WorldWideScience

Sample records for dynamic probe selection

  1. Introducing Dynamic Combinatorial Chemistry: Probing the Substrate Selectivity of Acetylcholinesterase

    Science.gov (United States)

    Angelin, Marcus; Larsson, Rikard; Vongvilai, Pornrapee; Ramstrom, Olof

    2010-01-01

    In this laboratory experiment, college students are introduced to dynamic combinatorial chemistry (DCC) and apply it to determine the substrate selectivity of acetylcholinesterase (AChE). Initially, the students construct a chemical library of dynamically interchanging thioesters and thiols. Then, AChE is added and allowed to select and hydrolyze…

  2. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server appl......Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  3. Probing Ultrafast Electron Dynamics at Surfaces Using Soft X-Ray Transient Reflectivity Spectroscopy

    Science.gov (United States)

    Baker, L. Robert; Husek, Jakub; Biswas, Somnath; Cirri, Anthony

    The ability to probe electron dynamics with surface sensitivity on the ultrafast time scale is critical for understanding processes such as charge separation, injection, and surface trapping that mediate efficiency in catalytic and energy conversion materials. Toward this goal, we have developed a high harmonic generation (HHG) light source for femtosecond soft x-ray reflectivity. Using this light source we investigated the ultrafast carrier dynamics at the surface of single crystalline α-Fe2O3, polycrystalline α-Fe2O3, and the mixed metal oxide, CuFeO2. We have recently demonstrated that CuFeO2 in particular is a selective catalyst for photo-electrochemical CO2 reduction to acetate; however, the role of electronic structure and charge carrier dynamics in mediating catalytic selectivity has not been well understood. Soft x-ray reflectivity measurements probe the M2,3, edges of the 3d transition metals, which provide oxidation and spin state resolution with element specificity. In addition to chemical state specificity, these measurements are also surface sensitive, and by independently simulating the contributions of the real and imaginary components of the complex refractive index, we can differentiate between surface and sub-surface contributions to the excited state spectrum. Accordingly, this work demonstrates the ability to probe ultrafast carrier dynamics in catalytic materials with element and chemical state specificity and with surface sensitivity.

  4. A selectively rhodamine-based colorimetric probe for detecting copper(II) ion.

    Science.gov (United States)

    Zhang, Jiangang; Zhang, Li; Wei, Yanli; Chao, Jianbing; Shuang, Shaomin; Cai, Zongwei; Dong, Chuan

    2014-11-11

    A novel rhodamine derivative 3-bromo-5-methylsalicylaldehyde rhodamine B hydrazone (BMSRH) has been synthesized by reacting rhodamine B hydrazide with 3-bromo-5-methylsalicylaldehyde and developed as a new colorimetric probe for the selective and sensitive detection of Cu2+. Addition of Cu2+ to the solution of BMSRH results in a rapid color change from colorless to red together with an obvious new band appeared at 552 nm in the UV-vis absorption spectra. This change is attributed to the spirocycle form of BMSRH opened via coordination with Cu2+ in a 1:1 stoichiometry and their association constant is determined as 3.2×10(4) L mol(-1). Experimental results indicate that the BMSRH can provide a rapid, selective and sensitive response to Cu2+ with a linear dynamic range 0.667-240 μmol/L. Common interferent ions do not show any interference on the Cu2+ determination. It is anticipated that BMSRH can be a good candidate probe and has potential application for Cu2+ determination. The proposed probe exhibits the following advantages: a quick, simple and facile synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Probing reaction dynamics with GDR decay

    International Nuclear Information System (INIS)

    Beene, J.R.

    1994-01-01

    The giant dipole resonance (GDR) has been a prolific source of information on the physics of the nucleus. Mostly it has taught us about nuclear structure, but recently experiments have utilized the GDR as a probe of nuclear reaction dynamics. In this report two examples of such investigations are discussed involving very different reactions and probing time scales that differ by a factor of ∼10 3

  6. Probing ultrafast carrier tunneling dynamics in individual quantum dots and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Kai; Bechtold, Alexander; Kaldewey, Timo; Zecherle, Markus; Wildmann, Johannes S.; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J. [Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748, Garching (Germany); Ruppert, Claudia; Betz, Markus [Experimentelle Physik 2, TU Dortmund, 44221, Dortmund (Germany); Krenner, Hubert J. [Lehrstuhl fuer Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universitaet Augsburg, Universitaetsstr 1, 86159, Augsburg (Germany); Villas-Boas, Jose M. [Instituto de Fisica, Universidade Federal de Uberlandia, 38400-902, Uberlandia, MG (Brazil)

    2013-02-15

    Ultrafast pump-probe spectroscopy is employed to directly monitor the tunneling of charge carriers from single and vertically coupled quantum dots and probe intra-molecular dynamics. Immediately after resonant optical excitation, several peaks are observed in the pump-probe spectrum arising from Coulomb interactions between the photogenerated charge carriers. The influence of few-Fermion interactions in the photoexcited system and the temporal evolution of the optical response is directly probed in the time domain. In addition, the tunneling times for electrons and holes from the QD nanostructure are independently determined. In polarization resolved measurements, near perfect Pauli-spin blockade is observed in the spin-selective absorption spectrum as well as stimulated emission. While electron and hole tunneling from single quantum dots is shown to be well explained by the WKB formalism, for coupled quantum dots pronounced resonances in the electron tunneling rate are observed arising from elastic and inelastic electron tunneling between the different dots. (copyright 2012 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Ad-hoc and context-dependent adjustments of selective attention in conflict control: an ERP study with visual probes.

    Science.gov (United States)

    Nigbur, R; Schneider, J; Sommer, W; Dimigen, O; Stürmer, B

    2015-02-15

    Cognitive conflict control in flanker tasks has often been described using the zoom-lens metaphor of selective attention. However, whether and how selective attention - in terms of suppression and enhancement - operates in this context has remained unclear. To examine the dynamic interplay of selective attention and cognitive control we used electrophysiological measures and presented task-irrelevant visual probe stimuli at foveal, parafoveal, and peripheral display positions. Target-flanker congruency varied either randomly from trial to trial (mixed-block) or block-wise (fixed-block) in order to induce reactive versus proactive control modes, respectively. Three EEG measures were used to capture ad-hoc adjustments within trials as well as effects of context-based predictions: the N1 component of the visual evoked potential (VEP) to probes, the VEP to targets, and the conflict-related midfrontal N2 component. Results from probe-VEPs indicate that enhanced processing of the foveal target rather than suppression of the peripheral flankers supports interference control. In incongruent mixed-block trials VEPs were larger to probes near the targets. In the fixed-blocks probe-VEPs were not modulated, but contrary to the mixed-block the preceding target-related VEP was affected by congruency. Results of the control-related N2 reveal largest amplitudes in the unpredictable context, which did not differentiate for stimulus and response incongruency. In contrast, in the predictable context, N2 amplitudes were reduced overall and differentiated between stimulus and response incongruency. Taken together these results imply that predictability alters interference control by a reconfiguration of stimulus processing. During unpredictable sequences participants adjust their attentional focus dynamically on a trial-by-trial basis as reflected in congruency-dependent probe-VEP-modulation. This reactive control mode also elicits larger N2 amplitudes. In contrast, when task demands

  8. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  9. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  10. A sensitive fluorescent probe for the polar solvation dynamics at protein-surfactant interfaces.

    Science.gov (United States)

    Singh, Priya; Choudhury, Susobhan; Singha, Subhankar; Jun, Yongwoong; Chakraborty, Sandipan; Sengupta, Jhimli; Das, Ranjan; Ahn, Kyo-Han; Pal, Samir Kumar

    2017-05-17

    Relaxation dynamics at the surface of biologically important macromolecules is important taking into account their functionality in molecular recognition. Over the years it has been shown that the solvation dynamics of a fluorescent probe at biomolecular surfaces and interfaces account for the relaxation dynamics of polar residues and associated water molecules. However, the sensitivity of the dynamics depends largely on the localization and exposure of the probe. For noncovalent fluorescent probes, localization at the region of interest in addition to surface exposure is an added challenge compared to the covalently attached probes at the biological interfaces. Here we have used a synthesized donor-acceptor type dipolar fluorophore, 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN), for the investigation of the solvation dynamics of a model protein-surfactant interface. A significant structural rearrangement of a model histone protein (H1) upon interaction with anionic surfactant sodium dodecyl sulphate (SDS) as revealed from the circular dichroism (CD) studies is nicely corroborated in the solvation dynamics of the probe at the interface. The polarization gated fluorescence anisotropy of the probe compared to that at the SDS micellar surface clearly reveals the localization of the probe at the protein-surfactant interface. We have also compared the sensitivity of ACYMAN with other solvation probes including coumarin 500 (C500) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM). In comparison to ACYMAN, both C500 and DCM fail to probe the interfacial solvation dynamics of a model protein-surfactant interface. While C500 is found to be delocalized from the protein-surfactant interface, DCM becomes destabilized upon the formation of the interface (protein-surfactant complex). The timescales obtained from this novel probe have also been compared with other femtosecond resolved studies and molecular dynamics simulations.

  11. Positron emission tomography probe to monitor selected sugar metabolism in vivo

    Science.gov (United States)

    Witte, Owen; Clark, Peter M.; Castillo, Blanca Graciela Flores; Jung, Michael E.; Evdokimov, Nikolai M.

    2017-03-14

    The invention disclosed herein discloses selected ribose isomers that are useful as PET probes (e.g. [18F]-2-fluoro-2-deoxy-arabinose). These PET probes are useful, for example, in methods designed to monitor physiological processes including ribose metabolism and/or to selectively observe certain tissue/organs in vivo. The invention disclosed herein further provides methods for making and using such probes.

  12. Retarded Local Dynamics of Single Fluorescent Probes in Polymeric Glass due to Interaction Strengthening

    Science.gov (United States)

    Zhang, Hao; Yang, Jingfa; Zhao, Jiang

    The effect of strengthening of interaction between single fluorescent probes and polymer matrix to the probes dynamics is investigated using single molecule fluorescence defocus microscopy. By introducing multiple hydroxyl groups to the fluorescent probes, which builds up hydrogen bonds between the probe and polymer matrix, the dynamics is discovered to be retarded. This is evidenced by the lowering of the frequency of the vibrational modes in the power spectra of the rotation trajectories of individual fluorescent probes, and also by the lowering of population of rotating probes. The results show that by strengthening the probe-matrix interaction, the local dynamics detected by the probes is equivalent to that detected by a bigger probe, due to the enhanced friction between the probe and the polymer matrix. the National Basic Research Program of China (2012CB821500).

  13. Rotationally resolved flurorescence as a probe of molecular photoionization dynamics

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Kakar, S.; Choi, H.C.

    1993-01-01

    We present rotationally resolved data for N 2 (2σ u -1 ) photoionization in the excitation energy range 19 ≤ hν ≤ 35 eV. These are the first rotationally resolved measurements on the photoion over an extended spectral range above the ionization threshold. The requisite resolution is obtained by measuring rotationally resolved fluorescence from electronically excited photoions created by synchrotron radiation. This technique is useful for studying dynamical features embedded deep in the ionization continua and should supplement laser-based methods that are limited to probing near-threshold phenomena. The present study shows that the outgoing photoelectron can alter the rotational motion of the more massive photoion by exchanging angular momentum and this partitioning of angular momentum depends on the ionization dynamics. Thus, our data directly probe electron-molecule interactions and are sensitive probes of scattering dynamics. We are currently investigating dynamical features such as shape resonances and Cooper minima with rotational resolution for deciphering microscopic aspects of molecular scattering and these efforts will be discussed

  14. Hard photons a probe of the heavy ion collision dynamics

    International Nuclear Information System (INIS)

    Schutz, Y.

    1994-01-01

    Heavy-ion collisions have proven to be a unique tool to study the nucleus in extreme states, with values of energy, spin and isospin far away from those encountered in the nucleus in its ground state. Heavy-ion collisions provide also the only mean to form and study in the laboratory nuclear matter under conditions of density and temperature which could otherwise only be found in stellar objects like neutron stars and super-novae. the goal of such studies is to establish the equation of state of nuclear matter and the method consist in searching the collective behaviour in which heavy-ion collisions differ from a superposition of many nucleon-nucleon collisions. Among the various probes of collective effects, like flow, multifragmentation, or subthreshold particles, we have selected hard photons because they provide, together with dileptons, the only unperturbed probe of a phase of the collision well localized in space and time. The origin of hard photons, defined as the photons building up the spectrum beyond the energy of the giant dipole resonance (E γ > 30∼MeV), is attributed predominantly to the bremsstrahlung radiation emitted incoherently in individual neutron-proton collisions. Their energy reflects the combination of the beam momentum and the momenta induced by the Fermi motion of the nucleons within the collision zone. Therefore, at intermediate energies, hard photons probe the dynamical phase space distribution of participant nucleons and they convey information on the densities reached in heavy-ion collisions, the size and life time of the dense photon source and the compressibility of nuclear matter. The techniques we have developed include intensity interferometry and exclusive measurements scanning with high resolution the whole range of impact parameters. The interpretation of our data is guided by dynamical phase space calculations of the BUU type

  15. A Local Probe for Universal Non-equilibrium Dynamics

    Science.gov (United States)

    2015-06-01

    shown are polarizing beam splitters . About 700µW are superimposed with a reference laser on a glass plate and coupled into an optical fiber to detect...A Local Probe for Universal Non -equilibrium Dynamics We report on the results obtained across a nine-month ARO-sponsored project, whose purpose was...to implement a local probe for a gas of ultracold atoms. We used a phase plate with a spiral phase gradient to create a hollow-core laser beam . This

  16. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution

    NARCIS (Netherlands)

    Papagiannakis, E.; Vengris, M.; Larsen, D.S.; van Stokkum, I.H.M.; Hiller, R.G.; van Grondelle, R.

    2006-01-01

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited

  17. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    Science.gov (United States)

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  18. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera

    2015-11-01

    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  19. Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes.

    Science.gov (United States)

    Wang, Haitao; Tian, Tian; Zhang, Yong; Pan, Zhiqiang; Wang, Yong; Xiao, Zhongdang

    2008-08-19

    In this work, we reported an approach for the site-selective growth of nanoparticle onto the tip apex of an atomic force microscopy (AFM) probe. The silicon AFM probe was first coated with a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) through a chemical vapor deposition (CVD) method. Subsequently, COOH groups were selectively generated at the tip apex of silicon AFM probes by applying an appropriate bias voltage between the tip and a flat gold electrode. The transformation of methyl to carboxylic groups at the tip apex of the AFM probe was investigated through measuring the capillary force before and after electrochemical oxidation. To prepare the nanoparticle terminated AFM probe, the oxidized AFM probe was then immersed in an aqueous solution containing positive metal ions, for example, Ag+, to bind positive metal ions to the oxidized area (COOH terminated area), followed by chemical reduction with aqueous NaBH 4 and further development (if desired) to give a metal nanoparticle-modified AFM probe. The formation of a metal nanoparticle at the tip apex of the AFM probe was confirmed by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA).

  20. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin

    Science.gov (United States)

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-08-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to manipulate water content. Hydration properties are probed using the water-sensitive fluorescence from Hb bound pyranine and covalently attached Badan. Protein dynamics are probed through ligand recombination traces derived from photodissociated carbonmonoxy hemoglobin on a log scale that exposes the potential role of both α and β solvent fluctuations in modulating protein dynamics. The results open the possibility of probing hydration level phenomena in this system using a combination of NMR and optical probes.

  1. X-ray Pump–Probe Investigation of Charge and Dissociation Dynamics in Methyl Iodine Molecule

    Directory of Open Access Journals (Sweden)

    Li Fang

    2017-05-01

    Full Text Available Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. We present our investigation of photoionization and nuclear dynamics in methyl iodine (CH3I molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up to 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.

  2. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  3. Imaging dynamic redox processes with genetically encoded probes.

    Science.gov (United States)

    Ezeriņa, Daria; Morgan, Bruce; Dick, Tobias P

    2014-08-01

    Redox signalling plays an important role in many aspects of physiology, including that of the cardiovascular system. Perturbed redox regulation has been associated with numerous pathological conditions; nevertheless, the causal relationships between redox changes and pathology often remain unclear. Redox signalling involves the production of specific redox species at specific times in specific locations. However, until recently, the study of these processes has been impeded by a lack of appropriate tools and methodologies that afford the necessary redox species specificity and spatiotemporal resolution. Recently developed genetically encoded fluorescent redox probes now allow dynamic real-time measurements, of defined redox species, with subcellular compartment resolution, in intact living cells. Here we discuss the available genetically encoded redox probes in terms of their sensitivity and specificity and highlight where uncertainties or controversies currently exist. Furthermore, we outline major goals for future probe development and describe how progress in imaging methodologies will improve our ability to employ genetically encoded redox probes in a wide range of situations. This article is part of a special issue entitled "Redox Signalling in the Cardiovascular System." Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  5. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    International Nuclear Information System (INIS)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-01-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials. (paper)

  6. Dynamic characterization of small fibers based on the flexural vibrations of a piezoelectric cantilever probe

    Science.gov (United States)

    Zhang, Xiaofei; Ye, Xuan; Li, Xide

    2016-08-01

    In this paper, we present a cantilever-probe system excited by a piezoelectric actuator, and use it to measure the dynamic mechanical properties of a micro- and nanoscale fiber. Coupling the fiber to the free end of the cantilever probe, we found the dynamic stiffness and damping coefficient of the fiber from the resonance frequency and the quality factor of the fiber-cantilever-probe system. The properties of Bacillus subtilis fibers measured using our proposed system agreed with tensile measurements, validating our method. Our measurements show that the piezoelectric actuator coupled to cantilever probe can be made equivalent to a clamped cantilever with an effective length, and calculated results show that the errors of measured natural frequency of the system can be ignored if the coupled fiber has an inclination angle of alignment of less than 10°. A sensitivity analysis indicates that the first or second resonant mode is the sensitive mode to test the sample’s dynamic stiffness, while the damping property has different sensitivities for the first four modes. Our theoretical analysis demonstrates that the double-cantilever probe is also an effective sensitive structure that can be used to perform dynamic loading and characterize dynamic response. Our method has the advantage of using amplitude-frequency curves to obtain the dynamic mechanical properties without directly measuring displacements and forces as in tensile tests, and it also avoids the effects of the complex surface structure and deformation presenting in contact resonance method. Our method is effective for measuring the dynamic mechanical properties of fiber-like one-dimensional (1D) materials.

  7. Colloidal probe dynamics in gelatin solution during the sol-gel transition.

    Science.gov (United States)

    Hong, Wei; Xu, Guozhi; Ou, Xiaogang; Sun, Weixiang; Wang, Tao; Tong, Zhen

    2018-05-16

    The dynamics of the colloidal probes in a gelatin solution during the time-dependent sol-gel transition was investigated by multi-particle tracking. The relationship between the relaxation of the medium at the critical gel point and the mean square displacement of the probes was elucidated. Based on this understanding, the critical gel point of gelatin and the corresponding critical exponent n were unambiguously determined by the loss angle criterion and the time-cure superposition. The shift factors of the latter are further used to estimate the time/length-scale evolution of the gelatin during the sol-gel transition. The growth of the medium length scale crossed with the two measuring length scales successively at the pre-gel regime. Coinciding with the length-scale crossovers, the probability density function (PDF) of the probe displacements displayed two transient peaks of non-Gaussianity. In the post-gel regime, the third peak of Gaussianity suggested inhomogeneity in the gel network. The non-Gaussianity results from the bifurcation of diffusivity. The present work showed that the non-Gaussian dynamics of the probes are not the direct equivalence of that of the medium, but an effect of length-scale coupling.

  8. Probing Cellular Dynamics with Mesoscopic Simulations

    DEFF Research Database (Denmark)

    Shillcock, Julian C.

    2010-01-01

    Cellular processes span a huge range of length and time scales from the molecular to the near-macroscopic. Understanding how effects on one scale influence, and are themselves influenced by, those on lower and higher scales is a critical issue for the construction of models in Systems Biology....... Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...

  9. Continuous waves probing in dynamic acoustoelastic testing

    Science.gov (United States)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  10. Muon spin rotation and other microscopic probes of spin-glass dynamics

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.

    1980-01-01

    A number of different microscopic probe techniques have been employed to investigate the onset of the spin-glass state in dilute magnetic alloys. Among these are Moessbauer-effect spectroscopy, neutron scattering, ESR of the impurity spins, host NMR and, most recently, muon spin rotation and depolarization. Spin probes yield information on the microscopic static and dynamic behavior of the impurity spins, and give insight into both the spin freezing process and the nature of low-lying excitations in the ordered state. Microscopic probe experiments in spin glasses are surveyed, and the unique advantages of muon studies are emphasized

  11. Probing electron correlation and nuclear dynamics in Momentum Space

    International Nuclear Information System (INIS)

    Deleuze, M S; Hajgato, B; Morini, F; Knippenberg, S

    2010-01-01

    Orbital imaging experiments employing Electron Momentum Spectroscopy are subject to many complications, such as distorted wave effects, conformational mobility in the electronic ground state, ultra-fast nuclear dynamics in the final state, or a dispersion of the ionization intensity over electronically excited (shake-up) configurations of the cation. The purpose of the present contribution is to illustrate how a proper treatment of these complications enables us to probe in momentum space the consequences of electron correlation and nuclear dynamics in neutral and cationic states.

  12. Hydrazine selective dual signaling chemodosimetric probe in physiological conditions and its application in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Sandip; Sahana, Animesh; Mandal, Sandip [Department of Chemistry, The University of Burdwan, Burdwan, 713104 West Bengal (India); Sengupta, Archya; Chatterjee, Ansuman [Department of Zoology, Visva Bharati University, Santiniketan, West Bengal (India); Safin, Damir A., E-mail: damir.a.safin@gmail.com [Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Babashkina, Maria G.; Tumanov, Nikolay A.; Filinchuk, Yaroslav [Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Das, Debasis, E-mail: ddas100in@yahoo.com [Department of Chemistry, The University of Burdwan, Burdwan, 713104 West Bengal (India)

    2015-09-17

    A rhodamine–cyanobenzene conjugate, (E)-4-((2-(3′,6′-bis(diethylamino)-3-oxospiro[isoindoline-1,9′-xanthene] -2-yl)ethylimino)methyl)benzonitrile (1), which structure has been elucidated by single crystal X-ray diffraction, was synthesized for selective fluorescent “turn-on” and colorimetric recognition of hydrazine at physiological pH 7.4. It was established that 1 detects hydrazine up to 58 nM. The probe is useful for the detection of intracellular hydrazine in the human breast cancer cells MCF-7 using a fluorescence microscope. Spirolactam ring opening of 1, followed by its hydrolysis, was established as a probable mechanism for the selective sensing of hydrazine. - Highlights: • A selective rhodamine–cyanobenzene conjugate is synthesized. • The conjugate is a selective dual signaling chemodosimetric probe towards hydrazine. • Spirolactam ring opening of the probe, followed by its hydrolysis, is the sensing mechanism. • The probe detects hydrazine in the human breast cancer cells MCF-7 imaging.

  13. Real-Time Probing of Structural Dynamics by Interaction between Chromophores

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan

    2011-01-01

    We present an investigation of structural dynamics in excited-state cations probed in real-time by femtosecond timeresolved ion photofragmentation spectroscopy. From photoelectron spectroscopy data on 1,3-dibromopropane we conclude that the pump pulse ionizes the molecule, populating an excited...

  14. Probing Dynamics in Colloidal Crystals with Pump-Probe Experiments at LCLS: Methodology and Analysis

    Directory of Open Access Journals (Sweden)

    Nastasia Mukharamova

    2017-05-01

    Full Text Available We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL. Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. This allowed us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.

  15. Dynamics of Exciton Relaxation in LH2 Antenna Probed by Multipulse Nonlinear Spectroscopy

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Cohen Stuart, T.A.; van Grondelle, R.

    2011-01-01

    We explain the relaxation dynamics in the LH2-B850 antenna as revealed by multipulse pump - dump - probe spectroscopy (Th. A. Cohen StuartM. VengrisV. I. NovoderezhkinR. J. CogdellC. N. HunterR. van Grondelle, submitted). The theory of pump - dump - probe response is evaluated using the doorway -

  16. Highly selective and rapidly responsive fluorescent probe for hydrogen sulfide detection in wine.

    Science.gov (United States)

    Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Liu, Yongguo; Sun, Baoguo

    2018-08-15

    A new fluorescent probe 6-(2, 4-dinitrophenoxy)-2-naphthonitrile (probe 1) was designed and synthesized for the selective detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence turn-on alongside a visual color change from colorless to light yellow. Importantly, this distinct color response indicated that probe 1 could be used as a visual sensor for H 2 S. Moreover, probe 1 was successfully used as a signal tool to determine the H 2 S levels in beer and red wine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  18. Molecularly imprinted fluorescent probe based on FRET for selective and sensitive detection of doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhifeng, E-mail: 897061147@qq.com [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Deng, Peihong; Li, Junhua [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China); Xu, Li [Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Tang, Siping [College of Chemistry and Materials Science, Hengyang Normal University, Key Laboratory of Functional Organometallic Materials of Hunan Province University, Hengyang 421008 (China)

    2017-04-15

    Highlights: • FRET-based molecularly imprinted probe for detection of doxorubicin was prepared. • The detection limit of the probe was 13.8 nM for doxorubicin. • The FRET-based probe had a higher selectivity for the template than ordinary MIMs. - Abstract: In this work, a new type of fluorescent probe for detection of doxorubicin has been constructed by the combined use of fluorescence resonance energy transfer (FRET) technology and molecular imprinting technique (MIT). Using doxorubicin as the template, the molecularly imprinted polymer thin layer was fabricated on the surfaces of carbon dot (CD) modified silica by sol-gel polymerization. The excitation energy of the fluorescent donor (CDs) could be transferred to the fluorescent acceptor (doxorubicin). The FRET based fluorescent probe demonstrated high sensitivity and selectivity for doxorubicin. The detection limit was 13.8 nM. The fluorescent probe was successfully applied for detecting doxorubicin in doxorubicin-spiked plasmas with a recovery of 96.8–103.8%, a relative standard deviation (RSD) of 1.3–2.8%. The strategy for construction of FRET-based molecularly imprinted materials developed in this work is very promising for analytical applications.

  19. Pump–probe microscopy: Visualization and spectroscopy of ultrafast dynamics at the nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Grumstrup, Erik M., E-mail: erik.grumstrup@montana.edu [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59718 (United States); Gabriel, Michelle M.; Cating, Emma E.M.; Van Goethem, Erika M. [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Papanikolas, John M., E-mail: john_papanikolas@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2015-09-08

    Highlights: • Diffraction limited pump–probe microscopy methods are described. • Spatial variation in dynamical phenomena across single structures. • Direct observation of carrier motion in individual nanostructures. - Abstract: Excited state dynamics at the nanoscale provide important insight into the influence of structural features such as interfaces, defects, and surfaces on material properties. Pump–probe microscopy combines the spatial resolution of far-field optical microscopy with the temporal resolution of ultrafast spectroscopy, and has emerged as a powerful technique for characterizing spatial variation in dynamical phenomena across nanometer length scales. It has helped correlate dynamical phenomena with specific structural features in a variety of materials, shedding light on how excited state behaviors can dramatically differ from one member of the ensemble to the next, and even at different points within a single structure. It has also enabled direct imaging of transport phenomena such as free carrier diffusion, exciton migration and plasmon propagation in nanostructures. This ability to observe individual objects provides unique insight into complex materials where heterogeneous behavior makes it difficult, if not impossible, to reach clear and quantitative conclusions.

  20. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy

    International Nuclear Information System (INIS)

    Mandal, Aritra; Tokmakoff, Andrei

    2015-01-01

    We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm −1 . We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions

  1. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells.

    Science.gov (United States)

    Montoya, Leticia A; Pluth, Michael D

    2012-05-16

    Hydrogen sulfide (H(2)S) is an important biological messenger but few biologically-compatible methods are available for its detection. Here we report two bright fluorescent probes that are selective for H(2)S over cysteine, glutathione and other reactive sulfur, nitrogen, and oxygen species. Both probes are demonstrated to detect H(2)S in live cells. This journal is © The Royal Society of Chemistry 2012

  2. Functional Dynamics of Hexameric Helicase Probed by Hydrogen Exchange and Simulation

    Science.gov (United States)

    Radou, Gaël; Dreyer, Frauke N.; Tuma, Roman; Paci, Emanuele

    2014-01-01

    The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring. PMID:25140434

  3. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination....

  4. A novel dansyl-based fluorescent probe for highly selective detection of ferric ions.

    Science.gov (United States)

    Yang, Min; Sun, Mingtai; Zhang, Zhongping; Wang, Suhua

    2013-02-15

    A novel dansyl-based fluorescent probe was synthesized and characterized. It exhibits high selectivity and sensitivity towards Fe(3+) ion. This fluorescent probe is photostable, water soluble and pH insensitive. The limit of detection is found to be 0.62 μM. These properties make it a good fluorescent probe for Fe(3+) ion detection in both chemical and biological systems. Spike recovery test confirms its practical application in tap water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Improving probe set selection for microbial community analysis by leveraging taxonomic information of training sequences

    Directory of Open Access Journals (Sweden)

    Jiang Tao

    2011-10-01

    Full Text Available Abstract Background Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups. Results Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups. Conclusions Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.

  6. Improving probe set selection for microbial community analysis by leveraging taxonomic information of training sequences.

    Science.gov (United States)

    Ruegger, Paul M; Della Vedova, Gianluca; Jiang, Tao; Borneman, James

    2011-10-10

    Population levels of microbial phylotypes can be examined using a hybridization-based method that utilizes a small set of computationally-designed DNA probes targeted to a gene common to all. Our previous algorithm attempts to select a set of probes such that each training sequence manifests a unique theoretical hybridization pattern (a binary fingerprint) to a probe set. It does so without taking into account similarity between training gene sequences or their putative taxonomic classifications, however. We present an improved algorithm for probe set selection that utilizes the available taxonomic information of training gene sequences and attempts to choose probes such that the resultant binary fingerprints cluster into real taxonomic groups. Gene sequences manifesting identical fingerprints with probes chosen by the new algorithm are more likely to be from the same taxonomic group than probes chosen by the previous algorithm. In cases where they are from different taxonomic groups, underlying DNA sequences of identical fingerprints are more similar to each other in probe sets made with the new versus the previous algorithm. Complete removal of large taxonomic groups from training data does not greatly decrease the ability of probe sets to distinguish those groups. Probe sets made from the new algorithm create fingerprints that more reliably cluster into biologically meaningful groups. The method can readily distinguish microbial phylotypes that were excluded from the training sequences, suggesting novel microbes can also be detected.

  7. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    International Nuclear Information System (INIS)

    Ishii, Masashi

    2010-01-01

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch 2 . Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  8. Static states and dynamic behaviour of charges: observation and control by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Masashi, E-mail: ISHII.Masashi@nims.go.j [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2010-05-05

    This paper reviews charges that locally functionalize materials. Microscopic analyses and operation of charges using various scanning probe microscopy (SPM) techniques have revealed static, quasi-static/quasi-dynamic and dynamic charge behaviours. Charge-sensitive SPM has allowed for the visualization of the distribution of functionalized charges in electronic devices. When used as bit data in a memory system, the charges can be operated by SPM. The behaviour of quasi-static/quasi-dynamic charges is discussed here. In the data-writing process, spatially dispersive charges rather than a fast injection rate are introduced, but the technical problems can be solved by using nanostructures. Careful charge operations using SPM should realize a memory with a larger density than Tbit/inch{sup 2}. Dynamic charges have been introduced in physical analyses and chemical processes. Although the observable timescale is limited by the SPM system response time of the order of several seconds, dynamics such as photon-induced charge redistributions and probe-assisted chemical reactions are observed. (topical review)

  9. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    Science.gov (United States)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  10. An Amidochlorin-Based Colorimetric Fluorescent Probe for Selective Cu2+ Detection

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-01-01

    Full Text Available The design and synthesis of selective and sensitive chemosensors for the quantification of environmentally and biologically important ionic species has attracted widespread attention. Amidochlorin p6 (ACP; an effective colorimetric and fluorescent probe for copper ions (Cu2+ in aqueous solution derived from methyl pheophorbide-a (MPa was designed and synthesized. A remarkable color change from pale yellow to blue was easily observed by the naked eye upon addition of Cu2+; and a fluorescence quenching was also determined. The research of fluorescent quenching of ACP-Cu2+ complexation showed the detection limit was 7.5 × 10−8 mol/L; which suggested that ACP can act as a high sensitive probe for Cu2+ and can be used to quantitatively detect low levels of Cu2+ in aqueous solution. In aqueous solution the probe exhibits excellent selectivity and sensitivity toward Cu2+ ions over other metal ions (M = Zn2+; Ni2+; Ba2+; Ag+; Co2+; Na+; K+; Mg2+; Cd2+; Pb2+; Mn2+; Fe3+; and Ca2+. The obvious change from pale yellow to blue upon the addition of Cu2+ could make it a suitable “naked eye” indicator for Cu2+.

  11. Proceedings of "Optical Probes of Dynamics in Complex Environments"

    Energy Technology Data Exchange (ETDEWEB)

    Sension, R; Tokmakoff, A

    2008-04-01

    This document contains the proceedings from the symposium on Optical Probes of Dynamics in Complex Environments, which organized as part of the 235th National Meeting of the American Chemical Society in New Orleans, LA from April 6 to 10, 2008. The study of molecular dynamics in chemical reaction and biological processes using time ƒresolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time resolved spectroscopy is central to all of DOEs grand challenges for fundamental energy science. This symposium brought together leaders in the field of ultrafast spectroscopy, including experimentalists, theoretical chemists, and simulators, to discuss the most recent scientific and technological advances. DOE support for this conference was used to help young US and international scientists travel to the meeting. The latest technology in ultrafast infrared, optical, and xray spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  12. Topological mass of magnetic Skyrmions probed by ultrafast dynamic imaging

    International Nuclear Information System (INIS)

    Buettner, Felix

    2013-01-01

    In this thesis, we investigate the GHz dynamics of skyrmionic spin structures by means of pump-probe dynamic imaging to determine the equation of motion that governs the behavior of these technologically relevant spin structures. To achieve this goal, we first designed and optimized a perpendicular magnetic anisotropy CoB/Pt multilayer material for low magnetic pinning, as required for ultrafast pump-probe imaging experiments. Second, we developed an integrated sample design for X-ray holography capable of tracking relative magnetic positional changes down to 3 nm spatial resolution. These advances enabled us to image the trajectory of a single magnetic Skyrmion. We find that the motion is comprised of two gyrotropic modes, one clockwise and one counterclockwise. The existence of two modes shows that Skyrmions are massive quasiparticles. From their derived frequencies we find an inertial mass for the Skyrmion which is a factor of five larger than expected based on existing models for inertia in magnetism. Our results demonstrate that the mass of Skyrmions is based on a novel mechanism emerging from their confined nature, which is a direct consequence of their topology.

  13. Adhesion Dynamics in Probing Micro- and Nanoscale Thin Solid Films

    Directory of Open Access Journals (Sweden)

    Xiaoling He

    2008-01-01

    Full Text Available This study focuses on modeling the probe dynamics in scratching and indenting thin solid films at micro- and nanoscales. The model identifies bifurcation conditions that define the stick-slip oscillation patterns of the tip. It is found that the local energy fluctuations as a function of the inelastic deformation, defect formation, material properties, and contact parameters determine the oscillation behavior. The transient variation of the localized function makes the response nonlinear at the adhesion junction. By quantifying the relation between the bifurcation parameters and the oscillation behavior, this model gives a realistic representation of the complex adhesion dynamics. Specifically, the model establishes the link between the stick-slip behavior and the inelastic deformation and the local potentials. This model justifies the experimental observations and the molecular dynamics simulation of the adhesion and friction dynamics in both the micro- and nanoscale contact.

  14. Dynamic variable selection in SNP genotype autocalling from APEX microarray data

    Directory of Open Access Journals (Sweden)

    Zamar Ruben H

    2006-11-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are DNA sequence variations, occurring when a single nucleotide – adenine (A, thymine (T, cytosine (C or guanine (G – is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX. This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias. Results Using a set of 32 Coriell DNA samples plus three negative PCR controls as a training data set, we have developed a fully-automated genotyping algorithm based on simple linear discriminant analysis (LDA using dynamic variable selection. The algorithm combines separate analyses based on the multiple probe sets to give a final posterior probability for each candidate genotype. We have tested our algorithm on a completely independent data set of 270 DNA samples, with validated genotypes, from patients admitted to the intensive care unit (ICU of St. Paul's Hospital (plus one negative PCR control sample. Our method achieves a concordance rate of 98.9% with a 99.6% call rate for a set of 96 SNPs. By adjusting the threshold value for the final posterior probability of the called genotype, the call rate reduces to 94.9% with a higher concordance rate of 99.6%. We also reversed the two independent data sets in their training and testing roles, achieving a concordance rate up to 99.8%. Conclusion The strength of this APEX chemistry-based platform is its unique redundancy having multiple probes for a single SNP. Our

  15. Canopy Dynamics in Nanoscale Ionic Materials Probed by NMR

    Science.gov (United States)

    Mirau, Peter

    2013-03-01

    Nanoscale ionic materials (NIMs) are hybrids prepared from ionically functionalized nanoparticles (NP) neutralized by oligomeric polymer counter-ions. NIMs are designed to behave as liquids under ambient conditions in the absence of solvent and have no volatile organic content, making them useful for a number of applications. We have used NMR relaxation and pulse-field gradient NMR to probe local and collective canopy dynamics in NIMs based on silica nanoparticles (NP), fullerols and proteins in order to understand the relationship between the core and canopy structure and the bulk properties. The NMR studies show that the canopy dynamics depend on the degree of neutralization, the canopy radius of gyration and molecular crowding at the ionically modified NP surface. The viscosity in NIMs can be directly controlled with the addition of ions that enhance the exchange rate for polymers at the NP surface. These results show that NIMs for many applications can be prepared by controlling the dynamics of the NP interface.

  16. Monitoring of Au(iii) species in plants using a selective fluorescent probe.

    Science.gov (United States)

    Li, Zhen; Xu, Yuqing; Fu, Jie; Zhu, Hailiang; Qian, Yong

    2018-01-23

    A colorimetric and ratiometric probe with a push-pull chromophore dicyanoisophorone system, AuP, has been developed for the detection of Au(iii) species with highly sensitive and selective response to real-water samples and living tissues of Arabidopsis thaliana.

  17. Selective and sensitive fluorescence-shift probes based on two dansyl groups for mercury(ii) ion detection.

    Science.gov (United States)

    Ma, Li-Jun; Liu, Jialun; Deng, Lefang; Zhao, Meili; Deng, Zhifu; Li, Xutian; Tang, Jian; Yang, Liting

    2014-11-01

    Two probes ( and ) bearing two dansyl fluorophores were synthesized and applied to the detection of mercury(ii) ions in aqueous solution. These probes exhibited a selective response to Hg(2+) in a buffered solution, with high sensitivity and a unique fluorescence response signal which displayed a blue-shift effect in the fluorescence emission peak. The Hg(2+) recognition mechanisms of the probes were determined by NMR spectroscopy, ESI-MS and UV-vis spectroscopy. The results showed that probe and mercury(ii) ions formed an unusual 2:2 stoichiometric ratio complex, while probe and Hg(2+) formed a multidentate complex with a stoichiometric ratio of 2:1.

  18. Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering

    Science.gov (United States)

    Walt, Samuel G.; Bhargava Ram, Niraghatam; Atala, Marcos; Shvetsov-Shilovski, Nikolay I; von Conta, Aaron; Baykusheva, Denitsa; Lein, Manfred; Wörner, Hans Jakob

    2017-01-01

    Strong-field photoelectron holography and laser-induced electron diffraction (LIED) are two powerful emerging methods for probing the ultrafast dynamics of molecules. However, both of them have remained restricted to static systems and to nuclear dynamics induced by strong-field ionization. Here we extend these promising methods to image purely electronic valence-shell dynamics in molecules using photoelectron holography. In the same experiment, we use LIED and photoelectron holography simultaneously, to observe coupled electronic-rotational dynamics taking place on similar timescales. These results offer perspectives for imaging ultrafast dynamics of molecules on femtosecond to attosecond timescales. PMID:28643771

  19. Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

    International Nuclear Information System (INIS)

    Segre, Gino P.

    2001-01-01

    Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay

  20. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.

    Science.gov (United States)

    Zhang, Jian; Lv, Yanlin; Zhang, Wei; Ding, Hui; Liu, Rongji; Zhao, Yongsheng; Zhang, Guangjin; Tian, Zhiyuan

    2016-01-01

    A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.

