with priority-AND (pAND) gates. Existing approaches for the reliability analysis of systems subjected to sequence-dependent failures are typically state-space-based, simulation-based or inclusion-exclusion-based methods. Those methods either suffer from the state-space explosion problem or require long computation time especially when results with high degree of accuracy are desired. In this paper, an analytical method based on sequential binary decision diagrams is proposed. The proposed approach can analyze the exact reliability of non-repairable dynamic systems subjected to the sequence-dependent failure behavior. Also, the proposed approach is combinatorial and is applicable for analyzing systems with any arbitrary component time-to-failure distributions. The application and advantages of the proposed approach are illustrated through analysis of several examples. - Highlights: → We analyze the sequence-dependent failure behavior using combinatorial models. → The method has no limitation on the type of time-to-failure distributions. → The method is analytical and based on sequential binary decision diagrams (SBDD). → The method is computationally more efficient than existing methods.

  15. Dynamic decision-making for reliability and maintenance analysis of manufacturing systems based on failure effects

    Science.gov (United States)

    Zhang, Ding; Zhang, Yingjie

    2017-09-01

    A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.

  16. Reliability analysis for dynamic configurations of systems with three failure modes

    International Nuclear Information System (INIS)

    Pham, Hoang

    1999-01-01

    Analytical models for computing the reliability of dynamic configurations of systems, such as majority and k-out-of-n, assuming that units and systems are subject to three types of failures: stuck-at-0, stuck-at-1, and stuck-at-x are presented in this paper. Formulas for determining the optimal design policies that maximize the reliability of dynamic k-out-of-n configurations subject to three types of failures are defined. The comparisons of the reliability modeling functions are also obtained. The optimum system size and threshold value k that minimize the expected cost of dynamic k-out-of-n configurations are also determined

  17. Design and reliability analysis of DP-3 dynamic positioning control architecture

    Science.gov (United States)

    Wang, Fang; Wan, Lei; Jiang, Da-Peng; Xu, Yu-Ru

    2011-12-01

    As the exploration and exploitation of oil and gas proliferate throughout deepwater area, the requirements on the reliability of dynamic positioning system become increasingly stringent. The control objective ensuring safety operation at deep water will not be met by a single controller for dynamic positioning. In order to increase the availability and reliability of dynamic positioning control system, the triple redundancy hardware and software control architectures were designed and developed according to the safe specifications of DP-3 classification notation for dynamically positioned ships and rigs. The hardware redundant configuration takes the form of triple-redundant hot standby configuration including three identical operator stations and three real-time control computers which connect each other through dual networks. The function of motion control and redundancy management of control computers were implemented by software on the real-time operating system VxWorks. The software realization of task loose synchronization, majority voting and fault detection were presented in details. A hierarchical software architecture was planed during the development of software, consisting of application layer, real-time layer and physical layer. The behavior of the DP-3 dynamic positioning control system was modeled by a Markov model to analyze its reliability. The effects of variation in parameters on the reliability measures were investigated. The time domain dynamic simulation was carried out on a deepwater drilling rig to prove the feasibility of the proposed control architecture.

  18. Reliability and mass analysis of dynamic power conversion systems with parallel or standby redundancy

    Science.gov (United States)

    Juhasz, Albert J.; Bloomfield, Harvey S.

    1987-01-01

    A combinatorial reliability approach was used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis was also performed, specifically for a 100-kWe nuclear Brayton power conversion system with parallel redundancy. Although this study was done for a reactor outlet temperature of 1100 K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  19. Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    Science.gov (United States)

    Juhasz, A. J.; Bloomfield, H. S.

    1985-01-01

    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  20. Improvement of level-1 PSA computer code package - Modeling and analysis for dynamic reliability of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hoon; Baek, Sang Yeup; Shin, In Sup; Moon, Shin Myung; Moon, Jae Phil; Koo, Hoon Young; Kim, Ju Shin [Seoul National University, Seoul (Korea, Republic of); Hong, Jung Sik [Seoul National Polytechnology University, Seoul (Korea, Republic of); Lim, Tae Jin [Soongsil University, Seoul (Korea, Republic of)

    1996-08-01

    The objective of this project is to develop a methodology of the dynamic reliability analysis for NPP. The first year`s research was focused on developing a procedure for analyzing failure data of running components and a simulator for estimating the reliability of series-parallel structures. The second year`s research was concentrated on estimating the lifetime distribution and PM effect of a component from its failure data in various cases, and the lifetime distribution of a system with a particular structure. Computer codes for performing these jobs were also developed. The objectives of the third year`s research is to develop models for analyzing special failure types (CCFs, Standby redundant structure) that were nor considered in the first two years, and to complete a methodology of the dynamic reliability analysis for nuclear power plants. The analysis of failure data of components and related researches for supporting the simulator must be preceded for providing proper input to the simulator. Thus this research is divided into three major parts. 1. Analysis of the time dependent life distribution and the PM effect. 2. Development of a simulator for system reliability analysis. 3. Related researches for supporting the simulator : accelerated simulation analytic approach using PH-type distribution, analysis for dynamic repair effects. 154 refs., 5 tabs., 87 figs. (author)

  1. A dynamic discretization method for reliability inference in Dynamic Bayesian Networks

    International Nuclear Information System (INIS)

    Zhu, Jiandao; Collette, Matthew

    2015-01-01

    The material and modeling parameters that drive structural reliability analysis for marine structures are subject to a significant uncertainty. This is especially true when time-dependent degradation mechanisms such as structural fatigue cracking are considered. Through inspection and monitoring, information such as crack location and size can be obtained to improve these parameters and the corresponding reliability estimates. Dynamic Bayesian Networks (DBNs) are a powerful and flexible tool to model dynamic system behavior and update reliability and uncertainty analysis with life cycle data for problems such as fatigue cracking. However, a central challenge in using DBNs is the need to discretize certain types of continuous random variables to perform network inference while still accurately tracking low-probability failure events. Most existing discretization methods focus on getting the overall shape of the distribution correct, with less emphasis on the tail region. Therefore, a novel scheme is presented specifically to estimate the likelihood of low-probability failure events. The scheme is an iterative algorithm which dynamically partitions the discretization intervals at each iteration. Through applications to two stochastic crack-growth example problems, the algorithm is shown to be robust and accurate. Comparisons are presented between the proposed approach and existing methods for the discretization problem. - Highlights: • A dynamic discretization method is developed for low-probability events in DBNs. • The method is compared to existing approaches on two crack growth problems. • The method is shown to improve on existing methods for low-probability events

  2. A Review: Passive System Reliability Analysis – Accomplishments and Unresolved Issues

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun Kumar, E-mail: arunths@barc.gov.in [Reactor Engineering Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India); Chandrakar, Amit [Homi Bhabha National Institute, Mumbai (India); Vinod, Gopika [Reactor Safety Division, Reactor Design and Development Group, Bhabha Atomic Research Centre, Mumbai (India)

    2014-10-10

    Reliability assessment of passive safety systems is one of the important issues, since safety of advanced nuclear reactors rely on several passive features. In this context, a few methodologies such as reliability evaluation of passive safety system (REPAS), reliability methods for passive safety functions (RMPS), and analysis of passive systems reliability (APSRA) have been developed in the past. These methodologies have been used to assess reliability of various passive safety systems. While these methodologies have certain features in common, but they differ in considering certain issues; for example, treatment of model uncertainties, deviation of geometric, and process parameters from their nominal values. This paper presents the state of the art on passive system reliability assessment methodologies, the accomplishments, and remaining issues. In this review, three critical issues pertaining to passive systems performance and reliability have been identified. The first issue is applicability of best estimate codes and model uncertainty. The best estimate codes based phenomenological simulations of natural convection passive systems could have significant amount of uncertainties, these uncertainties must be incorporated in appropriate manner in the performance and reliability analysis of such systems. The second issue is the treatment of dynamic failure characteristics of components of passive systems. REPAS, RMPS, and APSRA methodologies do not consider dynamic failures of components or process, which may have strong influence on the failure of passive systems. The influence of dynamic failure characteristics of components on system failure probability is presented with the help of a dynamic reliability methodology based on Monte Carlo simulation. The analysis of a benchmark problem of Hold-up tank shows the error in failure probability estimation by not considering the dynamism of components. It is thus suggested that dynamic reliability methodologies must be

  3. Improvement of the reliability graph with general gates to analyze the reliability of dynamic systems that have various operation modes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Ki [Div. of Research Reactor System Design, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); No, Young Gyu; Seong, Poong Hyun [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-04-15

    The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant.

  4. Improvement of the reliability graph with general gates to analyze the reliability of dynamic systems that have various operation modes

    International Nuclear Information System (INIS)

    Shin, Seung Ki; No, Young Gyu; Seong, Poong Hyun

    2016-01-01

    The safety of nuclear power plants is analyzed by a probabilistic risk assessment, and the fault tree analysis is the most widely used method for a risk assessment with the event tree analysis. One of the well-known disadvantages of the fault tree is that drawing a fault tree for a complex system is a very cumbersome task. Thus, several graphical modeling methods have been proposed for the convenient and intuitive modeling of complex systems. In this paper, the reliability graph with general gates (RGGG) method, one of the intuitive graphical modeling methods based on Bayesian networks, is improved for the reliability analyses of dynamic systems that have various operation modes with time. A reliability matrix is proposed and it is explained how to utilize the reliability matrix in the RGGG for various cases of operation mode changes. The proposed RGGG with a reliability matrix provides a convenient and intuitive modeling of various operation modes of complex systems, and can also be utilized with dynamic nodes that analyze the failure sequences of subcomponents. The combinatorial use of a reliability matrix with dynamic nodes is illustrated through an application to a shutdown cooling system in a nuclear power plant

  5. Reliability analysis and operator modelling

    International Nuclear Information System (INIS)

    Hollnagel, Erik

    1996-01-01

    The paper considers the state of operator modelling in reliability analysis. Operator models are needed in reliability analysis because operators are needed in process control systems. HRA methods must therefore be able to account both for human performance variability and for the dynamics of the interaction. A selected set of first generation HRA approaches is briefly described in terms of the operator model they use, their classification principle, and the actual method they propose. In addition, two examples of second generation methods are also considered. It is concluded that first generation HRA methods generally have very simplistic operator models, either referring to the time-reliability relationship or to elementary information processing concepts. It is argued that second generation HRA methods must recognise that cognition is embedded in a context, and be able to account for that in the way human reliability is analysed and assessed

  6. Dynamic reliability of digital-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France) and Universite de Technologie de Troyes - UTT, Institut Charles Delaunay - ICD and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France); Smidts, Carol [Ohio State University (OSU), Nuclear Engineering Program, Department of Mechanical Engineering, Scott Laboratory, 201 W 19th Ave, Columbus OH 43210 (United States); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and UMR CNRS 6279 STMR, 12 rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)

    2011-07-15

    Dynamic reliability explicitly handles the interactions between the stochastic behaviour of system components and the deterministic behaviour of process variables. While dynamic reliability provides a more efficient and realistic way to perform probabilistic risk assessment than 'static' approaches, its industrial level applications are still limited. Factors contributing to this situation are the inherent complexity of the theory and the lack of a generic platform. More recently the increased use of digital-based systems has also introduced additional modelling challenges related to specific interactions between system components. Typical examples are the 'intelligent transmitters' which are able to exchange information, and to perform internal data processing and advanced functionalities. To make a contribution to solving these challenges, the mathematical framework of dynamic reliability is extended to handle the data and information which are processed and exchanged between systems components. Stochastic deviations that may affect system properties are also introduced to enhance the modelling of failures. A formalized Petri net approach is then presented to perform the corresponding reliability analyses using numerical methods. Following this formalism, a versatile model for the dynamic reliability modelling of digital-based transmitters is proposed. Finally the framework's flexibility and effectiveness is demonstrated on a substantial case study involving a simplified model of a nuclear fast reactor.

  7. New application of dynamic reliability assessment of the mid-loop operation

    International Nuclear Information System (INIS)

    Moosung, Jae; Goon Cherl Park; Chang Hyun Chung

    1995-01-01

    This paper presents a new approach for assessing the dynamic reliability in a complex system such as a nuclear power plant. The method is applied to a dynamic analysis of the potential accident sequences that may occur during mid-loop operation

  8. Reliability modelling and analysis of a multi-state element based on a dynamic Bayesian network

    Science.gov (United States)

    Li, Zhiqiang; Xu, Tingxue; Gu, Junyuan; Dong, Qi; Fu, Linyu

    2018-04-01

    This paper presents a quantitative reliability modelling and analysis method for multi-state elements based on a combination of the Markov process and a dynamic Bayesian network (DBN), taking perfect repair, imperfect repair and condition-based maintenance (CBM) into consideration. The Markov models of elements without repair and under CBM are established, and an absorbing set is introduced to determine the reliability of the repairable element. According to the state-transition relations between the states determined by the Markov process, a DBN model is built. In addition, its parameters for series and parallel systems, namely, conditional probability tables, can be calculated by referring to the conditional degradation probabilities. Finally, the power of a control unit in a failure model is used as an example. A dynamic fault tree (DFT) is translated into a Bayesian network model, and subsequently extended to a DBN. The results show the state probabilities of an element and the system without repair, with perfect and imperfect repair, and under CBM, with an absorbing set plotted by differential equations and verified. Through referring forward, the reliability value of the control unit is determined in different kinds of modes. Finally, weak nodes are noted in the control unit.

  9. Reliability of dynamic systems under limited information.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr. (.,; .); Grigoriu, Mircea

    2006-09-01

    A method is developed for reliability analysis of dynamic systems under limited information. The available information includes one or more samples of the system output; any known information on features of the output can be used if available. The method is based on the theory of non-Gaussian translation processes and is shown to be particularly suitable for problems of practical interest. For illustration, we apply the proposed method to a series of simple example problems and compare with results given by traditional statistical estimators in order to establish the accuracy of the method. It is demonstrated that the method delivers accurate results for the case of linear and nonlinear dynamic systems, and can be applied to analyze experimental data and/or mathematical model outputs. Two complex applications of direct interest to Sandia are also considered. First, we apply the proposed method to assess design reliability of a MEMS inertial switch. Second, we consider re-entry body (RB) component vibration response during normal re-entry, where the objective is to estimate the time-dependent probability of component failure. This last application is directly relevant to re-entry random vibration analysis at Sandia, and may provide insights on test-based and/or model-based qualification of weapon components for random vibration environments.

  10. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Phuc Do Van [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France); Barros, Anne [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)], E-mail: anne.barros@utt.fr; Berenguer, Christophe [Institut Charles Delaunay - FRE CNRS 2848, Systems Modeling and Dependability Group, Universite de technologie de Troyes, 12, rue Marie Curie, BP 2060-10010 Troyes cedex (France)

    2008-11-15

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies.

  11. Reliability importance analysis of Markovian systems at steady state using perturbation analysis

    International Nuclear Information System (INIS)

    Phuc Do Van; Barros, Anne; Berenguer, Christophe

    2008-01-01

    Sensitivity analysis has been primarily defined for static systems, i.e. systems described by combinatorial reliability models (fault or event trees). Several structural and probabilistic measures have been proposed to assess the components importance. For dynamic systems including inter-component and functional dependencies (cold spare, shared load, shared resources, etc.), and described by Markov models or, more generally, by discrete events dynamic systems models, the problem of sensitivity analysis remains widely open. In this paper, the perturbation method is used to estimate an importance factor, called multi-directional sensitivity measure, in the framework of Markovian systems. Some numerical examples are introduced to show why this method offers a promising tool for steady-state sensitivity analysis of Markov processes in reliability studies

  12. Dynamic Reliability Analysis of Gear Transmission System of Wind Turbine in Consideration of Randomness of Loadings and Parameters

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2014-01-01

    Full Text Available A dynamic model of gear transmission system of wind turbine is built with consideration of randomness of loads and parameters. The dynamic response of the system is obtained using the theory of random sampling and the Runge-Kutta method. According to rain flow counting principle, the dynamic meshing forces are converted into a series of luffing fatigue load spectra. The amplitude and frequency of the equivalent stress are obtained using equivalent method of Geber quadratic curve. Moreover, the dynamic reliability model of components and system is built according to the theory of probability of cumulative fatigue damage. The system reliability with the random variation of parameters is calculated and the influence of random parameters on dynamic reliability of components is analyzed. In the end, the results of the proposed method are compared with that of Monte Carlo method. This paper can be instrumental in the design of wind turbine gear transmission system with more advantageous dynamic reliability.

  13. Bearing Procurement Analysis Method by Total Cost of Ownership Analysis and Reliability Prediction

    Science.gov (United States)

    Trusaji, Wildan; Akbar, Muhammad; Sukoyo; Irianto, Dradjad

    2018-03-01

    In making bearing procurement analysis, price and its reliability must be considered as decision criteria, since price determines the direct cost as acquisition cost and reliability of bearing determine the indirect cost such as maintenance cost. Despite the indirect cost is hard to identify and measured, it has high contribution to overall cost that will be incurred. So, the indirect cost of reliability must be considered when making bearing procurement analysis. This paper tries to explain bearing evaluation method with the total cost of ownership analysis to consider price and maintenance cost as decision criteria. Furthermore, since there is a lack of failure data when bearing evaluation phase is conducted, reliability prediction method is used to predict bearing reliability from its dynamic load rating parameter. With this method, bearing with a higher price but has higher reliability is preferable for long-term planning. But for short-term planning the cheaper one but has lower reliability is preferable. This contextuality can give rise to conflict between stakeholders. Thus, the planning horizon needs to be agreed by all stakeholder before making a procurement decision.

  14. Dynamic reliability and risk assessment of the accident localization system of the Ignalina NPP RBMK-1500 reactor

    International Nuclear Information System (INIS)

    Kopustinskas, V.; Augutis, J.; Rimkevicius, S.

    2005-01-01

    The paper presents reliability and risk analysis of the RBMK-1500 reactor accident localization system (ALS) (confinement), which prevents radioactive releases to the environment. Reliability of the system was estimated and compared by two methods: the conventional fault tree method and an innovative dynamic reliability model, based on stochastic differential equations. Frequency of radioactive release through ALS was also estimated. The results of the study indicate that conventional fault tree modeling techniques in this case apply high degree of conservatism in the system reliability estimates. One of the purposes of the ALS reliability study was to demonstrate advantages of the dynamic reliability analysis against the conventional fault/event tree methods. The Markovian framework to deal with dynamic aspects of system behavior is presented. Although not analyzed in detail, the framework is also capable of accounting for non-constant component failure rates. Computational methods are proposed to solve stochastic differential equations, including analytical solution, which is possible only for relatively small and simple systems. Other numerical methods, like Monte Carlo and numerical schemes of differential equations are analyzed and compared. The study is finalized with concluding remarks regarding both the studied system reliability and computational methods used

  15. Reliability analysis of prestressed concrete containment structures

    International Nuclear Information System (INIS)

    Jiang, J.; Zhao, Y.; Sun, J.

    1993-01-01

    The reliability analysis of prestressed concrete containment structures subjected to combinations of static and dynamic loads with consideration of uncertainties of structural and load parameters is presented. Limit state probabilities for given parameters are calculated using the procedure developed at BNL, while that with consideration of parameter uncertainties are calculated by a fast integration for time variant structural reliability. The limit state surface of the prestressed concrete containment is constructed directly incorporating the prestress. The sensitivities of the Choleskey decomposition matrix and the natural vibration character are calculated by simplified procedures. (author)

  16. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  17. Human reliability analysis

    International Nuclear Information System (INIS)

    Dougherty, E.M.; Fragola, J.R.

    1988-01-01

    The authors present a treatment of human reliability analysis incorporating an introduction to probabilistic risk assessment for nuclear power generating stations. They treat the subject according to the framework established for general systems theory. Draws upon reliability analysis, psychology, human factors engineering, and statistics, integrating elements of these fields within a systems framework. Provides a history of human reliability analysis, and includes examples of the application of the systems approach

  18. Simulation Approach to Mission Risk and Reliability Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop and demonstrate an integrated total-system risk and reliability analysis approach that is based on dynamic, probabilistic simulation. This...

  19. Analysis and Application of Reliability

    International Nuclear Information System (INIS)

    Jeong, Hae Seong; Park, Dong Ho; Kim, Jae Ju

    1999-05-01

    This book tells of analysis and application of reliability, which includes definition, importance and historical background of reliability, function of reliability and failure rate, life distribution and assumption of reliability, reliability of unrepaired system, reliability of repairable system, sampling test of reliability, failure analysis like failure analysis by FEMA and FTA, and cases, accelerated life testing such as basic conception, acceleration and acceleration factor, and analysis of accelerated life testing data, maintenance policy about alternation and inspection.

  20. Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective

    International Nuclear Information System (INIS)

    Peng, Weiwen; Li, Yan-Feng; Mi, Jinhua; Yu, Le; Huang, Hong-Zhong

    2016-01-01

    Degradation analysis is critical to reliability assessment and operational management of complex systems. Two types of assumptions are often adopted for degradation analysis: (1) single degradation indicator and (2) constant external factors. However, modern complex systems are generally characterized as multiple functional and suffered from multiple failure modes due to dynamic operating conditions. In this paper, Bayesian degradation analysis of complex systems with multiple degradation indicators under dynamic conditions is investigated. Three practical engineering-driven issues are addressed: (1) to model various combinations of degradation indicators, a generalized multivariate hybrid degradation process model is proposed, which subsumes both monotonic and non-monotonic degradation processes models as special cases, (2) to study effects of external factors, two types of dynamic covariates are incorporated jointly, which include both environmental conditions and operating profiles, and (3) to facilitate degradation based reliability analysis, a serial of Bayesian strategy is constructed, which covers parameter estimation, factor-related degradation prediction, and unit-specific remaining useful life assessment. Finally, degradation analysis of a type of heavy machine tools is presented to demonstrate the application and performance of the proposed method. A comparison of the proposed model with a traditional model is studied as well in the example. - Highlights: • A generalized multivariate hybrid degradation process model is introduced. • Various types of dependent degradation processes can be modeled coherently. • The effects of environmental conditions and operating profiles are investigated. • Unit-specific RUL assessment is implemented through a two-step Bayesian method.

  1. Reliability analysis and assessment of structural systems

    International Nuclear Information System (INIS)

    Yao, J.T.P.; Anderson, C.A.

    1977-01-01

    The study of structural reliability deals with the probability of having satisfactory performance of the structure under consideration within any specific time period. To pursue this study, it is necessary to apply available knowledge and methodology in structural analysis (including dynamics) and design, behavior of materials and structures, experimental mechanics, and the theory of probability and statistics. In addition, various severe loading phenomena such as strong motion earthquakes and wind storms are important considerations. For three decades now, much work has been done on reliability analysis of structures, and during this past decade, certain so-called 'Level I' reliability-based design codes have been proposed and are in various stages of implementation. These contributions will be critically reviewed and summarized in this paper. Because of the undesirable consequences resulting from the failure of nuclear structures, it is important and desirable to consider the structural reliability in the analysis and design of these structures. Moreover, after these nuclear structures are constructed, it is desirable for engineers to be able to assess the structural reliability periodically as well as immediately following the occurrence of severe loading conditions such as a strong-motion earthquake. During this past decade, increasing use has been made of techniques of system identification in structural engineering. On the basis of non-destructive test results, various methods have been developed to obtain an adequate mathematical model (such as the equations of motion with more realistic parameters) to represent the structural system

  2. Quantitative dynamic reliability evaluation of AP1000 passive safety systems by using FMEA and GO-FLOW methodology

    International Nuclear Information System (INIS)

    Hashim Muhammad; Yoshikawa, Hidekazu; Matsuoka, Takeshi; Yang Ming

    2014-01-01

    The passive safety systems utilized in advanced pressurized water reactor (PWR) design such as AP1000 should be more reliable than that of active safety systems of conventional PWR by less possible opportunities of hardware failures and human errors (less human intervention). The objectives of present study are to evaluate the dynamic reliability of AP1000 plant in order to check the effectiveness of passive safety systems by comparing the reliability-related issues with that of active safety systems in the event of the big accidents. How should the dynamic reliability of passive safety systems properly evaluated? And then what will be the comparison of reliability results of AP1000 passive safety systems with the active safety systems of conventional PWR. For this purpose, a single loop model of AP1000 passive core cooling system (PXS) and passive containment cooling system (PCCS) are assumed separately for quantitative reliability evaluation. The transient behaviors of these passive safety systems are taken under the large break loss-of-coolant accident in the cold leg. The analysis is made by utilizing the qualitative method failure mode and effect analysis in order to identify the potential failure mode and success-oriented reliability analysis tool called GO-FLOW for quantitative reliability evaluation. The GO-FLOW analysis has been conducted separately for PXS and PCCS systems under the same accident. The analysis results show that reliability of AP1000 passive safety systems (PXS and PCCS) is increased due to redundancies and diversity of passive safety subsystems and components, and four stages automatic depressurization system is the key subsystem for successful actuation of PXS and PCCS system. The reliability results of PCCS system of AP1000 are more reliable than that of the containment spray system of conventional PWR. And also GO-FLOW method can be utilized for reliability evaluation of passive safety systems. (author)

  3. Power electronics reliability analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Mark A.; Atcitty, Stanley

    2009-12-01

    This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

  4. An integrated methodology for the dynamic performance and reliability evaluation of fault-tolerant systems

    International Nuclear Information System (INIS)

    Dominguez-Garcia, Alejandro D.; Kassakian, John G.; Schindall, Joel E.; Zinchuk, Jeffrey J.

    2008-01-01

    We propose an integrated methodology for the reliability and dynamic performance analysis of fault-tolerant systems. This methodology uses a behavioral model of the system dynamics, similar to the ones used by control engineers to design the control system, but also incorporates artifacts to model the failure behavior of each component. These artifacts include component failure modes (and associated failure rates) and how those failure modes affect the dynamic behavior of the component. The methodology bases the system evaluation on the analysis of the dynamics of the different configurations the system can reach after component failures occur. For each of the possible system configurations, a performance evaluation of its dynamic behavior is carried out to check whether its properties, e.g., accuracy, overshoot, or settling time, which are called performance metrics, meet system requirements. Markov chains are used to model the stochastic process associated with the different configurations that a system can adopt when failures occur. This methodology not only enables an integrated framework for evaluating dynamic performance and reliability of fault-tolerant systems, but also enables a method for guiding the system design process, and further optimization. To illustrate the methodology, we present a case-study of a lateral-directional flight control system for a fighter aircraft

  5. Human Performance Modeling for Dynamic Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory; Mandelli, Diego [Idaho National Laboratory

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  6. Application of GO methodology in reliability analysis of offsite power supply of Daya Bay NPP

    International Nuclear Information System (INIS)

    Shen Zupei; Li Xiaodong; Huang Xiangrui

    2003-01-01

    The author applies the GO methodology to reliability analysis of the offsite power supply system of Daya Bay NPP. The direct quantitative calculation formulas of the stable reliability target of the system with shared signals and the dynamic calculation formulas of the state probability for the unit with two states are derived. The method to solve the fault event sets of the system is also presented and all the fault event sets of the outer power supply system and their failure probability are obtained. The resumption reliability of the offsite power supply system after the stability failure of the power net is also calculated. The result shows that the GO methodology is very simple and useful in the stable and dynamic reliability analysis of the repairable system

  7. Modeling human reliability analysis using MIDAS

    International Nuclear Information System (INIS)

    Boring, R. L.

    2006-01-01

    This paper documents current efforts to infuse human reliability analysis (HRA) into human performance simulation. The Idaho National Laboratory is teamed with NASA Ames Research Center to bridge the SPAR-H HRA method with NASA's Man-machine Integration Design and Analysis System (MIDAS) for use in simulating and modeling the human contribution to risk in nuclear power plant control room operations. It is anticipated that the union of MIDAS and SPAR-H will pave the path for cost-effective, timely, and valid simulated control room operators for studying current and next generation control room configurations. This paper highlights considerations for creating the dynamic HRA framework necessary for simulation, including event dependency and granularity. This paper also highlights how the SPAR-H performance shaping factors can be modeled in MIDAS across static, dynamic, and initiator conditions common to control room scenarios. This paper concludes with a discussion of the relationship of the workload factors currently in MIDAS and the performance shaping factors in SPAR-H. (authors)

  8. Reliable dynamics in Boolean and continuous networks

    International Nuclear Information System (INIS)

    Ackermann, Eva; Drossel, Barbara; Peixoto, Tiago P

    2012-01-01

    We investigate the dynamical behavior of a model of robust gene regulatory networks which possess ‘entirely reliable’ trajectories. In a Boolean representation, these trajectories are characterized by being insensitive to the order in which the nodes are updated, i.e. they always go through the same sequence of states. The Boolean model for gene activity is compared with a continuous description in terms of differential equations for the concentrations of mRNA and proteins. We found that entirely reliable Boolean trajectories can be reproduced perfectly in the continuous model when realistic Hill coefficients are used. We investigate to what extent this high correspondence between Boolean and continuous trajectories depends on the extent of reliability of the Boolean trajectories, and we identify simple criteria that enable the faithful reproduction of the Boolean dynamics in the continuous description. (paper)

  9. Advantages of a Dynamic RGGG Method in Qualitative and Quantitative Analysis

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2009-01-01

    Various researches have been conducted in order to analyze dynamic interactions among components and process variables in nuclear power plants which cannot be handled by static reliability analysis methods such as conventional fault tree and event tree techniques. A dynamic reliability graph with general gates (RGGG) method was proposed for an intuitive modeling of dynamic systems and it enables one to easily analyze huge and complex systems. In this paper, advantages of the dynamic RGGG method are assessed through two stages: system modeling and quantitative analysis. And then a software tool for dynamic RGGG method is introduced and an application to a real dynamic system is accompanied

  10. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    Science.gov (United States)

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  11. A discrete-time Bayesian network reliability modeling and analysis framework

    International Nuclear Information System (INIS)

    Boudali, H.; Dugan, J.B.

    2005-01-01

    Dependability tools are becoming an indispensable tool for modeling and analyzing (critical) systems. However the growing complexity of such systems calls for increasing sophistication of these tools. Dependability tools need to not only capture the complex dynamic behavior of the system components, but they must be also easy to use, intuitive, and computationally efficient. In general, current tools have a number of shortcomings including lack of modeling power, incapacity to efficiently handle general component failure distributions, and ineffectiveness in solving large models that exhibit complex dependencies between their components. We propose a novel reliability modeling and analysis framework based on the Bayesian network (BN) formalism. The overall approach is to investigate timed Bayesian networks and to find a suitable reliability framework for dynamic systems. We have applied our methodology to two example systems and preliminary results are promising. We have defined a discrete-time BN reliability formalism and demonstrated its capabilities from a modeling and analysis point of view. This research shows that a BN based reliability formalism is a powerful potential solution to modeling and analyzing various kinds of system components behaviors and interactions. Moreover, being based on the BN formalism, the framework is easy to use and intuitive for non-experts, and provides a basis for more advanced and useful analyses such as system diagnosis

  12. Role of network dynamics in shaping spike timing reliability

    International Nuclear Information System (INIS)

    Bazhenov, Maxim; Rulkov, Nikolai F.; Fellous, Jean-Marc; Timofeev, Igor

    2005-01-01

    We study the reliability of cortical neuron responses to periodically modulated synaptic stimuli. Simple map-based models of two different types of cortical neurons are constructed to replicate the intrinsic resonances of reliability found in experimental data and to explore the effects of those resonance properties on collective behavior in a cortical network model containing excitatory and inhibitory cells. We show that network interactions can enhance the frequency range of reliable responses and that the latter can be controlled by the strength of synaptic connections. The underlying dynamical mechanisms of reliability enhancement are discussed

  13. Reliability analysis of cluster-based ad-hoc networks

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2008-01-01

    The mobile ad-hoc wireless network (MAWN) is a new and emerging network scheme that is being employed in a variety of applications. The MAWN varies from traditional networks because it is a self-forming and dynamic network. The MAWN is free of infrastructure and, as such, only the mobile nodes comprise the network. Pairs of nodes communicate either directly or through other nodes. To do so, each node acts, in turn, as a source, destination, and relay of messages. The virtue of a MAWN is the flexibility this provides; however, the challenge for reliability analyses is also brought about by this unique feature. The variability and volatility of the MAWN configuration makes typical reliability methods (e.g. reliability block diagram) inappropriate because no single structure or configuration represents all manifestations of a MAWN. For this reason, new methods are being developed to analyze the reliability of this new networking technology. New published methods adapt to this feature by treating the configuration probabilistically or by inclusion of embedded mobility models. This paper joins both methods together and expands upon these works by modifying the problem formulation to address the reliability analysis of a cluster-based MAWN. The cluster-based MAWN is deployed in applications with constraints on networking resources such as bandwidth and energy. This paper presents the problem's formulation, a discussion of applicable reliability metrics for the MAWN, and illustration of a Monte Carlo simulation method through the analysis of several example networks

  14. Reliability Analysis Study of Digital Reactor Protection System in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Guo, Xiao Ming; Liu, Tao; Tong, Jie Juan; Zhao, Jun

    2011-01-01

    The Digital I and C systems are believed to improve a plants safety and reliability generally. The reliability analysis of digital I and C system has become one research hotspot. Traditional fault tree method is one of means to quantify the digital I and C system reliability. Review of advanced nuclear power plant AP1000 digital protection system evaluation makes clear both the fault tree application and analysis process to the digital system reliability. One typical digital protection system special for advanced reactor has been developed, which reliability evaluation is necessary for design demonstration. The typical digital protection system construction is introduced in the paper, and the process of FMEA and fault tree application to the digital protection system reliability evaluation are described. Reliability data and bypass logic modeling are two points giving special attention in the paper. Because the factors about time sequence and feedback not exist in reactor protection system obviously, the dynamic feature of digital system is not discussed

  15. Multidisciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song; Chamis, Christos C. (Technical Monitor)

    2001-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code, developed under the leadership of NASA Glenn Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multidisciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  16. Field programmable gate array reliability analysis using the dynamic flow graph methodology

    Energy Technology Data Exchange (ETDEWEB)

    McNelles, Phillip; Lu, Lixuan [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario (Canada)

    2016-10-15

    Field programmable gate array (FPGA)-based systems are thought to be a practical option to replace certain obsolete instrumentation and control systems in nuclear power plants. An FPGA is a type of integrated circuit, which is programmed after being manufactured. FPGAs have some advantages over other electronic technologies, such as analog circuits, microprocessors, and Programmable Logic Controllers (PLCs), for nuclear instrumentation and control, and safety system applications. However, safety-related issues for FPGA-based systems remain to be verified. Owing to this, modeling FPGA-based systems for safety assessment has now become an important point of research. One potential methodology is the dynamic flowgraph methodology (DFM). It has been used for modeling software/hardware interactions in modern control systems. In this paper, FPGA logic was analyzed using DFM. Four aspects of FPGAs are investigated: the 'IEEE 1164 standard', registers (D flip-flops), configurable logic blocks, and an FPGA-based signal compensator. The ModelSim simulations confirmed that DFM was able to accurately model those four FPGA properties, proving that DFM has the potential to be used in the modeling of FPGA-based systems. Furthermore, advantages of DFM over traditional reliability analysis methods and FPGA simulators are presented, along with a discussion of potential issues with using DFM for FPGA-based system modeling.

  17. HUMAN RELIABILITY ANALYSIS DENGAN PENDEKATAN COGNITIVE RELIABILITY AND ERROR ANALYSIS METHOD (CREAM

    Directory of Open Access Journals (Sweden)

    Zahirah Alifia Maulida

    2015-01-01

    Full Text Available Kecelakaan kerja pada bidang grinding dan welding menempati urutan tertinggi selama lima tahun terakhir di PT. X. Kecelakaan ini disebabkan oleh human error. Human error terjadi karena pengaruh lingkungan kerja fisik dan non fisik.Penelitian kali menggunakan skenario untuk memprediksi serta mengurangi kemungkinan terjadinya error pada manusia dengan pendekatan CREAM (Cognitive Reliability and Error Analysis Method. CREAM adalah salah satu metode human reliability analysis yang berfungsi untuk mendapatkan nilai Cognitive Failure Probability (CFP yang dapat dilakukan dengan dua cara yaitu basic method dan extended method. Pada basic method hanya akan didapatkan nilai failure probabailty secara umum, sedangkan untuk extended method akan didapatkan CFP untuk setiap task. Hasil penelitian menunjukkan faktor- faktor yang mempengaruhi timbulnya error pada pekerjaan grinding dan welding adalah kecukupan organisasi, kecukupan dari Man Machine Interface (MMI & dukungan operasional, ketersediaan prosedur/ perencanaan, serta kecukupan pelatihan dan pengalaman. Aspek kognitif pada pekerjaan grinding yang memiliki nilai error paling tinggi adalah planning dengan nilai CFP 0.3 dan pada pekerjaan welding yaitu aspek kognitif execution dengan nilai CFP 0.18. Sebagai upaya untuk mengurangi nilai error kognitif pada pekerjaan grinding dan welding rekomendasi yang diberikan adalah memberikan training secara rutin, work instrucstion yang lebih rinci dan memberikan sosialisasi alat. Kata kunci: CREAM (cognitive reliability and error analysis method, HRA (human reliability analysis, cognitive error Abstract The accidents in grinding and welding sectors were the highest cases over the last five years in PT. X and it caused by human error. Human error occurs due to the influence of working environment both physically and non-physically. This study will implement an approaching scenario called CREAM (Cognitive Reliability and Error Analysis Method. CREAM is one of human

  18. Reliability analysis of nuclear containment without metallic liners against jet aircraft crash

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, N.A.; Iqbal, M.A.; Abbas, H. E-mail: abbas_husain@hotmail.com; Paul, D.K

    2003-09-01

    The present study presents a methodology for detailed reliability analysis of nuclear containment without metallic liners against aircraft crash. For this purpose, a nonlinear limit state function has been derived using violation of tolerable crack width as failure criterion. This criterion has been considered as failure criterion because radioactive radiations may come out if size of crack becomes more than the tolerable crack width. The derived limit state uses the response of containment that has been obtained from a detailed dynamic analysis of nuclear containment under an impact of a large size Boeing jet aircraft. Using this response in conjunction with limit state function, the reliabilities and probabilities of failures are obtained at a number of vulnerable locations employing an efficient first-order reliability method (FORM). These values of reliability and probability of failure at various vulnerable locations are then used for the estimation of conditional and annual reliabilities of nuclear containment as a function of its location from the airport. To study the influence of the various random variables on containment reliability the sensitivity analysis has been performed. Some parametric studies have also been included to obtain the results of field and academic interest.

  19. Dynamic reliability networks with self-healing units

    International Nuclear Information System (INIS)

    Jenab, K.; Seyed Hosseini, S.M.; Dhillon, B.S.

    2008-01-01

    This paper presents an analytical approach for dynamic reliability networks used for the failure limit strategy in maintenance optimization. The proposed approach utilizes the moment generating function (MGF) and the flow-graph concept to depict the functional and reliability diagrams of the system comprised of series, parallel or mix configuration of self-healing units. The self-healing unit is featured by the embedded failure detection and recovery mechanisms presented by self-loop in flow-graph networks. The newly developed analytical approach provides the probability of the system failure and time-to-failure data i.e., mean and standard deviation time-to-failure used for maintenance optimization

  20. A Research Roadmap for Computation-Based Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  1. A Research Roadmap for Computation-Based Human Reliability Analysis

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey; Smith, Curtis; Groth, Katrina

    2015-01-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is often secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.

  2. RELIABILITY ANALYSIS OF BENDING ELIABILITY ANALYSIS OF ...

    African Journals Online (AJOL)

    eobe

    Reliability analysis of the safety levels of the criteria slabs, have been .... was also noted [2] that if the risk level or β < 3.1), the ... reliability analysis. A study [6] has shown that all geometric variables, ..... Germany, 1988. 12. Hasofer, A. M and ...

  3. RELIABLE DYNAMIC SOURCE ROUTING PROTOCOL (RDSRP FOR ENERGY HARVESTING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    B. Narasimhan

    2015-03-01

    Full Text Available Wireless sensor networks (WSNs carry noteworthy pros over traditional communication. Though, unkind and composite environments fake great challenges in the reliability of WSN communications. It is more vital to develop a reliable unipath dynamic source routing protocol (RDSRPl for WSN to provide better quality of service (QoS in energy harvesting wireless sensor networks (EH-WSN. This paper proposes a dynamic source routing approach for attaining the most reliable route in EH-WSNs. Performance evaluation is carried out using NS-2 and throughput and packet delivery ratio are chosen as the metrics.

  4. [Reliability theory based on quality risk network analysis for Chinese medicine injection].

    Science.gov (United States)

    Li, Zheng; Kang, Li-Yuan; Fan, Xiao-Hui

    2014-08-01

    A new risk analysis method based upon reliability theory was introduced in this paper for the quality risk management of Chinese medicine injection manufacturing plants. The risk events including both cause and effect ones were derived in the framework as nodes with a Bayesian network analysis approach. It thus transforms the risk analysis results from failure mode and effect analysis (FMEA) into a Bayesian network platform. With its structure and parameters determined, the network can be used to evaluate the system reliability quantitatively with probabilistic analytical appraoches. Using network analysis tools such as GeNie and AgenaRisk, we are able to find the nodes that are most critical to influence the system reliability. The importance of each node to the system can be quantitatively evaluated by calculating the effect of the node on the overall risk, and minimization plan can be determined accordingly to reduce their influences and improve the system reliability. Using the Shengmai injection manufacturing plant of SZYY Ltd as a user case, we analyzed the quality risk with both static FMEA analysis and dynamic Bayesian Network analysis. The potential risk factors for the quality of Shengmai injection manufacturing were identified with the network analysis platform. Quality assurance actions were further defined to reduce the risk and improve the product quality.

  5. Sensitivity case study in dynamic reliability

    International Nuclear Information System (INIS)

    Kopustinskas, V.

    2001-01-01

    Recent trends in the risk assessments of the complex industrial plants show increased interest in dynamical models arising from the coupling of the probabilistic and deterministic approaches. Conventionally used static system models, represented by the fault/event trees can not reflect dynamic behaviour of the system and complex interaction between the process variables, components and human actions. The nature of the most complex industrial systems, like nuclear power plants (NPP) suggests that Markov type stochastic differential equations (SDEs) consisting of jump and drift components can be successfully used to represent and analyze the phenomena. This paper discuss possible applications of the SDEs in reliability problems. In particular, Accident Localization System (ALS) of the Ignalina NPP was analyzed as a benchmark for further investigations in this area. (author)

  6. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  7. Reliability analysis of shutdown system

    International Nuclear Information System (INIS)

    Kumar, C. Senthil; John Arul, A.; Pal Singh, Om; Suryaprakasa Rao, K.

    2005-01-01

    This paper presents the results of reliability analysis of Shutdown System (SDS) of Indian Prototype Fast Breeder Reactor. Reliability analysis carried out using Fault Tree Analysis predicts a value of 3.5 x 10 -8 /de for failure of shutdown function in case of global faults and 4.4 x 10 -8 /de for local faults. Based on 20 de/y, the frequency of shutdown function failure is 0.7 x 10 -6 /ry, which meets the reliability target, set by the Indian Atomic Energy Regulatory Board. The reliability is limited by Common Cause Failure (CCF) of actuation part of SDS and to a lesser extent CCF of electronic components. The failure frequency of individual systems is -3 /ry, which also meets the safety criteria. Uncertainty analysis indicates a maximum error factor of 5 for the top event unavailability

  8. Integrating reliability analysis and design

    International Nuclear Information System (INIS)

    Rasmuson, D.M.

    1980-10-01

    This report describes the Interactive Reliability Analysis Project and demonstrates the advantages of using computer-aided design systems (CADS) in reliability analysis. Common cause failure problems require presentations of systems, analysis of fault trees, and evaluation of solutions to these. Results have to be communicated between the reliability analyst and the system designer. Using a computer-aided design system saves time and money in the analysis of design. Computer-aided design systems lend themselves to cable routing, valve and switch lists, pipe routing, and other component studies. At EG and G Idaho, Inc., the Applicon CADS is being applied to the study of water reactor safety systems

  9. Multi-Disciplinary System Reliability Analysis

    Science.gov (United States)

    Mahadevan, Sankaran; Han, Song

    1997-01-01

    The objective of this study is to develop a new methodology for estimating the reliability of engineering systems that encompass multiple disciplines. The methodology is formulated in the context of the NESSUS probabilistic structural analysis code developed under the leadership of NASA Lewis Research Center. The NESSUS code has been successfully applied to the reliability estimation of a variety of structural engineering systems. This study examines whether the features of NESSUS could be used to investigate the reliability of systems in other disciplines such as heat transfer, fluid mechanics, electrical circuits etc., without considerable programming effort specific to each discipline. In this study, the mechanical equivalence between system behavior models in different disciplines are investigated to achieve this objective. A new methodology is presented for the analysis of heat transfer, fluid flow, and electrical circuit problems using the structural analysis routines within NESSUS, by utilizing the equivalence between the computational quantities in different disciplines. This technique is integrated with the fast probability integration and system reliability techniques within the NESSUS code, to successfully compute the system reliability of multi-disciplinary systems. Traditional as well as progressive failure analysis methods for system reliability estimation are demonstrated, through a numerical example of a heat exchanger system involving failure modes in structural, heat transfer and fluid flow disciplines.

  10. Fundamentals and applications of systems reliability analysis

    International Nuclear Information System (INIS)

    Boesebeck, K.; Heuser, F.W.; Kotthoff, K.

    1976-01-01

    The lecture gives a survey on the application of methods of reliability analysis to assess the safety of nuclear power plants. Possible statements of reliability analysis in connection with specifications of the atomic licensing procedure are especially dealt with. Existing specifications of safety criteria are additionally discussed with the help of reliability analysis by the example of the reliability analysis of a reactor protection system. Beyond the limited application to single safety systems, the significance of reliability analysis for a closed risk concept is explained in the last part of the lecture. (orig./LH) [de

  11. A Rigorous, Compositional, and Extensible Framework for Dynamic Fault Tree Analysis

    NARCIS (Netherlands)

    Boudali, H.; Sandhu, R.; Crouzen, Pepijn; Stoelinga, Mariëlle Ida Antoinette

    Fault trees (FT) are among the most prominent formalisms for reliability analysis of technical systems. Dynamic FTs extend FTs with support for expressing dynamic dependencies among components. The standard analysis vehicle for DFTs is state-based, and treats the model as a CTMC, a continuous-time

  12. Reliability analysis of software based safety functions

    International Nuclear Information System (INIS)

    Pulkkinen, U.

    1993-05-01

    The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)

  13. THE RELIABILITY ANALYSIS OF EXISTING REINFORCED CONCRETE PILES IN PERMAFROST REGIONS

    Directory of Open Access Journals (Sweden)

    Vladimir S. Utkin

    2017-06-01

    Full Text Available The article describes the general problem of safe operation of buildings and structures with the dynamics of permafrost in Russia and other countries. The global warming on Earth will lead to global disasters such as failures of buildings and structures. The main reason of these failures will be a reduction of bearing capacity and the reliability of foundations. It is necessary to organize the observations (monitoring for the process of reducing the bearing capacity of foundations to prevent such accidents and reduce negative consequences, to development of preventive measures and operational methods for the piles reliability analysis. The main load-bearing elements of the foundation are reinforced concrete piles and frozen ground. Reinforced concrete piles have a tendency to decrease the bearing capacity and reliability of the upper (aerial part and the part in the soil. The article discusses the problem of reliability analysis of existing reinforced concrete piles in upper part in permafrost regions by the reason of pile degradation in the contact zone of seasonal thawing and freezing soil. The evaluation of the probability of failure is important in itself, but also it important for the reliability of foundation: consisting of piles and frozen soil. Authors offers the methods for reliability analysis of upper part of reinforced concrete piles in the contact zone with seasonally thawed soil under different number of random variables (fuzzy variables in the design mathematical model of a limit state by the strength criterion.

  14. A reliability analysis of the revised competitiveness index.

    Science.gov (United States)

    Harris, Paul B; Houston, John M

    2010-06-01

    This study examined the reliability of the Revised Competitiveness Index by investigating the test-retest reliability, interitem reliability, and factor structure of the measure based on a sample of 280 undergraduates (200 women, 80 men) ranging in age from 18 to 28 years (M = 20.1, SD = 2.1). The findings indicate that the Revised Competitiveness Index has high test-retest reliability, high inter-item reliability, and a stable factor structure. The results support the assertion that the Revised Competitiveness Index assesses competitiveness as a stable trait rather than a dynamic state.

  15. Reliability analysis framework for computer-assisted medical decision systems

    International Nuclear Information System (INIS)

    Habas, Piotr A.; Zurada, Jacek M.; Elmaghraby, Adel S.; Tourassi, Georgia D.

    2007-01-01

    We present a technique that enhances computer-assisted decision (CAD) systems with the ability to assess the reliability of each individual decision they make. Reliability assessment is achieved by measuring the accuracy of a CAD system with known cases similar to the one in question. The proposed technique analyzes the feature space neighborhood of the query case to dynamically select an input-dependent set of known cases relevant to the query. This set is used to assess the local (query-specific) accuracy of the CAD system. The estimated local accuracy is utilized as a reliability measure of the CAD response to the query case. The underlying hypothesis of the study is that CAD decisions with higher reliability are more accurate. The above hypothesis was tested using a mammographic database of 1337 regions of interest (ROIs) with biopsy-proven ground truth (681 with masses, 656 with normal parenchyma). Three types of decision models, (i) a back-propagation neural network (BPNN), (ii) a generalized regression neural network (GRNN), and (iii) a support vector machine (SVM), were developed to detect masses based on eight morphological features automatically extracted from each ROI. The performance of all decision models was evaluated using the Receiver Operating Characteristic (ROC) analysis. The study showed that the proposed reliability measure is a strong predictor of the CAD system's case-specific accuracy. Specifically, the ROC area index for CAD predictions with high reliability was significantly better than for those with low reliability values. This result was consistent across all decision models investigated in the study. The proposed case-specific reliability analysis technique could be used to alert the CAD user when an opinion that is unlikely to be reliable is offered. The technique can be easily deployed in the clinical environment because it is applicable with a wide range of classifiers regardless of their structure and it requires neither additional

  16. Stochastic quasi-gradient based optimization algorithms for dynamic reliability applications

    International Nuclear Information System (INIS)

    Bourgeois, F.; Labeau, P.E.

    2001-01-01

    On one hand, PSA results are increasingly used in decision making, system management and optimization of system design. On the other hand, when severe accidental transients are considered, dynamic reliability appears appropriate to account for the complex interaction between the transitions between hardware configurations, the operator behavior and the dynamic evolution of the system. This paper presents an exploratory work in which the estimation of the system unreliability in a dynamic context is coupled with an optimization algorithm to determine the 'best' safety policy. Because some reliability parameters are likely to be distributed, the cost function to be minimized turns out to be a random variable. Stochastic programming techniques are therefore envisioned to determine an optimal strategy. Monte Carlo simulation is used at all stages of the computations, from the estimation of the system unreliability to that of the stochastic quasi-gradient. The optimization algorithm is illustrated on a HNO 3 supply system

  17. Reliability analysis and initial requirements for FC systems and stacks

    Science.gov (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  18. Power system reliability analysis using fault trees

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2006-01-01

    The power system reliability analysis method is developed from the aspect of reliable delivery of electrical energy to customers. The method is developed based on the fault tree analysis, which is widely applied in the Probabilistic Safety Assessment (PSA). The method is adapted for the power system reliability analysis. The method is developed in a way that only the basic reliability parameters of the analysed power system are necessary as an input for the calculation of reliability indices of the system. The modeling and analysis was performed on an example power system consisting of eight substations. The results include the level of reliability of current power system configuration, the combinations of component failures resulting in a failed power delivery to loads, and the importance factors for components and subsystems. (author)

  19. Dynamic reliability assessment and prediction for repairable systems with interval-censored data

    International Nuclear Information System (INIS)

    Peng, Yizhen; Wang, Yu; Zi, YanYang; Tsui, Kwok-Leung; Zhang, Chuhua

    2017-01-01

    The ‘Test, Analyze and Fix’ process is widely applied to improve the reliability of a repairable system. In this process, dynamic reliability assessment for the system has been paid a great deal of attention. Due to instrument malfunctions, staff omissions and imperfect inspection strategies, field reliability data are often subject to interval censoring, making dynamic reliability assessment become a difficult task. Most traditional methods assume this kind of data as multiple normal distributed variables or the missing mechanism as missing at random, which may cause a large bias in parameter estimation. This paper proposes a novel method to evaluate and predict the dynamic reliability of a repairable system subject to interval-censored problem. First, a multiple imputation strategy based on the assumption that the reliability growth trend follows a nonhomogeneous Poisson process is developed to derive the distributions of missing data. Second, a new order statistic model that can transfer the dependent variables into independent variables is developed to simplify the imputation procedure. The unknown parameters of the model are iteratively inferred by the Monte Carlo expectation maximization (MCEM) algorithm. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for gas pipeline compressor system are implemented. - Highlights: • A new multiple imputation strategy was developed to derive the PDF of missing data. • A new order statistic model was developed to simplify the imputation procedure. • The parameters of the order statistic model were iteratively inferred by MCEM. • A real cases study was conducted to verify the effectiveness of the proposed method.

  20. Reliability analysis under epistemic uncertainty

    International Nuclear Information System (INIS)

    Nannapaneni, Saideep; Mahadevan, Sankaran

    2016-01-01

    This paper proposes a probabilistic framework to include both aleatory and epistemic uncertainty within model-based reliability estimation of engineering systems for individual limit states. Epistemic uncertainty is considered due to both data and model sources. Sparse point and/or interval data regarding the input random variables leads to uncertainty regarding their distribution types, distribution parameters, and correlations; this statistical uncertainty is included in the reliability analysis through a combination of likelihood-based representation, Bayesian hypothesis testing, and Bayesian model averaging techniques. Model errors, which include numerical solution errors and model form errors, are quantified through Gaussian process models and included in the reliability analysis. The probability integral transform is used to develop an auxiliary variable approach that facilitates a single-level representation of both aleatory and epistemic uncertainty. This strategy results in an efficient single-loop implementation of Monte Carlo simulation (MCS) and FORM/SORM techniques for reliability estimation under both aleatory and epistemic uncertainty. Two engineering examples are used to demonstrate the proposed methodology. - Highlights: • Epistemic uncertainty due to data and model included in reliability analysis. • A novel FORM-based approach proposed to include aleatory and epistemic uncertainty. • A single-loop Monte Carlo approach proposed to include both types of uncertainties. • Two engineering examples used for illustration.

  1. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1982-01-01

    This paper describes a fault tree analysis package that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and project delays. The package operates interactively, allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis, system data can be derived automatically from a generic data bank. As the analysis proceeds, improved estimates of critical failure rates and test and maintenance schedules can be inserted. The technique is applied to the reliability analysis of the recently upgraded HIFAR Containment Isolation System. (author)

  2. Modeling cognition dynamics and its application to human reliability analysis

    International Nuclear Information System (INIS)

    Mosleh, A.; Smidts, C.; Shen, S.H.

    1996-01-01

    For the past two decades, a number of approaches have been proposed for the identification and estimation of the likelihood of human errors, particularly for use in the risk and reliability studies of nuclear power plants. Despite the wide-spread use of the most popular among these methods, their fundamental weaknesses are widely recognized, and the treatment of human reliability has been considered as one of the soft spots of risk studies of large technological systems. To alleviate the situation, new efforts have focused on the development of human reliability models based on a more fundamental understanding of operator response and its cognitive aspects

  3. A reliability analysis tool for SpaceWire network

    Science.gov (United States)

    Zhou, Qiang; Zhu, Longjiang; Fei, Haidong; Wang, Xingyou

    2017-04-01

    A SpaceWire is a standard for on-board satellite networks as the basis for future data-handling architectures. It is becoming more and more popular in space applications due to its technical advantages, including reliability, low power and fault protection, etc. High reliability is the vital issue for spacecraft. Therefore, it is very important to analyze and improve the reliability performance of the SpaceWire network. This paper deals with the problem of reliability modeling and analysis with SpaceWire network. According to the function division of distributed network, a reliability analysis method based on a task is proposed, the reliability analysis of every task can lead to the system reliability matrix, the reliability result of the network system can be deduced by integrating these entire reliability indexes in the matrix. With the method, we develop a reliability analysis tool for SpaceWire Network based on VC, where the computation schemes for reliability matrix and the multi-path-task reliability are also implemented. By using this tool, we analyze several cases on typical architectures. And the analytic results indicate that redundancy architecture has better reliability performance than basic one. In practical, the dual redundancy scheme has been adopted for some key unit, to improve the reliability index of the system or task. Finally, this reliability analysis tool will has a directive influence on both task division and topology selection in the phase of SpaceWire network system design.

  4. Analysis of information security reliability: A tutorial

    International Nuclear Information System (INIS)

    Kondakci, Suleyman

    2015-01-01

    This article presents a concise reliability analysis of network security abstracted from stochastic modeling, reliability, and queuing theories. Network security analysis is composed of threats, their impacts, and recovery of the failed systems. A unique framework with a collection of the key reliability models is presented here to guide the determination of the system reliability based on the strength of malicious acts and performance of the recovery processes. A unique model, called Attack-obstacle model, is also proposed here for analyzing systems with immunity growth features. Most computer science curricula do not contain courses in reliability modeling applicable to different areas of computer engineering. Hence, the topic of reliability analysis is often too diffuse to most computer engineers and researchers dealing with network security. This work is thus aimed at shedding some light on this issue, which can be useful in identifying models, their assumptions and practical parameters for estimating the reliability of threatened systems and for assessing the performance of recovery facilities. It can also be useful for the classification of processes and states regarding the reliability of information systems. Systems with stochastic behaviors undergoing queue operations and random state transitions can also benefit from the approaches presented here. - Highlights: • A concise survey and tutorial in model-based reliability analysis applicable to information security. • A framework of key modeling approaches for assessing reliability of networked systems. • The framework facilitates quantitative risk assessment tasks guided by stochastic modeling and queuing theory. • Evaluation of approaches and models for modeling threats, failures, impacts, and recovery analysis of information systems

  5. Reliability Analysis of Core Protection Calculator System by Combining Petri Net and Fault Tree

    International Nuclear Information System (INIS)

    Kim, Hyejin; Kim, Jonghyun

    2013-01-01

    This paper proposes an approach to analyzing the reliability of digital systems by combining Petri net (PN) and Fault tree. The Petri net allows modeling event dependencies and interaction, to represent the time sequence, and to model assumptions for dynamic events. The Petri net model can be straightforwardly transformed to fault tree using the gate. Then, the FT can be integrated into the existing PSA. This paper applies the approach to the reliability analysis of Core Protection Calculator System (CPCS). Digital technology is replacing the analog instrumentation and control (I and C) systems in both new and upgraded nuclear power plants. As digital systems are introduced to nuclear power plants, issues related with reliability analyses of these digital systems are being raised. One of these issues is that static fault tree (FT) and event tree (ET) approach cannot properly account for dynamic interactions in the digital systems, such as multiple top events, logic loops and time delay. Many methods have been proposed to solve the problems, but there is no single method that is universally accepted for the application to the current generation probabilistic safety analysis (PSA)

  6. Reliability Analysis of Core Protection Calculator System by Combining Petri Net and Fault Tree

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyejin; Kim, Jonghyun [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    This paper proposes an approach to analyzing the reliability of digital systems by combining Petri net (PN) and Fault tree. The Petri net allows modeling event dependencies and interaction, to represent the time sequence, and to model assumptions for dynamic events. The Petri net model can be straightforwardly transformed to fault tree using the gate. Then, the FT can be integrated into the existing PSA. This paper applies the approach to the reliability analysis of Core Protection Calculator System (CPCS). Digital technology is replacing the analog instrumentation and control (I and C) systems in both new and upgraded nuclear power plants. As digital systems are introduced to nuclear power plants, issues related with reliability analyses of these digital systems are being raised. One of these issues is that static fault tree (FT) and event tree (ET) approach cannot properly account for dynamic interactions in the digital systems, such as multiple top events, logic loops and time delay. Many methods have been proposed to solve the problems, but there is no single method that is universally accepted for the application to the current generation probabilistic safety analysis (PSA)

  7. Reliability Analysis of Adhesive Bonded Scarf Joints

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Toft, Henrik Stensgaard; Lund, Erik

    2012-01-01

    element analysis (FEA). For the reliability analysis a design equation is considered which is related to a deterministic code-based design equation where reliability is secured by partial safety factors together with characteristic values for the material properties and loads. The failure criteria......A probabilistic model for the reliability analysis of adhesive bonded scarfed lap joints subjected to static loading is developed. It is representative for the main laminate in a wind turbine blade subjected to flapwise bending. The structural analysis is based on a three dimensional (3D) finite...... are formulated using a von Mises, a modified von Mises and a maximum stress failure criterion. The reliability level is estimated for the scarfed lap joint and this is compared with the target reliability level implicitly used in the wind turbine standard IEC 61400-1. A convergence study is performed to validate...

  8. Dynamic k-out-of-n system reliability with component partnership

    International Nuclear Information System (INIS)

    Coit, David W.; Chatwattanasiri, Nida; Wattanapongsakorn, Naruemon; Konak, Abdullah

    2015-01-01

    This paper describes a new k-out-of-n system reliability model that is appropriate for certain design problems when the minimum number of required components, k, changes dynamically in response to failures to maximize the utility of the available collection of functioning components. This new model shares some distinct similarities with weighted k-out-of-n models and for some problems they produce the same result. However, there are subtle and distinct differences, and in practice, there are some complex applications have not been properly explained or modeled by traditional or extended k-out-of-n system models. For this application, components are arranged in a k-out-of-n configuration of heterogeneous components with different performance levels. Component performance is indicated by a component-specific component partnership level; the fewer partners required to operate successfully implies higher performance. The components can work collectively with partners at the same level to maintain system reliability, or they can create a partnership group with components at higher performance levels which serve as replacements to provide the necessary number of working components. When components fail, the dynamic k-out-of-n configuration maintains reliability of the system with changing k by having components create partnerships with other components at the same level or above. To demonstrate the model, a system replacement maintenance policy based on a replacement interval variable is applied to an example system to obtain the optimal replacement time. - Highlights: • A new k-out-of-n system reliability model is presented. • Components can form partnerships with other components. • The new k-out-of-n model is presented with a dynamic or changing k. • The new model is for systems with components that must work together in a group

  9. Unavailability Analysis of Dynamic Systems of which the Configuration Changes with Time

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2011-01-01

    A dynamic system has a state at any given time which can be represented by a point in an appropriate state space and it is much more difficult to estimate the reliability or availability than a static system. As the classic fault tree cannot be used to model the time requirements, dynamic fault tree methods have been developed for the analysis of dynamic systems. They are time-dependent fault trees, so they can capture the dynamic behaviors of the system failure mechanisms. There exist two types of dynamic fault trees to analyze various dynamic properties of the system failure mechanisms. One dynamic fault tree handles failure mechanisms composed of sequence-dependent events using dynamic gates and the other one handles failure mechanisms of which the system configuration changes with time using house event matrix. In this paper, the second dynamic failure mechanism is assessed using a reliability graph with general gates (RGGG) which is an extended reliability graph model and allows more intuitive modeling of target systems compared to the fault tree. In order for the RGGG method to analyze such dynamic failure mechanism, a novel concept of reliability matrix for the RGGG is introduced and Bayesian Networks are used to quantify the modeled RGGG. The proposed method provides much easier way to model dynamic systems and understand the actual structure of the system compared to the dynamic fault tree with house events

  10. Culture Representation in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    David Gertman; Julie Marble; Steven Novack

    2006-12-01

    Understanding human-system response is critical to being able to plan and predict mission success in the modern battlespace. Commonly, human reliability analysis has been used to predict failures of human performance in complex, critical systems. However, most human reliability methods fail to take culture into account. This paper takes an easily understood state of the art human reliability analysis method and extends that method to account for the influence of culture, including acceptance of new technology, upon performance. The cultural parameters used to modify the human reliability analysis were determined from two standard industry approaches to cultural assessment: Hofstede’s (1991) cultural factors and Davis’ (1989) technology acceptance model (TAM). The result is called the Culture Adjustment Method (CAM). An example is presented that (1) reviews human reliability assessment with and without cultural attributes for a Supervisory Control and Data Acquisition (SCADA) system attack, (2) demonstrates how country specific information can be used to increase the realism of HRA modeling, and (3) discusses the differences in human error probability estimates arising from cultural differences.

  11. Model-based human reliability analysis: prospects and requirements

    International Nuclear Information System (INIS)

    Mosleh, A.; Chang, Y.H.

    2004-01-01

    Major limitations of the conventional methods for human reliability analysis (HRA), particularly those developed for operator response analysis in probabilistic safety assessments (PSA) of nuclear power plants, are summarized as a motivation for the need and a basis for developing requirements for the next generation HRA methods. It is argued that a model-based approach that provides explicit cognitive causal links between operator behaviors and directly or indirectly measurable causal factors should be at the core of the advanced methods. An example of such causal model is briefly reviewed, where due to the model complexity and input requirements can only be currently implemented in a dynamic PSA environment. The computer simulation code developed for this purpose is also described briefly, together with current limitations in the models, data, and the computer implementation

  12. Estimation of structural reliability under combined loads

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Brown, P.; Reich, M.

    1983-01-01

    For the overall safety evaluation of seismic category I structures subjected to various load combinations, a quantitative measure of the structural reliability in terms of a limit state probability can be conveniently used. For this purpose, the reliability analysis method for dynamic loads, which has recently been developed by the authors, was combined with the existing standard reliability analysis procedure for static and quasi-static loads. The significant parameters that enter into the analysis are: the rate at which each load (dead load, accidental internal pressure, earthquake, etc.) will occur, its duration and intensity. All these parameters are basically random variables for most of the loads to be considered. For dynamic loads, the overall intensity is usually characterized not only by their dynamic components but also by their static components. The structure considered in the present paper is a reinforced concrete containment structure subjected to various static and dynamic loads such as dead loads, accidental pressure, earthquake acceleration, etc. Computations are performed to evaluate the limit state probabilities under each load combination separately and also under all possible combinations of such loads

  13. Dynamic Scheduling for Cloud Reliability using Transportation Problem

    OpenAIRE

    P. Balasubramanie; S. K. Senthil Kumar

    2012-01-01

    Problem statement: Cloud is purely a dynamic environment and the existing task scheduling algorithms are mostly static and considered various parameters like time, cost, make span, speed, scalability, throughput, resource utilization, scheduling success rate and so on. Available scheduling algorithms are mostly heuristic in nature and more complex, time consuming and does not consider reliability and availability of the cloud computing environment. Therefore there is a need to implement a sch...

  14. Reliability Analysis of Dynamic Stability in Waves

    DEFF Research Database (Denmark)

    Søborg, Anders Veldt

    2004-01-01

    exhibit sufficient characteristics with respect to slope at zero heel (GM value), maximum leverarm, positive range of stability and area below the leverarm curve. The rule-based requirements to calm water leverarm curves are entirely based on experience obtained from vessels in operation and recorded......The assessment of a ship's intact stability is traditionally based on a semi-empirical deterministic concept that evaluates the characteristics of ship's calm water restoring leverarm curves. Today the ship is considered safe with respect to dynamic stability if its calm water leverarm curves...... accidents in the past. The rules therefore only leaves little room for evaluation and improvement of safety of a ship's dynamic stability. A few studies have evaluated the probability of ship stability loss in waves using Monte Carlo simulations. However, since this probability may be in the order of 10...

  15. Reliability Analysis of a Steel Frame

    Directory of Open Access Journals (Sweden)

    M. Sýkora

    2002-01-01

    Full Text Available A steel frame with haunches is designed according to Eurocodes. The frame is exposed to self-weight, snow, and wind actions. Lateral-torsional buckling appears to represent the most critical criterion, which is considered as a basis for the limit state function. In the reliability analysis, the probabilistic models proposed by the Joint Committee for Structural Safety (JCSS are used for basic variables. The uncertainty model coefficients take into account the inaccuracy of the resistance model for the haunched girder and the inaccuracy of the action effect model. The time invariant reliability analysis is based on Turkstra's rule for combinations of snow and wind actions. The time variant analysis describes snow and wind actions by jump processes with intermittencies. Assuming a 50-year lifetime, the obtained values of the reliability index b vary within the range from 3.95 up to 5.56. The cross-profile IPE 330 designed according to Eurocodes seems to be adequate. It appears that the time invariant reliability analysis based on Turkstra's rule provides considerably lower values of b than those obtained by the time variant analysis.

  16. Overview of system reliability analyses for PSA

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2012-01-01

    Overall explanations are given for many matters relating to system reliability analysis. Systems engineering, Operations research, Industrial engineering, Quality control are briefly explained. Many system reliability analysis methods including advanced methods are introduced. Discussions are given for FMEA, reliability block diagram, Markov model, Petri net, Bayesian network, goal tree success tree, dynamic flow graph methodology, cell-to-cell mapping technique, the GO-FLOW and others. (author)

  17. Time-dependent reliability sensitivity analysis of motion mechanisms

    International Nuclear Information System (INIS)

    Wei, Pengfei; Song, Jingwen; Lu, Zhenzhou; Yue, Zhufeng

    2016-01-01

    Reliability sensitivity analysis aims at identifying the source of structure/mechanism failure, and quantifying the effects of each random source or their distribution parameters on failure probability or reliability. In this paper, the time-dependent parametric reliability sensitivity (PRS) analysis as well as the global reliability sensitivity (GRS) analysis is introduced for the motion mechanisms. The PRS indices are defined as the partial derivatives of the time-dependent reliability w.r.t. the distribution parameters of each random input variable, and they quantify the effect of the small change of each distribution parameter on the time-dependent reliability. The GRS indices are defined for quantifying the individual, interaction and total contributions of the uncertainty in each random input variable to the time-dependent reliability. The envelope function method combined with the first order approximation of the motion error function is introduced for efficiently estimating the time-dependent PRS and GRS indices. Both the time-dependent PRS and GRS analysis techniques can be especially useful for reliability-based design. This significance of the proposed methods as well as the effectiveness of the envelope function method for estimating the time-dependent PRS and GRS indices are demonstrated with a four-bar mechanism and a car rack-and-pinion steering linkage. - Highlights: • Time-dependent parametric reliability sensitivity analysis is presented. • Time-dependent global reliability sensitivity analysis is presented for mechanisms. • The proposed method is especially useful for enhancing the kinematic reliability. • An envelope method is introduced for efficiently implementing the proposed methods. • The proposed method is demonstrated by two real planar mechanisms.

  18. Reliability and validity of risk analysis

    International Nuclear Information System (INIS)

    Aven, Terje; Heide, Bjornar

    2009-01-01

    In this paper we investigate to what extent risk analysis meets the scientific quality requirements of reliability and validity. We distinguish between two types of approaches within risk analysis, relative frequency-based approaches and Bayesian approaches. The former category includes both traditional statistical inference methods and the so-called probability of frequency approach. Depending on the risk analysis approach, the aim of the analysis is different, the results are presented in different ways and consequently the meaning of the concepts reliability and validity are not the same.

  19. Structural Reliability Analysis of Wind Turbines: A Review

    Directory of Open Access Journals (Sweden)

    Zhiyu Jiang

    2017-12-01

    Full Text Available The paper presents a detailed review of the state-of-the-art research activities on structural reliability analysis of wind turbines between the 1990s and 2017. We describe the reliability methods including the first- and second-order reliability methods and the simulation reliability methods and show the procedure for and application areas of structural reliability analysis of wind turbines. Further, we critically review the various structural reliability studies on rotor blades, bottom-fixed support structures, floating systems and mechanical and electrical components. Finally, future applications of structural reliability methods to wind turbine designs are discussed.

  20. Improving Reliability of Embedded Systems through Dynamic Memory Manager Optimization using Grammatical Evolution

    OpenAIRE

    Colmenar, J. Manuel; Risco-Martin, Jose L.; Atienza Alonso, David; Garnica, Oscar; Hidalgo, Jose I.; Lanchares, Juan

    2010-01-01

    Technology scaling has offered advantages to embedded systems, such as increased performance, more available memory and reduced energy consumption. However, scaling also brings a number of problems like reliability degradation mechanisms. The intensive activity of devices and high operating temperatures are key factors for reliability degradation in latest technology nodes. Focusing on embedded systems, the memory is prone to suffer reliability problems due to the intensive use of dynamic mem...

  1. Reliability analysis of reactor pressure vessel intensity

    International Nuclear Information System (INIS)

    Zheng Liangang; Lu Yongbo

    2012-01-01

    This paper performs the reliability analysis of reactor pressure vessel (RPV) with ANSYS. The analysis method include direct Monte Carlo Simulation method, Latin Hypercube Sampling, central composite design and Box-Behnken Matrix design. The RPV integrity reliability under given input condition is proposed. The result shows that the effects on the RPV base material reliability are internal press, allowable basic stress and elasticity modulus of base material in descending order, and the effects on the bolt reliability are allowable basic stress of bolt material, preload of bolt and internal press in descending order. (authors)

  2. System reliability analysis with natural language and expert's subjectivity

    International Nuclear Information System (INIS)

    Onisawa, T.

    1996-01-01

    This paper introduces natural language expressions and expert's subjectivity to system reliability analysis. To this end, this paper defines a subjective measure of reliability and presents the method of the system reliability analysis using the measure. The subjective measure of reliability corresponds to natural language expressions of reliability estimation, which is represented by a fuzzy set defined on [0,1]. The presented method deals with the dependence among subsystems and employs parametrized operations of subjective measures of reliability which can reflect expert 's subjectivity towards the analyzed system. The analysis results are also expressed by linguistic terms. Finally this paper gives an example of the system reliability analysis by the presented method

  3. Evaluating the reliability of multi-body mechanisms: A method considering the uncertainties of dynamic performance

    International Nuclear Information System (INIS)

    Wu, Jianing; Yan, Shaoze; Zuo, Ming J.

    2016-01-01

    Mechanism reliability is defined as the ability of a certain mechanism to maintain output accuracy under specified conditions. Mechanism reliability is generally assessed by the classical direct probability method (DPM) derived from the first order second moment (FOSM) method. The DPM relies strongly on the analytical form of the dynamic solution so it is not applicable to multi-body mechanisms that have only numerical solutions. In this paper, an indirect probability model (IPM) is proposed for mechanism reliability evaluation of multi-body mechanisms. IPM combines the dynamic equation, degradation function and Kaplan–Meier estimator to evaluate mechanism reliability comprehensively. Furthermore, to reduce the amount of computation in practical applications, the IPM is simplified into the indirect probability step model (IPSM). A case study of a crank–slider mechanism with clearance is investigated. Results show that relative errors between the theoretical and experimental results of mechanism reliability are less than 5%, demonstrating the effectiveness of the proposed method. - Highlights: • An indirect probability model (IPM) is proposed for mechanism reliability evaluation. • The dynamic equation, degradation function and Kaplan–Meier estimator are used. • Then the simplified form of indirect probability model is proposed. • The experimental results agree well with the predicted results.

  4. Reliability analysis in intelligent machines

    Science.gov (United States)

    Mcinroy, John E.; Saridis, George N.

    1990-01-01

    Given an explicit task to be executed, an intelligent machine must be able to find the probability of success, or reliability, of alternative control and sensing strategies. By using concepts for information theory and reliability theory, new techniques for finding the reliability corresponding to alternative subsets of control and sensing strategies are proposed such that a desired set of specifications can be satisfied. The analysis is straightforward, provided that a set of Gaussian random state variables is available. An example problem illustrates the technique, and general reliability results are presented for visual servoing with a computed torque-control algorithm. Moreover, the example illustrates the principle of increasing precision with decreasing intelligence at the execution level of an intelligent machine.

  5. STARS software tool for analysis of reliability and safety

    International Nuclear Information System (INIS)

    Poucet, A.; Guagnini, E.

    1989-01-01

    This paper reports on the STARS (Software Tool for the Analysis of Reliability and Safety) project aims at developing an integrated set of Computer Aided Reliability Analysis tools for the various tasks involved in systems safety and reliability analysis including hazard identification, qualitative analysis, logic model construction and evaluation. The expert system technology offers the most promising perspective for developing a Computer Aided Reliability Analysis tool. Combined with graphics and analysis capabilities, it can provide a natural engineering oriented environment for computer assisted reliability and safety modelling and analysis. For hazard identification and fault tree construction, a frame/rule based expert system is used, in which the deductive (goal driven) reasoning and the heuristic, applied during manual fault tree construction, is modelled. Expert system can explain their reasoning so that the analyst can become aware of the why and the how results are being obtained. Hence, the learning aspect involved in manual reliability and safety analysis can be maintained and improved

  6. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  7. Proceedings of the SRESA national conference on reliability and safety engineering

    International Nuclear Information System (INIS)

    Varde, P.V.; Vaishnavi, P.; Sujatha, S.; Valarmathi, A.

    2014-01-01

    The objective of this conference was to provide a forum for technical discussions on recent developments in the area of risk based approach and Prognostic Health Management of critical systems in decision making. The reliability and safety engineering methods are concerned with the way which the product fails, and the effects of failure is to understand how a product works and assures acceptable levels of safety. The reliability engineering addresses all the anticipated and possibly unanticipated causes of failure to ensure the occurrence of failure is prevented or minimized. The topics discussed in the conference were: Reliability in Engineering Design, Safety Assessment and Management, Reliability analysis and Assessment , Stochastic Petri nets for reliability Modeling, Dynamic Reliability, Reliability Prediction, Hardware Reliability, Software Reliability in Safety Critical Issues, Probabilistic Safety Assessment, Risk Informed Approach, Dynamic Models for Reliability Analysis, Reliability based Design and Analysis, Prognostics and Health Management, Remaining Useful Life (RUL), Human Reliability Modeling, Risk Based Applications, Hazard and Operability Study (HAZOP), Reliability in Network Security and Quality Assurance and Management etc. The papers relevant to INIS are indexed separately

  8. An adaptive cubature formula for efficient reliability assessment of nonlinear structural dynamic systems

    Science.gov (United States)

    Xu, Jun; Kong, Fan

    2018-05-01

    Extreme value distribution (EVD) evaluation is a critical topic in reliability analysis of nonlinear structural dynamic systems. In this paper, a new method is proposed to obtain the EVD. The maximum entropy method (MEM) with fractional moments as constraints is employed to derive the entire range of EVD. Then, an adaptive cubature formula is proposed for fractional moments assessment involved in MEM, which is closely related to the efficiency and accuracy for reliability analysis. Three point sets, which include a total of 2d2 + 1 integration points in the dimension d, are generated in the proposed formula. In this regard, the efficiency of the proposed formula is ensured. Besides, a "free" parameter is introduced, which makes the proposed formula adaptive with the dimension. The "free" parameter is determined by arranging one point set adjacent to the boundary of the hyper-sphere which contains the bulk of total probability. In this regard, the tail distribution may be better reproduced and the fractional moments could be evaluated with accuracy. Finally, the proposed method is applied to a ten-storey shear frame structure under seismic excitations, which exhibits strong nonlinearity. The numerical results demonstrate the efficacy of the proposed method.

  9. Reliability and Correlation of Static and Dynamic Foot Arch Measurement in a Healthy Pediatric Population.

    Science.gov (United States)

    Scholz, Timo; Zech, Astrid; Wegscheider, Karl; Lezius, Susanne; Braumann, Klaus-Michael; Sehner, Susanne; Hollander, Karsten

    2017-09-01

    Measurement of the medial longitudinal foot arch in children is a controversial topic, as there are many different methods without a definite standard procedure. The purpose of this study was to 1) investigate intraday and interrater reliability regarding dynamic arch index and static arch height, 2) explore the correlation between both arch indices, and 3) examine the variation of the medial longitudinal arch at two different times of the day. Eighty-six children (mean ± SD age, 8.9 ± 1.9 years) participated in the study. Dynamic footprint data were captured with a pedobarographic platform. For static arch measurements, a specially constructed caliper was used to assess heel-to-toe length and dorsum height. A mixed model was established to determine reliability and variation. Reliability was found to be excellent for the static arch height index in sitting (intraday, 0.90; interrater, 0.80) and standing positions (0.88 and 0.85) and for the dynamic arch index (both 1.00). There was poor correlation between static and dynamic assessment of the medial longitudinal arch (standing dynamic arch index, r = -0.138; sitting dynamic arch index, r = -0.070). Static measurements were found to be significantly influenced by the time of day (P body mass index (P mind. For clinical purposes, static and dynamic arch data should be interpreted separately.

  10. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  11. Reliability analysis of reactor inspection robot(RIROB)

    International Nuclear Information System (INIS)

    Eom, H. S.; Kim, J. H.; Lee, J. C.; Choi, Y. R.; Moon, S. S.

    2002-05-01

    This report describes the method and the result of the reliability analysis of RIROB developed in Korea Atomic Energy Research Institute. There are many classic techniques and models for the reliability analysis. These techniques and models have been used widely and approved in other industries such as aviation and nuclear industry. Though these techniques and models have been approved in real fields they are still insufficient for the complicated systems such RIROB which are composed of computer, networks, electronic parts, mechanical parts, and software. Particularly the application of these analysis techniques to digital and software parts of complicated systems is immature at this time thus expert judgement plays important role in evaluating the reliability of the systems at these days. In this report we proposed a method which combines diverse evidences relevant to the reliability to evaluate the reliability of complicated systems such as RIROB. The proposed method combines diverse evidences and performs inference in formal and in quantitative way by using the benefits of Bayesian Belief Nets (BBN)

  12. Reliability analysis techniques for the design engineer

    International Nuclear Information System (INIS)

    Corran, E.R.; Witt, H.H.

    1980-01-01

    A fault tree analysis package is described that eliminates most of the housekeeping tasks involved in proceeding from the initial construction of a fault tree to the final stage of presenting a reliability analysis in a safety report. It is suitable for designers with relatively little training in reliability analysis and computer operation. Users can rapidly investigate the reliability implications of various options at the design stage, and evolve a system which meets specified reliability objectives. Later independent review is thus unlikely to reveal major shortcomings necessitating modification and projects delays. The package operates interactively allowing the user to concentrate on the creative task of developing the system fault tree, which may be modified and displayed graphically. For preliminary analysis system data can be derived automatically from a generic data bank. As the analysis procedes improved estimates of critical failure rates and test and maintenance schedules can be inserted. The computations are standard, - identification of minimal cut-sets, estimation of reliability parameters, and ranking of the effect of the individual component failure modes and system failure modes on these parameters. The user can vary the fault trees and data on-line, and print selected data for preferred systems in a form suitable for inclusion in safety reports. A case history is given - that of HIFAR containment isolation system. (author)

  13. Dynamic speciation analysis and bioavailability of metals in aquatic systems

    NARCIS (Netherlands)

    Leeuwen, van H.P.; Town, R.M.; Buffle, J.; Cleven, R.F.M.J.; Davison, W.; Puy, J.; Riemsdijk, van W.H.; Sigg, L.

    2005-01-01

    Dynamic metal speciation analysis in aquatic ecosystems is emerging as a powerful basis for development of predictions of bioavailability and reliable risk assessment strategies. A given speciation sensor is characterized by an effective time scale or kinetic window that defines the measurable metal

  14. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Laurids Boring

    2010-11-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  15. Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

    International Nuclear Information System (INIS)

    Boring, Ronald Laurids

    2010-01-01

    This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

  16. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    Science.gov (United States)

    Kanjilal, Oindrila; Manohar, C. S.

    2017-07-01

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.

  17. Dynamic risk analysis using bow-tie approach

    International Nuclear Information System (INIS)

    Khakzad, Nima; Khan, Faisal; Amyotte, Paul

    2012-01-01

    Accident probability estimation is a common and central step to all quantitative risk assessment methods. Among many techniques available, bow-tie model (BT) is very popular because it represent the accident scenario altogether including causes and consequences. However, it suffers a static structure limiting its application in real-time monitoring and probability updating which are key factors in dynamic risk analysis. The present work is focused on using BT approach in a dynamic environment in which the occurrence probability of accident consequences changes. In this method, on one hand, failure probability of primary events of BT, leading to the top event, are developed using physical reliability models, and constantly revised as physical parameters (e.g., pressure, velocity, dimension, etc) change. And, on the other hand, the failure probability of safety barriers of the BT are periodically updated using Bayes’ theorem as new information becomes available over time. Finally, the resulting, updated BT is used to estimate the posterior probability of the consequences which in turn results in an updated risk profile. - Highlights: ► A methodology is proposed to make bow-tie method adapted for dynamic risk analysis. ► Physical reliability models are used to revise the top event. ► Bayes’ theorem is used to update the probability of safety barriers. ► The number of accidents in sequential time intervals is used to form likelihood function. ► The risk profile is updated for varying physical parameters and for different times.

  18. Reliability and Minimum Detectable Change of Temporal-Spatial, Kinematic, and Dynamic Stability Measures during Perturbed Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Temporal-spatial, kinematic variability, and dynamic stability measures collected during perturbation-based assessment paradigms are often used to identify dysfunction associated with gait instability. However, it remains unclear which measures are most reliable for detecting and tracking responses to perturbations. This study systematically determined the between-session reliability and minimum detectable change values of temporal-spatial, kinematic variability, and dynamic stability measures during three types of perturbed gait. Twenty young healthy adults completed two identical testing sessions two weeks apart, comprised of an unperturbed and three perturbed (cognitive, physical, and visual walking conditions in a virtual reality environment. Within each session, perturbation responses were compared to unperturbed walking using paired t-tests. Between-session reliability and minimum detectable change values were also calculated for each measure and condition. All temporal-spatial, kinematic variability and dynamic stability measures demonstrated fair to excellent between-session reliability. Minimal detectable change values, normalized to mean values ranged from 1-50%. Step width mean and variability measures demonstrated the greatest response to perturbations with excellent between-session reliability and low minimum detectable change values. Orbital stability measures demonstrated specificity to perturbation direction and sensitivity with excellent between-session reliability and low minimum detectable change values. We observed substantially greater between-session reliability and lower minimum detectable change values for local stability measures than previously described which may be the result of averaging across trials within a session and using velocity versus acceleration data for reconstruction of state spaces. Across all perturbation types, temporal-spatial, orbital and local measures were the most reliable measures with the

  19. Review of various dynamic modeling methods and development of an intuitive modeling method for dynamic systems

    International Nuclear Information System (INIS)

    Shin, Seung Ki; Seong, Poong Hyun

    2008-01-01

    Conventional static reliability analysis methods are inadequate for modeling dynamic interactions between components of a system. Various techniques such as dynamic fault tree, dynamic Bayesian networks, and dynamic reliability block diagrams have been proposed for modeling dynamic systems based on improvement of the conventional modeling methods. In this paper, we review these methods briefly and introduce dynamic nodes to the existing Reliability Graph with General Gates (RGGG) as an intuitive modeling method to model dynamic systems. For a quantitative analysis, we use a discrete-time method to convert an RGGG to an equivalent Bayesian network and develop a software tool for generation of probability tables

  20. Systems reliability analysis for the national ignition facility

    International Nuclear Information System (INIS)

    Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

    1996-01-01

    A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level

  1. Mechanical reliability analysis of tubes intended for hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nahal, Mourad; Khelif, Rabia [Badji Mokhtar University, Annaba (Algeria)

    2013-02-15

    Reliability analysis constitutes an essential phase in any study concerning reliability. Many industrialists evaluate and improve the reliability of their products during the development cycle - from design to startup (design, manufacture, and exploitation) - to develop their knowledge on cost/reliability ratio and to control sources of failure. In this study, we obtain results for hardness, tensile, and hydrostatic tests carried out on steel tubes for transporting hydrocarbons followed by statistical analysis. Results obtained allow us to conduct a reliability study based on resistance request. Thus, index of reliability is calculated and the importance of the variables related to the tube is presented. Reliability-based assessment of residual stress effects is applied to underground pipelines under a roadway, with and without active corrosion. Residual stress has been found to greatly increase probability of failure, especially in the early stages of pipe lifetime.

  2. Human Factors Reliability Analysis for Assuring Nuclear Safety Using Fuzzy Fault Tree

    International Nuclear Information System (INIS)

    Eisawy, E.A.-F. I.; Sallam, H.

    2016-01-01

    In order to ensure effective prevention of harmful events, the risk assessment process cannot ignore the role of humans in the dynamics of accidental events and thus the seriousness of the consequences that may derive from them. Human reliability analysis (HRA) involves the use of qualitative and quantitative methods to assess the human contribution to risk. HRA techniques have been developed in order to provide human error probability values associated with operators’ tasks to be included within the broader context of system risk assessment, and are aimed at reducing the probability of accidental events. Fault tree analysis (FTA) is a graphical model that displays the various combinations of equipment failures and human errors that can result in the main system failure of interest. FTA is a risk analysis technique to assess likelihood (in a probabilistic context) of an event. The objective data available to estimate the likelihood is often missing, and even if available, is subject to incompleteness and imprecision or vagueness. Without addressing incompleteness and imprecision in the available data, FTA and subsequent risk analysis give a false impression of precision and correctness that undermines the overall credibility of the process. To solve this problem, qualitative justification in the context of failure possibilities can be used as alternative for quantitative justification. In this paper, we introduce the approach of fuzzy reliability as solution for fault tree analysis drawbacks. A new fuzzy fault tree method is proposed for the analysis of human reliability based on fuzzy sets and fuzzy operations t-norms, co-norms, defuzzification, and fuzzy failure probability. (author)

  3. Reliability analysis using network simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1985-01-01

    The models that can be used to provide estimates of the reliability of nuclear power systems operate at many different levels of sophistication. The least-sophisticated models treat failure processes that entail only time-independent phenomena (such as demand failure). More advanced models treat processes that also include time-dependent phenomena such as run failure and possibly repair. However, many of these dynamic models are deficient in some respects because they either disregard the time-dependent phenomena that cannot be expressed in closed-form analytic terms or because they treat these phenomena in quasi-static terms. The next level of modeling requires a dynamic approach that incorporates not only procedures for treating all significant time-dependent phenomena but also procedures for treating these phenomena when they are conditionally linked or characterized by arbitrarily selected probability distributions. The level of sophistication that is required is provided by a dynamic, Monte Carlo modeling approach. A computer code that uses a dynamic, Monte Carlo modeling approach is Q-GERT (Graphical Evaluation and Review Technique - with Queueing), and the present study had demonstrated the feasibility of using Q-GERT for modeling time-dependent, unconditionally and conditionally linked phenomena that are characterized by arbitrarily selected probability distributions

  4. Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study

    Directory of Open Access Journals (Sweden)

    Lefeng Cheng

    2018-01-01

    Full Text Available This paper develops a novel dynamic correction method for the reliability assessment of large oil-immersed power transformers. First, with the transformer oil-paper insulation system (TOPIS as the target of evaluation and the winding hot spot temperature (HST as the core point, an HST-based static ageing failure model is built according to the Weibull distribution and Arrhenius reaction law, in order to describe the transformer ageing process and calculate the winding HST for obtaining the failure rate and life expectancy of TOPIS. A grey target theory based dynamic correction model is then developed, combined with the data of Dissolved Gas Analysis (DGA in power transformer oil, in order to dynamically modify the life expectancy calculated by the built static model, such that the corresponding relationship between the state grade and life expectancy correction coefficient of TOPIS can be built. Furthermore, the life expectancy loss recovery factor is introduced to correct the life expectancy of TOPIS again. Lastly, a practical case study of an operating transformer has been undertaken, in which the failure rate curve after introducing dynamic corrections can be obtained for the reliability assessment of this transformer. The curve shows a better ability of tracking the actual reliability level of transformer, thus verifying the validity of the proposed method and providing a new way for transformer reliability assessment. This contribution presents a novel model for the reliability assessment of TOPIS, in which the DGA data, as a source of information for the dynamic correction, is processed based on the grey target theory, thus the internal faults of power transformer can be diagnosed accurately as well as its life expectancy updated in time, ensuring that the dynamic assessment values can commendably track and reflect the actual operation state of the power transformers.

  5. Reliability Analysis of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2008-01-01

    In order to minimise the total expected life-cycle costs of a wind turbine it is important to estimate the reliability level for all components in the wind turbine. This paper deals with reliability analysis for the tower and blades of onshore wind turbines placed in a wind farm. The limit states...... consideres are in the ultimate limit state (ULS) extreme conditions in the standstill position and extreme conditions during operating. For wind turbines, where the magnitude of the loads is influenced by the control system, the ultimate limit state can occur in both cases. In the fatigue limit state (FLS......) the reliability level for a wind turbine placed in a wind farm is considered, and wake effects from neighbouring wind turbines is taken into account. An illustrative example with calculation of the reliability for mudline bending of the tower is considered. In the example the design is determined according...

  6. Component reliability analysis for development of component reliability DB of Korean standard NPPs

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.; Kim, S. H.

    2002-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA and Risk Informed Application. We have performed a project to develop the component reliability DB and calculate the component reliability such as failure rate and unavailability. We have collected the component operation data and failure/repair data of Korean standard NPPs. We have analyzed failure data by developing a data analysis method which incorporates the domestic data situation. And then we have compared the reliability results with the generic data for the foreign NPPs

  7. Reliability Analysis for Safety Grade PLC(POSAFE-Q)

    International Nuclear Information System (INIS)

    Choi, Kyung Chul; Song, Seung Whan; Park, Gang Min; Hwang, Sung Jae

    2012-01-01

    Safety Grade PLC(Programmable Logic Controller), POSAFE-Q, was developed recently in accordance with nuclear regulatory and requirements. In this paper, describe reliability analysis for digital safety grade PLC (especially POSAFE-Q). Reliability analysis scope is Prediction, Calculation of MTBF (Mean Time Between Failure), FMEA (Failure Mode Effect Analysis), PFD (Probability of Failure on Demand). (author)

  8. Guidelines for reliability analysis of digital systems in PSA context. Phase 1 status report

    International Nuclear Information System (INIS)

    Authen, S.; Larsson, J.; Bjoerkman, K.; Holmberg, J.-E.

    2010-12-01

    Digital protection and control systems are appearing as upgrades in older nuclear power plants (NPPs) and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital system upgrades on NPPs, quantitative reliability models are needed for digital systems. Due to the many unique attributes of these systems, challenges exist in systems analysis, modeling and in data collection. Currently there is no consensus on reliability analysis approaches. Traditional methods have clearly limitations, but more dynamic approaches are still in trial stage and can be difficult to apply in full scale probabilistic safety assessments (PSA). The number of PSAs worldwide including reliability models of digital I and C systems are few. A comparison of Nordic experiences and a literature review on main international references have been performed in this pre-study project. The study shows a wide range of approaches, and also indicates that no state-of-the-art currently exists. The study shows areas where the different PSAs agree and gives the basis for development of a common taxonomy for reliability analysis of digital systems. It is still an open matter whether software reliability needs to be explicitly modelled in the PSA. The most important issue concerning software reliability is proper descriptions of the impact that software-based systems has on the dependence between the safety functions and the structure of accident sequences. In general the conventional fault tree approach seems to be sufficient for modelling reactor protection system kind of functions. The following focus areas have been identified for further activities: 1. Common taxonomy of hardware and software failure modes of digital components for common use 2. Guidelines regarding level of detail in system analysis and screening of components, failure modes and dependencies 3. Approach for modelling of CCF between components (including software). (Author)

  9. Guidelines for reliability analysis of digital systems in PSA context. Phase 1 status report

    Energy Technology Data Exchange (ETDEWEB)

    Authen, S.; Larsson, J. (Risk Pilot AB, Stockholm (Sweden)); Bjoerkman, K.; Holmberg, J.-E. (VTT, Helsingfors (Finland))

    2010-12-15

    Digital protection and control systems are appearing as upgrades in older nuclear power plants (NPPs) and are commonplace in new NPPs. To assess the risk of NPP operation and to determine the risk impact of digital system upgrades on NPPs, quantitative reliability models are needed for digital systems. Due to the many unique attributes of these systems, challenges exist in systems analysis, modeling and in data collection. Currently there is no consensus on reliability analysis approaches. Traditional methods have clearly limitations, but more dynamic approaches are still in trial stage and can be difficult to apply in full scale probabilistic safety assessments (PSA). The number of PSAs worldwide including reliability models of digital I and C systems are few. A comparison of Nordic experiences and a literature review on main international references have been performed in this pre-study project. The study shows a wide range of approaches, and also indicates that no state-of-the-art currently exists. The study shows areas where the different PSAs agree and gives the basis for development of a common taxonomy for reliability analysis of digital systems. It is still an open matter whether software reliability needs to be explicitly modelled in the PSA. The most important issue concerning software reliability is proper descriptions of the impact that software-based systems has on the dependence between the safety functions and the structure of accident sequences. In general the conventional fault tree approach seems to be sufficient for modelling reactor protection system kind of functions. The following focus areas have been identified for further activities: 1. Common taxonomy of hardware and software failure modes of digital components for common use 2. Guidelines regarding level of detail in system analysis and screening of components, failure modes and dependencies 3. Approach for modelling of CCF between components (including software). (Author)

  10. Weibull distribution in reliability data analysis in nuclear power plant

    International Nuclear Information System (INIS)

    Ma Yingfei; Zhang Zhijian; Zhang Min; Zheng Gangyang

    2015-01-01

    Reliability is an important issue affecting each stage of the life cycle ranging from birth to death of a product or a system. The reliability engineering includes the equipment failure data processing, quantitative assessment of system reliability and maintenance, etc. Reliability data refers to the variety of data that describe the reliability of system or component during its operation. These data may be in the form of numbers, graphics, symbols, texts and curves. Quantitative reliability assessment is the task of the reliability data analysis. It provides the information related to preventing, detect, and correct the defects of the reliability design. Reliability data analysis under proceed with the various stages of product life cycle and reliability activities. Reliability data of Systems Structures and Components (SSCs) in Nuclear Power Plants is the key factor of probabilistic safety assessment (PSA); reliability centered maintenance and life cycle management. The Weibull distribution is widely used in reliability engineering, failure analysis, industrial engineering to represent manufacturing and delivery times. It is commonly used to model time to fail, time to repair and material strength. In this paper, an improved Weibull distribution is introduced to analyze the reliability data of the SSCs in Nuclear Power Plants. An example is given in the paper to present the result of the new method. The Weibull distribution of mechanical equipment for reliability data fitting ability is very strong in nuclear power plant. It's a widely used mathematical model for reliability analysis. The current commonly used methods are two-parameter and three-parameter Weibull distribution. Through comparison and analysis, the three-parameter Weibull distribution fits the data better. It can reflect the reliability characteristics of the equipment and it is more realistic to the actual situation. (author)

  11. Reliability and reference values of two clinical measurements of dynamic and static knee position in healthy children

    DEFF Research Database (Denmark)

    Ortqvist, Maria; Moström, Eva B; Roos, Ewa M.

    2011-01-01

    PURPOSE: The purposes of this study were to evaluate reliability of the Single-limb mini squat test (a dynamic measure of medio-lateral knee position) and the Quadriceps-angle (Q-angle) (a static measure of medio-lateral knee position), present paediatric reference values of the Q......-angle measurements was found. Reference values for the Q-angle (mean 13.5° (1.9)-15.3° (2.8)) varies with age and gender. No associations were found between dynamic and static measures. CONCLUSIONS: The Single-limb mini squat test showed a moderate reliability and the Q-angle showed a fair to moderate reliability......-angle, and evaluate the association between the tests. METHODS: Two hundred and forty-six healthy children (9-16 years) were included (intra/inter-rater reliability for Q-angle (n = 37/85) and for Single-limb mini squat test (n = 33/28)). Dynamic medio-lateral knee position was assessed by the Single-limb mini squat...