    Science.gov (United States)

    Cobb, C E; Hustedt, E J; Beechem, J M; Beth, A H

    1993-01-01

    An acyl spin-label derivative of 5-aminoeosin (5-SLE) was chemically synthesized and employed in studies of rotational dynamics of the free probe and of the probe when bound noncovalently to bovine serum albumin using the spectroscopic techniques of fluorescence anisotropy decay and electron paramagnetic resonance (EPR) and their long-lifetime counterparts phosphorescence anisotropy decay and saturation transfer EPR. Previous work (Beth, A. H., Cobb, C. E., and J. M. Beechem, 1992. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe. Society of Photo-Optical Instrumentation Engineers. Time-Resolved Laser Spectroscopy III. 504-512) has shown that the spin-label moiety only slightly altered the fluorescence and phosphorescence lifetimes and quantum yields of 5-SLE when compared with 5-SLE whose nitroxide had been reduced with ascorbate and with the diamagnetic homolog 5-acetyleosin. In the present work, we have utilized time-resolved fluorescence anisotropy decay and linear EPR spectroscopies to observe and quantitate the psec motions of 5-SLE in solution and the nsec motions of the 5-SLE-bovine serum albumin complex. Time-resolved phosphorescence anisotropy decay and saturation transfer EPR studies have been carried out to observe and quantitate the microseconds motions of the 5-SLE-albumin complex in glycerol/buffer solutions of varying viscosity. These latter studies have enabled a rigorous comparison of rotational correlation times obtained from these complementary techniques to be made with a single probe. The studies described demonstrate that it is possible to employ a single molecular probe to carry out the full range of fluorescence, phosphorescence, EPR, and saturation transfer EPR studies. It is anticipated that "dual" molecular probes of this general type will significantly enhance capabilities for extracting dynamics and structural information from macromolecules and their functional

  2. Modular Rake of Pitot Probes

    Science.gov (United States)

    Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

    2004-01-01

    The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

  3. The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.

    Science.gov (United States)

    Satzinger, Kevin J; Brown, Keith A; Westervelt, Robert M

    2012-09-15

    A realistic interpretation of the measured contact potential difference (CPD) in Kelvin probe force microscopy (KPFM) is crucial in order to extract meaningful information about the sample. Central to this interpretation is a method to include contributions from the macroscopic cantilever arm, as well as the cone and sharp tip of a KPFM probe. Here, three models of the electrostatic interaction between a KPFM probe and a sample are tested through an electrostatic simulation and compared with experiment. In contrast with previous studies that treat the KPFM cantilever as a rigid object, we allow the cantilever to bend and rotate; accounting for cantilever bending provides the closest agreement between theory and experiment. We demonstrate that cantilever dynamics play a major role in CPD measurements and provide a simulation technique to explore this phenomenon.

  4. Affinity-Selected Filamentous Bacteriophage as a Probe for Acoustic Wave Biodetectors of Salmonella typhimurium

    National Research Council Canada - National Science Library

    Olsen, Eric V; Sorokulova, Iryna B; Petrenko, Valery A; Chen, I-Hsuan; Barbaree, James M; Vodyanoy, Vitaly J

    2005-01-01

    Proof-in-concept biosensors were prepared for the rapid detection of Salmonella typhimurium in solution, based on affinity-selected filamentous phage prepared as probes physically adsorbed to piezoelectric transducers...

  5. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, H. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Kar, S., E-mail: s.kar@qub.ac.uk [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Cantono, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Nersisyan, G. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Brauckmann, S. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Doria, D.; Gwynne, D. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Macchi, A. [Department of Physics “E. Fermi”, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Consiglio Nazionale delle Ricerche, Istituto Nazionale di Ottica, Research Unit Adriano Gozzini, via G. Moruzzi 1, Pisa 56124 (Italy); Naughton, K. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom); Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Lewis, C.L.S.; Borghesi, M. [School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN (United Kingdom)

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a ‘self’ proton probing arrangement – i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed. - Highlights: • Prompt charging of laser irradiated target generates ultra-short EM pulses. • Its ultrafast propagation along a wire was studied by self-proton probing technique. • Self-proton probing technique is the proton probing with one laser pulse. • Pulse temporal profile and speed along the wire were measured with high resolution.

  6. Selection-Mutation Dynamics of Signaling Games

    Directory of Open Access Journals (Sweden)

    Josef Hofbauer

    2015-01-01

    Full Text Available We study the structure of the rest points of signaling games and their dynamic behavior under selection-mutation dynamics by taking the case of three signals as our canonical example. Many rest points of the replicator dynamics of signaling games are not isolated and, therefore, not robust under perturbations. However, some of them attract open sets of initial conditions. We prove the existence of certain rest points of the selection-mutation dynamics close to Nash equilibria of the signaling game and show that all but the perturbed rest points close to strict Nash equilibria are dynamically unstable. This is an important result for the evolution of signaling behavior, since it shows that the second-order forces that are governed by mutation can increase the chances of successful signaling.

  7. Momentum distributions of selected rare-gas atoms probed by intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses. The cal......We provide a direct comparison between numerical and experimental (Rudenko et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L407) photoelectron momentum distributions in strong-field ionization of selected rare-gas atoms (He, Ne and Ar), probed by femtosecond linearly polarized laser pulses....... The calculations are performed by solving the time-dependent Schrödinger equation within the single-active-electron approximation, and focal-volume effects are taken into account by appropriately averaging the results. The resulting momentum distributions are in quantitative agreement with the experimental...

  8. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  9. Highly selective detection of glutathione using a NIP/Cu2+ complex fluorescent probe

    International Nuclear Information System (INIS)

    Liang Wenrui; Zhao Zhi; Zhang Yang; Wang Qiusheng; Zhao Xin; Ouyang Jie

    2012-01-01

    A novel fluorescent compound, 4-(trimethyl ammonium chloride)acetamide-2-(1H-naphtho[2,3-d]imidazol-2-yl)phenol (TMACA-NIP), was synthesized and used as a fluorescent probe for detecting glutathione reduced (GSH). The new NIP-based probe exhibited high fluorescence in water, which was quenched during the presence of copper (II) due to the complexation between TMACA-NIP and Cu 2+ . But after adding GSH into the TMACA-NIP and Cu 2+ system, the fluorescence of TMACA-NIP was recovered because the binding force between GSH and Cu 2+ is stronger than that between TMACA-NIP and Cu 2+ , which destroys the equilibrium between NIP and copper (II) ions and releases the fluorescence probe of TMACA-NIP. This three-component competing system of NIP/Cu 2+ /GSH can be used to detect GSH simply and rapidly. - Highlights: ► A novel fluorescence probe was developed to detect GSH that operates in aqueous solution. ► TMACA-NIP was synthesized and employed as “read-out” units of NIP/Cu 2+ /GSH. ► NIP-based probe shows high selectivity over other sulfhydryl compounds.

  10. A rhodamine chromene-based turn-on fluorescence probe for selectively imaging Cu2+ in living cell

    Science.gov (United States)

    Liu, Wei-Yong; Li, Hai-Ying; Lv, Hong-Shui; Zhao, Bao-Xiang; Miao, Jun-Ying

    We describe the development of a rhodamine chromene-based turn-on fluorescence probe to monitor the intracellular Cu2+ level in living cells. The new fluorescent probe with a chlorine group in chromene moiety exhibits good membrane-permeable property than previous reported because the predicted lipophilicity of present probe 4 is stronger than that of methoxyl substituted probe in our previous work (CLogP of 4: 8.313, CLogP of methoxyl substituted probe: 7.706), and a fluorescence response toward Cu2+ under physiological conditions with high sensitivity and selectivity, and facilitates naked-eye detection of Cu2+. The fluorescence intensity was remarkably increased upon the addition of Cu2+ within 1 or 2 min, while the other sixteen metal ions caused no significant effect.

  11. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics

    Science.gov (United States)

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate Kd values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  12. Optical Probes for Neurobiological Sensing and Imaging.

    Science.gov (United States)

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-04-13

    probing entire neurobiological units with high spatiotemporal resolution. Thus, we introduce selected applications for ion and neurotransmitter detection to investigate both neurons and non-neuronal brain cells. We focus on families of optical probes because of their ability to sense a wide array of molecules and convey spatial information with minimal damage to tissue. We start with a discussion of currently available molecular probes, highlight recent advances in genetically modified fluorescent probes for ions and small molecules, and end with the latest research in nanosensors for biological imaging. Customizable, nanoscale optical sensors that accurately and dynamically monitor the local environment with high spatiotemporal resolution could lead to not only new insights into the function of all cell types but also a broader understanding of how diverse neural signaling systems act in conjunction with neighboring cells in a spatially relevant manner.

  13. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  14. Sensitive and Selective Ratiometric Fluorescence Probes for Detection of Intracellular Endogenous Monoamine Oxidase A.

    Science.gov (United States)

    Wu, Xiaofeng; Li, Lihong; Shi, Wen; Gong, Qiuyu; Li, Xiaohua; Ma, Huimin

    2016-01-19

    Monoamine oxidase A (MAO-A) is known to widely exist in most cell lines in the body, and its dysfunction (unusually high or low levels of MAO-A) is thought to be responsible for several psychiatric and neurological disorders. Thus, a sensitive and selective method for evaluating the relative MAO-A levels in different live cells is urgently needed to better understand the function of MAO-A, but to our knowledge such a method is still lacking. Herein, we rationally design two new ratiometric fluorescence probes (1 and 2) that can sensitively and selectively detect MAO-A. The probes are constructed by incorporating a recognition group of propylamine into the fluorescent skeleton of 1,8-naphthalimide, and the detection mechanism is based on amine oxidation and β-elimination to release the fluorophore (4-hydroxy-N-butyl-1,8-naphthalimide), which is verified by HPLC analysis. Reaction of the probes with MAO-A produces a remarkable fluorescence change from blue to green, and the ratio of fluorescence intensity at 550 and 454 nm is directly proportional to the concentration of MAO-A in the ranges of 0.5-1.5 and 0.5-2.5 μg/mL with detection limits of 1.1 and 10 ng/mL (k = 3) for probes 1 and 2, respectively. Surprisingly, these probes show strong fluorescence responses to MAO-A but almost none to MAO-B (one of two isoforms of MAO), indicating superior ability to distinguish MAO-A from MAO-B. The high specificity of the probes for MAO-A over MAO-B is further supported by different inhibitor experiments. Moreover, probe 1 displays higher sensitivity than probe 2 and is thus investigated to image the relative MAO-A levels in different live cells, such as HeLa and NIH-3T3 cells. It is found that the concentration of endogenous MAO-A in HeLa cells is approximately 1.8 times higher than that in NIH-3T3 cells, which is validated by the result from an ELISA kit. Additionally, the proposed probes may find more uses in the specific detection of MAO-A between the two isoforms of MAO

  15. Collective flow as a probe of heavy-ion reaction dynamics

    International Nuclear Information System (INIS)

    Awes, T.C.

    1997-01-01

    Collective flow of nuclear matter probes the dynamics of heavy-ion reactions and can provide information about the nuclear-matter equation of state. In particular, the incident energy dependences of collective flow may be a sensitive means to deduce the existence of a Quark Gluon Plasma phase in the equation of state. Collective flow measurements from 30 A MeV to 200 A GeV incident energies are briefly reviewed. Preliminary results on collective flow from the WA98 experiment at the CERN SPS are presented

  16. Ionization probes of molecular structure and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.M. [State Univ. of New York, Stony Brook (United States)

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  17. Primitive chain network simulations of probe rheology.

    Science.gov (United States)

    Masubuchi, Yuichi; Amamoto, Yoshifumi; Pandey, Ankita; Liu, Cheng-Yang

    2017-09-27

    Probe rheology experiments, in which the dynamics of a small amount of probe chains dissolved in immobile matrix chains is discussed, have been performed for the development of molecular theories for entangled polymer dynamics. Although probe chain dynamics in probe rheology is considered hypothetically as single chain dynamics in fixed tube-shaped confinement, it has not been fully elucidated. For instance, the end-to-end relaxation of probe chains is slower than that for monodisperse melts, unlike the conventional molecular theories. In this study, the viscoelastic and dielectric relaxations of probe chains were calculated by primitive chain network simulations. The simulations semi-quantitatively reproduced the dielectric relaxation, which reflects the effect of constraint release on the end-to-end relaxation. Fair agreement was also obtained for the viscoelastic relaxation time. However, the viscoelastic relaxation intensity was underestimated, possibly due to some flaws in the model for the inter-chain cross-correlations between probe and matrix chains.

  18. Ultrafast dissociation: An unexpected tool for probing molecular dynamics

    International Nuclear Information System (INIS)

    Morin, Paul; Miron, Catalin

    2012-01-01

    Highlights: ► Ultrafast dissociation has been investigated by means of XPS and mass spectrometry. ► The interplay between electron relaxation and molecular dynamics is evidenced. ► Extension toward polyatomics, clusters, adsorbed molecules is considered. ► Quantum effects (spectral hole, angular effects) evidence the molecular field anisotropy. -- Abstract: Ultrafast dissociation following core–shell excitation into an antibonding orbital led to the early observation in HBr of atomic Auger lines associated to the decay of dissociated excited atoms. The purpose of this article is to review the very large variety of systems where such a situation has been encountered, extending from simple diatomic molecules toward more complex systems like polyatomics, clusters, or adsorbed molecules. Interestingly, this phenomenon has revealed an extremely rich and powerful tool for probing nuclear dynamics and its subtle interplay with electron relaxation occurring on a comparable time scale. Consequently this review covers a surprisingly large period, starting in 1986 and still ongoing.

  19. Plasma turbulence. Structure formation, selection rule, dynamic response and dynamics transport

    International Nuclear Information System (INIS)

    Ito, Sanae I.

    2010-01-01

    The five-year project of Grant-in-Aid for Specially Promoted Research entitled general research on the structure formation and selection rule in plasma turbulence had brought many outcomes. Based on these outcomes, the Grant-in-Aid for Scientific Research (S) program entitled general research on dynamic response and dynamic transport in plasma turbulence has started. In the present paper, the state-of-the-art of the research activities on the structure formation, selection rule and dynamics in plasma turbulence are reviewed with reference to outcomes of these projects. (author)

  20. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth

    2012-01-01

    Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.

  1. Three-Dimensional Optical Trapping for Cell Isolation Using Tapered Fiber Probe by Dynamic Chemical Etching

    International Nuclear Information System (INIS)

    Taguchi, K; Okada, J; Nomura, Y; Tamura, K

    2012-01-01

    In this paper, chemically etched fiber probe was proposed for laser trapping and manipulation of cells. We fabricated tapered fiber probe by dynamic chemical etching technique. Three-Dimensional optical trap of a yeast cell dispersed in water solution could be formed by the fiber tip with 17deg tip. Optical forces were sufficient to move the yeast cell for trapping and manipulation. From these experimental results, it was found that our proposed tapered fiber tip was a promising tool for cell isolation.

  2. Consistency of ΛCDM with geometric and dynamical probes

    International Nuclear Information System (INIS)

    Perivolaropoulos, L

    2010-01-01

    The ΛCDM cosmological model assumes the existence of a small cosmological constant in order to explain the observed accelerating cosmic expansion. Despite the dramatic improvement of the quality of cosmological data during the last decade it remains the simplest model that fits remarkably well (almost) all cosmological observations. In this talk I review the increasingly successful fits provided by ΛCDM on recent geometric probe data of the cosmic expansion. I also briefly discuss some emerging shortcomings of the model in attempting to fit specific classes of data (eg cosmic velocity dipole flows and cluster halo profiles). Finally, I summarize recent results on the theoretically predicted matter overdensity (δ m =(δρ m )/ρ m ) evolution (a dynamical probe of the cosmic expansion), emphasizing its scale and gauge dependence on large cosmological scales in the context of general relativity. A new scale dependent parametrization which describes accurately the growth rate of perturbations even on scales larger than 100h -1 Mpc is shown to be a straightforward generalization of the well known scale independent parametrization f(a) = Ω m (a) γ valid on smaller cosmological scales.

  3. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  4. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongmei [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Wang, Cuiling [Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi' an 710069 (China); She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Liu, Ping, E-mail: liuping@nwu.edu.cn [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Wang, Yaoyu [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China); Li, Jianli, E-mail: lijianli@nwu.edu.cn [Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069 (China)

    2015-11-05

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H{sup +} in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging. - Highlights: • Two probes for sensitively and selectively monitoring weak acidic pH change. • The pKa of the probes was highly suitable for staining lysosomes in tumor cells. • The properties of those probes were changed by different conjugate system. • These probes have negligible cytotoxicity and good sensitivity in vivo.

  5. Two rhodamine lactam modulated lysosome-targetable fluorescence probes for sensitively and selectively monitoring subcellular organelle pH change

    International Nuclear Information System (INIS)

    Li, Hongmei; Wang, Cuiling; She, Mengyao; Zhu, Yuelu; Zhang, Jidong; Yang, Zheng; Liu, Ping; Wang, Yaoyu; Li, Jianli

    2015-01-01

    Be a powerful technique for convenient detection of pH change in living cells, especially at subcellular level, fluorescent probes has attracted more and more attention. In this work, we designed and synthesized three rhodamine lactam modulated fluorescent probes RS1, RS2 and RS3, which all respond sensitively toward weak acidity (pH range 4–6) via the photophysical property in buffer solution without interference from the other metal ions, and they also show ideal pKa values and excellent reversibility. Particularly, by changing the lone pair electrons distribution of lactam-N atom with different conjugations, RS2 and RS3 exhibit high quantum yield, negligible cytotoxicity and excellent permeability. They are suitable to stain selectively lysosomes of tumor cells and monitor its pH changes sensitively via optical molecular imaging. The above findings suggest that the probes we designed could act as ideal and easy method for investigating the pivotal role of H + in lysosomes and are potential pH detectors in disease diagnosis through direct intracellular imaging. - Highlights: • Two probes for sensitively and selectively monitoring weak acidic pH change. • The pKa of the probes was highly suitable for staining lysosomes in tumor cells. • The properties of those probes were changed by different conjugate system. • These probes have negligible cytotoxicity and good sensitivity in vivo.

  6. Reverse micelles as a tool for probing solvent modulation of protein dynamics: Reverse micelle encapsulated hemoglobin☆

    OpenAIRE

    Roche, Camille J.; Dantsker, David; Heller, Elizabeth R.; Sabat, Joseph E.; Friedman, Joel M.

    2013-01-01

    Hydration waters impact protein dynamics. Dissecting the interplay between hydration waters and dynamics requires a protein that manifests a broad range of dynamics. Proteins in reverse micelles (RMs) have promise as tools to achieve this objective because the water content can be manipulated. Hemoglobin is an appropriate tool with which to probe hydration effects. We describe both a protocol for hemoglobin encapsulation in reverse micelles and a facile method using PEG and cosolvents to mani...

  7. Real-time ultrafast dynamics of dense, hot matter measured by pump-probe Doppler spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lad, Amit D; Mondal, S; Narayanan, V; Ahmed, Saima; Kumar, G Ravindra; Rajeev, P P; Robinson, A P L [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Pasley, J, E-mail: amitlad@tifr.res.i [Department of Physics, University of York, Heslington, York (United Kingdom)

    2010-08-01

    A detailed understanding of the critical surface motion of high intensity laser produced plasma is very crucial for understanding the interaction. We employ the two colour pump-probe technique to report the first ever femtosecond scale ultrafast dynamics measurement of the critical surface of a solid plasma produced by a relativistically intense, femtosecond pump laser beam (10{sup 18} W/cm{sup 2}, 30 fs, 800 nm) on an aluminium target. We observe the Doppler shift of a time delayed probe laser beam (10{sup 12} W/cm{sup 2}, 80 fs, 400 nm) up to delays of 30 ps. Such unravelling of dynamics has not been possible in earlier measurements, which typically used the self reflection of a powerful pump pulse. We observe time dependent red and blue shifts and measure their magnitudes to infer plasma expansion velocity and acceleration and thereby the plasma profile. Our results are very well reproduced by 1D hydrodynamic simulation (HYADES code).

  8. SHAPE selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data

    DEFF Research Database (Denmark)

    Poulsen, Line Dahl; Kielpinski, Lukasz Jan; Salama, Sofie R

    2015-01-01

    transcriptase. Here, we introduce a SHAPE Selection (SHAPES) reagent, N-propanone isatoic anhydride (NPIA), which retains the ability of SHAPE reagents to accurately probe RNA structure, but also allows covalent coupling between the SHAPES reagent and a biotin molecule. We demonstrate that SHAPES...

  9. Synthesis of a Cu2+-Selective Probe Derived from Rhodamine and Its Application in Cell Imaging

    Directory of Open Access Journals (Sweden)

    Chunwei Yu

    2014-11-01

    Full Text Available A new fluorescent probe P based on rhodamine for Cu2+ was synthesized and characterized. The new probe P showed high selectivity to Cu2+ over other tested metal ions. With optimal conditions, the proposed probe P worked in a wide linear range of 1.0 × 10−6–1.0 × 10−5 M with a detection limit of 3.3 × 10−7 M Cu2+ in ethanol-water solution (9:1, v:v, 20 mM HEPES, pH 7.0. Furthermore, it has been used for imaging of Cu2+ in living cells with satisfying results.

  10. Probing the dynamics of dark energy with novel parametrizations

    International Nuclear Information System (INIS)

    Ma Jingzhe; Zhang Xin

    2011-01-01

    We point out that the CPL parametrization has a problem that the equation of state w(z) diverges in the far future, so that this model can only properly describe the past evolution but cannot depict the future evolution. To overcome such a difficulty, in this Letter we propose two novel parametrizations for dark energy, the logarithm form w(z)=w 0 +w 1 ((ln(2+z))/(1+z) -ln2) and the oscillating form w(z)=w 0 +w 1 ((sin(1+z))/(1+z) -sin(1)), successfully avoiding the future divergency problem in the CPL parametrization, and use them to probe the dynamics of dark energy in the whole evolutionary history. Our divergency-free parametrizations are proven to be very successful in exploring the dynamical evolution of dark energy and have powerful prediction capability for the ultimate fate of the universe. Constraining the CPL model and the new models with the current observational data, we show that the new models are more favored. The features and the predictions for the future evolution in the new models are discussed in detail.

  11. Dynamics of exciton relaxation in LH2 antenna probed by multipulse nonlinear spectroscopy.

    Science.gov (United States)

    Novoderezhkin, Vladimir I; Cohen Stuart, Thomas A; van Grondelle, Rienk

    2011-04-28

    We explain the relaxation dynamics in the LH2-B850 antenna as revealed by multipulse pump-dump-probe spectroscopy (Th. A. Cohen Stuart, M. Vengris, V. I. Novoderezhkin, R. J. Cogdell, C. N. Hunter, R. van Grondelle, submitted). The theory of pump-dump-probe response is evaluated using the doorway-window approach in combination with the modified Redfield theory. We demonstrate that a simultaneous fit of linear spectra, pump-probe, and pump-dump-probe kinetics can be obtained at a quantitative level using the disordered exciton model, which is essentially the same as used to model the spectral fluctuations in single LH2 complexes (Novoderezhkin, V.; Rutkauskas, D.; van Grondelle, R. Biophys. J. 2006, 90, 2890). The present studies suggest that the observed relaxation rates are strongly dependent on the realization of the disorder. A big spread of the rates (exceeding 3 orders of magnitude) is correlated with the disorder-induced changes in delocalization length and overlap of the exciton wave functions. We conclude that the bulk kinetics reflect a superposition of many pathways corresponding to different physical limits of energy transfer, varying from sub-20 fs relaxation between delocalized and highly spatially overlapping exciton states to >20 ps jumps between states localized at the opposite sides of the ring.

  12. Spatiotemporal oscillatory dynamics of visual selective attention during a flanker task.

    Science.gov (United States)

    McDermott, Timothy J; Wiesman, Alex I; Proskovec, Amy L; Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2017-08-01

    The flanker task is a test of visual selective attention that has been widely used to probe error monitoring, response conflict, and related constructs. However, to date, few studies have focused on the selective attention component of this task and imaged the underlying oscillatory dynamics serving task performance. In this study, 21 healthy adults successfully completed an arrow-based version of the Eriksen flanker task during magnetoencephalography (MEG). All MEG data were pre-processed and transformed into the time-frequency domain. Significant oscillatory brain responses were imaged using a beamforming approach, and voxel time series were extracted from the peak responses to identify the temporal dynamics. Across both congruent and incongruent flanker conditions, our results indicated robust decreases in alpha (9-12Hz) activity in medial and lateral occipital regions, bilateral parietal cortices, and cerebellar areas during task performance. In parallel, increases in theta (3-7Hz) oscillatory activity were detected in dorsal and ventral frontal regions, and the anterior cingulate. As per conditional effects, stronger alpha responses (i.e., greater desynchronization) were observed in parietal, occipital, and cerebellar cortices during incongruent relative to congruent trials, whereas the opposite pattern emerged for theta responses (i.e., synchronization) in the anterior cingulate, left dorsolateral prefrontal, and ventral prefrontal cortices. Interestingly, the peak latency of theta responses in these latter brain regions was significantly correlated with reaction time, and may partially explain the amplitude difference observed between congruent and incongruent trials. Lastly, whole-brain exploratory analyses implicated the frontal eye fields, right temporoparietal junction, and premotor cortices. These findings suggest that regions of both the dorsal and ventral attention networks contribute to visual selective attention processes during incongruent trials

  13. Self-probing spectroscopy of XUV photo-ionization dynamics in atoms subjected to a strong-field environment.

    Science.gov (United States)

    Azoury, Doron; Krüger, Michael; Orenstein, Gal; Larsson, Henrik R; Bauch, Sebastian; Bruner, Barry D; Dudovich, Nirit

    2017-11-13

    Single-photon ionization is one of the most fundamental light matter interactions in nature, serving as a universal probe of the quantum state of matter. By probing the emitted electron, one can decode the full dynamics of the interaction. When photo-ionization is evolving in the presence of a strong laser field, the fundamental properties of the mechanism can be signicantly altered. Here we demonstrate how the liberated electron can perform a self-probing measurement of such interaction with attosecond precision. Extreme ultraviolet attosecond pulses initiate an electron wavepacket by photo-ionization, a strong infrared field controls its motion, and finally electron-ion collision maps it into re-emission of attosecond radiation bursts. Our measurements resolve the internal clock provided by the self-probing mechanism, obtaining a direct insight into the build-up of photo-ionization in the presence of the strong laser field.

  14. Time-resolved spectroscopy of the probe fluorescence in the study of human blood protein dynamic structure on SR beam

    International Nuclear Information System (INIS)

    Dobretsov, G.E.; Kurek, N.K.; Syrejshchikova, T.I.; Yakimenko, M.N.; Clarke, D.T.; Jones, G.R.; Munro, I.H.

    2000-01-01

    Time-resolved spectroscopy on the SRS of the Daresbury Laboratory was used for the study of the human serum lipoproteins and human blood albumins with fluorescent probes K-37 and K-35, developed in Russia. The probe K-37 was found sensitive to the difference in dynamic properties of the lipid objects. Two sets of the parameters were used for the description of lipid dynamic structure: (1) time-resolved fluorescence spectra and (2) time-resolved fluorescence depolarization as a function of rotational mobility of lipid molecules. Each measured dynamic parameter reflected the monotonous changes of dynamic properties in the range: lipid spheres-very low density lipoproteins-low density lipoproteins-high density lipoproteins-phospholipid liposomes. The range is characterized by the increase of the ratio polar/ nonpolar lipids. Thus, time-resolved fluorescence could be used to detect some structural modifications in lipoproteins related to atherosclerosis and subsequent cardiovascular diseases development

  15. Traversing probe system

    Science.gov (United States)

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  16. Traversing probe system

    International Nuclear Information System (INIS)

    Mashburn, D.N.; Stevens, R.H.; Woodall, H.C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride. 10 claims, 6 figures

  17. Fluorescent probe encapsulated hydrogel microsphere for selective and reversible detection of Hg{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Song, Zhenhu; Wang, Fang; Qiang, Jian; Zhang, Zhijie; Chen, Yahui; Wang, Yong; Zhang, Wei; Chen, Xiaoqiang

    2017-03-15

    We developed a simple and sensitive hydrogel sensor in the form of microspheres by using fluorescence probe encapsulated within a hydrogel matrix for the detection of Hg{sup 2+}. The traditional fluorescence probes suspended in solution are not transportable and recoverable. To overcome these disadvantages, we devised poly(ethylene glycol) diacrylate-based hydrogel microspheres in which fluorescence probe (R19S) was embedded at high density. The functionalized hydrogel microspheres were prepared by combining a microfluidic device with UV light. The hydrogel microspheres-based sensor exhibited good selectivity to Hg{sup 2+} among various metal ions and high sensitivity with a detection limit of 90 nM. Furthermore, after binding with Hg{sup 2+}, the R19S encapsulated hydrogel microspheres can be separated from testing samples easily and treated with the solution containing KI to remove Hg{sup 2+} and realize reusable detection. The current work may offer a new method for Hg{sup 2+} recognition with a more efficient manner.

  18. Dynamic Service Selection in Workflows Using Performance Data

    Directory of Open Access Journals (Sweden)

    David W. Walker

    2007-01-01

    Full Text Available An approach to dynamic workflow management and optimisation using near-realtime performance data is presented. Strategies are discussed for choosing an optimal service (based on user-specified criteria from several semantically equivalent Web services. Such an approach may involve finding "similar" services, by first pruning the set of discovered services based on service metadata, and subsequently selecting an optimal service based on performance data. The current implementation of the prototype workflow framework is described, and demonstrated with a simple workflow. Performance results are presented that show the performance benefits of dynamic service selection. A statistical analysis based on the first order statistic is used to investigate the likely improvement in service response time arising from dynamic service selection.

  19. A study of trapped ion dynamics by photon-correlation and pulse-probe techniques

    International Nuclear Information System (INIS)

    Rink, J.; Dholakia, K.; Zs, G.; Horvath, K.; Hernandez-Pozos, J. L.; Power, W.; Segal, D. M.; Thompson, R. C.; Walker, T.

    1995-01-01

    We demonstrate non-evasive methods for observing ion and ion cloud oscillation frequencies in a quadrupole ion trap. These trap resonances are measured for small clouds using a photon correlation technique. For large clouds the rotation frequency can be detected with the help of an additional pulsed probe laser. We show applications of the photon correlation method such as estimating the dynamic properties of a combined trap and detecting ion crystals

  20. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution.

    Science.gov (United States)

    Papagiannakis, Emmanouil; Vengris, Mikas; Larsen, Delmar S; van Stokkum, Ivo H M; Hiller, Roger G; van Grondelle, Rienk

    2006-01-12

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states. Dumping the stimulated emission of the ICT state with an additional 800-nm pulse after 400- and 530-nm excitation preferentially removes the ICT state contribution from the broad excited-state absorption, allowing for its spectral characterization. At the same time, an unrelaxed ground-state species, which has a subpicosecond lifetime, is populated. The application of the 800-nm pulse at early times, when the S2 state is still populated, led to direct generation of the peridinin cation, observed for the first time in a transient absorption experiment. The excited and ground electronic states manifold of peridinin has been reconstructed using target analysis; this approach combined with the measured multipulse spectroscopic data allows us to estimate the spectra and time scales of the corresponding transient states.

  1. The pump-probe coupling of matter wave packets to remote lattice states

    DEFF Research Database (Denmark)

    Sherson, Jacob F; Park, Sung Jong; Pedersen, Poul Lindholm

    2012-01-01

    containing a Bose–Einstein condensate. The evolution of these wave packets is monitored in situ and their six-photon reflection at a band gap is observed. In direct analogy with pump–probe spectroscopy, a probe pulse allows for the resonant de-excitation of the wave packet into states localized around...... selected lattice sites at a long, controllable distance of more than 100 lattice sites from the main component. This precise control mechanism for ultra-cold atoms thus enables controlled quantum state preparation and splitting for quantum dynamics, metrology and simulation....

  2. A ratiometric rhodamine–naphthalimide pH selective probe built on the basis of a PAMAM light-harvesting architecture

    International Nuclear Information System (INIS)

    Alamry, Khalid A.; Georgiev, Nikolai I.; El-Daly, Samy Abdullah; Taib, Layla A.; Bojinov, Vladimir B.

    2015-01-01

    PAMAM light harvesting antenna of second generation was synthesized and investigated. Novel compound was configured as a wavelength-shifting bichromophoric molecule where the system surface is labeled with yellow-green emitting 4-(N,N-dimethylamino)ethylamino-1,8-naphthalimide “donor” units capable of absorbing light and efficiently transferring the energy to a focal Rhodamine 6G “acceptor”. Furthermore, the 1,8-naphthalimide periphery of the system was designed on the “fluorophore-spacer-receptor” format, capable of acting as a molecular fluorescence photoinduced electron transfer based probe. Due to the both effects, photoinduced electron transfer in the periphery of the system and pH dependent rhodamine core absorption, novel antenna is able to act as a selective ratiometric pH fluorescence probe in aqueous medium. Thus, the distinguishing features of light-harvesting systems (fluorescence resonance energy transfer) were successfully combined with the properties of classical ring-opening sensor systems, which may be beneficial for monitoring pH variations in complex samples. - Highlights: • PAMAM antenna decorated with Rhodamine 6G and 1,8-naphthalimides is synthesized. • Periphery of the antenna is designed as a PET based fluorescence probe. • System manifests excellent selective response to protons in aqueous medium. • Core emission of the systems is enhanced more than 10 times as a function of pH. • Bichromophoric system acts as a selective ratiometric probe in complex samples

  3. Two sugar-rhodamine "turn-on" fluorescent probes for the selective detection of Fe3 +

    Science.gov (United States)

    Chen, Qing; Fang, Zhijie

    2018-03-01

    Two new sugar-rhodamine fluorescent probes (RDG1 and RDG2) have been synthesized and characterized by 1H NMR, 13C NMR and HRMS. Their UV-Vis, fluorescence spectra and fluorescence-response to Fe3 + are investigated and discussed. RDG1 had a very nice linear relationship between UV absorbance and Fe3 + concentration with the correlation coefficient as high as 0.997 and the detection limit is 3.46 × 10- 6 M. Upon the addition of Fe3 +, the spirolactam ring of RDG1 was opened and a 1:1 metal ligand complex was formed from Job's plot. The results showed that RDG1 can be used as an effective fluorescent probe for selective detection of Fe3 + in water. RDG2 was incorporated the well-known rhodamine group and a water-soluble D-glucose group within one molecule and can be used for detecting Fe3 + in natural water as a selective fluorescent sensor. The addition of Fe3 + into RDG2 resulted in a strongly enhanced fluorescence as well as color change of solution from colorless to pink. Job's plot of RDG2 indicated 1:1 stoichiometry of RDG2-Fe3 +. RDG2 can serve as a probe for Fe3 + between pH = 4.0 to 7.0 and it's detection limit is 2.09 × 10- 6 M. The OFF-ON fluorescent mechanisms of RDG1-Fe3 + and RDG2-Fe3 + are proposed.

  4. Probing the hydration water diffusion of macromolecular surfaces and interfaces

    International Nuclear Information System (INIS)

    Ortony, Julia H; Cheng, Chi-Yuan; Franck, John M; Pavlova, Anna; Hunt, Jasmine; Han, Songi; Kausik, Ravinath

    2011-01-01

    We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1 H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1 H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (∼r -3 ) magnetic dipolar interactions between the 1 H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ∼10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid-polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.

  5. Survey for service selection approaches in dynamic environments

    CSIR Research Space (South Africa)

    Manqele, Lindelweyizizwe S

    2017-09-01

    Full Text Available The usage of the service selection approaches across different dynamic service provisioning environments has increased the challenges associated with an effective method that can be used to select a relevant service. The use of service selection...

  6. Design of Selective Substrates and Activity-Based Probes for Hydrolase Important for Pathogenesis 1 (HIP1) from Mycobacterium tuberculosis.

    Science.gov (United States)

    Lentz, Christian S; Ordonez, Alvaro A; Kasperkiewicz, Paulina; La Greca, Florencia; O'Donoghue, Anthony J; Schulze, Christopher J; Powers, James C; Craik, Charles S; Drag, Marcin; Jain, Sanjay K; Bogyo, Matthew

    2016-11-11

    Although serine proteases are important mediators of Mycobacterium tuberculosis (Mtb) virulence, there are currently no tools to selectively block or visualize members of this family of enzymes. Selective reporter substrates or activity-based probes (ABPs) could provide a means to monitor infection and response to therapy using imaging methods. Here, we use a combination of substrate selectivity profiling and focused screening to identify optimized reporter substrates and ABPs for the Mtb "Hydrolase important for pathogenesis 1" (Hip1) serine protease. Hip1 is a cell-envelope-associated enzyme with minimal homology to host proteases, making it an ideal target for probe development. We identified substituted 7-amino-4-chloro-3-(2-bromoethoxy)isocoumarins as irreversible inhibitor scaffolds. Furthermore, we used specificity data to generate selective reporter substrates and to further optimize a selective chloroisocoumarin inhibitor. These new reagents are potentially useful in delineating the roles of Hip1 during pathogenesis or as diagnostic imaging tools for specifically monitoring Mtb infections.

  7. Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy

    International Nuclear Information System (INIS)

    Lin, Ming-Fu; Neumark, Daniel M.; Gessner, Oliver; Leone, Stephen R.

    2014-01-01

    Strong-field induced ionization and dissociation dynamics of vinyl bromide, CH 2 =CHBr, are probed using femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy. Strong-field ionization is initiated with an intense femtosecond, near infrared (NIR, 775 nm) laser field. Femtosecond XUV pulses covering the photon energy range of 50-72 eV probe the subsequent dynamics by measuring the time-dependent spectroscopic features associated with transitions of the Br (3d) inner-shell electrons to vacancies in molecular and atomic valence orbitals. Spectral signatures are observed for the depletion of neutral C 2 H 3 Br, the formation of C 2 H 3 Br + ions in their ground (X ~ ) and first excited (A ~ ) states, the production of C 2 H 3 Br ++ ions, and the appearance of neutral Br ( 2 P 3/2 ) atoms by dissociative ionization. The formation of free Br ( 2 P 3/2 ) atoms occurs on a timescale of 330 ± 150 fs. The ionic A ~ state exhibits a time-dependent XUV absorption energy shift of ∼0.4 eV within the time window of the atomic Br formation. The yield of Br atoms correlates with the yield of parent ions in the A ~ state as a function of NIR peak intensity. The observations suggest that a fraction of vibrationally excited C 2 H 3 Br + (A ~ ) ions undergoes intramolecular vibrational energy redistribution followed by the C–Br bond dissociation. The C 2 H 3 Br + (X ~ ) products and the majority of the C 2 H 3 Br ++ ions are relatively stable due to a deeper potential well and a high dissociation barrier, respectively. The results offer powerful new insights about orbital-specific electronic processes in high field ionization, coupled vibrational relaxation and dissociation dynamics, and the correlation of valence hole-state location and dissociation in polyatomic molecules, all probed simultaneously by ultrafast table-top XUV spectroscopy

  8. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia......We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves...

  9. In-vitro accuracy and reproducibility evaluation of probing depth measurements of selected periodontal probes

    Directory of Open Access Journals (Sweden)

    K.N. Al Shayeb

    2014-01-01

    Conclusion: Depth measurements with the Chapple UB-CF-15 probe were more accurate and reproducible compared to measurements with the Vivacare TPS and Williams 14 W probes. This in vitro model may be useful for intra-examiner calibration or clinician training prior to the clinical evaluation of patients or in longitudinal studies involving periodontal evaluation.

  10. Dynamic Disturbance Processes Create Dynamic Lek Site Selection in a Prairie Grouse.

    Directory of Open Access Journals (Sweden)

    Torre J Hovick

    Full Text Available It is well understood that landscape processes can affect habitat selection patterns, movements, and species persistence. These selection patterns may be altered or even eliminated as a result of changes in disturbance regimes and a concomitant management focus on uniform, moderate disturbance across landscapes. To assess how restored landscape heterogeneity influences habitat selection patterns, we examined 21 years (1991, 1993-2012 of Greater Prairie-Chicken (Tympanuchus cupido lek location data in tallgrass prairie with restored fire and grazing processes. Our study took place at The Nature Conservancy's Tallgrass Prairie Preserve located at the southern extent of Flint Hills in northeastern Oklahoma. We specifically addressed stability of lek locations in the context of the fire-grazing interaction, and the environmental factors influencing lek locations. We found that lek locations were dynamic in a landscape with interacting fire and grazing. While previous conservation efforts have treated leks as stable with high site fidelity in static landscapes, a majority of lek locations in our study (i.e., 65% moved by nearly one kilometer on an annual basis in this dynamic setting. Lek sites were in elevated areas with low tree cover and low road density. Additionally, lek site selection was influenced by an interaction of fire and patch edge, indicating that in recently burned patches, leks were located near patch edges. These results suggest that dynamic and interactive processes such as fire and grazing that restore heterogeneity to grasslands do influence habitat selection patterns in prairie grouse, a phenomenon that is likely to apply throughout the Greater Prairie-Chicken's distribution when dynamic processes are restored. As conservation moves toward restoring dynamic historic disturbance patterns, it will be important that siting and planning of anthropogenic structures (e.g., wind energy, oil and gas and management plans not view lek

  11. Dynamic Selective Exposure during Decision-Making.

    Science.gov (United States)

    Phillips, James G; Hoon, Teressa; Landon, Jason

    2016-01-01

    To understand dynamic changes in the likelihood that people would access and selectively expose themselves to information online, the present study examined the checking of account balances during simulated gambling. Sixteen participants played 120 hands of computer Blackjack for points, at higher or lower levels of risk (different point multipliers), and after each win or loss the computer recorded if participants checked their account balances. There were individual differences in checking rates. Participants who were more likely to check balances exhibited a selectivity of exposure to decision consonant information after a win at low risk. Although it was expected that people would seek to maintain positive mood, data were better explained in terms of Cognitive Dissonance. The effects of Cognitive Dissonance are liable to extend beyond single static decisions into dynamic online environments.