  12. Intra- and interobserver reliability of gray scale/dynamic range evaluation of ultrasonography using a standardized phantom

    International Nuclear Information System (INIS)

    Lee, Song; Choi, Joon Il; Park, Michael Yong; Yeo, Dong Myung; Byun, Jae Young; Jung, Seung Eun; Rha, Sung Eun; Oh, Soon Nam; Lee, Young Joon

    2014-01-01

    To evaluate intra- and interobserver reliability of the gray scale/dynamic range of the phantom image evaluation of ultrasonography using a standardized phantom, and to assess the effect of interactive education on the reliability. Three radiologists (a resident, and two board-certified radiologists with 2 and 7 years of experience in evaluating ultrasound phantom images) performed the gray scale/dynamic range test for an ultrasound machine using a standardized phantom. They scored the number of visible cylindrical structures of varying degrees of brightness and made a pass or fail decision. First, they scored 49 phantom images twice from a 2010 survey with limited knowledge of phantom images. After this, the radiologists underwent two hours of interactive education for the phantom images and scored another 91 phantom images from a 2011 survey twice. Intra- and interobserver reliability before and after the interactive education session were analyzed using K analyses. Before education, the K-value for intraobserver reliability for the radiologist with 7 years of experience, 2 years of experience, and the resident was 0.386, 0.469, and 0.465, respectively. After education, the K-values were improved (0.823, 0.611, and 0.711, respectively). For interobserver reliability, the K-value was also better after the education for the 3 participants (0.067, 0.002, and 0.547 before education; 0.635, 0.667, and 0.616 after education, respectively). The intra- and interobserver reliability of the gray scale/dynamic range was fair to substantial. Interactive education can improve reliability. For more reliable results, double- checking of phantom images by multiple reviewers is recommended.

  13. Reliability Analysis of Tubular Joints in Offshore Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1987-01-01

    Reliability analysis of single tubular joints and offshore platforms with tubular joints is" presented. The failure modes considered are yielding, punching, buckling and fatigue failure. Element reliability as well as systems reliability approaches are used and illustrated by several examples....... Finally, optimal design of tubular.joints with reliability constraints is discussed and illustrated by an example....

  14. Waste package reliability analysis

    International Nuclear Information System (INIS)

    Pescatore, C.; Sastre, C.

    1983-01-01

    Proof of future performance of a complex system such as a high-level nuclear waste package over a period of hundreds to thousands of years cannot be had in the ordinary sense of the word. The general method of probabilistic reliability analysis could provide an acceptable framework to identify, organize, and convey the information necessary to satisfy the criterion of reasonable assurance of waste package performance according to the regulatory requirements set forth in 10 CFR 60. General principles which may be used to evaluate the qualitative and quantitative reliability of a waste package design are indicated and illustrated with a sample calculation of a repository concept in basalt. 8 references, 1 table

  15. Swimming pool reactor reliability and safety analysis

    International Nuclear Information System (INIS)

    Li Zhaohuan

    1997-01-01

    A reliability and safety analysis of Swimming Pool Reactor in China Institute of Atomic Energy is done by use of event/fault tree technique. The paper briefly describes the analysis model, analysis code and main results. Meanwhile it also describes the impact of unassigned operation status on safety, the estimation of effectiveness of defense tactics in maintenance against common cause failure, the effectiveness of recovering actions on the system reliability, the comparison of occurrence frequencies of the core damage by use of generic and specific data

  16. Probabilistic risk assessment course documentation. Volume 3. System reliability and analysis techniques, Session A - reliability

    International Nuclear Information System (INIS)

    Lofgren, E.V.

    1985-08-01

    This course in System Reliability and Analysis Techniques focuses on the quantitative estimation of reliability at the systems level. Various methods are reviewed, but the structure provided by the fault tree method is used as the basis for system reliability estimates. The principles of fault tree analysis are briefly reviewed. Contributors to system unreliability and unavailability are reviewed, models are given for quantitative evaluation, and the requirements for both generic and plant-specific data are discussed. Also covered are issues of quantifying component faults that relate to the systems context in which the components are embedded. All reliability terms are carefully defined. 44 figs., 22 tabs

  17. Integrated framework for dynamic safety analysis

    International Nuclear Information System (INIS)

    Kim, Tae Wan; Karanki, Durga R.

    2012-01-01

    In the conventional PSA (Probabilistic Safety Assessment), detailed plant simulations by independent thermal hydraulic (TH) codes are used in the development of accident sequence models. Typical accidents in a NPP involve complex interactions among process, safety systems, and operator actions. As independent TH codes do not have the models of operator actions and full safety systems, they cannot literally simulate the integrated and dynamic interactions of process, safety systems, and operator responses. Offline simulation with pre decided states and time delays may not model the accident sequences properly. Moreover, when stochastic variability in responses of accident models is considered, defining all the combinations for simulations will be cumbersome task. To overcome some of these limitations of conventional safety analysis approach, TH models are coupled with the stochastic models in the dynamic event tree (DET) framework, which provides flexibility to model the integrated response due to better communication as all the accident elements are in the same model. The advantages of this framework also include: Realistic modeling in dynamic scenarios, comprehensive results, integrated approach (both deterministic and probabilistic models), and support for HRA (Human Reliability Analysis)

  18. Dynamic Event Tree Analysis Through RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio

    2013-09-01

    Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.

  19. Probabilistic Dynamics for Integrated Analysis of Accident Sequences considering Uncertain Events

    Directory of Open Access Journals (Sweden)

    Robertas Alzbutas

    2015-01-01

    Full Text Available The analytical/deterministic modelling and simulation/probabilistic methods are used separately as a rule in order to analyse the physical processes and random or uncertain events. However, in the currently used probabilistic safety assessment this is an issue. The lack of treatment of dynamic interactions between the physical processes on one hand and random events on the other hand causes the limited assessment. In general, there are a lot of mathematical modelling theories, which can be used separately or integrated in order to extend possibilities of modelling and analysis. The Theory of Probabilistic Dynamics (TPD and its augmented version based on the concept of stimulus and delay are introduced for the dynamic reliability modelling and the simulation of accidents in hybrid (continuous-discrete systems considering uncertain events. An approach of non-Markovian simulation and uncertainty analysis is discussed in order to adapt the Stimulus-Driven TPD for practical applications. The developed approach and related methods are used as a basis for a test case simulation in view of various methods applications for severe accident scenario simulation and uncertainty analysis. For this and for wider analysis of accident sequences the initial test case specification is then extended and discussed. Finally, it is concluded that enhancing the modelling of stimulated dynamics with uncertainty and sensitivity analysis allows the detailed simulation of complex system characteristics and representation of their uncertainty. The developed approach of accident modelling and analysis can be efficiently used to estimate the reliability of hybrid systems and at the same time to analyze and possibly decrease the uncertainty of this estimate.

  20. A dynamic particle filter-support vector regression method for reliability prediction

    International Nuclear Information System (INIS)

    Wei, Zhao; Tao, Tao; ZhuoShu, Ding; Zio, Enrico

    2013-01-01

    Support vector regression (SVR) has been applied to time series prediction and some works have demonstrated the feasibility of its use to forecast system reliability. For accuracy of reliability forecasting, the selection of SVR's parameters is important. The existing research works on SVR's parameters selection divide the example dataset into training and test subsets, and tune the parameters on the training data. However, these fixed parameters can lead to poor prediction capabilities if the data of the test subset differ significantly from those of training. Differently, the novel method proposed in this paper uses particle filtering to estimate the SVR model parameters according to the whole measurement sequence up to the last observation instance. By treating the SVR training model as the observation equation of a particle filter, our method allows updating the SVR model parameters dynamically when a new observation comes. Because of the adaptability of the parameters to dynamic data pattern, the new PF–SVR method has superior prediction performance over that of standard SVR. Four application results show that PF–SVR is more robust than SVR to the decrease of the number of training data and the change of initial SVR parameter values. Also, even if there are trends in the test data different from those in the training data, the method can capture the changes, correct the SVR parameters and obtain good predictions. -- Highlights: •A dynamic PF–SVR method is proposed to predict the system reliability. •The method can adjust the SVR parameters according to the change of data. •The method is robust to the size of training data and initial parameter values. •Some cases based on both artificial and real data are studied. •PF–SVR shows superior prediction performance over standard SVR

  1. Human reliability analysis using event trees

    International Nuclear Information System (INIS)

    Heslinga, G.

    1983-01-01

    The shut-down procedure of a technologically complex installation as a nuclear power plant consists of a lot of human actions, some of which have to be performed several times. The procedure is regarded as a chain of modules of specific actions, some of which are analyzed separately. The analysis is carried out by making a Human Reliability Analysis event tree (HRA event tree) of each action, breaking down each action into small elementary steps. The application of event trees in human reliability analysis implies more difficulties than in the case of technical systems where event trees were mainly used until now. The most important reason is that the operator is able to recover a wrong performance; memory influences play a significant role. In this study these difficulties are dealt with theoretically. The following conclusions can be drawn: (1) in principle event trees may be used in human reliability analysis; (2) although in practice the operator will recover his fault partly, theoretically this can be described as starting the whole event tree again; (3) compact formulas have been derived, by which the probability of reaching a specific failure consequence on passing through the HRA event tree after several times of recovery is to be calculated. (orig.)

  2. Application of Metric-based Software Reliability Analysis to Example Software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Smidts, Carol

    2008-07-01

    The software reliability of TELLERFAST ATM software is analyzed by using two metric-based software reliability analysis methods, a state transition diagram-based method and a test coverage-based method. The procedures for the software reliability analysis by using the two methods and the analysis results are provided in this report. It is found that the two methods have a relation of complementary cooperation, and therefore further researches on combining the two methods to reflect the benefit of the complementary cooperative effect to the software reliability analysis are recommended

  3. Fatigue Reliability Analysis of a Mono-Tower Platform

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Brincker, Rune

    1991-01-01

    In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed thro...... of the natural period, damping ratio, current, stress spectrum and parameters describing the fatigue strength. Further, soil damping is shown to be significant for the Mono-tower.......In this paper, a fatigue reliability analysis of a Mono-tower platform is presented. The failure mode, fatigue failure in the butt welds, is investigated with two different models. The one with the fatigue strength expressed through SN relations, the other with the fatigue strength expressed...... through linear-elastic fracture mechanics (LEFM). In determining the cumulative fatigue damage, Palmgren-Miner's rule is applied. Element reliability, as well as systems reliability, is estimated using first-order reliability methods (FORM). The sensitivity of the systems reliability to various parameters...

  4. Reliability Analysis of Elasto-Plastic Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Sørensen, John Dalsgaard

    1984-01-01

    . Failure of this type of system is defined either as formation of a mechanism or by failure of a prescribed number of elements. In the first case failure is independent of the order in which the elements fail, but this is not so by the second definition. The reliability analysis consists of two parts...... are described and the two definitions of failure can be used by the first formulation, but only the failure definition based on formation of a mechanism by the second formulation. The second part of the reliability analysis is an estimate of the failure probability for the structure on the basis...

  5. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  6. A reliability-based approach of fastest routes planning in dynamic traffic network under emergency management situation

    Directory of Open Access Journals (Sweden)

    Ye Sun

    2011-12-01

    Full Text Available In order to establish an available emergency management system, it is important to conduct effective evacuation with reliable and real time optimal route plans. This paper aims at creating a route finding strategy by considering the time dependent factors as well as uncertainties that may be encountered during the emergency management system. To combine dynamic features with the level of reliability in the process of fastest route planning, the speed distribution of typical intercity roads is studied in depth, and the strategy of modifying real time speed to a more reliable value based on speed distribution is proposed. Two algorithms of route planning have been developed to find three optimal routes with the shortest travel time and the reliability of 0.9. In order to validate the new strategy, experimental implementation of the route planning method is conducted based on road speed information acquired by field study. The results show that the proposed strategy might provide more reliable routes in dynamic traffic networks by conservatively treating roads with large speed discretion or with relative extreme real speed value.

  7. Based on Weibull Information Fusion Analysis Semiconductors Quality the Key Technology of Manufacturing Execution Systems Reliability

    Science.gov (United States)

    Huang, Zhi-Hui; Tang, Ying-Chun; Dai, Kai

    2016-05-01

    Semiconductor materials and Product qualified rate are directly related to the manufacturing costs and survival of the enterprise. Application a dynamic reliability growth analysis method studies manufacturing execution system reliability growth to improve product quality. Refer to classical Duane model assumptions and tracking growth forecasts the TGP programming model, through the failure data, established the Weibull distribution model. Combining with the median rank of average rank method, through linear regression and least squares estimation method, match respectively weibull information fusion reliability growth curve. This assumption model overcome Duane model a weakness which is MTBF point estimation accuracy is not high, through the analysis of the failure data show that the method is an instance of the test and evaluation modeling process are basically identical. Median rank in the statistics is used to determine the method of random variable distribution function, which is a good way to solve the problem of complex systems such as the limited sample size. Therefore this method has great engineering application value.

  8. Research review and development trends of human reliability analysis techniques

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Dai Licao

    2011-01-01

    Human reliability analysis (HRA) methods are reviewed. The theoretical basis of human reliability analysis, human error mechanism, the key elements of HRA methods as well as the existing HRA methods are respectively introduced and assessed. Their shortcomings,the current research hotspot and difficult problems are identified. Finally, it takes a close look at the trends of human reliability analysis methods. (authors)

  9. Reliability analysis of grid connected small wind turbine power electronics

    International Nuclear Information System (INIS)

    Arifujjaman, Md.; Iqbal, M.T.; Quaicoe, J.E.

    2009-01-01

    Grid connection of small permanent magnet generator (PMG) based wind turbines requires a power conditioning system comprising a bridge rectifier, a dc-dc converter and a grid-tie inverter. This work presents a reliability analysis and an identification of the least reliable component of the power conditioning system of such grid connection arrangements. Reliability of the configuration is analyzed for the worst case scenario of maximum conversion losses at a particular wind speed. The analysis reveals that the reliability of the power conditioning system of such PMG based wind turbines is fairly low and it reduces to 84% of initial value within one year. The investigation is further enhanced by identifying the least reliable component within the power conditioning system and found that the inverter has the dominant effect on the system reliability, while the dc-dc converter has the least significant effect. The reliability analysis demonstrates that a permanent magnet generator based wind energy conversion system is not the best option from the point of view of power conditioning system reliability. The analysis also reveals that new research is required to determine a robust power electronics configuration for small wind turbine conversion systems.

  10. Analysis of operating reliability of WWER-1000 unit

    International Nuclear Information System (INIS)

    Bortlik, J.

    1985-01-01

    The nuclear power unit was divided into 33 technological units. Input data for reliability analysis were surveys of operating results obtained from the IAEA information system and certain indexes of the reliability of technological equipment determined using the Bayes formula. The missing reliability data for technological equipment were used from the basic variant. The fault tree of the WWER-1000 unit was determined for the peak event defined as the impossibility of reaching 100%, 75% and 50% of rated power. The period was observed of the nuclear power plant operation with reduced output owing to defect and the respective time needed for a repair of the equipment. The calculation of the availability of the WWER-1000 unit was made for different variant situations. Certain indexes of the operating reliability of the WWER-1000 unit which are the result of a detailed reliability analysis are tabulated for selected variants. (E.S.)

  11. Methods for Calculating Frequency of Maintenance of Complex Information Security System Based on Dynamics of Its Reliability

    Science.gov (United States)

    Varlataya, S. K.; Evdokimov, V. E.; Urzov, A. Y.

    2017-11-01

    This article describes a process of calculating a certain complex information security system (CISS) reliability using the example of the technospheric security management model as well as ability to determine the frequency of its maintenance using the system reliability parameter which allows one to assess man-made risks and to forecast natural and man-made emergencies. The relevance of this article is explained by the fact the CISS reliability is closely related to information security (IS) risks. Since reliability (or resiliency) is a probabilistic characteristic of the system showing the possibility of its failure (and as a consequence - threats to the protected information assets emergence), it is seen as a component of the overall IS risk in the system. As it is known, there is a certain acceptable level of IS risk assigned by experts for a particular information system; in case of reliability being a risk-forming factor maintaining an acceptable risk level should be carried out by the routine analysis of the condition of CISS and its elements and their timely service. The article presents a reliability parameter calculation for the CISS with a mixed type of element connection, a formula of the dynamics of such system reliability is written. The chart of CISS reliability change is a S-shaped curve which can be divided into 3 periods: almost invariable high level of reliability, uniform reliability reduction, almost invariable low level of reliability. Setting the minimum acceptable level of reliability, the graph (or formula) can be used to determine the period of time during which the system would meet requirements. Ideally, this period should not be longer than the first period of the graph. Thus, the proposed method of calculating the CISS maintenance frequency helps to solve a voluminous and critical task of the information assets risk management.

  12. Operational present status and reliability analysis of the upgraded EAST cryogenic system

    Science.gov (United States)

    Zhou, Z. W.; Y Zhang, Q.; Lu, X. F.; Hu, L. B.; Zhu, P.

    2017-12-01

    Since the first commissioning in 2005, the cryogenic system for EAST (Experimental Advanced Superconducting Tokamak) has been cooled down and warmed up for thirteen experimental campaigns. In order to promote the refrigeration efficiencies and reliability, the EAST cryogenic system was upgraded gradually with new helium screw compressors and new dynamic gas bearing helium turbine expanders with eddy current brake to improve the original poor mechanical and operational performance from 2012 to 2015. Then the totally upgraded cryogenic system was put into operation in the eleventh cool-down experiment, and has been operated for the latest several experimental campaigns. The upgraded system has successfully coped with various normal operational modes during cool-down and 4.5 K steady-state operation under pulsed heat load from the tokamak as well as the abnormal fault modes including turbines protection stop. In this paper, the upgraded EAST cryogenic system including its functional analysis and new cryogenic control networks will be presented in detail. Also, its operational present status in the latest cool-down experiments will be presented and the system reliability will be analyzed, which shows a high reliability and low fault rate after upgrade. In the end, some future necessary work to meet the higher reliability requirement for future uninterrupted long-term experimental operation will also be proposed.

  13. Safety and reliability analysis based on nonprobabilistic methods

    International Nuclear Information System (INIS)

    Kozin, I.O.; Petersen, K.E.

    1996-01-01

    Imprecise probabilities, being developed during the last two decades, offer a considerably more general theory having many advantages which make it very promising for reliability and safety analysis. The objective of the paper is to argue that imprecise probabilities are more appropriate tool for reliability and safety analysis, that they allow to model the behavior of nuclear industry objects more comprehensively and give a possibility to solve some problems unsolved in the framework of conventional approach. Furthermore, some specific examples are given from which we can see the usefulness of the tool for solving some reliability tasks

  14. System Reliability Analysis Considering Correlation of Performances

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Saekyeol; Lee, Tae Hee [Hanyang Univ., Seoul (Korea, Republic of); Lim, Woochul [Mando Corporation, Seongnam (Korea, Republic of)

    2017-04-15

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  15. System Reliability Analysis Considering Correlation of Performances

    International Nuclear Information System (INIS)

    Kim, Saekyeol; Lee, Tae Hee; Lim, Woochul

    2017-01-01

    Reliability analysis of a mechanical system has been developed in order to consider the uncertainties in the product design that may occur from the tolerance of design variables, uncertainties of noise, environmental factors, and material properties. In most of the previous studies, the reliability was calculated independently for each performance of the system. However, the conventional methods cannot consider the correlation between the performances of the system that may lead to a difference between the reliability of the entire system and the reliability of the individual performance. In this paper, the joint probability density function (PDF) of the performances is modeled using a copula which takes into account the correlation between performances of the system. The system reliability is proposed as the integral of joint PDF of performances and is compared with the individual reliability of each performance by mathematical examples and two-bar truss example.

  16. Supply reliability and dynamic safety analysis of an alternative energy supply chain

    DEFF Research Database (Denmark)

    Herbert-Hansen, Zaza Nadja Lee; Markert, Frank; Jacobsen, Peter

    2016-01-01

    This paper focuses on the integration of risk and supply chain modelling by means of analysing a case concerning a Hydrogen Refuelling Station in Berlin. It presents a framework that can analyse an energy supply chain and at the same time enables easy reporting and presentation of various results...... by utilizing Dis-crete Event Simulation (DES). The industrial implication of this work is to provide practitioners with an anal-ysis framework for improved decision support. The novelty of this paper is the approach to model a supply chain together with a dynamically modelled event tree-based approach...

  17. Reliability analysis of digital based I and C system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, I. S.; Cho, B. S.; Choi, M. J. [KOPEC, Yongin (Korea, Republic of)

    1999-10-01

    Rapidly, digital technology is being widely applied in replacing analog component installed in existing plant and designing new nuclear power plant for control and monitoring system in Korea as well as in foreign countries. Even though many merits of digital technology, it is being faced with a new problem of reliability assurance. The studies for solving this problem are being performed vigorously in foreign countries. The reliability of KNGR Engineered Safety Features Component Control System (ESF-CCS), digital based I and C system, was analyzed to verify fulfillment of the ALWR EPRI-URD requirement for reliability analysis and eliminate hazards in design applied new technology. The qualitative analysis using FMEA and quantitative analysis using reliability block diagram were performed. The results of analyses are shown in this paper.

  18. Human reliability analysis of control room operators

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L.; Carvalho, Paulo Victor R.; Grecco, Claudio H.S. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    Human reliability is the probability that a person correctly performs some system required action in a required time period and performs no extraneous action that can degrade the system Human reliability analysis (HRA) is the analysis, prediction and evaluation of work-oriented human performance using some indices as human error likelihood and probability of task accomplishment. Significant progress has been made in the HRA field during the last years, mainly in nuclear area. Some first-generation HRA methods were developed, as THERP (Technique for human error rate prediction). Now, an array of called second-generation methods are emerging as alternatives, for instance ATHEANA (A Technique for human event analysis). The ergonomics approach has as tool the ergonomic work analysis. It focus on the study of operator's activities in physical and mental form, considering at the same time the observed characteristics of operator and the elements of the work environment as they are presented to and perceived by the operators. The aim of this paper is to propose a methodology to analyze the human reliability of the operators of industrial plant control room, using a framework that includes the approach used by ATHEANA, THERP and the work ergonomics analysis. (author)

  19. Development of RBDGG Solver and Its Application to System Reliability Analysis

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2010-01-01

    For the purpose of making system reliability analysis easier and more intuitive, RBDGG (Reliability Block diagram with General Gates) methodology was introduced as an extension of the conventional reliability block diagram. The advantage of the RBDGG methodology is that the structure of a RBDGG model is very similar to the actual structure of the analyzed system, and therefore the modeling of a system for system reliability and unavailability analysis becomes very intuitive and easy. The main idea of the development of the RBDGG methodology is similar with that of the development of the RGGG (Reliability Graph with General Gates) methodology, which is an extension of a conventional reliability graph. The newly proposed methodology is now implemented into a software tool, RBDGG Solver. RBDGG Solver was developed as a WIN32 console application. RBDGG Solver receives information on the failure modes and failure probabilities of each component in the system, along with the connection structure and connection logics among the components in the system. Based on the received information, RBDGG Solver automatically generates a system reliability analysis model for the system, and then provides the analysis results. In this paper, application of RBDGG Solver to the reliability analysis of an example system, and verification of the calculation results are provided for the purpose of demonstrating how RBDGG Solver is used for system reliability analysis

  20. Advances in methods and applications of reliability and safety analysis

    International Nuclear Information System (INIS)

    Fieandt, J.; Hossi, H.; Laakso, K.; Lyytikaeinen, A.; Niemelae, I.; Pulkkinen, U.; Pulli, T.

    1986-01-01

    The know-how of the reliability and safety design and analysis techniques of Vtt has been established over several years in analyzing the reliability in the Finnish nuclear power plants Loviisa and Olkiluoto. This experience has been later on applied and developed to be used in the process industry, conventional power industry, automation and electronics. VTT develops and transfers methods and tools for reliability and safety analysis to the private and public sectors. The technology transfer takes place in joint development projects with potential users. Several computer-aided methods, such as RELVEC for reliability modelling and analysis, have been developed. The tool developed are today used by major Finnish companies in the fields of automation, nuclear power, shipbuilding and electronics. Development of computer-aided and other methods needed in analysis of operating experience, reliability or safety is further going on in a number of research and development projects

  1. Human reliability analysis methods for probabilistic safety assessment

    International Nuclear Information System (INIS)

    Pyy, P.

    2000-11-01

    Human reliability analysis (HRA) of a probabilistic safety assessment (PSA) includes identifying human actions from safety point of view, modelling the most important of them in PSA models, and assessing their probabilities. As manifested by many incidents and studies, human actions may have both positive and negative effect on safety and economy. Human reliability analysis is one of the areas of probabilistic safety assessment (PSA) that has direct applications outside the nuclear industry. The thesis focuses upon developments in human reliability analysis methods and data. The aim is to support PSA by extending the applicability of HRA. The thesis consists of six publications and a summary. The summary includes general considerations and a discussion about human actions in the nuclear power plant (NPP) environment. A condensed discussion about the results of the attached publications is then given, including new development in methods and data. At the end of the summary part, the contribution of the publications to good practice in HRA is presented. In the publications, studies based on the collection of data on maintenance-related failures, simulator runs and expert judgement are presented in order to extend the human reliability analysis database. Furthermore, methodological frameworks are presented to perform a comprehensive HRA, including shutdown conditions, to study reliability of decision making, and to study the effects of wrong human actions. In the last publication, an interdisciplinary approach to analysing human decision making is presented. The publications also include practical applications of the presented methodological frameworks. (orig.)

  2. Simple and reliable procedure for the evaluation of short-term dynamic processes in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D P

    1986-10-01

    An efficient approach is presented to the solution of the short-term dynamics model in power systems. It consists of an adequate algebraic treatment of the original system of nonlinear differential equations, using linearization, decomposition and Cauchy's formula. The simple difference equations obtained in this way are incorporated into a model of the electrical network, which is of a low order compared to the ones usually used. Newton's method is applied to the model formed in this way, which leads to a simple and reliable iterative procedure. The characteristics of the procedure developed are demonstrated on examples of transient stability analysis of real power systems. 12 refs.

  3. Mathematical Methods in Survival Analysis, Reliability and Quality of Life

    CERN Document Server

    Huber, Catherine; Mesbah, Mounir

    2008-01-01

    Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

  4. Estimation of structural reliability under combined loads

    International Nuclear Information System (INIS)

    Shinozuka, M.; Kako, T.; Hwang, H.; Brown, P.; Reich, M.

    1983-01-01

    For the overall safety evaluation of seismic category I structures subjected to various load combinations, a quantitative measure of the structural reliability in terms of a limit state probability can be conveniently used. For this purpose, the reliability analysis method for dynamic loads, which has recently been developed by the authors, was combined with the existing standard reliability analysis procedure for static and quasi-static loads. The significant parameters that enter into the analysis are: the rate at which each load (dead load, accidental internal pressure, earthquake, etc.) will occur, its duration and intensity. All these parameters are basically random variables for most of the loads to be considered. For dynamic loads, the overall intensity is usually characterized not only by their dynamic components but also by their static components. The structure considered in the present paper is a reinforced concrete containment structure subjected to various static and dynamic loads such as dead loads, accidental pressure, earthquake acceleration, etc. Computations are performed to evaluate the limit state probabilities under each load combination separately and also under all possible combinations of such loads. Indeed, depending on the limit state condition to be specified, these limit state probabilities can indicate which particular load combination provides the dominant contribution to the overall limit state probability. On the other hand, some of the load combinations contribute very little to the overall limit state probability. These observations provide insight into the complex problem of which load combinations must be considered for design, for which limit states and at what level of limit state probabilities. (orig.)

  5. Reliability analysis - systematic approach based on limited data

    International Nuclear Information System (INIS)

    Bourne, A.J.

    1975-11-01

    The initial approaches required for reliability analysis are outlined. These approaches highlight the system boundaries, examine the conditions under which the system is required to operate, and define the overall performance requirements. The discussion is illustrated by a simple example of an automatic protective system for a nuclear reactor. It is then shown how the initial approach leads to a method of defining the system, establishing performance parameters of interest and determining the general form of reliability models to be used. The overall system model and the availability of reliability data at the system level are next examined. An iterative process is then described whereby the reliability model and data requirements are systematically refined at progressively lower hierarchic levels of the system. At each stage, the approach is illustrated with examples from the protective system previously described. The main advantages of the approach put forward are the systematic process of analysis, the concentration of assessment effort in the critical areas and the maximum use of limited reliability data. (author)

  6. Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis

    Science.gov (United States)

    Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William

    2009-01-01

    This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).

  7. Digital Processor Module Reliability Analysis of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Jung, Jae Hyun; Kim, Jae Ho; Kim, Sung Hun

    2005-01-01

    The system used in plant, military equipment, satellite, etc. consists of many electronic parts as control module, which requires relatively high reliability than other commercial electronic products. Specially, Nuclear power plant related to the radiation safety requires high safety and reliability, so most parts apply to Military-Standard level. Reliability prediction method provides the rational basis of system designs and also provides the safety significance of system operations. Thus various reliability prediction tools have been developed in recent decades, among of them, the MI-HDBK-217 method has been widely used as a powerful tool for the prediction. In this work, It is explained that reliability analysis work for Digital Processor Module (DPM, control module of SMART) is performed by Parts Stress Method based on MIL-HDBK-217F NOTICE2. We are using the Relex 7.6 of Relex software corporation, because reliability analysis process requires enormous part libraries and data for failure rate calculation

  8. Preliminary Analysis of LORAN-C System Reliability for Civil Aviation.

    Science.gov (United States)

    1981-09-01

    overviev of the analysis technique. Section 3 describes the computerized LORAN-C coverage model which is used extensively in the reliability analysis...Xth Plenary Assembly, Geneva, 1963, published by International Telecomunications Union. S. Braff, R., Computer program to calculate a Karkov Chain Reliability Model, unpublished york, MITRE Corporation. A-1 I.° , 44J Ili *Y 0E 00 ...F i8 1110 Prelim inary Analysis of Program Engineering & LORAN’C System ReliabilityMaintenance Service i ~Washington. D.C.

  9. Approaches to determining the reliability of a multimodal three-dimensional dynamic signature

    Directory of Open Access Journals (Sweden)

    Yury E. Kozlov

    2018-03-01

    Full Text Available The market of modern mobile applications has increasingly strict requirements for the authentication system reliability. This article examines an authentication method using a multimodal three-dimensional dynamic signature (MTDS, that can be used both as a main and additional method of user authentication in mobile applications. It is based on the use of gesture in the air performed by two independent mobile devices as an identifier. The MTDS method has certain advantages over currently used biometric methods, including fingerprint authentication, face recognition and voice recognition. A multimodal three-dimensional dynamic signature allows quickly changing an authentication gesture, as well as concealing the authentication procedure using gestures that do not attract attention. Despite all its advantages, the MTDS method has certain limitations, the main one is building functionally dynamic complex (FDC skills required for accurate repeating an authentication gesture. To correctly create MTDS need to have a system for assessing the reliability of gestures. Approaches to the solution of this task are grouped in this article according to methods of their implementation. Two of the approaches can be implemented only with the use of a server as a centralized MTDS processing center and one approach can be implemented using smartphone's own computing resources. The final part of the article provides data of testing one of these methods on a template performing the MTDS authentication.

  10. Reliability analysis of digital I and C systems at KAERI

    International Nuclear Information System (INIS)

    Kim, Man Cheol

    2013-01-01

    This paper provides an overview of the ongoing research activities on a reliability analysis of digital instrumentation and control (I and C) systems of nuclear power plants (NPPs) performed by the Korea Atomic Energy Research Institute (KAERI). The research activities include the development of a new safety-critical software reliability analysis method by integrating the advantages of existing software reliability analysis methods, a fault coverage estimation method based on fault injection experiments, and a new human reliability analysis method for computer-based main control rooms (MCRs) based on human performance data from the APR-1400 full-scope simulator. The research results are expected to be used to address various issues such as the licensing issues related to digital I and C probabilistic safety assessment (PSA) for advanced digital-based NPPs. (author)

  11. Reliability analysis of stiff versus flexible piping

    International Nuclear Information System (INIS)

    Lu, S.C.

    1985-01-01

    The overall objective of this research project is to develop a technical basis for flexible piping designs which will improve piping reliability and minimize the use of pipe supports, snubbers, and pipe whip restraints. The current study was conducted to establish the necessary groundwork based on the piping reliability analysis. A confirmatory piping reliability assessment indicated that removing rigid supports and snubbers tends to either improve or affect very little the piping reliability. The authors then investigated a couple of changes to be implemented in Regulatory Guide (RG) 1.61 and RG 1.122 aimed at more flexible piping design. They concluded that these changes substantially reduce calculated piping responses and allow piping redesigns with significant reduction in number of supports and snubbers without violating ASME code requirements. Furthermore, the more flexible piping redesigns are capable of exhibiting reliability levels equal to or higher than the original stiffer design. An investigation of the malfunction of pipe whip restraints confirmed that the malfunction introduced higher thermal stresses and tended to reduce the overall piping reliability. Finally, support and component reliabilities were evaluated based on available fragility data. Results indicated that the support reliability usually exhibits a moderate decrease as the piping flexibility increases. Most on-line pumps and valves showed an insignificant reduction in reliability for a more flexible piping design

  12. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose Luis

    1996-01-01

    Atucha II is a 745 MW Argentine Power Nuclear Reactor constructed by ENACE SA, Nuclear Argentine Company for Electrical Power Generation and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed

  13. Reliability analysis for Atucha II reactor protection system signals

    International Nuclear Information System (INIS)

    Roca, Jose L.

    2000-01-01

    Atucha II is a 745 MW Argentine power nuclear reactor constructed by Nuclear Argentine Company for Electric Power Generation S.A. (ENACE S.A.) and SIEMENS AG KWU, Erlangen, Germany. A preliminary modular logic analysis of RPS (Reactor Protection System) signals was performed by means of the well known Swedish professional risk and reliability software named Risk-Spectrum taking as a basis a reference signal coded as JR17ER003 which command the two moderator loops valves. From the reliability and behavior knowledge for this reference signal follows an estimation of the reliability for the other 97 RPS signals. Because the preliminary character of this analysis Main Important Measures are not performed at this stage. Reliability is by the statistic value named unavailability predicted. The scope of this analysis is restricted from the measurement elements to the RPS buffer outputs. In the present context only one redundancy is analyzed so in the Instrumentation and Control area there no CCF (Common Cause Failures) present for signals. Finally those unavailability values could be introduced in the failure domain for the posterior complete Atucha II reliability analysis which includes all mechanical and electromechanical features. Also an estimation of the spurious frequency of RPS signals defined as faulty by no trip is performed. (author)

  14. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    International Nuclear Information System (INIS)

    Chang, Y.H.; Mosleh, A.; Dang, V.N.

    2003-01-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  15. Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.H.; Mosleh, A.; Dang, V.N

    2003-03-01

    The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)

  16. Interactive reliability analysis project. FY 80 progress report

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.

    1981-03-01

    This report summarizes the progress to date in the interactive reliability analysis project. Purpose is to develop and demonstrate a reliability and safety technique that can be incorporated early in the design process. Details are illustrated in a simple example of a reactor safety system

  17. Accident Sequence Evaluation Program: Human reliability analysis procedure

    International Nuclear Information System (INIS)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs

  18. 78 FR 45447 - Revisions to Modeling, Data, and Analysis Reliability Standard

    Science.gov (United States)

    2013-07-29

    ...; Order No. 782] Revisions to Modeling, Data, and Analysis Reliability Standard AGENCY: Federal Energy... Analysis (MOD) Reliability Standard MOD- 028-2, submitted to the Commission for approval by the North... Organization. The Commission finds that the proposed Reliability Standard represents an improvement over the...

  19. State of the art report on aging reliability analysis

    International Nuclear Information System (INIS)

    Choi, Sun Yeong; Yang, Joon Eon; Han, Sang Hoon; Ha, Jae Joo

    2002-03-01

    The goal of this report is to describe the state of the art on aging analysis methods to calculate the effects of component aging quantitatively. In this report, we described some aging analysis methods which calculate the increase of Core Damage Frequency (CDF) due to aging by including the influence of aging into PSA. We also described several research topics required for aging analysis for components of domestic NPPs. We have described a statistical model and reliability physics model which calculate the effect of aging quantitatively by using PSA method. It is expected that the practical use of the reliability-physics model will be increased though the process with the reliability-physics model is more complicated than statistical model

  20. Reliability of the Emergency Severity Index: Meta-analysis

    Directory of Open Access Journals (Sweden)

    Amir Mirhaghi

    2015-01-01

    Full Text Available Objectives: Although triage systems based on the Emergency Severity Index (ESI have many advantages in terms of simplicity and clarity, previous research has questioned their reliability in practice. Therefore, the aim of this meta-analysis was to determine the reliability of ESI triage scales. Methods: This metaanalysis was performed in March 2014. Electronic research databases were searched and articles conforming to the Guidelines for Reporting Reliability and Agreement Studies were selected. Two researchers independently examined selected abstracts. Data were extracted in the following categories: version of scale (latest/older, participants (adult/paediatric, raters (nurse, physician or expert, method of reliability (intra/inter-rater, reliability statistics (weighted/unweighted kappa and the origin and publication year of the study. The effect size was obtained by the Z-transformation of reliability coefficients. Data were pooled with random-effects models and a meta-regression was performed based on the method of moments estimator. Results: A total of 19 studies from six countries were included in the analysis. The pooled coefficient for the ESI triage scales was substantial at 0.791 (95% confidence interval: 0.787‒0.795. Agreement was higher with the latest and adult versions of the scale and among expert raters, compared to agreement with older and paediatric versions of the scales and with other groups of raters, respectively. Conclusion: ESI triage scales showed an acceptable level of overall reliability. However, ESI scales require more development in order to see full agreement from all rater groups. Further studies concentrating on other aspects of reliability assessment are needed.

  1. Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods

    Science.gov (United States)

    Xu, Jun; Dang, Chao; Kong, Fan

    2017-10-01

    This paper presents a new method for efficient structural reliability analysis. In this method, a rotational quasi-symmetric point method (RQ-SPM) is proposed for evaluating the fractional moments of the performance function. Then, the derivation of the performance function's probability density function (PDF) is carried out based on the maximum entropy method in which constraints are specified in terms of fractional moments. In this regard, the probability of failure can be obtained by a simple integral over the performance function's PDF. Six examples, including a finite element-based reliability analysis and a dynamic system with strong nonlinearity, are used to illustrate the efficacy of the proposed method. All the computed results are compared with those by Monte Carlo simulation (MCS). It is found that the proposed method can provide very accurate results with low computational effort.

  2. Reliability analysis in interdependent smart grid systems

    Science.gov (United States)

    Peng, Hao; Kan, Zhe; Zhao, Dandan; Han, Jianmin; Lu, Jianfeng; Hu, Zhaolong

    2018-06-01

    Complex network theory is a useful way to study many real complex systems. In this paper, a reliability analysis model based on complex network theory is introduced in interdependent smart grid systems. In this paper, we focus on understanding the structure of smart grid systems and studying the underlying network model, their interactions, and relationships and how cascading failures occur in the interdependent smart grid systems. We propose a practical model for interdependent smart grid systems using complex theory. Besides, based on percolation theory, we also study the effect of cascading failures effect and reveal detailed mathematical analysis of failure propagation in such systems. We analyze the reliability of our proposed model caused by random attacks or failures by calculating the size of giant functioning components in interdependent smart grid systems. Our simulation results also show that there exists a threshold for the proportion of faulty nodes, beyond which the smart grid systems collapse. Also we determine the critical values for different system parameters. In this way, the reliability analysis model based on complex network theory can be effectively utilized for anti-attack and protection purposes in interdependent smart grid systems.

  3. A reliability simulation language for reliability analysis

    International Nuclear Information System (INIS)

    Deans, N.D.; Miller, A.J.; Mann, D.P.

    1986-01-01

    The results of work being undertaken to develop a Reliability Description Language (RDL) which will enable reliability analysts to describe complex reliability problems in a simple, clear and unambiguous way are described. Component and system features can be stated in a formal manner and subsequently used, along with control statements to form a structured program. The program can be compiled and executed on a general-purpose computer or special-purpose simulator. (DG)

  4. Durability reliability analysis for corroding concrete structures under uncertainty

    Science.gov (United States)

    Zhang, Hao

    2018-02-01

    This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.

  5. A methodology to incorporate organizational factors into human reliability analysis

    International Nuclear Information System (INIS)

    Li Pengcheng; Chen Guohua; Zhang Li; Xiao Dongsheng

    2010-01-01

    A new holistic methodology for Human Reliability Analysis (HRA) is proposed to model the effects of the organizational factors on the human reliability. Firstly, a conceptual framework is built, which is used to analyze the causal relationships between the organizational factors and human reliability. Then, the inference model for Human Reliability Analysis is built by combining the conceptual framework with Bayesian networks, which is used to execute the causal inference and diagnostic inference of human reliability. Finally, a case example is presented to demonstrate the specific application of the proposed methodology. The results show that the proposed methodology of combining the conceptual model with Bayesian Networks can not only easily model the causal relationship between organizational factors and human reliability, but in a given context, people can quantitatively measure the human operational reliability, and identify the most likely root causes or the prioritization of root causes caused human error. (authors)

  6. Reliability and construction control

    Directory of Open Access Journals (Sweden)

    Sherif S. AbdelSalam

    2016-06-01

    Full Text Available The goal of this study was to determine the most reliable and efficient combination of design and construction methods required for vibro piles. For a wide range of static and dynamic formulas, the reliability-based resistance factors were calculated using EGYPT database, which houses load test results for 318 piles. The analysis was extended to introduce a construction control factor that determines the variation between the pile nominal capacities calculated using static versus dynamic formulae. From the major outcomes, the lowest coefficient of variation is associated with Davisson’s criterion, and the resistance factors calculated for the AASHTO method are relatively high compared with other methods. Additionally, the CPT-Nottingham and Schmertmann method provided the most economic design. Recommendations related to a pile construction control factor were also presented, and it was found that utilizing the factor can significantly reduce variations between calculated and actual capacities.

  7. Structural reliability analysis based on the cokriging technique

    International Nuclear Information System (INIS)

    Zhao Wei; Wang Wei; Dai Hongzhe; Xue Guofeng

    2010-01-01

    Approximation methods are widely used in structural reliability analysis because they are simple to create and provide explicit functional relationships between the responses and variables in stead of the implicit limit state function. Recently, the kriging method which is a semi-parameter interpolation technique that can be used for deterministic optimization and structural reliability has gained popularity. However, to fully exploit the kriging method, especially in high-dimensional problems, a large number of sample points should be generated to fill the design space and this can be very expensive and even impractical in practical engineering analysis. Therefore, in this paper, a new method-the cokriging method, which is an extension of kriging, is proposed to calculate the structural reliability. cokriging approximation incorporates secondary information such as the values of the gradients of the function being approximated. This paper explores the use of the cokriging method for structural reliability problems by comparing it with the Kriging method based on some numerical examples. The results indicate that the cokriging procedure described in this work can generate approximation models to improve on the accuracy and efficiency for structural reliability problems and is a viable alternative to the kriging.

  8. Assessment of modern methods of human factor reliability analysis in PSA studies

    International Nuclear Information System (INIS)

    Holy, J.

    2001-12-01

    The report is structured as follows: Classical terms and objects (Probabilistic safety assessment as a framework for human reliability assessment; Human failure within the PSA model; Basic types of operator failure modelled in a PSA study and analyzed by HRA methods; Qualitative analysis of human reliability; Quantitative analysis of human reliability used; Process of analysis of nuclear reactor operator reliability in a PSA study); New terms and objects (Analysis of dependences; Errors of omission; Errors of commission; Error forcing context); and Overview and brief assessment of human reliability analysis (Basic characteristics of the methods; Assets and drawbacks of the use of each of HRA method; History and prospects of the use of the methods). (P.A.)

  9. Reliability analysis of Angra I safety systems

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Soto, J.B.; Maciel, C.C.; Gibelli, S.M.O.; Fleming, P.V.; Arrieta, L.A.

    1980-07-01

    An extensive reliability analysis of some safety systems of Angra I, are presented. The fault tree technique, which has been successfully used in most reliability studies of nuclear safety systems performed to date is employed. Results of a quantitative determination of the unvailability of the accumulator and the containment spray injection systems are presented. These results are also compared to those reported in WASH-1400. (E.G.) [pt

  10. Reliability analysis of RC containment structures under combined loads

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Kagami, S.

    1984-01-01

    This paper discusses a reliability analysis method and load combination design criteria for reinforced concrete containment structures under combined loads. The probability based reliability analysis method is briefly described. For load combination design criteria, derivations of the load factors for accidental pressure due to a design basis accident and safe shutdown earthquake (SSE) for three target limit state probabilities are presented

  11. IEEE guide for the analysis of human reliability

    International Nuclear Information System (INIS)

    Dougherty, E.M. Jr.

    1987-01-01

    The Institute of Electrical and Electronics Engineers (IEEE) working group 7.4 of the Human Factors and Control Facilities Subcommittee of the Nuclear Power Engineering Committee (NPEC) has released its fifth draft of a Guide for General Principles of Human Action Reliability Analysis for Nuclear Power Generating Stations, for approval of NPEC. A guide is the least mandating in the IEEE hierarchy of standards. The purpose is to enhance the performance of an human reliability analysis (HRA) as a part of a probabilistic risk assessment (PRA), to assure reproducible results, and to standardize documentation. The guide does not recommend or even discuss specific techniques, which are too rapidly evolving today. Considerable maturation in the analysis of human reliability in a PRA context has taken place in recent years. The IEEE guide on this subject is an initial step toward bringing HRA out of the research and development arena into the toolbox of standard engineering practices

  12. Modeling and reliability analysis of three phase z-source AC-AC converter

    Directory of Open Access Journals (Sweden)

    Prasad Hanuman

    2017-12-01

    Full Text Available This paper presents the small signal modeling using the state space averaging technique and reliability analysis of a three-phase z-source ac-ac converter. By controlling the shoot-through duty ratio, it can operate in buck-boost mode and maintain desired output voltage during voltage sag and surge condition. It has faster dynamic response and higher efficiency as compared to the traditional voltage regulator. Small signal analysis derives different control transfer functions and this leads to design a suitable controller for a closed loop system during supply voltage variation. The closed loop system of the converter with a PID controller eliminates the transients in output voltage and provides steady state regulated output. The proposed model designed in the RT-LAB and executed in a field programming gate array (FPGA-based real-time digital simulator at a fixedtime step of 10 μs and a constant switching frequency of 10 kHz. The simulator was developed using very high speed integrated circuit hardware description language (VHDL, making it versatile and moveable. Hardware-in-the-loop (HIL simulation results are presented to justify the MATLAB simulation results during supply voltage variation of the three phase z-source ac-ac converter. The reliability analysis has been applied to the converter to find out the failure rate of its different components.

  13. Discrete event simulation versus conventional system reliability analysis approaches

    DEFF Research Database (Denmark)

    Kozine, Igor

    2010-01-01

    Discrete Event Simulation (DES) environments are rapidly developing and appear to be promising tools for building reliability and risk analysis models of safety-critical systems and human operators. If properly developed, they are an alternative to the conventional human reliability analysis models...... and systems analysis methods such as fault and event trees and Bayesian networks. As one part, the paper describes briefly the author’s experience in applying DES models to the analysis of safety-critical systems in different domains. The other part of the paper is devoted to comparing conventional approaches...

  14. Sensitivity analysis in a structural reliability context

    International Nuclear Information System (INIS)

    Lemaitre, Paul

    2014-01-01

    This thesis' subject is sensitivity analysis in a structural reliability context. The general framework is the study of a deterministic numerical model that allows to reproduce a complex physical phenomenon. The aim of a reliability study is to estimate the failure probability of the system from the numerical model and the uncertainties of the inputs. In this context, the quantification of the impact of the uncertainty of each input parameter on the output might be of interest. This step is called sensitivity analysis. Many scientific works deal with this topic but not in the reliability scope. This thesis' aim is to test existing sensitivity analysis methods, and to propose more efficient original methods. A bibliographical step on sensitivity analysis on one hand and on the estimation of small failure probabilities on the other hand is first proposed. This step raises the need to develop appropriate techniques. Two variables ranking methods are then explored. The first one proposes to make use of binary classifiers (random forests). The second one measures the departure, at each step of a subset method, between each input original density and the density given the subset reached. A more general and original methodology reflecting the impact of the input density modification on the failure probability is then explored. The proposed methods are then applied on the CWNR case, which motivates this thesis. (author)

  15. Reliability-based design code calibration for concrete containment structures

    International Nuclear Information System (INIS)

    Han, B.K.; Cho, H.N.; Chang, S.P.

    1991-01-01

    In this study, a load combination criteria for design and a probability-based reliability analysis were proposed on the basis of a FEM-based random vibration analysis. The limit state model defined for the study is a serviceability limit state of the crack failure that causes the emission of radioactive materials, and the results are compared with the case of strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporating the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the references were adapted to the situation of Korea, and especially in case of earthquake, the design earthquake was assessed based on the available data for the probabilistic description of earthquake ground acceleration in the Korea peninsula. The SAP V-2 is used for a three-dimensional finite element analysis of concrete containment structure, and the reliability analysis is carried out by modifying HRAS reliability analysis program for this study. (orig./GL)

  16. Accident Sequence Evaluation Program: Human reliability analysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A.D.