  12. A new simple phthalimide-based fluorescent probe for highly selective cysteine and bioimaging for living cells

    Science.gov (United States)

    Shen, Youming; Zhang, Xiangyang; Zhang, Youyu; Zhang, Chunxiang; Jin, Junling; Li, Haitao

    2017-10-01

    A new turn-on phthalimide fluorescent probe has designed and synthesized for sensing cysteine (Cys) based on excited state intramolecular proton transfer (ESIPT) process. It is consisted of a 3-hydroxyphthalimide derivative moiety as the fluorophore and an acrylic ester group as a recognition receptor. The acrylic ester acts as an ESIPT blocking agent. Upon addition of cystein, intermolecular nucleophilic attack of cysteine on acrylic ester releases the fluorescent 3-hydroxyphthalimide derivative, thereby enabling the ESIPT process and leading to enhancement of fluorescence. The probe displays high sensitivity, excellent selectivity and with large Stokes shift toward cysteine. The linear interval range of the fluorescence titration ranged from 0 to 1.0 × 10- 5 M and detection limit is low (6 × 10- 8 M). In addition, the probe could be used for bio-imaging in living cells.

  13. A highly selective and sensitive Tb3+-acetylacetone photo probe for the assessment of acetazolamide in pharmaceutical and serum samples

    Science.gov (United States)

    Youssef, A. O.

    2018-04-01

    A novel, simple, sensitive and selective spectrofluorimetric method was developed for the determination of Acetazolamide in pharmaceutical tablets and serum samples using photo probe Tb3+-ACAC. The Acetazolamide can remarkably quench the luminescence intensity of Tb3+-ACAC complex in DMSO at pH 6.8 and λex = 350 nm. The quenching of luminescence intensity of Tb3+-ACAC complex especially the electrical band at λem = 545 nm is used for the assessment of Acetazolamide in the pharmaceutical tablet and serum samples. The dynamic range found for the determination of Acetazolamide concentration is 4.49 × 10-9-1.28 × 10-7 mol L-1, and the limit of detection (LOD) and limit of quantification (LOQ) are (4.0 × 10-9 and 1.21 × 10-8) mol L-1, respectively.

  14. Mapping Rotational Wavepacket Dynamics with Chirped Probe Pulses

    Science.gov (United States)

    Romanov, Dmitri; Odhner, Johanan; Levis, Robert

    2014-05-01

    We develop an analytical model description of the strong-field pump-probe polarization spectroscopy of rotational transients in molecular gases in a situation when the probe pulse is considerably chirped: the frequency modulation over the pulse duration is comparable with the carrier frequency. In this scenario, a femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample at room temperature. The rotational revivals of the wavepacket are then mapped onto a chirped broadband probe pulse derived from a laser filament. The slow-varying envelope approximation being inapplicable, an alternative approach is proposed which is capable of incorporating the substantial chirp and the related temporal dispersion of refractive indices. Analytical expressions are obtained for the probe signal modulation over the interaction region and for the resulting heterodyned transient birefringence spectra. Dependencies of the outputs on the probe pulse parameters reveal the trade-offs and the ways to optimize the temporal-spectral imaging. The results are in good agreement with the experiments on snapshot imaging of rotational revival patterns in nitrogen gas. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  15. Influence of Divalent Counterions on the Dynamics in DNA as Probed by Using a Minor-Groove Binder.

    Science.gov (United States)

    Paul, Sneha; Ahmed, Tasnim; Samanta, Anunay

    2017-08-05

    DNA dynamics, to which water, counterions, and DNA motions contribute, is a topic of considerable interest because it is closely related to the efficiency of biological functions performed by it. Simulation studies and experiments suggest that the counterion dynamics in DNA probed by a minor-groove binder are similar for various monovalent counterions. To date, the influence on DNA dynamics of higher-valence counterions, which are also present around DNA and are known to bind more strongly to it than monovalent ions, has not been studied. Herein we investigated DNA dynamics in the presence of Mg 2+ and Ca 2+ , chosen for their relative abundance in cells, by using minor-groove binder 4',6-diamidino-2-phenylindole (DAPI) as a fluorescence probe. The dynamics, as measured from the time-resolved fluorescence Stokes shifts of DAPI bound to calf thymus DNA on a subpicosecond-to-nanosecond timescale, were found to be very similar in the presence of both the divalent ions and Na + ions. The observation is explained by considering the screening of the electric field of the divalent ion by its hydration shell, preferential binding of the ions to the phosphate groups, and displacement of ions from the minor groove by DAPI due to the stronger binding interaction of the latter. Furthermore, the similarity of our results in the presence of Na + to those reported for smaller oligonucleotides suggests that the chain length of DNA does not influence the DNA dynamics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Calcium dynamics in root cells of Arabidopsis thaliana visualized with selective plane illumination microscopy.

    Directory of Open Access Journals (Sweden)

    Alex Costa

    Full Text Available Selective Plane Illumination Microscopy (SPIM is an imaging technique particularly suited for long term in-vivo analysis of transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET. Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca(2+ probe Cameleon, in the cytosol or nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca(2+ dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological phenomenon, namely Ca(2+ signal percolation, predicted in previous studies, has been directly visualized.

  17. Ultrafast carrier dynamics in bilayer graphene studied by broadband infrared pump-probe spectroscopy

    Science.gov (United States)

    Limmer, Thomas; da Como, Enrico; Niggebaum, Alexander; Feldmann, Jochen

    2010-03-01

    Recently, bilayer graphene gained a large interest because of its electrically tunable gap appearing in the middle infrared part of the electromagnetic spectrum. This feature is expected to open a number of applications of bilayer graphene in optoelectronics. In this communication we report on the first pump-probe experiment on a single bilayer flake with an unprecedented probe photon energy interval (0.25 -- 1.3 eV). Single flakes were prepared by mechanical exfoliation of graphite and transferred to calcium fluoride substrates. When illuminated with 800 nm (1.5 eV) pump pulses the induced change in transmission shows an ultrafast saturation of the interband transitions from 1.3 to 0.5 eV. In this energy range the saturation recovery occurs within 3 ps and is consistent with an ultrafast relaxation of hot carriers. Interestingly, we report on the observation of a resonance at 0.4 eV characterized by a longer dynamics. The results are discussed considering many-body interactions.

  18. Solute-solvent interactions and dynamics probed by THz light

    Science.gov (United States)

    Schwaab, Gerhard; Böhm, Fabian; Ma, Chun-Yu; Havenith, Martina

    The THz range (1-12 THz, 30-400 cm-1) is especially suited to probe changes in the solvent dynamics induced by solutes of different character (hydrophobic, hydrophilic, charged, neutral). In recent years we have investigated a large variety of such solutes and found characteristic spectral fingerprints for ions, but also for uncharged solutes, such as alcohols. We will present a status report on our current understanding of the observed spectral changes and how they relate to physico-chemical parameters like hydration shell size or the lifetime of an excited intermolecular oscillation. In addition, we will show, that in some cases the spectral changes are closely related to the partition function yielding access to a microscopic understanding of macroscopic thermodynamic functions. The authors gratefully acknowledge financial support from the Cluster of Excellence RESOLV (Ruhr-Universität, EXC1069) funded by the Deutsche Forschungsgemeinschaft.

  19. Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide

    Science.gov (United States)

    Nagarkar, Sanjog S.; Saha, Tanmoy; Desai, Aamod V.; Talukdar, Pinaki; Ghosh, Sujit K.

    2014-11-01

    Hydrogen sulphide (H2S) is known to play a vital role in human physiology and pathology which stimulated interest in understanding complex behaviour of H2S. Discerning the pathways of H2S production and its mode of action is still a challenge owing to its volatile and reactive nature. Herein we report azide functionalized metal-organic framework (MOF) as a selective turn-on fluorescent probe for H2S detection. The MOF shows highly selective and fast response towards H2S even in presence of other relevant biomolecules. Low cytotoxicity and H2S detection in live cells, demonstrate the potential of MOF towards monitoring H2S chemistry in biological system. To the best of our knowledge this is the first example of MOF that exhibit fast and highly selective fluorescence turn-on response towards H2S under physiological conditions.

  20. Incremental Nonlinear Dynamic Inversion and Multihole Pressure Probes for Disturbance Rejection Control of Fixed-wing Micro Air Vehicles

    NARCIS (Netherlands)

    Smeur, E.J.J.; Remes, B.D.W.; de Wagter, C.; Chu, Q.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    Maintaining stable flight during high turbulence intensities is challenging for fixed-wing micro air vehicles (MAV). Two methods are proposed
    to improve the disturbance rejection performance of the MAV: incremental nonlinear dynamic inversion (INDI) control and phaseadvanced pitch probes. INDI

  1. Luminescent platinum(II) complexes with functionalized N-heterocyclic carbene or diphosphine selectively probe mismatched and abasic DNA

    OpenAIRE

    Che, CM; Chen, T; To, WP; Zou, T; FUNG, SK; Lok, CN; YANG, C; Cao, B

    2016-01-01

    The selective targeting of mismatched DNA overexpressed in cancer cells is an appealing strategy in designing cancer diagnosis and therapy protocols. Few luminescent probes that specifically detect intracellular mismatched DNA have been reported. Here we used Pt(II) complexes with luminescence sensitive to subtle changes in the local environment and report several Pt(II) complexes that selectively bind to and identify DNA mismatches. We evaluated the complexes' DNA-binding characteristics by ...

  2. Dynamic angle selection in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dabravolski, Andrei, E-mail: andrei.dabravolski@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, Kees Joost, E-mail: joost.batenburg@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam (Netherlands); Sijbers, Jan, E-mail: jan.sijbers@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-04-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes.

  3. Dynamic angle selection in X-ray computed tomography

    International Nuclear Information System (INIS)

    Dabravolski, Andrei; Batenburg, Kees Joost; Sijbers, Jan

    2014-01-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes

  4. Vibrational dynamics of adsorbed molecules under conditions of photodesorption: Pump-probe SFG spectra of CO/Pt(111)

    Science.gov (United States)

    Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard

    2004-09-01

    Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.

  5. Electrical resistivity probes

    Science.gov (United States)

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  6. Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species

    Directory of Open Access Journals (Sweden)

    Townsend Henrik J

    2005-11-01

    Full Text Available Abstract High-density oligonucleotide (oligo arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L. Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ and may be used to facilitate transcriptomic analyses of a wide range of plant and animal

  7. Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions

    Science.gov (United States)

    Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal

    2018-02-01

    We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.

  8. Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices

    DEFF Research Database (Denmark)

    Pedersen, Kim-Georg; Andersen, Brian; Syljuåsen, Olav

    2012-01-01

    We suggest a simple experimental method for probing antiferromagnetic spin correlations of two-component Fermi gases in optical lattices. The method relies on a spin selective Raman transition to excite atoms of one spin species to their first excited vibrational mode where the tunneling is large....... The resulting difference in the tunneling dynamics of the two spin species can then be exploited, to reveal the spin correlations by measuring the number of doubly occupied lattice sites at a later time. We perform quantum Monte Carlo simulations of the spin system and solve the optical lattice dynamics...

  9. Probe Sensor Using Nanostructured Multi-Walled Carbon Nanotube Yarn for Selective and Sensitive Detection of Dopamine

    Directory of Open Access Journals (Sweden)

    Wed Al-Graiti

    2017-04-01

    Full Text Available The demands for electrochemical sensor materials with high strength and durability in physiological conditions continue to grow and novel approaches are being enabled by the advent of new electromaterials and novel fabrication technologies. Herein, we demonstrate a probe-style electrochemical sensor using highly flexible and conductive multi-walled carbon nanotubes (MWNT yarns. The MWNT yarn-based sensors can be fabricated onto micro Pt-wire with a controlled diameter varying from 100 to 300 µm, and then further modified with Nafion via a dip-coating approach. The fabricated micro-sized sensors were characterized by electron microscopy, Raman, FTIR, electrical, and electrochemical measurements. For the first time, the MWNT/Nafion yarn-based probe sensors have been assembled and assessed for high-performance dopamine sensing, showing a significant improvement in both sensitivity and selectivity in dopamine detection in presence of ascorbic acid and uric acid. It offers the potential to be further developed as implantable probe sensors.

  10. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    Science.gov (United States)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  11. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  12. Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy

    Science.gov (United States)

    Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis

    2014-03-01

    The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.

  13. Neutrons probing the structure and dynamics of liquids

    International Nuclear Information System (INIS)

    Leclercq-Hugeux, F.; Coulet, M.V.; Gaspard, J.P.; Pouget, St.; Zanotti, J.M.

    2007-01-01

    This article illustrates the benefits of neutron techniques to the understanding of the liquid state. As opposed to the nearly complete order of crystals or the nearly complete disorder of gas, the disorder of a liquid is partial and results from dynamical events acting on a broad range of space and time scales. Consequently, no single, simple parameter can encompass the concept of order or disorder in the liquid state. The wide variety of neutron techniques (diffraction, quasi-elastic and inelastic scattering) is a key asset to solve the issue. Selected studies ranging over typical interactions and conditions relevant to liquids (metallic, covalent, molecular, liquids near a phase transition and confined fluids) are presented. In each case, both structural and dynamical aspects, along with the connections to complementary techniques (computer simulation, X-ray absorption and/or scattering) are highlighted. (authors)

  14. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    Science.gov (United States)

    La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo

    2016-01-01

    A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO4 3−, N3 −, NO3 −, AcO−, SO4 2−, and CO3 2−. PMID:26881185

  15. Selective and Sensitive Detection of Cyanide Based on the Displacement Strategy Using a Water-Soluble Fluorescent Probe

    Directory of Open Access Journals (Sweden)

    Ming La

    2016-01-01

    Full Text Available A water-soluble fluorescent probe (C-GGH was used for the highly sensitive and selective detection of cyanide (CN− in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His, the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L for CN− in drinking water set by the WHO (World Health Organization. The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO43-, N3-, NO3-, AcO−, SO42-, and CO32-.

  16. Sugar transport across lactose permease probed by steered molecular dynamics

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Yin, Ying; Tajkhorshid, Emad

    2007-01-01

    Escherichia coli lactose permease (LacY) transports sugar across the inner membrane of the bacterium using the proton motive force to accumulate sugar in the cytosol. We have probed lactose conduction across LacY using steered molecular dynamics, permitting us to follow molecular and energetic...... details of lactose interaction with the lumen of LacY during its permeation. Lactose induces a widening of the narrowest parts of the channel during permeation, the widening being largest within the periplasmic half-channel. During permeation, the water-filled lumen of LacY only partially hydrates lactose......, forcing it to interact with channel lining residues. Lactose forms a multitude of direct sugar-channel hydrogen bonds, predominantly with residues of the flexible N-domain, which is known to contribute a major part of LacY's affinity for lactose. In the periplasmic half-channel lactose predominantly...

  17. The Ecological Dynamics of Natural Selection: Traits and the Coevolution of Community Structure.

    Science.gov (United States)

    McPeek, Mark A

    2017-05-01

    Natural selection has both genetic and ecological dynamics. The fitnesses of individuals change with their ecological context, and so the form and strength of selective agents change with abiotic factors and the phenotypes and abundances of interacting species. I use standard models of consumer-resource interactions to explore the ecological dynamics of natural selection and how various trait types influence these dynamics and the resulting structure of a community of coevolving species. Evolutionary optima favored by natural selection depend critically on the abundances of interacting species, and the traits of species can undergo dynamic cycling in limited areas of parameter space. The ecological dynamics of natural selection can also drive shifts from one adaptive peak to another, and these ecologically driven adaptive peak shifts are fundamental to the dynamics of niche differentiation. Moreover, this ecological differentiation is fostered in more productive and more benign environments where species interactions are stronger and where the selection gradients generated by species interactions are stronger. Finally, community structure resulting from coevolution depends fundamentally on the types of traits that underlie species interactions. The ecological dynamics of the process cannot be simplified, neglected, or ignored if we are to build a predictive theory of natural selection.

  18. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  19. Dual-probe decoherence microscopy: probing pockets of coherence in a decohering environment

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Müller, Clemens; Marthaler, Michael; Schön, Gerd

    2012-01-01

    We study the use of a pair of qubits as a decoherence probe of a nontrivial environment. This dual-probe configuration is modelled by three two-level systems (TLSs), which are coupled in a chain in which the middle system represents an environmental TLS. This TLS resides within the environment of the qubits and therefore its coupling to perturbing fluctuations (i.e. its decoherence) is assumed much stronger than the decoherence acting on the probe qubits. We study the evolution of such a tripartite system including the appearance of a decoherence-free state (dark state) and non-Markovian behaviour. We find that all parameters of this TLS can be obtained from measurements of one of the probe qubits. Furthermore, we show the advantages of two qubits in probing environments and the new dynamics imposed by a TLS that couples to two qubits at once. (paper)

  20. Selective probe of the morphology and local vibrations at carbon nanoasperities

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Toshihiko; Endo, Morinobu; Kaneko, Katsumi [Research Center for Exotic Nanocarbons (JST), Shinshu University, 4-17-1, Wakasato, Nagano-city 380-8553 (Japan); Urita, Koki; Moriguchi, Isamu [Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521 (Japan); Tomanek, David [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824 (United States); Ohba, Tomonori [Department of Chemistry, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2012-02-14

    We introduce a way to selectively probe local vibration modes at nanostructured asperities such as tips of carbon nanohorns. Our observations benefit from signal amplification in surface-enhanced Raman scattering (SERS) at sites near a silver surface. We observe nanohorn tip vibration modes in the range 200-500 cm{sup -1}, which are obscured in regular Raman spectra. Ab initio density functional calculations assign modes in this frequency range to local vibrations at the nanohorn cap resembling the radial breathing mode of fullerenes. Careful interpretation of our SERS spectra indicates presence of caps with 5 or 6 pentagons, which are chemically the most active sites. Changes in the peak intensities and frequencies with time indicate that exposure to laser irradiation may cause structural rearrangements at the cap.

  1. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  2. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature.

  3. Molecularly barcoded Zika virus libraries to probe in vivo evolutionary dynamics.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2018-03-01

    Full Text Available Defining the complex dynamics of Zika virus (ZIKV infection in pregnancy and during transmission between vertebrate hosts and mosquito vectors is critical for a thorough understanding of viral transmission, pathogenesis, immune evasion, and potential reservoir establishment. Within-host viral diversity in ZIKV infection is low, which makes it difficult to evaluate infection dynamics. To overcome this biological hurdle, we constructed a molecularly barcoded ZIKV. This virus stock consists of a "synthetic swarm" whose members are genetically identical except for a run of eight consecutive degenerate codons, which creates approximately 64,000 theoretical nucleotide combinations that all encode the same amino acids. Deep sequencing this region of the ZIKV genome enables counting of individual barcodes to quantify the number and relative proportions of viral lineages present within a host. Here we used these molecularly barcoded ZIKV variants to study the dynamics of ZIKV infection in pregnant and non-pregnant macaques as well as during mosquito infection/transmission. The barcoded virus had no discernible fitness defects in vivo, and the proportions of individual barcoded virus templates remained stable throughout the duration of acute plasma viremia. ZIKV RNA also was detected in maternal plasma from a pregnant animal infected with barcoded virus for 67 days. The complexity of the virus population declined precipitously 8 days following infection of the dam, consistent with the timing of typical resolution of ZIKV in non-pregnant macaques and remained low for the subsequent duration of viremia. Our approach showed that synthetic swarm viruses can be used to probe the composition of ZIKV populations over time in vivo to understand vertical transmission, persistent reservoirs, bottlenecks, and evolutionary dynamics.

  4. Dynamic Heterogeneous Multiscale Filtration Model: Probing Micro- and Macroscopic Filtration Characteristics of Gasoline Particulate Filters.

    Science.gov (United States)

    Gong, Jian; Viswanathan, Sandeep; Rothamer, David A; Foster, David E; Rutland, Christopher J

    2017-10-03

    Motivated by high filtration efficiency (mass- and number-based) and low pressure drop requirements for gasoline particulate filters (GPFs), a previously developed heterogeneous multiscale filtration (HMF) model is extended to simulate dynamic filtration characteristics of GPFs. This dynamic HMF model is based on a probability density function (PDF) description of the pore size distribution and classical filtration theory. The microstructure of the porous substrate in a GPF is resolved and included in the model. Fundamental particulate filtration experiments were conducted using an exhaust filtration analysis (EFA) system for model validation. The particulate in the filtration experiments was sampled from a spark-ignition direct-injection (SIDI) gasoline engine. With the dynamic HMF model, evolution of the microscopic characteristics of the substrate (pore size distribution, porosity, permeability, and deposited particulate inside the porous substrate) during filtration can be probed. Also, predicted macroscopic filtration characteristics including particle number concentration and normalized pressure drop show good agreement with the experimental data. The resulting dynamic HMF model can be used to study the dynamic particulate filtration process in GPFs with distinct microstructures, serving as a powerful tool for GPF design and optimization.

  5. A Low-Power High-Dynamic-Range Receiver System for In-Probe 3-D Ultrasonic Imaging.

    Science.gov (United States)

    Attarzadeh, Hourieh; Xu, Ye; Ytterdal, Trond

    2017-10-01

    In this paper, a dual-mode low-power, high dynamic-range receiver circuit is designed for the interface with a capacitive micromachined ultrasonic transducer. The proposed ultrasound receiver chip enables the development of an in-probe digital beamforming imaging system. The flexibility of having two operation modes offers a high dynamic range with minimum power sacrifice. A prototype of the chip containing one receive channel, with one variable transimpedance amplifier (TIA) and one analog to digital converter (ADC) circuit is implemented. Combining variable gain TIA functionality with ADC gain settings achieves an enhanced overall high dynamic range, while low power dissipation is maintained. The chip is designed and fabricated in a 65 nm standard CMOS process technology. The test chip occupies an area of 76[Formula: see text] 170 [Formula: see text]. A total average power range of 60-240 [Formula: see text] for a sampling frequency of 30 MHz, and a center frequency of 5 MHz is measured. An instantaneous dynamic range of 50.5 dB with an overall dynamic range of 72 dB is obtained from the receiver circuit.

  6. Detecting and Tracking Nonfluorescent Nanoparticles Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Fang, Ning

    2012-01-17

    Precisely imaging and tracking dynamic biological processes in live cells are crucial for both fundamental research in life sciences and biomedical applications. Nonfluorescent nanoparticles are emerging as important optical probes in live-cell imaging because of their excellent photostability, large optical cross sections, and low cytotoxicity. Here, we provide a review of recent development in optical imaging of nonfluorescent nanoparticle probes and their applications in dynamic tracking and biosensing in live cells. A brief discussion on cytotoxicity of nanoparticle probes is also provided.

  7. Probing the Chaotic Dynamics of Fluids using Insights from Coupled Map Lattices

    Science.gov (United States)

    Barbish, Johnathon; Xu, Mu; Paul, Mark

    2017-11-01

    Many difficult fluid challenges exhibit high-dimensional spatiotemporal chaos. Natural examples include the dynamics of the atmosphere and oceans. New insights have been gained by studying canonical fluid problems such as Rayleigh-Bénard convection where significant progress has been made using large-scale computations of the partial differential equations that describe the fluid flow. However, these computations remain very expensive which makes it difficult, if not currently impossible, to explore new ideas that require large sample sets, vast sweeps of parameter space, and long-time statistics. We study these questions using coupled map lattices (CML) in one and two dimensions. We compute the covariant Lyapunov vectors to probe fundamental features of the CML's including the Lyapunov spectrum, fractal dimension, and the principal angle between the stable and unstable manifolds. We are particularly interested in the role of a conservation law on the chaotic dynamics, the use of ideas from equilibrium thermodynamics to yield a coarse-grained representation, and in the development of reduced order models. This work is supported by NSF DMS-1622299.

  8. Assessing the Utility of Temporally Dynamic Terrain Indices in Alaskan Moose Resource Selection

    Science.gov (United States)

    Jennewein, J. S.; Hebblewhite, M.; Meddens, A. J.; Gilbert, S.; Vierling, L. A.; Boelman, N.; Eitel, J.

    2017-12-01

    The accelerated warming in arctic and boreal regions impacts ecosystem structure and plant species distribution, which have secondary effects on wildlife. In summer months, moose (Alces alces) are especially vulnerable to changes in the availability and quality of forage and foliage cover due to their thermoregulatory needs and high energetic demands post calving. Resource selection functions (RSFs) have been used with great success to model such tradeoffs in habitat selection. Recently, RSFs have expanded to include more dynamic representations of habitat selection through the use of time-varying covariates such as dynamic habitat indices. However, to date few studies have investigated dynamic terrain indices, which incorporate long-term, highly-dynamic meteorological data (e.g., albedo, air temperature) and their utility in modeling habitat selection. The purpose of this study is to compare two dynamic terrain indices (i.e., solar insolation and topographic wetness) to their static counterparts in Alaskan moose resource selection over a ten-year period (2008-2017). Additionally, the utility of a dynamic wind-shelter index is assessed. Three moose datasets (n=130 total), spanning a north-to-south gradient in Alaska, are analyzed independently to assess location-specific resource selection. The newly-released, high-resolution Arctic Digital Elevation Model (5m2) is used as the terrain input into both dynamic and static indices. Dynamic indices are programmed with meteorological data from the North American Regional Analysis (NARR) and NASA's Goddard Earth Sciences Data and Information Services Center (GES-DISC) databases. Static wetness and solar insolation indices are estimated using only topographic parameters (e.g., slope, aspect). Preliminary results from pilot analyses suggest that dynamic terrain indices may provide novel insights into resource selection of moose that could not be gained when using static counterparts. Future applications of such dynamic

  9. Anxiety-related biases in visual orienting and spatial motor response selection independently assessed by a probe-classification task

    NARCIS (Netherlands)

    Schrooten, M.G.S.; Smulders, F.T.Y.; Mogg, K.; Bradley, B.P.

    2012-01-01

    This dot-probe study assessed anxiety-related biases in visual attentional orienting and spatial motor response selection (motor attention) in high- and low-trait-anxious adults, and whether anxiety-related biases depend on response speed. Emotional-neutral word pairs appeared for 14 or 500 ms, with

  10. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  11. Selection of Activities in Dynamic Business Process Simulation

    Directory of Open Access Journals (Sweden)

    Toma Rusinaitė

    2016-06-01

    Full Text Available Maintaining dynamicity of business processes is one of the core issues of today's business as it enables businesses to adapt to constantly changing environment. Upon changing the processes, it is vital to assess possible impact, which is achieved by using simulation of dynamic processes. In order to implement dynamicity in business processes, it is necessary to have an ability to change components of the process (a set of activities, a content of activity, a set of activity sequences, a set of rules, performers and resources or dynamically select them during execution. This problem attracted attention of researches over the past few years; however, there is no proposed solution, which ensures the business process (BP dynamicity. This paper proposes and specifies dynamic business process (DBP simulation model, which satisfies all of the formulated DBP requirements.

  12. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    Science.gov (United States)

    Conduit, G. J.; Altman, E.

    2010-10-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  13. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    International Nuclear Information System (INIS)

    Conduit, G. J.; Altman, E.

    2010-01-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  14. Evolutionary dynamics on graphs: Efficient method for weak selection

    Science.gov (United States)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  15. The ML1Nx2 Phosphatidylinositol 3,5-Bisphosphate Probe Shows Poor Selectivity in Cells.

    Science.gov (United States)

    Hammond, Gerald R V; Takasuga, Shunsuke; Sasaki, Takehiko; Balla, Tamas

    2015-01-01

    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2.

  16. Exploiting Submodular Value Functions for Faster Dynamic Sensor Selection

    NARCIS (Netherlands)

    Satsangi, Y.; Whiteson, S.; Oliehoek, F.A.

    2015-01-01

    A key challenge in the design of multi-sensor systems is the efficient allocation of scarce resources such as bandwidth, CPU cycles, and energy, leading to the dynamic sensor selection problem in which a subset of the available sensors must be selected at each timestep. While partially observable

  17. Dual Mechanism of an Intramolecular Charge Transfer (ICT)-FRET-Based Fluorescent Probe for the Selective Detection of Hydrogen Peroxide.

    Science.gov (United States)

    Liang, Xiao; Xu, Xiaoyi; Qiao, Dan; Yin, Zheng; Shang, Luqing

    2017-12-14

    A dual-mechanism intramolecular charge transfer (ICT)-FRET fluorescent probe for the selective detection of H 2 O 2 in living cells has been designed and synthesized. This probe used a coumarin-naphthalimide hybrid as the FRET platform and a boronate moiety as the recognition group. Upon the addition of H 2 O 2 , the probe exhibited a redshifted (73 nm) fluorescence emission, and the ratio of fluorescence intensities at λ=558 and 485 nm (F 558 /F 485 ) shifted notably (up to 100-fold). Moreover, there was a good linearity (R 2 =0.9911) between the ratio and concentration of H 2 O 2 in the range of 0 to 60 μm, with a limit of detection of 0.28 μm (signal to noise ratio (S/N)=3). This probe could also detect enzymatically generated H 2 O 2 . Importantly, it could be used to visualize endogenous H 2 O 2 produced by stimulation from epidermal growth factor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    Directory of Open Access Journals (Sweden)

    Lei Zhu, Ning Guo, Quanzheng Li, Ying Ma, Orit Jacboson, Seulki Lee, Hak Soo Choi, James R. Mansfield, Gang Niu, Xiaoyuan Chen

    2012-01-01

    Full Text Available Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide.Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data.Results: The dual-labeled probe 64Cu-RGD-C(DOTA-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp derived from dynamic optical imaging (1.762 ± 0.020 is comparable to that from dynamic PET (1.752 ± 0.026.Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  19. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    Science.gov (United States)

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  20. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics.

    Directory of Open Access Journals (Sweden)

    Gennady M Verkhivker

    Full Text Available Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between "closed" and "semi-closed" lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of "semi-closed" conformations. The dominant "semi-closed" lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2

  1. An oligogalacturonide-derived molecular probe demonstrates the dynamics of calcium-mediated pectin complexation in cell walls of tip-growing structures

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kracun, Stjepan Kresimir; Rydahl, Maja Gro

    2017-01-01

    walls and in mediating cell-to-cell adhesion. Current immunological methods enable only steady-state detection of egg box formation in situ. Here we present a tool for efficient real-time visualisation of available sites for HG crosslinking within cell wall microdomains. Our approach is based on calcium-mediated...... thermodynamic model. Using defined carbohydrate microarrays, we show that the long OG probe binds exclusively to HG that has a very low degree of esterification and in the presence of divalent ions. We used this probe to study real-time dynamics of HG during elongation of Arabidopsis pollen tubes and root hairs...

  2. Probing the recreational home –The cultural probe as a communicative tool for researcher and user

    OpenAIRE

    Kristav, Per

    2005-01-01

    How can qualitative, ethnographic and emotional aspects from probe users be mapped at the same time as they get something meaningful in return? The emphasis is here on intellectual rewards during probe work rather than future good designs that in a long term perspective can be beneficial for the probe user. This case study has elaborated the traditional use of cultural probes [1] with a selection of ten families with small children in the Öresund region. The idea was to evoke thoughts abou...

  3. Unbinding Transition of Probes in Single-File Systems

    Science.gov (United States)

    Bénichou, Olivier; Démery, Vincent; Poncet, Alexis

    2018-02-01

    Single-file transport, arising in quasi-one-dimensional geometries where particles cannot pass each other, is characterized by the anomalous dynamics of a probe, notably its response to an external force. In these systems, the motion of several probes submitted to different external forces, although relevant to mixtures of charged and neutral or active and passive objects, remains unexplored. Here, we determine how several probes respond to external forces. We rely on a hydrodynamic description of the symmetric exclusion process to obtain exact analytical results at long times. We show that the probes can either move as a whole, or separate into two groups moving away from each other. In between the two regimes, they separate with a different dynamical exponent, as t1 /4. This unbinding transition also occurs in several continuous single-file systems and is expected to be observable.

  4. Non-affine deformation in microstructure selection in solids: I. Molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Jayee; Paul, Arya; Sengupta, Surajit [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700 098 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India)

    2008-09-10

    We study the nucleation dynamics and microstructure selection in a model two-dimensional solid undergoing a square to rhombic transformation, using coarse-grained molecular dynamics (MD) simulations. We find a range of microstructures depending on the depth of quench. The transformations are accompanied by the creation of transient and localized non-affine zones (NAZ), which evolve with the rapidly moving parent-product interface. These plastic regions are created beyond a threshold stress, at a rate proportional to the local stress. We show that the dynamics of NAZs determines the selection of microstructure, including the ferrite and martensite.

  5. Temperature dependence of dynamical permeability characterization of magnetic thin films using shorted microstrip line probe

    International Nuclear Information System (INIS)

    Li, Xiling; Li, Chengyi; Chai, Guozhi

    2017-01-01

    A temperature dependence microwave permeability characterization system of magnetic thin film up to 10 GHz is designed and fabricated. This system can be used at temperatures ranging from room temperature to 200 °C, and is based on a shorted microstrip probe, which is made by microwave printed circuit board. Without contacting the magnetic thin films to the probe, the microwave permeability of the film can be detected without any limitations of sample size and with almost the same accuracy, as shown by comparison with the results obtained from a shorted microstrip transmission-line fixture. The complex permeability can be deduced by an analytical approach from the measured reflection coefficient of a strip line ( S 11 ) with and without a ferromagnetic film material on it. The procedures are the same with the shorted microstrip transmission-line method. The microwave permeability of an oblique deposited CoZr thin film was investigated with this probe. The results show that the room temperature dynamic permeability of the CoZr film is in good agreement with the results obtained from the established short-circuited microstrip perturbation method. The temperature dependence permeability results fit well with the Landau–Lifshitz–Gilbert equation. Development of the temperature-dependent measurement of the magnetic properties of magnetic thin film may be useful for the high-frequency application of magnetic devices at high temperatures. (paper)

  6. Compensation of aberrations of deflected electron probe by means of dynamical focusing with stigmator

    International Nuclear Information System (INIS)

    Baba, Norio; Ebe, Toyoe; Ikehata, Koichi; Ito, Yasuhiro; Terada, Hiroshi

    1979-01-01

    Electron beam passing through a deflecting field is in general, subjected to aberrations such as distortion, astigmatism and coma in accordance with the deflecting angle. Accordingly the aberration defect of deflected beam is the most serious limiting factor in the performances of micromachining, microminiaturization and high resolution scanning electron microscopes. From many investigators' results, it is obvious that three important compensation methods to aberrations exist in principle, i.e., double deflection system, dynamical focusing, and the dynamical correction using a stigmator. In this paper, based on the aberration formula derived from the eikonal or the path method, the practical data of the aberration constants of deflected electron beam for the sequential deflection system with parallel plates are calculated, and using its result, the distorted spot patterns of an electron probe deflected in two-dimensional directions for various defocusings are graphically displayed by the aid of a computer. Further, by means of the dynamical focusing with a stigmator, the conditions to completely compensate the second order astigmatic aberration are derived, and spot patterns and the electron density distributions within the spots in the case when the compensating conditions are satisfied are also graphically displayed. (Wakatsuki, Y.)

  7. Why nano-oxidation with carbon nanotube probes is so stable: II. Bending behaviour of CNT probes during nano-oxidation

    International Nuclear Information System (INIS)

    Kuramochi, H; Tokizaki, T; Ando, K; Yokoyama, H; Dagata, J A

    2007-01-01

    Part I demonstrated that nano-oxidation in the dynamic-force mode was enhanced by the use of conductive carbon nanotube (CNT) probes. Fabrication of oxide nanostructures using CNT probes benefited not only from the smaller tip apex compared to conventional probes but from improved operational stability over a wide range of exposure conditions primarily due to the hydrophobic nature of the CNT. Here we investigate the bending response of CNT probes to electrostatic and meniscus forces during nano-oxidation. We conclude that bending of the CNT introduces an additional cushion in the combined cantilever-probe deflection system, thus improving overall stability of the tip-sample junction during nano-oxidation

  8. Probing ultrafast dynamics in electronic structure of epitaxial Gd(0 0 0 1) on W(1 1 0)

    Energy Technology Data Exchange (ETDEWEB)

    Beaulieu, Nathan [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France); Malinowski, Gregory [Laboratoire de Physique des Solides, Université Paris Sud, Orsay (France); Bendounan, Azzedine; Silly, Mathieu G.; Chauvet, Christian [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France); Krizmancic, Damjan [Instituto Officina dei Materiali (IOM)-CNR Laboratorio TASC, in Area Science Park S.S.14, Km 163.5, I-34149 Trieste (Italy); Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2013-08-15

    Highlights: •Study of the magnetism of epitaxial Gd(0 0 0 1)/W(1 1 0). •Study of Gd(0 0 0 1) band structure as a function of the temperature. •Study of the Gd magnetism dynamics probing the M5 edge. -- Abstract: The electronic and magnetic properties of Gd have been studied using time- and angle-resolved photoelectron spectroscopy employing laser pump and synchrotron radiation probe pulses. The static temperature evolution of the valence band and more precisely, the 5d6s exchange splitting is reported. Ultrafast demagnetization is measured using dichroic resonant Auger spectroscopy. Remarkably, a complete demagnetization is observed followed up by a non-monotonic recovery that could be associated to magnetization oscillations.

  9. Neutrons as a probe

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1993-01-01

    As an introduction to the symposium a brief overview will be given about the features of neutrons as a probe. First it will be pointed out that the utilization of neutrons as a probe for investigating the structural and dynamical properties of condensed matters is a benign gift eventuated from the release of atomic energy initiated by Enrico Fermi exactly half century ago. Features of neutrons as a probe are discussed in accordance with the four basic physical properties of neutrons as an elementary particle; (1) no electric charge (the interaction with matter is nuclear), (2) the mass of neutron is 1 amu, (3) spin is 1/2 and (4) neutrons have magnetic dipole moment. Overview will be given on the uniqueness of neutrons as a probe and on the variety in the way they are used in the wide research area from the pure science to the industrial applications. (author)

  10. Design of fiber optic probes for laser light scattering

    Science.gov (United States)

    Dhadwal, Harbans S.; Chu, Benjamin

    1989-01-01

    A quantitative analysis is presented of the role of optical fibers in laser light scattering. Design of a general fiber optic/microlens probe by means of ray tracing is described. Several different geometries employing an optical fiber of the type used in lightwave communications and a graded index microlens are considered. Experimental results using a nonimaging fiber optic detector probe show that due to geometrical limitations of single mode fibers, a probe using a multimode optical fiber has better performance, for both static and dynamic measurements of the scattered light intensity, compared with a probe using a single mode fiber. Fiber optic detector probes are shown to be more efficient at data collection when compared with conventional approaches to measurements of the scattered laser light. Integration of fiber optic detector probes into a fiber optic spectrometer offers considerable miniaturization of conventional light scattering spectrometers, which can be made arbitrarily small. In addition static and dynamic measurements of scattered light can be made within the scattering cell and consequently very close to the scattering center.

  11. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  12. A scanning fluid dynamic gauging technique for probing surface layers

    International Nuclear Information System (INIS)

    Gordon, Patrick W; Chew, Y M John; Wilson, D Ian; Brooker, Anju D M; York, David W

    2010-01-01

    Fluid dynamic gauging (FDG) is a technique for measuring the thickness of soft solid deposit layers immersed in a liquid environment, in situ and in real time. This paper details the performance of a novel automated, scanning FDG probe (sFDG) which allows the thickness of a sample layer to be monitored at several points during an experiment, with a resolution of ±5 µm. Its application is demonstrated using layers of gelatine, polyvinyl alcohol (PVA) and baked tomato purée deposits. Swelling kinetics, as well as deformation behaviour—based on knowledge of the stresses imposed on the surface by the gauging flow—can be determined at several points, affording improved experimental data. The use of FDG as a surface scanning technique, operating as a fluid mechanical analogue of atomic force microscopy on a millimetre length scale, is also demonstrated. The measurement relies only on the flow behaviour, and is thus suitable for use in opaque fluids, does not contact the surface itself and does not rely on any specific physical properties of the surface, provided it is locally stiff

  13. Nano-confined water in the interlayers of hydrocalumite: Reorientational dynamics probed by neutron spectroscopy and molecular dynamics computer simulations

    Science.gov (United States)

    Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.

    2008-12-01

    Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the

  14. Design and Investigation of Optical Properties of N-(Rhodamine-B)-Lactam-Ethylenediamine (RhB-EDA) Fluorescent Probe.

    Science.gov (United States)

    Soršak, Eva; Volmajer Valh, Julija; Korent Urek, Špela; Lobnik, Aleksandra

    2018-04-14

    This study presents chemical modification of a Rhodamine B (RhB) sensor probe by ethylenediamine (EDA), and investigation of its spectral as well as sensor properties to the various metals. The synthesised N -(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe shows interesting optical sensor properties, and high sensitivity and selectivity to Ag⁺ ions among all the tested metal ions (K⁺, Mg 2+ , Cu 2+ , Ni 2+ , Fe 2+ , Pb 2+ , Na⁺, Mn 2+ , Li⁺, Al 3+ , Co 2+ , Hg 2+ , Sr 2+ , Ca 2+ , Ag⁺, Cd 2+ and Zn 2+ ), while the well-known Rhodamine B (RhB) fluorescent probe shows much less sensitivity to Ag⁺ ions, but high sensitivity to Fe 2+ ions. The novel fluorescent sensor probe RhB-EDA has the capabilities to sense Ag⁺ ions up to µM ranges by using the fluorescence quenching approach. The probe displayed a dynamic response to Ag⁺ in the range of 0.43 × 10 -3 -10 -6 M with a detection limit of 0.1 μM. The sensing system of an RhB-EDA novel fluorescent probe was optimised according to the spectral properties, effect of pH and buffer, photostability, incubation time, sensitivity, and selectivity. Since all the spectral and sensing properties were tested in green aqueous media, although many other similar sensor systems rely on organic solvent solutions, the RhB-EDA sensing probe may be a good candidate for measuring Ag⁺ ions in real-life applications.

  15. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  16. Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001)

    DEFF Research Database (Denmark)

    Beye, M.; Anniyev, T.; Coffee, R.

    2013-01-01

    to hot-electron-driven vibrational excitations. This process is faster than, but occurs in parallel with, the transition into the precursor state. With resonant x-ray emission spectroscopy, we probe each of these states selectively and determine the respective transient populations depending on optical...... (2013)SCIEAS0036-8075] a phonon-mediated transition into a weakly adsorbed precursor state occurring on a time scale of >2 ps prior to desorption. Here we focus on processes within the first picosecond after laser excitation and show that the metal-adsorbate coordination is initially increased due...

  17. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Nhan Chuong [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (Ic); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (Tg). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure/dynamics

  18. Functional network macroscopes for probing past and present Earth system dynamics (Invited)

    Science.gov (United States)

    Donges, J. F.

    2013-12-01

    probing past and present Earth system dynamics: Complex hierarchical interactions, tipping points, and beyond" by J.F. Donges, Humboldt University, Berlin, Germany, 2012. URL: http://nbn-resolving.de/urn:nbn:de:kobv:11-100207126.

  19. Blue emitting copper nanoclusters as colorimetric and fluorescent probe for the selective detection of bilirubin

    Science.gov (United States)

    R. S., Aparna; J. S., Anjali Devi; John, Nebu; Abha, K.; S. S., Syamchand; George, Sony

    2018-06-01

    Hurdles to develop point of care diagnostic methods restrict the translation of progress in the health care sector from bench side to bedside. In this article a simple, cost effective fluorescent as well as colorimetric nanosensor was developed for the early and easy detection of hyperbilirubinemia. A stable, water soluble bovine serum albumin stabilised copper nanocluster (BSA CuNC) was used as the fluorescent probe which exhibited strong blue emission (404 nm) upon 330 nm excitation. The fluorescence of the BSA CuNC can be effectively quenched by the addition of bilirubin by the formation of copper-bilirubin complex. Meanwhile the copper-bilirubin complex resulted in an observable colour change from pale violet to green facilitating colorimetric detection. The prepared sensor displayed good selectivity and sensitivity over other co-existing molecules, and can be used for quantifying bilirubin with a detection limit down to 257 fM. Additionally, the as-prepared probe was coated on a paper strip to develop a portable paper strip sensor of bilirubin. Moreover, the method was successfully applied in real sample analysis and obtained promising result.

  20. Selective attention towards painful faces among chronic pain patients: evidence from a modified version of the dot-probe.

    Science.gov (United States)

    Khatibi, Ali; Dehghani, Mohsen; Sharpe, Louise; Asmundson, Gordon J G; Pouretemad, Hamidreza

    2009-03-01

    Evidence that patients with chronic pain selectively attend to pain-related stimuli presented in modified Stroop and dot-probe paradigms is mixed. The pain-related stimuli used in these studies have been primarily verbal in nature (i.e., words depicting themes of pain). The purpose of the present study was to determine whether patients with chronic pain, relative to healthy controls, show selective attention for pictures depicting painful faces. To do so, 170 patients with chronic pain and 40 age- and education-matched healthy control participants were tested using a dot-probe task in which painful, happy, and neutral facial expressions were presented. Selective attention was denoted using the mean reaction time and the bias index. Results indicated that, while both groups shifted attention away from happy faces (and towards neutral faces), only the control group shifted attention away from painful faces. Additional analyses were conducted on chronic pain participants after dividing them into groups on the basis of fear of pain/(re)injury. The results of these analyses revealed that while chronic pain patients with high and low levels of fear both shifted attention away from happy faces, those with low fear shifted attention away from painful faces, whereas those with high fear shifted attention towards painful faces. These results suggest that patients with chronic pain selectively attend to facial expressions of pain and, importantly, that the tendency to shift attention towards such stimuli is positively influenced by high fear of pain/(re)injury. Implications of the findings and future research directions are discussed.

  1. A quinoline-based Cu2 + ion complex fluorescence probe for selective detection of inorganic phosphate anion in aqueous solution and its application to living cells

    Science.gov (United States)

    Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin

    2017-08-01

    A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu2 + ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu2 + ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu2 + to probe QP was found to be 2.12 × 104 M- 1. Further, the Cu2 + ensemble of probe QP was found to respond H2PO4- and HPO42 - among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu2 + cation and H2PO4- and HPO42 - anions in living cells.

  2. Theoretical Investigation of Dynamic Properties of Magnetic Molecule Systems as Probed by NMR and Pulsed Fields Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rousochatzakis, Ioannis [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The field of molecular magnetism[l-6] has become a subject of intense theoretical and experimental interest and has rapidly evolved during the last years. This inter-disciplinary field concerns magnetic systems at the molecular or "nanoscopic" level, whose realization has become feasible due to recent advances in the field of chemical synthesis. The present theoretical work provides a first step towards exploiting the possibilities that are offered by probing magnetic molecules using external magnetic fields with high sweep rates. These probes, apart for providing information specific to magnetic molecules, offer the possibility of conducting a detailed study of the relaxational behavior of interacting spin systems as a result of their coupling with a "heat bath" and in particular the excitations of the host lattice. Development of a broad theoretical framework for dealing with relaxational phenomena induced by dynamical magnetic fields is indeed a worthy goal.

  3. A molecular dual fluorescence-ON probe for Mg2+ and Zn2+: Higher selectivity towards Mg2+ over Zn2+ in a mixture

    International Nuclear Information System (INIS)

    Maity, Shubhra Bikash; Bharadwaj, Parimal K.

    2014-01-01

    A Schiff base incorporating a coumarin fluorophore has been synthesized from easily available materials and is characterized by X-ray crystallography and other techniques. The probe serves as a dual analyte sensor and quantifies Mg 2+ and Zn 2+ ions by emission enhancement at different wavelengths without interference from a host of biologically relevant alkali/alkaline earth and transition metal ions. In presence of Mg 2+ the light yellow color of the probe in methanol changes to yellow–orange while in presence of Zn 2+ ion it changes to orange and hence can be detected through naked eye. The probe selectively gives emission of Mg 2+ when Zn 2+ ion is also present. - Highlights: • A Schiff base incorporating a coumarin fluorophore has been synthesized. • It acts as a dual analyte sensor and quantifies Mg 2+ and Zn 2+ ions by emission enhancement at different wavelengths. • It shows excellent selectivity for Mg 2+ ion in presence of alkali, alkaline earth metals as well as first row transition metals

  4. Recombinant phage probes for Listeria monocytogenes

    Science.gov (United States)

    Carnazza, S.; Gioffrè, G.; Felici, F.; Guglielmino, S.

    2007-10-01

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 104 cells ml-1. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  5. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    Science.gov (United States)

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  6. Detecting order and lateral pressure at biomimetic interfaces using a mechanosensitive second-harmonic-generation probe.

    Science.gov (United States)

    Licari, Giuseppe; Beckwith, Joseph S; Soleimanpour, Saeideh; Matile, Stefan; Vauthey, Eric

    2018-04-04

    A planarizable push-pull molecular probe with mechanosensitive properties was investigated at several biomimetic interfaces, consisting of different phospholipid monolayers located between dodecane and an aqueous buffer solution, using the interface-specific surface-second-harmonic-generation (SSHG) technique. Whereas the SSHG spectra recorded at liquid-disordered interfaces were similar to the absorption spectra in bulk solutions, those measured at liquid-ordered phases exhibited a remarkable shift towards lower energies to an extent depending on the surface pressure of the phospholipid monolayer. On the basis of quantum-chemical calculations, this effect was accounted for by the planarization of the mechanosensitive probe. Polarization-resolved SSHG measurements revealed that the average orientation of the probe at the interface is an even more sensitive reporter of lateral pressure and order than the spectral shape. Additionally, time-resolved SSHG measurements pointed to slower dynamics upon intercalation inside the phospholipid monolayer, most likely due to the more constrained environment. This study demonstrates that the concept of mechanosensitive optical probes can be further exploited when combined with a surface-selective nonlinear optical technique.

  7. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  8. Two-probe atomic-force microscope manipulator and its applications

    Science.gov (United States)

    Zhukov, A. A.; Stolyarov, V. S.; Kononenko, O. V.

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  9. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  10. Dynamic stereoscopic selective visual attention (dssva): integrating motion and shape with depth in video segmentation

    OpenAIRE

    López Bonal, María Teresa; Fernández Caballero, Antonio; Saiz Valverde, Sergio

    2008-01-01

    Depth inclusion as an important parameter for dynamic selective visual attention is presented in this article. The model introduced in this paper is based on two previously developed models, dynamic selective visual attention and visual stereoscopy, giving rise to the so-called dynamic stereoscopic selective visual attention method. The three models are based on the accumulative computation problem-solving method. This paper shows how software reusability enables enhancing results in vision r...

  11. Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    International Nuclear Information System (INIS)

    Guo Yu

    2010-01-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ - and σ + polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Probing cellular mechanoadaptation using cell-substrate de-adhesion dynamics: experiments and model.

    Science.gov (United States)

    S S, Soumya; Sthanam, Lakshmi Kavitha; Padinhateeri, Ranjith; Inamdar, Mandar M; Sen, Shamik

    2014-01-01

    Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.

  13. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe.

    Science.gov (United States)

    Liu, Jia-Ming; Lin, Li-ping; Wang, Xin-Xing; Lin, Shao-Qin; Cai, Wen-Lian; Zhang, Li-Hong; Zheng, Zhi-Yong

    2012-06-07

    Based on the ability of lysine (Lys) to enhance the fluorescence intensity of bovine serum albumin modified-carbon dots (CDs-BSA) to decrease surface defects and quench fluorescence of the CDs-BSA-Lys system in the presence of Cu(2+) under conditions of phosphate buffer (PBS, pH = 5.0) at 45 °C for 10 min, a sensitive Lys enhancing CDs-BSA fluorescent probe was designed. The environment-friendly, simple, rapid, selective and sensitive fluorescent probe has been utilized to detect Cu(2+) in hair and tap water samples and it achieved consistent results with those obtained by inductively coupled plasma mass spectroscopy (ICP-MS). The mechanism of the proposed assay for the detection of Cu(2+) is discussed.

  14. Coupling an electrospray source and a solids probe/chemical ionization source to a selected ion flow tube apparatus

    International Nuclear Information System (INIS)

    Melko, Joshua J.; Ard, Shaun G.; Shuman, Nicholas S.; Viggiano, Albert A.; Pedder, Randall E.; Taormina, Christopher R.

    2015-01-01

    A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H 3 O + , but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re + with O 2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re 2 2+ is found to charge transfer with O 2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba + , which is reacted with N 2 O to create BaO + , and we find a rate constant that agrees with the literature

  15. Design of a highly selective quenched activity-based probe and its application in dual color imaging studies of cathepsin S activity localization.

    Science.gov (United States)

    Oresic Bender, Kristina; Ofori, Leslie; van der Linden, Wouter A; Mock, Elliot D; Datta, Gopal K; Chowdhury, Somenath; Li, Hao; Segal, Ehud; Sanchez Lopez, Mateo; Ellman, Jonathan A; Figdor, Carl G; Bogyo, Matthew; Verdoes, Martijn

    2015-04-15

    The cysteine cathepsins are a group of 11 proteases whose function was originally believed to be the degradation of endocytosed material with a high degree of redundancy. However, it has become clear that these enzymes are also important regulators of both health and disease. Thus, selective tools that can discriminate between members of this highly related class of enzymes will be critical to further delineate the unique biological functions of individual cathepsins. Here we present the design and synthesis of a near-infrared quenched activity-based probe (qABP) that selectively targets cathepsin S which is highly expressed in immune cells. Importantly, this high degree of selectivity is retained both in vitro and in vivo. In combination with a new green-fluorescent pan-reactive cysteine cathepsin qABP we performed dual color labeling studies in bone marrow-derived immune cells and identified vesicles containing exclusively cathepsin S activity. This observation demonstrates the value of our complementary cathepsin probes and provides evidence for the existence of specific localization of cathepsin S activity in dendritic cells.

  16. A novel mitochondria-targeted two-photon fluorescent probe for dynamic and reversible detection of the redox cycles between peroxynitrite and glutathione.

    Science.gov (United States)

    Sun, Chunlong; Du, Wen; Wang, Peng; Wu, Yang; Wang, Baoqin; Wang, Jun; Xie, Wenjun

    2017-12-16

    Redox homeostasis is important for maintenance of normal physiological functions within cells. Redox state of cells is primarily a consequence of precise balance between levels of reducing equivalents and reactive oxygen species. Redox homeostasis between peroxynitrite (ONOO - ) and glutathione (GSH) is closely associated with physiological and pathological processes, such as prolonged relaxation in vascular tissues and smooth muscle preparations, attenuation of hepatic necrosis, and activation of matrix metalloproteinase-2. We report a two-photon fluorescent probe (TP-Se) based on water-soluble carbazole-based compound, which integrates with organic selenium, to monitor changes in ONOO - /GSH levels in cells. This probe can reversibly respond to ONOO - and GSH and exhibits high selectivity, sensitivity, and mitochondrial targeting. The probe was successfully applied to visualize changes in redox cycles during ONOO - outbreak and antioxidant GSH repair in cells. The probe will lead to significant development on redox events involved in cellular redox regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dual Selectivity Expressed in [2+2+1] Dynamic Clipping of Unsymmetrical [2]Catenanes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yi

    2010-06-11

    A {pi}-templated dynamic [2+2+1] clipping protocol is established for the synthesis of [2]catenanes from two parts dialdehyde, two parts diamine and one part tetracationic cyclophane. It is further diversified for the selective formation of an unsymmetrical [2]catenane showing great translational selectivity by employing two different dialdehydes in a one-pot reaction. The dual selectivity and the dynamic nature are verified by {sup 1}H NMR spectroscopy, X-ray single crystal structural studies and exchange experiments.

  18. Dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    The temporal dynamics of a broad-area diode laser with lateral-mode-selected long-cavity feedback is studied experimentally. Different dynamics are observed when different lateral modes are selected. When the feedback mirror is aligned perfectly and high-order modes are selected, in most....... When the feedback mirror is aligned non-perfectly, pulse-package oscillation is observed, for the first time to our knowledge, in a diode laser with long-cavity feedback....... of the cases, the output of the laser shows a periodic oscillation corresponding to a single roundtrip external-cavity loop, but the dynamic behavior disappears in some case; when the zero-order lateral-mode is selected, periodic oscillation corresponding to a double roundtrip external-cavity loop is observed...

  19. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.

    Science.gov (United States)

    Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L

    2017-06-15

    The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.

  20. Anomalous diffusion of a probe in a bath of active granular chains

    Science.gov (United States)

    Jerez, Michael Jade Y.; Confesor, Mark Nolan P.; Carpio-Bernido, M. Victoria; Bernido, Christopher C.

    2017-08-01

    We investigate the dynamics of a passive probe particle in a bath of active granular chains (AGC). The bath and the probe are enclosed in an experimental compartment with a sinusoidal boundary to prevent AGC congestion along the boundary while connected to an electrodynamic shaker. Single AGC trajectory analysis reveals a persistent type of motion compared to a purely Brownian motion as seen in its mean squared displacement (MSD). It was found that at small concentration, Φ ≤ 0.44, the MSD exhibits two dynamical regimes characterized by two different scaling exponents. For small time scales, the dynamics is superdiffusive (1.32-1.63) with the MSD scaling exponent increasing monotonically with increasing AGC concentration. On the other hand, at long time, we recover the Brownian dynamics regime, MSD = DΔt, where the mobility D ∝ Φ. We quantify the probe dynamics at short time scale by modeling it as a fractional Brownian motion. The analytical form of the MSD agrees with experimental results.

  1. Designing topological defects in 2D materials using scanning probe microscopy and a self-healing mechanism: a density functional-based molecular dynamics study

    Science.gov (United States)

    Popov, Igor; Đurišić, Ivana; Belić, Milivoj R.

    2017-12-01

    Engineering of materials at the atomic level is one of the most important aims of nanotechnology. The unprecedented ability of scanning probe microscopy to address individual atoms opened up the possibilities for nanomanipulation and nanolitography of surfaces and later on of two-dimensional materials. While the state-of-the-art scanning probe lithographic methods include, primarily, adsorption, desorption and repositioning of adatoms and molecules on substrates or tailoring nanoribbons by etching of trenches, the precise modification of the intrinsic atomic structure of materials is yet to be advanced. Here we introduce a new concept, scanning probe microscopy with a rotating tip, for engineering of the atomic structure of membranes based on two-dimensional materials. In order to indicate the viability of the concept, we present our theoretical research, which includes atomistic modeling, molecular dynamics simulations, Fourier analysis and electronic transport calculations. While stretching can be employed for fabrication of atomic chains only, our comprehensive molecular dynamics simulations indicate that nanomanipulation by scanning probe microscopy with a rotating tip is capable of assembling a wide range of topological defects in two-dimensional materials in a rather controllable and reproducible manner. We analyze two possibilities. In the first case the probe tip is retracted from the membrane while in the second case the tip is released beneath the membrane allowing graphene to freely relax and self-heal the pore made by the tip. The former approach with the tip rotation can be achieved experimentally by rotation of the sample, which is equivalent to rotation of the tip, whereas irradiation of the membrane by nanoclusters can be utilized for the latter approach. The latter one has the potential to yield a yet richer diversity of topological defects on account of a lesser determinacy. If successfully realized experimentally the concept proposed here could

  2. The Hera Saturn Entry Probe Mission: a Proposal in Response to the ESA M5 Call

    Science.gov (United States)

    Mousis, Olivier; Atkinson, David; Amato, Michael; Aslam, Shahid; Atreya, Sushil; Blanc, Michel; Bolton, Scott; Brugger, Bastien; Calcutt, Simon; Cavalié, Thibault; Charnoz, Sébastien; Coustenis, Athena; Deleuil, Magali; Dobrijevic, Michel; Ferri, Francesca; Fletcher, Leigh; Gautier, Daniel; Guillot, Tristan; Hartogh, Paul; Holland, Andrew

    2017-04-01

    The Hera Saturn entry probe mission is proposed as an ESA M-class mission to be piggybacked on a NASA spacecraft sent to or past the Saturn system. Hera consists of an atmospheric probe built by ESA and released into the atmosphere of Saturn by its NASA companion Saturn Carrier-Relay spacecraft. Hera will perform in situ measurements of the chemical and isotopic composition as well as the structure and dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera will probe well into and possibly beneath the cloud-forming region of the troposphere, below the region accessible to remote sensing, to locations where certain cosmogenically abundant species are expected to be well mixed. The Hera probe will be designed from ESA elements with possible contributions from NASA, and the Saturn/Carrier-Relay Spacecraft will be supplied by NASA through its selection via the New Frontier 2016 call or in the form of a flagship mission selected by the NASA "Roadmaps to Ocean Worlds" (ROW) program. The Hera probe will be powered by batteries, and we therefore anticipate only one major subsystems to be possibly supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the thermal protection system of the probe. Following the highly successful example of the Cassini-Huygens mission, Hera will carry European and American instruments, with scientists and engineers from both agencies and many affiliates participating in all aspects of mission development and implementation. A Saturn probe is one of the six identified desired themes by the Planetary Science Decadal Survey committee on the NASA New Frontier's list, providing additional indication that a Saturn probe is of extremely high interest and a very high priority for the international community.

  3. Objective, Quantitative, Data-Driven Assessment of Chemical Probes.

    Science.gov (United States)

    Antolin, Albert A; Tym, Joseph E; Komianou, Angeliki; Collins, Ian; Workman, Paul; Al-Lazikani, Bissan

    2018-02-15

    Chemical probes are essential tools for understanding biological systems and for target validation, yet selecting probes for biomedical research is rarely based on objective assessment of all potential compounds. Here, we describe the Probe Miner: Chemical Probes Objective Assessment resource, capitalizing on the plethora of public medicinal chemistry data to empower quantitative, objective, data-driven evaluation of chemical probes. We assess >1.8 million compounds for their suitability as chemical tools against 2,220 human targets and dissect the biases and limitations encountered. Probe Miner represents a valuable resource to aid the identification of potential chemical probes, particularly when used alongside expert curation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Recombinant phage probes for Listeria monocytogenes

    Energy Technology Data Exchange (ETDEWEB)

    Carnazza, S; Gioffre, G; Felici, F; Guglielmino, S [Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Messina (Italy)

    2007-10-03

    Monitoring of food and environmental samples for biological threats, such as Listeria monocytogenes, requires probes that specifically bind biological agents and ensure their immediate and efficient detection. There is a need for robust and inexpensive affinity probes as an alternative to antibodies. These probes may be recruited from random peptide libraries displayed on filamentous phage. In this study, we selected from two phage peptide libraries phage clones displaying peptides capable of specific and strong binding to the L. monocytogenes cell surface. The ability of isolated phage clones to interact specifically with L. monocytogenes was demonstrated using enzyme-linked immunosorbent assay (ELISA) and confirmed by co-precipitation assay. We also assessed the sensitivity of phage-bacteria binding by PCR on phage-captured Listeria cells, which could be detected at a concentration of 10{sup 4} cells ml{sup -1}. In addition, as proof-of-concept, we tested the possibility of immobilizing the affinity-selected phages to a putative biosensor surface. The quality of phage deposition was monitored by ELISA and fluorescent microscopy. Phage-bacterial binding was confirmed by high power optical phase contrast microscopy. Overall, the results of this work validate the concept of affinity-selected recombinant filamentous phages as probes for detecting and monitoring bacterial agents under any conditions that warrant their recognition, including in food products.

  5. Optimum Electrode Configurations for Two-Probe, Four-Probe and Multi-Probe Schemes in Electrical Resistance Tomography for Delamination Identification in Carbon Fiber Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Luis Waldo Escalona-Galvis

    2018-04-01

    Full Text Available Internal damage in Carbon Fiber Reinforced Polymer (CFRP composites modifies the internal electrical conductivity of the composite material. Electrical Resistance Tomography (ERT is a non-destructive evaluation (NDE technique that determines the extent of damage based on electrical conductivity changes. Implementation of ERT for damage identification in CFRP composites requires the optimal selection of the sensing sites for accurate results. This selection depends on the measuring scheme used. The present work uses an effective independence (EI measure for selecting the minimum set of measurements for ERT damage identification using three measuring schemes: two-probe, four-probe and multi-probe. The electrical potential field in two CFRP laminate layups with 14 electrodes is calculated using finite element analyses (FEA for a set of specified delamination damage cases. The measuring schemes consider the cases of 14 electrodes distributed on both sides and seven electrodes on only one side of the laminate for each layup. The effectiveness of EI reduction is demonstrated by comparing the inverse identification results of delamination cases for the full and the reduced sets using the measuring schemes and electrode sets. This work shows that the EI measure optimally reduces electrode and electrode combinations in ERT based damage identification for different measuring schemes.

  6. Data Mining Empowers the Generation of a Novel Class of Chromosome-specific DNA Probes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hui; Weier, Heinz-Ulrich G.; Kwan, Johnson; Wang, Mei; O' Brien, Benjamin

    2011-03-08

    Probes that allow accurate delineation of chromosome-specific DNA sequences in interphase or metaphase cell nuclei have become important clinical tools that deliver life-saving information about the gender or chromosomal make-up of a product of conception or the probability of an embryo to implant, as well as the definition of tumor-specific genetic signatures. Often such highly specific DNA probes are proprietary in nature and have been the result of extensive probe selection and optimization procedures. We describe a novel approach that eliminates costly and time consuming probe selection and testing by applying data mining and common bioinformatics tools. Similar to a rational drug design process in which drug-protein interactions are modeled in the computer, the rational probe design described here uses a set of criteria and publicly available bioinformatics software to select the desired probe molecules from libraries comprised of hundreds of thousands of probe molecules. Examples describe the selection of DNA probes for the human X and Y chromosomes, both with unprecedented performance, but in a similar fashion, this approach can be applied to other chromosomes or species.

  7. Using computer simulations to probe the structure and dynamics of biopolymers

    International Nuclear Information System (INIS)

    Levy, R.M.; Hirata, F.; Kim, K.; Zhang, P.

    1987-01-01

    The use of computer simulations to study internal motions and thermodynamic properties is receiving increased attention. One important use of the method is to provide a more fundamental understanding of the molecular information contained in various kinds of experiments on these complex systems. In the first part of this paper the authors review recent work in their laboratory concerned with the use of computer simulations for the interpretation of experimental probes of molecular structure and dynamics of proteins and nucleic acids. The interplay between computer simulations and three experimental techniques is emphasized: (1) nuclear magnetic resonance relaxation spectroscopy, (2) refinement of macro-molecular x-ray structures, and (3) vibrational spectroscopy. The treatment of solvent effects in biopolymer simulations is a difficult problem. It is not possible to study systematically the effect of solvent conditions, e.g. added salt concentration, on biopolymer properties by means of simulations alone. In the last part of the paper the authors review a more analytical approach they developed to study polyelectrolyte properties of solvated biopolymers. The results are compared with computer simulations

  8. Prediction of Liquefaction Potential of Dredge Fill Sand by DCP and Dynamic Probing

    International Nuclear Information System (INIS)

    Alam, Md. Jahangir; Azad, Abul Kalam; Rahman, Ziaur

    2008-01-01

    From many research it is proved that liquefaction potential of sand is function of mainly relative density and confining pressure. During routine site investigations, high-quality sampling and laboratory testing of sands are not feasible because of inevitable sample disturbance effects and budgetary constraints. On the other hand quality control of sand fill can be done by determining in situ density of sand in layer by layer which is expensive and time consuming. In this paper TRL DCP (Transportation Research Laboratory Dynamic Cone Penetration) and DPL (Dynamic Probing Light) are calibrated to predict the relative density of sand deposit. For this purpose sand of known relative density is prepared in a calibration chamber which is a mild steel cylinder with diameter 0.5 m and height 1.0 m. Relative density of sand is varied by controlling height of fall and diameter of hole of sand discharge bowl. After filling, every time DPL and DCP tests are performed and for every blow the penetration of cone is recorded. N10 is then calculated from penetration records. Thus a database is compiled where N10 and relative densities are known. A correlation is made between N 10 and relative density for two types of sand. A good correlation of N 10 and relative density is found

  9. Surface-modified CdS nanoparticles as a fluorescent probe for the selective detection of cysteine

    International Nuclear Information System (INIS)

    Negi, Devendra P S; Chanu, T Inakhunbi

    2008-01-01

    We present a novel method for the selective detection of cysteine, a sulfur-containing amino acid, which plays a crucial role in many important biological functions such as protein folding. Surface-modified colloidal CdS nanoparticles have been used as a fluorescent probe to selectively detect cysteine in the presence of other amino acids in the micromolar concentration range. Cysteine quenches the emission of CdS in the 0.5-10 μM concentration range, whereas the other amino acids do not affect its emission. Among the other amino acids, histidine is most efficient in quenching the emission of the CdS nanoparticles. The sulfur atom of cysteine plays a crucial role in the quenching process in the 0.5-10 μM concentration range. Cysteine is believed to quench the emission of the CdS nanoparticles by binding to their surface via its negatively charged sulfur atom. This method can potentially be applied for its detection in biological samples.

  10. High-throughput platform assay technology for the discovery of pre-microrna-selective small molecule probes.

    Science.gov (United States)

    Lorenz, Daniel A; Song, James M; Garner, Amanda L

    2015-01-21

    MicroRNAs (miRNA) play critical roles in human development and disease. As such, the targeting of miRNAs is considered attractive as a novel therapeutic strategy. A major bottleneck toward this goal, however, has been the identification of small molecule probes that are specific for select RNAs and methods that will facilitate such discovery efforts. Using pre-microRNAs as proof-of-concept, herein we report a conceptually new and innovative approach for assaying RNA-small molecule interactions. Through this platform assay technology, which we term catalytic enzyme-linked click chemistry assay or cat-ELCCA, we have designed a method that can be implemented in high throughput, is virtually free of false readouts, and is general for all nucleic acids. Through cat-ELCCA, we envision the discovery of selective small molecule ligands for disease-relevant miRNAs to promote the field of RNA-targeted drug discovery and further our understanding of the role of miRNAs in cellular biology.

  11. Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for Sensitive and Selective Detection of Nitrite

    Directory of Open Access Journals (Sweden)

    Zhibiao Feng

    2017-11-01

    Full Text Available Nitrites are the upstream precursors of the carcinogenic nitrosamines, which are widely found in the natural environment and many food products. It is important to develop a simple and sensitive sensor for detecting nitrites. In this work, a fluorescence probe based on nitrogen-doped carbon quantum dots (N-CQDs was developed for the sensitive and selective determination of nitrites. At pH 2, the fluorescence of N-CQDs can be selectively quenched by nitrite due to the fact N-nitroso compounds can be formed in the reaction of amide groups with nitrous acid, which results in fluorescence static quenching. Under optimal conditions, fluorescence intensity quenching upon addition of nitrite gives a satisfactory linear relationship covering the linear range of 0.2–20 μM, and the limit of detection (LOD is 40 nM. Moreover, this method has been successfully applied to the determination of nitrites in tap water, which indicates its great potential for monitoring of nitrites in environmental samples.

  12. Ultrafast relaxation dynamics of a biologically relevant probe dansyl at the micellar surface.

    Science.gov (United States)

    Sarkar, Rupa; Ghosh, Manoranjan; Pal, Samir Kumar

    2005-02-01

    We report picosecond-resolved measurement of the fluorescence of a well-known biologically relevant probe, dansyl chromophore at the surface of a cationic micelle (cetyltrimethylammonium bromide, CTAB). The dansyl chromophore has environmentally sensitive fluorescence quantum yields and emission maxima, along with large Stokes shift. In order to study the solvation dynamics of the micellar environment, we measured the fluorescence of dansyl chromophore attached to the micellar surface. The fluorescence transients were observed to decay (with time constant approximately 350 ps) in the blue end and rise with similar timescale in the red end, indicative of solvation dynamics of the environment. The solvation correlation function is measured to decay with time constant 338 ps, which is much slower than that of ordinary bulk water. Time-resolved anisotropy of the dansyl chromophore shows a bi-exponential decay with time constants 413 ps (23%) and 1.3 ns (77%), which is considerably slower than that in free solvents revealing the rigidity of the dansyl-micelle complex. Time-resolved area-normalized emission spectroscopic (TRANES) analysis of the time dependent emission spectra of the dansyl chromophore in the micellar environment shows an isoemissive point at 21066 cm-1. This indicates the fluorescence of the chromophore contains emission from two kinds of excited states namely locally excited state (prior to charge transfer) and charge transfer state. The nature of the solvation dynamics in the micellar environments is therefore explored from the time-resolved anisotropy measurement coupled with the TRANES analysis of the fluorescence transients. The time scale of the solvation is important for the mechanism of molecular recognition.

  13. Dynamic supplier selection problem considering full truck load in probabilistic environment

    Science.gov (United States)

    Sutrisno, Wicaksono, Purnawan Adi

    2017-11-01

    In this paper, we propose a mathematical model in a probabilistic dynamic optimization to solve a dynamic supplier selection problem considering full truck load in probabilistic environment where some parameters are uncertain. We determine the optimal strategy for this problem by using stochastic dynamic programming. We give some numerical experiments to evaluate and analyze the model. From the results, the optimal supplier and the optimal product volume from the optimal supplier were determined for each time period.

  14. Probing friction in actin-based motility

    International Nuclear Information System (INIS)

    Marcy, Yann; Joanny, Jean-Francois; Prost, Jacques; Sykes, Cecile

    2007-01-01

    Actin dynamics are responsible for cell protrusion and certain intracellular movements. The transient attachment of the actin filaments to a moving surface generates a friction force that resists the movement. We probe here the dynamics of these attachments by inducing a stick-slip behavior via micromanipulation of a growing actin comet. We show that general principles of adhesion and friction can explain our observations

  15. Popularity and Adolescent Friendship Networks : Selection and Influence Dynamics

    NARCIS (Netherlands)

    Dijkstra, Jan Kornelis; Cillessen, Antonius H. N.; Borch, Casey

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to

  16. Popularity and Adolescent Friendship Networks: Selection and Influence Dynamics

    NARCIS (Netherlands)

    Dijkstra, J.K.; Cillessen, A.H.N.; Borch, C.

    2013-01-01

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to

  17. First selection, then influence : Developmental differences in friendship dynamics regarding academic achievement

    NARCIS (Netherlands)

    Gremmen, Mariola Claudia; Dijkstra, Jan Kornelis; Steglich, Christian; Veenstra, René

    This study concerns peer selection and influence dynamics in early adolescents' friendships regarding academic achievement. Using longitudinal social network analysis (RSiena), both selection and influence processes were investigated for students' average grades and their cluster-specific grades

  18. Fabrication and buckling dynamics of nanoneedle AFM probes

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-04-29

    A new method for the fabrication of high-aspect-ratio probes by electron beam induced deposition is described. This technique allows the fabrication of cylindrical 'nanoneedle' structures on the atomic force microscope (AFM) probe tip which can be used for accurate imaging of surfaces with high steep features. Scanning electron microscope (SEM) imaging showed that needles with diameters in the range of 18-100 nm could be obtained by this technique. The needles were shown to undergo buckling deformation under large tip-sample forces. The deformation was observed to recover elastically under vertical deformations of up to {approx} 60% of the needle length, preventing damage to the needle. A technique of stabilizing the needle against buckling by coating it with additional electron beam deposited carbon was also investigated; it was shown that coated needles of 75 nm or greater total diameter did not buckle even under tip-sample forces of {approx} 1.5 {mu}N.

  19. Human MLPA Probe Design (H-MAPD: a probe design tool for both electrophoresis-based and bead-coupled human multiplex ligation-dependent probe amplification assays

    Directory of Open Access Journals (Sweden)

    Hatchwell Eli

    2008-09-01

    Full Text Available Abstract Background Multiplex ligation-dependent probe amplification (MLPA is an efficient and reliable technique for gene dosage analysis. Currently MLPA can be conducted on two platforms: traditional electrophoresis-based, and FlexMAP bead-coupled. Since its introduction in 2002, MLPA has been rapidly adopted in both clinical and research situations. However, MLPA probe design is a time consuming process requiring many steps that address multiple criteria. There exist only one or two commercial software packages for traditional electrophoresis-based MLPA probe design. To our knowledge, no software is yet available that performs bead-coupled MLPA probe design. Results We have developed H-MAPD, a web-based tool that automates the generation and selection of probes for human genomic MLPA. The software performs physical-chemical property tests using UNAFold software, and uniqueness tests using the UCSC genome browser. H-MAPD supports both traditional electrophoresis-based assays, as well as FlexMAP bead-coupled MLPA. Conclusion H-MAPD greatly reduces the efforts for human genomic MLPA probe design. The software is written in Perl-CGI, hosted on a Linux server, and is freely available to non-commercial users.

  20. The market dynamics of selective serotonin re-uptake inhibitors: a ...

    African Journals Online (AJOL)

    The market dynamics of selective serotonin re-uptake inhibitors: a private sector study in South Africa. Frasia Oosthuizen, Pariksha Jolene Kondiah, Hawa Bibi Moosa, Siddiqa Naroth, Nabeel Ismail Patel, Divashnee Reddy, Amanda Soobramoney ...

  1. Electrospun nanofiber based colorimetric probe for rapid detection of Fe{sup 2+} in water

    Energy Technology Data Exchange (ETDEWEB)

    Ondigo, D.A. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Tshentu, Z.R. [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa); Department of Chemistry, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth, 6031 (South Africa); Torto, N., E-mail: N.Torto@ru.ac.za [Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown 6140 (South Africa)

    2013-12-04

    Graphical abstract: -- Highlights: •Colorimetric probe for the detection of Fe{sup 2+} was developed. •Polymeric electrospun nanofibers were used as host for the signaling reagent. •The functionalized electrospun nanofibers exhibited a selective color change in the presence of Fe{sup 2+}. •The mechanism was based on spin crossover (SCO) from high spin Fe{sup 2+} to low spin Fe{sup 2+} upon interaction with the embedded ligand. -- Abstract: An imidazole derivative, 2-(2′-pyridyl)imidazole (PIMH), was developed as a colorimetric probe for the qualitative analysis of Fe{sup 2+} in aqueous solution. PIMH was then used to post-functionalize poly(vinylbenzyl chloride) (PVBC) nanofibers after electrospinning so as to afford a solid state colorimetric probe. Upon treatment with Fe{sup 2+} the probe displayed a distinctive color change both in liquid and solid platforms. The linear dynamic range for the colorimetric determination of Fe{sup 2+} was 0.0988–3.5 μg mL{sup −1}. The ligand showed a high chromogenic selectivity for Fe{sup 2+} over other cations with a detection limit of 0.102 μg mL{sup −1} in solution (lower than the WHO drinking water guideline limit of 2 mg L{sup −1}), and 2 μg mL{sup −1} in the solid state. The concentration of Fe{sup 2+} in a certified reference material (Iron, Ferrous, 1072) was found to be 2.39 ± 0.01 mg L{sup −1}, which was comparable with the certified value of 2.44 ± 0.12 mg L{sup −1}. Application of the probe to real samples spiked with Fe{sup 2+} achieved recoveries of over 97% confirming accuracy of the method and its potential for on-site monitoring.

  2. based 2D dynamic metal-organic framework showing selective

    Indian Academy of Sciences (India)

    materials have been extensively studied for storage, separation, magnetism, sensing, biomedical and very recently for ion conduction applications.14–21 Hydrogen ... thesis of dynamic MOF with high affinity for water becomes handy in separation applications. Also, for a material to be smart sorbent, in addition to selective ...

  3. The role of fear of movement and injury in selective attentional processing in patients with chronic low back pain: a dot-probe evaluation.

    Science.gov (United States)

    Roelofs, Jeffrey; Peters, Madelon L; Fassaert, Thijs; Vlaeyen, Johan W S

    2005-05-01

    The present study sought to investigate to what extent patients with chronic low back pain and pain-free control subjects selectively attend to pain-related stimuli as measured with 2 dot-probe tasks with word stimuli and pictorial stimuli. Selective attentional processing was measured by means of 3 indices: the bias index, a congruency effect, and an incongruency effect. Pain-related fear as a trait measure (Tampa Scale for Kinesiophobia [TSK]) was expected to be positively associated with all indices of selective attentional processing of pain stimuli. Results were analyzed with repeated-measures analysis of variance. An incongruency effect was found for patients and to a significantly less degree for pain-free control subjects on the dot-probe task with pictorial stimuli, indicating that pain patients have difficulty disengaging from threat pictures. Pain-related fear as a trait measure (TSK) was not associated with selective attentional processing of word and pictorial stimuli in either pain patients or control subjects. Results from the present study are discussed, and directions for future research are provided. Demonstrating difficulty to disengage from threat might be clinically relevant because patients might pay less attention to fear-disconfirming information and remain engaged in avoidance, which might eventually lead to prolonged anxiety states.