    1987-02-01

    This document presents a shortened version of the procedure, models, and data for human reliability analysis (HRA) which are presented in the Handbook of Human Reliability Analysis With emphasis on Nuclear Power Plant Applications (NUREG/CR-1278, August 1983). This shortened version was prepared and tried out as part of the Accident Sequence Evaluation Program (ASEP) funded by the US Nuclear Regulatory Commission and managed by Sandia National Laboratories. The intent of this new HRA procedure, called the ''ASEP HRA Procedure,'' is to enable systems analysts, with minimal support from experts in human reliability analysis, to make estimates of human error probabilities and other human performance characteristics which are sufficiently accurate for many probabilistic risk assessments. The ASEP HRA Procedure consists of a Pre-Accident Screening HRA, a Pre-Accident Nominal HRA, a Post-Accident Screening HRA, and a Post-Accident Nominal HRA. The procedure in this document includes changes made after tryout and evaluation of the procedure in four nuclear power plants by four different systems analysts and related personnel, including human reliability specialists. The changes consist of some additional explanatory material (including examples), and more detailed definitions of some of the terms. 42 refs.

  17. Reliability and risk analysis methods research plan

    International Nuclear Information System (INIS)

    1984-10-01

    This document presents a plan for reliability and risk analysis methods research to be performed mainly by the Reactor Risk Branch (RRB), Division of Risk Analysis and Operations (DRAO), Office of Nuclear Regulatory Research. It includes those activities of other DRAO branches which are very closely related to those of the RRB. Related or interfacing programs of other divisions, offices and organizations are merely indicated. The primary use of this document is envisioned as an NRC working document, covering about a 3-year period, to foster better coordination in reliability and risk analysis methods development between the offices of Nuclear Regulatory Research and Nuclear Reactor Regulation. It will also serve as an information source for contractors and others to more clearly understand the objectives, needs, programmatic activities and interfaces together with the overall logical structure of the program

  18. Representative Sampling for reliable data analysis

    DEFF Research Database (Denmark)

    Petersen, Lars; Esbensen, Kim Harry

    2005-01-01

    regime in order to secure the necessary reliability of: samples (which must be representative, from the primary sampling onwards), analysis (which will not mean anything outside the miniscule analytical volume without representativity ruling all mass reductions involved, also in the laboratory) and data...

  19. Intra- and interrater reliability and agreement of the Danish version of the Dynamic Gait Index in older people with balance impairments

    DEFF Research Database (Denmark)

    Jønsson, Line R; Kristensen, Morten; Tibaek, Sigrid

    2011-01-01

    To examine the intrarater and interrater reliability and agreement of the Danish version of the Dynamic Gait Index (DGI) in hospitalized and community-dwelling older people with balance impairments.......To examine the intrarater and interrater reliability and agreement of the Danish version of the Dynamic Gait Index (DGI) in hospitalized and community-dwelling older people with balance impairments....

  20. Dynamic Self-Adaptive Reliability Control for Electric-Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Yi Wan

    2015-02-01

    Full Text Available The high-speed electric-hydraulic proportional control is a new development of the hydraulic control technique with high reliability, low cost, efficient energy, and easy maintenance; it is widely used in industrial manufacturing and production. However, there are still some unresolved challenges, the most notable being the requirements of high stability and real-time by the classical control algorithm due to its high nonlinear characteristics. We propose a dynamic self-adaptive mixed control method based on the least squares support vector machine (LSSVM and the genetic algorithm for high-speed electric-hydraulic proportional control systems in this paper; LSSVM is used to identify and adjust online a nonlinear electric-hydraulic proportional system, and the genetic algorithm is used to optimize the control law of the controlled system and dynamic self-adaptive internal model control and predictive control are implemented by using the mixed intelligent method. The internal model and the inverse control model are online adjusted together. At the same time, a time-dependent Hankel matrix is constructed based on sample data; thus finite dimensional solution can be optimized on finite dimensional space. The results of simulation experiments show that the dynamic characteristics are greatly improved by the mixed intelligent control strategy, and good tracking and high stability are met in condition of high frequency response.

  1. Reliability Analysis of Fatigue Fracture of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Berzonskis, Arvydas; Sørensen, John Dalsgaard

    2016-01-01

    in the volume of the casted ductile iron main shaft, on the reliability of the component. The probabilistic reliability analysis conducted is based on fracture mechanics models. Additionally, the utilization of the probabilistic reliability for operation and maintenance planning and quality control is discussed....

  2. Analysis and assessment of water treatment plant reliability

    Directory of Open Access Journals (Sweden)

    Szpak Dawid

    2017-03-01

    Full Text Available The subject of the publication is the analysis and assessment of the reliability of the surface water treatment plant (WTP. In the study the one parameter method of reliability assessment was used. Based on the flow sheet derived from the water company the reliability scheme of the analysed WTP was prepared. On the basis of the daily WTP work report the availability index Kg for the individual elements included in the WTP, was determined. Then, based on the developed reliability scheme showing the interrelationships between elements, the availability index Kg for the whole WTP was determined. The obtained value of the availability index Kg was compared with the criteria values.

  3. Time-dependent reliability analysis of nuclear reactor operators using probabilistic network models

    International Nuclear Information System (INIS)

    Oka, Y.; Miyata, K.; Kodaira, H.; Murakami, S.; Kondo, S.; Togo, Y.

    1987-01-01

    Human factors are very important for the reliability of a nuclear power plant. Human behavior has essentially a time-dependent nature. The details of thinking and decision making processes are important for detailed analysis of human reliability. They have, however, not been well considered by the conventional methods of human reliability analysis. The present paper describes the models for the time-dependent and detailed human reliability analysis. Recovery by an operator is taken into account and two-operators models are also presented

  4. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  5. Root cause analysis in support of reliability enhancement of engineering components

    International Nuclear Information System (INIS)

    Kumar, Sachin; Mishra, Vivek; Joshi, N.S.; Varde, P.V.

    2014-01-01

    Reliability based methods have been widely used for the safety assessment of plant system, structures and components. These methods provide a quantitative estimation of system reliability but do not give insight into the failure mechanism. Understanding the failure mechanism is a must to avoid the recurrence of the events and enhancement of the system reliability. Root cause analysis provides a tool for gaining detailed insights into the causes of failure of component with particular attention to the identification of fault in component design, operation, surveillance, maintenance, training, procedures and policies which must be improved to prevent repetition of incidents. Root cause analysis also helps in developing Probabilistic Safety Analysis models. A probabilistic precursor study provides a complement to the root cause analysis approach in event analysis by focusing on how an event might have developed adversely. This paper discusses the root cause analysis methodologies and their application in the specific case studies for enhancement of system reliability. (author)

  6. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in

    2017-07-15

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.

  7. DATMAN: A reliability data analysis program using Bayesian updating

    International Nuclear Information System (INIS)

    Becker, M.; Feltus, M.A.

    1996-01-01

    Preventive maintenance (PM) techniques focus on the prevention of failures, in particular, system components that are important to plant functions. Reliability-centered maintenance (RCM) improves on the PM techniques by introducing a set of guidelines by which to evaluate the system functions. It also minimizes intrusive maintenance, labor, and equipment downtime without sacrificing system performance when its function is essential for plant safety. Both the PM and RCM approaches require that system reliability data be updated as more component failures and operation time are acquired. Systems reliability and the likelihood of component failures can be calculated by Bayesian statistical methods, which can update these data. The DATMAN computer code has been developed at Penn State to simplify the Bayesian analysis by performing tedious calculations needed for RCM reliability analysis. DATMAN reads data for updating, fits a distribution that best fits the data, and calculates component reliability. DATMAN provides a user-friendly interface menu that allows the user to choose from several common prior and posterior distributions, insert new failure data, and visually select the distribution that matches the data most accurately

  8. The development of a reliable amateur boxing performance analysis template.

    Science.gov (United States)

    Thomson, Edward; Lamb, Kevin; Nicholas, Ceri

    2013-01-01

    The aim of this study was to devise a valid performance analysis system for the assessment of the movement characteristics associated with competitive amateur boxing and assess its reliability using analysts of varying experience of the sport and performance analysis. Key performance indicators to characterise the demands of an amateur contest (offensive, defensive and feinting) were developed and notated using a computerised notational analysis system. Data were subjected to intra- and inter-observer reliability assessment using median sign tests and calculating the proportion of agreement within predetermined limits of error. For all performance indicators, intra-observer reliability revealed non-significant differences between observations (P > 0.05) and high agreement was established (80-100%) regardless of whether exact or the reference value of ±1 was applied. Inter-observer reliability was less impressive for both analysts (amateur boxer and experienced analyst), with the proportion of agreement ranging from 33-100%. Nonetheless, there was no systematic bias between observations for any indicator (P > 0.05), and the proportion of agreement within the reference range (±1) was 100%. A reliable performance analysis template has been developed for the assessment of amateur boxing performance and is available for use by researchers, coaches and athletes to classify and quantify the movement characteristics of amateur boxing.

  9. Electromechanical dynamic analysis for the drum driving system of the long-wall shearer

    Directory of Open Access Journals (Sweden)

    Changzhao Liu

    2015-10-01

    Full Text Available The drum driving system is one of the weakest parts of the long-wall shearer, and some methods are also needed to monitor and control the long-wall shearer to adapt to the important trend of unmanned operation in future mining systems. Therefore, it is essential to conduct an electromechanical dynamic analysis for the drum driving system of the long-wall shearer. First, a torsional dynamic model of planetary gears is proposed which is convenient to be connected to the electric motor model for electromechanical dynamic analysis. Next, an electromechanical dynamic model for the drum driving system is constructed including the electric motor, the gear transmission system, and the drum. Then, the electromechanical dynamic characteristics are simulated when the shock loads are acted on the drum driving system. Finally, some advices are proposed for improving the reliability, monitoring the operating state, and choosing the control signals of the long-wall shearer based on the simulation.

  10. Reliability Worth Analysis of Distribution Systems Using Cascade Correlation Neural Networks

    DEFF Research Database (Denmark)

    Heidari, Alireza; Agelidis, Vassilios; Pou, Josep

    2018-01-01

    Reliability worth analysis is of great importance in the area of distribution network planning and operation. The reliability worth's precision can be affected greatly by the customer interruption cost model used. The choice of the cost models can change system and load point reliability indices....... In this study, a cascade correlation neural network is adopted to further develop two cost models comprising a probabilistic distribution model and an average or aggregate model. A contingency-based analytical technique is adopted to conduct the reliability worth analysis. Furthermore, the possible effects...

  11. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  12. A new approach for reliability analysis with time-variant performance characteristics

    International Nuclear Information System (INIS)

    Wang, Zequn; Wang, Pingfeng

    2013-01-01

    Reliability represents safety level in industry practice and may variant due to time-variant operation condition and components deterioration throughout a product life-cycle. Thus, the capability to perform time-variant reliability analysis is of vital importance in practical engineering applications. This paper presents a new approach, referred to as nested extreme response surface (NERS), that can efficiently tackle time dependency issue in time-variant reliability analysis and enable to solve such problem by easily integrating with advanced time-independent tools. The key of the NERS approach is to build a nested response surface of time corresponding to the extreme value of the limit state function by employing Kriging model. To obtain the data for the Kriging model, the efficient global optimization technique is integrated with the NERS to extract the extreme time responses of the limit state function for any given system input. An adaptive response prediction and model maturation mechanism is developed based on mean square error (MSE) to concurrently improve the accuracy and computational efficiency of the proposed approach. With the nested response surface of time, the time-variant reliability analysis can be converted into the time-independent reliability analysis and existing advanced reliability analysis methods can be used. Three case studies are used to demonstrate the efficiency and accuracy of NERS approach

  13. Methodology for reliability allocation based on fault tree analysis and dualistic contrast

    Institute of Scientific and Technical Information of China (English)

    TONG Lili; CAO Xuewu

    2008-01-01

    Reliability allocation is a difficult multi-objective optimization problem.This paper presents a methodology for reliability allocation that can be applied to determine the reliability characteristics of reactor systems or subsystems.The dualistic contrast,known as one of the most powerful tools for optimization problems,is applied to the reliability allocation model of a typical system in this article.And the fault tree analysis,deemed to be one of the effective methods of reliability analysis,is also adopted.Thus a failure rate allocation model based on the fault tree analysis and dualistic contrast is achieved.An application on the emergency diesel generator in the nuclear power plant is given to illustrate the proposed method.

  14. Reliability analysis of protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Choi, J. G.; Lee, D. Y.; Han, J. B.

    2003-04-01

    Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications

  15. Reliability analysis of diverse safety logic systems of fast breeder reactor

    International Nuclear Information System (INIS)

    Ravi Kumar, Bh.; Apte, P.R.; Srivani, L.; Ilango Sambasivan, S.; Swaminathan, P.

    2006-01-01

    Safety Logic for Fast Breeder Reactor (FBR) is designed to initiate safety action against Design Basis Events. Based on the outputs of various processing circuits, Safety logic system drives the control rods of the shutdown system. So, Safety Logic system is classified as safety critical system. Therefore, reliability analysis has to be performed. This paper discusses the Reliability analysis of Diverse Safety logic systems of FBRs. For this literature survey on safety critical systems, system reliability approach and standards to be followed like IEC-61508 are discussed in detail. For Programmable Logic device based systems, Hardware Description Languages (HDL) are used. So this paper also discusses the Verification and Validation for HDLs. Finally a case study for the Reliability analysis of Safety logic is discussed. (author)

  16. Reliability analysis of safety systems of nuclear power plant and utility experience with reliability safeguarding of systems during specified normal operation

    International Nuclear Information System (INIS)

    Balfanz, H.P.

    1989-01-01

    The paper gives an outline of the methods applied for reliability analysis of safety systems in nuclear power plant. The main tasks are to check the system design for detection of weak points, and to find possibilities of optimizing the strategies for inspection, inspection intervals, maintenance periods. Reliability safeguarding measures include the determination and verification of the broundary conditions of the analysis with regard to the reliability parameters and maintenance parameters used in the analysis, and the analysis of data feedback reflecting the plant response during operation. (orig.) [de

  17. Reliable Approximation of Long Relaxation Timescales in Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-07-01

    Full Text Available Many interesting rare events in molecular systems, like ligand association, protein folding or conformational changes, occur on timescales that often are not accessible by direct numerical simulation. Therefore, rare event approximation approaches like interface sampling, Markov state model building, or advanced reaction coordinate-based free energy estimation have attracted huge attention recently. In this article we analyze the reliability of such approaches. How precise is an estimate of long relaxation timescales of molecular systems resulting from various forms of rare event approximation methods? Our results give a theoretical answer to this question by relating it with the transfer operator approach to molecular dynamics. By doing so we also allow for understanding deep connections between the different approaches.

  18. Reliability-Based Robustness Analysis for a Croatian Sports Hall

    DEFF Research Database (Denmark)

    Čizmar, Dean; Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a probabilistic approach for structural robustness assessment for a timber structure built a few years ago. The robustness analysis is based on a structural reliability based framework for robustness and a simplified mechanical system modelling of a timber truss system....... A complex timber structure with a large number of failure modes is modelled with only a few dominant failure modes. First, a component based robustness analysis is performed based on the reliability indices of the remaining elements after the removal of selected critical elements. The robustness...... is expressed and evaluated by a robustness index. Next, the robustness is assessed using system reliability indices where the probabilistic failure model is modelled by a series system of parallel systems....

  19. Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton

    International Nuclear Information System (INIS)

    Babykina, Génia; Brînzei, Nicolae; Aubry, Jean-François; Deleuze, Gilles

    2016-01-01

    The paper proposes a modeling framework to support Monte Carlo simulations of the behavior of a complex industrial system. The aim is to analyze the system dependability in the presence of random events, described by any type of probability distributions. Continuous dynamic evolutions of physical parameters are taken into account by a system of differential equations. Dynamic reliability is chosen as theoretical framework. Based on finite state automata theory, the formal model is built by parallel composition of elementary sub-models using a bottom-up approach. Considerations of a stochastic nature lead to a model called the Stochastic Hybrid Automaton. The Scilab/Scicos open source environment is used for implementation. The case study is carried out on an example of a steam generator of a nuclear power plant. The behavior of the system is studied by exploring its trajectories. Possible system trajectories are analyzed both empirically, using the results of Monte Carlo simulations, and analytically, using the formal system model. The obtained results are show to be relevant. The Stochastic Hybrid Automaton appears to be a suitable tool to address the dynamic reliability problem and to model real systems of high complexity; the bottom-up design provides precision and coherency of the system model. - Highlights: • A part of a nuclear power plant is modeled in the context of dynamic reliability. • Stochastic Hybrid Automaton is used as an input model for Monte Carlo simulations. • The model is formally built using a bottom-up approach. • The behavior of the system is analyzed empirically and analytically. • A formally built SHA shows to be a suitable tool to approach dynamic reliability.

  20. Modeling and Analysis of Component Faults and Reliability

    DEFF Research Database (Denmark)

    Le Guilly, Thibaut; Olsen, Petur; Ravn, Anders Peter

    2016-01-01

    This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets that are automati......This chapter presents a process to design and validate models of reactive systems in the form of communicating timed automata. The models are extended with faults associated with probabilities of occurrence. This enables a fault tree analysis of the system using minimal cut sets...... that are automatically generated. The stochastic information on the faults is used to estimate the reliability of the fault affected system. The reliability is given with respect to properties of the system state space. We illustrate the process on a concrete example using the Uppaal model checker for validating...... the ideal system model and the fault modeling. Then the statistical version of the tool, UppaalSMC, is used to find reliability estimates....

  1. Robustness Analysis of Dynamic Watermarks

    Directory of Open Access Journals (Sweden)

    Ivan V. Nechta

    2017-06-01

    Full Text Available In this paper we consider previously known scheme of dynamic watermarks embedding (Ra- dix-n that is used for preventing illegal use of software. According to the scheme a watermark is dynamic linked data structure (graph, which is created in memory during program execution. Hidden data, such as information about author, can be represented in a different type of graph structure. This data can be extracted and demonstrated in judicial proceedings. This paper declared that the above mentioned scheme was previously one of the most reliable, has a number of features that allows an attacker to detect a stage of watermark construction in the program, and therefore it can be corrupted or deleted. The author of this article shows the weakness of Radix-N scheme, which consists in the fact that we can reveal dynamic data structures of a program by using information received from some API-functions hooker which catches function calls of dynamic memory allocation. One of these data structures is the watermark. Pointers on dynamically created objects (arrays, variables, class items, etc. of a program can be detected by content analysis of computer's RAM. Different dynamic objects in memory interconnected by pointers form dynamic data structures of a program such as lists, stacks, trees and other graphs (including the watermark. Our experiment shows that in the vast majority of cases the amount of data structure in programs is small, which increases probability of a successful attack. Also we present an algorithm for finding connected components of a graph with linear time-consuming in cases where the number of nodes is about 106. On the basis of the experimental findings the new watermarking scheme has been presented, which is resistant to the proposed attack. It is offered to use different graph structure representation of a watermark, where edges are implemented using unique signatures. Our scheme uses content encrypting of graph nodes (except signature

  2. Modeling of human operator dynamics in simple manual control utilizing time series analysis. [tracking (position)

    Science.gov (United States)

    Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.

    1982-01-01

    Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.

  3. Analysis of Dynamic Characteristics of Water Injection Pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Myeong; Lee, Jeong Hoon; Ha, Jeong Min; Ahn, Byung Hyun; Kim, Won Cheol; Choi, Byeong Keun [Gyeongsang Nat' l Univ., Jinju (Korea, Republic of)

    2013-12-15

    Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and herefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis.

  4. Reliability of corneal dynamic scheimpflug analyser measurements in virgin and post-PRK eyes.

    Directory of Open Access Journals (Sweden)

    Xiangjun Chen

    Full Text Available PURPOSE: To determine the measurement reliability of CorVis ST, a dynamic Scheimpflug analyser, in virgin and post-photorefractive keratectomy (PRK eyes and compare the results between these two groups. METHODS: Forty virgin eyes and 42 post-PRK eyes underwent CorVis ST measurements performed by two technicians. Repeatability was evaluated by comparing three consecutive measurements by technician A. Reproducibility was determined by comparing the first measurement by technician A with one performed by technician B. Intraobserver and interobserver intraclass correlation coefficients (ICCs were calculated. Univariate analysis of covariance (ANCOVA was used to compare measured parameters between virgin and post-PRK eyes. RESULTS: The intraocular pressure (IOP, central corneal thickness (CCT and 1st applanation time demonstrated good intraobserver repeatability and interobserver reproducibility (ICC ≧ 0.90 in virgin and post-PRK eyes. The deformation amplitude showed a good or close to good repeatability and reproducibility in both groups (ICC ≧ 0.88. The CCT correlated positively with 1st applanation time (r = 0.437 and 0.483, respectively, p<0.05 and negatively with deformation amplitude (r = -0.384 and -0.375, respectively, p<0.05 in both groups. Compared to post-PRK eyes, virgin eyes showed longer 1st applanation time (7.29 ± 0.21 vs. 6.96 ± 0.17 ms, p<0.05 and lower deformation amplitude (1.06 ± 0.07 vs. 1.17 ± 0.08 mm, p < 0.05. CONCLUSIONS: CorVis ST demonstrated reliable measurements for CCT, IOP, and 1st applanation time, as well as relatively reliable measurement for deformation amplitude in both virgin and post-PRK eyes. There were differences in 1st applanation time and deformation amplitude between virgin and post-PRK eyes, which may reflect corneal biomechanical changes occurring after the surgery in the latter.

  5. Reliability analysis of wind embedded power generation system for ...

    African Journals Online (AJOL)

    This paper presents a method for Reliability Analysis of wind energy embedded in power generation system for Indian scenario. This is done by evaluating the reliability index, loss of load expectation, for the power generation system with and without integration of wind energy sources in the overall electric power system.

  6. Reliability analysis for thermal cutting method based non-explosive separation device

    International Nuclear Information System (INIS)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu

    2016-01-01

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils

  7. Reliability analysis for thermal cutting method based non-explosive separation device

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Woo; Hwang, Kuk Ha; Kim, Byung Kyu [Korea Aerospace University, Goyang (Korea, Republic of)

    2016-12-15

    In order to increase the reliability of a separation device for a small satellite, a new non-explosive separation device is invented. This device is activated using a thermal cutting method with a Ni-Cr wire. A reliability analysis is carried out for the proposed non-explosive separation device by applying the Fault tree analysis (FTA) method. In the FTA results for the separation device, only ten single-point failure modes are found. The reliability modeling and analysis for the device are performed considering failure of the power supply, the Ni-Cr wire burns failure and unwinds, the holder separation failure, the balls separation failure, and the pin release failure. Ultimately, the reliability of the proposed device is calculated as 0.999989 with five Ni-Cr wire coils.

  8. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  9. Comparison of methods for dependency determination between human failure events within human reliability analysis

    International Nuclear Information System (INIS)

    Cepis, M.

    2007-01-01

    The Human Reliability Analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease of subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan - Human Reliability Analysis (IJS-HRA) and Standardized Plant Analysis Risk Human Reliability Analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance. (author)

  10. Comparison of Methods for Dependency Determination between Human Failure Events within Human Reliability Analysis

    International Nuclear Information System (INIS)

    Cepin, M.

    2008-01-01

    The human reliability analysis (HRA) is a highly subjective evaluation of human performance, which is an input for probabilistic safety assessment, which deals with many parameters of high uncertainty. The objective of this paper is to show that subjectivism can have a large impact on human reliability results and consequently on probabilistic safety assessment results and applications. The objective is to identify the key features, which may decrease subjectivity of human reliability analysis. Human reliability methods are compared with focus on dependency comparison between Institute Jozef Stefan human reliability analysis (IJS-HRA) and standardized plant analysis risk human reliability analysis (SPAR-H). Results show large differences in the calculated human error probabilities for the same events within the same probabilistic safety assessment, which are the consequence of subjectivity. The subjectivity can be reduced by development of more detailed guidelines for human reliability analysis with many practical examples for all steps of the process of evaluation of human performance

  11. Validity and reliability of acoustic analysis of respiratory sounds in infants

    Science.gov (United States)

    Elphick, H; Lancaster, G; Solis, A; Majumdar, A; Gupta, R; Smyth, R

    2004-01-01

    Objective: To investigate the validity and reliability of computerised acoustic analysis in the detection of abnormal respiratory noises in infants. Methods: Blinded, prospective comparison of acoustic analysis with stethoscope examination. Validity and reliability of acoustic analysis were assessed by calculating the degree of observer agreement using the κ statistic with 95% confidence intervals (CI). Results: 102 infants under 18 months were recruited. Convergent validity for agreement between stethoscope examination and acoustic analysis was poor for wheeze (κ = 0.07 (95% CI, –0.13 to 0.26)) and rattles (κ = 0.11 (–0.05 to 0.27)) and fair for crackles (κ = 0.36 (0.18 to 0.54)). Both the stethoscope and acoustic analysis distinguished well between sounds (discriminant validity). Agreement between observers for the presence of wheeze was poor for both stethoscope examination and acoustic analysis. Agreement for rattles was moderate for the stethoscope but poor for acoustic analysis. Agreement for crackles was moderate using both techniques. Within-observer reliability for all sounds using acoustic analysis was moderate to good. Conclusions: The stethoscope is unreliable for assessing respiratory sounds in infants. This has important implications for its use as a diagnostic tool for lung disorders in infants, and confirms that it cannot be used as a gold standard. Because of the unreliability of the stethoscope, the validity of acoustic analysis could not be demonstrated, although it could discriminate between sounds well and showed good within-observer reliability. For acoustic analysis, targeted training and the development of computerised pattern recognition systems may improve reliability so that it can be used in clinical practice. PMID:15499065

  12. Human reliability analysis of performing tasks in plants based on fuzzy integral

    International Nuclear Information System (INIS)

    Washio, Takashi; Kitamura, Yutaka; Takahashi, Hideaki

    1991-01-01

    The effective improvement of the human working conditions in nuclear power plants might be a solution for the enhancement of the operation safety. The human reliability analysis (HRA) gives a methodological basis of the improvement based on the evaluation of human reliability under various working conditions. This study investigates some difficulties of the human reliability analysis using conventional linear models and recent fuzzy integral models, and provides some solutions to the difficulties. The following practical features of the provided methods are confirmed in comparison with the conventional methods: (1) Applicability to various types of tasks (2) Capability of evaluating complicated dependencies among working condition factors (3) A priori human reliability evaluation based on a systematic task analysis of human action processes (4) A conversion scheme to probability from indices representing human reliability. (author)

  13. Use of reliability engineering in development and manufacturing of metal parts

    International Nuclear Information System (INIS)

    Khan, A.; Iqbal, M.A.; Asif, M.

    2005-01-01

    The reliability engineering predicts modes of failures and weak links before the system is built instead of failure case study. The reliability engineering analysis will help in the manufacturing economy, assembly accuracy and qualification by testing, leading to production of metal parts in an aerospace industry. This methodology will also minimize the performance constraints in any requirement for the application of metal components in aerospace systems. The reliability engineering predicts the life of the parts under loading conditions whether dynamic or static. Reliability predictions can help engineers in making decisions about design of components, materials selection and qualification under applied stress levels. Two methods of reliability prediction i.e. Part Stress Analysis and Part Count have been used in this study. In this paper we will discuss how these two methods can be used to measure reliability of a system during development phases, which includes the measuring effect of environmental and operational variables. The equations are used to measure the reliability of each type of component, as well as, integration for measuring system applied for the reliability analysis. (author)

  14. Reliability Analysis and Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, Hans F.; Christiani, E.

    1994-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of the most important failure modes, sliding failure, failure of the foundation and overturning failure are described . Relevant design variables are identified...

  15. A study of operational and testing reliability in software reliability analysis

    International Nuclear Information System (INIS)

    Yang, B.; Xie, M.

    2000-01-01

    Software reliability is an important aspect of any complex equipment today. Software reliability is usually estimated based on reliability models such as nonhomogeneous Poisson process (NHPP) models. Software systems are improving in testing phase, while it normally does not change in operational phase. Depending on whether the reliability is to be predicted for testing phase or operation phase, different measure should be used. In this paper, two different reliability concepts, namely, the operational reliability and the testing reliability, are clarified and studied in detail. These concepts have been mixed up or even misused in some existing literature. Using different reliability concept will lead to different reliability values obtained and it will further lead to different reliability-based decisions made. The difference of the estimated reliabilities is studied and the effect on the optimal release time is investigated

  16. Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation.

    Science.gov (United States)

    Echinaka, Yuki; Ozeki, Yukiyasu

    2016-10-01

    The dynamical scaling analysis for the Kosterlitz-Thouless transition in the nonequilibrium relaxation method is improved by the use of Bayesian statistics and the kernel method. This allows data to be fitted to a scaling function without using any parametric model function, which makes the results more reliable and reproducible and enables automatic and faster parameter estimation. Applying this method, the bootstrap method is introduced and a numerical discrimination for the transition type is proposed.

  17. Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2010-01-01

    Reliability is widely recognized as a critical design attribute for space systems. In recent articles, we conducted nonparametric analyses and Weibull fits of satellite and satellite subsystems reliability for 1584 Earth-orbiting satellites launched between January 1990 and October 2008. In this paper, we extend our investigation of failures of satellites and satellite subsystems beyond the binary concept of reliability to the analysis of their anomalies and multi-state failures. In reliability analysis, the system or subsystem under study is considered to be either in an operational or failed state; multi-state failure analysis introduces 'degraded states' or partial failures, and thus provides more insights through finer resolution into the degradation behavior of an item and its progression towards complete failure. The database used for the statistical analysis in the present work identifies five states for each satellite subsystem: three degraded states, one fully operational state, and one failed state (complete failure). Because our dataset is right-censored, we calculate the nonparametric probability of transitioning between states for each satellite subsystem with the Kaplan-Meier estimator, and we derive confidence intervals for each probability of transitioning between states. We then conduct parametric Weibull fits of these probabilities using the Maximum Likelihood Estimation (MLE) approach. After validating the results, we compare the reliability versus multi-state failure analyses of three satellite subsystems: the thruster/fuel; the telemetry, tracking, and control (TTC); and the gyro/sensor/reaction wheel subsystems. The results are particularly revealing of the insights that can be gleaned from multi-state failure analysis and the deficiencies, or blind spots, of the traditional reliability analysis. In addition to the specific results provided here, which should prove particularly useful to the space industry, this work highlights the importance

  18. Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Nacef Tazi

    2017-02-01

    Full Text Available Failure mode and effects analysis (FMEA has been proven to be an effective methodology to improve system design reliability. However, the standard approach reveals some weaknesses when applied to wind turbine systems. The conventional criticality assessment method has been criticized as having many limitations such as the weighting of severity and detection factors. In this paper, we aim to overcome these drawbacks and develop a hybrid cost-FMEA by integrating cost factors to assess the criticality, these costs vary from replacement costs to expected failure costs. Then, a quantitative comparative study is carried out to point out average failure rate, main cause of failure, expected failure costs and failure detection techniques. A special reliability analysis of gearbox and rotor-blades are presented.

  19. Reliability analysis of the automatic control and power supply of reactor equipment

    International Nuclear Information System (INIS)

    Monori, Pal; Nagy, J.A.; Meszaros, Zoltan; Konkoly, Laszlo; Szabo, Antal; Nagy, Laszlo

    1988-01-01

    Based on reliability analysis the shortcomings of nuclear facilities are discovered. Fault tree types constructed for the technology of automatic control and for power supply serve as input data of the ORCHARD 2 computer code. In order to charaterize the reliability of the system, availability, failure rates and time intervals between failures are calculated. The results of the reliability analysis of the feedwater system of the Paks Nuclear Power Plant showed that the system consisted of elements of similar reliabilities. (V.N.) 8 figs.; 3 tabs

  20. Future of structural reliability methodology in nuclear power plant technology

    Energy Technology Data Exchange (ETDEWEB)

    Schueeller, G I [Technische Univ. Muenchen (Germany, F.R.); Kafka, P [Gesellschaft fuer Reaktorsicherheit m.b.H. (GRS), Garching (Germany, F.R.)

    1978-10-01

    This paper presents the authors' personal view as to which areas of structural reliability in nuclear power plant design need most urgently to be advanced. Aspects of simulation modeling, design rules, codification and specification of reliability, system analysis, probabilistic structural dynamics, rare events and particularly the interaction of systems and structural reliability are discussed. As an example, some considerations of the interaction effects between the protective systems and the pressure vessel are stated. The paper concludes with recommendation for further research.

  1. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs

  2. Probabilistic safety analysis and human reliability analysis. Proceedings. Working material

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    An international meeting on Probabilistic Safety Assessment (PSA) and Human Reliability Analysis (HRA) was jointly organized by Electricite de France - Research and Development (EDF DER) and SRI International in co-ordination with the International Atomic Energy Agency. The meeting was held in Paris 21-23 November 1994. A group of international and French specialists in PSA and HRA participated at the meeting and discussed the state of the art and current trends in the following six topics: PSA Methodology; PSA Applications; From PSA to Dependability; Incident Analysis; Safety Indicators; Human Reliability. For each topic a background paper was prepared by EDF/DER and reviewed by the international group of specialists who attended the meeting. The results of this meeting provide a comprehensive overview of the most important questions related to the readiness of PSA for specific uses and areas where further research and development is required. Refs, figs, tabs.

  3. Structural reliability analysis applied to pipeline risk analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, M. [GL Industrial Services, Loughborough (United Kingdom); Mendes, Renato F.; Donato, Guilherme V.P. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    Quantitative Risk Assessment (QRA) of pipelines requires two main components to be provided. These are models of the consequences that follow from some loss of containment incident, and models for the likelihood of such incidents occurring. This paper describes how PETROBRAS have used Structural Reliability Analysis for the second of these, to provide pipeline- and location-specific predictions of failure frequency for a number of pipeline assets. This paper presents an approach to estimating failure rates for liquid and gas pipelines, using Structural Reliability Analysis (SRA) to analyze the credible basic mechanisms of failure such as corrosion and mechanical damage. SRA is a probabilistic limit state method: for a given failure mechanism it quantifies the uncertainty in parameters to mathematical models of the load-resistance state of a structure and then evaluates the probability of load exceeding resistance. SRA can be used to benefit the pipeline risk management process by optimizing in-line inspection schedules, and as part of the design process for new construction in pipeline rights of way that already contain multiple lines. A case study is presented to show how the SRA approach has recently been used on PETROBRAS pipelines and the benefits obtained from it. (author)

  4. Reliability Analysis of Wireless Sensor Networks Using Markovian Model

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2012-01-01

    Full Text Available This paper investigates reliability analysis of wireless sensor networks whose topology is switching among possible connections which are governed by a Markovian chain. We give the quantized relations between network topology, data acquisition rate, nodes' calculation ability, and network reliability. By applying Lyapunov method, sufficient conditions of network reliability are proposed for such topology switching networks with constant or varying data acquisition rate. With the conditions satisfied, the quantity of data transported over wireless network node will not exceed node capacity such that reliability is ensured. Our theoretical work helps to provide a deeper understanding of real-world wireless sensor networks, which may find its application in the fields of network design and topology control.

  5. Analysis of sodium valve reliability data at CREDO

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.

    1979-01-01

    The Centralized Reliability Data Organization (CREDO) has been established at Oak Ridge National Laboratory (ORNL) by the Department of Energy to provide a centralized source of data for reliability/maintainabilty analysis of advanced reactor systems. The current schedule calls for develoment of the data system at a moderate pace, with the first major distribution of data in late FY-1980. Continuous long-term collection of engineering, operating, and event data has been initiated at EBR-II and FFTF

  6. Interrater reliability of videotaped observational gait-analysis assessments.

    Science.gov (United States)

    Eastlack, M E; Arvidson, J; Snyder-Mackler, L; Danoff, J V; McGarvey, C L

    1991-06-01

    The purpose of this study was to determine the interrater reliability of videotaped observational gait-analysis (VOGA) assessments. Fifty-four licensed physical therapists with varying amounts of clinical experience served as raters. Three patients with rheumatoid arthritis who demonstrated an abnormal gait pattern served as subjects for the videotape. The raters analyzed each patient's most severely involved knee during the four subphases of stance for the kinematic variables of knee flexion and genu valgum. Raters were asked to determine whether these variables were inadequate, normal, or excessive. The temporospatial variables analyzed throughout the entire gait cycle were cadence, step length, stride length, stance time, and step width. Generalized kappa coefficients ranged from .11 to .52. Intraclass correlation coefficients (2,1) and (3,1) were slightly higher. Our results indicate that physical therapists' VOGA assessments are only slightly to moderately reliable and that improved interrater reliability of the assessments of physical therapists utilizing this technique is needed. Our data suggest that there is a need for greater standardization of gait-analysis training.

  7. The relationship between cost estimates reliability and BIM adoption: SEM analysis

    Science.gov (United States)

    Ismail, N. A. A.; Idris, N. H.; Ramli, H.; Rooshdi, R. R. Raja Muhammad; Sahamir, S. R.

    2018-02-01

    This paper presents the usage of Structural Equation Modelling (SEM) approach in analysing the effects of Building Information Modelling (BIM) technology adoption in improving the reliability of cost estimates. Based on the questionnaire survey results, SEM analysis using SPSS-AMOS application examined the relationships between BIM-improved information and cost estimates reliability factors, leading to BIM technology adoption. Six hypotheses were established prior to SEM analysis employing two types of SEM models, namely the Confirmatory Factor Analysis (CFA) model and full structural model. The SEM models were then validated through the assessment on their uni-dimensionality, validity, reliability, and fitness index, in line with the hypotheses tested. The final SEM model fit measures are: P-value=0.000, RMSEA=0.0790.90, TLI=0.956>0.90, NFI=0.935>0.90 and ChiSq/df=2.259; indicating that the overall index values achieved the required level of model fitness. The model supports all the hypotheses evaluated, confirming that all relationship exists amongst the constructs are positive and significant. Ultimately, the analysis verified that most of the respondents foresee better understanding of project input information through BIM visualization, its reliable database and coordinated data, in developing more reliable cost estimates. They also perceive to accelerate their cost estimating task through BIM adoption.

  8. Reliability analysis of self-actuated shutdown system

    International Nuclear Information System (INIS)

    Itooka, S.; Kumasaka, K.; Okabe, A.; Satoh, K.; Tsukui, Y.

    1991-01-01

    An analytical study was performed for the reliability of a self-actuated shutdown system (SASS) under the unprotected loss of flow (ULOF) event in a typical loop-type liquid metal fast breeder reactor (LMFBR) by the use of the response surface Monte Carlo analysis method. Dominant parameters for the SASS, such as Curie point characteristics, subassembly outlet coolant temperature, electromagnetic surface condition, etc., were selected and their probability density functions (PDFs) were determined by the design study information and experimental data. To get the response surface function (RSF) for the maximum coolant temperature, transient analyses of ULOF were performed by utilizing the experimental design method in the determination of analytical cases. Then, the RSF was derived by the multi-variable regression analysis. The unreliability of the SASS was evaluated as a probability that the maximum coolant temperature exceeded an acceptable level, employing the Monte Carlo calculation using the above PDFs and RSF. In this study, sensitivities to the dominant parameter were compared. The dispersion of subassembly outlet coolant temperature near the SASS-was found to be one of the most sensitive parameters. Fault tree analysis was performed using this value for the SASS in order to evaluate the shutdown system reliability. As a result of this study, the effectiveness of the SASS on the reliability improvement in the LMFBR shutdown system was analytically confirmed. This study has been performed as a part of joint research and development projects for DFBR under the sponsorship of the nine Japanese electric power companies, Electric Power Development Company and the Japan Atomic Power Company. (author)

  9. Dynamic Analysis of a Pendulum Dynamic Automatic Balancer

    Directory of Open Access Journals (Sweden)

    Jin-Seung Sohn

    2007-01-01

    Full Text Available The automatic dynamic balancer is a device to reduce the vibration from unbalanced mass of rotors. Instead of considering prevailing ball automatic dynamic balancer, pendulum automatic dynamic balancer is analyzed. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system are derived with respect to polar coordinates by the Lagrange's equations. The perturbation method is applied to investigate the dynamic behavior of the system around the equilibrium position. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue analysis.

  10. Reliability and responsiveness of dynamic contrast-enhanced magnetic resonance imaging in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Axelsen, M.B.; Poggenborg, R.P.; Stoltenberg, M.

    2013-01-01

    intraarticular injection with 80 mg methylprednisolone. Using semi-automated image processing software, DCE-MRI parameters, including the initial rate of enhancement (IRE) and maximal enhancement (ME), were generated for three regions of interest (ROIs): ‘Whole slice’, ‘Quick ROI’, and ‘Precise ROI......Objectives: To investigate the responsiveness to treatment and the reliability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rheumatoid arthritis (RA) knee joints. Methods: DCE-MRI was performed in 12 clinically active RA knee joints before and 1, 7, 30, and 180 days after......’. The smallest detectable difference (SDD), the smallest detectable change (SDC), and intra- and inter-reader intraclass correlation coefficients (ICCs) were used to assess the reliability of DCE-MRI. Responsiveness to treatment was assessed by the standardized response mean (SRM). Results: In all patients...

  11. A taxonomy for human reliability analysis

    International Nuclear Information System (INIS)

    Beattie, J.D.; Iwasa-Madge, K.M.

    1984-01-01

    A human interaction taxonomy (classification scheme) was developed to facilitate human reliability analysis in a probabilistic safety evaluation of a nuclear power plant, being performed at Ontario Hydro. A human interaction occurs, by definition, when operators or maintainers manipulate, or respond to indication from, a plant component or system. The taxonomy aids the fault tree analyst by acting as a heuristic device. It helps define the range and type of human errors to be identified in the construction of fault trees, while keeping the identification by different analysts consistent. It decreases the workload associated with preliminary quantification of the large number of identified interactions by including a category called 'simple interactions'. Fault tree analysts quantify these according to a procedure developed by a team of human reliability specialists. The interactions which do not fit into this category are called 'complex' and are quantified by the human reliability team. The taxonomy is currently being used in fault tree construction in a probabilistic safety evaluation. As far as can be determined at this early stage, the potential benefits of consistency and completeness in identifying human interactions and streamlining the initial quantification are being realized

  12. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eom, H S; Kim, J H; Lee, J C; Choi, Y R; Moon, S S

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system.

  13. A survey on reliability and safety analysis techniques of robot systems in nuclear power plants

    International Nuclear Information System (INIS)

    Eom, H.S.; Kim, J.H.; Lee, J.C.; Choi, Y.R.; Moon, S.S.

    2000-12-01

    The reliability and safety analysis techniques was surveyed for the purpose of overall quality improvement of reactor inspection system which is under development in our current project. The contents of this report are : 1. Reliability and safety analysis techniques suvey - Reviewed reliability and safety analysis techniques are generally accepted techniques in many industries including nuclear industry. And we selected a few techniques which are suitable for our robot system. They are falut tree analysis, failure mode and effect analysis, reliability block diagram, markov model, combinational method, and simulation method. 2. Survey on the characteristics of robot systems which are distinguished from other systems and which are important to the analysis. 3. Survey on the nuclear environmental factors which affect the reliability and safety analysis of robot system 4. Collection of the case studies of robot reliability and safety analysis which are performed in foreign countries. The analysis results of this survey will be applied to the improvement of reliability and safety of our robot system and also will be used for the formal qualification and certification of our reactor inspection system

  14. Reliability analysis of service water system under earthquake

    International Nuclear Information System (INIS)

    Yu Yu; Qian Xiaoming; Lu Xuefeng; Wang Shengfei; Niu Fenglei

    2013-01-01

    Service water system is one of the important safety systems in nuclear power plant, whose failure probability is always gained by system reliability analysis. The probability of equipment failure under the earthquake is the function of the peak acceleration of earthquake motion, while the occurrence of earthquake is of randomicity, thus the traditional fault tree method in current probability safety assessment is not powerful enough to deal with such case of conditional probability problem. An analysis frame was put forward for system reliability evaluation in seismic condition in this paper, in which Monte Carlo simulation was used to deal with conditional probability problem. Annual failure probability of service water system was calculated, and failure probability of 1.46X10 -4 per year was obtained. The analysis result is in accordance with the data which indicate equipment seismic resistance capability, and the rationality of the model is validated. (authors)

  15. The validity and reliability of a dynamic neuromuscular stabilization-heel sliding test for core stability.

    Science.gov (United States)

    Cha, Young Joo; Lee, Jae Jin; Kim, Do Hyun; You, Joshua Sung H

    2017-10-23

    Core stabilization plays an important role in the regulation of postural stability. To overcome shortcomings associated with pain and severe core instability during conventional core stabilization tests, we recently developed the dynamic neuromuscular stabilization-based heel sliding (DNS-HS) test. The purpose of this study was to establish the criterion validity and test-retest reliability of the novel DNS-HS test. Twenty young adults with core instability completed both the bilateral straight leg lowering test (BSLLT) and DNS-HS test for the criterion validity study and repeated the DNS-HS test for the test-retest reliability study. Criterion validity was determined by comparing hip joint angle data that were obtained from BSLLT and DNS-HS measures. The test-retest reliability was determined by comparing hip joint angle data. Criterion validity was (ICC2,3) = 0.700 (preliability was (ICC3,3) = 0.953 (pvalidity data demonstrated a good relationship between the gold standard BSLLT and DNS-HS core stability measures. Test-retest reliability data suggests that DNS-HS core stability was a reliable test for core stability. Clinically, the DNS-HS test is useful to objectively quantify core instability and allow early detection and evaluation.

  16. Small nuclear power reactor emergency electric power supply system reliability comparative analysis

    International Nuclear Information System (INIS)

    Bonfietti, Gerson

    2003-01-01

    This work presents an analysis of the reliability of the emergency power supply system, of a small size nuclear power reactor. Three different configurations are investigated and their reliability analyzed. The fault tree method is used as the main tool of analysis. The work includes a bibliographic review of emergency diesel generator reliability and a discussion of the design requirements applicable to emergency electrical systems. The influence of common cause failure influences is considered using the beta factor model. The operator action is considered using human failure probabilities. A parametric analysis shows the strong dependence between the reactor safety and the loss of offsite electric power supply. It is also shown that common cause failures can be a major contributor to the system reliability. (author)

  17. Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis

    Science.gov (United States)

    Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang

    2017-07-01

    In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.

  18. Optimizing the design and operation of reactor emergency systems using reliability analysis techniques

    International Nuclear Information System (INIS)

    Snaith, E.R.

    1975-01-01

    Following a reactor trip various reactor emergency systems, e.g. essential power supplies, emergency core cooling and boiler feed water arrangements are required to operate with a high degree of reliability. These systems must therefore be critically assessed to confirm their capability of operation and determine their reliability of performance. The use of probability analysis techniques enables the potential operating reliability of the systems to be calculated and this can then be compared with the overall reliability requirements. However, a system reliability analysis does much more than calculate an overall reliability value for the system. It establishes the reliability of all parts of the system and thus identifies the most sensitive areas of unreliability. This indicates the areas where any required improvements should be made and enables the overall systems' designs and modes of operation to be optimized, to meet the system and hence the overall reactor safety criteria. This paper gives specific examples of sensitive areas of unreliability that were identified as a result of a reliability analysis that was carried out on a reactor emergency core cooling system. Details are given of modifications to design and operation that were implemented with a resulting improvement in reliability of various reactor sub-systems. The report concludes that an initial calculation of system reliability should represent only the beginning of continuing process of system assessment. Data on equipment and system performance, particularly in those areas shown to be sensitive in their effect on the overall nuclear power plant reliability, should be collected and processed to give reliability data. These data should then be applied in further probabilistic analyses and the results correlated with the original analysis. This will demonstrate whether the required and the originally predicted system reliability is likely to be achieved, in the light of the actual history to date of

  19. Structural reliability analysis and seismic risk assessment

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Shinozuka, M.

    1984-01-01

    This paper presents a reliability analysis method for safety evaluation of nuclear structures. By utilizing this method, it is possible to estimate the limit state probability in the lifetime of structures and to generate analytically the fragility curves for PRA studies. The earthquake ground acceleration, in this approach, is represented by a segment of stationary Gaussian process with a zero mean and a Kanai-Tajimi Spectrum. All possible seismic hazard at a site represented by a hazard curve is also taken into consideration. Furthermore, the limit state of a structure is analytically defined and the corresponding limit state surface is then established. Finally, the fragility curve is generated and the limit state probability is evaluated. In this paper, using a realistic reinforced concrete containment as an example, results of the reliability analysis of the containment subjected to dead load, live load and ground earthquake acceleration are presented and a fragility curve for PRA studies is also constructed

  20. Recent advances in computational structural reliability analysis methods

    Science.gov (United States)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  1. Efficient surrogate models for reliability analysis of systems with multiple failure modes

    International Nuclear Information System (INIS)

    Bichon, Barron J.; McFarland, John M.; Mahadevan, Sankaran

    2011-01-01

    Despite many advances in the field of computational reliability analysis, the efficient estimation of the reliability of a system with multiple failure modes remains a persistent challenge. Various sampling and analytical methods are available, but they typically require accepting a tradeoff between accuracy and computational efficiency. In this work, a surrogate-based approach is presented that simultaneously addresses the issues of accuracy, efficiency, and unimportant failure modes. The method is based on the creation of Gaussian process surrogate models that are required to be locally accurate only in the regions of the component limit states that contribute to system failure. This approach to constructing surrogate models is demonstrated to be both an efficient and accurate method for system-level reliability analysis. - Highlights: → Extends efficient global reliability analysis to systems with multiple failure modes. → Constructs locally accurate Gaussian process models of each response. → Highly efficient and accurate method for assessing system reliability. → Effectiveness is demonstrated on several test problems from the literature.

  2. Reliability assessment of nuclear structural systems

    International Nuclear Information System (INIS)

    Reich, M.; Hwang, H.