  4. Evolutionary Dynamics of Collective Behavior Selection and Drift: Flocking, Collapse, and Oscillation.

    Science.gov (United States)

    Tan, Shaolin; Wang, Yaonan; Chen, Yao; Wang, Zhen

    2016-06-14

    Behavioral choice is ubiquitous across a wide range of interactive decision-making processes and a myriad of scientific disciplines. With regard to this issue, one entitative problem is actually to understand how collective social behaviors form and evolve among populations when they face a variety of conflict alternatives. In this paper, a selection-drift dynamic model is formulated to characterize the behavior imitation and exploration processes in social populations. Based on the proposed framework, several typical behavior evolution patterns, including behavioral flocking, collapse, and oscillation, are reproduced with different kinds of behavior networks. Interestingly, for the selection-drift dynamics on homogeneous symmetric behavior networks, we unveil the phase transition from behavioral flocking to collapse and derive the bifurcation diagram of the evolutionary stable behaviors in social behavior evolution. While via analyzing the survival conditions of the best behavior on heterogeneous symmetric behavior networks, we propose a selection-drift mechanism to guarantee consensus at the optimal behavior. Moreover, when the selection-drift dynamics on asymmetric behavior networks is simulated, it is shown that breaking the symmetry in behavior networks can induce various behavioral oscillations. These obtained results may shed new insights into understanding, detecting, and further controlling how social norm and cultural trends evolve.

  5. A Dynamic Supramolecular System Exhibiting Substrate Selectivity in the Catalytic Epoxidation of Olefins

    DEFF Research Database (Denmark)

    Jonsson, Stefan; Odille, Fabrice G. J.; Norrby, Per-Ola

    2005-01-01

    A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction.......A dynamic supramolecular system involving hydrogen bonding between a Mn(III) salen catalyst and a Zn(II) porphyrin receptor exhibits selectivity for pyridine appended cis-beta-substituted styrene derivatives over phenyl appended derivatives in a catalytic epoxidation reaction....

  6. PLASTICITY OF SELECTED METALLIC MATERIALS IN DYNAMIC DEFORMATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Jacek PAWLICKI

    2014-06-01

    Full Text Available Characteristics of a modernized flywheel machine has been presented in the paper. The laboratory stand enables to perform dynamic tensile tests and impact bending with a linear velocity of the enforcing element in the range of 5÷40 m/s. A new data acquisition system, based on the tensometric sensors, allows for significant qualitative improvement of registered signals. Some preliminary dynamic forming tests were performed for the selected group of metallic materials. Subsequent microstructural examinations and identification of the fracture type enabled to describe a correlation between strain rate, strain and microstructure.

  7. Popularity and Adolescent Friendship Networks: Selection and Influence Dynamics

    Science.gov (United States)

    Dijkstra, Jan Kornelis; Cillessen, Antonius H. N.; Borch, Casey

    2013-01-01

    This study examined the dynamics of popularity in adolescent friendship networks across 3 years in middle school. Longitudinal social network modeling was used to identify selection and influence in the similarity of popularity among friends. It was argued that lower status adolescents strive to enhance their status through befriending higher…

  8. Off-resonance rotating-frame relaxation dispersion experiment for 13C in aromatic side chains using L-optimized TROSY-selection

    DEFF Research Database (Denmark)

    Weininger, Ulrich; Brath, Ulrika; Modig, Kristofer

    2014-01-01

    Protein dynamics on the microsecond-millisecond time scales often play a critical role in biological function. NMR relaxation dispersion experiments are powerful approaches for investigating biologically relevant dynamics with site-specific resolution, as shown by a growing number of publications...... on enzyme catalysis, protein folding, ligand binding, and allostery. To date, the majority of studies has probed the backbone amides or side-chain methyl groups, while experiments targeting other sites have been used more sparingly. Aromatic side chains are useful probes of protein dynamics, because...... they are over-represented in protein binding interfaces, have important catalytic roles in enzymes, and form a sizable part of the protein interior. Here we present an off-resonance R 1ρ experiment for measuring microsecond to millisecond conformational exchange of aromatic side chains in selectively (13)C...

  9. Plasma membrane organization and dynamics is probe and cell line dependent.

    Science.gov (United States)

    Huang, Shuangru; Lim, Shi Ying; Gupta, Anjali; Bag, Nirmalya; Wohland, Thorsten

    2017-09-01

    The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (E Arr ) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and E Arr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue

  10. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation

    International Nuclear Information System (INIS)

    Daniels, Matthew J; Varghese, Tomy

    2010-01-01

    Minimally invasive therapies such as radiofrequency ablation have been developed to treat cancers of the liver, prostate and kidney without invasive surgery. Prior work has demonstrated that ultrasound echo shifts due to temperature changes can be utilized to track the temperature distribution in real time. In this paper, a motion compensation algorithm is evaluated to reduce the impact of cardiac and respiratory motion on ultrasound-based temperature tracking methods. The algorithm dynamically selects the next suitable frame given a start frame (selected during the exhale or expiration phase where extraneous motion is reduced), enabling optimization of the computational time in addition to reducing displacement noise artifacts incurred with the estimation of smaller frame-to-frame displacements at the full frame rate. A region of interest that does not undergo ablation is selected in the first frame and the algorithm searches through subsequent frames to find a similarly located region of interest in subsequent frames, with a high value of the mean normalized cross-correlation coefficient value. In conjunction with dynamic frame selection, two different two-dimensional displacement estimation algorithms namely a block matching and multilevel cross-correlation are compared. The multi-level cross-correlation method incorporates tracking of the lateral tissue expansion in addition to the axial deformation to improve the estimation performance. Our results demonstrate the ability of the proposed motion compensation using dynamic frame selection in conjunction with the two-dimensional multilevel cross-correlation to track the temperature distribution.

  11. Scientific Value of a Saturn Atmospheric Probe Mission

    Science.gov (United States)

    Simon-Miller, A. A.; Lunine, J. I.; Atreya, S. K.; Spilker, T. R.; Coustenis, A.; Atkinson, D. H.

    2012-01-01

    Atmospheric entry probe mISSions to the giant planets can uniquely discriminate between competing theories of solar system formation and the origin and evolution of the giant planets and their atmospheres. This provides for important comparative studies of the gas and ice giants, and to provide a laboratory for studying the atmospheric chemistries, dynamics, and interiors of all the planets including Earth. The giant planets also represent a valuable link to extrasolar planetary systems. As outlined in the recent Planetary Decadal Survey, a Saturn Probe mission - with a shallow probe - ranks as a high priority for a New Frontiers class mission [1].

  12. Ultrafast photoinduced carrier dynamics in GaNAs probed using femtosecond time-resolved scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    Terada, Yasuhiko; Aoyama, Masahiro; Kondo, Hiroyuki; Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2007-01-01

    The combination of scanning tunnelling microscopy (STM) with optical excitation using ultrashort laser pulses enables us, in principle, to simultaneously obtain ultimate spatial and temporal resolutions. We have developed the shaken-pulse-pair-excited STM (SPPX-STM) and succeeded in detecting a weak time-resolved tunnelling current signal from a low-temperature-grown GaNAs sample. To clarify the underlying physics in SPPX-STM measurements, we performed optical pump-probe reflectivity measurements with a wavelength-changeable ultrashort-pulse laser. By comparing the results obtained from the two methods with an analysis based on the nonlinear relationship between the photocarrier density and tunnelling current, we obtained a comprehensive explanation that the photocarrier dynamics is reflected in the SPPX-STM signal through the surface photovoltage effect

  13. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  14. Contactless vector network analysis using diversity calibration with capacitive and inductive coupled probes

    Directory of Open Access Journals (Sweden)

    T. Zelder

    2007-06-01

    Full Text Available Contactless vector network analysis based on a diversity calibration is investigated for the measurement of embedded devices in planar circuits. Conventional contactless measurement systems based on two probes for each measurement port have the disadvantage that the signal-to-noise system dynamics strongly depends on the distance between the contactless probes.

    In order to avoid a decrease in system dynamics a diversity based measurement system is presented. The measurement setup uses one inductive and two capacitive probes. As an inductive probe a half magnetic loop in combination with a broadband balun is introduced. In order to eliminate systematic errors from the measurement results a diversity calibration algorithm is presented. Simulation and measurement results for a one-port configuration are shown.

  15. Hydrogen dynamics in the low temperature phase of LiBH{sub 4} probed by quasielastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Remhof, Arndt, E-mail: arndt.remhof@empa.ch [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Züttel, Andreas [Empa, Swiss Federal Institute for Materials Science and Technology, Hydrogen and Energy, CH-8600 Dübendorf (Switzerland); Ramirez-Cuesta, Timmy; García-Sakai, Victoria [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Frick, Bernhard [Institut Laue-Langevin, F-38002 Grenoble (France)

    2013-12-12

    Highlights: • Inelastic fixed window sans offer new possibilities in neutron backscattering spectrometers. • Two different kind of reorientational motion were identified in the low temperature phase of LiBH{sub 4}. • Thermally activated jump rotation. - Abstract: LiBH{sub 4} contains 18.5 wt% hydrogen and undergoes a structural phase transition (orthorhombic → hexagonal) at 381 K which is associated with a large increase in hydrogen and lithium solid-state mobility. We investigated the hydrogen dynamics in the low temperature phase of LiBH{sub 4} by quasielastic neutron scattering, including a new kind of inelastic fixed window scan (IFWS). In the temperature range from 175 to 380 K the H-dynamics is dominated by thermally activated rotational jumps of the [BH{sub 4}]{sup −} anion around the c3 axis with an activation energy of about 162 meV. In agreement with earlier NMR data, a second type of thermally activated motion with an activation energy of about 232 meV could be identified using the IFWS. The present study of hydrogen dynamics in LiBH{sub 4} illustrates the feasibility of using IFWS on neutron backscattering spectrometers as a probe of localised motion.

  16. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    Science.gov (United States)

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  17. Donated chemical probes for open science.

    Science.gov (United States)

    Müller, Susanne; Ackloo, Suzanne; Arrowsmith, Cheryl H; Bauser, Marcus; Baryza, Jeremy L; Blagg, Julian; Böttcher, Jark; Bountra, Chas; Brown, Peter J; Bunnage, Mark E; Carter, Adrian J; Damerell, David; Dötsch, Volker; Drewry, David H; Edwards, Aled M; Edwards, James; Elkins, Jon M; Fischer, Christian; Frye, Stephen V; Gollner, Andreas; Grimshaw, Charles E; IJzerman, Adriaan; Hanke, Thomas; Hartung, Ingo V; Hitchcock, Steve; Howe, Trevor; Hughes, Terry V; Laufer, Stefan; Li, Volkhart Mj; Liras, Spiros; Marsden, Brian D; Matsui, Hisanori; Mathias, John; O'Hagan, Ronan C; Owen, Dafydd R; Pande, Vineet; Rauh, Daniel; Rosenberg, Saul H; Roth, Bryan L; Schneider, Natalie S; Scholten, Cora; Singh Saikatendu, Kumar; Simeonov, Anton; Takizawa, Masayuki; Tse, Chris; Thompson, Paul R; Treiber, Daniel K; Viana, Amélia Yi; Wells, Carrow I; Willson, Timothy M; Zuercher, William J; Knapp, Stefan; Mueller-Fahrnow, Anke

    2018-04-20

    Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de">https://openscienceprobes.sgc-frankfurt.dehttps://openscienceprobes.sgc-frankfurt.de/">/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project. © 2018, Müller et al.

  18. A novel optical tool for controlling and probing ultrafast surface dynamics

    International Nuclear Information System (INIS)

    Yang, Yudong

    2017-12-01

    Ultrashort pulse laser sources have been greatly developed over the past few decades. The available pulse duration has been reduced to the single-cycle pulse regime. The discovery of high harmonic generation has freed us from the limitation of the laser wavelength. Moreover, the demonstration of isolated attosecond pulse generation has indicated the advent of the attosecond science era. Attosecond pulses undoubtedly allow one to study ultrafast dynamics with unprecedented time resolution. However, physical systems with genuine attosecond time scale dynamics are rather challenging to find. Ultrafast surface charge transfer, which is an important process in photochemistry and electrochemistry, is a good candidate experimental system exhibiting attosecond electronic dynamics. Specifically, the ultrafast surface charge transfer on the c(4 x 2)S/Ru(0001) surface was previously studied and the charge transfer time inferred to be 320 as using core-hole clock spectroscopy at a synchrotron facility. In order to measure this benchmark attosecond electronic dynamics with real time-resolving methods, pump pulses centered at 160 eV and probe pulses centered at 40 eV are required. To this end, a dedicated attosecond experimental beamline including an ultrashort laser pulse source and an attosecond pulse generation and characterization setup has been designed and is being developed. The author of this thesis was responsible for the construction of the attosecond experimental beamline which will be used ultrafast surface charge transfer studies. In this thesis, a completely functional attosecond extreme ultraviolet (XUV) beamline, which includes a few-cycle laser pulse source, an attosecond pulse generation and characterization setup, is described. A commercial Ti:sapphire-based chirped-pulse amplification (CPA) laser system is the overall source of the beamline. The laser system is actively carrier-envelope phase (CEP) stabilized and the output pulse duration is ∝35 fs. The

  19. A novel optical tool for controlling and probing ultrafast surface dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yudong

    2017-12-15

    Ultrashort pulse laser sources have been greatly developed over the past few decades. The available pulse duration has been reduced to the single-cycle pulse regime. The discovery of high harmonic generation has freed us from the limitation of the laser wavelength. Moreover, the demonstration of isolated attosecond pulse generation has indicated the advent of the attosecond science era. Attosecond pulses undoubtedly allow one to study ultrafast dynamics with unprecedented time resolution. However, physical systems with genuine attosecond time scale dynamics are rather challenging to find. Ultrafast surface charge transfer, which is an important process in photochemistry and electrochemistry, is a good candidate experimental system exhibiting attosecond electronic dynamics. Specifically, the ultrafast surface charge transfer on the c(4 x 2)S/Ru(0001) surface was previously studied and the charge transfer time inferred to be 320 as using core-hole clock spectroscopy at a synchrotron facility. In order to measure this benchmark attosecond electronic dynamics with real time-resolving methods, pump pulses centered at 160 eV and probe pulses centered at 40 eV are required. To this end, a dedicated attosecond experimental beamline including an ultrashort laser pulse source and an attosecond pulse generation and characterization setup has been designed and is being developed. The author of this thesis was responsible for the construction of the attosecond experimental beamline which will be used ultrafast surface charge transfer studies. In this thesis, a completely functional attosecond extreme ultraviolet (XUV) beamline, which includes a few-cycle laser pulse source, an attosecond pulse generation and characterization setup, is described. A commercial Ti:sapphire-based chirped-pulse amplification (CPA) laser system is the overall source of the beamline. The laser system is actively carrier-envelope phase (CEP) stabilized and the output pulse duration is ∝35 fs. The

  20. Selection and application of strand displacement probes for a fumonisin B1 aptamer

    Science.gov (United States)

    Fumonisin B1 (FB1) is a toxin produced by Fusarium moniliforme, mainly on contaminated maize and maize products. In this study a solid surface chain displacement strategy was used to isolate oligonucleotide displacement probes for a FB1 aptamer. The probes were used as the basis for the development ...

  1. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  2. The sequence relay selection strategy based on stochastic dynamic programming

    Science.gov (United States)

    Zhu, Rui; Chen, Xihao; Huang, Yangchao

    2017-07-01

    Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.

  3. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    OpenAIRE

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-01-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed prelim...

  4. Self-sorting of dynamic metallosupramolecular libraries (DMLs) via metal-driven selection.

    Science.gov (United States)

    Kocsis, Istvan; Dumitrescu, Dan; Legrand, Yves-Marie; van der Lee, Arie; Grosu, Ion; Barboiu, Mihail

    2014-03-11

    "Metal-driven" selection between finite mononuclear and polymeric metallosupramolecular species can be quantitatively achieved in solution and in a crystalline state via coupled coordination/stacking interactional algorithms within dynamic metallosupramolecular libraries - DMLs.

  5. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy

    Directory of Open Access Journals (Sweden)

    Ge Jianjun

    2017-12-01

    Full Text Available Nowadays, the battlefield environment has become much more complex and variable. This paper presents a quantitative method and lower bound for the amount of target information acquired from multiple radar observations to adaptively and dynamically organize the detection of battlefield resources based on the principle of information entropy. Furthermore, for minimizing the given information entropy’s lower bound for target measurement at every moment, a method to dynamically and adaptively select radars with a high amount of information for target tracking is proposed. The simulation results indicate that the proposed method has higher tracking accuracy than that of tracking without adaptive radar selection based on entropy.

  6. Time resolved resonant inelastic X-ray scattering: A supreme tool to understand dynamics in solids and molecules

    International Nuclear Information System (INIS)

    Beye, M.; Wernet, Ph.; Schüßler-Langeheine, C.; Föhlisch, A.

    2013-01-01

    Highlights: •The high specificity of RIXS ideally suits time-resolved measurements. •Methods relating to the core hole lifetime cover the low femtosecond regime. •Pump-probe methods are used starting at sub-ps time scales. •FELs and synchrotrons are useful for pump-probe studies. •Examples from solid state dynamics and molecules are discussed. -- Abstract: Dynamics in materials typically involve different degrees of freedom, like charge, lattice, orbital and spin in a complex interplay. Time-resolved resonant inelastic X-ray scattering (RIXS) as a highly selective tool can provide unique insight and follow the details of dynamical processes while resolving symmetries, chemical and charge states, momenta, spin configurations, etc. In this paper, we review examples where the intrinsic scattering duration time is used to study femtosecond phenomena. Free-electron lasers access timescales starting in the sub-ps range through pump-probe methods and synchrotrons study the time scales longer than tens of ps. In these examples, time-resolved resonant inelastic X-ray scattering is applied to solids as well as molecular systems

  7. Analytical capabilities of laser-probe mass spectrometry

    International Nuclear Information System (INIS)

    Kovalev, I.D.; Madsimov, G.A.; Suchkov, A.I.; Larin, N.V.

    1978-01-01

    The physical bases and quantitative analytical procedures of laser-probe mass spectrometry are considered in this review. A comparison is made of the capabilities of static and dynamic mass spectrometers. Techniques are studied for improving the analytical characteristics of laser-probe mass spectrometers. The advantages, for quantitative analysis, of the Q-switched mode over the normal pulse mode for lasers are: (a) the possibility of analysing metals, semiconductors and insulators without the use of standards; and (b) the possibility of layer-by-layer and local analysis. (Auth.)

  8. Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs

    Science.gov (United States)

    2014-06-01

    System Number CAIDA Cooperative Association of Internet Data Analysis GB gigabyte IETF IPv4 IP IPv6 ISP NPS NTC RFC RTT TTL ICMP NPS ESD VSD TCP UDP DoS...including, DIMES, IPlane, Ark IPv4 All Prefix /24 and recently NPS probing methodol- ogy. NPS probing methodology is different from the others because it...trace, a history of the forward interface-level path and time to send and acknowledge are available to analyze. However, traceroute may not return

  9. Reactive probing of macroscopically quantum mechanical SQUID rings

    International Nuclear Information System (INIS)

    Prance, R.J.; Clark, T.D.; Whiteman, R.; Diggins, J.; Ralph, J.F.; Prance, H.; Spiller, T.P.; Widom, A.; Srivastava, Y.

    1994-01-01

    In this paper we demonstrate that the energy level structure of ultra small capacitance SQUID rings can be probed adiabatically at radio frequency using both dynamical and quasistatic reactive techniques. ((orig.))

  10. The Van Allen Probes mission

    CERN Document Server

    Burch, James

    2014-01-01

    This collection of articles provides broad and detailed information about NASA’s Van Allen Probes (formerly known as the Radiation Belt Storm Probes) twin-spacecraft Earth-orbiting mission. The mission has the objective of achieving predictive understanding of the dynamic, intense, energetic, dangerous, and presently unpredictable belts of energetic particles that are magnetically trapped in Earth’s space environment above the atmosphere. It documents the science of the radiation belts and the societal benefits of achieving predictive understanding. Detailed information is provided about the Van Allen Probes mission design, the spacecraft, the science investigations, and the onboard instrumentation that must all work together to make unprecedented measurements within a most unforgiving environment, the core of Earth’s most intense radiation regions.
 This volume is aimed at graduate students and researchers active in space science, solar-terrestrial interactions and studies of the up...

  11. Spaser as a biological probe

    Science.gov (United States)

    Galanzha, Ekaterina I.; Weingold, Robert; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Nolan, Jacqueline; Harrington, Walter; Kuchyanov, Alexander S.; Parkhomenko, Roman G.; Watanabe, Fumiya; Nima, Zeid; Biris, Alexandru S.; Plekhanov, Alexander I.; Stockman, Mark I.; Zharov, Vladimir P.

    2017-06-01

    Understanding cell biology greatly benefits from the development of advanced diagnostic probes. Here we introduce a 22-nm spaser (plasmonic nanolaser) with the ability to serve as a super-bright, water-soluble, biocompatible probe capable of generating stimulated emission directly inside living cells and animal tissues. We have demonstrated a lasing regime associated with the formation of a dynamic vapour nanobubble around the spaser that leads to giant spasing with emission intensity and spectral width >100 times brighter and 30-fold narrower, respectively, than for quantum dots. The absorption losses in the spaser enhance its multifunctionality, allowing for nanobubble-amplified photothermal and photoacoustic imaging and therapy. Furthermore, the silica spaser surface has been covalently functionalized with folic acid for molecular targeting of cancer cells. All these properties make a nanobubble spaser a promising multimodal, super-contrast, ultrafast cellular probe with a single-pulse nanosecond excitation for a variety of in vitro and in vivo biomedical applications.

  12. Weather conditions drive dynamic habitat selection in a generalist predator

    DEFF Research Database (Denmark)

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B.

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year...... and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly...... with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types...

  13. Proton probing of ultra-thin foil dynamics in high intensity regime

    Science.gov (United States)

    Prasad, Rajendra; Aktan, Esin; Aurand, Bastian; Cerchez, Mirela; Willi, Oswald

    2017-10-01

    The field of laser driven ion acceleration has been enriched significantly over the past decade, thanks to the advanced laser technologies. Already, from 100s TW class systems, laser driven sources of particles and radiations are being considered in number of potential applications in science and medicine due to their unique properties. New physical effects unearthed at these systems may help understand and conduct successful experiments at several PW class multi-beam facilities with high rep rate systems, e.g. ELI. Here we present the first experimental results on ultra-thin foil dynamics irradiated by an ultra-high intensity (1020 W/cm2) , ultra-high contrast (10-12) laser pulse at ARCTURUS laser facility at HHU Duesseldorf. By employing the elegant proton probing technique it is observed that for the circular polarization of laser light, a 100nm thin target is pushed forward as a compressed layer due to the radiation pressure of light. Whereas, the linear polarization seems to decompress the target drastically. 2D particle-in-cell simulations corroborate the experimental findings. Our results confirm the previous simulation studies investigating the fundamental role played by light polarization, finite focus spot size effect and eventually electron heating including the oblique incidence at the target edges.

  14. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haiying [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemistry, Yuncheng University, Yuncheng 044300 (China); Li, Zhejian; Shan, Meng; Li, Congcong; Qi, Honglan; Gao, Qiang [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Jinyi [College of Science and College of Veterinary Medicine, Northwest A& F University, Yangling 712100 (China); Zhang, Chengxiao, E-mail: cxzhang@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2015-03-10

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 10{sup 2} to 3.0 × 10{sup 4} cells mL{sup −1}, with a detection limit of 2.6 × 10{sup 2} cells mL{sup −1}. The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL{sup −1}. The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes.

  15. Electrogenerated chemiluminescence biosensing for the detection of prostate PC-3 cancer cells incorporating antibody as capture probe and ruthenium complex-labelled wheat germ agglutinin as signal probe

    International Nuclear Information System (INIS)

    Yang, Haiying; Li, Zhejian; Shan, Meng; Li, Congcong; Qi, Honglan; Gao, Qiang; Wang, Jinyi; Zhang, Chengxiao

    2015-01-01

    Highlights: • A novel biosensor was developed for the detection of prostate cancer cells. • The selectivity of the biosensor was improved using antibody as capture probe. • The biosensor showed the low extremely detection limit of 2.6 × 10 2 cells mL −1 . • The ruthenium complex-labelled WGA can be transported in the cell vesicles. - Abstract: A highly selective and sensitive electrogenerated chemiluminescence (ECL) biosensor for the detection of prostate PC-3 cancer cells was designed using a prostate specific antibody as a capture probe and ruthenium complex-labelled wheat germ agglutinin as a signal probe. The ECL biosensor was fabricated by covalently immobilising the capture probe on a graphene oxide-coated glassy carbon electrode. Target PC-3 cells were selectively captured on the surface of the biosensor, and then, the signal probe was bound with the captured PC-3 cells to form a sandwich. In the presence of tripropylamine, the ECL intensity of the sandwich biosensor was logarithmically directly proportion to the concentration of PC-3 cells over a range from 7.0 × 10 2 to 3.0 × 10 4 cells mL −1 , with a detection limit of 2.6 × 10 2 cells mL −1 . The ECL biosensor was also applied to detect prostate specific antigen with a detection limit of 0.1 ng mL −1 . The high selectivity of the biosensor was demonstrated in comparison with that of a lectin-based biosensor. The strategy developed in this study may be a promising approach and could be extended to the design of ECL biosensors for highly sensitive and selective detection of other cancer-related cells or cancer biomarkers using different probes

  16. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements

    Science.gov (United States)

    Watters, Kyle E; Choudhary, Krishna; Aviran, Sharon; Perry, Keith L

    2018-01-01

    Abstract In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3′ untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites. PMID:29294088

  17. A 282 GHz Probe for Dynamic Nuclear Polarization

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Bowen, Sean; Zhurbenko, Vitaliy

    Introduction In DNP, microwave irradiation of a sample facilitates the transfer of spin polarization from electrons tonuclei. One of the way to improve the DNP enhancement is to transfer microwave power from the mm-wave source tothe sample more effectively. Several methods and techniques to effic......Introduction In DNP, microwave irradiation of a sample facilitates the transfer of spin polarization from electrons tonuclei. One of the way to improve the DNP enhancement is to transfer microwave power from the mm-wave source tothe sample more effectively. Several methods and techniques......: microwave can with RF coil; the rest of the probe consists of a waveguide, sample tube and coaxial transmission line. The probe is designed to study cylindrical samples with diameter - 9 mm, and height – 2-20 mm. An RF coil which is housed in cylindrical Macor coil form (dielectric with ε=5.64 and tangent δ...... is 0.0025) surrounds the sample. The RF coil has a saddle form and was madeout of two current loops run on opposite sides of a cylinder (in parallel). Material of the coil is copper wire with diameterequal to 0.7 mm. Coil dimensions are: diameter - 13 mm; height - 22.0 mm. The self resonant frequency...

  18. Functional characterisation of filamentous actin probe expression in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Shrujna Patel

    Full Text Available Genetically encoded filamentous actin probes, Lifeact, Utrophin and F-tractin, are used as tools to label the actin cytoskeleton. Recent evidence in several different cell types indicates that these probes can cause changes in filamentous actin dynamics, altering cell morphology and function. Although these probes are commonly used to visualise actin dynamics in neurons, their effects on axonal and dendritic morphology has not been systematically characterised. In this study, we quantitatively analysed the effect of Lifeact, Utrophin and F-tractin on neuronal morphogenesis in primary hippocampal neurons. Our data show that the expression of actin-tracking probes significantly impacts on axonal and dendrite growth these neurons. Lifeact-GFP expression, under the control of a pBABE promoter, caused a significant decrease in total axon length, while another Lifeact-GFP expression, under the control of a CAG promoter, decreased the length and complexity of dendritic trees. Utr261-EGFP resulted in increased dendritic branching but Utr230-EGFP only accumulated in cell soma, without labelling any neurites. Lifeact-7-mEGFP and F-tractin-EGFP in a pEGFP-C1 vector, under the control of a CMV promoter, caused only minor changes in neuronal morphology as detected by Sholl analysis. The results of this study demonstrate the effects that filamentous actin tracking probes can have on the axonal and dendritic compartments of neuronal cells and emphasise the care that must be taken when interpreting data from experiments using these probes.

  19. Possible concepts for an in situ Saturn probe mission

    Science.gov (United States)

    Coustenis, Athena; Lebreton, Jean-Pierre; Mousis, Olivier; Atkinson, David H.; Lunine, Jonathan I.; Reh, Kim R.; Fletcher, Leigh N.; Simon-Miller, Amy A.; Atreya, Sushil; Brinckerhoff, William B.; Cavalie, Thibault; Colaprete, Anthony; Gautier, Daniel; Guillot, Tristan; Mahaffy, Paul R.; Marty, Bernard; Morse, Andy; Sims, Jon; Spilker, Tom; Spilker, Linda

    2014-05-01

    In situ exploration of Saturn's atmosphere would bring insights in two broad themes: the formation history of our solar system and the processes at play in planetary atmospheres. The science case for in situ measurements at Saturn are developed in [1] and two companion abstracts (see Mousis et al., and Atkinson et al.). They are summarized here. Measurements of Saturn's bulk chemical and isotopic composition would place important constraints on the volatile reservoirs in the protosolar nebula and hence on the formation mechanisms. An in situ probe, penetrating from the upper atmosphere (μbar level) into the convective weather layer to a minimum depth of 10 bar, would also contribute to our knowledge of Saturn's atmospheric structure, dynamics, composition, chemistry and cloud-forming processes. Different mission architectures are envisaged, all based on an entry probe that would descend through Saturn's stratosphere and troposphere under parachute down to a minimum of 10 bars [1]. Future studies will focus on the trade-offs between science return and the added design complexity of a probe that could operate at pressures larger than 10 bars. Accelerometry measurements may also be performed during the entry phase in the higher part of the stratosphere prior to starting measurements under parachute. A carrier system would be required to deliver the probe along its interplanetary trajectory to the desired atmospheric entry point at Saturn. The entry site would be carefully selected. Three possible mission configurations are currently under study (with different risk/cost trades): • Configuration 1: Probe + Carrier. After probe delivery, the carrier would follow its path and be destroyed during atmospheric entry, but could perform pre-entry science. The carrier would not be used as a radio relay, but the probe would transmit its data to the ground system via a direct-to-Earth (DTE) RF link; • Configuration 2: Probe + Carrier/Relay. The probe would detach from the

  20. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  1. Photodissociation of aligned CH3I and C6H3F2I molecules probed with time-resolved Coulomb explosion imaging by site-selective extreme ultraviolet ionization.

    Science.gov (United States)

    Amini, Kasra; Savelyev, Evgeny; Brauße, Felix; Berrah, Nora; Bomme, Cédric; Brouard, Mark; Burt, Michael; Christensen, Lauge; Düsterer, Stefan; Erk, Benjamin; Höppner, Hauke; Kierspel, Thomas; Krecinic, Faruk; Lauer, Alexandra; Lee, Jason W L; Müller, Maria; Müller, Erland; Mullins, Terence; Redlin, Harald; Schirmel, Nora; Thøgersen, Jan; Techert, Simone; Toleikis, Sven; Treusch, Rolf; Trippel, Sebastian; Ulmer, Anatoli; Vallance, Claire; Wiese, Joss; Johnsson, Per; Küpper, Jochen; Rudenko, Artem; Rouzée, Arnaud; Stapelfeldt, Henrik; Rolles, Daniel; Boll, Rebecca

    2018-01-01

    We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.

  2. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm

    2011-01-01

    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  3. Polarization of fluorescence: a probe of molecular autoionization

    International Nuclear Information System (INIS)

    Leroi, G.E.; Dehmer, J.L.; Parr, A.C.; Poliakoff, E.D.

    1983-01-01

    The polarization of fluorescence from excited-state molecular photoions provides a direct probe of the photoionization dynamics and the symmetry signatures of autoionizing resonances. Measurements on CO 2 and CS 2 are presented as examples

  4. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-09-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.

  5. A Miniature Four-Hole Probe for Measurement of Three-Dimensional Flow with Large Gradients

    Directory of Open Access Journals (Sweden)

    Ravirai Jangir

    2014-01-01

    Full Text Available A miniature four-hole probe with a sensing area of 1.284 mm2 to minimise the measurement errors due to the large pressure and velocity gradients that occur in highly three-dimensional turbomachinery flows is designed, fabricated, calibrated, and validated. The probe has good spatial resolution in two directions, thus minimising spatial and flow gradient errors. The probe is calibrated in an open jet calibration tunnel at a velocity of 50 m/s in yaw and pitch angles range of ±40 degrees with an interval of 5 degrees. The calibration coefficients are defined, determined, and presented. Sensitivity coefficients are also calculated and presented. A lookup table method is used to determine the four unknown quantities, namely, total and static pressures and flow angles. The maximum absolute errors in yaw and pitch angles are 2.4 and 1.3 deg., respectively. The maximum absolute errors in total, static, and dynamic pressures are 3.4, 3.9, and 4.9% of the dynamic pressures, respectively. Measurements made with this probe, a conventional five-hole probe and a miniature Pitot probe across a calibration section, demonstrated that the errors due to gradient and surface proximity for this probe are considerably reduced compared to the five-hole probe.

  6. Pump-probe spectroscopy of spin-injection dynamics in double quantum wells of diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Nishibayashi, K.; Aoshima, I.; Souma, I.; Murayama, A.; Oka, Y.

    2006-01-01

    Dynamics of spin injection has been investigated in a double quantum well (DQW) composed of a diluted magnetic semiconductor by the pump-probe transient absorption spectroscopy in magnetic field. The DQW consists of a non-magnetic well (NMW) of CdTe and a magnetic well (MW) of Cd 0.92 Mn 0.08 Te. The MW shows a transient absorption saturation in the exciton band for more than 200 ps after the optical pumping, while the exciton photoluminescence does not arise from the MW. In the NMW, the circular polarization degree of the transient absorption saturation shows an increase with increasing time. The results are interpreted by the individual tunneling of spin-polarized electrons and holes from the MW to the NMW with different tunneling times. Depolarization processes of the carrier spins in the MW and the NMW are also discussed

  7. The probe rules in single particle tracking

    DEFF Research Database (Denmark)

    Clausen, Mathias P.; Lagerholm, B. Christoffer

    2011-01-01

    techniques and probes that have made historically very demanding and specialized bio-imaging techniques more easily accessible and achievable. SPT has in particular found extensive use for analyzing the molecular organization of biological membranes. From these and other studies using complementary...... techniques it has been determined that the organization of native plasma membranes is heterogeneous over a very large range of spatial and temporal scales. The observed heterogeneities in the organization have the practical consequence that the SPT results in investigations of native plasma membranes...... are time dependent. Furthermore, because the accessible time dynamics, and also the spatial resolution, in an SPT experiment is mainly dependent on the luminous brightness and photostability of the particular SPT probe that is used, available SPT results are ultimately dependent on the SPT probes...

  8. Ultrafast Photodissociation Dynamics of the F State of Sulfur Dioxide by Femtosecond Time-Resolved Pump-Probe Method

    International Nuclear Information System (INIS)

    Zhang Dong-Dong; Ni Qiang; Luo Si-Zuo; Zhang Jing; Liu Hang; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2011-01-01

    A femtosecond pump-probe method is employed to study the dissociation dynamics of sulfur dioxide. SO 2 molecules are excited to the F state by absorbing two photons of 267 nm femtosecond laser pulses, and ionized by 400 nm laser pulses at different delay times between the two lasers. Transients of both parent ions (SO + 2 ) and the fragment ions (SO + , S + and O + ) are observed. The SO + 2 transient can be well fitted to a biexponential decay comprising a fast and a slow component of 280 fs and 2.97 ps lifetimes, respectively. The SO + transient consists of two growth components of 270 fs and 2.50 ps. The results clearly show that the F state of SO 2 dissociates along an S-O bond. The transients of S + and O + , however, have different behavior, which consist of a fast growth and a long decay component. A possible mechanism of the fragment formation is discussed to understand the dissociation dynamics of the F state of SO 2 . (atomic and molecular physics)

  9. 6,7-dimethoxy-coumarin as a probe of hydration dynamics in biologically relevant systems

    Science.gov (United States)

    Ghose, Avisek; Amaro, Mariana; Kovaricek, Petr; Hof, Martin; Sykora, Jan

    2018-04-01

    Coumarin derivatives are well known fluorescence reporters for investigating biological systems due to their strong micro-environment sensitivity. Despite having wide range of environment sensitive fluorescence probes, the potential of 6,7-dimethoxy-coumarin has not been studied extensively so far. With a perspective of its use in protein studies, namely using the unnatural amino acid technology or as a substrate for hydrolase enzymes, we study acetyloxymethyl-6,7-dimethoxycoumarin (Ac-DMC). We investigate the photophysics and hydration dynamics of this dye in aerosol-OT (AOT) reverse micelles at various water contents using the time dependent fluorescence shift (TDFS) method. The TDFS response in AOT reverse micelles from water/surfactant ratio of 0 to 20 confirms its sensitivity towards the hydration and mobility of its microenvironment. Moreover, we show that the fluorophore can be efficiently quenched by halide ions. Hence, we conclude that the 6,7-dimethoxy-methylcoumarin fluorophore is useful for studying hydration parameters in biologically relevant systems.

  10. Continuously tunable nucleic acid hybridization probes.

    Science.gov (United States)

    Wu, Lucia R; Wang, Juexiao Sherry; Fang, John Z; Evans, Emily R; Pinto, Alessandro; Pekker, Irena; Boykin, Richard; Ngouenet, Celine; Webster, Philippa J; Beechem, Joseph; Zhang, David Yu

    2015-12-01

    In silico-designed nucleic acid probes and primers often do not achieve favorable specificity and sensitivity tradeoffs on the first try, and iterative empirical sequence-based optimization is needed, particularly in multiplexed assays. We present a novel, on-the-fly method of tuning probe affinity and selectivity by adjusting the stoichiometry of auxiliary species, which allows for independent and decoupled adjustment of the hybridization yield for different probes in multiplexed assays. Using this method, we achieved near-continuous tuning of probe effective free energy. To demonstrate our approach, we enforced uniform capture efficiency of 31 DNA molecules (GC content, 0-100%), maximized the signal difference for 11 pairs of single-nucleotide variants and performed tunable hybrid capture of mRNA from total RNA. Using the Nanostring nCounter platform, we applied stoichiometric tuning to simultaneously adjust yields for a 24-plex assay, and we show multiplexed quantitation of RNA sequences and variants from formalin-fixed, paraffin-embedded samples.

  11. Selective activation of SHP2 activity by cisplatin revealed by a novel chemical probe-based assay

    International Nuclear Information System (INIS)

    Kuo, Chun-Chen; Chu, Chi-Yuan; Lin, Jing-Jer; Lo, Lee-Chiang

    2010-01-01

    Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.

  12. Unraveling the sub-processes of selective attention: insights from dynamic modeling and continuous behavior.

    Science.gov (United States)

    Frisch, Simon; Dshemuchadse, Maja; Görner, Max; Goschke, Thomas; Scherbaum, Stefan

    2015-11-01

    Selective attention biases information processing toward stimuli that are relevant for achieving our goals. However, the nature of this bias is under debate: Does it solely rely on the amplification of goal-relevant information or is there a need for additional inhibitory processes that selectively suppress currently distracting information? Here, we explored the processes underlying selective attention with a dynamic, modeling-based approach that focuses on the continuous evolution of behavior over time. We present two dynamic neural field models incorporating the diverging theoretical assumptions. Simulations with both models showed that they make similar predictions with regard to response times but differ markedly with regard to their continuous behavior. Human data observed via mouse tracking as a continuous measure of performance revealed evidence for the model solely based on amplification but no indication of persisting selective distracter inhibition.

  13. A new fluorescent pH probe for imaging lysosomes in living cells.

    Science.gov (United States)

    Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang

    2014-01-15

    A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina.

    Science.gov (United States)

    Bidard, Frédérique; Imbeaud, Sandrine; Reymond, Nancie; Lespinet, Olivier; Silar, Philippe; Clavé, Corinne; Delacroix, Hervé; Berteaux-Lecellier, Véronique; Debuchy, Robert

    2010-06-18

    The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS), we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  15. A general framework for optimization of probes for gene expression microarray and its application to the fungus Podospora anserina

    Directory of Open Access Journals (Sweden)

    Bidard Frédérique

    2010-06-01

    Full Text Available Abstract Background The development of new microarray technologies makes custom long oligonucleotide arrays affordable for many experimental applications, notably gene expression analyses. Reliable results depend on probe design quality and selection. Probe design strategy should cope with the limited accuracy of de novo gene prediction programs, and annotation up-dating. We present a novel in silico procedure which addresses these issues and includes experimental screening, as an empirical approach is the best strategy to identify optimal probes in the in silico outcome. Findings We used four criteria for in silico probe selection: cross-hybridization, hairpin stability, probe location relative to coding sequence end and intron position. This latter criterion is critical when exon-intron gene structure predictions for intron-rich genes are inaccurate. For each coding sequence (CDS, we selected a sub-set of four probes. These probes were included in a test microarray, which was used to evaluate the hybridization behavior of each probe. The best probe for each CDS was selected according to three experimental criteria: signal-to-noise ratio, signal reproducibility, and representative signal intensities. This procedure was applied for the development of a gene expression Agilent platform for the filamentous fungus Podospora anserina and the selection of a single 60-mer probe for each of the 10,556 P. anserina CDS. Conclusions A reliable gene expression microarray version based on the Agilent 44K platform was developed with four spot replicates of each probe to increase statistical significance of analysis.

  16. Highly selective and sensitive fluorogenic ferric probes based on aggregation-enhanced emission with - SiMe3 substituted polybenzene

    Science.gov (United States)

    Wang, Xuefeng; Wang, Hua; Jiang, Qin; Lee, Yong-Ill; Feng, Shengyu; Liu, Hong-Guo

    2018-01-01

    In this study, thiophene was linked to polybenzene to generate novel fluorescent probes, namely 3,4-diphenyl-2,5-di(2-thienyl)phenyl-trimethylsilane (DPTB-TMS) with a - SiMe3 substituent and 3,4-diphenyl-2,5-di(2-thienyl)phenyl (DPTB) without the - SiMe3 substituent, respectively. Both of the two compounds exhibit aggregation-enhanced emission (AEE) properties in tetrahydrofuran/water mixtures due to restricted intramolecular rotation of the peripheral groups, which make the two compounds good candidates for the detection of Fe3 + ions in aqueous-based solutions. The fluorescence intensity of the two compounds decreases immediately and obviously upon addition of a trace amount of Fe3 +, and decreases continuously as the amount of Fe3 + increases. The fluorescence was quenched to 92% of its initial intensity when the amount of Fe3 + ions reached 6 μmol for DPTB-TMS and to 80% for DPTB in the systems, indicating that the compound with the - SiMe3 group is a more effective probe. The detection limit was found to be 1.17 μM (65 ppb). The detection mechanism is proposed to be static quenching. DPTB-TMS is highly efficient for the detection of ferric ions even in the presence of other metal ions. In addition, the method is also successfully applied to the detection of ferric ions in water, blood serum, or solid films. This indicates that these polybenzene compounds can be applied as low-cost, high selectivity, and high efficiency Fe3 + probes in water or in clinical applications.

  17. Investigation of the dynamics of a nonlinear optical response in glassy chalcogenide semiconductors by the pump–probe method

    Science.gov (United States)

    Romanova, E. A.; Kuzyutkina, Yu S.; Shiryaev, V. S.; Guizard, S.

    2018-03-01

    An analysis of the results of measurements by using the pump–probe method with a femtosecond resolution in time and computer simulation of the charge carrier kinetics have revealed two types of a nonlinear optical response in samples of chalcogenide glasses belonging to the As – S – Se system, irradiated by 50-fs laser pulses with a wavelength of 0.79 μm. The difference in the nonlinear dynamics is due to the difference in the photoexcitation character, because laser radiation can be absorbed either through bound states in the band gap or without their participation, depending on the ratio of the pump photon energy to the bandgap energy.

  18. Probing gas-surface interactions with a molecular beam

    International Nuclear Information System (INIS)

    Spruit, M.E.M.

    1988-01-01

    The dynamics of direct scattering, trapping and sticking in molecular beam scattering is probed. The O 2 /Ag interaction was chosen, using the close-packed (111) plane of Ag as target surface. 170 refs.; 22 figs.; 3 tabs

  19. Interferometric probes of ultrarelativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S. (Instituto de Fisica Teorica, Sao Paulo (Brazil)); Gyulassy, M. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1991-04-01

    We suggest that pion and kaon interferometry are complementary probes that help differentiate hadronic resonance gas from plasma dynamical models. We also discuss how interferometry could be used to test the presence of resonances at AGS energies. Finally, we study the A dependence of interferometry in the resonance model at 200 A GeV. (orig.).

  20. Interferometric probes of ultrarelativistic nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.; Gyulassy, M.

    1991-01-01

    We suggest that pion and kaon interferometry are complementary probes that help differentiate hadronic resonance gas from plasma dynamical models. We also discuss how interferometry could be used to test the presence of resonances at AGS energies. Finally, we study the A dependence of interferometry in the resonance model at 200 A GeV. (orig.)

  1. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  2. Probing the dynamics of identified neurons with a data-driven modeling approach.

    Directory of Open Access Journals (Sweden)

    Thomas Nowotny

    2008-07-01

    Full Text Available In controlling animal behavior the nervous system has to perform within the operational limits set by the requirements of each specific behavior. The implications for the corresponding range of suitable network, single neuron, and ion channel properties have remained elusive. In this article we approach the question of how well-constrained properties of neuronal systems may be on the neuronal level. We used large data sets of the activity of isolated invertebrate identified cells and built an accurate conductance-based model for this cell type using customized automated parameter estimation techniques. By direct inspection of the data we found that the variability of the neurons is larger when they are isolated from the circuit than when in the intact system. Furthermore, the responses of the neurons to perturbations appear to be more consistent than their autonomous behavior under stationary conditions. In the developed model, the constraints on different parameters that enforce appropriate model dynamics vary widely from some very tightly controlled parameters to others that are almost arbitrary. The model also allows predictions for the effect of blocking selected ionic currents and to prove that the origin of irregular dynamics in the neuron model is proper chaoticity and that this chaoticity is typical in an appropriate sense. Our results indicate that data driven models are useful tools for the in-depth analysis of neuronal dynamics. The better consistency of responses to perturbations, in the real neurons as well as in the model, suggests a paradigm shift away from measuring autonomous dynamics alone towards protocols of controlled perturbations. Our predictions for the impact of channel blockers on the neuronal dynamics and the proof of chaoticity underscore the wide scope of our approach.

  3. Mapping and correcting respiration-induced field changes in the brain using fluorine field probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer; Hanson, Lars G.

    2014-01-01

    strength values from signal phase by linear fitting. Ahead of imaging, the field probe positions were determined for each subject, by applying known gradients in all three dimensions while measuring with the field probes. Experiments: Measurements were performed in 4 male subjects instructed to hold...... software was updated with f0 and first order shim values, before the acquisition of every volume. Evaluation: To assess whether the dynamic field changes were captured by the field probe data, the field probe fitted fields were subtracted from the scanner B0 maps to model shimming. We then assessed whether......Purpose. Breathing induced dynamic B0 field perturbations in the head can lead to artefacts in ultra-high field MR by causing line broadening in spectroscopy and signal dropout, ghosting, displacement artifacts and blurring in imaging. It has recently been proposed to continuously stabilize...

  4. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munne' , Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

  5. Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe.

    Science.gov (United States)

    Shi, Rongguang; Huang, Lu; Duan, Xiaoxue; Sun, Guohao; Yin, Gui; Wang, Ruiyong; Zhu, Jun-Jie

    2017-10-02

    Fluorescence imaging with tumor-specific fluorescent probe has emerged as a tool to aid surgeons in the identification and removal of tumor tissue. We report here a new lysosome-targeting fluorescent probe (NBOH) with BODIPY fluorephore to distinguish tumor tissue out of normal tissue based on different pH environment. The probe exhibited remarkable pH-dependent fluorescence behavior in a wide pH range from 3.0 to 11.0, especially a sensitive pH-dependent fluorescence change at pH range between 3.5 and 5.5, corresponding well to the acidic microenvironment of tumor cells, in aqueous solution. The response time of NBOH was extremely short and the photostability was proved to be good. Toxicity test and fluorescence cell imaging together with a sub-cellular localization study were carried out revealing its low biotoxicity and good cell membrane permeability. And NBOH was successfully applied to the imaging of tumor tissue in tumor-bearing mice suggesting potential application to surgery as a tumor-specific probe. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models.

    Science.gov (United States)

    Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C; Noé, Frank

    2013-11-07

    The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.

  7. Quality control of the soil moisture probe response patterns from a green infrastructure site using Dynamic Time Warping (DTW) and association rule learning

    Science.gov (United States)

    Yu, Z.; Bedig, A.; Quigley, M.; Montalto, F. A.

    2017-12-01

    In-situ field monitoring can help to improve the design and management of decentralized Green Infrastructure (GI) systems in urban areas. Because of the vast quantity of continuous data generated from multi-site sensor systems, cost-effective post-construction opportunities for real-time control are limited; and the physical processes that influence the observed phenomena (e.g. soil moisture) are hard to track and control. To derive knowledge efficiently from real-time monitoring data, there is currently a need to develop more efficient approaches to data quality control. In this paper, we employ dynamic time warping method to compare the similarity of two soil moisture patterns without ignoring the inherent autocorrelation. We also use a rule-based machine learning method to investigate the feasibility of detecting anomalous responses from soil moisture probes. The data was generated from both individual and clusters of probes, deployed in a GI site in Milwaukee, WI. In contrast to traditional QAQC methods, which seek to detect outliers at individual time steps, the new method presented here converts the continuous time series into event-based symbolic sequences from which unusual response patterns can be detected. Different Matching rules are developed on different physical characteristics for different seasons. The results suggest that this method could be used alternatively to detect sensor failure, to identify extreme events, and to call out abnormal change patterns, compared to intra-probe and inter-probe historical observations. Though this algorithm was developed for soil moisture probes, the same approach could easily be extended to advance QAQC efficiency for any continuous environmental datasets.

  8. A highly selective and sensitive photoswitchable fluorescent probe for Hg2+ based on bisthienylethene-rhodamine 6G dyad and for live cells imaging.

    Science.gov (United States)

    Xu, Li; Wang, Sheng; Lv, Yingnian; Son, Young-A; Cao, Derong

    2014-07-15

    A new photochromic diarylethene derivative bearing rhodamine 6G dimmer as a fluorescent molecular probe is designed and synthesized successfully. All the compounds are characterized by nuclear magnetic resonance and mass spectrometry. The bisthienylethene-rhodamine 6G dyad exhibit excellent phtochromism with reversibly color and fluorescence changes alternating irradiation with ultraviolet and visible light. Upon addition of Hg(2+), its color changes from colorless to red and its fluorescence is remarkably enhanced. Whereas other ions including K(+), Na(+), Ca(2+), Mg(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Mn(2+), Pb(2+), Ni(2+), Fe(3+), Al(3+), Cr(3+) and so on induce basically no spectral changes, which constitute a highly selective and sensitive photoswitchable fluorescent probe toward Hg(2+). Furthermore, by means of laser confocal scanning microscopy experiments, it is demonstrated that this probe can be applied for live cell imaging and monitoring Hg(2+) in living lung cancer cells with satisfying results, which shows its value of potential application in environmental and biological systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory

    Science.gov (United States)

    Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W. E.; Koch, M.; von der Linden, W.

    2018-06-01

    Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations

  10. Versatile ultrafast pump-probe imaging with high sensitivity CCD camera

    OpenAIRE

    Pezeril , Thomas; Klieber , Christoph; Temnov , Vasily; Huntzinger , Jean-Roch; Anane , Abdelmadjid

    2012-01-01

    International audience; A powerful imaging technique based on femtosecond time-resolved measurements with a high dynamic range, commercial CCD camera is presented. Ultrafast phenomena induced by a femtosecond laser pump are visualized through the lock-in type acquisition of images recorded by a femtosecond laser probe. This technique allows time-resolved measurements of laser excited phenomena at multiple probe wavelengths (spectrometer mode) or conventional imaging of the sample surface (ima...

  11. Optical imaging of non-fluorescent nanoparticle probes in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gufeng; Stender, Anthony S.; Sun, Wei; and Fang, Ning

    2009-12-17

    Precise imaging of cellular and subcellular structures and dynamic processes in live cells is crucial for fundamental research in life sciences and in medical applications. Non-fluorescent nanoparticles are an important type of optical probe used in live-cell imaging due to their photostability, large optical cross-sections, and low toxicity. Here, we provide an overview of recent developments in the optical imaging of non-fluorescent nanoparticle probes in live cells.

  12. The glass transition in nanoscaled confinement probed by dynamic mechanical spectroscopy

    International Nuclear Information System (INIS)

    Koppensteiner, J.

    2009-01-01

    , able to join the row of successfully used experimental methods as NMR, light scattering, dielectric and calorimetric spectroscopy. A main point of investigation was inhomogeneous relaxation within a nm-sized pore geometry. An increase of τ when approaching the rough (untreated) pore surface as recently proposed by computer simulations nicely reproduces the data at hand, yielding a downshift of ΔT g ∝ 1/d in perfect agreement with literature data. Interaction with the pore walls to a large extend was removed by silanation. Homogeneous relaxation is found within silanated pores following a Vogel-Fulcher-Tammann relation. This lubrication effect leads to a stronger downshift of T g with decreasing pore size. Further, high resolution thermal expansion measurements of silanated and untreated porous silica samples, both unfilled and filled, revealed the intensely discussed contribution of negative pressure. These findings allow to separate competing side effects from the pure confinement induced acceleration of molecular dynamics. Thereon, the dynamic elastic susceptibility data for the rst time were analyzed in terms of a recently proposed procedure [C. Dalle-Ferrier et al., Phys. Rev. E 76, 041510 (2007)], relating the number N corr,T of molecules, whose dynamics is correlated to a local enthalpy fluctuation, to the three-point dynamic susceptibility χ T . The observed increase of N corr,T with decreasing temperature strongly indicates that the size ξ of dynamic heterogeneities increases when approaching T g to ξ∼3 nm. The calculation of N corr,T and estimation of ξ(T g ), both of nanoscopic nature, from a macroscopic probe experiment are major results of this thesis. (author) [de

  13. Stability mechanisms of a thermophilic laccase probed by molecular dynamics.

    Directory of Open Access Journals (Sweden)

    Niels J Christensen

    Full Text Available Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD was applied to a Trametes versicolor laccase in response to variable ionic strengths, temperatures, and glycosylation status. Near-physiological conditions provided excellent agreement with the crystal structure (average RMSD ∼0.92 Å and residual agreement with experimental B-factors. The persistence of backbone hydrogen bonds was identified as a key descriptor of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K, probing structural changes associated with enthalpy-entropy compensation. Approaching T opt (∼350 K from 300 K, this change correlated with a beginning "unzipping" of critical β-sheets. 0 M ionic strength triggered partial denucleation of the C-terminal (known experimentally to be sensitive at 400 K, suggesting a general salt stabilization effect. In contrast, F(- (but not Cl(- specifically impaired secondary structure by formation of strong hydrogen bonds with backbone NH, providing a mechanism for experimentally observed small anion destabilization, potentially remedied by site-directed mutagenesis at critical intrusion sites. N-glycosylation was found to support structural integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(- intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes.

  14. Molecular organization and dynamics of micellar phase of polyelectrolyte-surfactant complexes: ESR spin probe study

    Science.gov (United States)

    Wasserman, A. M.; Kasaikin, V. A.; Zakharova, Yu. A.; Aliev, I. I.; Baranovsky, V. Yu.; Doseva, V.; Yasina, L. L.

    2002-04-01

    Molecular dynamics and organization of the micellar phase of complexes of linear polyelectrolytes with ionogenic and non-ionogenic surfactants was studied by the ESR spin probe method. Complexes of polyacrylic acid (PAA) and sodium polystyrenesulfonate (PSS) with alkyltrimethylammonium bromides (ATAB), as well as complexes of poly- N, N'-dimethyldiallylammonium chloride (PDACL) with sodium dodecylsulfate (SDS) were studied. The micellar phase of such complexes is highly organized molecular system, molecular ordering of which near the polymeric chain is much higher than in the 'center' of the micelle, it depends on the polymer-detergent interaction, flexibility of polymeric chain and length of carbonic part of the detergent molecule. Complexes of polymethacrylic acid (PMAA) with non-ionic detergent (dodecyl-substituted polyethyleneglycol), show that the local mobility of surfactant in such complexes is significantly lower than in 'free' micelles and depends on the number of micellar particles participating in formation of complexes.

  15. Spatio-temporal dynamics of word selection in speech production: Insights from electrocorticography

    Directory of Open Access Journals (Sweden)

    Stephanie K Ries

    2015-04-01

    Our results suggest that the posterior inferior LTC is involved in word selection as semantic concepts become available. Posterior medial and left PFC regions may be involved in trial-by-trial top-down control over LTC to help overcome interference caused by semantically-related alternatives in word selection. The single-case result supports this hypothesis and suggests that the posterior medial PFC plays a causal role in resolving this interference in word selection. Lastly, the sensitivity to semantic interference of the post-vocal onset posterior LTC activity suggests the semantic interference effect does not only reflect word selection difficulty but is also present at post-selection stages such as verbal response monitoring. In sum, this study reveals a dynamic network of interacting brain regions that support word selection in language production.

  16. Imaging of Homeostatic, Neoplastic, and Injured Tissues by HA-Based Probes

    Science.gov (United States)

    Veiseh, Mandana; Breadner, Daniel; Ma, Jenny; Akentieva, Natalia; Savani, Rashmin C; Harrison, Rene; Mikilus, David; Collis, Lisa; Gustafson, Stefan; Lee, Ting-Yim; Koropatnick, James; Luyt, Leonard G.; Bissell, Mina J.; Turley, Eva A.

    2013-01-01

    An increase in hyaluronan (HA) synthesis, cellular uptake, and metabolism occurs during the remodeling of tissue microenvironments following injury and during disease processes such as cancer. We hypothesized that multimodality HA-based probes selectively target and detectably accumulate at sites of high HA metabolism, thus providing a flexible imaging strategy for monitoring disease and repair processes. Kinetic analyses confirmed favorable available serum levels of the probe following intravenous (i.v.) or subcutaneous (s.c.) injection. Nuclear (technetium-HA, 99mTc-HA, and iodine-HA, 125I-HA), optical (fluorescent Texas Red-HA, TR-HA), and magnetic resonance (gadolinium-HA, Gd-HA) probes imaged liver (99mTc-HA), breast cancer cells/xenografts (TR-HA, Gd-HA), and vascular injury (125I-HA, TR-HA). Targeting of HA probes to these sites appeared to result from selective HA receptor-dependent localization. Our results suggest that HA-based probes, which do not require polysaccharide backbone modification to achieve favorable half-life and distribution, can detect elevated HA metabolism in homeostatic, injured, and diseased tissues. PMID:22066590

  17. Sex ratio selection and multi-factorial sex determination in the housefly : A dynamic model

    NARCIS (Netherlands)

    Kozielska, M.A.; Pen, I.R.; Beukeboom, L.W.; Weissing, F.J.

    Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a

  18. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, David Lewis [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(ET), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculations are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.

  19. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    Science.gov (United States)

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-02-01

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.

  20. Diffusion-assisted selective dynamical recoupling: A new approach to measure background gradients in magnetic resonance

    International Nuclear Information System (INIS)

    Álvarez, Gonzalo A.; Shemesh, Noam; Frydman, Lucio

    2014-01-01

    Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out “intrinsic” T 1 and T 2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed

  1. Optical techniques for probing the excited state dynamics of quantum dot solids

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, P.; Kholmicheva, N.; Razgoniaeva, N. [Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43402 (United States); Department of Physics, Bowling Green State University, Bowling Green, OH 43402 (United States); Burchfield, D. [Department of Chemistry, Bowling Green State University, Bowling Green, OH 43402 (United States); Sharma, N.; Acharya, A. [Department of Physics, Bowling Green State University, Bowling Green, OH 43402 (United States); Zamkov, M., E-mail: zamkovm@bgsu.edu [Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43402 (United States); Department of Physics, Bowling Green State University, Bowling Green, OH 43402 (United States)

    2016-06-01

    Highlights: • Optical techniques represent a powerful tool for probing exciton diffusion in QD solids. • Exciton dissociation in QD solids is caused by charge tunneling to traps and other dots. • Exciton and free-carrier lifetimes are given by fast and slow components of PL decay. • Surface PL offers valuable information on the type and density of traps in QD solids. - Abstract: Quantum dot (QD) solids represent an important class of functional materials that holds strong promise for future applications in technology. Their optoelectronic properties are determined by energy diffusion processes, which character can often be inferred from the temporal and spectral analysis of the film’s photoluminescence (PL). Here, optical techniques based on PL lifetime, bulk quenching, and temperature-dependent PL will be discussed. These techniques complement the electrical conductivity measurements by mapping the flow of optically induced excitons through undepleted, contact-free films with an unprecedented temporal and spatial resolution. By correlating the QD solid morphology with the ensuing photoluminescence (PL) dynamics, these methods allow estimating important transport characteristics, including exciton and charge carrier diffusion lengths, the rate of interparticle energy transfer, carrier mobility, and the exciton diffusivity. The review will cover most popular PL-based strategies and summarize the key experimental findings resulting from these works.

  2. Electric probe data analysis for glow discharge diagnostics

    International Nuclear Information System (INIS)

    Cain, B.L.

    1987-01-01

    This report summarizes the development and application of digital computations for the analysis of data from an electric probe used for glow discharge diagnostics. The essential physics of the probe/discharge interaction is presented, along with formulations from modern electric probe theory. These results are then digitally implemented by a set of computer programs which both calculate discharge properties of electron temperature and density, and aid in the interpretation of these property estimates. The method of analysis, and the theories selected for implementation, are valid only for low pressure, collisionless sheath, and quiescent discharges where the single electric probe has a much smaller area than the discharge reference electrode. However, certain algorithms are included which, in some cases, can extend the analysis into intermediate pressure regimes. The digital programs' functional capabilities are demonstrated by the analysis of experimental probe data, collected using a laboratory glow discharge. Typical sources of error inherent in the electric probe method are discussed, along with an analysis of error induced by the computational methods of the programs. 27 refs., 49 figs., 20 tabs

  3. Think Piece: Pioneers as Relational Subjects? Probing Relationality ...

    African Journals Online (AJOL)

    This policy development, which was unfolded at the same time as we visited Samsø Island in. Denmark to probe dynamics of collective learning and change agency ... being, I centre the next part of the discussion on one feature, namely the ...

  4. A dynamic data source selection system for smartwatch platform.

    Science.gov (United States)

    Nemati, Ebrahim; Sideris, Konstantinos; Kalantarian, Haik; Sarrafzadeh, Majid

    2016-08-01

    A novel data source selection algorithm is proposed for ambulatory activity tracking of elderly people. The algorithm introduces the concept of dynamic switching between the data collection modules (a smartwatch and a smartphone) to improve accuracy and battery life using contextual information. We show that by making offloading decisions as a function of activity, the proposed algorithm improves power consumption and accuracy of the previous work by 7 hours and 5% respectively compared to the baseline.

  5. Abstract and Effector-Selective Decision Signals Exhibit Qualitatively Distinct Dynamics before Delayed Perceptual Reports.

    Science.gov (United States)

    Twomey, Deirdre M; Kelly, Simon P; O'Connell, Redmond G

    2016-07-13

    Electrophysiological research has isolated neural signatures of decision formation in a variety of brain regions. Studies in rodents and monkeys have focused primarily on effector-selective signals that translate the emerging decision into a specific motor plan, but, more recently, research on the human brain has identified an abstract signature of evidence accumulation that does not appear to play any direct role in action preparation. The functional dissociations between these distinct signal types have only begun to be characterized, and their dynamics during decisions with deferred actions with or without foreknowledge of stimulus-effector mapping, a commonly studied task scenario in single-unit and functional imaging investigations, have not been established. Here we traced the dynamics of distinct abstract and effector-selective decision signals in the form of the broad-band centro-parietal positivity (CPP) and limb-selective β-band (8-16 and 18-30 Hz) EEG activity, respectively, during delayed-reported motion direction decisions with and without foreknowledge of direction-response mapping. With foreknowledge, the CPP and β-band signals exhibited a similar gradual build-up following evidence onset, but whereas choice-predictive β-band activity persisted up until the delayed response, the CPP dropped toward baseline after peaking. Without foreknowledge, the CPP exhibited identical dynamics, whereas choice-selective β-band activity was eliminated. These findings highlight qualitative functional distinctions between effector-selective and abstract decision signals and are of relevance to the assumptions founding functional neuroimaging investigations of decision-making. Neural signatures of evidence accumulation have been isolated in numerous brain regions. Although animal neurophysiology has largely concentrated on effector-selective decision signals that translate the emerging decision into a specific motor plan, recent research on the human brain has

  6. Multiphoton ionization as a probe of molecular photofragmentation: statistical and dynamical energy partitioning in the multiphoton dissociation of nitromethane

    International Nuclear Information System (INIS)

    Rockney, B.H.

    1982-01-01

    Multiphoton ionization (MPI) appears in its first use as a probe of laser-induced photofragmentation. Specifically, MPI here reveals the internal and translational energy content of the nascent fragments from the infrared multiphoton dissociation (MPD) of nitromethane (CH 3 NO 2 ). The apparatus for this work consists of a pulsed supersonic molecular beam crossed by two pulsed and focused lasers - a CO 2 laser to induce collision-free unimolecular dissociation of CH 3 NO 2 , and a tunable dye laser following immediately to ionize selectively one of the pair of dissociation fragments for detection by a mass spectrometer and particle multiplier. A computer simulation of each fragment's MPI spectrum, a series of four photon resonances to members of the npsigma/sub u/ Rydberg state of NO 2 and three photon resonances to two vibrational members of the #betta# 1 Rydberg state of CH 3 , aids in determining the fragment's internal energy content. The dye laser is delayed and its focus is traced through a small quarter circle centered at the focus of the CO 2 laser. The flight times of the fragments from the point of dissociation and their laboratory scattering angular distributions at fixed ionizing laser wavelength provide their center of mass recoil velocity distributions. The energy deposited in the fragments evidences a striking mixture of statistical and dynamical energy partitioning. The statistical RRKM theory of unimolecular decomposition accurately predicts the amount of internal energy found in the fragments

  7. Radiator selection for Space Station Solar Dynamic Power Systems

    Science.gov (United States)

    Fleming, Mike; Hoehn, Frank

    A study was conducted to define the best radiator for heat rejection of the Space Station Solar Dynamic Power System. Included in the study were radiators for both the Organic Rankine Cycle and Closed Brayton Cycle heat engines. A number of potential approaches were considered for the Organic Rankine Cycle and a constructable radiator was chosen. Detailed optimizations of this concept were conducted resulting in a baseline for inclusion into the ORC Preliminary Design. A number of approaches were also considered for the CBC radiator. For this application a deployed pumped liquid radiator was selected which was also refined resulting in a baseline for the CBC preliminary design. This paper reports the results and methodology of these studies and describes the preliminary designs of the Space Station Solar Dynamic Power System radiators for both of the candidate heat engine cycles.

  8. Chaotic Dynamical State Variables Selection Procedure Based Image Encryption Scheme

    Directory of Open Access Journals (Sweden)

    Zia Bashir

    2017-12-01

    Full Text Available Nowadays, in the modern digital era, the use of computer technologies such as smartphones, tablets and the Internet, as well as the enormous quantity of confidential information being converted into digital form have resulted in raised security issues. This, in turn, has led to rapid developments in cryptography, due to the imminent need for system security. Low-dimensional chaotic systems have low complexity and key space, yet they achieve high encryption speed. An image encryption scheme is proposed that, without compromising the security, uses reasonable resources. We introduced a chaotic dynamic state variables selection procedure (CDSVSP to use all state variables of a hyper-chaotic four-dimensional dynamical system. As a result, less iterations of the dynamical system are required, and resources are saved, thus making the algorithm fast and suitable for practical use. The simulation results of security and other miscellaneous tests demonstrate that the suggested algorithm excels at robustness, security and high speed encryption.

  9. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  10. Action-Selection Perseveration in Young Children : Advances of a Dynamic Model

    NARCIS (Netherlands)

    Cox, R.F.A

    2008-01-01

    This study presents an empirical test and dynamic model of perseverative limb selection in children of 14-, 24-, and 36-months old (N = 66 in total). In the experiment children repeatedly grasped a spoon with a single hand. In 2 separate conditions, the spoon was presented either 4 times on their

  11. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere.

    Science.gov (United States)

    Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D

    2014-08-15

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may

  12. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere

    Science.gov (United States)

    Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce

    2015-01-01

    Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological

  13. Fabrication of a novel nano-probe slide for near-field optical microscopy

    International Nuclear Information System (INIS)

    Yim, Sang-Youp; Jeang, Eun-Hee; Lee, Jae-Hoon; Park, Seung-Han; Cho, Kyu-Man

    2004-01-01

    A novel probe structure, which can act as a planar nano-probe slide for near-field microscopy, was proposed and fabricated. Sub-wavelength apertures on a Si substrate are successfully produced by means of standard photolithography techniques with properly selected masks. In particular, the anisotropic etching characteristics of Si substrate and the hardness of the Si 3 N 4 film are utilized. Probe-to-probe scanning of the fabricated near-field nano-probe slide shows sub-wavelength confinement of light and comparable throughput to the conventional optical fiber probe. We also show that the nano-probe slide can serve as a supporting base and a sub-wavelength aperture to obtain the near-field photoluminescence spectra of a limited number of CdSe nanocrystals.

  14. Detection of dynamically varying interaural time differences

    DEFF Research Database (Denmark)

    Kohlrausch, Armin; Le Goff, Nicolas; Breebaart, Jeroen

    2010-01-01

    of fringes surrounding the probe is equal to the addition of the effects of the individual fringes. In this contribution, we present behavioral data for the same experimental condition, called dynamically varying ITD detection, but for a wider range of probe and fringe durations. Probe durations varied...

  15. A BODIPY-Based Fluorescent Probe to Visually Detect Phosgene: Toward the Development of a Handheld Phosgene Detector.

    Science.gov (United States)

    Sayar, Melike; Karakuş, Erman; Güner, Tuğrul; Yildiz, Busra; Yildiz, Umit Hakan; Emrullahoğlu, Mustafa

    2018-03-02

    A boron-dipyrromethene (BODIPY)-based fluorescent probe with a phosgene-specific reactive motif shows remarkable selectivity toward phosgene, in the presence of which the nonfluorescent dye rapidly transforms into a new structure and induces a fluorescent response clearly observable to the naked eye under ultraviolet light. Given that dynamic, a prototypical handheld phosgene detector with a promising sensing capability that expedites the detection of gaseous phosgene without sophisticated instrumentation was developed. The proposed method using the handheld detector involves a rapid response period suitable for issuing early warnings during emergency situations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-affine deformation in microstructure selection in solids II: Elastoplastic theory for the dynamics of solid state transformations

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Arya; Bhattacharya, Jayee; Sengupta, Surajit [S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Calcutta 700 098 (India); Rao, Madan [Raman Research Institute, C V Raman Avenue, Bangalore 560 080 (India)

    2008-09-10

    We study the nucleation dynamics of a model solid state transformation and the criterion for microstructure selection. Using a molecular dynamics (MD) simulation, we had shown that the dynamics of the solid is accompanied by the creation of transient non-affine zones (NAZ), which evolve with the rapidly moving transformation front. Guided by our MD results, we formulate a dynamical continuum theory of solid state transformation, which couples the elastic strain to the non-affine deformation. We demonstrate that our elastoplastic description recovers all qualitative features of the MD simulation. We construct a dynamical phase diagram for microstructure selection, including regimes where martensite or ferrite obtains, in addition to making several testable predictions.

  17. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  18. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  19. Thrombus detection using 125I-fibrinogen and a CdTe probe

    International Nuclear Information System (INIS)

    Garcia, D.A.; Frisbie, J.H.; Tow, D.E.; Sasahara, A.A.; Entine, G.

    1976-01-01

    A compact CdTe detector system was developed for use in a clinical screening test for venous thrombosis of the legs. Patients given intravenously administered autologous 125 I-fibrinogen were probed externally at selected points on the thighs and calves for abnormal accumulations of radioactivity. Measurements made with the CdTe probe were compared to those obtained with a standard portable NaI detector system. The CdTe probe was the equal of the NaI detector in diagnostic capability. The compact design of the semiconductor system considerably eased the probing procedure, especially in bedridden patients with limited mobility of the extremities

  20. Probing ultrafast carrier dynamics, nonlinear absorption

    Indian Academy of Sciences (India)

    We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time resolved differential reflectivity and transmission spectroscopy at 3.15 eV and 1.57 eV photon energies. The complex behaviour of the ...

  1. Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes.

    Science.gov (United States)

    Jahandeh, Nadia; Ranjbar, Reza; Behzadi, Payam; Behzadi, Elham

    2015-01-01

    The pathotypes of uropathogenic Escherichia coli (UPEC) cause different types of urinary tract infections (UTIs). The presence of a wide range of virulence genes in UPEC enables us to design appropriate DNA microarray probes. These probes, which are used in DNA microarray technology, provide us with an accurate and rapid diagnosis and definitive treatment in association with UTIs caused by UPEC pathotypes. The main goal of this article is to introduce the UPEC virulence genes as invaluable approaches for designing DNA microarray probes. Main search engines such as Google Scholar and databases like NCBI were searched to find and study several original pieces of literature, review articles, and DNA gene sequences. In parallel with in silico studies, the experiences of the authors were helpful for selecting appropriate sources and writing this review article. There is a significant variety of virulence genes among UPEC strains. The DNA sequences of virulence genes are fabulous patterns for designing microarray probes. The location of virulence genes and their sequence lengths influence the quality of probes. The use of selected virulence genes for designing microarray probes gives us a wide range of choices from which the best probe candidates can be chosen. DNA microarray technology provides us with an accurate, rapid, cost-effective, sensitive, and specific molecular diagnostic method which is facilitated by designing microarray probes. Via these tools, we are able to have an accurate diagnosis and a definitive treatment regarding UTIs caused by UPEC pathotypes.

  2. Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe

    International Nuclear Information System (INIS)

    Taylor, R.S.; Hnatovsky, C.

    2004-01-01

    Low power cw laser radiation coupled into a near-field scanning optical microscopy fiber probe has been used to generate a stable microbubble in water. A probe tip which was selectively chemically etched and metallized served as a microheater for the generation of the stable bubble. Bubble diameters in the range of 40-400 μm and lifetimes of over an hour have been obtained. The microbubble exhibited a linear growth phase over a period of a few seconds before reaching a maximum diameter which depended on the laser power. When the laser beam was blocked the microbubble decayed with a rate which was inversely proportional to the bubble diameter. The bubble lifetime depended on the square of the initial bubble diameter. Instabilities which transform a large stable bubble into a microjet stream of micron sized bubbles as the laser power was increased is also described

  3. Neural Network Control for the Probe Landing Based on Proportional Integral Observer

    Directory of Open Access Journals (Sweden)

    Yuanchun Li

    2015-01-01

    Full Text Available For the probe descending and landing safely, a neural network control method based on proportional integral observer (PIO is proposed. First, the dynamics equation of the probe under the landing site coordinate system is deduced and the nominal trajectory meeting the constraints in advance on three axes is preplanned. Then the PIO designed by using LMI technique is employed in the control law to compensate the effect of the disturbance. At last, the neural network control algorithm is used to guarantee the double zero control of the probe and ensure the probe can land safely. An illustrative design example is employed to demonstrate the effectiveness of the proposed control approach.

  4. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  5. Design of a synthetic luminescent probe from a biomolecule binding domain: selective detection of AU-rich mRNA sequences.

    Science.gov (United States)

    Raibaut, Laurent; Vasseur, William; Shimberg, Geoffrey D; Saint-Pierre, Christine; Ravanat, Jean-Luc; Michel, Sarah L J; Sénèque, Olivier

    2017-02-01

    We report the design of a luminescent sensor based upon the zinc finger (ZF) protein TIS11d, that allows for the selective time-resolved detection of the UUAUUUAUU sequence of the 3'-untranslated region of messenger RNA. This sensor is composed of the tandem ZF RNA binding domain of TIS11d functionalized with a luminescent Tb 3+ complex on one of the ZFs and a sensitizing antenna on the other. This work provides the proof of principle that an RNA binding protein can be re-engineered as an RNA sensor and, more generally, that tunable synthetic luminescent probes for biomolecules can be obtained by modifying biomolecule-binding domains.

  6. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Jérémy R. Rouxel

    2017-07-01

    Full Text Available Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry.

  7. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  8. Design, validation and annotation of transcriptome-wide oligonucleotide probes for the oligochaete annelid Eisenia fetida.

    Directory of Open Access Journals (Sweden)

    Ping Gong

    Full Text Available High density oligonucleotide probe arrays have increasingly become an important tool in genomics studies. In organisms with incomplete genome sequence, one strategy for oligo probe design is to reduce the number of unique probes that target every non-redundant transcript through bioinformatic analysis and experimental testing. Here we adopted this strategy in making oligo probes for the earthworm Eisenia fetida, a species for which we have sequenced transcriptome-scale expressed sequence tags (ESTs. Our objectives were to identify unique transcripts as targets, to select an optimal and non-redundant oligo probe for each of these target ESTs, and to annotate the selected target sequences. We developed a streamlined and easy-to-follow approach to the design, validation and annotation of species-specific array probes. Four 244K-formatted oligo arrays were designed using eArray and were hybridized to a pooled E. fetida cRNA sample. We identified 63,541 probes with unsaturated signal intensities consistently above the background level. Target transcripts of these probes were annotated using several sequence alignment algorithms. Significant hits were obtained for 37,439 (59% probed targets. We validated and made publicly available 63.5K oligo probes so the earthworm research community can use them to pursue ecological, toxicological, and other functional genomics questions. Our approach is efficient, cost-effective and robust because it (1 does not require a major genomics core facility; (2 allows new probes to be easily added and old probes modified or eliminated when new sequence information becomes available, (3 is not bioinformatics-intensive upfront but does provide opportunities for more in-depth annotation of biological functions for target genes; and (4 if desired, EST orthologs to the UniGene clusters of a reference genome can be identified and selected in order to improve the target gene specificity of designed probes. This approach is

  9. Laser-produced Sm{sub 1-x}Nd{sub x}NiO{sub 3} plasma dynamic through Langmuir probe and ICCD imaging combined analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ngom, B.D. [Universite Cheikh Anta Diop de Dakar (UCAD), Laboratoire de Photonique et Nano-Fabrication, Groupe de Physique du Solide et Sciences des Materiaux (GPSSM), Faculte des Sciences et Techniques, Dakar-Fann Dakar (Senegal); University of South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); National Research Foundation, Nanosciences African Network (NANOAFNET), iThemba LABS, Somerset West, Western Cape (South Africa); Lafane, S.; Abdelli-Messaci, S.; Kerdja, T. [Centre de Developpement des Technologies Avancees, Division des Milieux Ionises et Laser, Baba Hassen (Algeria); Maaza, M. [University of South Africa, UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, Pretoria (South Africa); National Research Foundation, Nanosciences African Network (NANOAFNET), iThemba LABS, Somerset West, Western Cape (South Africa)

    2016-01-15

    The dynamics of laser-produced plasma of Sm{sub 1-x}Nd{sub x}NiO{sub 3} is studied over oxygen pressure ranging from vacuum up to 2 mbar via Langmuir probe, and intensified charge-coupled device-imaging techniques. The analysis of the oxygen pressure dependence of the ion yield points out to four different regimes. More accurately, the specific ionic current shows a first drop at about 2 x 10{sup -2} mbar corresponding to the appearance of two peaks in the profile of the ionic signal. Likewise, this pressure marks the early stage of the plume splitting into two prominent components as observed by the ICCD imaging. Below 2 x 10{sup -2} mbar, the dynamic of the plume is directive (1D), while a quasi-stable behavior on the ionic current signal is observed. In the 0.2- to 0.5-mbar region, a quasi-stationary regime is obtained. More accurately, both the ionic yield and the plume stopping distance vary very slowly in such pressures range. Above 0.5 mbar, the ionic yield is altered again corresponding to the appearance of the diffusion regime. At a pressure of 1.5 mbar we observe a second appearance of an ionic signal peak. A correlation between the results obtained by Langmuir probe and ICCD imaging is made, presented, and discussed within this contribution. (orig.)

  10. Selection-driven extinction dynamics for group II introns in Enterobacteriales.

    Directory of Open Access Journals (Sweden)

    Sébastien Leclercq

    Full Text Available Transposable elements (TEs are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Some TEs were proposed to evolve under a pattern of periodic extinctions-recolonizations, in which elements recurrently invade and quickly proliferate within their host genomes, then start to disappear until total extinction. Depending on the model, TE extinction is assumed to be driven by purifying selection against colonized host genomes (Sel-DE model or by saturation of host genomes (Sat-DE model. Bacterial group II introns are suspected to follow an extinction-recolonization model of evolution, but whether they follow Sel-DE or Sat-DE dynamics is not known. Our analysis of almost 200 group II intron copies from 90 sequenced Enterobacteriales genomes confirms their extinction-recolonization dynamics: patchy element distributions among genera and even among strains within genera, acquisition of new group II introns through plasmids or other mobile genetic elements, and evidence for recent proliferations in some genomes. Distributions of recent and past proliferations and of their respective homing sites further provide strong support for the Sel-DE model, suggesting that group II introns are deleterious to their hosts. Overall, our observations emphasize the critical impact of host properties on TE dynamics.