    1983-01-01

    Reliability assessment of nuclear structural systems has been receiving more emphasis over the last few years. This paper deals with the recent progress made by the Structural Analysis Division of Brookhaven National Laboratory (BNL), in the development of a probability-based reliability analysis methodology for safety evaluation of reactor containments and other seismic category I structures. An important feature of this methodology is the incorporation of finite element analysis and random vibration theory. By utilizing this method, it is possible to evaluate the safety of nuclear structures under various static and dynamic loads in terms of limit state probability. Progress in other related areas, such as the establishment of probabilistic characteristics for various loads and structural resistance, are also described. Results of an application of the methodology to a realistic reinforced concrete containment subjected to dead and live loads, accidental internal pressures and earthquake ground accelerations are presented

  3. Exploratory factor analysis and reliability analysis with missing data: A simple method for SPSS users

    Directory of Open Access Journals (Sweden)

    Bruce Weaver

    2014-09-01

    Full Text Available Missing data is a frequent problem for researchers conducting exploratory factor analysis (EFA or reliability analysis. The SPSS FACTOR procedure allows users to select listwise deletion, pairwise deletion or mean substitution as a method for dealing with missing data. The shortcomings of these methods are well-known. Graham (2009 argues that a much better way to deal with missing data in this context is to use a matrix of expectation maximization (EM covariances(or correlations as input for the analysis. SPSS users who have the Missing Values Analysis add-on module can obtain vectors ofEM means and standard deviations plus EM correlation and covariance matrices via the MVA procedure. But unfortunately, MVA has no /MATRIX subcommand, and therefore cannot write the EM correlations directly to a matrix dataset of the type needed as input to the FACTOR and RELIABILITY procedures. We describe two macros that (in conjunction with an intervening MVA command carry out the data management steps needed to create two matrix datasets, one containing EM correlations and the other EM covariances. Either of those matrix datasets can then be used asinput to the FACTOR procedure, and the EM correlations can also be used as input to RELIABILITY. We provide an example that illustrates the use of the two macros to generate the matrix datasets and how to use those datasets as input to the FACTOR and RELIABILITY procedures. We hope that this simple method for handling missing data will prove useful to both students andresearchers who are conducting EFA or reliability analysis.

  4. Reliability analysis of the solar array based on Fault Tree Analysis

    International Nuclear Information System (INIS)

    Wu Jianing; Yan Shaoze

    2011-01-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  5. Reliability analysis of the solar array based on Fault Tree Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wu Jianing; Yan Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [State Key Laboratory of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University,Beijing 100084 (China)

    2011-07-19

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  6. Application of Dynamic Analysis in Semi-Analytical Finite Element Method.

    Science.gov (United States)

    Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus

    2017-08-30

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.

  7. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  8. Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements

    Science.gov (United States)

    Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.

    1988-01-01

    The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.

  9. Test-retest reliability of trunk accelerometric gait analysis

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Moe-Nilssen, R

    2004-01-01

    The purpose of this study was to determine the test-retest reliability of a trunk accelerometric gait analysis in healthy subjects. Accelerations were measured during walking using a triaxial accelerometer mounted on the lumbar spine of the subjects. Six men and 14 women (mean age 35.2; range 18...... a definite potential in clinical gait analysis....

  10. Reliability analysis of maintenance operations for railway tracks

    International Nuclear Information System (INIS)

    Rhayma, N.; Bressolette, Ph.; Breul, P.; Fogli, M.; Saussine, G.

    2013-01-01

    Railway engineering is confronted with problems due to degradation of the railway network that requires important and costly maintenance work. However, because of the lack of knowledge on the geometrical and mechanical parameters of the track, it is difficult to optimize the maintenance management. In this context, this paper presents a new methodology to analyze the behavior of railway tracks. It combines new diagnostic devices which permit to obtain an important amount of data and thus to make statistics on the geometric and mechanical parameters and a non-intrusive stochastic approach which can be coupled with any mechanical model. Numerical results show the possibilities of this methodology for reliability analysis of different maintenance operations. In the future this approach will give important informations to railway managers to optimize maintenance operations using a reliability analysis

  11. Distribution System Reliability Analysis for Smart Grid Applications

    Science.gov (United States)

    Aljohani, Tawfiq Masad

    Reliability of power systems is a key aspect in modern power system planning, design, and operation. The ascendance of the smart grid concept has provided high hopes of developing an intelligent network that is capable of being a self-healing grid, offering the ability to overcome the interruption problems that face the utility and cost it tens of millions in repair and loss. To address its reliability concerns, the power utilities and interested parties have spent extensive amount of time and effort to analyze and study the reliability of the generation and transmission sectors of the power grid. Only recently has attention shifted to be focused on improving the reliability of the distribution network, the connection joint between the power providers and the consumers where most of the electricity problems occur. In this work, we will examine the effect of the smart grid applications in improving the reliability of the power distribution networks. The test system used in conducting this thesis is the IEEE 34 node test feeder, released in 2003 by the Distribution System Analysis Subcommittee of the IEEE Power Engineering Society. The objective is to analyze the feeder for the optimal placement of the automatic switching devices and quantify their proper installation based on the performance of the distribution system. The measures will be the changes in the reliability system indices including SAIDI, SAIFI, and EUE. The goal is to design and simulate the effect of the installation of the Distributed Generators (DGs) on the utility's distribution system and measure the potential improvement of its reliability. The software used in this work is DISREL, which is intelligent power distribution software that is developed by General Reliability Co.

  12. Reliability analysis and utilization of PEMs in space application

    Science.gov (United States)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  13. Reliability analysis for new technology-based transmitters

    Energy Technology Data Exchange (ETDEWEB)

    Brissaud, Florent, E-mail: florent.brissaud.2007@utt.f [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France); Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Barros, Anne; Berenguer, Christophe [Universite de Technologie de Troyes (UTT), Institut Charles Delaunay (ICD) and STMR UMR CNRS 6279, 12 rue Marie Curie, BP 2060, 10010 Troyes cedex (France); Charpentier, Dominique [Institut National de l' Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte (France)

    2011-02-15

    The reliability analysis of new technology-based transmitters has to deal with specific issues: various interactions between both material elements and functions, undefined behaviours under faulty conditions, several transmitted data, and little reliability feedback. To handle these particularities, a '3-step' model is proposed, based on goal tree-success tree (GTST) approaches to represent both the functional and material aspects, and includes the faults and failures as a third part for supporting reliability analyses. The behavioural aspects are provided by relationship matrices, also denoted master logic diagrams (MLD), with stochastic values which represent direct relationships between system elements. Relationship analyses are then proposed to assess the effect of any fault or failure on any material element or function. Taking these relationships into account, the probabilities of malfunction and failure modes are evaluated according to time. Furthermore, uncertainty analyses tend to show that even if the input data and system behaviour are not well known, these previous results can be obtained in a relatively precise way. An illustration is provided by a case study on an infrared gas transmitter. These properties make the proposed model and corresponding reliability analyses especially suitable for intelligent transmitters (or 'smart sensors').

  14. Security Analysis of Dynamic SDN Architectures Based on Game Theory

    Directory of Open Access Journals (Sweden)

    Chao Qi

    2018-01-01

    Full Text Available Security evaluation of SDN architectures is of critical importance to develop robust systems and address attacks. Focused on a novel-proposed dynamic SDN framework, a game-theoretic model is presented to analyze its security performance. This model can represent several kinds of players’ information, simulate approximate attack scenarios, and quantitatively estimate systems’ reliability. And we explore several typical game instances defined by system’s capability, players’ objects, and strategies. Experimental results illustrate that the system’s detection capability is not a decisive element to security enhancement as introduction of dynamism and redundancy into SDN can significantly improve security gain and compensate for its detection weakness. Moreover, we observe a range of common strategic actions across environmental conditions. And analysis reveals diverse defense mechanisms adopted in dynamic systems have different effect on security improvement. Besides, the existence of equilibrium in particular situations further proves the novel structure’s feasibility, flexibility, and its persistent ability against long-term attacks.

  15. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    Science.gov (United States)

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  16. Construct validity and reliability of a checklist for volleyball serve analysis

    Directory of Open Access Journals (Sweden)

    Cicero Luciano Alves Costa

    2018-03-01

    Full Text Available This study aims to investigate the construct validity and reliability of the checklist for qualitative analysis of the overhand serve in Volleyball. Fifty-five male subjects aged 13-17 years participated in the study. The overhand serve was analyzed using the checklist proposed by Meira Junior (2003, which analyzes the pattern of serve movement in four phases: (I initial position, (II ball lifting, (III ball attacking, and (IV finalization. Construct validity was analyzed using confirmatory factorial analysis and reliability through the Cronbach’s alpha coefficient. The construct validity was supported by confirmatory factor analysis with the RMSEA results (0.037 [confidence interval 90% = 0.020-0.040], CFI (0.970 and TLI (0.950 indicating good fit of the model. In relation to reliability, Cronbach’s alpha coefficient was 0.661, being this value considered acceptable. Among the items on the checklist, ball lifting and attacking showed higher factor loadings, 0.69 and 0.99, respectively. In summary, the checklist for the qualitative analysis of the overhand serve of Meira Junior (2003 can be considered a valid and reliable instrument for use in research in the field of Sports Sciences.

  17. Application of Fault Tree Analysis for Estimating Temperature Alarm Circuit Reliability

    International Nuclear Information System (INIS)

    El-Shanshoury, A.I.; El-Shanshoury, G.I.

    2011-01-01

    Fault Tree Analysis (FTA) is one of the most widely-used methods in system reliability analysis. It is a graphical technique that provides a systematic description of the combinations of possible occurrences in a system, which can result in an undesirable outcome. The presented paper deals with the application of FTA method in analyzing temperature alarm circuit. The criticality failure of this circuit comes from failing to alarm when temperature exceeds a certain limit. In order for a circuit to be safe, a detailed analysis of the faults causing circuit failure is performed by configuring fault tree diagram (qualitative analysis). Calculations of circuit quantitative reliability parameters such as Failure Rate (FR) and Mean Time between Failures (MTBF) are also done by using Relex 2009 computer program. Benefits of FTA are assessing system reliability or safety during operation, improving understanding of the system, and identifying root causes of equipment failures

  18. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  19. ERP Reliability Analysis (ERA) Toolbox: An open-source toolbox for analyzing the reliability of event-related brain potentials.

    Science.gov (United States)

    Clayson, Peter E; Miller, Gregory A

    2017-01-01

    Generalizability theory (G theory) provides a flexible, multifaceted approach to estimating score reliability. G theory's approach to estimating score reliability has important advantages over classical test theory that are relevant for research using event-related brain potentials (ERPs). For example, G theory does not require parallel forms (i.e., equal means, variances, and covariances), can handle unbalanced designs, and provides a single reliability estimate for designs with multiple sources of error. This monograph provides a detailed description of the conceptual framework of G theory using examples relevant to ERP researchers, presents the algorithms needed to estimate ERP score reliability, and provides a detailed walkthrough of newly-developed software, the ERP Reliability Analysis (ERA) Toolbox, that calculates score reliability using G theory. The ERA Toolbox is open-source, Matlab software that uses G theory to estimate the contribution of the number of trials retained for averaging, group, and/or event types on ERP score reliability. The toolbox facilitates the rigorous evaluation of psychometric properties of ERP scores recommended elsewhere in this special issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the Risk-Informed Safety Margin Characterization Toolkit

    International Nuclear Information System (INIS)

    Boring, Ronald; Mandelli, Diego; Rasmussen, Martin; Ulrich, Thomas; Groth, Katrina; Smith, Curtis

    2016-01-01

    This report presents an application of a computation-based human reliability analysis (HRA) framework called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER). HUNTER has been developed not as a standalone HRA method but rather as framework that ties together different HRA methods to model dynamic risk of human activities as part of an overall probabilistic risk assessment (PRA). While we have adopted particular methods to build an initial model, the HUNTER framework is meant to be intrinsically flexible to new pieces that achieve particular modeling goals. In the present report, the HUNTER implementation has the following goals: • Integration with a high fidelity thermal-hydraulic model capable of modeling nuclear power plant behaviors and transients • Consideration of a PRA context • Incorporation of a solid psychological basis for operator performance • Demonstration of a functional dynamic model of a plant upset condition and appropriate operator response This report outlines these efforts and presents the case study of a station blackout scenario to demonstrate the various modules developed to date under the HUNTER research umbrella.

  1. Integration of Human Reliability Analysis Models into the Simulation-Based Framework for the Risk-Informed Safety Margin Characterization Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rasmussen, Martin [Norwegian Univ. of Science and Technology, Trondheim (Norway). Social Research; Herberger, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ulrich, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Groth, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    This report presents an application of a computation-based human reliability analysis (HRA) framework called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER). HUNTER has been developed not as a standalone HRA method but rather as framework that ties together different HRA methods to model dynamic risk of human activities as part of an overall probabilistic risk assessment (PRA). While we have adopted particular methods to build an initial model, the HUNTER framework is meant to be intrinsically flexible to new pieces that achieve particular modeling goals. In the present report, the HUNTER implementation has the following goals: • Integration with a high fidelity thermal-hydraulic model capable of modeling nuclear power plant behaviors and transients • Consideration of a PRA context • Incorporation of a solid psychological basis for operator performance • Demonstration of a functional dynamic model of a plant upset condition and appropriate operator response This report outlines these efforts and presents the case study of a station blackout scenario to demonstrate the various modules developed to date under the HUNTER research umbrella.

  2. Analyzing dynamic fault trees derived from model-based system architectures

    International Nuclear Information System (INIS)

    Dehlinger, Josh; Dugan, Joanne Bechta

    2008-01-01

    Dependability-critical systems, such as digital instrumentation and control systems in nuclear power plants, necessitate engineering techniques and tools to provide assurances of their safety and reliability. Determining system reliability at the architectural design phase is important since it may guide design decisions and provide crucial information for trade-off analysis and estimating system cost. Despite this, reliability and system engineering remain separate disciplines and engineering processes by which the dependability analysis results may not represent the designed system. In this article we provide an overview and application of our approach to build architecture-based, dynamic system models for dependability-critical systems and then automatically generate Dynamic Fault Trees (DFT) for comprehensive, toolsupported reliability analysis. Specifically, we use the Architectural Analysis and Design Language (AADL) to model the structural, behavioral and failure aspects of the system in a composite architecture model. From the AADL model, we seek to derive the DFT(s) and use Galileo's automated reliability analyses to estimate system reliability. This approach alleviates the dependability engineering - systems engineering knowledge expertise gap, integrates the dependability and system engineering design and development processes and enables a more formal, automated and consistent DFT construction. We illustrate this work using an example based on a dynamic digital feed-water control system for a nuclear reactor

  3. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    Tayt-Sohn, L.C.; Oliveira, L.F.S. de.

    1984-01-01

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the Component Cooling System (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt

  4. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.

    1983-01-01

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the component cooling system (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt

  5. A study in the reliability analysis method for nuclear power plant structures (I)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan; Choi, Seong Cheol; Shin, Ho Sang; Yang, In Hwan; Kim, Yi Sung; Yu, Young; Kim, Se Hun [Seoul, Nationl Univ., Seoul (Korea, Republic of)

    1999-03-15

    Nuclear power plant structures may be exposed to aggressive environmental effects that may cause their strength and stiffness to decrease over their service life. Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances, such evaluations are generally very difficult and remain novel. The assessment of existing steel containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration, using time-dependent structural reliability analysis to take loading and strength uncertainties into account. The final goal of this study is to develop the analysis method for the reliability of containment structures. The cause and mechanism of corrosion is first clarified and the reliability assessment method has been established. By introducing the equivalent normal distribution, the procedure of reliability analysis which can determine the failure probabilities has been established. The influence of design variables to reliability and the relation between the reliability and service life will be continued second year research.

  6. Reliability Analysis of Free Jet Scour Below Dams

    Directory of Open Access Journals (Sweden)

    Chuanqi Li

    2012-12-01

    Full Text Available Current formulas for calculating scour depth below of a free over fall are mostly deterministic in nature and do not adequately consider the uncertainties of various scouring parameters. A reliability-based assessment of scour, taking into account uncertainties of parameters and coefficients involved, should be performed. This paper studies the reliability of a dam foundation under the threat of scour. A model for calculating the reliability of scour and estimating the probability of failure of the dam foundation subjected to scour is presented. The Maximum Entropy Method is applied to construct the probability density function (PDF of the performance function subject to the moment constraints. Monte Carlo simulation (MCS is applied for uncertainty analysis. An example is considered, and there liability of its scour is computed, the influence of various random variables on the probability failure is analyzed.

  7. Reliability model analysis and primary experimental evaluation of laser triggered pulse trigger

    International Nuclear Information System (INIS)

    Chen Debiao; Yang Xinglin; Li Yuan; Li Jin

    2012-01-01

    High performance pulse trigger can enhance performance and stability of the PPS. It is necessary to evaluate the reliability of the LTGS pulse trigger, so we establish the reliability analysis model of this pulse trigger based on CARMES software, the reliability evaluation is accord with the statistical results. (authors)

  8. Design and Analysis of Transport Protocols for Reliable High-Speed Communications

    NARCIS (Netherlands)

    Oláh, A.

    1997-01-01

    The design and analysis of transport protocols for reliable communications constitutes the topic of this dissertation. These transport protocols guarantee the sequenced and complete delivery of user data over networks which may lose, duplicate and reorder packets. Reliable transport services are

  9. System Reliability Engineering

    International Nuclear Information System (INIS)

    Lim, Tae Jin

    2005-02-01

    This book tells of reliability engineering, which includes quality and reliability, reliability data, importance of reliability engineering, reliability and measure, the poisson process like goodness of fit test and the poisson arrival model, reliability estimation like exponential distribution, reliability of systems, availability, preventive maintenance such as replacement policies, minimal repair policy, shock models, spares, group maintenance and periodic inspection, analysis of common cause failure, and analysis model of repair effect.

  10. Reliability Analysis of Operation for Cableways by FTA (Fault Tree Analysis Method

    Directory of Open Access Journals (Sweden)

    Sergej Težak

    2010-05-01

    Full Text Available This paper examines the reliability of the operation of cableway systems in Slovenia, which has major impact on the quality of service in the mountain tourism, mainly in wintertime. Different types of cableway installations in Slovenia were captured in a sample and fault tree analysis (FTA was made on the basis of the obtained data. The paper presents the results of the analysis. With these results it is possible to determine the probability of faults of different types of cableways, which types of faults have the greatest impact on the termination of operation, which components of cableways fail most, what is the impact of age of cableways on the occurrence of the faults. Finally, an attempt was made to find if occurrence of faults on individual cableway installation has also impact on traffic on this cableway due to reduced quality of service. KEYWORDS: cableways, aerial ropeways, chairlifts, ski-tows, quality, faults, fault tree analysis, reliability, service quality, winter tourism, mountain tourist centre

  11. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Science.gov (United States)

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  12. Reliability Analysis Of Fire System On The Industry Facility By Use Fameca Method

    International Nuclear Information System (INIS)

    Sony T, D.T.; Situmorang, Johnny; Ismu W, Puradwi; Demon H; Mulyanto, Dwijo; Kusmono, Slamet; Santa, Sigit Asmara

    2000-01-01

    FAMECA is one of the analysis method to determine system reliability on the industry facility. Analysis is done by some procedure that is identification of component function, determination of failure mode, severity level and effect of their failure. Reliability value is determined by three combinations that is severity level, component failure value and critical component. Reliability of analysis has been done for fire system on the industry by FAMECA method. Critical component which identified is pump, air release valve, check valve, manual test valve, isolation valve, control system etc

  13. Reliability Characteristics of Power Plants

    Directory of Open Access Journals (Sweden)

    Zbynek Martinek

    2017-01-01

    Full Text Available This paper describes the phenomenon of reliability of power plants. It gives an explanation of the terms connected with this topic as their proper understanding is important for understanding the relations and equations which model the possible real situations. The reliability phenomenon is analysed using both the exponential distribution and the Weibull distribution. The results of our analysis are specific equations giving information about the characteristics of the power plants, the mean time of operations and the probability of failure-free operation. Equations solved for the Weibull distribution respect the failures as well as the actual operating hours. Thanks to our results, we are able to create a model of dynamic reliability for prediction of future states. It can be useful for improving the current situation of the unit as well as for creating the optimal plan of maintenance and thus have an impact on the overall economics of the operation of these power plants.

  14. The quantitative failure of human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C.T.

    1995-07-01

    This philosophical treatise argues the merits of Human Reliability Analysis (HRA) in the context of the nuclear power industry. Actually, the author attacks historic and current HRA as having failed in informing policy makers who make decisions based on risk that humans contribute to systems performance. He argues for an HRA based on Bayesian (fact-based) inferential statistics, which advocates a systems analysis process that employs cogent heuristics when using opinion, and tempers itself with a rational debate over the weight given subjective and empirical probabilities.

  15. Reliability analysis of HVDC grid combined with power flow simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yongtao; Langeland, Tore; Solvik, Johan [DNV AS, Hoevik (Norway); Stewart, Emma [DNV KEMA, Camino Ramon, CA (United States)

    2012-07-01

    Based on a DC grid power flow solver and the proposed GEIR, we carried out reliability analysis for a HVDC grid test system proposed by CIGRE working group B4-58, where the failure statistics are collected from literature survey. The proposed methodology is used to evaluate the impact of converter configuration on the overall reliability performance of the HVDC grid, where the symmetrical monopole configuration is compared with the bipole with metallic return wire configuration. The results quantify the improvement on reliability by using the later alternative. (orig.)

  16. Reliability analysis of neutron transport simulation using Monte Carlo method

    International Nuclear Information System (INIS)

    Souza, Bismarck A. de; Borges, Jose C.

    1995-01-01

    This work presents a statistical and reliability analysis covering data obtained by computer simulation of neutron transport process, using the Monte Carlo method. A general description of the method and its applications is presented. Several simulations, corresponding to slowing down and shielding problems have been accomplished. The influence of the physical dimensions of the materials and of the sample size on the reliability level of results was investigated. The objective was to optimize the sample size, in order to obtain reliable results, optimizing computation time. (author). 5 refs, 8 figs

  17. An exact method for solving logical loops in reliability analysis

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi

    2009-01-01

    This paper presents an exact method for solving logical loops in reliability analysis. The systems that include logical loops are usually described by simultaneous Boolean equations. First, present a basic rule of solving simultaneous Boolean equations. Next, show the analysis procedures for three-component system with external supports. Third, more detailed discussions are given for the establishment of logical loop relation. Finally, take up two typical structures which include more than one logical loop. Their analysis results and corresponding GO-FLOW charts are given. The proposed analytical method is applicable to loop structures that can be described by simultaneous Boolean equations, and it is very useful in evaluating the reliability of complex engineering systems.

  18. Damage tolerance reliability analysis of automotive spot-welded joints

    International Nuclear Information System (INIS)

    Mahadevan, Sankaran; Ni Kan

    2003-01-01

    This paper develops a damage tolerance reliability analysis methodology for automotive spot-welded joints under multi-axial and variable amplitude loading history. The total fatigue life of a spot weld is divided into two parts, crack initiation and crack propagation. The multi-axial loading history is obtained from transient response finite element analysis of a vehicle model. A three-dimensional finite element model of a simplified joint with four spot welds is developed for static stress/strain analysis. A probabilistic Miner's rule is combined with a randomized strain-life curve family and the stress/strain analysis result to develop a strain-based probabilistic fatigue crack initiation life prediction for spot welds. Afterwards, the fatigue crack inside the base material sheet is modeled as a surface crack. Then a probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction for spot welds. Both methods are implemented with MSC/NASTRAN and MSC/FATIGUE software, and are useful for reliability assessment of automotive spot-welded joints against fatigue and fracture

  19. Reliability assessment and probability based design of reinforced concrete containments and shear walls

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1986-03-01

    This report summarizes work completed under the program entitled, ''Probability-Based Load Combinations for Design of Category I Structures.'' Under this program, the probabilistic models for various static and dynamic loads were formulated. The randomness and uncertainties in material strengths and structural resistance were established. Several limit states of concrete containments and shear walls were identified and analytically formulated. Furthermore, the reliability analysis methods for estimating limit state probabilities were established. These reliability analysis methods can be used to evaluate the safety levels of nuclear structures under various combinations of static and dynamic loads. They can also be used to generate analytically the fragility data for PRA studies. In addition to the development of reliability analysis methods, probability-based design criteria for concrete containments and shear wall structures have also been developed. The proposed design criteria are in the load and resistance factor design (LRFD) format. The load and resistance factors are determined for several limit states and target limit state probabilities. Thus, the proposed design criteria are risk-consistent and have a well-established rationale. 73 refs., 18 figs., 16 tabs

  20. Risk importance measures in the dynamic flowgraph methodology

    International Nuclear Information System (INIS)

    Tyrväinen, T.

    2013-01-01

    This paper presents new risk importance measures applicable to a dynamic reliability analysis approach with multi-state components. Dynamic reliability analysis methods are needed because traditional methods, such as fault tree analysis, can describe system's dynamical behaviour only in limited manner. Dynamic flowgraph methodology (DFM) is an approach used for analysing systems with time dependencies and feedback loops. The aim of DFM is to identify root causes of a top event, usually representing the system's failure. Components of DFM models are analysed at discrete time points and they can have multiple states. Traditional risk importance measures developed for static and binary logic are not applicable to DFM as such. Some importance measures have previously been developed for DFM but their ability to describe how components contribute to the top event is fairly limited. The paper formulates dynamic risk importance measures that measure the importances of states of components and take the time-aspect of DFM into account in a logical way that supports the interpretation of results. Dynamic risk importance measures are developed as generalisations of the Fussell-Vesely importance and the risk increase factor. -- Highlights: • New risk importance measures are developed for the dynamic flowgraph methodology. • Dynamic risk importance measures are formulated for states of components. • An approach to handle failure modes of a component in DFM is presented. • Dynamic risk importance measures take failure times into account. • Component's influence on the system's reliability can be analysed in detail

  1. Applying reliability analysis to design electric power systems for More-electric aircraft

    Science.gov (United States)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  2. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy.

    LENUS (Irish Health Repository)

    McDermott, Ailish

    2010-10-01

    Gait impairment is one of the primary symptoms of cervical spondylotic myelopathy (CSM). Detailed assessment is possible using three-dimensional gait analysis (3DGA), however the reliability of 3DGA for this population has not been established. The aim of this study was to evaluate the test-retest reliability of temporal-spatial, kinematic and kinetic parameters in a CSM population.

  3. Dynamical systems probabilistic risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Denman, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ames, Arlo Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-03-01

    Probabilistic Risk Assessment (PRA) is the primary tool used to risk-inform nuclear power regulatory and licensing activities. Risk-informed regulations are intended to reduce inherent conservatism in regulatory metrics (e.g., allowable operating conditions and technical specifications) which are built into the regulatory framework by quantifying both the total risk profile as well as the change in the risk profile caused by an event or action (e.g., in-service inspection procedures or power uprates). Dynamical Systems (DS) analysis has been used to understand unintended time-dependent feedbacks in both industrial and organizational settings. In dynamical systems analysis, feedback loops can be characterized and studied as a function of time to describe the changes to the reliability of plant Structures, Systems and Components (SSCs). While DS has been used in many subject areas, some even within the PRA community, it has not been applied toward creating long-time horizon, dynamic PRAs (with time scales ranging between days and decades depending upon the analysis). Understanding slowly developing dynamic effects, such as wear-out, on SSC reliabilities may be instrumental in ensuring a safely and reliably operating nuclear fleet. Improving the estimation of a plant's continuously changing risk profile will allow for more meaningful risk insights, greater stakeholder confidence in risk insights, and increased operational flexibility.

  4. Reliability Calculations

    DEFF Research Database (Denmark)

    Petersen, Kurt Erling

    1986-01-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety...... and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic...... approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...

  5. Hybrid Structural Reliability Analysis under Multisource Uncertainties Based on Universal Grey Numbers

    Directory of Open Access Journals (Sweden)

    Xingfa Yang

    2018-01-01

    Full Text Available Nondeterministic parameters of certain distribution are employed to model structural uncertainties, which are usually assumed as stochastic factors. However, model parameters may not be precisely represented due to some factors in engineering practices, such as lack of sufficient data, data with fuzziness, and unknown-but-bounded conditions. To this end, interval and fuzzy parameters are implemented and an efficient approach to structural reliability analysis with random-interval-fuzzy hybrid parameters is proposed in this study. Fuzzy parameters are first converted to equivalent random ones based on the equal entropy principle. 3σ criterion is then employed to transform the equivalent random and the original random parameters to interval variables. In doing this, the hybrid reliability problem is transformed into the one only with interval variables, in other words, nonprobabilistic reliability analysis problem. Nevertheless, the problem of interval extension existed in interval arithmetic, especially for the nonlinear systems. Therefore, universal grey mathematics, which can tackle the issue of interval extension, is employed to solve the nonprobabilistic reliability analysis problem. The results show that the proposed method can obtain more conservative results of the hybrid structural reliability.

  6. Inclusion of task dependence in human reliability analysis

    International Nuclear Information System (INIS)

    Su, Xiaoyan; Mahadevan, Sankaran; Xu, Peida; Deng, Yong

    2014-01-01

    Dependence assessment among human errors in human reliability analysis (HRA) is an important issue, which includes the evaluation of the dependence among human tasks and the effect of the dependence on the final human error probability (HEP). This paper represents a computational model to handle dependence in human reliability analysis. The aim of the study is to automatically provide conclusions on the overall degree of dependence and calculate the conditional human error probability (CHEP) once the judgments of the input factors are given. The dependence influencing factors are first identified by the experts and the priorities of these factors are also taken into consideration. Anchors and qualitative labels are provided as guidance for the HRA analyst's judgment of the input factors. The overall degree of dependence between human failure events is calculated based on the input values and the weights of the input factors. Finally, the CHEP is obtained according to a computing formula derived from the technique for human error rate prediction (THERP) method. The proposed method is able to quantify the subjective judgment from the experts and improve the transparency in the HEP evaluation process. Two examples are illustrated to show the effectiveness and the flexibility of the proposed method. - Highlights: • We propose a computational model to handle dependence in human reliability analysis. • The priorities of the dependence influencing factors are taken into consideration. • The overall dependence degree is determined by input judgments and the weights of factors. • The CHEP is obtained according to a computing formula derived from THERP

  7. Infusing Reliability Techniques into Software Safety Analysis

    Science.gov (United States)

    Shi, Ying

    2015-01-01

    Software safety analysis for a large software intensive system is always a challenge. Software safety practitioners need to ensure that software related hazards are completely identified, controlled, and tracked. This paper discusses in detail how to incorporate the traditional reliability techniques into the entire software safety analysis process. In addition, this paper addresses how information can be effectively shared between the various practitioners involved in the software safety analyses. The author has successfully applied the approach to several aerospace applications. Examples are provided to illustrate the key steps of the proposed approach.

  8. Review of Dynamic Modeling and Simulation of Large Scale Belt Conveyor System

    Science.gov (United States)

    He, Qing; Li, Hong

    Belt conveyor is one of the most important devices to transport bulk-solid material for long distance. Dynamic analysis is the key to decide whether the design is rational in technique, safe and reliable in running, feasible in economy. It is very important to study dynamic properties, improve efficiency and productivity, guarantee conveyor safe, reliable and stable running. The dynamic researches and applications of large scale belt conveyor are discussed. The main research topics, the state-of-the-art of dynamic researches on belt conveyor are analyzed. The main future works focus on dynamic analysis, modeling and simulation of main components and whole system, nonlinear modeling, simulation and vibration analysis of large scale conveyor system.

  9. Multidisciplinary Inverse Reliability Analysis Based on Collaborative Optimization with Combination of Linear Approximations

    Directory of Open Access Journals (Sweden)

    Xin-Jia Meng

    2015-01-01

    Full Text Available Multidisciplinary reliability is an important part of the reliability-based multidisciplinary design optimization (RBMDO. However, it usually has a considerable amount of calculation. The purpose of this paper is to improve the computational efficiency of multidisciplinary inverse reliability analysis. A multidisciplinary inverse reliability analysis method based on collaborative optimization with combination of linear approximations (CLA-CO is proposed in this paper. In the proposed method, the multidisciplinary reliability assessment problem is first transformed into a problem of most probable failure point (MPP search of inverse reliability, and then the process of searching for MPP of multidisciplinary inverse reliability is performed based on the framework of CLA-CO. This method improves the MPP searching process through two elements. One is treating the discipline analyses as the equality constraints in the subsystem optimization, and the other is using linear approximations corresponding to subsystem responses as the replacement of the consistency equality constraint in system optimization. With these two elements, the proposed method realizes the parallel analysis of each discipline, and it also has a higher computational efficiency. Additionally, there are no difficulties in applying the proposed method to problems with nonnormal distribution variables. One mathematical test problem and an electronic packaging problem are used to demonstrate the effectiveness of the proposed method.

  10. Reliability test and failure analysis of high power LED packages

    International Nuclear Information System (INIS)

    Chen Zhaohui; Zhang Qin; Wang Kai; Luo Xiaobing; Liu Sheng

    2011-01-01

    A new type application specific light emitting diode (LED) package (ASLP) with freeform polycarbonate lens for street lighting is developed, whose manufacturing processes are compatible with a typical LED packaging process. The reliability test methods and failure criterions from different vendors are reviewed and compared. It is found that test methods and failure criterions are quite different. The rapid reliability assessment standards are urgently needed for the LED industry. 85 0 C/85 RH with 700 mA is used to test our LED modules with three other vendors for 1000 h, showing no visible degradation in optical performance for our modules, with two other vendors showing significant degradation. Some failure analysis methods such as C-SAM, Nano X-ray CT and optical microscope are used for LED packages. Some failure mechanisms such as delaminations and cracks are detected in the LED packages after the accelerated reliability testing. The finite element simulation method is helpful for the failure analysis and design of the reliability of the LED packaging. One example is used to show one currently used module in industry is vulnerable and may not easily pass the harsh thermal cycle testing. (semiconductor devices)

  11. Dynamics Analysis and Modeling of Rubber Belt in Large Mine Belt Conveyors

    OpenAIRE

    Gao Yang

    2014-01-01

    Rubber belt not only is one of the key components of belt conveyor, but also affects the overall performance of the core part. Research on dynamics analysis of large conveyor not only helps to improve the reliability and design level, but also can guide the rational selection of conveyor safety factor, and effectively reduce the cost of the conveyor belt. Based on unique viscoelastic properties of belt conveyor, it was simplified as one-dimensional viscoelastic rod in this study, and then a d...

  12. Reliability analysis based on the losses from failures.

    Science.gov (United States)

    Todinov, M T

    2006-04-01

    The conventional reliability analysis is based on the premise that increasing the reliability of a system will decrease the losses from failures. On the basis of counterexamples, it is demonstrated that this is valid only if all failures are associated with the same losses. In case of failures associated with different losses, a system with larger reliability is not necessarily characterized by smaller losses from failures. Consequently, a theoretical framework and models are proposed for a reliability analysis, linking reliability and the losses from failures. Equations related to the distributions of the potential losses from failure have been derived. It is argued that the classical risk equation only estimates the average value of the potential losses from failure and does not provide insight into the variability associated with the potential losses. Equations have also been derived for determining the potential and the expected losses from failures for nonrepairable and repairable systems with components arranged in series, with arbitrary life distributions. The equations are also valid for systems/components with multiple mutually exclusive failure modes. The expected losses given failure is a linear combination of the expected losses from failure associated with the separate failure modes scaled by the conditional probabilities with which the failure modes initiate failure. On this basis, an efficient method for simplifying complex reliability block diagrams has been developed. Branches of components arranged in series whose failures are mutually exclusive can be reduced to single components with equivalent hazard rate, downtime, and expected costs associated with intervention and repair. A model for estimating the expected losses from early-life failures has also been developed. For a specified time interval, the expected losses from early-life failures are a sum of the products of the expected number of failures in the specified time intervals covering the

  13. Design of fuel cell powered data centers for sufficient reliability and availability

    Science.gov (United States)

    Ritchie, Alexa J.; Brouwer, Jacob

    2018-04-01

    It is challenging to design a sufficiently reliable fuel cell electrical system for use in data centers, which require 99.9999% uptime. Such a system could lower emissions and increase data center efficiency, but the reliability and availability of such a system must be analyzed and understood. Currently, extensive backup equipment is used to ensure electricity availability. The proposed design alternative uses multiple fuel cell systems each supporting a small number of servers to eliminate backup power equipment provided the fuel cell design has sufficient reliability and availability. Potential system designs are explored for the entire data center and for individual fuel cells. Reliability block diagram analysis of the fuel cell systems was accomplished to understand the reliability of the systems without repair or redundant technologies. From this analysis, it was apparent that redundant components would be necessary. A program was written in MATLAB to show that the desired system reliability could be achieved by a combination of parallel components, regardless of the number of additional components needed. Having shown that the desired reliability was achievable through some combination of components, a dynamic programming analysis was undertaken to assess the ideal allocation of parallel components.

  14. A Statistical Parameter Analysis and SVM Based Fault Diagnosis Strategy for Dynamically Tuned Gyroscopes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gyro's fault diagnosis plays a critical role in inertia navigation systems for higher reliability and precision. A new fault diagnosis strategy based on the statistical parameter analysis (SPA) and support vector machine(SVM) classification model was proposed for dynamically tuned gyroscopes (DTG). The SPA, a kind of time domain analysis approach, was introduced to compute a set of statistical parameters of vibration signal as the state features of DTG, with which the SVM model, a novel learning machine based on statistical learning theory (SLT), was applied and constructed to train and identify the working state of DTG. The experimental results verify that the proposed diagnostic strategy can simply and effectively extract the state features of DTG, and it outperforms the radial-basis function (RBF) neural network based diagnostic method and can more reliably and accurately diagnose the working state of DTG.

  15. Johnson Space Center's Risk and Reliability Analysis Group 2008 Annual Report

    Science.gov (United States)

    Valentine, Mark; Boyer, Roger; Cross, Bob; Hamlin, Teri; Roelant, Henk; Stewart, Mike; Bigler, Mark; Winter, Scott; Reistle, Bruce; Heydorn,Dick

    2009-01-01

    The Johnson Space Center (JSC) Safety & Mission Assurance (S&MA) Directorate s Risk and Reliability Analysis Group provides both mathematical and engineering analysis expertise in the areas of Probabilistic Risk Assessment (PRA), Reliability and Maintainability (R&M) analysis, and data collection and analysis. The fundamental goal of this group is to provide National Aeronautics and Space Administration (NASA) decisionmakers with the necessary information to make informed decisions when evaluating personnel, flight hardware, and public safety concerns associated with current operating systems as well as with any future systems. The Analysis Group includes a staff of statistical and reliability experts with valuable backgrounds in the statistical, reliability, and engineering fields. This group includes JSC S&MA Analysis Branch personnel as well as S&MA support services contractors, such as Science Applications International Corporation (SAIC) and SoHaR. The Analysis Group s experience base includes nuclear power (both commercial and navy), manufacturing, Department of Defense, chemical, and shipping industries, as well as significant aerospace experience specifically in the Shuttle, International Space Station (ISS), and Constellation Programs. The Analysis Group partners with project and program offices, other NASA centers, NASA contractors, and universities to provide additional resources or information to the group when performing various analysis tasks. The JSC S&MA Analysis Group is recognized as a leader in risk and reliability analysis within the NASA community. Therefore, the Analysis Group is in high demand to help the Space Shuttle Program (SSP) continue to fly safely, assist in designing the next generation spacecraft for the Constellation Program (CxP), and promote advanced analytical techniques. The Analysis Section s tasks include teaching classes and instituting personnel qualification processes to enhance the professional abilities of our analysts

  16. Analysis of NPP protection structure reliability under impact of a falling aircraft

    International Nuclear Information System (INIS)

    Shul'man, G.S.

    1996-01-01

    Methodology for evaluation of NPP protection structure reliability by impact of aircraft fall down is considered. The methodology is base on the probabilistic analysis of all potential events. The problem is solved in three stages: determination of loads on structural units, calculation of local reliability of protection structures by assigned loads and estimation of the structure reliability. The methodology proposed may be applied at the NPP design stage and by determination of reliability of already available structures

  17. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    Science.gov (United States)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  18. Science-Based Simulation Model of Human Performance for Human Reliability Analysis

    International Nuclear Information System (INIS)

    Kelly, Dana L.; Boring, Ronald L.; Mosleh, Ali; Smidts, Carol

    2011-01-01

    Human reliability analysis (HRA), a component of an integrated probabilistic risk assessment (PRA), is the means by which the human contribution to risk is assessed, both qualitatively and quantitatively. However, among the literally dozens of HRA methods that have been developed, most cannot fully model and quantify the types of errors that occurred at Three Mile Island. Furthermore, all of the methods lack a solid empirical basis, relying heavily on expert judgment or empirical results derived in non-reactor domains. Finally, all of the methods are essentially static, and are thus unable to capture the dynamics of an accident in progress. The objective of this work is to begin exploring a dynamic simulation approach to HRA, one whose models have a basis in psychological theories of human performance, and whose quantitative estimates have an empirical basis. This paper highlights a plan to formalize collaboration among the Idaho National Laboratory (INL), the University of Maryland, and The Ohio State University (OSU) to continue development of a simulation model initially formulated at the University of Maryland. Initial work will focus on enhancing the underlying human performance models with the most recent psychological research, and on planning follow-on studies to establish an empirical basis for the model, based on simulator experiments to be carried out at the INL and at the OSU.

  19. CARES/PC - CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES

    Science.gov (United States)

    Szatmary, S. A.

    1994-01-01

    The beneficial properties of structural ceramics include their high-temperature strength, light weight, hardness, and corrosion and oxidation resistance. For advanced heat engines, ceramics have demonstrated functional abilities at temperatures well beyond the operational limits of metals. This is offset by the fact that ceramic materials tend to be brittle. When a load is applied, their lack of significant plastic deformation causes the material to crack at microscopic flaws, destroying the component. CARES/PC performs statistical analysis of data obtained from the fracture of simple, uniaxial tensile or flexural specimens and estimates the Weibull and Batdorf material parameters from this data. CARES/PC is a subset of the program CARES (COSMIC program number LEW-15168) which calculates the fast-fracture reliability or failure probability of ceramic components utilizing the Batdorf and Weibull models to describe the effects of multi-axial stress states on material strength. CARES additionally requires that the ceramic structure be modeled by a finite element program such as MSC/NASTRAN or ANSYS. The more limited CARES/PC does not perform fast-fracture reliability estimation of components. CARES/PC estimates ceramic material properties from uniaxial tensile or from three- and four-point bend bar data. In general, the parameters are obtained from the fracture stresses of many specimens (30 or more are recommended) whose geometry and loading configurations are held constant. Parameter estimation can be performed for single or multiple failure modes by using the least-squares analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests measure the accuracy of the hypothesis that the fracture data comes from a population with a distribution specified by the estimated Weibull parameters. Ninety-percent confidence intervals on the Weibull parameters and the unbiased value of the shape parameter for complete samples are provided

  20. Reliability and number of trials of Y Balance Test in adolescent athletes.

    Science.gov (United States)

    Linek, Pawel; Sikora, Damian; Wolny, Tomasz; Saulicz, Edward

    2017-10-01

    The Star Excursion Balance Test (SEBT) is commonly used to evaluate dynamic equilibrium. The Y Balance Test (Y-BT) is a shortened version of the SEBT where a Y- Balance Kit is commonly used. To date, research concerning the protocol and reliability of the SEBT and Y-BT has been conducted only for adults. The aim of the study was to assess the protocol (the necessary number of trials to stabilize the results) and reliability of the Y-BT in adolescent athletes. One-way repeated-measures analysis of variance (ANOVA) and reliability study. The sample of 38 athletes (mean age: 15.6 years) was selected from a football club. A Y-Balance test kit was applied for the evaluation of dynamic balance. The analysis used the values normalized to the relative length of the lower limbs. After six attempts, three consecutive ones achieved stability for all directions and both extremities (p > 0.05). The intraclass correlation coefficient (ICC 3,1 ), standard error of measurement and minimal detectable change values for the three attempts ranged from 0.57 to 0.82, from 3 to less than 6% and from 7.68 to 13.7%, respectively. In the study of adolescent dynamic equilibrium using the Y-BT, it is recommended to perform nine attempts (including six trial attempts and three measurements). In order to increase reliability it is recommended that the average of the three measured attempts is analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Reliability Engineering

    International Nuclear Information System (INIS)

    Lee, Sang Yong

    1992-07-01

    This book is about reliability engineering, which describes definition and importance of reliability, development of reliability engineering, failure rate and failure probability density function about types of it, CFR and index distribution, IFR and normal distribution and Weibull distribution, maintainability and movability, reliability test and reliability assumption in index distribution type, normal distribution type and Weibull distribution type, reliability sampling test, reliability of system, design of reliability and functionality failure analysis by FTA.

  2. Decision theory, the context for risk and reliability analysis

    International Nuclear Information System (INIS)

    Kaplan, S.

    1985-01-01

    According to this model of the decision process then, the optimum decision is that option having the largest expected utility. This is the fundamental model of a decision situation. It is necessary to remark that in order for the model to represent a real-life decision situation, it must include all the options present in that situation, including, for example, the option of not deciding--which is itself a decision, although usually not the optimum one. Similarly, it should include the option of delaying the decision while the authors gather further information. Both of these options have probabilities, outcomes, impacts, and utilities like any option and should be included explicitly in the decision diagram. The reason for doing a quantitative risk or reliability analysis is always that, somewhere underlying there is a decision to be made. The decision analysis therefore always forms the context for the risk or reliability analysis, and this context shapes the form and language of that analysis. Therefore, they give in this section a brief review of the well-known decision theory diagram

  3. Inclusion of fatigue effects in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Candice D. [Vanderbilt University, Nashville, TN (United States); Mahadevan, Sankaran, E-mail: sankaran.mahadevan@vanderbilt.edu [Vanderbilt University, Nashville, TN (United States)

    2011-11-15

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: >We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. > We discuss the difficulties in defining and measuring fatigue. > We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  4. The Monte Carlo Simulation Method for System Reliability and Risk Analysis

    CERN Document Server

    Zio, Enrico

    2013-01-01

    Monte Carlo simulation is one of the best tools for performing realistic analysis of complex systems as it allows most of the limiting assumptions on system behavior to be relaxed. The Monte Carlo Simulation Method for System Reliability and Risk Analysis comprehensively illustrates the Monte Carlo simulation method and its application to reliability and system engineering. Readers are given a sound understanding of the fundamentals of Monte Carlo sampling and simulation and its application for realistic system modeling.   Whilst many of the topics rely on a high-level understanding of calculus, probability and statistics, simple academic examples will be provided in support to the explanation of the theoretical foundations to facilitate comprehension of the subject matter. Case studies will be introduced to provide the practical value of the most advanced techniques.   This detailed approach makes The Monte Carlo Simulation Method for System Reliability and Risk Analysis a key reference for senior undergra...

  5. Summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant

    International Nuclear Information System (INIS)

    Choi, S. Y.; Han, S. H.

    2004-01-01

    The reliability data of Korean NPP that reflects the plant specific characteristics is necessary for PSA of Korean nuclear power plants. We have performed a study to develop the component reliability DB and S/W for component reliability analysis. Based on the system, we had have collected the component operation data and failure/repair data during plant operation data to 1998/2000 for YGN 3,4/UCN 3,4 respectively. Recently, we have upgraded the database by collecting additional data by 2002 for Korean standard nuclear power plants and performed component reliability analysis and Bayesian analysis again. In this paper, we supply the summary of component reliability data for probabilistic safety analysis of Korean standard nuclear power plant and describe the plant specific characteristics compared to the generic data

  6. reliability analysis of a two span floor designed according

    African Journals Online (AJOL)

    user

    deterministic approach, considering both ultimate and serviceability limit states. Reliability analysis of the floor ... loading, strength and stiffness parameters, dimensions .... to show that there is a direct relation between the failure probability (Pf) ...

  7. Optimization of reliability centered predictive maintenance scheme for inertial navigation system

    International Nuclear Information System (INIS)

    Jiang, Xiuhong; Duan, Fuhai; Tian, Heng; Wei, Xuedong

    2015-01-01

    The goal of this study is to propose a reliability centered predictive maintenance scheme for a complex structure Inertial Navigation System (INS) with several redundant components. GO Methodology is applied to build the INS reliability analysis model—GO chart. Components Remaining Useful Life (RUL) and system reliability are updated dynamically based on the combination of components lifetime distribution function, stress samples, and the system GO chart. Considering the redundant design in INS, maintenance time is based not only on components RUL, but also (and mainly) on the timing of when system reliability fails to meet the set threshold. The definition of components maintenance priority balances three factors: components importance to system, risk degree, and detection difficulty. Maintenance Priority Number (MPN) is introduced, which may provide quantitative maintenance priority results for all components. A maintenance unit time cost model is built based on components MPN, components RUL predictive model and maintenance intervals for the optimization of maintenance scope. The proposed scheme can be applied to serve as the reference for INS maintenance. Finally, three numerical examples prove the proposed predictive maintenance scheme is feasible and effective. - Highlights: • A dynamic PdM with a rolling horizon is proposed for INS with redundant components. • GO Methodology is applied to build the system reliability analysis model. • A concept of MPN is proposed to quantify the maintenance sequence of components. • An optimization model is built to select the optimal group of maintenance components. • The optimization goal is minimizing the cost of maintaining system reliability

  8. Reliability analysis and updating of deteriorating systems with subset simulation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Thöns, Sebastian; Straub, Daniel

    2017-01-01

    An efficient approach to reliability analysis of deteriorating structural systems is presented, which considers stochastic dependence among element deterioration. Information on a deteriorating structure obtained through inspection or monitoring is included in the reliability assessment through B...... is an efficient and robust sampling-based algorithm suitable for such analyses. The approach is demonstrated in two case studies considering a steel frame structure and a Daniels system subjected to high-cycle fatigue....