  11. A shrouded aerosol sampling probe: Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    McFarland, A.R.; Ortiz, C.A.; Moore, M.E.; DeOtte, R.E. Jr.; Somasundaram, S.

    1988-08-01

    A new device has been developed for sampling aerosol particles from moving air streams--a shrouded probe. In the design reported herein, a 30 mm diameter sampling probe is located concentrically within a 105 mm diameter cylindrically-shaped shroud. The flow rate through the sampling probe is a constant value of 170 l/min. The dynamic pressure of the external air stream forces flow through the region between the shroud and the internal probe. The velocity of the main air stream, U/sub o/, is reduced in the shroud such that the velocity just upstream of the probe, U/sub s/, is 0.40 that of U/sub o/. By reducing the main air stream velocity, the aerosol losses on the internal walls of the probe inlet are considerably reduced. For a typical isokinetic probe sampling at 170 l/min in an air stream with a velocity of 14 m/s, the wall losses of 10 μm aerodynamic diameter particles are 39% of the total aspirated aerosol; whereas, the wall losses in the shrouded probe are 13%. Also, by reducing the velocity of the air stream in the shroud, anisokinetic effects can be substantially reduced. Wind tunnel experiments with 10 μm diameter particles over the range of free stream velocities of 2.0 to 14 m/s show the transmission ratio (ratio of aerosol transmitted through the probe to aerosol concentration in the free stream) to be within the range of 0.93 to 1.11. These data are for a constant flow rate of 170 l/min through the probe. 19 refs., 7 figs

  12. Electrostatic probes driven by broad band high power and propagation of the turbulent perturbation

    International Nuclear Information System (INIS)

    Wang Zhijiang; Sun Xuan; Wan Shude; Wen Yizhi; Yu Changxuan; Liu Wandong; Wang Cheng; Pan Gesheng

    2003-01-01

    A high dynamic output, broad-band power source for driving electrostatic probes in the investigation on propagation of turbulent perturbation has been built and used successfully in experiments on the KT-5C tokamak. The details of the experiment setup as well as some preliminary results are presented. Detections both from the small size magnetic probes and electrostatic probes indicate that the modified perturbation excited by the power source may propagate electrostatically, and electromagnetically as well

  13. Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum

    Science.gov (United States)

    Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling

    2018-03-01

    Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.

  14. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-01-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10 −6 to 2.59 × 10 −5 M with a detection limit of 1.70 × 10 −7 M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl − , Br − , F − , I − , IO 3 − , ClO 4 − , BrO 3 − , CO 3 2− , NO 2 − , NO 3 − , SO 4 2− , S 2 O 4 2− , C 2 O 4 2− , SCN − , N 3 − , citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN − by fluorescence quenching

  15. An Adaptive Learning Based Network Selection Approach for 5G Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    2018-03-01

    Full Text Available Networks will continue to become increasingly heterogeneous as we move toward 5G. Meanwhile, the intelligent programming of the core network makes the available radio resource be more changeable rather than static. In such a dynamic and heterogeneous network environment, how to help terminal users select optimal networks to access is challenging. Prior implementations of network selection are usually applicable for the environment with static radio resources, while they cannot handle the unpredictable dynamics in 5G network environments. To this end, this paper considers both the fluctuation of radio resources and the variation of user demand. We model the access network selection scenario as a multiagent coordination problem, in which a bunch of rationally terminal users compete to maximize their benefits with incomplete information about the environment (no prior knowledge of network resource and other users’ choices. Then, an adaptive learning based strategy is proposed, which enables users to adaptively adjust their selections in response to the gradually or abruptly changing environment. The system is experimentally shown to converge to Nash equilibrium, which also turns out to be both Pareto optimal and socially optimal. Extensive simulation results show that our approach achieves significantly better performance compared with two learning and non-learning based approaches in terms of load balancing, user payoff and the overall bandwidth utilization efficiency. In addition, the system has a good robustness performance under the condition with non-compliant terminal users.

  16. Far-Red Fluorescent Probe for Imaging of Vicinal Dithiol-Containing Proteins in Living Cells Based on a pKa Shift Mechanism.

    Science.gov (United States)

    Zhang, Shengrui; Chen, Guojun; Wang, Yuanyuan; Wang, Qin; Zhong, Yaogang; Yang, Xiao-Feng; Li, Zheng; Li, Hua

    2018-02-20

    Vicinal dithiol-containing proteins (VDPs) play fundamental roles in intracellular redox homeostasis and are responsible for many diseases. In this work, we report a far-red fluorescence turn-on probe MCAs for VDPs exploiting the pK a shift of the imine functionality of the probe. MCAs is composed of a merocyanine Schiff base as the fluorescent reporter and a cyclic 1,3,2-dithiarsenolane as the specific ligand for VDPs. The imine pK a of MCAs is 4.8, and it exists predominantly in the Schiff base (SB) form at physiological pH. Due to the absence of a resonating positive charge, it absorbs at a relatively short wavelength and is essentially nonfluorescent. Upon selective binding to reduced bovine serum albumin (rBSA, selected as the model protein), MCAs was brought from aqueous media to the binding pockets of the protein, causing a large increase in pK a value of MCAs (pK a = 7.1). As a result, an increase in the protonated Schiff base (PSB) form of MCAs was observed at the physiological pH conditions, which in turn leads to a bathochromically shifted chromophore (λ abs = 634 nm) and a significant increase in fluorescence intensity (λ em = 657 nm) simultaneously. Furthermore, molecular dynamics simulations indicate that the salt bridges formed between the iminium in MCAs and the residues D72 and D517 in rBSA resist the dissociation of proton from the probe, thus inducing an increase of the pK a value. The proposed probe shows excellent sensitivity and specificity toward VDPs over other proteins and biologically relevant species and has been successfully applied for imaging of VDPs in living cells. We believe that the present pK a shift switching strategy may facilitate the development of new fluorescent probes that are useful for a wide range of applications.

  17. Facial expression movement enhances the measurement of temporal dynamics of attentional bias in the dot-probe task.

    Science.gov (United States)

    Caudek, Corrado; Ceccarini, Francesco; Sica, Claudio

    2017-08-01

    The facial dot-probe task is one of the most common experimental paradigms used to assess attentional bias toward emotional information. In recent years, however, the psychometric properties of this paradigm have been questioned. In the present study, attentional bias to emotional face stimuli was measured with dynamic and static images of realistic human faces in 97 college students (63 women) who underwent either a positive or a negative mood-induction prior to the experiment. We controlled the bottom-up salience of the stimuli in order to dissociate the top-down orienting of attention from the effects of the bottom-up physical properties of the stimuli. A Bayesian analysis of our results indicates that 1) the traditional global attentional bias index shows a low reliability, 2) reliability increases dramatically when biased attention is analyzed by extracting a series of bias estimations from trial-to-trial (Zvielli, Bernstein, & Koster, 2015), 3) dynamic expression of emotions strengthens biased attention to emotional information, and 4) mood-congruency facilitates the measurement of biased attention to emotional stimuli. These results highlight the importance of using ecologically valid stimuli in attentional bias research, together with the importance of estimating biased attention at the trial level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  19. Design and Evaluation of Novel Polymyxin Fluorescent Probes

    Directory of Open Access Journals (Sweden)

    Bo Yun

    2017-11-01

    Full Text Available Polymyxins (polymyxin B and colistin are cyclic lipopeptide antibiotics that serve as a last-line defence against Gram-negative “superbugs”. In the present study, two novel fluorescent polymyxin probes were designed through regio-selective modifications of the polymyxin B core structure at the N-terminus and the hydrophobic motif at positions 6 and 7. The resulting probes, FADDI-285 and FADDI-286 demonstrated comparable antibacterial activity (MICs 2–8 mg/L to polymyxin B and colistin (MICs 0.5–8 mg/L against a panel of gram-negative clinical isolates of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. These probes should prove to be of considerable utility for imaging cellular uptake and mechanistic investigations of these important last-line antibiotics.

  20. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  1. Fast reciprocating probe system on the HL-2A tokamak

    International Nuclear Information System (INIS)

    Yan Longwen; Hong Wenyu; Qian Jun; Luo Cuiwen; Pan Li

    2005-01-01

    A reciprocating probe system has been installed at the midplane of the HL-2A tokamak. The probe is used to measure plasma edge density, temperature, floating potential, and corresponding fluctuation profiles with 8 cm scan from the scrape-off layer to the plasma boundary. The reciprocating probe can move at a speed of 1 m/s. A digital grating displacement measurement system that can provide a high displacement resolution of 0.04 mm is applied to the reciprocating probe system for the first time. A port located behind the vacuum isolation valve is designed for viewing and the exchange of the probe head. Different probe heads can be used to satisfy different experimental requirements. The first probe head had four graphite measurement tips. For high frequency response, no isolation amplifier is used in the electric circuit of the probe measurement. A personal computer via an analog-to-digital digitizer card acquires probe system data, which are sent to a data server by optical fiber after a discharge. All data are sent to the centralized data management system of the HL-2A. In this article we presented the edge temperature and density profiles for the limiter and divertor configurations of a selected plasma discharge

  2. On the calculation of the equivalent circuit for an electrostatic probe

    International Nuclear Information System (INIS)

    Alekseev, B.V.; Kotel'nikov, V.A.; Cherepanov, V.V.

    1982-01-01

    An electric circuit of the probe including a nonlinear element - the layer of a volumetric charge - is considered. Free-molecular and gas dynamical modes are investigated. Calculations of transition processes in the probe circuit are conducted. Characteristic times of formation of the excited zone and the transition process in the circuit are compared. The threshold value of time constant of the circuit at which the transition process in the excited zone can be neglected is determined

  3. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Oberg, H. [Stockholm Univ., Stockholm (Sweden); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gladh, J. [Stockholm Univ., Stockholm (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Ostrom, H. [Stockholm Univ., Stockholm (Sweden); Pettersson, L. G. M. [Stockholm Univ., Stockholm (Sweden); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stockholm Univ., Stockholm (Sweden); Ablid-Pedersen, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-04-16

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

  4. Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics.

    Science.gov (United States)

    Guillemin, R; Decleva, P; Stener, M; Bomme, C; Marin, T; Journel, L; Marchenko, T; Kushawaha, R K; Jänkälä, K; Trcera, N; Bowen, K P; Lindle, D W; Piancastelli, M N; Simon, M

    2015-01-21

    Electronic core levels in molecules are highly localized around one atomic site. However, in single-photon ionization of symmetric molecules, the question of core-hole localization versus delocalization over two equivalent atoms has long been debated as the answer lies at the heart of quantum mechanics. Here, using a joint experimental and theoretical study of core-ionized carbon disulfide (CS2), we demonstrate that it is possible to experimentally select distinct molecular-fragmentation pathways in which the core hole can be considered as either localized on one sulfur atom or delocalized between two indistinguishable sulfur atoms. This feat is accomplished by measuring photoelectron angular distributions within the frame of the molecule, directly probing entanglement or disentanglement of quantum pathways as a function of how the molecule dissociates.

  5. An off-on fluorescence probe targeting mitochondria based on oxidation-reduction response for tumor cell and tissue imaging

    Science.gov (United States)

    Yao, Hanchun; Cao, Li; Zhao, Weiwei; Zhang, Suge; Zeng, Man; Du, Bin

    2017-10-01

    In this study, a tumor-targeting poly( d, l-lactic-co-glycolic acid) (PLGA) loaded "off-on" fluorescent probe nanoparticle (PFN) delivery system was developed to evaluate the region of tumor by off-on fluorescence. The biodegradability of the nanosize PFN delivery system readily released the probe under tumor acidic conditions. The probe with good biocompatibility was used to monitor the intracellular glutathione (GSH) of cancer cells and selectively localize to mitochondria for tumor imaging. The incorporated tumor-targeting probe was based on the molecular photoinduced electron transfer (PET) mechanism preventing fluorescence ("off" state) and could be easily released under tumor acidic conditions. However, the released tumor-targeting fluorescence probe molecule was selective towards GSH with high selectivity and an ultra-sensitivity for the mitochondria of cancer cells and tissues significantly increasing the probe molecule fluorescence signal ("on" state). The tumor-targeting fluorescence probe showed sensitivity to GSH avoiding interference from cysteine and homocysteine. The PFNs could enable fluorescence-guided cancer imaging during cancer therapy. This work may expand the biological applications of PFNs as a diagnostic reagent, which will be beneficial for fundamental research in tumor imaging. [Figure not available: see fulltext.

  6. Chemical reactions induced and probed by positive muons

    International Nuclear Information System (INIS)

    Ito, Yasuo

    1990-01-01

    The application of μ + science, collectively called μSR, but encompassing a variety of methods including muon spin rotation, muon spin relaxation, muon spin repolarization, muon spin resonance and level-crossing resonance, to chemistry is introduced emphasizing the special aspects of processes which are 'induced and probed' by the μ + itself. After giving a general introduction to the nature and methods of muon science and a short history of muon chemistry, selected topics are given. One concerns the usefulness of muonium as hydrogen-like probes of chemical reactions taking polymerization of vinyl monomers and reaction with thiosulphate as examples. Probing solitons in polyacetylene induced and probed by μ + is also an important example which shows the unique nature of muonium. Another important topic is 'lost polarization'. Although this term is particular to muonium. Another important topic is 'lost polarization'. Although this term is particular to muon chemistry, the chemistry underlining the phenomenon of lost polarization has an importance to both radiation and hot atom chemistries. (orig.)

  7. Ultrafast relaxation dynamics of electrons in Au clusters capped with dodecanethiol molecules

    International Nuclear Information System (INIS)

    Hamanaka, Y.; Fukagawa, K.; Tai, Y.; Murakami, J.; Nakamura, A.

    2006-01-01

    We have investigated electron relaxation dynamics of size-selected Au clusters capped by dodecanethiol molecules in the cluster sizes of 28-142 atoms using femtosecond pump-probe spectroscopy. Absorption spectra of 28-71-atom clusters show discrete peaks due to the optical transitions between quantized states, while an absorption band due to the surface plasmon is observed in 142-atom clusters. In the differential absorption spectra measured by the pump-probe experiments, a large redshift of 140 meV lasting over 10 ps and absorption bleaching decaying within 2 ps are observed at the absorption peaks of 28-atom clusters. The redshift is ascribed to a charge transfer between Au clusters and dodecanethiol molecules adsorbed on the cluster surface, and the bleaching is due to blocking of the optical transitions between the ground state and the occupied electronic states due to the Pauli's-exclusion principle. Such behavior is in contrast to the 142-atom clusters, where the cooling of hot electrons generated by photo-excitation determines the relaxation dynamics. These results indicate molecular properties of the 28-atom Au cluster-dodecanethiol system

  8. Tracer kinetic model selection for dynamic contrast-enhanced magnetic resonance imaging of locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Kallehauge, Jesper Folsted; Tanderup, Kari; Duan, Chong

    2014-01-01

    , the TM was optimal in 17.0%, the ETM was optimal in 2.2%, the C-TU in 23.4% and the 2CXM was optimal in 57.3%. Throughout the tumour, a high correlation was found between Ktrans(TM) and Fp(2CXM), ρ = 0.91. Conclusion. The 2CXM was most often optimal in describing the contrast agent enhancement of pre......Background. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) offers a unique capability to probe tumour microvasculature. Different analysis of the acquired data will possibly lead to different conclusions. Therefore, the objective of this study was to investigate under which...

  9. PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery.

    Science.gov (United States)

    Gulec, Seza A; Daghighian, Farhad; Essner, Richard

    2016-12-01

    Positron emission tomography (PET) has become an invaluable part of patient evaluation in surgical oncology. PET is less than optimal for detecting lesions PET-positive lesions can be challenging as a result of difficulties in surgical exposure. We undertook this investigation to assess the utility of a handheld high-energy gamma probe (PET-Probe) for intraoperative identification of 18 F-deoxyglucose (FDG)-avid tumors. Forty patients underwent a diagnostic whole-body FDG-PET scan for consideration for surgical exploration and resection. Before surgery, all patients received an intravenous injection of 7 to 10 mCi of FDG. At surgery, the PET-Probe was used to determine absolute counts per second at the known tumor site(s) demonstrated by whole-body PET and at adjacent normal tissue (at least 4 cm away from tumor-bearing sites). Tumor-to-background ratios were calculated. Thirty-two patients (80%) underwent PET-Probe-guided surgery with therapeutic intent in a recurrent or metastatic disease setting. Eight patients underwent surgery for diagnostic exploration. Anatomical locations of the PET-identified lesions were neck and supraclavicular (n = 8), axilla (n = 5), groin and deep iliac (n = 4), trunk and extremity soft tissue (n = 3), abdominal and retroperitoneal (n = 19), and lung (n = 2). PET-Probe detected all PET-positive lesions. The PET-Probe was instrumental in localization of lesions in 15 patients that were not immediately apparent by surgical exploration. The PET-Probe identified all lesions demonstrated by PET scanning and, in selected cases, was useful in localizing FDG-avid disease not seen with conventional PET scanning.

  10. Ultrafast quantum control of ionization dynamics in krypton.

    Science.gov (United States)

    Hütten, Konrad; Mittermair, Michael; Stock, Sebastian O; Beerwerth, Randolf; Shirvanyan, Vahe; Riemensberger, Johann; Duensing, Andreas; Heider, Rupert; Wagner, Martin S; Guggenmos, Alexander; Fritzsche, Stephan; Kabachnik, Nikolay M; Kienberger, Reinhard; Bernhardt, Birgitta

    2018-02-19

    Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.

  11. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.

    Science.gov (United States)

    Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-20

    Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.

  12. Soft probes of the quark gluon plasma in ATLAS

    CERN Document Server

    Wozniak, K W; The ATLAS collaboration

    2014-01-01

    Measurements of low-$p_{T}$ (< 5 GeV) particle production have provided valuable insight on the production and evolution of the quark-gluon plasma in Pb+Pb collisions at the LHC. In particular, measurements of elliptic and higher order collective flow imprinted on the azimuthal angle distributions of low-$p_{T}$ particles directly probe the strongly-coupled dynamics of the quark gluon plasma and test hydrodynamic model descriptions of its evolution. The large acceptance of detectors like ATLAS have made it possible to measure flow event-by-event and to determine the correlations between different harmonics. Recent measurements of low-$p_{T}$ particle production and multi-particle correlations in proton-lead collisions have shown features similar to the collective flow observed in Pb+Pb collisions. Results will be presented from a variety of single and multi-particle measurements in Pb+Pb and proton-Pb collisions that probe the collective dynamics of the quark gluon plasma and possibly provide evidence for ...

  13. U-Shaped and Surface Functionalized Polymer Optical Fiber Probe for Glucose Detection.

    Science.gov (United States)

    Azkune, Mikel; Ruiz-Rubio, Leire; Aldabaldetreku, Gotzon; Arrospide, Eneko; Pérez-Álvarez, Leyre; Bikandi, Iñaki; Zubia, Joseba; Vilas-Vilela, Jose Luis

    2017-12-25

    In this work we show an optical fiber evanescent wave absorption probe for glucose detection in different physiological media. High selectivity is achieved by functionalizing the surface of an only-core poly(methyl methacrylate) (PMMA) polymer optical fiber with phenilboronic groups, and enhanced sensitivity by using a U-shaped geometry. Employing a supercontinuum light source and a high-resolution spectrometer, absorption measurements are performed in the broadband visible light spectrum. Experimental results suggest the feasibility of such a fiber probe as a low-cost and selective glucose detector.

  14. Influence of static and dynamic dipolar fields in bulk YIG/thin film NiFe systems probed via spin rectification effect

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Wee Tee, E-mail: a0046479@u.nus.edu [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Tay, Z.J. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Yakovlev, N.L. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Peng, Bin [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Ong, C.K. [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551 (Singapore); Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, Singapore 117411 (Singapore)

    2017-03-15

    The characteristics of the static and dynamic components of the dipolar fields originating from a bulk polycrystalline yttrium iron garnet (YIG) substrate are probed by depositing a NiFe (Permalloy) layer on it, which acts as a detector. By measuring dc voltages generated via spin rectification effect (SRE) within the NiFe layer under microwave excitation, we characterize the influence of dipolar fields from bulk YIG on the NiFe layer. It is found that the dynamic YIG dipolar fields modify the self-SRE of NiFe, driving its own rectification voltages within the NiFe layer, an effect we term as non-local SRE. This non-local SRE only occurs near the simultaneous resonance of both YIG and NiFe. On the other hand, the static dipolar field from YIG manifests itself as a negative anisotropy in the NiFe layer which shifts the latter’s ferromagnetic resonance frequency. - Highlights: • We demonstrate the quantification of both the static and dynamic components of the dipolar fields due to a YIG slab. • The detection and characterisation of such dipolar fields are important in many magnetic applications such as magnonics. • The dipolar fields can pose potential pitfalls if not properly considered in certain spin-electronics systems.

  15. Probing the hydrogen equilibrium and kinetics in zeolite imidazolate frameworks via molecular dynamics and quasi-elastic neutron scattering experiments.

    Science.gov (United States)

    Pantatosaki, Evangelia; Jobic, Hervé; Kolokolov, Daniil I; Karmakar, Shilpi; Biniwale, Rajesh; Papadopoulos, George K

    2013-01-21

    The problem of simulating processes involving equilibria and dynamics of guest sorbates within zeolitic imidazolate frameworks (ZIF) by means of molecular dynamics (MD) computer experiments is of growing importance because of the promising role of ZIFs as molecular "traps" for clean energy applications. A key issue for validating such an atomistic modeling attempt is the possibility of comparing the MD results, with real experiments being able to capture analogous space and time scales to the ones pertained to the computer experiments. In the present study, this prerequisite is fulfilled through the quasi-elastic neutron scattering technique (QENS) for measuring self-diffusivity, by elaborating the incoherent scattering signal of hydrogen nuclei. QENS and MD experiments were performed in parallel to probe the hydrogen motion, for the first time in ZIF members. The predicted and measured dynamics behaviors show considerable concentration variation of the hydrogen self-diffusion coefficient in the two topologically different ZIF pore networks of this study, the ZIF-3 and ZIF-8. Modeling options such as the flexibility of the entire matrix versus a rigid framework version, the mobility of the imidazolate ligand, and the inclusion of quantum mechanical effects in the potential functions were examined in detail for the sorption thermodynamics and kinetics of hydrogen and also of deuterium, by employing MD combined with Widom averaging towards studying phase equilibria. The latter methodology ensures a rigorous and efficient way for post-processing the dynamics trajectory, thereby avoiding stochastic moves via Monte Carlo simulation, over the large number of configurational degrees of freedom a nonrigid framework encompasses.

  16. DESIGN OF THE CONTACT POTENTIALS DIFFERENCE PROBES

    Directory of Open Access Journals (Sweden)

    K. U. Pantsialeyeu

    2016-01-01

    Full Text Available The contact potential difference probes distinguished by great variety and produced mostly in the laboratory for specific experimental applications. As a rule, they consist of commercially available instrumentation, and have a number of disadvantages: large dimensions, complexity and high cost, small sensitivity, operating speed, noiseproof, etc. The purpose of this paper is to describe the basic approaches to design of the small dimension, complete contact potential difference probes, providing high sensitivity, operating speed, and noise immunity. In this paper the contact potential difference probe, which is a electrometer with dynamic capacitor plate at about 0.1–5 mm2 . These probes are could be used in scanning systems, such as a Scanning Kelvin Probe, as well as for controlling system of manufacturing processes, e.g. under friction. The design of such contact potential difference probes conducted using modern electronic components, unique circuitry and design solutions described in detail at paper. The electromechanical modulator applied for mechanical vibrations of the reference sample. To provide a high amplitude and phase stability the upgraded generator with Wien bridge was used instead traditional oscillation sensor. The preamplifier made on the base of modern operational amplifiers with femtoampere current input. The power of the preamplifier designed with «floating ground». It allows keeping the relation constant potential to the probe components when changing over a wide range the compensation voltage. The phase detector-integrator based on the electronic antiphase switches with the modulation frequency of the contact potential difference and the integrator. Fullwave phase detection would greatly increase the sensitivity of the probe. In addition, the application of the phase detection allows suppressing noise and crosstalk at frequencies different from the modulation frequency. The preamplifier and the reference sample

  17. Probing contextuality with pre- and post-selection

    International Nuclear Information System (INIS)

    Tollaksen, Jeff

    2007-01-01

    By analyzing the concept of contextuality (Bell-Kochen-Specker) in terms of pre-and-post-selection (PPS), it is possible to assign definite values to observables in a new way. Physical reasons are presented for restrictions on these assignments. When measurements are performed which do not disturb the pre- and post-selection (i.e. weak measurements), then novel experimental aspects of contextuality can be demonstrated including a proof that every PPS-paradox with definite predictions implies contextuality. Certain results of these measurements (eccentric weak values with e.g. negative values outside the spectrum), however, cannot be explained by a 'classical-like' hidden variable theory. Surprising theoretical implications are discussed

  18. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition

    Science.gov (United States)

    Frost, Julianty; Galdeano, Carles; Soares, Pedro; Gadd, Morgan S.; Grzes, Katarzyna M.; Ellis, Lucy; Epemolu, Ola; Shimamura, Satoko; Bantscheff, Marcus; Grandi, Paola; Read, Kevin D.; Cantrell, Doreen A.; Rocha, Sonia; Ciulli, Alessio

    2016-11-01

    Chemical strategies to using small molecules to stimulate hypoxia inducible factors (HIFs) activity and trigger a hypoxic response under normoxic conditions, such as iron chelators and inhibitors of prolyl hydroxylase domain (PHD) enzymes, have broad-spectrum activities and off-target effects. Here we disclose VH298, a potent VHL inhibitor that stabilizes HIF-α and elicits a hypoxic response via a different mechanism, that is the blockade of the VHL:HIF-α protein-protein interaction downstream of HIF-α hydroxylation by PHD enzymes. We show that VH298 engages with high affinity and specificity with VHL as its only major cellular target, leading to selective on-target accumulation of hydroxylated HIF-α in a concentration- and time-dependent fashion in different cell lines, with subsequent upregulation of HIF-target genes at both mRNA and protein levels. VH298 represents a high-quality chemical probe of the HIF signalling cascade and an attractive starting point to the development of potential new therapeutics targeting hypoxia signalling.

  19. Highly selective probe based on imine linkage for Zn{sup 2+} and HSO{sub 3}{sup −} in mixed aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Kamaljot; Chaudhary, Savita; Singh, Sukhjinder; Mehta, S.K., E-mail: skmehta@pu.ac.in

    2015-04-15

    A simple salicylaldehyde derived Schiff base N, N′- bis (p-chloro salicylidene)-1, 2- ethylenediamine (L) was synthesized and characterized. The receptor demonstrates simultaneous dual channel chromogenic and fluorogenic signaling towards HSO{sub 3}{sup −} and Zn{sup 2+} in mixed aqueous media. Solvatochromism was employed systematically for modulating its optoelectronic properties. The probe was successfully assessed to monitor HSO{sub 3}{sup −} detection via UV–vis spectroscopy. DFT calculations and {sup 1}H NMR spectroscopy further support the results based on shifting of equilibrium. Moreover, the sensor showed large fluorescence enhancement with blue-shift of 48 nm after addition of Zn{sup 2+}. The probe exhibits high selectivity over other competitive ions with high detection limit of 6.54×10{sup −5} M and 3.21×10{sup −6} M for HSO{sub 3}{sup −} and Zn{sup 2+}, respectively. Importantly, this is one of the rare reports in which Schiff base was utilized for the fabrication of chromogenic or fluorogenic sensor using solvent effect for multianalyte detection. - Highlights: • Easy synthesis of highly selective and sensitive Salicylideneaniline moiety. • Solvatochromism induced tautomerism between the enol-imine and keto-amine forms. • Computational studies revealing the effect of solvent on stability of NH form. • Discriminative detection of HSO{sub 3}{sup −} and Zn{sup 2+} by different spectroscopic techniques. • Optical feedbacks as absorption transitions with HSO{sub 3}{sup −} on bisulphite adduct formation. • Fluorescence enhancement for Zn{sup 2+} based on imine binding mechanism.

  20. The solar probe mission

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, J.; Bohlin, J.D.; Burlaga, L.F.; Farquhar, R.; Gloeckler, G.; Goldstein, B.E.; Harvey, J.W.; Holzer, T.E.; Jones, W.V.; Kellogg, P.J.; Krimigis, S.M.; Kundu, M.R.; Lazarus, A.J.; Mellott, M.M.; Parker, E.N.; Rosner, R.; Rottman, G.J.; Slavin, J.A.; Suess, S.T.; Tsurutani, B.T.; Woo, R.T.; Zwickl, R.D.

    1990-01-01

    The Solar Probe will deliver a 133.5 kg science payload into a 4 R s perihelion solar polar orbit (with the first perihelion passage in 2004) to explore in situ one of the last frontiers in the solar system---the solar corona. This mission is both affordable and technologically feasible. Using a payload of 12 (predominantly particles and fields) scientific experiments, it will be possible to answer many long-standing, fundamental problems concerning the structure and dynamics of the outer solar atmosphere, including the acceleration, storage, and transport of energetic particles near the Sun and in the inner ( s ) heliosphere

  1. Ultraspecific probes for high throughput HLA typing

    Directory of Open Access Journals (Sweden)

    Eggers Rick

    2009-02-01

    Full Text Available Abstract Background The variations within an individual's HLA (Human Leukocyte Antigen genes have been linked to many immunological events, e.g. susceptibility to disease, response to vaccines, and the success of blood, tissue, and organ transplants. Although the microarray format has the potential to achieve high-resolution typing, this has yet to be attained due to inefficiencies of current probe design strategies. Results We present a novel three-step approach for the design of high-throughput microarray assays for HLA typing. This approach first selects sequences containing the SNPs present in all alleles of the locus of interest and next calculates the number of base changes necessary to convert a candidate probe sequences to the closest subsequence within the set of sequences that are likely to be present in the sample including the remainder of the human genome in order to identify those candidate probes which are "ultraspecific" for the allele of interest. Due to the high specificity of these sequences, it is possible that preliminary steps such as PCR amplification are no longer necessary. Lastly, the minimum number of these ultraspecific probes is selected such that the highest resolution typing can be achieved for the minimal cost of production. As an example, an array was designed and in silico results were obtained for typing of the HLA-B locus. Conclusion The assay presented here provides a higher resolution than has previously been developed and includes more alleles than previously considered. Based upon the in silico and preliminary experimental results, we believe that the proposed approach can be readily applied to any highly polymorphic gene system.

  2. Tracking Ultrafast Carrier Dynamics in Single Semiconductor Nanowire Heterostructures

    Directory of Open Access Journals (Sweden)

    Taylor A.J.

    2013-03-01

    Full Text Available An understanding of non-equilibrium carrier dynamics in silicon (Si nanowires (NWs and NW heterostructures is very important due to their many nanophotonic and nanoelectronics applications. Here, we describe the first measurements of ultrafast carrier dynamics and diffusion in single heterostructured Si nanowires, obtained using ultrafast optical microscopy. By isolating individual nanowires, we avoid complications resulting from the broad size and alignment distribution in nanowire ensembles, allowing us to directly probe ultrafast carrier dynamics in these quasi-one-dimensional systems. Spatially-resolved pump-probe spectroscopy demonstrates the influence of surface-mediated mechanisms on carrier dynamics in a single NW, while polarization-resolved femtosecond pump-probe spectroscopy reveals a clear anisotropy in carrier lifetimes measured parallel and perpendicular to the NW axis, due to density-dependent Auger recombination. Furthermore, separating the pump and probe spots along the NW axis enabled us to track space and time dependent carrier diffusion in radial and axial NW heterostructures. These results enable us to reveal the influence of radial and axial interfaces on carrier dynamics and charge transport in these quasi-one-dimensional nanosystems, which can then be used to tailor carrier relaxation in a single nanowire heterostructure for a given application.

  3. Influence of probe motion on laser probe temperature in circulating blood.

    Science.gov (United States)

    Hehrlein, C; Splinter, R; Littmann, L; Tuntelder, J R; Tatsis, G P; Svenson, R H

    1991-01-01

    The purpose of this study was to evaluate the effect of probe motion on laser probe temperature in various blood flow conditions. Laser probe temperatures were measured in an in vitro blood circulation model consisting of 3.2 nm-diameter plastic tubes. A 2.0 mm-diameter metal probe attached to a 300 microns optical quartz fiber was coupled to an argon laser. Continuous wave 4 watts and 8 watts of laser power were delivered to the fiber tip corresponding to a 6.7 +/- 0.5 and 13.2 +/- 0.7 watts power setting at the laser generator. The laser probe was either moved with constant velocity or kept stationary. A thermocouple inserted in the lateral portion of the probe was used to record probe temperatures. Probe temperature changes were found with the variation of laser power, probe velocity, blood flow, and duration of laser exposure. Probe motion significantly reduced probe temperatures. After 10 seconds of 4 watts laser power the probe temperature in stagnant blood decreased from 303 +/- 18 degrees C to 113 +/- 17 degrees C (63%) by moving the probe with a velocity of 5 cm/sec. Blood flow rates of 170 ml/min further decreased the probe temperature from 113 +/- 17 degrees C to 50 +/- 8 degrees C (56%). At 8 watts of laser power a probe temperature reduction from 591 +/- 25 degrees C to 534 +/- 36 degrees C (10%) due to 5 cm/sec probe velocity was noted. Probe temperatures were reduced to 130 +/- 30 degrees C (78%) under the combined influence of 5 cm/sec probe velocity and 170 ml/min blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Magnetic nanostructures: radioactive probes and recent developments

    International Nuclear Information System (INIS)

    Prandolini, M J

    2006-01-01

    The miniaturization of magnetic sensors and storage devices down to the nano-scale leads to drastic changes in magnetic phenomena compared with the same devices with a larger size. Excited-nuclear-probe (radioactive probe) techniques are ideal for investigating these new magnetic nanostructures. By observing the magnetic hyperfine fields (and in some cases the electric-field-gradients (EFGs)) at the nuclei of radioactive probes, microscopic information about the magnetic environment of the probes is acquired. The magnetic hyperfine field is particularly sensitive to the s-spin polarization of the conduction electrons and to the orbital magnetic moment of the probe atom. Three methods of inserting radioactive probes into magnetic nanostructures are presented; neutron activation, recoil implantation and 'soft-landing', followed by descriptions of their application to selected examples. In some cases, these methods offer the simultaneous creation and observation of new magnetic materials at the atomic scale. This review focuses firstly on the induced magnetism in noble-metal spacer layers between either ferromagnetic (FM) or FM/antiferromagnetic (AFM) layers in a trilayer structure. Using the method of low-temperature nuclear orientation, the s-spin polarization of noble-metal probes was measured and was found to be very sensitive to the magnetic properties at both the FM and AFM interfaces. Secondly, the recoil implantation of radioactive Fe probes into rare-earth hosts and d-band alloys and subsequent measurement using time-differential perturbed angular distribution offer the possibility of controlling the chemical composition and number of nearest-neighbours. This method was used to prepare local 3d-magnetic clusters in a non-magnetic matrix and to observe their magnetic behaviour. Finally, non-magnetic radioactive probes were 'soft-landed' onto Ni surfaces and extremely lattice-expanded ultrathin Ni films. By measuring the magnetic hyperfine fields and EFGs at

  5. EPR spin probe investigation of irradiated wheat, rice and sunflower seeds

    Energy Technology Data Exchange (ETDEWEB)

    Paktas, Dilek Dadayl [Department of Physics, Faculty of Art and Science, Zonguldak Karaelmas University, 67100 Zonguldak (Turkey)]. E-mail: dadayli@karaelmas.edu.tr; Suennetcioglu, M. Maral [Department of Physics Engineering, Hacettepe University, 06532 Beytepe, Ankara (Turkey)

    2007-01-15

    TEMPO and 4-nitro-TEMPO spin probes were used to monitor dose-dependent changes in the EPR spectra of irradiated wheat and rice embryos and sunflower embryo parts. Rice embryos were studied in the 233-293 K temperature range using 4-nitro-TEMPO. TEMPAMINE, TEMPYO and DTBN spin probes were also studied for their applicability in the determination of irradiated seeds. All the recorded spectra were simulated, and spectral parameters and partition of the probes among various domains were determined. Despite the contribution of the signal from extracellular regions, it was possible to detect the changes in the water/lipid ratios with dose. The hydrophilic character of the probe alone was not sufficient to distinguish the different doses of irradiation. Line widths and rotational correlation times of various domains within embryo also play an important role. Partition after dehydration was another measure in the selection of the suitable probes for irradiation studies. Better results were obtained in dehydrated embryos for the probes preferring lipid bodies.

  6. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    Science.gov (United States)

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  7. Selective Incorporation of Nitrile-Based Infrared Probes into Proteins via Cysteine Alkylation

    OpenAIRE

    Jo, Hyunil; Culik, Robert M.; Korendovych, Ivan V.; DeGrado, William F.; Gai, Feng

    2010-01-01

    The nitrile stretching vibration is increasingly used as a sensitive infrared probe of local protein environments. However, site-specific incorporation of a nitrile moiety into proteins is difficult. Here we show that various aromatic nitriles can be easily incorporated into peptides and proteins via either thiol alkylation or arylation reaction.

  8. Intermolecular dynamics studied by paramagnetic tagging

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xingfu; Keizers, Peter H. J. [Leiden University, Institute of Chemistry (Netherlands); Reinle, Wolfgang; Hannemann, Frank; Bernhardt, Rita [Universitaet des Saarlandes, Naturwissenschaftlich-Technische Fakultaet III, Institut fuer Biochemie (Germany); Ubbink, Marcellus [Leiden University, Institute of Chemistry (Netherlands)], E-mail: m.ubbink@chem.leidenuniv.nl

    2009-04-15

    Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain-domain mobility without the need for external alignment media.

  9. Intermolecular dynamics studied by paramagnetic tagging

    International Nuclear Information System (INIS)

    Xu Xingfu; Keizers, Peter H. J.; Reinle, Wolfgang; Hannemann, Frank; Bernhardt, Rita; Ubbink, Marcellus

    2009-01-01

    Yeast cytochrome c and bovine adrenodoxin form a dynamic electron transfer complex, which is a pure encounter complex. It is demonstrated that the dynamic nature of the interaction can readily be probed by using a rigid lanthanide tag attached to cytochrome c. The tag, Caged Lanthanide NMR Probe 5, induces pseudocontact shifts and residual dipolar couplings and does not perturb the binding interface. Due to the dynamics in the complex, residual dipolar couplings in adrenodoxin are very small. Simulation shows that cytochrome c needs to sample a large part of the surface of adrenodoxin to explain the small degree of alignment observed for adrenodoxin. The applied method provides a simple and straightforward way to observe dynamics in protein complexes or domain-domain mobility without the need for external alignment media

  10. NVU dynamics. II. Comparing to four other dynamics

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Toxværd, Søren; Schrøder, Thomas

    2011-01-01

    -potential-energy hypersurface. Here, simulations of NVU dynamics are compared to results for four other dynamics, both deterministic and stochastic. First, NVU dynamics is compared to the standard energy-conserving Newtonian NVE dynamics by simulations of the Kob-Andersen binary Lennard-Jones liquid, its WCA version (i.......e., with cut-off's at the pair potential minima), and the Lennard-Jones Gaussian liquid. We find identical results for all quantities probed: radial distribution functions, incoherent intermediate scattering functions, and mean-square displacement as function of time. Arguments are presented...... on the constant-potential-energy hypersurface, and to Nos-Hoover NVT dynamics. If time is scaled for the two stochastic dynamics to make single-particle diffusion constants identical to that of NVE dynamics, the simulations show that all five dynamics are equivalent at low temperatures except at short times....

  11. PEGylated Red-Emitting Calcium Probe with Improved Sensing Properties for Neuroscience.

    Science.gov (United States)

    Ponsot, Flavien; Shen, Weida; Ashokkumar, Pichandi; Audinat, Etienne; Klymchenko, Andrey S; Collot, Mayeul

    2017-11-22

    Monitoring calcium concentration in the cytosol is of main importance as this ion drives many biological cascades within the cell. To this end, molecular calcium probes are widely used. Most of them, especially the red emitting probes, suffer from nonspecific interactions with inner membranes due to the hydrophobic nature of their fluorophore. To circumvent this issue, calcium probes conjugated to dextran can be used to enhance the hydrophilicity and reduce the nonspecific interaction and compartmentalization. However, dextran conjugates also feature important drawbacks including lower affinity, lower dynamic range, and slow diffusion. Herein, we combined the advantage of molecular probes and dextran conjugate without their drawbacks by designing a new red emitting turn-on calcium probe based on PET quenching, Rhod-PEG, in which the rhodamine fluorophore bears four PEG 4 units. This modification led to a high affinity calcium probe (K d = 748 nM) with reduced nonspecific interactions, enhanced photostability, two-photon absorbance, and brightness compared to the commercially available Rhod-2. After spectral characterizations, we showed that Rhod-PEG quickly and efficiently diffused through the dendrites of pyramidal neurons with an enhanced sensitivity (ΔF/F 0 ) at shorter time after patching compared to Rhod-2.