  9. Use of COMCAN III in system design and reliability analysis

    International Nuclear Information System (INIS)

    Rasmuson, D.M.; Shepherd, J.C.; Marshall, N.H.; Fitch, L.R.

    1982-03-01

    This manual describes the COMCAN III computer program and its use. COMCAN III is a tool that can be used by the reliability analyst performing a probabilistic risk assessment or by the designer of a system desiring improved performance and efficiency. COMCAN III can be used to determine minimal cut sets of a fault tree, to calculate system reliability characteristics, and to perform qualitative common cause failure analysis

  10. Application of system reliability analytical method, GO-FLOW

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Fukuto, Junji; Mitomo, Nobuo; Miyazaki, Keiko; Matsukura, Hiroshi; Kobayashi, Michiyuki

    1999-01-01

    The Ship Research Institute proceed a developmental study on GO-FLOW method with various advancing functionalities for the system reliability analysis method occupying main parts of PSA (Probabilistic Safety Assessment). Here was attempted to intend to upgrade functionality of the GO-FLOW method, to develop an analytical function integrated with dynamic behavior analytical function, physical behavior and probable subject transfer, and to prepare a main accident sequence picking-out function. In 1997 fiscal year, in dynamic event-tree analytical system, an analytical function was developed by adding dependency between headings. In simulation analytical function of the accident sequence, main accident sequence of MRX for improved ship propulsion reactor became possible to be covered perfectly. And, input data for analysis was prepared with a function capable easily to set by an analysis operator. (G.K.)

  11. Dynamic analysis program for frame structure

    International Nuclear Information System (INIS)

    Ando, Kozo; Chiba, Toshio

    1975-01-01

    A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)

  12. Structural systems reliability analysis

    International Nuclear Information System (INIS)

    Frangopol, D.

    1975-01-01

    For an exact evaluation of the reliability of a structure it appears necessary to determine the distribution densities of the loads and resistances and to calculate the correlation coefficients between loads and between resistances. These statistical characteristics can be obtained only on the basis of a long activity period. In case that such studies are missing the statistical properties formulated here give upper and lower bounds of the reliability. (orig./HP) [de

  13. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Ames, K.R.; Gallucci, R.H.

    1985-06-01

    This report summarizes the results of the Reliability Analysis of Containment Isolation System Project. Work was performed in five basic areas: design review, operating experience review, related research review, generic analysis and plant specific analysis. Licensee Event Reports (LERs) and Integrated Leak Rate Test (ILRT) reports provided the major sources of containment performance information used in this study. Data extracted from LERs were assembled into a computer data base. Qualitative and quantitative information developed for containment performance under normal operating conditions and design basis accidents indicate that there is room for improvement. A rough estimate of overall containment unavailability for relatively small leaks which violate plant technical specifications is 0.3. An estimate of containment unavailability due to large leakage events is in the range of 0.001 to 0.01. These estimates are dependent on several assumptions (particularly on event duration times) which are documented in the report

  14. Sensitivity analysis in optimization and reliability problems

    International Nuclear Information System (INIS)

    Castillo, Enrique; Minguez, Roberto; Castillo, Carmen

    2008-01-01

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods

  15. Sensitivity analysis in optimization and reliability problems

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Enrique [Department of Applied Mathematics and Computational Sciences, University of Cantabria, Avda. Castros s/n., 39005 Santander (Spain)], E-mail: castie@unican.es; Minguez, Roberto [Department of Applied Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: roberto.minguez@uclm.es; Castillo, Carmen [Department of Civil Engineering, University of Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: mariacarmen.castillo@uclm.es

    2008-12-15

    The paper starts giving the main results that allow a sensitivity analysis to be performed in a general optimization problem, including sensitivities of the objective function, the primal and the dual variables with respect to data. In particular, general results are given for non-linear programming, and closed formulas for linear programming problems are supplied. Next, the methods are applied to a collection of civil engineering reliability problems, which includes a bridge crane, a retaining wall and a composite breakwater. Finally, the sensitivity analysis formulas are extended to calculus of variations problems and a slope stability problem is used to illustrate the methods.

  16. Development and Reliability Analysis of HTR-PM Reactor Protection System

    International Nuclear Information System (INIS)

    Li Duo; Guo Chao; Xiong Huasheng

    2014-01-01

    High Temperature Gas-Cooled Reactor-Pebble bed Module (HTR-PM) digital Reactor Protection System (RPS) is a dedicated system, which is designed and developed according to HTR-PM NPP protection specifications. To decrease the probability of accident trips and increase the system reliability, HTR-PM RPS has such features as a framework of four redundant channels, two diverse sub-systems in each channel, and two level two-out-of-four logic voters. Reliability analysis of HTR-PM RPS is based on fault tree model. A fault tree is built based on HTR-PM RPS Failure Modes and Effects Analysis (FMEA), and special analysis is focused on the sub-tree of redundant channel ''2-out-of-4'' logic and the fault tree under one channel is bypassed. The qualitative analysis of fault tree, such as RPS weakness according to minimal cut sets, is summarized in the paper. (author)

  17. Formal analysis of design process dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design

  18. Formal Analysis of Design Process Dynamics

    NARCIS (Netherlands)

    Bosse, T.; Jonker, C.M.; Treur, J.

    2010-01-01

    This paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design

  19. Method of reliability allocation based on fault tree analysis and fuzzy math in nuclear power plants

    International Nuclear Information System (INIS)

    Chen Zhaobing; Deng Jian; Cao Xuewu

    2005-01-01

    Reliability allocation is a kind of a difficult multi-objective optimization problem. It can not only be applied to determine the reliability characteristic of reactor systems, subsystem and main components but also be performed to improve the design, operation and maintenance of nuclear plants. The fuzzy math known as one of the powerful tools for fuzzy optimization and the fault analysis deemed to be one of the effective methods of reliability analysis can be applied to the reliability allocation model so as to work out the problems of fuzzy characteristic of some factors and subsystem's choice respectively in this paper. Thus we develop a failure rate allocation model on the basis of the fault tree analysis and fuzzy math. For the choice of the reliability constraint factors, we choose the six important ones according to practical need for conducting the reliability allocation. The subsystem selected by the top-level fault tree analysis is to avoid allocating reliability for all the equipment and components including the unnecessary parts. During the reliability process, some factors can be calculated or measured quantitatively while others only can be assessed qualitatively by the expert rating method. So we adopt fuzzy decision and dualistic contrast to realize the reliability allocation with the help of fault tree analysis. Finally the example of the emergency diesel generator's reliability allocation is used to illustrate reliability allocation model and improve this model simple and applicable. (authors)

  20. Reliability engineering analysis of ATLAS data reprocessing campaigns

    International Nuclear Information System (INIS)

    Vaniachine, A; Golubkov, D; Karpenko, D

    2014-01-01

    During three years of LHC data taking, the ATLAS collaboration completed three petascale data reprocessing campaigns on the Grid, with up to 2 PB of data being reprocessed every year. In reprocessing on the Grid, failures can occur for a variety of reasons, while Grid heterogeneity makes failures hard to diagnose and repair quickly. As a result, Big Data processing on the Grid must tolerate a continuous stream of failures, errors and faults. While ATLAS fault-tolerance mechanisms improve the reliability of Big Data processing in the Grid, their benefits come at costs and result in delays making the performance prediction difficult. Reliability Engineering provides a framework for fundamental understanding of the Big Data processing on the Grid, which is not a desirable enhancement but a necessary requirement. In ATLAS, cost monitoring and performance prediction became critical for the success of the reprocessing campaigns conducted in preparation for the major physics conferences. In addition, our Reliability Engineering approach supported continuous improvements in data reprocessing throughput during LHC data taking. The throughput doubled in 2011 vs. 2010 reprocessing, then quadrupled in 2012 vs. 2011 reprocessing. We present the Reliability Engineering analysis of ATLAS data reprocessing campaigns providing the foundation needed to scale up the Big Data processing technologies beyond the petascale.

  1. LIF: A new Kriging based learning function and its application to structural reliability analysis

    International Nuclear Information System (INIS)

    Sun, Zhili; Wang, Jian; Li, Rui; Tong, Cao

    2017-01-01

    The main task of structural reliability analysis is to estimate failure probability of a studied structure taking randomness of input variables into account. To consider structural behavior practically, numerical models become more and more complicated and time-consuming, which increases the difficulty of reliability analysis. Therefore, sequential strategies of design of experiment (DoE) are raised. In this research, a new learning function, named least improvement function (LIF), is proposed to update DoE of Kriging based reliability analysis method. LIF values how much the accuracy of estimated failure probability will be improved if adding a given point into DoE. It takes both statistical information provided by the Kriging model and the joint probability density function of input variables into account, which is the most important difference from the existing learning functions. Maximum point of LIF is approximately determined with Markov Chain Monte Carlo(MCMC) simulation. A new reliability analysis method is developed based on the Kriging model, in which LIF, MCMC and Monte Carlo(MC) simulation are employed. Three examples are analyzed. Results show that LIF and the new method proposed in this research are very efficient when dealing with nonlinear performance function, small probability, complicated limit state and engineering problems with high dimension. - Highlights: • Least improvement function (LIF) is proposed for structural reliability analysis. • LIF takes both Kriging based statistical information and joint PDF into account. • A reliability analysis method is constructed based on Kriging, MCS and LIF.

  2. Using reliability analysis to support decision making\\ud in phased mission systems

    OpenAIRE

    Zhang, Yang; Prescott, Darren

    2017-01-01

    Due to the environments in which they will operate, future autonomous systems must be capable of reconfiguring quickly and safely following faults or environmental changes. Past research has shown how, by considering autonomous systems to perform phased missions, reliability analysis can support decision making by allowing comparison of the probability of success of different missions following reconfiguration. Binary Decision Diagrams (BDDs) offer fast, accurate reliability analysis that cou...

  3. Human Reliability Analysis in Support of Risk Assessment for Positive Train Control

    Science.gov (United States)

    2003-06-01

    This report describes an approach to evaluating the reliability of human actions that are modeled in a probabilistic risk assessment : (PRA) of train control operations. This approach to human reliability analysis (HRA) has been applied in the case o...

  4. The Impact of The Energy-time Distribution of The Ms 7.0 Lushan Earthquake on Slope Dynamic Reliability

    Science.gov (United States)

    Liu, X.; Griffiths, D.; Tang, H.

    2013-12-01

    This paper introduces a new method to evaluate the area-specific potential risk for earthquake induced slope failures, and the Lushan earthquake is used as an example. The overall framework of this paper consists of three parts. First, the energy-time distribution of the earthquake was analyzed. The Ms 7.0 Lushan earthquake occurred on April 20, 2013. The epicenter was located in Lushan County, Sichuan province, which is in the same province heavily impacted by the 2008 Ms 8.0 Wenchuan earthquake. Compared with the Wenchuan earthquake, the records of the strong motion of the Lushan earthquake are much richer than those of the Wenchuan earthquake. Some earthquake observatories are very close to the epicenter and the closest strong motion record was collected with a spherical distance of just 34.8 km from the epicenter. This advantage stems from the fact that routine efforts of strong motion observation in this area were greatly enhanced after the Wenchuan earthquake. The energy-time distribution features of the Lushan earthquake waves were obtained from 123 groups of three-component acceleration records of the 40-second mainshock. When the 5% ~ 85% energy section is taken into account, the significant duration is presented with a start point of the first 3.0 to 4.0 seconds and the end point of the first 13.0 to 15.0 seconds. However, if the acceleration of 0.15g is taken into account, the bracketed duration is obtained with the start point of the first 4.0 to 5.0 seconds and the end point of the first 13.0 to 14.0 seconds. Second, a new reliability analysis method was proposed which considers the energy-time distribution of the earthquake. Using the significant duration and bracketed duration as certain statistical windows, the advantages of considering energy-time distribution can be involved. In this method, the dynamic critical slip surfaces and their factors of safety (FOS) are described as time series. The slope reliability evaluation criteria, such as dynamic

  5. An Intelligent Method for Structural Reliability Analysis Based on Response Surface

    Institute of Scientific and Technical Information of China (English)

    桂劲松; 刘红; 康海贵

    2004-01-01

    As water depth increases, the structural safety and reliability of a system become more and more important and challenging. Therefore, the structural reliability method must be applied in ocean engineering design such as offshore platform design. If the performance function is known in structural reliability analysis, the first-order second-moment method is often used. If the performance function could not be definitely expressed, the response surface method is always used because it has a very clear train of thought and simple programming. However, the traditional response surface method fits the response surface of quadratic polynomials where the problem of accuracy could not be solved, because the true limit state surface can be fitted well only in the area near the checking point. In this paper, an intelligent computing method based on the whole response surface is proposed, which can be used for the situation where the performance function could not be definitely expressed in structural reliability analysis. In this method, a response surface of the fuzzy neural network for the whole area should be constructed first, and then the structural reliability can be calculated by the genetic algorithm. In the proposed method, all the sample points for the training network come from the whole area, so the true limit state surface in the whole area can be fitted. Through calculational examples and comparative analysis, it can be known that the proposed method is much better than the traditional response surface method of quadratic polynomials, because, the amount of calculation of finite element analysis is largely reduced, the accuracy of calculation is improved,and the true limit state surface can be fitted very well in the whole area. So, the method proposed in this paper is suitable for engineering application.

  6. Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

    NARCIS (Netherlands)

    Boudali, H.; Crouzen, Pepijn; Haverkort, Boudewijn R.H.M.; Kuntz, G.W.M.; Stoelinga, Mariëlle Ida Antoinette

    This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed

  7. A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment

    International Nuclear Information System (INIS)

    Ibanez-Lopez, A.S.; Martinez-Val, J.M.; Moratilla-Soria, B.Y.

    2017-01-01

    The liberalization of power markets has entailed dramatic changes in power system planning worldwide. The inception of new alternative technologies, smart grids and distributed generation and storage is expected to make system planning even more challenging. Government policies still play a major role in the evolution of a country's power generation mix, even in those countries with liberalized markets. This paper presents a System Dynamics model aimed at assessing the overall technical, economic and environmental impact of renewable energy incentives and capacity payment policies. The model has been used to simulate Spain's power industry in order to assess the impact of electric power policies with the goal of getting insights regarding how to achieve an optimum power generation mix. The main conclusions of the present paper are (i) the necessity of specific regulatory actions in Spain in order to keep adequate reliability levels, avoid price spikes and boom and bust investment cycles as well as to deploy specific technologies, (ii) the fact that capacity payments are a better instrument for keeping adequate reserve margins and avoiding power price spikes than renewable energy incentives and (iii) the evidence that both instruments entail additional system costs over the base case scenario. - Highlights: • A System Dynamics model of Spain's power generation mix is proposed. • The overall policy impact on system costs, environment and reliability is assessed. • Current policies are not enough to keep adequate reliability levels. • Capacity payments are an adequate instrument for guaranteeing system reliability. • RES incentives do not solve reliability issues and entail greater system costs.

  8. Reliability analysis of production ships with emphasis on load combination and ultimate strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaozhi

    1995-05-01

    This thesis deals with ultimate strength and reliability analysis of offshore production ships, accounting for stochastic load combinations, using a typical North Sea production ship for reference. A review of methods for structural reliability analysis is presented. Probabilistic methods are established for the still water and vertical wave bending moments. Linear stress analysis of a midships transverse frame is carried out, four different finite element models are assessed. Upon verification of the general finite element code ABAQUS with a typical ship transverse girder example, for which test results are available, ultimate strength analysis of the reference transverse frame is made to obtain the ultimate load factors associated with the specified pressure loads in Det norske Veritas Classification rules for ships and rules for production vessels. Reliability analysis is performed to develop appropriate design criteria for the transverse structure. It is found that the transverse frame failure mode does not seem to contribute to the system collapse. Ultimate strength analysis of the longitudinally stiffened panels is performed, accounting for the combined biaxial and lateral loading. Reliability based design of the longitudinally stiffened bottom and deck panels is accomplished regarding the collapse mode under combined biaxial and lateral loads. 107 refs., 76 refs., 37 tabs.

  9. Systems reliability/structural reliability

    International Nuclear Information System (INIS)

    Green, A.E.

    1980-01-01

    The question of reliability technology using quantified techniques is considered for systems and structures. Systems reliability analysis has progressed to a viable and proven methodology whereas this has yet to be fully achieved for large scale structures. Structural loading variants over the half-time of the plant are considered to be more difficult to analyse than for systems, even though a relatively crude model may be a necessary starting point. Various reliability characteristics and environmental conditions are considered which enter this problem. The rare event situation is briefly mentioned together with aspects of proof testing and normal and upset loading conditions. (orig.)

  10. Reliability Analysis of a Two Dissimilar Unit Cold Standby System ...

    African Journals Online (AJOL)

    (2009) using linear first order differential equation evaluated the reliability and availability characteristics of two-dissimilar-unit cold standby system with three mode for which no cost benefit analysis was considered. El-said (1994) contributed on stochastic analysis of a two-dissimilar-unit standby redundant system.

  11. Application of Reliability Analysis for Optimal Design of Monolithic Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Sørensen, John Dalsgaard; Christiani, E.

    1995-01-01

    Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are considered. Probabilistic models of some of the most important failure modes are described. The failures are sliding and slip surface failure of a rubble mound and a clay foundation. Relevant design...

  12. Reliability Analysis of the CERN Radiation Monitoring Electronic System CROME

    CERN Document Server

    AUTHOR|(CDS)2126870

    For the new in-house developed CERN Radiation Monitoring Electronic System (CROME) a reliability analysis is necessary to ensure compliance with the statu-tory requirements regarding the Safety Integrity Level. The required Safety Integrity Level by IEC 60532 standard is SIL 2 (for the Safety Integrated Functions Measurement, Alarm Triggering and Interlock Triggering). The first step of the reliability analysis was a system and functional analysis which served as basis for the implementation of the CROME system in the software “Iso-graph”. In the “Prediction” module of Isograph the failure rates of all components were calculated. Failure rates for passive components were calculated by the Military Standard 217 and failure rates for active components were obtained from lifetime tests by the manufacturers. The FMEA was carried out together with the board designers and implemented in the “FMECA” module of Isograph. The FMEA served as basis for the Fault Tree Analysis and the detection of weak points...

  13. Condition-based fault tree analysis (CBFTA): A new method for improved fault tree analysis (FTA), reliability and safety calculations

    International Nuclear Information System (INIS)

    Shalev, Dan M.; Tiran, Joseph

    2007-01-01

    Condition-based maintenance methods have changed systems reliability in general and individual systems in particular. Yet, this change does not affect system reliability analysis. System fault tree analysis (FTA) is performed during the design phase. It uses components failure rates derived from available sources as handbooks, etc. Condition-based fault tree analysis (CBFTA) starts with the known FTA. Condition monitoring (CM) methods applied to systems (e.g. vibration analysis, oil analysis, electric current analysis, bearing CM, electric motor CM, and so forth) are used to determine updated failure rate values of sensitive components. The CBFTA method accepts updated failure rates and applies them to the FTA. The CBFTA recalculates periodically the top event (TE) failure rate (λ TE ) thus determining the probability of system failure and the probability of successful system operation-i.e. the system's reliability. FTA is a tool for enhancing system reliability during the design stages. But, it has disadvantages, mainly it does not relate to a specific system undergoing maintenance. CBFTA is tool for updating reliability values of a specific system and for calculating the residual life according to the system's monitored conditions. Using CBFTA, the original FTA is ameliorated to a practical tool for use during the system's field life phase, not just during system design phase. This paper describes the CBFTA method and its advantages are demonstrated by an example

  14. Problems Related to Use of Some Terms in System Reliability Analysis

    Directory of Open Access Journals (Sweden)

    Nadezda Hanusova

    2004-01-01

    Full Text Available The paper deals with problems of using dependability terms, defined in actual standard STN IEC 50 (191: International electrotechnical dictionary, chap. 191: Dependability and quality of service (1993, in a technical systems dependability analysis. The goal of the paper is to find a relation between terms introduced in the mentioned standard and used in the technical systems dependability analysis and rules and practices used in a system analysis of the system theory. Description of a part of the system life cycle related to reliability is used as a starting point. The part of a system life cycle is described by the state diagram and reliability relevant therms are assigned.

  15. Application case study of AP1000 automatic depressurization system (ADS) for reliability evaluation by GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Muhammad, E-mail: hashimsajid@yahoo.com; Hidekazu, Yoshikawa, E-mail: yosikawa@kib.biglobe.ne.jp; Takeshi, Matsuoka, E-mail: mats@cc.utsunomiya-u.ac.jp; Ming, Yang, E-mail: myang.heu@gmail.com

    2014-10-15

    Highlights: • Discussion on reasons why AP1000 equipped with ADS system comparatively to PWR. • Clarification of full and partial depressurization of reactor coolant system by ADS system. • Application case study of four stages ADS system for reliability evaluation in LBLOCA. • GO-FLOW tool is capable to evaluate dynamic reliability of passive safety systems. • Calculated ADS reliability result significantly increased dynamic reliability of PXS. - Abstract: AP1000 nuclear power plant (NPP) utilized passive means for the safety systems to ensure its safety in events of transient or severe accidents. One of the unique safety systems of AP1000 to be compared with conventional PWR is the “four stages Automatic Depressurization System (ADS)”, and ADS system originally works as an active safety system. In the present study, authors first discussed the reasons of why four stages ADS system is added in AP1000 plant to be compared with conventional PWR in the aspect of reliability. And then explained the full and partial depressurization of RCS system by four stages ADS in events of transient and loss of coolant accidents (LOCAs). Lastly, the application case study of four stages ADS system of AP1000 has been conducted in the aspect of reliability evaluation of ADS system under postulated conditions of full RCS depressurization during large break loss of a coolant accident (LBLOCA) in one of the RCS cold legs. In this case study, the reliability evaluation is made by GO-FLOW methodology to determinate the influence of ADS system in dynamic reliability of passive core cooling system (PXS) of AP1000, i.e. what will happen if ADS system fails or successfully actuate. The GO-FLOW is success-oriented reliability analysis tool and is capable to evaluating the systems reliability/unavailability alternatively to Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) tools. Under these specific conditions of LBLOCA, the GO-FLOW calculated reliability results indicated

  16. Bayesian dynamic mediation analysis.

    Science.gov (United States)

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Measuring reliability under epistemic uncertainty: Review on non-probabilistic reliability metrics

    Directory of Open Access Journals (Sweden)

    Kang Rui

    2016-06-01

    Full Text Available In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence-theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis-based reliability metrics, possibility-theory-based reliability metrics (posbist reliability and uncertainty-theory-based reliability metrics (belief reliability. It is pointed out that a qualified reliability metric that is able to consider the effect of epistemic uncertainty needs to (1 compensate the conservatism in the estimations of the component-level reliability metrics caused by epistemic uncertainty, and (2 satisfy the duality axiom, otherwise it might lead to paradoxical and confusing results in engineering applications. The five commonly used non-probabilistic reliability metrics are compared in terms of these two properties, and the comparison can serve as a basis for the selection of the appropriate reliability metrics.

  18. Reliability calculations

    International Nuclear Information System (INIS)

    Petersen, K.E.

    1986-03-01

    Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)

  19. Subset simulation for structural reliability sensitivity analysis

    International Nuclear Information System (INIS)

    Song Shufang; Lu Zhenzhou; Qiao Hongwei

    2009-01-01

    Based on two procedures for efficiently generating conditional samples, i.e. Markov chain Monte Carlo (MCMC) simulation and importance sampling (IS), two reliability sensitivity (RS) algorithms are presented. On the basis of reliability analysis of Subset simulation (Subsim), the RS of the failure probability with respect to the distribution parameter of the basic variable is transformed as a set of RS of conditional failure probabilities with respect to the distribution parameter of the basic variable. By use of the conditional samples generated by MCMC simulation and IS, procedures are established to estimate the RS of the conditional failure probabilities. The formulae of the RS estimator, its variance and its coefficient of variation are derived in detail. The results of the illustrations show high efficiency and high precision of the presented algorithms, and it is suitable for highly nonlinear limit state equation and structural system with single and multiple failure modes

  20. Reliability Estimation of Aero-engine Based on Mixed Weibull Distribution Model

    Science.gov (United States)

    Yuan, Zhongda; Deng, Junxiang; Wang, Dawei

    2018-02-01

    Aero-engine is a complex mechanical electronic system, based on analysis of reliability of mechanical electronic system, Weibull distribution model has an irreplaceable role. Till now, only two-parameter Weibull distribution model and three-parameter Weibull distribution are widely used. Due to diversity of engine failure modes, there is a big error with single Weibull distribution model. By contrast, a variety of engine failure modes can be taken into account with mixed Weibull distribution model, so it is a good statistical analysis model. Except the concept of dynamic weight coefficient, in order to make reliability estimation result more accurately, three-parameter correlation coefficient optimization method is applied to enhance Weibull distribution model, thus precision of mixed distribution reliability model is improved greatly. All of these are advantageous to popularize Weibull distribution model in engineering applications.

  1. Fifty Years of THERP and Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    In 1962 at a Human Factors Society symposium, Alan Swain presented a paper introducing a Technique for Human Error Rate Prediction (THERP). This was followed in 1963 by a Sandia Laboratories monograph outlining basic human error quantification using THERP and, in 1964, by a special journal edition of Human Factors on quantification of human performance. Throughout the 1960s, Swain and his colleagues focused on collecting human performance data for the Sandia Human Error Rate Bank (SHERB), primarily in connection with supporting the reliability of nuclear weapons assembly in the US. In 1969, Swain met with Jens Rasmussen of Risø National Laboratory and discussed the applicability of THERP to nuclear power applications. By 1975, in WASH-1400, Swain had articulated the use of THERP for nuclear power applications, and the approach was finalized in the watershed publication of the NUREG/CR-1278 in 1983. THERP is now 50 years old, and remains the most well known and most widely used HRA method. In this paper, the author discusses the history of THERP, based on published reports and personal communication and interviews with Swain. The author also outlines the significance of THERP. The foundations of human reliability analysis are found in THERP: human failure events, task analysis, performance shaping factors, human error probabilities, dependence, event trees, recovery, and pre- and post-initiating events were all introduced in THERP. While THERP is not without its detractors, and it is showing signs of its age in the face of newer technological applications, the longevity of THERP is a testament of its tremendous significance. THERP started the field of human reliability analysis. This paper concludes with a discussion of THERP in the context of newer methods, which can be seen as extensions of or departures from Swain’s pioneering work.

  2. Reliability of Computerized Neurocognitive Tests for Concussion Assessment: A Meta-Analysis.

    Science.gov (United States)

    Farnsworth, James L; Dargo, Lucas; Ragan, Brian G; Kang, Minsoo

    2017-09-01

      Although widely used, computerized neurocognitive tests (CNTs) have been criticized because of low reliability and poor sensitivity. A systematic review was published summarizing the reliability of Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT) scores; however, this was limited to a single CNT. Expansion of the previous review to include additional CNTs and a meta-analysis is needed. Therefore, our purpose was to analyze reliability data for CNTs using meta-analysis and examine moderating factors that may influence reliability.   A systematic literature search (key terms: reliability, computerized neurocognitive test, concussion) of electronic databases (MEDLINE, PubMed, Google Scholar, and SPORTDiscus) was conducted to identify relevant studies.   Studies were included if they met all of the following criteria: used a test-retest design, involved at least 1 CNT, provided sufficient statistical data to allow for effect-size calculation, and were published in English.   Two independent reviewers investigated each article to assess inclusion criteria. Eighteen studies involving 2674 participants were retained. Intraclass correlation coefficients were extracted to calculate effect sizes and determine overall reliability. The Fisher Z transformation adjusted for sampling error associated with averaging correlations. Moderator analyses were conducted to evaluate the effects of the length of the test-retest interval, intraclass correlation coefficient model selection, participant demographics, and study design on reliability. Heterogeneity was evaluated using the Cochran Q statistic.   The proportion of acceptable outcomes was greatest for the Axon Sports CogState Test (75%) and lowest for the ImPACT (25%). Moderator analyses indicated that the type of intraclass correlation coefficient model used significantly influenced effect-size estimates, accounting for 17% of the variation in reliability.   The Axon Sports CogState Test, which

  3. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series

    Science.gov (United States)

    Vautard, R.; Ghil, M.

    1989-01-01

    Two dimensions of a dynamical system given by experimental time series are distinguished. Statistical dimension gives a theoretical upper bound for the minimal number of degrees of freedom required to describe the attractor up to the accuracy of the data, taking into account sampling and noise problems. The dynamical dimension is the intrinsic dimension of the attractor and does not depend on the quality of the data. Singular Spectrum Analysis (SSA) provides estimates of the statistical dimension. SSA also describes the main physical phenomena reflected by the data. It gives adaptive spectral filters associated with the dominant oscillations of the system and clarifies the noise characteristics of the data. SSA is applied to four paleoclimatic records. The principal climatic oscillations and the regime changes in their amplitude are detected. About 10 degrees of freedom are statistically significant in the data. Large noise and insufficient sample length do not allow reliable estimates of the dynamical dimension.

  4. Inclusion of fatigue effects in human reliability analysis

    International Nuclear Information System (INIS)

    Griffith, Candice D.; Mahadevan, Sankaran

    2011-01-01

    The effect of fatigue on human performance has been observed to be an important factor in many industrial accidents. However, defining and measuring fatigue is not easily accomplished. This creates difficulties in including fatigue effects in probabilistic risk assessments (PRA) of complex engineering systems that seek to include human reliability analysis (HRA). Thus the objectives of this paper are to discuss (1) the importance of the effects of fatigue on performance, (2) the difficulties associated with defining and measuring fatigue, (3) the current status of inclusion of fatigue in HRA methods, and (4) the future directions and challenges for the inclusion of fatigue, specifically sleep deprivation, in HRA. - Highlights: →We highlight the need for fatigue and sleep deprivation effects on performance to be included in human reliability analysis (HRA) methods. Current methods do not explicitly include sleep deprivation effects. → We discuss the difficulties in defining and measuring fatigue. → We review sleep deprivation research, and discuss the limitations and future needs of the current HRA methods.

  5. Reliability analysis of the reactor protection system with fault diagnosis

    International Nuclear Information System (INIS)

    Lee, D.Y.; Han, J.B.; Lyou, J.

    2004-01-01

    The main function of a reactor protection system (RPS) is to maintain the reactor core integrity and reactor coolant system pressure boundary. The RPS consists of the 2-out-of-m redundant architecture to assure a reliable operation. The system reliability of the RPS is a very important factor for the probability safety assessment (PSA) evaluation in the nuclear field. To evaluate the system failure rate of the k-out-of-m redundant system is not so easy with the deterministic method. In this paper, the reliability analysis method using the binomial process is suggested to calculate the failure rate of the RPS system with a fault diagnosis function. The suggested method is compared with the result of the Markov process to verify the validation of the suggested method, and applied to the several kinds of RPS architectures for a comparative evaluation of the reliability. (orig.)

  6. Reliability Analysis for Adhesive Bonded Composite Stepped Lap Joints Loaded in Fatigue

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Sørensen, John Dalsgaard; Lund, Erik

    2012-01-01

    -1, where partial safety factors are introduced together with characteristic values. Asymptotic sampling is used to estimate the reliability with support points generated by randomized Sobol sequences. The predicted reliability level is compared with the implicitly required target reliability level defined......This paper describes a probabilistic approach to calculate the reliability of adhesive bonded composite stepped lap joints loaded in fatigue using three- dimensional finite element analysis (FEA). A method for progressive damage modelling is used to assess fatigue damage accumulation and residual...... by the wind turbine standard IEC 61400-1. Finally, an approach for the assessment of the reliability of adhesive bonded composite stepped lap joints loaded in fatigue is presented. The introduced methodology can be applied in the same way to calculate the reliability level of wind turbine blade components...

  7. An Evidential Reasoning-Based CREAM to Human Reliability Analysis in Maritime Accident Process.

    Science.gov (United States)

    Wu, Bing; Yan, Xinping; Wang, Yang; Soares, C Guedes

    2017-10-01

    This article proposes a modified cognitive reliability and error analysis method (CREAM) for estimating the human error probability in the maritime accident process on the basis of an evidential reasoning approach. This modified CREAM is developed to precisely quantify the linguistic variables of the common performance conditions and to overcome the problem of ignoring the uncertainty caused by incomplete information in the existing CREAM models. Moreover, this article views maritime accident development from the sequential perspective, where a scenario- and barrier-based framework is proposed to describe the maritime accident process. This evidential reasoning-based CREAM approach together with the proposed accident development framework are applied to human reliability analysis of a ship capsizing accident. It will facilitate subjective human reliability analysis in different engineering systems where uncertainty exists in practice. © 2017 Society for Risk Analysis.

  8. Reliability Approach of a Compressor System using Reliability Block ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... This paper presents a reliability analysis of such a system using reliability ... Keywords-compressor system, reliability, reliability block diagram, RBD .... the same structure has been kept with the three subsystems: air flow, oil flow and .... and Safety in Engineering Design", Springer, 2009. [3] P. O'Connor ...

  9. Qualitative analysis in reliability and safety studies

    International Nuclear Information System (INIS)

    Worrell, R.B.; Burdick, G.R.

    1976-01-01

    The qualitative evaluation of system logic models is described as it pertains to assessing the reliability and safety characteristics of nuclear systems. Qualitative analysis of system logic models, i.e., models couched in an event (Boolean) algebra, is defined, and the advantages inherent in qualitative analysis are explained. Certain qualitative procedures that were developed as a part of fault-tree analysis are presented for illustration. Five fault-tree analysis computer-programs that contain a qualitative procedure for determining minimal cut sets are surveyed. For each program the minimal cut-set algorithm and limitations on its use are described. The recently developed common-cause analysis for studying the effect of common-causes of failure on system behavior is explained. This qualitative procedure does not require altering the fault tree, but does use minimal cut sets from the fault tree as part of its input. The method is applied using two different computer programs. 25 refs

  10. On Bayesian System Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen Ringi, M

    1995-05-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person`s state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs.

  11. On Bayesian System Reliability Analysis

    International Nuclear Information System (INIS)

    Soerensen Ringi, M.

    1995-01-01

    The view taken in this thesis is that reliability, the probability that a system will perform a required function for a stated period of time, depends on a person's state of knowledge. Reliability changes as this state of knowledge changes, i.e. when new relevant information becomes available. Most existing models for system reliability prediction are developed in a classical framework of probability theory and they overlook some information that is always present. Probability is just an analytical tool to handle uncertainty, based on judgement and subjective opinions. It is argued that the Bayesian approach gives a much more comprehensive understanding of the foundations of probability than the so called frequentistic school. A new model for system reliability prediction is given in two papers. The model encloses the fact that component failures are dependent because of a shared operational environment. The suggested model also naturally permits learning from failure data of similar components in non identical environments. 85 refs

  12. Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages

    Science.gov (United States)

    Wu, Wen-Jun; Yue, Bao-Zeng; Huang, Hua

    2016-02-01

    This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employing the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential function and the modal coordinates of wave height. Based on the Bernoulli-Euler beam theory and the D'Alembert's principle, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordinate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the coupling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange's equations in terms of quasi-coordinates. Lastly, the coupling dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.

  13. Reliability and safety engineering

    CERN Document Server

    Verma, Ajit Kumar; Karanki, Durga Rao

    2016-01-01

    Reliability and safety are core issues that must be addressed throughout the life cycle of engineering systems. Reliability and Safety Engineering presents an overview of the basic concepts, together with simple and practical illustrations. The authors present reliability terminology in various engineering fields, viz.,electronics engineering, software engineering, mechanical engineering, structural engineering and power systems engineering. The book describes the latest applications in the area of probabilistic safety assessment, such as technical specification optimization, risk monitoring and risk informed in-service inspection. Reliability and safety studies must, inevitably, deal with uncertainty, so the book includes uncertainty propagation methods: Monte Carlo simulation, fuzzy arithmetic, Dempster-Shafer theory and probability bounds. Reliability and Safety Engineering also highlights advances in system reliability and safety assessment including dynamic system modeling and uncertainty management. Cas...

  14. Dynamics analysis of a boiling water reactor based on multivariable autoregressive modeling

    International Nuclear Information System (INIS)

    Oguma, Ritsuo; Matsubara, Kunihiko

    1980-01-01

    The establishment of the highly reliable mathematical model for the dynamic characteristics of a reactor is indispensable for the achievement of safe operation in reactor plants. The authors have tried to model the dynamic characteristics of a reactor based on the identification technique, taking the JPDR (Japan Power Demonstration Reactor) as the object, as one of the technical studies for diagnosing BWR anomaly, and employed the multivariable autoregressive modeling (MAR method) as one of the useful methods for forwarding the analysis. In this paper, the outline of the system analysis by MAR modeling is explained, and the identification experiments and their analysis results performed in the phase 4 of the power increase test of the JPDR are described. The authors evaluated the results of identification based on only reactor noises, making reference to the results of identification in the case of exciting the system by applying artificial irregular disturbance, in order to clarify the extent in which the modeling is possible by reactor noises only. However, some difficulties were encountered. The largest problem is the one concerning the separation and identification of the noise sources exciting the variables from the dynamic characteristics among the variables. If the effective technique can be obtained to this problem, the approach by the identification technique based on the probability model might be a powerful tool in the field of reactor noise analysis and the development of diagnosis technics. (Wakatsuki, Y.)

  15. Mechanical system reliability analysis using a combination of graph theory and Boolean function

    International Nuclear Information System (INIS)

    Tang, J.

    2001-01-01

    A new method based on graph theory and Boolean function for assessing reliability of mechanical systems is proposed. The procedure for this approach consists of two parts. By using the graph theory, the formula for the reliability of a mechanical system that considers the interrelations of subsystems or components is generated. Use of the Boolean function to examine the failure interactions of two particular elements of the system, followed with demonstrations of how to incorporate such failure dependencies into the analysis of larger systems, a constructive algorithm for quantifying the genuine interconnections between the subsystems or components is provided. The combination of graph theory and Boolean function provides an effective way to evaluate the reliability of a large, complex mechanical system. A numerical example demonstrates that this method an effective approaches in system reliability analysis

  16. Stochastic reliability analysis using Fokker Planck equations

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Srividya, A.; Verma, A.K.

    2011-01-01

    The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is also known as the Kolmogorov forward equation (diffusion). Hence, for any process, which evolves with time, the probability density function as a function of time can be represented with Fokker-Planck equation. In stochastic reliability analysis one is more interested in finding out the reliability or failure probability of the components or structures as a function of time rather than instantaneous failure probabilities. In this analysis the variables are represented with random processes instead of random variables. A random processes can be either stationary or non stationary. If the random process is stationary then the failure probability doesn't change with time where as in the case of non stationary processes the failure probability changes with time. In the present paper Fokker Planck equations have been used to find out the probability density function of the non stationary random processes. In this paper a flow chart has been provided which describes step by step process for carrying out stochastic reliability analysis using Fokker-Planck equations. As a first step one has to identify the failure function as a function of random processes. Then one has to solve the Fokker-Planck equation for each random process. In this paper the Fokker-Planck equation has been solved by using Finite difference method. As a result one gets the probability density values of the random process in the sample space as well as time space. Later at each time step appropriate probability distribution has to be identified based on the available probability density values. For checking the better fitness of the data Kolmogorov-Smirnov Goodness of fit test has been performed. In this way one can find out the distribution of the random process at each time step. Once one has the probability distribution

  17. High-Reliable PLC RTOS Development and RPS Structure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H. [Enersys Co., Daejeon (Korea, Republic of)

    2008-04-15

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  18. High-Reliable PLC RTOS Development and RPS Structure Analysis

    International Nuclear Information System (INIS)

    Sohn, H. S.; Song, D. Y.; Sohn, D. S.; Kim, J. H.

    2008-04-01

    One of the KNICS objectives is to develop a platform for Nuclear Power Plant(NPP) I and C(Instrumentation and Control) system, especially plant protection system. The developed platform is POSAFE-Q and this work supports the development of POSAFE-Q with the development of high-reliable real-time operating system(RTOS) and programmable logic device(PLD) software. Another KNICS objective is to develop safety I and C systems, such as Reactor Protection System(RPS) and Engineered Safety Feature-Component Control System(ESF-CCS). This work plays an important role in the structure analysis for RPS. Validation and verification(V and V) of the safety critical software is an essential work to make digital plant protection system highly reliable and safe. Generally, the reliability and safety of software based system can be improved by strict quality assurance framework including the software development itself. In other words, through V and V, the reliability and safety of a system can be improved and the development activities like software requirement specification, software design specification, component tests, integration tests, and system tests shall be appropriately documented for V and V.

  19. PSA applications and piping reliability analysis: where do we stand?

    International Nuclear Information System (INIS)

    Lydell, B.O.Y.

    1997-01-01

    This reviews a recently proposed framework for piping reliability analysis. The framework was developed to promote critical interpretations of operational data on pipe failures, and to support application-specific-parameter estimation

  20. Accounting for Dynamic Fluctuations across Time when Examining fMRI Test-Retest Reliability: Analysis of a Reward Paradigm in the EMBARC Study.

    Directory of Open Access Journals (Sweden)

    Henry W Chase

    Full Text Available Longitudinal investigation of the neural correlates of reward processing in depression may represent an important step in defining effective biomarkers for antidepressant treatment outcome prediction, but the reliability of reward-related activation is not well understood. Thirty-seven healthy control participants were scanned using fMRI while performing a reward-related guessing task on two occasions, approximately one week apart. Two main contrasts were examined: right ventral striatum (VS activation fMRI BOLD signal related to signed prediction errors (PE and reward expectancy (RE. We also examined bilateral visual cortex activation coupled to outcome anticipation. Significant VS PE-related activity was observed at the first testing session, but at the second testing session, VS PE-related activation was significantly reduced. Conversely, significant VS RE-related activity was observed at time 2 but not time 1. Increases in VS RE-related activity from time 1 to time 2 were significantly associated with decreases in VS PE-related activity from time 1 to time 2 across participants. Intraclass correlations (ICCs in VS were very low. By contrast, visual cortex activation had much larger ICCs, particularly in individuals with high quality data. Dynamic changes in brain activation are widely predicted, and failure to account for these changes could lead to inaccurate evaluations of the reliability of functional MRI signals. Conventional measures of reliability cannot distinguish between changes specified by algorithmic models of neural function and noisy signal. Here, we provide evidence for the former possibility: reward-related VS activations follow the pattern predicted by temporal difference models of reward learning but have low ICCs.

  1. Reliability analysis and prediction of mixed mode load using Markov Chain Model

    International Nuclear Information System (INIS)

    Nikabdullah, N.; Singh, S. S. K.; Alebrahim, R.; Azizi, M. A.; K, Elwaleed A.; Noorani, M. S. M.

    2014-01-01

    The aim of this paper is to present the reliability analysis and prediction of mixed mode loading by using a simple two state Markov Chain Model for an automotive crankshaft. The reliability analysis and prediction for any automotive component or structure is important for analyzing and measuring the failure to increase the design life, eliminate or reduce the likelihood of failures and safety risk. The mechanical failures of the crankshaft are due of high bending and torsion stress concentration from high cycle and low rotating bending and torsional stress. The Markov Chain was used to model the two states based on the probability of failure due to bending and torsion stress. In most investigations it revealed that bending stress is much serve than torsional stress, therefore the probability criteria for the bending state would be higher compared to the torsion state. A statistical comparison between the developed Markov Chain Model and field data was done to observe the percentage of error. The reliability analysis and prediction was derived and illustrated from the Markov Chain Model were shown in the Weibull probability and cumulative distribution function, hazard rate and reliability curve and the bathtub curve. It can be concluded that Markov Chain Model has the ability to generate near similar data with minimal percentage of error and for a practical application; the proposed model provides a good accuracy in determining the reliability for the crankshaft under mixed mode loading

  2. Risk and reliability analysis theory and applications : in honor of Prof. Armen Der Kiureghian

    CERN Document Server

    2017-01-01

    This book presents a unique collection of contributions from some of the foremost scholars in the field of risk and reliability analysis. Combining the most advanced analysis techniques with practical applications, it is one of the most comprehensive and up-to-date books available on risk-based engineering. All the fundamental concepts needed to conduct risk and reliability assessments are covered in detail, providing readers with a sound understanding of the field and making the book a powerful tool for students and researchers alike. This book was prepared in honor of Professor Armen Der Kiureghian, one of the fathers of modern risk and reliability analysis.

  3. Reliability Prediction Of System And Component Of Process System Of RSG-GAS Reactor

    International Nuclear Information System (INIS)

    Sitorus Pane, Jupiter

    2001-01-01

    The older the reactor the higher the probability of the system and components suffer from loss of function or degradation. This phenomenon occurred because of wear, corrosion, and fatigue. Study on component reliability was generally performed deterministically and statistically. This paper would describe an analysis of using statistical method, i.e. regression Cox, in order to predict the reliability of the components and their environmental influence's factors. The result showed that the dynamics, non safety related, and mechanic components have higher risk of failure, whereas static, safety related, and electric have lower risk of failures. The relative risk value for variable of components dynamics, quality, dummy 1 and dummy 2 are of 1.54, 1.59, 1.50, and 0.83 compare to other components type with each variable. Component with the higher risk have lower reliability than lower one

  4. Summary of approaches to dynamic analysis of man-machine interaction

    International Nuclear Information System (INIS)

    Hollnagel, E.

    1995-05-01

    The present report was commissioned as a study under the first phase of the NKS/RAK-1, Sub-project 3. The topic of this sub-project is integrated sequence analysis with emphasis on human-system interaction. The report provides the following: a presentation of the principles of dynamic event analysis (joint system simulation), a short survey and characterisation of the main existing systems, and a recommendation of concepts and techniques in relation to the aims of the NKS/RAK-1 project. It is intended that the recommendations shall be used as part of the further planning of the subproject. The work reported here is an extension of the presentation that was given at the first NKS meeting on August 26, 1994. The work has been carried out by Human Reliability Associates, Ltd., in the period October-November, 1994. (au) 20 refs

  5. Summary of approaches to dynamic analysis of man-machine interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hollnagel, E [Human Reliability Analysis Ltd. (United Kingdom)

    1995-05-01

    The present report was commissioned as a study under the first phase of the NKS/RAK-1, Sub-project 3. The topic of this sub-project is integrated sequence analysis with emphasis on human-system interaction. The report provides the following: a presentation of the principles of dynamic event analysis (joint system simulation), a short survey and characterisation of the main existing systems, and a recommendation of concepts and techniques in relation to the aims of the NKS/RAK-1 project. It is intended that the recommendations shall be used as part of the further planning of the subproject. The work reported here is an extension of the presentation that was given at the first NKS meeting on August 26, 1994. The work has been carried out by Human Reliability Associates, Ltd., in the period October-November, 1994. (au) 20 refs.

  6. Reliability and validity of CODA motion analysis system for measuring cervical range of motion in patients with cervical spondylosis and anterior cervical fusion.

    Science.gov (United States)

    Gao, Zhongyang; Song, Hui; Ren, Fenggang; Li, Yuhuan; Wang, Dong; He, Xijing

    2017-12-01

    The aim of the present study was to evaluate the reliability of the Cartesian Optoelectronic Dynamic Anthropometer (CODA) motion system in measuring the cervical range of motion (ROM) and verify the construct validity of the CODA motion system. A total of 26 patients with cervical spondylosis and 22 patients with anterior cervical fusion were enrolled and the CODA motion analysis system was used to measure the three-dimensional cervical ROM. Intra- and inter-rater reliability was assessed by interclass correlation coefficients (ICCs), standard error of measurement (SEm), Limits of Agreements (LOA) and minimal detectable change (MDC). Independent samples t-tests were performed to examine the differences of cervical ROM between cervical spondylosis and anterior cervical fusion patients. The results revealed that in the cervical spondylosis group, the reliability was almost perfect (intra-rater reliability: ICC, 0.87-0.95; LOA, -12.86-13.70; SEm, 2.97-4.58; inter-rater reliability: ICC, 0.84-0.95; LOA, -13.09-13.48; SEm, 3.13-4.32). In the anterior cervical fusion group, the reliability was high (intra-rater reliability: ICC, 0.88-0.97; LOA, -10.65-11.08; SEm, 2.10-3.77; inter-rater reliability: ICC, 0.86-0.96; LOA, -10.91-13.66; SEm, 2.20-4.45). The cervical ROM in the cervical spondylosis group was significantly higher than that in the anterior cervical fusion group in all directions except for left rotation. In conclusion, the CODA motion analysis system is highly reliable in measuring cervical ROM and the construct validity was verified, as the system was sufficiently sensitive to distinguish between the cervical spondylosis and anterior cervical fusion groups based on their ROM.

  7. Reliability models for Space Station power system

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kim, Y.; Wagner, H.

    1987-01-01

    This paper presents a methodology for the reliability evaluation of Space Station power system. The two options considered are the photovoltaic system and the solar dynamic system. Reliability models for both of these options are described along with the methodology for calculating the reliability indices.

  8. Summary of the preparation of methodology for digital system reliability analysis for PSA purposes

    International Nuclear Information System (INIS)

    Hustak, S.; Babic, P.

    2001-12-01

    The report is structured as follows: Specific features of and requirements for the digital part of NPP Instrumentation and Control (I and C) systems (Computer-controlled digital technologies and systems of the NPP I and C system; Specific types of digital technology failures and preventive provisions; Reliability requirements for the digital parts of I and C systems; Safety requirements for the digital parts of I and C systems; Defence-in-depth). Qualitative analyses of NPP I and C system reliability and safety (Introductory system analysis; Qualitative requirements for and proof of NPP I and C system reliability and safety). Quantitative reliability analyses of the digital parts of I and C systems (Selection of a suitable quantitative measure of digital system reliability; Selected qualitative and quantitative findings regarding digital system reliability; Use of relations among the occurrences of the various types of failure). Mathematical section in support of the calculation of the various types of indices (Boolean reliability models, Markovian reliability models). Example of digital system analysis (Description of a selected protective function and the relevant digital part of the I and C system; Functional chain examined, its components and fault tree). (P.A.)

  9. Data collection on the unit control room simulator as a method of operator reliability analysis

    International Nuclear Information System (INIS)

    Holy, J.

    1998-01-01

    The report consists of the following chapters: (1) Probabilistic assessment of nuclear power plant operation safety and human factor reliability analysis; (2) Simulators and simulations as human reliability analysis tools; (3) DOE project for using the collection and analysis of data from the unit control room simulator in human factor reliability analysis at the Paks nuclear power plant; (4) General requirements for the organization of the simulator data collection project; (5) Full-scale simulator at the Nuclear Power Plants Research Institute in Trnava, Slovakia, used as a training means for operators of the Dukovany NPP; (6) Assessment of the feasibility of quantification of important human actions modelled within a PSA study by employing simulator data analysis; (7) Assessment of the feasibility of using the various exercise topics for the quantification of the PSA model; (8) Assessment of the feasibility of employing the simulator in the analysis of the individual factors affecting the operator's activity; and (9) Examples of application of statistical methods in the analysis of the human reliability factor. (P.A.)

  10. Chaos and reliability in balanced spiking networks with temporal drive.

    Science.gov (United States)

    Lajoie, Guillaume; Lin, Kevin K; Shea-Brown, Eric

    2013-05-01

    Biological information processing is often carried out by complex networks of interconnected dynamical units. A basic question about such networks is that of reliability: If the same signal is presented many times with the network in different initial states, will the system entrain to the signal in a repeatable way? Reliability is of particular interest in neuroscience, where large, complex networks of excitatory and inhibitory cells are ubiquitous. These networks are known to autonomously produce strongly chaotic dynamics-an obvious threat to reliability. Here, we show that such chaos persists in the presence of weak and strong stimuli, but that even in the presence of chaos, intermittent periods of highly reliable spiking often coexist with unreliable activity. We elucidate the local dynamical mechanisms involved in this intermittent reliability, and investigate the relationship between this phenomenon and certain time-dependent attractors arising from the dynamics. A conclusion is that chaotic dynamics do not have to be an obstacle to precise spike responses, a fact with implications for signal coding in large networks.

  11. The design and use of reliability data base with analysis tool

    Energy Technology Data Exchange (ETDEWEB)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst`s current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs.

  12. The design and use of reliability data base with analysis tool

    International Nuclear Information System (INIS)

    Doorepall, J.; Cooke, R.; Paulsen, J.; Hokstadt, P.

    1996-06-01

    With the advent of sophisticated computer tools, it is possible to give a distributed population of users direct access to reliability component operational histories. This allows the user a greater freedom in defining statistical populations of components and selecting failure modes. However, the reliability data analyst's current analytical instrumentarium is not adequate for this purpose. The terminology used in organizing and gathering reliability data is standardized, and the statistical methods used in analyzing this data are not always suitably chosen. This report attempts to establish a baseline with regard to terminology and analysis methods, to support the use of a new analysis tool. It builds on results obtained in several projects for the ESTEC and SKI on the design of reliability databases. Starting with component socket time histories, we identify a sequence of questions which should be answered prior to the employment of analytical methods. These questions concern the homogeneity and stationarity of (possible dependent) competing failure modes and the independence of competing failure modes. Statistical tests, some of them new, are proposed for answering these questions. Attention is given to issues of non-identifiability of competing risk and clustering of failure-repair events. These ideas have been implemented in an analysis tool for grazing component socket time histories, and illustrative results are presented. The appendix provides background on statistical tests and competing failure modes. (au) 4 tabs., 17 ills., 61 refs

  13. Reliability analysis of component-level redundant topologies for solid-state fault current limiter

    Science.gov (United States)

    Farhadi, Masoud; Abapour, Mehdi; Mohammadi-Ivatloo, Behnam

    2018-04-01

    Experience shows that semiconductor switches in power electronics systems are the most vulnerable components. One of the most common ways to solve this reliability challenge is component-level redundant design. There are four possible configurations for the redundant design in component level. This article presents a comparative reliability analysis between different component-level redundant designs for solid-state fault current limiter. The aim of the proposed analysis is to determine the more reliable component-level redundant configuration. The mean time to failure (MTTF) is used as the reliability parameter. Considering both fault types (open circuit and short circuit), the MTTFs of different configurations are calculated. It is demonstrated that more reliable configuration depends on the junction temperature of the semiconductor switches in the steady state. That junction temperature is a function of (i) ambient temperature, (ii) power loss of the semiconductor switch and (iii) thermal resistance of heat sink. Also, results' sensitivity to each parameter is investigated. The results show that in different conditions, various configurations have higher reliability. The experimental results are presented to clarify the theory and feasibility of the proposed approaches. At last, levelised costs of different configurations are analysed for a fair comparison.

  14. Application of reliability analysis methods to the comparison of two safety circuits

    International Nuclear Information System (INIS)

    Signoret, J.-P.

    1975-01-01

    Two circuits of different design, intended for assuming the ''Low Pressure Safety Injection'' function in PWR reactors are analyzed using reliability methods. The reliability analysis of these circuits allows the failure trees to be established and the failure probability derived. The dependence of these results on test use and maintenance is emphasized as well as critical paths. The great number of results obtained may allow a well-informed choice taking account of the reliability wanted for the type of circuits [fr

  15. Signal Quality Outage Analysis for Ultra-Reliable Communications in Cellular Networks

    DEFF Research Database (Denmark)

    Gerardino, Guillermo Andrés Pocovi; Alvarez, Beatriz Soret; Lauridsen, Mads

    2015-01-01

    Ultra-reliable communications over wireless will open the possibility for a wide range of novel use cases and applications. In cellular networks, achieving reliable communication is challenging due to many factors, particularly the fading of the desired signal and the interference. In this regard......, we investigate the potential of several techniques to combat these main threats. The analysis shows that traditional microscopic multiple-input multiple-output schemes with 2x2 or 4x4 antenna configurations are not enough to fulfil stringent reliability requirements. It is revealed how such antenna...... schemes must be complemented with macroscopic diversity as well as interference management techniques in order to ensure the necessary SINR outage performance. Based on the obtained performance results, it is discussed which of the feasible options fulfilling the ultra-reliable criteria are most promising...

  16. Characterization of breast masses by dynamic enhanced MR imaging. A logistic regression analysis

    International Nuclear Information System (INIS)

    Ikeda, O.; Morishita, S.; Kido, T.; Kitajima, M.; Yamashita, Y.; Takahashi, M.; Okamura, K.; Fukuda, S.

    1999-01-01

    Purpose: To identify features useful for differentiation between malignant and benign breast neoplasms using multivariate analysis of findings by MR imaging. Material and Methods: In a retrospective analysis, 61 patients with 64 breast masses underwent MR imaging and the time-signal intensity curves for precontrast dynamic postcontrast images were quantitatively analyzed. Statistical analysis was performed using a logistic regression model, which was prospectively tested in another 34 patients with suspected breast masses. Results: Univariate analysis revealed that the reliable indicators for malignancy were first the appearance of the tumor border, followed by the washout ratio, internal architecture after contrast enhancement, and peak time. The factors significantly associated with malignancy were irregular tumor border, followed by washout ratio, internal architecture, and peak time. For differentiation between benignity and malignancy, the maximum cut-off point was to be found between 0.47 and 0.51. In a prospective application of this model, 91% of the lesions were accurately discriminated as benign or malignant lesions. Conclusion: Combination of contrast-enhanced dynamic and postcontrast-enhanced MR imaging provided accurate data for the diagnosis of malignant neoplasms of the breast. The model had an accuracy of 91% (sensitivity 90%, specificity 93%). (orig.)

  17. Two-terminal reliability analyses for a mobile ad hoc wireless network

    International Nuclear Information System (INIS)

    Cook, Jason L.; Ramirez-Marquez, Jose Emmanuel

    2007-01-01

    Reliability is one of the most important performance measures for emerging technologies. For these systems, shortcomings are often overlooked in early releases as the cutting edge technology overshadows a fragile design. Currently, the proliferation of the mobile ad hoc wireless networks (MAWN) is moving from cutting edge to commodity and thus, reliable performance will be expected. Generally, ad hoc networking is applied for the flexibility and mobility it provides. As a result, military and first responders employ this network scheme and the reliability of the network becomes paramount. To ensure reliability is achieved, one must first be able to analyze and calculate the reliability of the MAWN. This work describes the unique attributes of the MAWN and how the classical analysis of network reliability, where the network configuration is known a priori, can be adjusted to model and analyze this type of network. The methods developed acknowledge the dynamic and scalable nature of the MAWN along with its absence of infrastructure. Thus, the methods rely on a modeling approach that considers the probabilistic formation of different network configurations in a MAWN. Hence, this paper proposes reliability analysis methods that consider the effect of node mobility and the continuous changes in the network's connectivity

  18. An application of the fault tree analysis for the power system reliability estimation

    International Nuclear Information System (INIS)

    Volkanovski, A.; Cepin, M.; Mavko, B.

    2007-01-01

    The power system is a complex system with its main function to produce, transfer and provide consumers with electrical energy. Combinations of failures of components in the system can result in a failure of power delivery to certain load points and in some cases in a full blackout of power system. The power system reliability directly affects safe and reliable operation of nuclear power plants because the loss of offsite power is a significant contributor to the core damage frequency in probabilistic safety assessments of nuclear power plants. The method, which is based on the integration of the fault tree analysis with the analysis of the power flows in the power system, was developed and implemented for power system reliability assessment. The main contributors to the power system reliability are identified, both quantitatively and qualitatively. (author)

  19. Maintenance management of railway infrastructures based on reliability analysis

    International Nuclear Information System (INIS)

    Macchi, Marco; Garetti, Marco; Centrone, Domenico; Fumagalli, Luca; Piero Pavirani, Gian

    2012-01-01

    Railway infrastructure maintenance plays a crucial role for rail transport. It aims at guaranteeing safety of operations and availability of railway tracks and related equipment for traffic regulation. Moreover, it is one major cost for rail transport operations. Thus, the increased competition in traffic market is asking for maintenance improvement, aiming at the reduction of maintenance expenditures while keeping the safety of operations. This issue is addressed by the methodology presented in the paper. The first step of the methodology consists of a family-based approach for the equipment reliability analysis; its purpose is the identification of families of railway items which can be given the same reliability targets. The second step builds the reliability model of the railway system for identifying the most critical items, given a required service level for the transportation system. The two methods have been implemented and tested in practical case studies, in the context of Rete Ferroviaria Italiana, the Italian public limited company for railway transportation.

  20. Solid Rocket Booster Large Main and Drogue Parachute Reliability Analysis

    Science.gov (United States)

    Clifford, Courtenay B.; Hengel, John E.

    2009-01-01

    The parachutes on the Space Transportation System (STS) Solid Rocket Booster (SRB) are the means for decelerating the SRB and allowing it to impact the water at a nominal vertical velocity of 75 feet per second. Each SRB has one pilot, one drogue, and three main parachutes. About four minutes after SRB separation, the SRB nose cap is jettisoned, deploying the pilot parachute. The pilot chute then deploys the drogue parachute. The drogue chute provides initial deceleration and proper SRB orientation prior to frustum separation. At frustum separation, the drogue pulls the frustum from the SRB and allows the main parachutes that are mounted in the frustum to unpack and inflate. These chutes are retrieved, inspected, cleaned, repaired as needed, and returned to the flight inventory and reused. Over the course of the Shuttle Program, several improvements have been introduced to the SRB main parachutes. A major change was the replacement of the small (115 ft. diameter) main parachutes with the larger (136 ft. diameter) main parachutes. Other modifications were made to the main parachutes, main parachute support structure, and SRB frustum to eliminate failure mechanisms, improve damage tolerance, and improve deployment and inflation characteristics. This reliability analysis is limited to the examination of the SRB Large Main Parachute (LMP) and drogue parachute failure history to assess the reliability of these chutes. From the inventory analysis, 68 Large Main Parachutes were used in 651 deployments, and 7 chute failures occurred in the 651 deployments. Logistic regression was used to analyze the LMP failure history, and it showed that reliability growth has occurred over the period of use resulting in a current chute reliability of R = .9983. This result was then used to determine the reliability of the 3 LMPs on the SRB, when all must function. There are 29 drogue parachutes that were used in 244 deployments, and no in-flight failures have occurred. Since there are no

  1. A methodology for strain-based fatigue reliability analysis

    International Nuclear Information System (INIS)

    Zhao, Y.X.

    2000-01-01

    A significant scatter of the cyclic stress-strain (CSS) responses should be noted for a nuclear reactor material, 1Cr18Ni9Ti pipe-weld metal. Existence of the scatter implies that a random cyclic strain applied history will be introduced under any of the loading modes even a deterministic loading history. A non-conservative evaluation might be given in the practice without considering the scatter. A methodology for strain-based fatigue reliability analysis, which has taken into account the scatter, is developed. The responses are approximately modeled by probability-based CSS curves of Ramberg-Osgood relation. The strain-life data are modeled, similarly, by probability-based strain-life curves of Coffin-Manson law. The reliability assessment is constructed by considering interference of the random fatigue strain applied and capacity histories. Probability density functions of the applied and capacity histories are analytically given. The methodology could be conveniently extrapolated to the case of deterministic CSS relation as the existent methods did. Non-conservative evaluation of the deterministic CSS relation and availability of present methodology have been indicated by an analysis of the material test results

  2. Intra-observer reliability and agreement of manual and digital orthodontic model analysis.

    Science.gov (United States)

    Koretsi, Vasiliki; Tingelhoff, Linda; Proff, Peter; Kirschneck, Christian

    2018-01-23

    Digital orthodontic model analysis is gaining acceptance in orthodontics, but its reliability is dependent on the digitalisation hardware and software used. We thus investigated intra-observer reliability and agreement / conformity of a particular digital model analysis work-flow in relation to traditional manual plaster model analysis. Forty-eight plaster casts of the upper/lower dentition were collected. Virtual models were obtained with orthoX®scan (Dentaurum) and analysed with ivoris®analyze3D (Computer konkret). Manual model analyses were done with a dial caliper (0.1 mm). Common parameters were measured on each plaster cast and its virtual counterpart five times each by an experienced observer. We assessed intra-observer reliability within method (ICC), agreement/conformity between methods (Bland-Altman analyses and Lin's concordance correlation), and changing bias (regression analyses). Intra-observer reliability was substantial within each method (ICC ≥ 0.7), except for five manual outcomes (12.8 per cent). Bias between methods was statistically significant, but less than 0.5 mm for 87.2 per cent of the outcomes. In general, larger tooth sizes were measured digitally. Total difference maxilla and mandible had wide limits of agreement (-3.25/6.15 and -2.31/4.57 mm), but bias between methods was mostly smaller than intra-observer variation within each method with substantial conformity of manual and digital measurements in general. No changing bias was detected. Although both work-flows were reliable, the investigated digital work-flow proved to be more reliable and yielded on average larger tooth sizes. Averaged differences between methods were within 0.5 mm for directly measured outcomes but wide ranges are expected for some computed space parameters due to cumulative error. © The Author 2017. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com

  3. A fast approximation method for reliability analysis of cold-standby systems

    International Nuclear Information System (INIS)

    Wang, Chaonan; Xing, Liudong; Amari, Suprasad V.

    2012-01-01

    Analyzing reliability of large cold-standby systems has been a complicated and time-consuming task, especially for systems with components having non-exponential time-to-failure distributions. In this paper, an approximation model, which is based on the central limit theorem, is presented for the reliability analysis of binary cold-standby systems. The proposed model can estimate the reliability of large cold-standby systems with binary-state components having arbitrary time-to-failure distributions in an efficient and easy way. The accuracy and efficiency of the proposed method are illustrated using several different types of distributions for both 1-out-of-n and k-out-of-n cold-standby systems.

  4. Reliability data banks

    International Nuclear Information System (INIS)

    Cannon, A.G.; Bendell, A.

    1991-01-01

    Following an introductory chapter on Reliability, what is it, why it is needed, how it is achieved and measured, the principles of reliability data bases and analysis methodologies are the subject of the next two chapters. Achievements due to the development of data banks are mentioned for different industries in the next chapter, FACTS, a comprehensive information system for industrial safety and reliability data collection in process plants are covered next. CREDO, the Central Reliability Data Organization is described in the next chapter and is indexed separately, as is the chapter on DANTE, the fabrication reliability Data analysis system. Reliability data banks at Electricite de France and IAEA's experience in compiling a generic component reliability data base are also separately indexed. The European reliability data system, ERDS, and the development of a large data bank come next. The last three chapters look at 'Reliability data banks, - friend foe or a waste of time'? and future developments. (UK)

  5. A framework for intelligent reliability centered maintenance analysis

    International Nuclear Information System (INIS)

    Cheng Zhonghua; Jia Xisheng; Gao Ping; Wu Su; Wang Jianzhao

    2008-01-01

    To improve the efficiency of reliability-centered maintenance (RCM) analysis, case-based reasoning (CBR), as a kind of artificial intelligence (AI) technology, was successfully introduced into RCM analysis process, and a framework for intelligent RCM analysis (IRCMA) was studied. The idea for IRCMA is based on the fact that the historical records of RCM analysis on similar items can be referenced and used for the current RCM analysis of a new item. Because many common or similar items may exist in the analyzed equipment, the repeated tasks of RCM analysis can be considerably simplified or avoided by revising the similar cases in conducting RCM analysis. Based on the previous theory studies, an intelligent RCM analysis system (IRCMAS) prototype was developed. This research has focused on the description of the definition, basic principles as well as a framework of IRCMA, and discussion of critical techniques in the IRCMA. Finally, IRCMAS prototype is presented based on a case study

  6. Reliability analysis of digital safety systems at nuclear power plants

    International Nuclear Information System (INIS)

    Sopira Vladimir; Kovacs, Zoltan

    2015-01-01

    Reliability analysis of digital reactor protection systems built on the basis of TELEPERM XS is described, and experience gained by the Slovak RELKO company during the past 20 years in this domain is highlighted. (orig.)

  7. Reliability analysis of protection systems in NPP applying fault-tree analysis method

    International Nuclear Information System (INIS)

    Bokor, J.; Gaspar, P.; Hetthessy, J.; Szabo, G.

    1998-01-01

    This paper demonstrates the applicability and limits of dependability analysis in nuclear power plants (NPPS) based on the reactor protection refurbishment project (RRP) in NPP Paks. This paper illustrates case studies from the reliability analysis for NPP Paks. It also investigates the solutions for the connection between the data acquisition and subsystem control units (TSs) and the voter units (VTs), it analyzes the influence of the voting in the VT computer level, it studies the effects of the testing procedures to the dependability parameters. (author)

  8. Study on reliability analysis based on multilevel flow models and fault tree method

    International Nuclear Information System (INIS)

    Chen Qiang; Yang Ming

    2014-01-01

    Multilevel flow models (MFM) and fault tree method describe the system knowledge in different forms, so the two methods express an equivalent logic of the system reliability under the same boundary conditions and assumptions. Based on this and combined with the characteristics of MFM, a method mapping MFM to fault tree was put forward, thus providing a way to establish fault tree rapidly and realizing qualitative reliability analysis based on MFM. Taking the safety injection system of pressurized water reactor nuclear power plant as an example, its MFM was established and its reliability was analyzed qualitatively. The analysis result shows that the logic of mapping MFM to fault tree is correct. The MFM is easily understood, created and modified. Compared with the traditional fault tree analysis, the workload is greatly reduced and the modeling time is saved. (authors)

  9. A comparison between fault tree analysis and reliability graph with general gates

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Seong, Poong Hyun; Jung, Woo Sik

    2004-01-01

    Currently, level-1 probabilistic safety assessment (PSA) is performed on the basis of event tree analysis and fault tree analysis. Kim and Seong developed a new method for system reliability analysis named reliability graph with general gates (RGGG). The RGGG is an extension of conventional reliability graph, and it utilizes the transformation of system structures to equivalent Bayesian networks for quantitative calculation. The RGGG is considered to be intuitive and easy-to-use while as powerful as fault tree analysis. As an example, Kim and Seong already showed that the Bayesian network model for digital plant protection system (DPPS), which is transformed from the RGGG model for DPPS, can be shown in 1 page, while the fault tree model for DPPS consists of 64 pages of fault trees. Kim and Seong also insisted that Bayesian network model for DPPS is more intuitive because the one-to-one matching between each node in the Bayesian network model and an actual component of DPPS is possible. In this paper, we are going to give a comparison between fault tree analysis and the RGGG method with two example systems. The two example systems are the recirculation of in Korean standard nuclear power plants (KSNP) and the fault tree model developed by Rauzy

  10. Reliability analysis of containment isolation systems

    International Nuclear Information System (INIS)

    Pelto, P.J.; Counts, C.A.

    1984-06-01

    The Pacific Northwest Laboratory (PNL) is reviewing available information on containment systems design, operating experience, and related research as part of a project being conducted by the Division of Systems Integration, US Nuclear Regulatory Commission. The basic objective of this work is to collect and consolidate data relevant to assessing the functional performance of containment isolation systems and to use this data to the extent possible to characterize containment isolation system reliability for selected reference designs. This paper summarizes the results from initial efforts which focused on collection of data from available documents and briefly describes detailed review and analysis efforts which commenced recently. 5 references

  11. Reliability analysis of pipelines and pressure vessels at nuclear power plants

    International Nuclear Information System (INIS)

    Klemin, A.I.; Shiverskij, E.A.

    1979-01-01

    Reliability analysis of pipelines and pressure vessels at NPP is given. The main causes and failure mechanisms of these elements, the ways of reliability improvement and preventing of great damages are considered. The reliability estimation methods both according to the statistical operation data and under the conditions of absence of failure statistics are given. The main characteristics and actual reliability factors of pipelines and pressure vessels of three home NPP: the first in the world NPP, VK-50 and Beloyarsk NPP, are presented. From the start-up there were practically no failures of the pipelines and pressure vessels at the VK-50 pilot installation. The analysis of the operation experience of the first and second blocks of the Beloyarsk NPP, as well as the first in the world NPP, shows that the most part of failures of the pipelines and pressure vessels of these energy blocks with the channel reactors is connected with the coolant leakage at minority pipelines of a small diameter. The most part of failures at individual pipelines of the first and second blocks of the Beloyarsk NPP are connected with the leakages of stuffing boxes of switching off devices. It is noted that serious failures of large pipelines and pressure vessels at all home NPP under operation have not been observed

  12. Human reliability analysis of Lingao Nuclear Power Station

    International Nuclear Information System (INIS)

    Zhang Li; Huang Shudong; Yang Hong; He Aiwu; Huang Xiangrui; Zheng Tao; Su Shengbing; Xi Haiying

    2001-01-01

    The necessity of human reliability analysis (HRA) of Lingao Nuclear Power Station are analyzed, and the method and operation procedures of HRA is briefed. One of the human factors events (HFE) is analyzed in detail and some questions of HRA are discussed. The authors present the analytical results of 61 HFEs, and make a brief introduction of HRA contribution to Lingao Nuclear Power Station

  13. Spatial reliability analysis of a wind turbine blade cross section subjected to multi-axial extreme loading

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Bitsche, Robert; Blasques, José Pedro Albergaria Amaral

    2017-01-01

    This paper presents a methodology for structural reliability analysis of wind turbine blades. The study introduces several novel elements by taking into account loading direction using a multiaxial probabilistic load model, considering random material strength, spatial correlation between material...... properties, progressive material failure, and system reliability effects. An example analysis of reliability against material failure is demonstrated for a blade cross section. Based on the study we discuss the implications of using a system reliability approach, the effect of spatial correlation length......, type of material degradation algorithm, and reliability methods on the system failure probability, as well as the main factors that have an influence on the reliability. (C) 2017 Elsevier Ltd. All rights reserved....

  14. Reliability Information Analysis Center 1st Quarter 2007, Technical Area Task (TAT) Report

    Science.gov (United States)

    2007-02-05

    Library or [twField/Test 217Plus Ally w/ a.romtu DAAData Experience Data Need t( rdito Trqnd • s aa(Model) develol analisis Mappng & ANLED217Plu...of collected reliability data and have discovered that even with sparse data, analysis of the data shows clustering of reliability data by equipment...intended search target. Conceptually cluster discovered data to allow more detailed analysis by equipment type. For example, it may be useful to

  15. Diakoptical reliability analysis of transistorized systems

    International Nuclear Information System (INIS)

    Kontoleon, J.M.; Lynn, J.W.; Green, A.E.

    1975-01-01

    Limitations both on high-speed core availability and computation time required for assessing the reliability of large-sized and complex electronic systems, such as used for the protection of nuclear reactors, are very serious restrictions which continuously confront the reliability analyst. Diakoptic methods simplify the solution of the electrical-network problem by subdividing a given network into a number of independent subnetworks and then interconnecting the solutions of these smaller parts by a systematic process involving transformations based on connection-matrix elements associated with the interconnecting links. However, the interconnection process is very complicated and it may be used only if the original system has been cut in such a manner that a relation can be established between the constraints appearing at both sides of the cut. Also, in dealing with transistorized systems, one of the difficulties encountered is that of modelling adequately their performance under various operating conditions, since their parameters are strongly affected by the imposed voltage and current levels. In this paper a new interconnection approach is presented which may be of use in the reliability analysis of large-sized transistorized systems. This is based on the partial optimization of the subdivisions of the torn network as well as on the optimization of the torn paths. The solution of the subdivisions is based on the principles of algebraic topology, with an algebraic structure relating the physical variables in a topological structure which defines the interconnection of the discrete elements. Transistors, and other nonlinear devices, are modelled using their actual characteristics, under normal and abnormal operating conditions. Use of so-called k factors is made to facilitate accounting for use of electrical stresses. The approach is demonstrated by way of an example. (author)

  16. ANALYSIS OF AVAILABILITY AND RELIABILITY IN RHIC OPERATIONS

    International Nuclear Information System (INIS)

    PILAT, F.; INGRASSIA, P.; MICHNOFF, R.

    2006-01-01

    RHIC has been successfully operated for 5 years as a collider for different species, ranging from heavy ions including gold and copper, to polarized protons. We present a critical analysis of reliability data for RHIC that not only identifies the principal factors limiting availability but also evaluates critical choices at design times and assess their impact on present machine performance. RHIC availability data are typical when compared to similar high-energy colliders. The critical analysis of operations data is the basis for studies and plans to improve RHIC machine availability beyond the 50-60% typical of high-energy colliders

  17. Selected Problems of Sensitivity and Reliability of a Jack-Up Platform

    Directory of Open Access Journals (Sweden)

    Rozmarynowski Bogdan

    2018-03-01

    Full Text Available The paper deals with sensitivity and reliability applications to numerical studies of an off-shore platform model. Structural parameters and sea conditions are referred to the Baltic jack-up drilling platform. The sudy aims at the influence of particular basic variables on static and dynamic response as well as the probability of failure due to water waves and wind loads. The paper presents the sensitivity approach to a generalized eigenvalue problem and evaluation of the performace functions. The first order time-invariant problems of structural reliability analysis are under concern.

  18. Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents

    International Nuclear Information System (INIS)

    Martins, Marcelo Ramos; Maturana, Marcos Coelho

    2013-01-01

    During the last three decades, several techniques have been developed for the quantitative study of human reliability. In the 1980s, techniques were developed to model systems by means of binary trees, which did not allow for the representation of the context in which human actions occur. Thus, these techniques cannot model the representation of individuals, their interrelationships, and the dynamics of a system. These issues make the improvement of methods for Human Reliability Analysis (HRA) a pressing need. To eliminate or at least attenuate these limitations, some authors have proposed modeling systems using Bayesian Belief Networks (BBNs). The application of these tools is expected to address many of the deficiencies in current approaches to modeling human actions with binary trees. This paper presents a methodology based on BBN for analyzing human reliability and applies this method to the operation of an oil tanker, focusing on the risk of collision accidents. The obtained model was used to determine the most likely sequence of hazardous events and thus isolate critical activities in the operation of the ship to study Internal Factors (IFs), Skills, and Management and Organizational Factors (MOFs) that should receive more attention for risk reduction.

  19. Reliability analysis of neutron flux monitoring system for PFBR

    International Nuclear Information System (INIS)

    Rajesh, M.G.; Bhatnagar, P.V.; Das, D.; Pithawa, C.K.; Vinod, Gopika; Rao, V.V.S.S.

    2010-01-01

    The Neutron Flux Monitoring System (NFMS) measures reactor power, rate of change of power and reactivity changes in the core in all states of operation and shutdown. The system consists of instrument channels that are designed and built to have high reliability. All channels are required to have a Mean Time Between Failures (MTBF) of 150000 hours minimum. Failure Mode and Effects Analysis (FMEA) and failure rate estimation of NFMS channels has been carried out. FMEA is carried out in compliance with MIL-STD-338B. Reliability estimation of the channels is done according to MIL-HDBK-217FN2. Paper discusses the methodology followed for FMEA and failure rate estimation of two safety channels and results. (author)

  20. Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol

    International Nuclear Information System (INIS)

    Shadbahr, Jalil; Khan, Faisal; Zhang, Yan

    2017-01-01

    Highlights: • Deeper understanding of saccharification and fermentation process. • A new kinetic model for dynamic analysis of the simultaneous saccharification and fermentation. • Testing and validation of kinetic model. - Abstract: Kinetic modeling and dynamic analysis of the simultaneous saccharification and fermentation (SSF) of cellulose to ethanol was carried out in this study to determine the key reaction kinetics parameters and product inhibition features of the process. To obtain the more reliable kinetic parameters which can be applied for a wide range of operating conditions, batch SSF experiments were carried out at three enzyme loadings (10, 15 and 20 FPU/g cellulose) and two levels of initial concentrations of fermentable sugars (glucose and mannose). Results indicated that the maximum ethanol yield and concentration were achieved at high level of sugar concentrations with intermediate enzyme loading (15 FPU/g cellulose). Dynamic analysis of the acquired experimental results revealed that cellulase inhibition by cellobiose plays the most important role at high level of enzyme loading and low level of initial sugar concentrations. The inhibition of glucose becomes significant when high concentrations of sugars were present in the feedstock. Experimental results of SSF process also reveal that an efficient mixing between the phases helps to improve the ethanol yield significantly.

  1. Dynamic control of the lumbopelvic complex; lack of reliability of established test procedures

    DEFF Research Database (Denmark)

    Henriksen, Marius; Lund, Hans; Bliddal, Henning

    2007-01-01

    used in order to account for learning effects. Intraclass correlation coefficients were low for the sitting (0.54) and supported standing positions (0.36). In the standing position, a significant difference between test and retest was observed (P = 0.003) and further reliability analysis was therefore...

  2. Human Reliability Analysis: session summary

    International Nuclear Information System (INIS)

    Hall, R.E.

    1985-01-01

    The use of Human Reliability Analysis (HRA) to identify and resolve human factors issues has significantly increased over the past two years. Today, utilities, research institutions, consulting firms, and the regulatory agency have found a common application of HRA tools and Probabilistic Risk Assessment (PRA). The ''1985 IEEE Third Conference on Human Factors and Power Plants'' devoted three sessions to the discussion of these applications and a review of the insights so gained. This paper summarizes the three sessions and presents those common conclusions that were discussed during the meeting. The paper concludes that session participants supported the use of an adequately documented ''living PRA'' to address human factors issues in design and procedural changes, regulatory compliance, and training and that the techniques can produce cost effective qualitative results that are complementary to more classical human factors methods

  3. Development of the GO-FLOW reliability analysis methodology for nuclear reactor system

    International Nuclear Information System (INIS)

    Matsuoka, Takeshi; Kobayashi, Michiyuki

    1994-01-01

    Probabilistic Safety Assessment (PSA) is important in the safety analysis of technological systems and processes, such as, nuclear plants, chemical and petroleum facilities, aerospace systems. Event trees and fault trees are the basic analytical tools that have been most frequently used for PSAs. Several system analysis methods can be used in addition to, or in support of, the event- and fault-tree analysis. The need for more advanced methods of system reliability analysis has grown with the increased complexity of engineered systems. The Ship Research Institute has been developing a new reliability analysis methodology, GO-FLOW, which is a success-oriented system analysis technique, and is capable of evaluating a large system with complex operational sequences. The research has been supported by the special research fund for Nuclear Technology, Science and Technology Agency, from 1989 to 1994. This paper describes the concept of the Probabilistic Safety Assessment (PSA), an overview of various system analysis techniques, an overview of the GO-FLOW methodology, the GO-FLOW analysis support system, procedure of treating a phased mission problem, a function of common cause failure analysis, a function of uncertainty analysis, a function of common cause failure analysis with uncertainty, and printing out system of the results of GO-FLOW analysis in the form of figure or table. Above functions are explained by analyzing sample systems, such as PWR AFWS, BWR ECCS. In the appendices, the structure of the GO-FLOW analysis programs and the meaning of the main variables defined in the GO-FLOW programs are described. The GO-FLOW methodology is a valuable and useful tool for system reliability analysis, and has a wide range of applications. With the development of the total system of the GO-FLOW, this methodology has became a powerful tool in a living PSA. (author) 54 refs

  4. Analysis of the reliability of the active injection safety systems of Angra I

    International Nuclear Information System (INIS)

    Frutuoso e Melo, P.F.F.

    1981-01-01

    The reliability of the active emergency core cooling systems of Angra I nuclear power plant is evaluated. The fault tree analysis is employed. The unavailability of the above cited systems, is calculated. A parametric sensitivity analysis has been performed, due to the existing scattering in the failure and repair rate data of these system's components. The minimal cut sets were determined and, as a final step, a reliability importance analysis has been performed. This final step has required the development of a computer program. The methodology and data from the 'Reactor Safety Study' (Wash-1400) (in which the reliability of safety systems of a tipical PWR plant is calculated), is employed. The unavailability values for the safety systems analysed are too low, thus showing that in most cases the systems analysed are available to mitigate the effects of a loss-of-coolant accident. (Author) [pt

  5. Reliability of pulse waveform separation analysis: effects of posture and fasting.

    Science.gov (United States)

    Stoner, Lee; Credeur, Daniel; Fryer, Simon; Faulkner, James; Lambrick, Danielle; Gibbs, Bethany Barone

    2017-03-01

    Oscillometric pulse wave analysis devices enable, with relative simplicity and objectivity, the measurement of central hemodynamic parameters. The important parameters are central blood pressures and indices of arterial wave reflection, including wave separation analysis (backward pressure component Pb and reflection magnitude). This study sought to determine whether the measurement precision (between-day reliability) of Pb and reflection magnitude: exceeds the criterion for acceptable reliability; and is affected by posture (supine, seated) and fasting state. Twenty healthy adults (50% female, 27.9 years, 24.2 kg/m) were tested on six different mornings: 3 days fasted, 3 days nonfasted condition. On each occasion, participants were tested in supine and seated postures. Oscillometric pressure waveforms were recorded on the left upper arm. The criterion intra-class correlation coefficient value of 0.75 was exceeded for Pb (0.76) and reflection magnitude (0.77) when participants were assessed under the combined supine-fasted condition. The intra-class correlation coefficient was lowest for Pb in seated-nonfasted condition (0.57), and lowest for reflection magnitude in the seated-fasted condition (0.56). For Pb, the smallest detectible change that must be exceeded in order for a significant change to occur in an individual was 2.5 mmHg, and for reflection magnitude, the smallest detectable change was 8.5%. Assessments of Pb and reflection magnitude are as follows: exceed the criterion for acceptable reliability; and are most reliable when participants are fasted in a supine position. The demonstrated reliability suggests sufficient precision to detect clinically meaningful changes in reflection magnitude and Pb.

  6. Finite element reliability analysis of fatigue life

    International Nuclear Information System (INIS)

    Harkness, H.H.; Belytschko, T.; Liu, W.K.

    1992-01-01

    Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)

  7. Management systems for high reliability organizations. Integration and effectiveness; Managementsysteme fuer Hochzuverlaessigkeitsorganisationen. Integration und Wirksamkeit

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Michael

    2015-03-09

    The scope of the thesis is the development of a method for improvement of efficient integrated management systems for high reliability organizations (HRO). A comprehensive analysis of severe accident prevention is performed. Severe accident management, mitigation measures and business continuity management are not included. High reliability organizations are complex and potentially dynamic organization forms that can be inherently dangerous like nuclear power plants, offshore platforms, chemical facilities, large ships or large aircrafts. A recursive generic management system model (RGM) was development based on the following factors: systemic and cybernetic Asepcts; integration of different management fields, high decision quality, integration of efficient methods of safety and risk analysis, integration of human reliability aspects, effectiveness evaluation and improvement.

  8. Instrumented static and dynamic balance assessment after stroke using Wii Balance Boards: reliability and association with clinical tests.

    Science.gov (United States)

    Bower, Kelly J; McGinley, Jennifer L; Miller, Kimberly J; Clark, Ross A

    2014-01-01

    The Wii Balance Board (WBB) is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke. Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand) in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach) on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated. All WBB-based outcomes were found to be highly reliable between testing occasions (ICC  = 0.82 to 0.98). Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test. The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness.

  9. Systems-Dynamic Analysis for Neighborhood Study

    Science.gov (United States)

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  10. Reliability of corneal dynamic scheimpflug analyser measurements in virgin and post-PRK eyes.

    Science.gov (United States)

    Chen, Xiangjun; Stojanovic, Aleksandar; Hua, Yanjun; Eidet, Jon Roger; Hu, Di; Wang, Jingting; Utheim, Tor Paaske

    2014-01-01

    To determine the measurement reliability of CorVis ST, a dynamic Scheimpflug analyser, in virgin and post-photorefractive keratectomy (PRK) eyes and compare the results between these two groups. Forty virgin eyes and 42 post-PRK eyes underwent CorVis ST measurements performed by two technicians. Repeatability was evaluated by comparing three consecutive measurements by technician A. Reproducibility was determined by comparing the first measurement by technician A with one performed by technician B. Intraobserver and interobserver intraclass correlation coefficients (ICCs) were calculated. Univariate analysis of covariance (ANCOVA) was used to compare measured parameters between virgin and post-PRK eyes. The intraocular pressure (IOP), central corneal thickness (CCT) and 1st applanation time demonstrated good intraobserver repeatability and interobserver reproducibility (ICC ≧ 0.90) in virgin and post-PRK eyes. The deformation amplitude showed a good or close to good repeatability and reproducibility in both groups (ICC ≧ 0.88). The CCT correlated positively with 1st applanation time (r = 0.437 and 0.483, respectively, pPRK eyes, virgin eyes showed longer 1st applanation time (7.29 ± 0.21 vs. 6.96 ± 0.17 ms, pPRK eyes. There were differences in 1st applanation time and deformation amplitude between virgin and post-PRK eyes, which may reflect corneal biomechanical changes occurring after the surgery in the latter.

  11. IEEE guide for general principles of reliability analysis of nuclear power generating station protection systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Presented is the Institute of Electrical and Electronics Engineers, Inc. (IEEE) guide for general principles of reliability analysis of nuclear power generating station protection systems. The document has been prepared to provide the basic principles needed to conduct a reliability analysis of protection systems. Included is information on qualitative and quantitative analysis, guides for failure data acquisition and use, and guide for establishment of intervals

  12. Reliability analysis of microcomputer boards and computer based systems important to safety of nuclear plants

    International Nuclear Information System (INIS)

    Shrikhande, S.V.; Patil, V.K.; Ganesh, G.; Biswas, B.; Patil, R.K.

    2010-01-01

    Computer Based Systems (CBS) are employed in Indian nuclear plants for protection, control and monitoring purpose. For forthcoming CBS, Reactor Control Division has designed and developed a new standardized family of microcomputer boards qualified to stringent requirements of nuclear industry. These boards form the basic building blocks of CBS. Reliability analysis of these boards is being carried out using analysis package based on MIL-STD-217Plus methodology. The estimated failure rate values of these standardized microcomputer boards will be useful for reliability assessment of these systems. The paper presents reliability analysis of microcomputer boards and case study of a CBS system built using these boards. (author)

  13. Analysis of Statistical Distributions Used for Modeling Reliability and Failure Rate of Temperature Alarm Circuit

    International Nuclear Information System (INIS)

    EI-Shanshoury, G.I.

    2011-01-01

    Several statistical distributions are used to model various reliability and maintainability parameters. The applied distribution depends on the' nature of the data being analyzed. The presented paper deals with analysis of some statistical distributions used in reliability to reach the best fit of distribution analysis. The calculations rely on circuit quantity parameters obtained by using Relex 2009 computer program. The statistical analysis of ten different distributions indicated that Weibull distribution gives the best fit distribution for modeling the reliability of the data set of Temperature Alarm Circuit (TAC). However, the Exponential distribution is found to be the best fit distribution for modeling the failure rate

  14. Reliability engineering. Theory and practice. 6. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Birolini, Alessandro

    2010-07-01

    This book shows how to build in, evaluate, and demonstrate reliability and availability of components, equipment, systems. It presents the state-of-the-art of reliability engineering, both in theory and practice, and is based on the author's 30 years experience in this field, half in industry and half as Professor of Reliability Engineering at the ETH, Zurich. The structure of the book allows rapid access to practical results. Besides extensions to cost models and approximate expressions, new in this edition are investigations on common cause failures, phased-mission systems, availability demonstration and estimation, confidence limits at system level, trend tests for early failures or wearout, as well as a review of maintenance strategies, an introduction to Petri nets and dynamic FTA, and a set of problems for home-work. Methods and tools are given in a way that they can be tailored to cover different reliability requirement levels and be used for safety analysis as well. This book is a textbook establishing a link between theory and practice, with a large number of tables, figures, and examples to support the practical aspects. (orig.)

  15. Reliability analysis of operator's monitoring behavior in digital main control room of nuclear power plants and its application

    International Nuclear Information System (INIS)

    Zhang Li; Hu Hong; Li Pengcheng; Jiang Jianjun; Yi Cannan; Chen Qingqing

    2015-01-01

    In order to build a quantitative model to analyze operators' monitoring behavior reliability of digital main control room of nuclear power plants, based on the analysis of the design characteristics of digital main control room of a nuclear power plant and operator's monitoring behavior, and combining with operators' monitoring behavior process, monitoring behavior reliability was divided into three parts including information transfer reliability among screens, inside-screen information sampling reliability and information detection reliability. Quantitative calculation model of information transfer reliability among screens was established based on Senders's monitoring theory; the inside screen information sampling reliability model was established based on the allocation theory of attention resources; and considering the performance shaping factor causality, a fuzzy Bayesian method was presented to quantify information detection reliability and an example of application was given. The results show that the established model of monitoring behavior reliability gives an objective description for monitoring process, which can quantify the monitoring reliability and overcome the shortcomings of traditional methods. Therefore, it provides theoretical support for operator's monitoring behavior reliability analysis in digital main control room of nuclear power plants and improves the precision of human reliability analysis. (authors)

  16. A reliability study of the new sensors for movement analysis (SHARIF-HMIS).

    Science.gov (United States)

    Abedi, Mohen; Manshadi, Farideh Dehghan; Zavieh, Minoo Khalkhali; Ashouri, Sajad; Azimi, Hadi; Parnanpour, Mohamad

    2016-04-01

    SHARIF-HMIS is a new inertial sensor designed for movement analysis. The aim of the present study was to assess the inter-tester and intra-tester reliability of some kinematic parameters in different lumbar motions making use of this sensor. 24 healthy persons and 28 patients with low back pain participated in the current reliability study. The test was performed in five different lumbar motions consisting of lumbar flexion in 0, 15, and 30° in the right and left directions. For measuring inter-tester reliability, all the tests were carried out twice on the same day separately by two physiotherapists. Intra-tester reliability was assessed by reproducing the tests after 3 days by the same physiotherapist. The present study revealed satisfactory inter- and intra-tester reliability indices in different positions. ICCs for intra-tester reliability ranged from 0.65 to 0.98 and 0.59 to 0.81 for healthy and patient participants, respectively. Also, ICCs for inter-tester reliability ranged from 0.65 to 0.92 for the healthy and 0.65 to 0.87 for patient participants. In general, it can be inferred from the results that measuring the kinematic parameters in lumbar movements using inertial sensors enjoys acceptable reliability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Analysis of performance reliability of electrical and electronic equipment of car-tractor

    Directory of Open Access Journals (Sweden)

    Kravchenko О.Р.

    2016-08-01

    Full Text Available The analysis of the operational reliability of electrical and electronic equipment of vehicles, trucks Mercedes-Benz Actros 1844 LS and Volvo FH 1242, conducting international cargo transportation is performed. It is established that the equipment is reliable, which meets modern requirements, but where there is a violation of the resolution. The reason for repair work is constructive and operational factors. Distribution of efficiency and overall performance of operational reliability is retrieved. Items with more bounce are found. Common factors of violation of efficiency cars, trucks in operation, are largely different stages in warranty runs are obtained.

  18. A Comparison of Three Methods for the Analysis of Skin Flap Viability: Reliability and Validity.

    Science.gov (United States)

    Tim, Carla Roberta; Martignago, Cintia Cristina Santi; da Silva, Viviane Ribeiro; Dos Santos, Estefany Camila Bonfim; Vieira, Fabiana Nascimento; Parizotto, Nivaldo Antonio; Liebano, Richard Eloin

    2018-05-01

    Objective: Technological advances have provided new alternatives to the analysis of skin flap viability in animal models; however, the interrater validity and reliability of these techniques have yet to be analyzed. The present study aimed to evaluate the interrater validity and reliability of three different methods: weight of paper template (WPT), paper template area (PTA), and photographic analysis. Approach: Sixteen male Wistar rats had their cranially based dorsal skin flap elevated. On the seventh postoperative day, the viable tissue area and the necrotic area of the skin flap were recorded using the paper template method and photo image. The evaluation of the percentage of viable tissue was performed using three methods, simultaneously and independently by two raters. The analysis of interrater reliability and viability was performed using the intraclass correlation coefficient and Bland Altman Plot Analysis was used to visualize the presence or absence of systematic bias in the evaluations of data validity. Results: The results showed that interrater reliability for WPT, measurement of PTA, and photographic analysis were 0.995, 0.990, and 0.982, respectively. For data validity, a correlation >0.90 was observed for all comparisons made between the three methods. In addition, Bland Altman Plot Analysis showed agreement between the comparisons of the methods and the presence of systematic bias was not observed. Innovation: Digital methods are an excellent choice for assessing skin flap viability; moreover, they make data use and storage easier. Conclusion: Independently from the method used, the interrater reliability and validity proved to be excellent for the analysis of skin flaps' viability.

  19. Advancing Usability Evaluation through Human Reliability Analysis

    International Nuclear Information System (INIS)

    Ronald L. Boring; David I. Gertman

    2005-01-01

    This paper introduces a novel augmentation to the current heuristic usability evaluation methodology. The SPAR-H human reliability analysis method was developed for categorizing human performance in nuclear power plants. Despite the specialized use of SPAR-H for safety critical scenarios, the method also holds promise for use in commercial off-the-shelf software usability evaluations. The SPAR-H method shares task analysis underpinnings with human-computer interaction, and it can be easily adapted to incorporate usability heuristics as performance shaping factors. By assigning probabilistic modifiers to heuristics, it is possible to arrive at the usability error probability (UEP). This UEP is not a literal probability of error but nonetheless provides a quantitative basis to heuristic evaluation. When combined with a consequence matrix for usability errors, this method affords ready prioritization of usability issues

  20. Reliability analysis with linguistic data: An evidential network approach

    International Nuclear Information System (INIS)

    Zhang, Xiaoge; Mahadevan, Sankaran; Deng, Xinyang

    2017-01-01

    In practical applications of reliability assessment of a system in-service, information about the condition of a system and its components is often available in text form, e.g., inspection reports. Estimation of the system reliability from such text-based records becomes a challenging problem. In this paper, we propose a four-step framework to deal with this problem. In the first step, we construct an evidential network with the consideration of available knowledge and data. Secondly, we train a Naive Bayes text classification algorithm based on the past records. By using the trained Naive Bayes algorithm to classify the new records, we build interval basic probability assignments (BPA) for each new record available in text form. Thirdly, we combine the interval BPAs of multiple new records using an evidence combination approach based on evidence theory. Finally, we propagate the interval BPA through the evidential network constructed earlier to obtain the system reliability. Two numerical examples are used to demonstrate the efficiency of the proposed method. We illustrate the effectiveness of the proposed method by comparing with Monte Carlo Simulation (MCS) results. - Highlights: • We model reliability analysis with linguistic data using evidential network. • Two examples are used to demonstrate the efficiency of the proposed method. • We compare the results with Monte Carlo Simulation (MCS).

  1. Cost analysis of reliability investigations

    International Nuclear Information System (INIS)

    Schmidt, F.

    1981-01-01

    Taking Epsteins testing theory as a basis, premisses are formulated for the selection of cost-optimized reliability inspection plans. Using an example, the expected testing costs and inspection time periods of various inspection plan types, standardized on the basis of the exponential distribution, are compared. It can be shown that sequential reliability tests usually involve lower costs than failure or time-fixed tests. The most 'costly' test is to be expected with the inspection plan type NOt. (orig.) [de

  2. Technology development of maintenance optimization and reliability analysis for safety features in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woon; Choi, Seong Soo; Lee, Dong Gue; Kim, Young Il

    1999-12-01

    The reliability data management system (RDMS) for safety systems of PHWR type plants has been developed and utilized in the reliability analysis of the special safety systems of Wolsong Unit 1,2 with plant overhaul period lengthened. The RDMS is developed for the periodic efficient reliability analysis of the safety systems of Wolsong Unit 1,2. In addition, this system provides the function of analyzing the effects on safety system unavailability if the test period of a test procedure changes as well as the function of optimizing the test periods of safety-related test procedures. The RDMS can be utilized in handling the requests of the regulatory institute actively with regard to the reliability validation of safety systems. (author)

  3. An Introduction To Reliability

    International Nuclear Information System (INIS)

    Park, Kyoung Su

    1993-08-01

    This book introduces reliability with definition of reliability, requirement of reliability, system of life cycle and reliability, reliability and failure rate such as summary, reliability characteristic, chance failure, failure rate which changes over time, failure mode, replacement, reliability in engineering design, reliability test over assumption of failure rate, and drawing of reliability data, prediction of system reliability, conservation of system, failure such as summary and failure relay and analysis of system safety.

  4. Reliability and Probabilistic Risk Assessment - How They Play Together

    Science.gov (United States)

    Safie, Fayssal M.; Stutts, Richard G.; Zhaofeng, Huang

    2015-01-01

    PRA methodology is one of the probabilistic analysis methods that NASA brought from the nuclear industry to assess the risk of LOM, LOV and LOC for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability and statistical data to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: What can go wrong? How likely is it? What is the severity of the degradation? Since 1986, NASA, along with industry partners, has conducted a number of PRA studies to predict the overall launch vehicles risks. Planning Research Corporation conducted the first of these studies in 1988. In 1995, Science Applications International Corporation (SAIC) conducted a comprehensive PRA study. In July 1996, NASA conducted a two-year study (October 1996 - September 1998) to develop a model that provided the overall Space Shuttle risk and estimates of risk changes due to proposed Space Shuttle upgrades. After the Columbia accident, NASA conducted a PRA on the Shuttle External Tank (ET) foam. This study was the most focused and extensive risk assessment that NASA has conducted in recent years. It used a dynamic, physics-based, integrated system analysis approach to understand the integrated system risk due to ET foam loss in flight. Most recently, a PRA for Ares I launch vehicle has been performed in support of the Constellation program. Reliability, on the other hand, addresses the loss of functions. In a broader sense, reliability engineering is a discipline that involves the application of engineering principles to the design and processing of products, both hardware and software, for meeting product reliability requirements or goals. It is a very broad design-support discipline. It has important interfaces with many other engineering disciplines. Reliability as a figure of merit (i.e. the metric) is the probability that an item will

  5. Extending Failure Modes and Effects Analysis Approach for Reliability Analysis at the Software Architecture Design Level

    NARCIS (Netherlands)

    Sözer, Hasan; Tekinerdogan, B.; Aksit, Mehmet; de Lemos, Rogerio; Gacek, Cristina

    2007-01-01

    Several reliability engineering approaches have been proposed to identify and recover from failures. A well-known and mature approach is the Failure Mode and Effect Analysis (FMEA) method that is usually utilized together with Fault Tree Analysis (FTA) to analyze and diagnose the causes of failures.

  6. Parametric and semiparametric models with applications to reliability, survival analysis, and quality of life

    CERN Document Server

    Nikulin, M; Mesbah, M; Limnios, N

    2004-01-01

    Parametric and semiparametric models are tools with a wide range of applications to reliability, survival analysis, and quality of life. This self-contained volume examines these tools in survey articles written by experts currently working on the development and evaluation of models and methods. While a number of chapters deal with general theory, several explore more specific connections and recent results in "real-world" reliability theory, survival analysis, and related fields.

  7. Dynamics Analysis and Modeling of Rubber Belt in Large Mine Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Gao Yang

    2014-10-01

    Full Text Available Rubber belt not only is one of the key components of belt conveyor, but also affects the overall performance of the core part. Research on dynamics analysis of large conveyor not only helps to improve the reliability and design level, but also can guide the rational selection of conveyor safety factor, and effectively reduce the cost of the conveyor belt. Based on unique viscoelastic properties of belt conveyor, it was simplified as one-dimensional viscoelastic rod in this study, and then a discrete element model of conveyor systems was established. The kinetic equations of each discrete unit was derived using kinetic energy, potential energy of driving segment, bearing segment and return segment and equation of energy dissipation and Lagrange equation. Based on Wilson-q algorithm, the kinetic equation of DT1307-type ST2000's conveyor belt was solved by using Matlab to write computer programs. Research on the change rule of conveyor displacement, velocity, acceleration and dynamic tension during the boot process revealed the working mechanism of nonlinear viscoelastic, which lay the theoretical foundation for dynamic performance optimization of large belt conveyor. The calculation results were used to optimize design and analysis of conveyor system, the result showed that it could reduce the driven tension peaks about 12 %, save 5 % of overall manufacturing cost, which bring considerable profits for enterprises.

  8. Reliability Analysis of Safety Grade PLC(POSAFE-Q) for Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, J. Y.; Lyou, J.; Lee, D. Y.; Choi, J. G.; Park, W. M.

    2006-01-01

    The Part Count Method of the military standard MILHDK- 217F has been used for the reliability prediction of the nuclear field. This handbook determines the Programmable Logic Controller (PLC) failure rate by summing the failure rates of the individual component included in the PLC. Normally it is easily predictable that the components added for the fault detection improve the reliability of the PLC. But the application of this handbook is estimated with poor reliability because of the increased component number for the fault detection. To compensate this discrepancy, the quantitative reliability analysis method is suggested using the functional separation model in this paper. And it is applied to the Reactor Protection System (RPS) being developed in Korea to identify any design weak points from a safety point of view

  9. Design-related influencing factors of the computerized procedure system for inclusion into human reliability analysis of the advanced control room

    International Nuclear Information System (INIS)

    Kim, Jaewhan; Lee, Seung Jun; Jang, Seung Cheol; Ahn, Kwang-Il; Shin, Yeong Cheol

    2013-01-01

    This paper presents major design factors of the computerized procedure system (CPS) by task characteristics/requirements, with individual relative weight evaluated by the analytic hierarchy process (AHP) technique, for inclusion into human reliability analysis (HRA) of the advanced control rooms. Task characteristics/requirements of an individual procedural step are classified into four categories according to the dynamic characteristics of an emergency situation: (1) a single-static step, (2) a single-dynamic and single-checking step, (3) a single-dynamic and continuous-monitoring step, and (4) a multiple-dynamic and continuous-monitoring step. According to the importance ranking evaluation by the AHP technique, ‘clearness of the instruction for taking action’, ‘clearness of the instruction and its structure for rule interpretation’, and ‘adequate provision of requisite information’ were rated as of being higher importance for all the task classifications. Importance of ‘adequacy of the monitoring function’ and ‘adequacy of representation of the dynamic link or relationship between procedural steps’ is dependent upon task characteristics. The result of the present study gives a valuable insight on which design factors of the CPS should be incorporated, with relative importance or weight between design factors, into HRA of the advanced control rooms. (author)

  10. Structural reliability analysis under evidence theory using the active learning kriging model

    Science.gov (United States)

    Yang, Xufeng; Liu, Yongshou; Ma, Panke

    2017-11-01

    Structural reliability analysis under evidence theory is investigated. It is rigorously proved that a surrogate model providing only correct sign prediction of the performance function can meet the accuracy requirement of evidence-theory-based reliability analysis. Accordingly, a method based on the active learning kriging model which only correctly predicts the sign of the performance function is proposed. Interval Monte Carlo simulation and a modified optimization method based on Karush-Kuhn-Tucker conditions are introduced to make the method more efficient in estimating the bounds of failure probability based on the kriging model. Four examples are investigated to demonstrate the efficiency and accuracy of the proposed method.

  11. Human Reliability Analysis for Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  12. Structural system reliability calculation using a probabilistic fault tree analysis method

    Science.gov (United States)

    Torng, T. Y.; Wu, Y.-T.; Millwater, H. R.

    1992-01-01

    The development of a new probabilistic fault tree analysis (PFTA) method for calculating structural system reliability is summarized. The proposed PFTA procedure includes: developing a fault tree to represent the complex structural system, constructing an approximation function for each bottom event, determining a dominant sampling sequence for all bottom events, and calculating the system reliability using an adaptive importance sampling method. PFTA is suitable for complicated structural problems that require computer-intensive computer calculations. A computer program has been developed to implement the PFTA.

  13. Analyzing the reliability of shuffle-exchange networks using reliability block diagrams

    International Nuclear Information System (INIS)

    Bistouni, Fathollah; Jahanshahi, Mohsen

    2014-01-01

    Supercomputers and multi-processor systems are comprised of thousands of processors that need to communicate in an efficient way. One reasonable solution would be the utilization of multistage interconnection networks (MINs), where the challenge is to analyze the reliability of such networks. One of the methods to increase the reliability and fault-tolerance of the MINs is use of various switching stages. Therefore, recently, the reliability of one of the most common MINs namely shuffle-exchange network (SEN) has been evaluated through the investigation on the impact of increasing the number of switching stage. Also, it is concluded that the reliability of SEN with one additional stage (SEN+) is better than SEN or SEN with two additional stages (SEN+2), even so, the reliability of SEN is better compared to SEN with two additional stages (SEN+2). Here we re-evaluate the reliability of these networks where the results of the terminal, broadcast, and network reliability analysis demonstrate that SEN+ and SEN+2 continuously outperform SEN and are very alike in terms of reliability. - Highlights: • The impact of increasing the number of stages on reliability of MINs is investigated. • The RBD method as an accurate method is used for the reliability analysis of MINs. • Complex series–parallel RBDs are used to determine the reliability of the MINs. • All measures of the reliability (i.e. terminal, broadcast, and network reliability) are analyzed. • All reliability equations will be calculated for different size N×N

  14. Multinomial-exponential reliability function: a software reliability model

    International Nuclear Information System (INIS)

    Saiz de Bustamante, Amalio; Saiz de Bustamante, Barbara

    2003-01-01

    The multinomial-exponential reliability function (MERF) was developed during a detailed study of the software failure/correction processes. Later on MERF was approximated by a much simpler exponential reliability function (EARF), which keeps most of MERF mathematical properties, so the two functions together makes up a single reliability model. The reliability model MERF/EARF considers the software failure process as a non-homogeneous Poisson process (NHPP), and the repair (correction) process, a multinomial distribution. The model supposes that both processes are statistically independent. The paper discusses the model's theoretical basis, its mathematical properties and its application to software reliability. Nevertheless it is foreseen model applications to inspection and maintenance of physical systems. The paper includes a complete numerical example of the model application to a software reliability analysis

  15. Systems reliability analysis: applications of the SPARCS System-Reliability Assessment Computer Program

    International Nuclear Information System (INIS)

    Locks, M.O.

    1978-01-01

    SPARCS-2 (Simulation Program for Assessing the Reliabilities of Complex Systems, Version 2) is a PL/1 computer program for assessing (establishing interval estimates for) the reliability and the MTBF of a large and complex s-coherent system of any modular configuration. The system can consist of a complex logical assembly of independently failing attribute (binomial-Bernoulli) and time-to-failure (Poisson-exponential) components, without regard to their placement. Alternatively, it can be a configuration of independently failing modules, where each module has either or both attribute and time-to-failure components. SPARCS-2 also has an improved super modularity feature. Modules with minimal-cut unreliabiliy calculations can be mixed with those having minimal-path reliability calculations. All output has been standardized to system reliability or probability of success, regardless of the form in which the input data is presented, and whatever the configuration of modules or elements within modules

  16. Human reliability analysis in Loviisa probabilistic safety analysis

    International Nuclear Information System (INIS)

    Illman, L.; Isaksson, J.; Makkonen, L.; Vaurio, J.K.; Vuorio, U.

    1986-01-01

    The human reliability analysis in the Loviisa PSA project is carried out for three major groups of errors in human actions: (A) errors made before an initiating event, (B) errors that initiate a transient and (C) errors made during transients. Recovery possibilities are also included in each group. The methods used or planned for each group are described. A simplified THERP approach is used for group A, with emphasis on test and maintenance error recovery aspects and dependencies between redundancies. For group B, task analyses and human factors assessments are made for startup, shutdown and operational transients, with emphasis on potential common cause initiators. For group C, both misdiagnosis and slow decision making are analyzed, as well as errors made in carrying out necessary or backup actions. New or advanced features of the methodology are described

  17. Inter- and intra-observer reliability of masking in plantar pressure measurement analysis.

    Science.gov (United States)

    Deschamps, K; Birch, I; Mc Innes, J; Desloovere, K; Matricali, G A

    2009-10-01

    Plantar pressure measurement is an important tool in gait analysis. Manual placement of small masks (masking) is increasingly used to calculate plantar pressure characteristics. Little is known concerning the reliability of manual masking. The aim of this study was to determine the reliability of masking on 2D plantar pressure footprints, in a population with forefoot deformity (i.e. hallux valgus). Using a random repeated-measure design, four observers identified the third metatarsal head on a peak-pressure barefoot footprint, using a small mask. Subsequently, the location of all five metatarsal heads was identified, using the same size of masks and the same protocol. The 2D positional variation of the masks and the peak pressure (PP) and pressure time integral (PTI) values of each mask were calculated. For single-masking the lowest inter-observer reliability was found for the distal-proximal direction, causing a clear, adverse impact on the reliability of the pressure characteristics (PP and PTI). In the medial-lateral direction the inter-observer reliability could be scored as high. Intra-observer reliability was better and could be scored as high or good for both directions, with a correlated improved reliability of the pressure characteristics. Reliability of multi-masking showed a similar pattern, but overall values tended to be lower. Therefore, small sized masking in order to define pressure characteristics in the forefoot should be done with care.

  18. Features of an advanced human reliability analysis method, AGAPE-ET

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun [Korea Atomic Energy Research Institute, Taejeon (Korea, Republic of)

    2005-11-15

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided.

  19. Features of an advanced human reliability analysis method, AGAPE-ET

    International Nuclear Information System (INIS)

    Kim, Jae Whan; Jung, Won Dea; Park, Jin Kyun

    2005-01-01

    This paper presents the main features of an advanced human reliability analysis (HRA) method, AGAPE-ET. It has the capabilities to deal with the diagnosis failures and the errors of commission (EOC), which have not been normally treated in the conventional HRAs. For the analysis of the potential for diagnosis failures, an analysis framework, which is called the misdiagnosis tree analysis (MDTA), and a taxonomy of the misdiagnosis causes with appropriate quantification schemes are provided. For the identification of the EOC events from the misdiagnosis, some procedural guidance is given. An example of the application of the method is also provided

  20. Human Reliability Analysis For Computerized Procedures

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Gertman, David I.; Le Blanc, Katya

    2011-01-01

    This paper provides a characterization of human reliability analysis (HRA) issues for computerized procedures in nuclear power plant control rooms. It is beyond the scope of this paper to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper provides a review of HRA as applied to traditional paper-based procedures, followed by a discussion of what specific factors should additionally be considered in HRAs for computerized procedures. Performance shaping factors and failure modes unique to computerized procedures are highlighted. Since there is no definitive guide to HRA for paper-based procedures, this paper also serves to clarify the existing guidance on paper-based procedures before delving into the unique aspects of computerized procedures.

  1. Reliability analysis of steel-containment strength

    International Nuclear Information System (INIS)

    Greimann, L.G.; Fanous, F.; Wold-Tinsae, A.; Ketalaar, D.; Lin, T.; Bluhm, D.

    1982-06-01

    A best estimate and uncertainty assessment of the resistance of the St. Lucie, Cherokee, Perry, WPPSS and Browns Ferry containment vessels was performed. The Monte Carlo simulation technique and second moment approach were compared as a means of calculating the probability distribution of the containment resistance. A uniform static internal pressure was used and strain ductility was taken as the failure criterion. Approximate methods were developed and calibrated with finite element analysis. Both approximate and finite element analyses were performed on the axisymmetric containment structure. An uncertainty assessment of the containment strength was then performed by the second moment reliability method. Based upon the approximate methods, the cumulative distribution for the resistance of each of the five containments (shell modes only) is presented

  2. System Reliability Analysis Capability and Surrogate Model Application in RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, Dongli [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gleicher, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adbel-Khalik, Hany S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report collect the effort performed to improve the reliability analysis capabilities of the RAVEN code and explore new opportunity in the usage of surrogate model by extending the current RAVEN capabilities to multi physics surrogate models and construction of surrogate models for high dimensionality fields.

  3. Reliability assessment of complex electromechanical systems under epistemic uncertainty

    International Nuclear Information System (INIS)

    Mi, Jinhua; Li, Yan-Feng; Yang, Yuan-Jian; Peng, Weiwen; Huang, Hong-Zhong

    2016-01-01

    The appearance of macro-engineering and mega-project have led to the increasing complexity of modern electromechanical systems (EMSs). The complexity of the system structure and failure mechanism makes it more difficult for reliability assessment of these systems. Uncertainty, dynamic and nonlinearity characteristics always exist in engineering systems due to the complexity introduced by the changing environments, lack of data and random interference. This paper presents a comprehensive study on the reliability assessment of complex systems. In view of the dynamic characteristics within the system, it makes use of the advantages of the dynamic fault tree (DFT) for characterizing system behaviors. The lifetime of system units can be expressed as bounded closed intervals by incorporating field failures, test data and design expertize. Then the coefficient of variation (COV) method is employed to estimate the parameters of life distributions. An extended probability-box (P-Box) is proposed to convey the present of epistemic uncertainty induced by the incomplete information about the data. By mapping the DFT into an equivalent Bayesian network (BN), relevant reliability parameters and indexes have been calculated. Furthermore, the Monte Carlo (MC) simulation method is utilized to compute the DFT model with consideration of system replacement policy. The results show that this integrated approach is more flexible and effective for assessing the reliability of complex dynamic systems. - Highlights: • A comprehensive study on the reliability assessment of complex system is presented. • An extended probability-box is proposed to convey the present of epistemic uncertainty. • The dynamic fault tree model is built. • Bayesian network and Monte Carlo simulation methods are used. • The reliability assessment of a complex electromechanical system is performed.

  4. Reliability analysis of the automatic control of the A-1 power plant coolant temperature

    International Nuclear Information System (INIS)

    Kuklik, B.; Semerad, V.; Chylek, Z.

    Reliability analysis of the automatic control of the A-1 reactor coolant temperature is performed taking into account the effect of both the dependent failures and the routine maintenance of control system components. In a separate supplement, reliability analysis is reported of coincidence systems of the A-1 power plant reactor. Both safe and unsafe failures are taken into consideration as well as the effect of maintenance of the respective branch elements

  5. Inter comparison of REPAS and APSRA methodologies for passive system reliability analysis

    International Nuclear Information System (INIS)

    Solanki, R.B.; Krishnamurthy, P.R.; Singh, Suneet; Varde, P.V.; Verma, A.K.

    2014-01-01

    The increasing use of passive systems in the innovative nuclear reactors puts demand on the estimation of the reliability assessment of these passive systems. The passive systems operate on the driving forces such as natural circulation, gravity, internal stored energy etc. which are moderately weaker than that of active components. Hence, phenomenological failures (virtual components) are equally important as that of equipment failures (real components) in the evaluation of passive systems reliability. The contribution of the mechanical components to the passive system reliability can be evaluated in a classical way using the available component reliability database and well known methods. On the other hand, different methods are required to evaluate the reliability of processes like thermohydraulics due to lack of adequate failure data. The research is ongoing worldwide on the reliability assessment of the passive systems and their integration into PSA, however consensus is not reached. Two of the most widely used methods are Reliability Evaluation of Passive Systems (REPAS) and Assessment of Passive System Reliability (APSRA). Both these methods characterize the uncertainties involved in the design and process parameters governing the function of the passive system. However, these methods differ in the quantification of passive system reliability. Inter comparison among different available methods provides useful insights into the strength and weakness of different methods. This paper highlights the results of the thermal hydraulic analysis of a typical passive isolation condenser system carried out using RELAP mode 3.2 computer code applying REPAS and APSRA methodologies. The failure surface is established for the passive system under consideration and system reliability has also been evaluated using these methods. Challenges involved in passive system reliabilities are identified, which require further attention in order to overcome the shortcomings of these

  6. Role of frameworks, models, data, and judgment in human reliability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hannaman, G W

    1986-05-01

    Many advancements in the methods for treating human interactions in PRA studies have occurred in the last decade. These advancements appear to increase the capability of PRAs to extend beyond just the assessment of the human's importance to safety. However, variations in the application of these advanced models, data, and judgements in recent PRAs make quantitative comparisons among studies extremely difficult. This uncertainty in the analysis diminishes the usefulness of the PRA study for upgrading procedures, enhancing traning, simulator design, technical specification guidance, and for aid in designing the man-machine interface. Hence, there is a need for a framework to guide analysts in incorporating human interactions into the PRA systems analyses so that future users of a PRA study will have a clear understanding of the approaches, models, data, and assumptions which were employed in the initial study. This paper describes the role of the systematic human action reliability procedure (SHARP) in providing a road map through the complex terrain of human reliability that promises to improve the reproducibility of such analysis in the areas of selecting the models, data, representations, and assumptions. Also described is the role that a human cognitive reliability model can have in collecting data from simulators and helping analysts assign human reliability parameters in a PRA study. Use of these systematic approaches to perform or upgrade existing PRAs promises to make PRA studies more useful as risk management tools.

  7. Case study on the use of PSA methods: Human reliability analysis

    International Nuclear Information System (INIS)

    1991-04-01

    The overall objective of treating human reliability in a probabilistic safety analysis is to ensure that the key human interactions of typical crews are accurately and systematically incorporated into the study in a traceable manner. An additional objective is to make the human reliability analysis (HRA) as realistic as possible, taking into account the emergency procedures, the man-machine interface, the focus of training process, and the knowledge and experience of the crews. Section 3 of the paper describes an overview of this analytical process which leads to three more detailed example problems described in Section 4. Section 5 discusses a peer review process. References are presented that are useful in performing HRAs. In addition appendices are provided for definitions, selected data and a generic list of performance shaping factors. 35 refs, figs and tabs

  8. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  9. A Regulatory Perspective on the Performance and Reliability of Nuclear Passive Safety Systems

    International Nuclear Information System (INIS)

    Quan, Pham Trung; Lee, Sukho

    2016-01-01

    Passive safety systems have been proven to enhance the safety of NPPs. When an accident such as station blackout occurs, these systems can perform the following functions: the decay heat removal, passive safety injection, containment cooling, and the retention of radioactive materials. Following the IAEA definitions, using passive safety systems reduces reliance on active components to achieve proper actuation and not requiring operator intervention in accident conditions. That leads to the deviations in boundary conditions of the critical process or geometric parameters, which activate and operate the system to perform accident prevention and mitigation functions. The main difficulties in evaluation of functional failure of passive systems arise because of (a) lack of plant operational experience; (b) scarcity of adequate experimental data from integral test facilities or from separate effect tests in order to understand the performance characteristics of these passive systems, not only at normal operation but also during accidents and transients; (c) lack of accepted definitions of failure modes for these systems; and (d) difficulty in modeling certain physical behavior of these systems. Reliability assessment of the PSS is still one of the important issues. Several reliability methodologies such as REPAS, RMPS and ASPRA have been applied to the reliability assessments. However, some issues are remained unresolved due to lack of understanding of the treatment of dynamic failure characteristics of components of the PSS, the treatment of dynamic variation of independence process parameters such as ambient temperature and the functional failure criteria of the PSS. Dynamic reliability methodologies should be integrated in the PSS reliability analysis to have a true estimate of system failure probability. The methodology should estimate the physical variation of the parameters and the frequency of the accident sequences when the dynamic effects are considered

  10. ZERBERUS - the code for reliability analysis of crack containing structures

    International Nuclear Information System (INIS)

    Cizelj, L.; Riesch-Oppermann, H.

    1992-04-01

    Brief description of the First- and Second Order Reliability Methods, being the theoretical background of the code, is given. The code structure is described in detail, with special emphasis to the new application fields. The numerical example investigates failure probability of steam generator tubing affected by stress corrosion cracking. The changes necessary to accommodate this analysis within the ZERBERUS code are explained. Analysis results are compared to different Monte Carlo techniques. (orig./HP) [de

  11. Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE), Version 5.0: Integrated Reliability and Risk Analysis System (IRRAS) reference manual. Volume 2

    International Nuclear Information System (INIS)

    Russell, K.D.; Kvarfordt, K.J.; Skinner, N.L.; Wood, S.T.; Rasmuson, D.M.

    1994-07-01

    The Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE) refers to a set of several microcomputer programs that were developed to create and analyze probabilistic risk assessments (PRAs), primarily for nuclear power plants. The Integrated Reliability and Risk Analysis System (IRRAS) is a state-of-the-art, microcomputer-based probabilistic risk assessment (PRA) model development and analysis tool to address key nuclear plant safety issues. IRRAS is an integrated software tool that gives the use the ability to create and analyze fault trees and accident sequences using a microcomputer. This program provides functions that range from graphical fault tree construction to cut set generation and quantification to report generation. Version 1.0 of the IRRAS program was released in February of 1987. Since then, many user comments and enhancements have been incorporated into the program providing a much more powerful and user-friendly system. This version has been designated IRRAS 5.0 and is the subject of this Reference Manual. Version 5.0 of IRRAS provides the same capabilities as earlier versions and ads the ability to perform location transformations, seismic analysis, and provides enhancements to the user interface as well as improved algorithm performance. Additionally, version 5.0 contains new alphanumeric fault tree and event used for event tree rules, recovery rules, and end state partitioning

  12. Reliability and mechanical design

    International Nuclear Information System (INIS)

    Lemaire, Maurice

    1997-01-01

    A lot of results in mechanical design are obtained from a modelisation of physical reality and from a numerical solution which would lead to the evaluation of needs and resources. The goal of the reliability analysis is to evaluate the confidence which it is possible to grant to the chosen design through the calculation of a probability of failure linked to the retained scenario. Two types of analysis are proposed: the sensitivity analysis and the reliability analysis. Approximate methods are applicable to problems related to reliability, availability, maintainability and safety (RAMS)

  13. Dynamic Chest Image Analysis: Model-Based Perfusion Analysis in Dynamic Pulmonary Imaging

    Directory of Open Access Journals (Sweden)

    Kiuru Aaro

    2003-01-01

    Full Text Available The "Dynamic Chest Image Analysis" project aims to develop model-based computer analysis and visualization methods for showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis becomes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed tomography (CT and nuclear medicine (NM studies. This fluoroscopical examination takes only about 2 seconds for perfusion study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

  14. Instrumented static and dynamic balance assessment after stroke using Wii Balance Boards: reliability and association with clinical tests.

    Directory of Open Access Journals (Sweden)

    Kelly J Bower

    Full Text Available The Wii Balance Board (WBB is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke.Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated.All WBB-based outcomes were found to be highly reliable between testing occasions (ICC  = 0.82 to 0.98. Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test.The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness.

  15. Inter- and intra-examiner reliability of footprint pattern analysis obtained from diabetics using the Harris mat.

    Science.gov (United States)

    Cisneros, Lígia de Loiola; Fonseca, Tiago H S; Abreu, Vivianni C

    2010-01-01

    High plantar pressure is a proven risk factor for ulceration among individuals with diabetes mellitus. The Harris and Beath footprinting mat is one of the tools used in screening for foot ulceration risk among these subjects. There are no reports in the literature on the reliability of footprint analysis using print pattern criteria. The aim of this study was to evaluate the inter- and intra-examiner reliability of the analysis of footprint patterns obtained using the Harris and Beath footprinting mat. Footprints were taken from 41 subjects using the footprinting mat. The images were subjected to analysis by three independent examiners. To investigate the intra-examiner reliability, the analysis was repeated by one of the examiners one week later. The weighted kappa coefficient was excellent (K(w) > 0.80) for the inter- and intra-examiner analyses for most of the points studied on both feet. The criteria for analyzing footprint patterns obtained using the Harris and Beath footprinting mat presented good reliability and high to excellent inter- and intra-examiner agreement. This method is reliable for analyses involving one or more examiners. Article registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) under the number ACTRN12609000693224.

  16. Suitability review of FMEA and reliability analysis for digital plant protection system and digital engineered safety features actuation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I. S.; Kim, T. K.; Kim, M. C.; Kim, B. S.; Hwang, S. W.; Ryu, K. C. [Hanyang Univ., Seoul (Korea, Republic of)

    2000-11-15

    Of the many items that should be checked out during a review stage of the licensing application for the I and C system of Ulchin 5 and 6 units, this report relates to a suitability review of the reliability analysis of Digital Plant Protection System (DPPS) and Digital Engineered Safety Features Actuation System (DESFAS). In the reliability analysis performed by the system designer, ABB-CE, fault tree analysis was used as the main methods along with Failure Modes and Effect Analysis (FMEA). However, the present regulatory technique dose not allow the system reliability analysis and its results to be appropriately evaluated. Hence, this study was carried out focusing on the following four items ; development of general review items by which to check the validity of a reliability analysis, and the subsequent review of suitability of the reliability analysis for Ulchin 5 and 6 DPPS and DESFAS L development of detailed review items by which to check the validity of an FMEA, and the subsequent review of suitability of the FMEA for Ulchin 5 and 6 DPPS and DESFAS ; development of detailed review items by which to check the validity of a fault tree analysis, and the subsequent review of suitability of the fault tree for Ulchin 5 and 6 DPPS and DESFAS ; an integrated review of the safety and reliability of the Ulchin 5 and 6 DPPS and DESFAS based on the results of the various reviews above and also of a reliability comparison between the digital systems and the comparable analog systems, i.e., and analog Plant Protection System (PPS) and and analog Engineered Safety Features Actuation System (ESFAS). According to the review mentioned above, the reliability analysis of Ulchin 5 and 6 DPPS and DESFAS generally satisfies the review requirements. However, some shortcomings of the analysis were identified in our review such that the assumed test periods for several equipment were not properly incorporated in the analysis, and failures of some equipment were not included in the

  17. Reliability in perceptual analysis of voice quality.

    Science.gov (United States)

    Bele, Irene Velsvik

    2005-12-01

    This study focuses on speaking voice quality in male teachers (n = 35) and male actors (n = 36), who represent untrained and trained voice users, because we wanted to investigate normal and supranormal voices. In this study, both substantial and methodologic aspects were considered. It includes a method for perceptual voice evaluation, and a basic issue was rater reliability. A listening group of 10 listeners, 7 experienced speech-language therapists, and 3 speech-language therapist students evaluated the voices by 15 vocal characteristics using VA scales. Two sets of voice signals were investigated: text reading (2 loudness levels) and sustained vowel (3 levels). The results indicated a high interrater reliability for most perceptual characteristics. Connected speech was evaluated more reliably, especially at the normal level, but both types of voice signals were evaluated reliably, although the reliability for connected speech was somewhat higher than for vowels. Experienced listeners tended to be more consistent in their ratings than did the student raters. Some vocal characteristics achieved acceptable reliability even with a smaller panel of listeners. The perceptual characteristics grouped in 4 factors reflected perceptual dimensions.

  18. Task Decomposition in Human Reliability Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Laboratory; Joe, Jeffrey Clark [Idaho National Laboratory

    2014-06-01

    In the probabilistic safety assessments (PSAs) used in the nuclear industry, human failure events (HFEs) are determined as a subset of hardware failures, namely those hardware failures that could be triggered by human action or inaction. This approach is top-down, starting with hardware faults and deducing human contributions to those faults. Elsewhere, more traditionally human factors driven approaches would tend to look at opportunities for human errors first in a task analysis and then identify which of those errors is risk significant. The intersection of top-down and bottom-up approaches to defining HFEs has not been carefully studied. Ideally, both approaches should arrive at the same set of HFEs. This question remains central as human reliability analysis (HRA) methods are generalized to new domains like oil and gas. The HFEs used in nuclear PSAs tend to be top-down— defined as a subset of the PSA—whereas the HFEs used in petroleum quantitative risk assessments (QRAs) are more likely to be bottom-up—derived from a task analysis conducted by human factors experts. The marriage of these approaches is necessary in order to ensure that HRA methods developed for top-down HFEs are also sufficient for bottom-up applications.

  19. Modelling of nuclear power plant control and instrumentation elements for automatic disturbance and reliability analysis

    International Nuclear Information System (INIS)

    Hollo, E.

    1985-08-01

    Present Final Report summarizes results of R/D work done within IAEA-VEIKI (Institute for Electrical Power Research, Budapest, Hungary) Research Contract No. 3210 during 3 years' period of 01.08.1982 - 31.08.1985. Chapter 1 lists main research objectives of the project. Main results obtained are summarized in Chapters 2 and 3. Outcomes from development of failure modelling methodologies and their application for C/I components of WWER-440 units are as follows (Chapter 2): improvement of available ''failure mode and effect analysis'' methods and mini-fault tree structures usable for automatic disturbance (DAS) and reliability (RAS) analysis; general classification and determination of functional failure modes of WWER-440 NPP C/I components; set up of logic models for motor operated control valves and rod control/drive mechanism. Results of development of methods and their application for reliability modelling of NPP components and systems cover (Chapter 3): development of an algorithm (computer code COMPREL) for component-related failure and reliability parameter calculation; reliability analysis of PAKS II NPP diesel system; definition of functional requirements for reliability data bank (RDB) in WWER-440 units. Determination of RDB input/output data structure and data manipulation services. Methods used are a-priori failure mode and effect analysis, combined fault tree/event tree modelling technique, structural computer programming, probability theory application to nuclear field

  20. Reliability analysis of mining equipment: A case study of a crushing plant at Jajarm Bauxite Mine in Iran

    International Nuclear Information System (INIS)

    Barabady, Javad; Kumar, Uday

    2008-01-01

    The performance of mining machines depends on the reliability of the equipment used, the operating environment, the maintenance efficiency, the operation process, the technical expertise of the miners, etc. As the size and complexity of mining equipments continue to increase, the implications of equipment failure become ever more critical. Therefore, reliability analysis is required to identify the bottlenecks in the system and to find the components or subsystems with low reliability for a given designed performance. It is important to select a suitable method for data collection as well as for reliability analysis. This paper presents a case study describing reliability and availability analysis of the crushing plant number 3 at Jajarm Bauxite Mine in Iran. In this study, the crushing plant number 3 is divided into six subsystems. The parameters of some probability distributions, such as Weibull, Exponential, and Lognormal distributions have been estimated by using ReliaSoft's Weibull++6 software. The results of the analysis show that the conveyer subsystem and secondary screen subsystem are critical from a reliability point of view, and the secondary crusher subsystem and conveyer subsystem are critical from an availability point of view. The study also shows that the reliability analysis is very useful for deciding maintenance intervals

  1. RELIABILITY ANALYSIS OF POWER DISTRIBUTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Popescu V.S.

    2012-04-01

    Full Text Available Power distribution systems are basic parts of power systems and reliability of these systems at present is a key issue for power engineering development and requires special attention. Operation of distribution systems is accompanied by a number of factors that produce random data a large number of unplanned interruptions. Research has shown that the predominant factors that have a significant influence on the reliability of distribution systems are: weather conditions (39.7%, defects in equipment(25% and unknown random factors (20.1%. In the article is studied the influence of random behavior and are presented estimations of reliability of predominantly rural electrical distribution systems.

  2. Analysis of the Reliability of the "Alternator- Alternator Belt" System

    Directory of Open Access Journals (Sweden)

    Ivan Mavrin

    2012-10-01

    Full Text Available Before starting and also during the exploitation of va1ioussystems, it is vety imp011ant to know how the system and itsparts will behave during operation regarding breakdowns, i.e.failures. It is possible to predict the service behaviour of a systemby determining the functions of reliability, as well as frequencyand intensity of failures.The paper considers the theoretical basics of the functionsof reliability, frequency and intensity of failures for the twomain approaches. One includes 6 equal intetvals and the other13 unequal intetvals for the concrete case taken from practice.The reliability of the "alternator- alternator belt" system installedin the buses, has been analysed, according to the empiricaldata on failures.The empitical data on failures provide empirical functionsof reliability and frequency and intensity of failures, that arepresented in tables and graphically. The first analysis perfO!med by dividing the mean time between failures into 6 equaltime intervals has given the forms of empirical functions of fa ilurefrequency and intensity that approximately cotTespond totypical functions. By dividing the failure phase into 13 unequalintetvals with two failures in each interval, these functions indicateexplicit transitions from early failure inte1val into the randomfailure interval, i.e. into the ageing intetval. Functions thusobtained are more accurate and represent a better solution forthe given case.In order to estimate reliability of these systems with greateraccuracy, a greater number of failures needs to be analysed.

  3. Reliability analysis of reactor systems by applying probability method; Analiza pouzdanosti reaktorskih sistema primenom metoda verovatnoce

    Energy Technology Data Exchange (ETDEWEB)

    Milivojevic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1974-12-15

    Probability method was chosen for analysing the reactor system reliability is considered realistic since it is based on verified experimental data. In fact this is a statistical method. The probability method developed takes into account the probability distribution of permitted levels of relevant parameters and their particular influence on the reliability of the system as a whole. The proposed method is rather general, and was used for problem of thermal safety analysis of reactor system. This analysis enables to analyze basic properties of the system under different operation conditions, expressed in form of probability they show the reliability of the system on the whole as well as reliability of each component.

  4. Simulation and Non-Simulation Based Human Reliability Analysis Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Boring, Ronald Laurids [Idaho National Lab. (INL), Idaho Falls, ID (United States); Shirley, Rachel Elizabeth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey Clark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Part of the U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Characterization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk model. In this report, we review simulation-based and non-simulation-based human reliability assessment (HRA) methods. Chapter 2 surveys non-simulation-based HRA methods. Conventional HRA methods target static Probabilistic Risk Assessments for Level 1 events. These methods would require significant modification for use in dynamic simulation of Level 2 and Level 3 events. Chapter 3 is a review of human performance models. A variety of methods and models simulate dynamic human performance; however, most of these human performance models were developed outside the risk domain and have not been used for HRA. The exception is the ADS-IDAC model, which can be thought of as a virtual operator program. This model is resource-intensive but provides a detailed model of every operator action in a given scenario, along with models of numerous factors that can influence operator performance. Finally, Chapter 4 reviews the treatment of timing of operator actions in HRA methods. This chapter is an example of one of the critical gaps between existing HRA methods and the needs of dynamic HRA. This report summarizes the foundational information needed to develop a feasible approach to modeling human interactions in the RISMC simulations.

  5. Factorial validation and reliability analysis of the brain fag syndrome ...

    African Journals Online (AJOL)

    Results: Two valid factors emerged with items 1-3 and items 4, 5 & 7 loading on respectively, making the BFSS a twodimensional (multidimensional) scale which measures 2 aspects of brain fag [labeled burning sensation and crawling sensation respectively]. The reliability analysis yielded a Cronbach Alpha coefficient of ...

  6. The Achievement of Therapeutic Objectives Scale: Interrater Reliability and Sensitivity to Change in Short-Term Dynamic Psychotherapy and Cognitive Therapy

    Science.gov (United States)

    Valen, Jakob; Ryum, Truls; Svartberg, Martin; Stiles, Tore C.; McCullough, Leigh

    2011-01-01

    This study examined interrater reliability and sensitivity to change of the Achievement of Therapeutic Objectives Scale (ATOS; McCullough, Larsen, et al., 2003) in short-term dynamic psychotherapy (STDP) and cognitive therapy (CT). The ATOS is a process scale originally developed to assess patients' achievements of treatment objectives in STDP,…

  7. A comparative reliability analysis of free-piston Stirling machines

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    A free-piston Stirling power convertor is being developed for use in an advanced radioisotope power system to provide electric power for NASA deep space missions. These missions are typically long lived, lasting for up to 14 years. The Department of Energy (DOE) is responsible for providing the radioisotope power system for the NASA missions, and has managed the development of the free-piston power convertor for this application. The NASA Glenn Research Center has been involved in the development of Stirling power conversion technology for over 25 years and is currently providing support to DOE. Due to the nature of the potential missions, long life and high reliability are important features for the power system. Substantial resources have been spent on the development of long life Stirling cryocoolers for space applications. As a very general statement, free-piston Stirling power convertors have many features in common with free-piston Stirling cryocoolers, however there are also significant differences. For example, designs exist for both power convertors and cryocoolers that use the flexure bearing support system to provide noncontacting operation of the close-clearance moving parts. This technology and the operating experience derived from one application may be readily applied to the other application. This similarity does not pertain in the case of outgassing and contamination. In the cryocooler, the contaminants normally condense in the critical heat exchangers and foul the performance. In the Stirling power convertor just the opposite is true as contaminants condense on non-critical surfaces. A methodology was recently published that provides a relative comparison of reliability, and is applicable to systems. The methodology has been applied to compare the reliability of a Stirling cryocooler relative to that of a free-piston Stirling power convertor. The reliability analysis indicates that the power convertor should be able to have superior reliability

  8. A review of the reliability analysis of LPRS including the components repairs

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.

    1983-01-01

    The reliability analysis of low pressure recirculation system in its long-term recicurlation phase before 24hs is presented. The possibility of repairing the components out of the containment is included. A general revision of analysis of the short-term recirculation phase is done. (author) [pt

  9. Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Yixiong Feng

    2017-03-01

    Full Text Available The problem of large amounts of carbon emissions causes wide concern across the world, and it has become a serious threat to the sustainable development of the manufacturing industry. The intensive research into technologies and methodologies for green product design has significant theoretical meaning and practical value in reducing the emissions of the manufacturing industry. Therefore, a low carbon-oriented product reliability optimal design model is proposed in this paper: (1 The related expert evaluation information was prepared in interval numbers; (2 An improved product failure analysis considering the uncertain carbon emissions of the subsystem was performed to obtain the subsystem weight taking the carbon emissions into consideration. The interval grey correlation analysis was conducted to obtain the subsystem weight taking the uncertain correlations inside the product into consideration. Using the above two kinds of subsystem weights and different caution indicators of the decision maker, a series of product reliability design schemes is available; (3 The interval-valued intuitionistic fuzzy sets (IVIFSs were employed to select the optimal reliability and optimal design scheme based on three attributes, namely, low carbon, correlation and functions, and economic cost. The case study of a vertical CNC lathe proves the superiority and rationality of the proposed method.

  10. Advanced Reactor Passive System Reliability Demonstration Analysis for an External Event

    Directory of Open Access Journals (Sweden)

    Matthew Bucknor

    2017-03-01

    Full Text Available Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general for the postulated transient event.

  11. Advanced reactor passive system reliability demonstration analysis for an external event

    Energy Technology Data Exchange (ETDEWEB)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin [Argonne National Laboratory, Argonne (United States)

    2017-03-15

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event.

  12. Advanced reactor passive system reliability demonstration analysis for an external event

    International Nuclear Information System (INIS)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia J.; Grelle, Austin

    2017-01-01

    Many advanced reactor designs rely on passive systems to fulfill safety functions during accident sequences. These systems depend heavily on boundary conditions to induce a motive force, meaning the system can fail to operate as intended because of deviations in boundary conditions, rather than as the result of physical failures. Furthermore, passive systems may operate in intermediate or degraded modes. These factors make passive system operation difficult to characterize within a traditional probabilistic framework that only recognizes discrete operating modes and does not allow for the explicit consideration of time-dependent boundary conditions. Argonne National Laboratory has been examining various methodologies for assessing passive system reliability within a probabilistic risk assessment for a station blackout event at an advanced small modular reactor. This paper provides an overview of a passive system reliability demonstration analysis for an external event. Considering an earthquake with the possibility of site flooding, the analysis focuses on the behavior of the passive Reactor Cavity Cooling System following potential physical damage and system flooding. The assessment approach seeks to combine mechanistic and simulation-based methods to leverage the benefits of the simulation-based approach without the need to substantially deviate from conventional probabilistic risk assessment techniques. Although this study is presented as only an example analysis, the results appear to demonstrate a high level of reliability of the Reactor Cavity Cooling System (and the reactor system in general) for the postulated transient event

  13. Dynamical analysis of highly excited molecular spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kellman, M.E. [Univ. of Oregon, Eugene (United States)

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  14. Scenario development, qualitative causal analysis and system dynamics

    Directory of Open Access Journals (Sweden)

    Michael H. Ruge

    2009-02-01

    Full Text Available The aim of this article is to demonstrate that technology assessments can be supported by methods such as scenario modeling and qualitative causal analysis. At Siemens, these techniques are used to develop preliminary purely qualitative models. These or parts of these comprehensive models may be extended to system dynamics models. While it is currently not possible to automatically generate a system dynamics models (or vice versa, obtain a qualitative simulation model from a system dynamics model, the two thechniques scenario development and qualitative causal analysis provide valuable indications on how to proceed towards a system dynamics model. For the qualitative analysis phase, the Siemens – proprietary prototype Computer – Aided Technology Assessment Software (CATS supportes complete cycle and submodel analysis. Keywords: Health care, telecommucations, qualitative model, sensitivity analysis, system dynamics.

  15. Development of web-based reliability data analysis algorithm model and its application

    International Nuclear Information System (INIS)

    Hwang, Seok-Won; Oh, Ji-Yong; Moosung-Jae

    2010-01-01

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  16. Development of web-based reliability data analysis algorithm model and its application

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seok-Won, E-mail: swhwang@khnp.co.k [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Oh, Ji-Yong [Korea Hydro and Nuclear Power Co. Ltd., Jang-Dong 25-1, Yuseong-Gu, 305-343 Daejeon (Korea, Republic of); Moosung-Jae [Department of Nuclear Engineering Hanyang University 17 Haengdang, Sungdong, Seoul (Korea, Republic of)

    2010-02-15

    For this study, a database model of plant reliability was developed for the effective acquisition and management of plant-specific data that can be used in various applications of plant programs as well as in Probabilistic Safety Assessment (PSA). Through the development of a web-based reliability data analysis algorithm, this approach systematically gathers specific plant data such as component failure history, maintenance history, and shift diary. First, for the application of the developed algorithm, this study reestablished the raw data types, data deposition procedures and features of the Enterprise Resource Planning (ERP) system process. The component codes and system codes were standardized to make statistical analysis between different types of plants possible. This standardization contributes to the establishment of a flexible database model that allows the customization of reliability data for the various applications depending on component types and systems. In addition, this approach makes it possible for users to perform trend analyses and data comparisons for the significant plant components and systems. The validation of the algorithm is performed through a comparison of the importance measure value (Fussel-Vesely) of the mathematical calculation and that of the algorithm application. The development of a reliability database algorithm is one of the best approaches for providing systemic management of plant-specific reliability data with transparency and continuity. This proposed algorithm reinforces the relationships between raw data and application results so that it can provide a comprehensive database that offers everything from basic plant-related data to final customized data.

  17. The Impact Analysis of Psychological Reliability of Population Pilot Study For Selection of Particular Reliable Multi-Choice Item Test in Foreign Language Research Work

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Fazeli

    2010-10-01

    Full Text Available The purpose of research described in the current study is the psychological reliability, its’ importance, application, and more to investigate on the impact analysis of psychological reliability of population pilot study for selection of particular reliable multi-choice item test in foreign language research work. The population for subject recruitment was all under graduated students from second semester at large university in Iran (both male and female that study English as a compulsory paper. In Iran, English is taught as a foreign language.

  18. Session 6: Dynamic Modeling and Systems Analysis

    Science.gov (United States)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  19. Discrete dynamic event tree modeling and analysis of nuclear power plant crews for safety assessment

    International Nuclear Information System (INIS)

    Mercurio, D.

    2011-01-01

    Current Probabilistic Risk Assessment (PRA) and Human Reliability Analysis (HRA) methodologies model the evolution of accident sequences in Nuclear Power Plants (NPPs) mainly based on Logic Trees. The evolution of these sequences is a result of the interactions between the crew and plant; in current PRA methodologies, simplified models of these complex interactions are used. In this study, the Accident Dynamic Simulator (ADS), a modeling framework based on the Discrete Dynamic Event Tree (DDET), has been used for the simulation of crew-plant interactions during potential accident scenarios in NPPs. In addition, an operator/crew model has been developed to treat the response of the crew to the plant. The 'crew model' is made up of three operators whose behavior is guided by a set of rules-of-behavior (which represents the knowledge and training of the operators) coupled with written and mental procedures. In addition, an approach for addressing the crew timing variability in DDETs has been developed and implemented based on a set of HRA data from a simulator study. Finally, grouping techniques were developed and applied to the analysis of the scenarios generated by the crew-plant simulation. These techniques support the post-simulation analysis by grouping similar accident sequences, identifying the key contributing events, and quantifying the conditional probability of the groups. These techniques are used to characterize the context of the crew actions in order to obtain insights for HRA. The model has been applied for the analysis of a Small Loss Of Coolant Accident (SLOCA) event for a Pressurized Water Reactor (PWR). The simulation results support an improved characterization of the performance conditions or context of operator actions, which can be used in an HRA, in the analysis of the reliability of the actions. By providing information on the evolution of system indications, dynamic of cues, crew timing in performing procedure steps, situation

  20. Practical applications of age-dependent reliability models and analysis of operational data

    Energy Technology Data Exchange (ETDEWEB)

    Lannoy, A.; Nitoi, M.; Backstrom, O.; Burgazzi, L.; Couallier, V.; Nikulin, M.; Derode, A.; Rodionov, A.; Atwood, C.; Fradet, F.; Antonov, A.; Berezhnoy, A.; Choi, S.Y.; Starr, F.; Dawson, J.; Palmen, H.; Clerjaud, L

    2005-07-01

    The purpose of the workshop was to present the experience of practical application of time-dependent reliability models. The program of the workshop comprises the following sessions: -) aging management and aging PSA (Probabilistic Safety Assessment), -) modeling, -) operation experience, and -) accelerating aging tests. In order to introduce time aging effect of particular component to the PSA model, it has been proposed to use the constant unavailability values on the short period of time (one year for example) calculated on the basis of age-dependent reliability models. As for modeling, it appears that the problem of too detailed statistical models for application is the lack of data for required parameters. As for operating experience, several methods of operating experience analysis have been presented (algorithms for reliability data elaboration and statistical identification of aging trend). As for accelerated aging tests, it is demonstrated that a combination of operating experience analysis with the results of accelerated aging tests of naturally aged equipment could provide a good basis for continuous operation of instrumentation and control systems.