  12. Impact of dynamic specimen shape evolution on the atom probe tomography results of doped epitaxial oxide multilayers: Comparison of experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Madaan, Nitesh; Nandasiri, Manjula; Devaraj, Arun, E-mail: arun.devaraj@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Xu, Zhijie [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354 (United States); Thevuthasan, Suntharampillai [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 3335 Innovation Boulevard, Richland, Washington 99354 (United States); Qatar Environment and Energy Research Institute, Qatar Foundation, PO Box 5825, Doha (Qatar)

    2015-08-31

    The experimental atom probe tomography (APT) results from two different specimen orientations (top-down and sideways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was compared with level-set method based field evaporation simulations for the same specimen orientations. This experiment-simulation comparison explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction, leading to inaccurate estimation of interfacial intermixing. This study highlights the importance of comparing experimental results with field evaporation simulations when using APT to study oxide heterostructure interfaces.

  13. Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids

    International Nuclear Information System (INIS)

    Polli, D.; Antognazza, M.R.; Brida, D.; Lanzani, G.; Cerullo, G.; De Silvestri, S.

    2008-01-01

    We use pump-probe spectroscopy with broadband detection to study electronic energy relaxation and coherent vibrational dynamics in carotenoids. A fast optical multichannel analyzer combined with a non-collinear optical parametric amplifier allows simultaneous acquisition of the differential transmission dynamics on the 500-700 nm wavelength range with sub-10-fs temporal resolution. The broad spectral coverage enables on the one hand a detailed study of the ultrafast bright-to-dark state internal conversion process; on the other hand, the tracking of the motion of the vibrational wavepacket launched on the ground state multidimensional potential energy surface. We present results on all-trans β-carotene and on a long-chain polyene in solution. The developed experimental setup enables the straightforward acquisition and analysis of coherent vibrational dynamics, highlighting time-frequency domain features with extreme resolution

  14. Charge dynamics of 57Fe probe atoms in La2Li0.5Cu0.5O4

    Science.gov (United States)

    Presniakov, I. A.; Sobolev, A. V.; Rusakov, V. S.; Moskvin, A. S.; Baranov, A. V.

    2018-06-01

    The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states "+3". An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration ("Cu2+-O-" state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O-(L) → Fe4+ + O2-, which transforms "Fe3+" into "Fe4+" state. The experimental spectra in the entire temperature range 77-300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.

  15. Selective Incorporation of Nitrile-Based Infrared Probes into Proteins via Cysteine Alkylation

    Science.gov (United States)

    Jo, Hyunil; Culik, Robert M.; Korendovych, Ivan V.; DeGrado, William F.; Gai, Feng

    2010-01-01

    The nitrile stretching vibration is increasingly used as a sensitive infrared probe of local protein environments. However, site-specific incorporation of a nitrile moiety into proteins is difficult. Here we show that various aromatic nitriles can be easily incorporated into peptides and proteins via either thiol alkylation or arylation reaction. PMID:21077670

  16. PRIMEGENSw3: a web-based tool for high-throughput primer and probe design.

    Science.gov (United States)

    Kushwaha, Garima; Srivastava, Gyan Prakash; Xu, Dong

    2015-01-01

    Highly specific and efficient primer and probe design has been a major hurdle in many high-throughput techniques. Successful implementation of any PCR or probe hybridization technique depends on the quality of primers and probes used in terms of their specificity and cross-hybridization. Here we describe PRIMEGENSw3, a set of web-based utilities for high-throughput primer and probe design. These utilities allow users to select genomic regions and to design primer/probe for selected regions in an interactive, user-friendly, and automatic fashion. The system runs the PRIMEGENS algorithm in the back-end on the high-performance server with the stored genomic database or user-provided custom database for cross-hybridization check. Cross-hybridization is checked not only using BLAST but also by checking mismatch positions and energy calculation of potential hybridization hits. The results can be visualized online and also can be downloaded. The average success rate of primer design using PRIMEGENSw3 is ~90 %. The web server also supports primer design for methylated sequences, which is used in epigenetic studies. Stand-alone version of the software is also available for download at the website.

  17. Optimal Strategy for Integrated Dynamic Inventory Control and Supplier Selection in Unknown Environment via Stochastic Dynamic Programming

    International Nuclear Information System (INIS)

    Sutrisno; Widowati; Solikhin

    2016-01-01

    In this paper, we propose a mathematical model in stochastic dynamic optimization form to determine the optimal strategy for an integrated single product inventory control problem and supplier selection problem where the demand and purchasing cost parameters are random. For each time period, by using the proposed model, we decide the optimal supplier and calculate the optimal product volume purchased from the optimal supplier so that the inventory level will be located at some point as close as possible to the reference point with minimal cost. We use stochastic dynamic programming to solve this problem and give several numerical experiments to evaluate the model. From the results, for each time period, the proposed model was generated the optimal supplier and the inventory level was tracked the reference point well. (paper)

  18. Integrated microcantilevers for high-resolution sensing and probing

    International Nuclear Information System (INIS)

    Li, Xinxin; Lee, Dong-Weon

    2012-01-01

    This topical review is focused on microcantilever-based sensing and probing functions that are realized by integrating a mechanically compliant cantilever with self-sensing and self-actuating elements, specific sensing materials as well as functionalized nano-tips. Such integrated cantilever devices have shown great promise in ultra-sensitive applications such as on-the-spot portable bio/chemical detection and in situ micro/nanoscale surface analysis and manipulation. The technical details of this review will be given in a sequence of cantilever sensors and, then, cantilever-tip probes. For the integrated cantilever sensors, the frequency-output style dynamic cantilevers are described first, with the contents including optimized resonance modes, sensing-group-modified nanostructures for specific bio/chemical mass adsorption and nanoscale sensing effects, etc. Thereafter, the static cantilever sensors for surface-stress detection are described in the sequence of the sensing mechanism, surface modification of the sensitive molecule layer and the model of specific reaction-induced surface-energy variation. After technical description of the cantilever sensors, the emphasis of the review moves to functionalized nano-tip equipped cantilever-tip probing devices. The probing functions are not only integrated on the cantilever but also integrated at the sharp apex of the tip. After description of single integrated cantilever probes and their applications in surface scanning and imaging, arrayed cantilever-tip devices and their simultaneous parallel operation for high throughput imaging and nanomechanical data storage are also addressed. With cantilever-tip probes as key elements, micro-analysis instruments are introduced that can be widely used for macro/nanoscale characterizations. (topical review)

  19. Lineage dynamics and mutation-selection balance in non-adapting asexual populations

    Science.gov (United States)

    Pénisson, Sophie; Sniegowski, Paul D.; Colato, Alexandre; Gerrish, Philip J.

    2013-02-01

    In classical population genetics, mutation-selection balance refers to the equilibrium frequency of a deleterious allele established and maintained under two opposing forces: recurrent mutation, which tends to increase the frequency of the allele; and selection, which tends to decrease its frequency. In a haploid population, if μ denotes the per capita rate of production of the deleterious allele by mutation and s denotes the selective disadvantage of carrying the allele, then the classical mutation-selection balance frequency of the allele is approximated by μ/s. This calculation assumes that lineages carrying the mutant allele in question—the ‘focal allele’—do not accumulate deleterious mutations linked to the focal allele. In principle, indirect selection against the focal allele caused by such additional mutations can decrease the frequency of the focal allele below the classical mutation-selection balance. This effect of indirect selection will be strongest in an asexual population, in which the entire genome is in linkage. Here, we use an approach based on a multitype branching process to investigate this effect, analyzing lineage dynamics under mutation, direct selection, and indirect selection in a non-adapting asexual population. We find that the equilibrium balance between recurrent mutation to the focal allele and the forces of direct and indirect selection against the focal allele is closely approximated by γμ/(s + U) (s = 0 if the focal allele is neutral), where γ ≈ eθθ-(ω+θ)(ω + θ)(Γ(ω + θ) - Γ(ω + θ,θ)), \\theta =U/\\tilde {s}, and \\omega =s/\\tilde {s}; U denotes the genomic deleterious mutation rate and \\tilde {s} denotes the geometric mean selective disadvantage of deleterious mutations elsewhere on the genome. This mutation-selection balance for asexual populations can remain surprisingly invariant over wide ranges of the mutation rate.

  20. Where neuroscience and dynamic system theory meet autonomous robotics: a contracting basal ganglia model for action selection.

    Science.gov (United States)

    Girard, B; Tabareau, N; Pham, Q C; Berthoz, A; Slotine, J-J

    2008-05-01

    Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

  1. Fluorescence detection of natural RNA using rationally designed "clickable" oligonucleotide probes

    DEFF Research Database (Denmark)

    Okholm, Anders; Kjems, Jørgen; Astakhova, Kira

    2014-01-01

    Herein a reliable approach to the design of effective fluorescent probes for RNA detection is described. The fluorescence signalling of hybridization by internally positioned polyaromatic hydrocarbons and rhodamine dyes was achieved with a low fluorescence background signal, high fluorescence qua...... quantum yields at ambient and elevated temperature, high selectivity and signal specificity of the probes when binding to miR-7 and circRNA targets....

  2. The Cell Probe Complexity of Dynamic Range Counting

    DEFF Research Database (Denmark)

    Larsen, Kasper Green

    2012-01-01

    is the number of update operations, w the cell size, tq the query time and tu the update time. In the most natural setting of cell size w = (lg n), this gives a lower bound of tq = ((lg n/ lg lg n)2) for any polylogarithmic update time. This bound is almost a quadratic improvement over the highest previous...... is specified by a point q = (x, y), and the goal is to report the sum of the weights assigned to the points dominated by q, where a point (x0, y0) is dominated by q if x0 x and y0 y. In addition to being the highest cell probe lower bound to date, our lower bound is also tight for data struc- tures with update...

  3. Noninvasive investigation of exocrine pancreatic function: Feasibility of cine dynamic MRCP with a spatially selective inversion-recovery pulse.

    Science.gov (United States)

    Yasokawa, Kazuya; Ito, Katsuyoshi; Tamada, Tsutomu; Yamamoto, Akira; Hayashida, Minoru; Tanimoto, Daigo; Higaki, Atsushi; Noda, Yasufumi; Kido, Ayumu

    2015-11-01

    To investigate the feasibility of noncontrast-enhanced cine dynamic magnetic resonance cholangiopancreatography (MRCP) with a spatially selective inversion-recovery (IR) pulse for evaluating exocrine pancreatic function in comparison with the N-benzoyl-L-tyrosyl-p-aminobenzoic acid (BT-PABA) test as a pancreatic exocrine function test. Twenty subjects with or without chronic pancreatitis were included. MRCP with a spatially selective IR pulse was repeated every 15 seconds for 5 minutes to acquire a total of 20 images (cine-dynamic MRCP). The median and mean frequency of the observation (the number of times) and the moving distance (mean secretion grading scores) of pancreatic juice inflow on cine-dynamic MRCP were compared with a BT-PABA test. The urinary PABA excretion rate (%) had significant positive correlations with both the mean secretion grade (r = 0.66, P = 0.002) and frequency of secretory inflow (r = 0.62, P = 0.004) in cine dynamic MRCP. Both the mean frequency of observations of pancreatic secretory inflow (1.4 ± 1.6 times vs. 14.3 ± 4.2 times, P Cine dynamic MRCP with a spatially selective IR pulse may have potential for estimating the pancreatic exocrine function noninvasively as a substitute for the BT-PABA test. © 2015 Wiley Periodicals, Inc.

  4. Probing intracellular motor protein activity using an inducible cargo trafficking assay.

    Science.gov (United States)

    Kapitein, Lukas C; Schlager, Max A; van der Zwan, Wouter A; Wulf, Phebe S; Keijzer, Nanda; Hoogenraad, Casper C

    2010-10-06

    Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    Science.gov (United States)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  6. Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography

    KAUST Repository

    Al-Kassab, Talaat; Kompatscher, Michael; Kirchheim, Reiner; Kostorz, Gernot; Schö nfeld, Bernd

    2014-01-01

    The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3at.% Ti were investigated, the states selected from

  7. Dynamic nuclear polarization and optimal control spatial-selective 13C MRI and MRS

    DEFF Research Database (Denmark)

    Vinding, Mads Sloth; Laustsen, Christoffer; Maximov, Ivan I.

    2013-01-01

    . This is achieved through the development of spatial-selective single-shot spiral-readout MRI and MRS experiments combined with dynamic nuclear polarization hyperpolarized [1-13C]pyruvate on a 4.7T pre-clinical MR scanner. The method stands out from related techniques by facilitating anatomic shaped region...

  8. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    Science.gov (United States)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  9. Sensitive fluorescence on-off probes for the fast detection of a chemical warfare agent mimic.

    Science.gov (United States)

    Khan, Muhammad Shar Jhahan; Wang, Ya-Wen; Senge, Mathias O; Peng, Yu

    2018-01-15

    Two highly sensitive probes bearing a nucleophilic imine moiety have been utilized for the selective detection of chemical warfare agent (CWA) mimics. Diethyl chlorophosphate (DCP) was used as mimic CWAs. Both iminocoumarin-benzothiazole-based probes not only demonstrated a remarkable fluorescence ON-OFF response and good recognition, but also exhibited fast response times (10s) along with color changes upon addition of DCP. Limits of detection for the two sensors 1 and 2 were calculated as 0.065μM and 0.21μM, respectively, which are much lower than most other reported probes. These two probes not only show high sensitivity and selectivity in solution, but can also be applied for the recognition of DCP in the gas state, with significant color changes easily observed by the naked eye. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An objective method for High Dynamic Range source content selection

    DEFF Research Database (Denmark)

    Narwaria, Manish; Mantel, Claire; Da Silva, Matthieu Perreira

    2014-01-01

    With the aim of improving the immersive experience of the end user, High Dynamic Range (HDR) imaging has been gaining popularity. Therefore, proper validation and performance benchmarking of HDR processing algorithms is a key step towards standardization and commercial deployment. A crucial...... component of such validation studies is the selection of a challenging and balanced set of source (reference) HDR content. In order to facilitate this, we present an objective method based on the premise that a more challenging HDR scene encapsulates higher contrast, and as a result will show up more...

  11. Automated region selection for analysis of dynamic cardiac SPECT data

    Science.gov (United States)

    Di Bella, E. V. R.; Gullberg, G. T.; Barclay, A. B.; Eisner, R. L.

    1997-06-01

    Dynamic cardiac SPECT using Tc-99m labeled teboroxime can provide kinetic parameters (washin, washout) indicative of myocardial blood flow. A time-consuming and subjective step of the data analysis is drawing regions of interest to delineate blood pool and myocardial tissue regions. The time-activity curves of the regions are then used to estimate local kinetic parameters. In this work, the appropriate regions are found automatically, in a manner similar to that used for calculating maximum count circumferential profiles in conventional static cardiac studies. The drawbacks to applying standard static circumferential profile methods are the high noise level and high liver uptake common in dynamic teboroxime studies. Searching along each ray for maxima to locate the myocardium does not typically provide useful information. Here we propose an iterative scheme in which constraints are imposed on the radii searched along each ray. The constraints are based on the shape of the time-activity curves of the circumferential profile members and on an assumption that the short axis slices are approximately circular. The constraints eliminate outliers and help to reduce the effects of noise and liver activity. Kinetic parameter estimates from the automatically generated regions were comparable to estimates from manually selected regions in dynamic canine teboroxime studies.

  12. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II).

    Science.gov (United States)

    Xu, Xiao-Yu; Yan, Bing

    2015-01-14

    A layerlike MOF (MIL-124, orGa2(OH)4(C9O6H4)) has been prepared and chosen as a parent compound to encapsulate Eu(3+) cations by one uncoordinated carbonyl group in its pores. The Eu(3+)-incorporated sample (Eu(3+)@MIL-124) is fully characterized, which shows excellent luminescence and good fluorescence stability in water or other organic solvents. Subsequently, we choose Eu(3+)@MIL-124 as sensitive probe for sensing metal ions, anions, and organic small molecules because of its robust framework. Studying of the luminescence properties reveals that the complex Eu(3+)@MIL-124 was developed as a highly selective and sensitive probe for detection of Fe(3+) (detection limit, 0.28 μM) and Fe(2+) ions through fluorescence quenching of Eu(3+) and MOF over other metal ions. In connection to this, a probable sensing mechanism was also discussed in this paper. In addition, when Eu(3+)@MIL-124 was immersed in the different anions solutions and organic solvents, it also shows highly selective for Cr2O7(2-)(detection limit, 0.15 μM)and acetone. Remarkably, it is the first Eu-doped MOF to exhibit an excellent ability for the detection of Fe(3+) and Fe(2+) in an aqueous environment without any structural disintegration of the framework.

  13. Probing nucleobase photoprotection with soft x-rays

    Directory of Open Access Journals (Sweden)

    Osipov T.

    2013-03-01

    Full Text Available Nucleobases absorb strongly in the ultraviolet region, leading to molecular excitation into reactive states. The molecules avoid the photoreactions by funnelling the electronic energy into less reactive states on an ultrafast timescale via non-Born-Oppenheimer dynamics. Current theory on the nucleobase thymine discusses two conflicting pathways for the photoprotective dynamics. We present our first results of our free electron laser based UV-pump soft x-ray-probe study of the photoprotection mechanism of thymine. We use the high spatial sensitivity of the Auger electrons emitted after the soft x-ray pulse induced core ionization. Our transient spetra show two timescales on the order of 200 fs and 5 ps, in agreement with previous (all UV ultrafast experiments. The timescales appear at different Auger kinetic energies which will help us to decipher the molecular dynamics.

  14. Real-Space Imaging of Carrier Dynamics of Materials Surfaces by Second-Generation Four-Dimensional Scanning Ultrafast Electron Microscopy

    KAUST Repository

    Sun, Jingya

    2015-09-14

    In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

  15. Development and applications of advanced probing tools for cell wall biology

    DEFF Research Database (Denmark)

    Hansen, Aleksander Riise

    . In this study, antigens consisting of crude mixtures of alkali extracted polymers from the grass model Brachypodium distachyon were targets for probe generation using a naïve human single domain antibody library. Epitope characterization of positive clones from phage ELISA was then further elucidated...... the function of pectin methyl esterase inhibitors and their role in plant defense against microbial degradation, and cell wall structural dynamics in relation to cell detachment from roots. The second part describes phage display as a method for developing probes against targets that are poor immunogens...

  16. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of)

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10{sup −6} to 2.59 × 10{sup −5} M with a detection limit of 1.70 × 10{sup −7} M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl{sup −}, Br{sup −}, F{sup −}, I{sup −}, IO{sub 3}{sup −}, ClO{sub 4}{sup −}, BrO{sub 3}{sup −}, CO{sub 3}{sup 2−}, NO{sub 2}{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, S{sub 2}O{sub 4}{sup 2−}, C{sub 2}O{sub 4}{sup 2−}, SCN{sup −}, N{sub 3}{sup −}, citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN{sup −} by fluorescence quenching.

  17. Use of a pitot probe for determining wing section drag in flight

    Science.gov (United States)

    Saltzman, E. J.

    1975-01-01

    A wake traversing probe was used to obtain section drag and wake profile data from the wing of a sailplane. The transducer sensed total pressure defect in the wake as well as freestream total pressure on both sides of the sensing element when the probe moved beyond the wake. Profiles of wake total pressure defects plotted as a function of distance above and below the trailing edge plane were averaged for calculating section drag coefficients for flights at low dynamic pressures.

  18. Dicke superradiance as nondestructive probe for the state of atoms in optical lattices

    Science.gov (United States)

    ten Brinke, Nicolai; Schützhold, Ralf

    2016-04-01

    We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dynamics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics - which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.

  19. Probing strongly interacting electroweak dynamics through W+W-/ZZ ratios at future e+e- colliders

    International Nuclear Information System (INIS)

    Barger, V.; Cheung, K.; Han, T.; Phillips, R.J.N.

    1995-01-01

    We point out that the ratio of W + W - →W + W - and W + W - →ZZ cross sections is a sensitive probe of the dynamics of electroweak symmetry breaking, in the c.m. energy region √s WW approx-gt 1 TeV where vector boson scattering may well become strong. We suggest ways in which this ratio can be extracted at a 1.5 TeV e + e - linear collider, using W ± ,Z→jj hadronic decays and relying on dijet mass resolution to provid statistical discrimination between W ± and Z. WW fusion processes studied here are unique for exploring scalar resonances of mass of about 1 TeV and are complementary to studies via the direct channel e + e - →W + W - for the vector and nonresonant cases. With an integrated luminosity of 200 fb -1 , the signals obtained are statistically significant. A comparision with a study of the e - e - →ννW - W - process is made. Enhancements of the signal rate from using a polarized electron beam, or at a 2 TeV e + e - linear colider and possible higher energy μ + μ - colliders, are also presented

  20. Probing strongly-interacting electroweak dynamics through W+W-/ZZ ratios at future e+e- colliders

    International Nuclear Information System (INIS)

    Barger, V.

    1995-01-01

    The authors point out that the ratio of W + W - → W + W - and W + W - → ZZ cross sections is a sensitive probe of the dynamics of electroweak symmetry breaking, in the CM energy region √s ww approx-gt 1 TeV where vector boson scattering may well become strong. They suggest ways in which this ratio can be extracted at a 1.5 TeV e + e - linear collider, using W ± , Z → jj hadronic decays and relying on dijet mass resolution to provide statistical discrimination between W ± and Z. WW fusion processes studied here are unique for exploring scalar resonances of mass about 1 TeV and are complementary to studies via the direct channel e + e - → W + W - for the vector and non-resonant cases. With an integrated luminosity of 200 fb -1 , the signals obtained are statistically significant. Comparison with a study of e - e - → ννW - W - process is made. Enhancements of the signal rate from using a polarized electron beam, or at a 2 TeV e + e - linear collider and possible higher energy μ + μ - colliders, are also presented

  1. An easily Prepared Fluorescent pH Probe Based on Dansyl.

    Science.gov (United States)

    Sha, Chunming; Chen, Yuhua; Chen, Yufen; Xu, Dongmei

    2016-09-01

    A novel fluorescent pH probe from dansyl chloride and thiosemicarbazide was easily prepared and fully characterized by (1)H NMR, (13)C NMR, LC-MS, Infrared spectra and elemental analysis. The probe exhibited high selectivity and sensitivity to H(+) with a pK a value of 4.98. The fluorescence intensity at 510 nm quenched 99.5 % when the pH dropped from 10.88 to 1.98. In addition, the dansyl-based probe could respond quickly and reversibly to the pH variation and various common metal ions showed negligible interference. The recognition could be ascribed to the intramolecular charge transfer caused by the protonation of the nitrogen in the dimethylamino group.

  2. Exciton versus Free Carrier Photogeneration in Organometal Trihalide Perovskites Probed by Broadband Ultrafast Polarization Memory Dynamics

    Science.gov (United States)

    Sheng, ChuanXiang; Zhang, Chuang; Zhai, Yaxin; Mielczarek, Kamil; Wang, Weiwei; Ma, Wanli; Zakhidov, Anvar; Vardeny, Z. Valy

    2015-03-01

    We studied the ultrafast transient response of photoexcitations in two hybrid organic-inorganic perovskite films used for high efficiency photovoltaic cells, namely, CH3NH3PbI3 and CH3NH3PbI1.1Br1.9 using polarized broadband pump-probe spectroscopy in the spectral range of 0.3-2.7 eV with 300 fs time resolution. For CH3NH3PbI3 with above-gap excitation we found both photogenerated carriers and excitons, but only carriers are photogenerated with below-gap excitation. In contrast, mainly excitons are photogenerated in CH3NH3PbI1.1Br1.9 . Surprisingly, we also discovered in CH3NH3PbI3 , but not in CH3NH3PbI1.1Br1.9 , transient photoinduced polarization memory for both excitons and photocarriers, which is also reflected in the steady state photoluminescence. From the polarization memory dynamics we obtained the excitons diffusion constant in CH3NH3PbI3 , D ≈0.01 cm2 s-1 .

  3. Four-probe measurements with a three-probe scanning tunneling microscope

    International Nuclear Information System (INIS)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A.

    2014-01-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe

  4. Four-probe measurements with a three-probe scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Salomons, Mark [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Martins, Bruno V. C.; Zikovsky, Janik; Wolkow, Robert A., E-mail: rwolkow@ualberta.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta T6G 2M9 (Canada); Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  5. Four-probe measurements with a three-probe scanning tunneling microscope.

    Science.gov (United States)

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  6. Probing the Selectivity and Protein•Protein Interactions of a Non-Reducing Fungal Polyketide Synthase Using Mechanism-Based Crosslinkers

    Science.gov (United States)

    Bruegger, Joel; Haushalter, Bob; Vagstad, Anna; Shakya, Gaurav; Mih, Nathan; Townsend, Craig A.; Burkart, Michael D.; Tsai, Shiou-Chuan

    2013-01-01

    SUMMARY Protein•protein interactions, which often involve interactions between an acyl carrier protein (ACP) and its partner enzymes, are important for coordinating polyketide biosynthesis. However, the nature of such interactions is not well understood, especially in the fungal non-reducing polyketide synthases (NR-PKSs) that biosynthesize toxic and pharmaceutically important polyketides. Here, we employ a mechanism-based crosslinker to successfully probe ACP and ketosynthase (KS) domain interactions in NR-PKSs. We found that crosslinking efficiency is closely correlated with the strength of ACP•KS interactions, and that KS demonstrates strong starter unit selectivity. We further identified positively charged surface residues by KS mutagenesis, which mediate key interactions with the negatively-charged ACP surface. Such complementary/matching contact pairs can serve as “adapter surfaces” for future efforts to generate new polyketides using NR-PKSs. PMID:23993461

  7. Probing Models of Dark Matter and the Early Universe

    Science.gov (United States)

    Orlofsky, Nicholas David

    This thesis discusses models for dark matter (DM) and their behavior in the early universe. An important question is how phenomenological probes can directly search for signals of DM today. Another topic of investigation is how the DM and other processes in the early universe must evolve. Then, astrophysical bounds on early universe dynamics can constrain DM. We will consider these questions in the context of three classes of DM models--weakly interacting massive particles (WIMPs), axions, and primordial black holes (PBHs). Starting with WIMPs, we consider models where the DM is charged under the electroweak gauge group of the Standard Model. Such WIMPs, if generated by a thermal cosmological history, are constrained by direct detection experiments. To avoid present or near-future bounds, the WIMP model or cosmological history must be altered in some way. This may be accomplished by the inclusion of new states that coannihilate with the WIMP or a period of non-thermal evolution in the early universe. Future experiments are likely to probe some of these altered scenarios, and a non-observation would require a high degree of tuning in some of the model parameters in these scenarios. Next, axions, as light pseudo-Nambu-Goldstone bosons, are susceptible to quantum fluctuations in the early universe that lead to isocurvature perturbations, which are constrained by observations of the cosmic microwave background (CMB). We ask what it would take to allow axion models in the face of these strong CMB bounds. We revisit models where inflationary dynamics modify the axion potential and discuss how isocurvature bounds can be relaxed, elucidating the difficulties in these constructions. Avoiding disruption of inflationary dynamics provides important limits on the parameter space. Finally, PBHs have received interest in part due to observations by LIGO of merging black hole binaries. We ask how these PBHs could arise through inflationary models and investigate the opportunity

  8. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  9. A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal

    Science.gov (United States)

    Diao, Haipeng; Guo, Lixia; Liu, Wen; Feng, Liheng

    2018-05-01

    A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10-8 mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field.

  10. Organic liquids-responsive β-cyclodextrin-functionalized graphene-based fluorescence probe: label-free selective detection of tetrahydrofuran.

    Science.gov (United States)

    Hu, Huawen; Xin, John H; Hu, Hong; Wang, Xiaowen; Lu, Xinkun

    2014-06-06

    In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD) was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB) into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  11. Organic Liquids-Responsive β-Cyclodextrin-Functionalized Graphene-Based Fluorescence Probe: Label-Free Selective Detection of Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Huawen Hu

    2014-06-01

    Full Text Available In this study, a label-free graphene-based fluorescence probe used for detection of volatile organic liquids was fabricated by a simple, efficient and low-cost method. To fabricate the probe, a bio-based β-cyclodextrin (β-CD was firstly grafted on reduced graphene surfaces effectively and uniformly, as evidenced by various characterization techniques such as Ultraviolet/Visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy. The subsequent inclusion of Rhodamine B (RhB into the inner cavities of the β-CD grafted on the graphene surfaces was achieved easily by a solution mixing method, which yielded the graphene-based fluorescent switch-on probe. In addition, the gradual and controllable quenching of RhB by Fluorescence Resonance Energy Transfer from RhB to graphene during the process of stepwise accommodation of the RhB molecules into the β-CD-functionalized graphene was investigated in depth. A wide range of organic solvents was examined using the as-fabricated fluorescence probe, which revealed the highest sensitivity to tetrahydrofuran with the detection limit of about 1.7 μg/mL. Some insight into the mechanism of the different responsive behaviors of the fluorescence sensor to the examined targets was also described.

  12. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    Science.gov (United States)

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Electrons as probes of dynamics in molecules and clusters: A contribution from Time Dependent Density Functional Theory

    International Nuclear Information System (INIS)

    Wopperer, P.; Dinh, P.M.; Reinhard, P.-G.; Suraud, E.

    2015-01-01

    total ionization signals to the more elaborate PES and PAD, possibly combining them and/or resolving them in time. This experimental discussion will be complemented in a third part by a presentation of available theoretical tools focusing on TDDFT and detailing the methods used to address ionization observables. We shall also discuss the shortcomings of standard versions of TDDFT, especially what concerns the SIC problem, and show how to improve formally and practically the theory on that aspect. A long fourth part will be devoted to representative results. We shall illustrate the use of total ionization in pump and probe scenarios with fs lasers for tracking ionic dynamics in clusters. More challenging from the experimental point of view is pump and probe setups using attosecond pulses. The effort there is more on the capability to define proper signals to be measured/computed at such a short time scale. TDDFT analysis provides here a valuable tool in the search for the most efficient observables. PES and PAD will allow one to address more directly electronic dynamics itself by means of fs or ns laser pulses. We shall in particular discuss the impact of the dynamical regime in PES and PAD. We shall end this fourth part by addressing the role of temperature in PES and PAD. When possible, the results will be directly compared to experiments. The fifth part of the paper will be devoted to future directions of investigations. From the rich choice of developments, we shall in particular address two aspects. We shall start to discuss the information content of energy/angular spectra of emitted electrons in case of excitation by swift and highly charged ions rather than lasers. The second issue concerns the account of dissipative effects in TDDFT to be able to consider longer laser pulses where the competition between direct electron emission and thermalization is known to play a role as, e.g., in experiments with C 60 . Although such questions have been superficially

  14. Lanthanide paramagnetic probes for NMR spectroscopic studies of fast molecular conformational dynamics and temperature control. Effective six-site proton exchange in 18-crown-6 by exchange spectroscopy.

    Science.gov (United States)

    Babailov, Sergey P

    2012-02-06

    (1)H and (13)C NMR measurements are reported for the CDCl(3) and CD(2)Cl(2) solutions of [La(18-crown-6)(NO(3))(3)] (I), [Pr(18-crown-6) (NO(3))(3)] (II), [Ce(18-crown-6)(NO(3))(3)] (III), and [Nd(18-crown-6)(NO(3))(3)] (IV) complexes. Temperature dependencies of the (1)H NMR spectra of paramagnetic II-IV have been analyzed using the dynamic NMR (DNMR) methods for six-site exchange. Two types of conformational dynamic processes were identified (the first one is conditioned by interconversion of complex enantiomeric forms and pseudorotation of a macrocycle molecule upon the C(2) symmetry axis; the second one is conditioned by macrocycle molecule inversion). Application of exchange spectroscopy (2D-EXSY) of DNMR for investigation of this dynamic system (II-IV) simplifies the assignment of the NMR signals and represents the first experimental study of multisite exchange. In the present work, the methodology of paramagnetic 4f (Ce, Pr, and Nd) probe applications for the study of free-energy, enthalpy, and entropy changes in chemical exchange processes, as well as the advantages of this method in a comparison with DNMR studies of diamagnetic substances, is discussed. In particular, as a result of paramagnetic chemical shifts in 4f complexes, the range of measurable rate constants expands considerably compared to the analogous range in diamagnetic compounds. Coordination compounds investigated in the paper represent new types of thermometric NMR sensors and lanthanide paramagnetic probes for in situ temperature control in solution.

  15. Interplay of stereoelectronic and enviromental effects in tuning the structural and magnetic properties of a prototypical spin probe: further insights from a first principle dynamical approach.

    Science.gov (United States)

    Pavone, Michele; Cimino, Paola; De Angelis, Filippo; Barone, Vincenzo

    2006-04-05

    The nitrogen isotropic hyperfine coupling constant (hcc) and the g tensor of a prototypical spin probe (di-tert-butyl nitroxide, DTBN) in aqueous solution have been investigated by means of an integrated computational approach including Car-Parrinello molecular dynamics and quantum mechanical calculations involving a discrete-continuum embedding. The quantitative agreement between computed and experimental parameters fully validates our integrated approach. Decoupling of the structural, dynamical, and environmental contributions acting onto the spectral observables allows an unbiased judgment of the role played by different effects in determining the overall experimental observables and highlights the importance of finite-temperature vibrational averaging. Together with their intrinsic interest, our results pave the route toward more reliable interpretations of EPR parameters of complex systems of biological and technological relevance.

  16. Electrophysiological correlates of proactive interference in the 'Recent Probes' verbal working memory task.

    Science.gov (United States)

    Zhang, John X; Wu, Renhua; Kong, Lingyue; Weng, Xuchu; Du, Yingchun

    2010-06-01

    Using event-related potentials (ERPs), the present study examined the temporal dynamics of proactive interference in working memory using a recent probes task. Participants memorized and retained a target set of four letters over a short retention interval. They then responded to a recognition probe by judging whether it was from the memory set. ERP waveforms elicited by positive probes compared to those from negative probes showed positive shifts in a fronto-central early N2 component and a parietal late positive component (LPC). The LPC was identified as the electrophysiological signature of proactive interference, as it differentiated between two types of negative probes defined based on whether they were recently encountered. These results indicate that the proactive interference we observed arises from a mismatch between familiarity and contextual information during recognition memory. When considered together with related studies in the literature, the results also suggest that there are different forms of proactive interference associated with different neural correlates. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. An Adaptable Neuromorphic Model of Orientation Selectivity Based On Floating Gate Dynamics

    Directory of Open Access Journals (Sweden)

    Priti eGupta

    2014-04-01

    Full Text Available The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps

  18. A benzothiazole-based fluorescent probe for hypochlorous acid detection and imaging in living cells

    Science.gov (United States)

    Nguyen, Khac Hong; Hao, Yuanqiang; Zeng, Ke; Fan, Shengnan; Li, Fen; Yuan, Suke; Ding, Xuejing; Xu, Maotian; Liu, You-Nian

    2018-06-01

    A benzothiazole-based turn-on fluorescent probe with a large Stokes shift (190 nm) has been developed for hypochlorous acid detection. The probe displays prompt fluorescence response for HClO with excellent selectivity over other reactive oxygen species as well as a low detection limit of 0.08 μM. The sensing mechanism involves the HClO-induced specific oxidation of oxime moiety of the probe to nitrile oxide, which was confirmed by HPLC-MS technique. Furthermore, imaging studies demonstrated that the probe is cell permeable and can be applied to detect HClO in living cells.

  19. Highly Resolved Studies of Vacuum Ultraviolet Photoionization Dynamics

    Science.gov (United States)

    Kakar, Sandeep

    We use measurements of dispersed fluorescence from electronically excited photoions to study fundamental aspects of intramolecular dynamics. Our experimental innovations make it possible to obtain highly resolved photoionization data that offer qualitative insights into molecular scattering. In particular, we obtain vibrationally resolved data to probe coupling between the electronic and nuclear degrees of freedom by studying the distribution of vibrational energy among photoions. Vibrationally resolved branching ratios are measured over a broad spectral range of excitation energy and their non-Franck-Condon behavior is used as a tool to investigate two diverse aspects of shape resonant photoionization. First, vibrational branching ratios are obtained for the SiF_4 5a _1^{-1} and CS_2 5sigma_{rm u} ^{-1} photoionization channels to help elucidate the microscopic aspects of shape resonant wavefunction for polyatomic molecules. It is shown that in such molecules the shape resonant wavefunction is not necessarily attributable to a specific bond in the molecule. Second, the multichannel aspect of shape resonant photoionization dynamics, reflected in continuum channel coupling, is investigated by obtaining vibrational branching ratios for the 2 sigma_{rm u}^{ -1} and 4sigma^{ -1} photoionization of the isoelectronic molecules N_2 and CO, respectively. These data indicate that effects of continuum coupling may be widespread. We also present the first set of rotationally resolved data over a wide energy range for the 2 sigma_{rm u}^{ -1} photoionization of N_2. These data probe the partitioning of the angular momentum between the photoelectron and photoion, and highlight the multicenter nature of the molecular potential. These case studies illustrate the utility of dispersed fluorescence measurements as a complement to photoelectron spectroscopy for obtaining highly resolved data for molecular photoionization. These measurements makes it possible to probe intrinsically

  20. Inhibition in the Dynamics of Selective Attention: An Integrative Model for Negative Priming

    Directory of Open Access Journals (Sweden)

    Hecke eSchrobsdorff

    2012-11-01

    Full Text Available We introduce a computational model of the negative priming (NP effect that includes perception, memory, attention, decision making, and action. The model is designed to provide a coherent picture across competing theories of NP and to relate psychological experiments to physiological measurements. The model is formulated in terms of an abstract dynamics of activations of features, their binding into object entities or their semantic categorization as well as related memories and implied reactions. The dynamical variables interact in a connectionist network which is shown to be adaptable to a variety of experimental paradigms. We find that selective attention can be modeled by means of inhibitory processes and by a threshold dynamics. Considering the implementation it becomes obvious that the specificity of the experimental paradigm must be taken into account when predicting the nature of the NP effect.

  1. Information-theoretic model selection for optimal prediction of stochastic dynamical systems from data

    Science.gov (United States)

    Darmon, David

    2018-03-01

    In the absence of mechanistic or phenomenological models of real-world systems, data-driven models become necessary. The discovery of various embedding theorems in the 1980s and 1990s motivated a powerful set of tools for analyzing deterministic dynamical systems via delay-coordinate embeddings of observations of their component states. However, in many branches of science, the condition of operational determinism is not satisfied, and stochastic models must be brought to bear. For such stochastic models, the tool set developed for delay-coordinate embedding is no longer appropriate, and a new toolkit must be developed. We present an information-theoretic criterion, the negative log-predictive likelihood, for selecting the embedding dimension for a predictively optimal data-driven model of a stochastic dynamical system. We develop a nonparametric estimator for the negative log-predictive likelihood and compare its performance to a recently proposed criterion based on active information storage. Finally, we show how the output of the model selection procedure can be used to compare candidate predictors for a stochastic system to an information-theoretic lower bound.

  2. Combining portable Raman probes with nanotubes for theranostic applications.

    Science.gov (United States)

    Bhirde, Ashwinkumar A; Liu, Gang; Jin, Albert; Iglesias-Bartolome, Ramiro; Sousa, Alioscka A; Leapman, Richard D; Gutkind, J Silvio; Lee, Seulki; Chen, Xiaoyuan

    2011-01-01

    Recently portable Raman probes have emerged along with a variety of applications, including carbon nanotube (CNT) characterization. Aqueous dispersed CNTs have shown promise for biomedical applications such as drug/gene delivery vectors, photo-thermal therapy, and photoacoustic imaging. In this study we report the simultaneous detection and irradiation of carbon nanotubes in 2D monolayers of cancer cells and in 3D spheroids using a portable Raman probe. A portable handheld Raman instrument was utilized for dual purposes: as a CNT detector and as an irradiating laser source. Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) were dispersed aqueously using a lipid-polymer (LP) coating, which formed highly stable dispersions both in buffer and cell media. The LP coated SWCNT and MWCNT aqueous dispersions were characterized by atomic force microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy and Raman spectroscopy. The cellular uptake of the LP-dispersed SWCNTs and MWCNTs was observed using confocal microscopy, and fluorescein isothiocyanate (FITC)-nanotube conjugates were found to be internalized by ovarian cancer cells by using Z-stack fluorescence confocal imaging. Biocompatibility of SWCNTs and MWCNTs was assessed using a cell viability MTT assay, which showed that the nanotube dispersions did not hinder the proliferation of ovarian cancer cells at the dosage tested. Ovarian cancer cells treated with SWCNTs and MWCNTs were simultaneously detected and irradiated live in 2D layers of cancer cells and in 3D environments using the portable Raman probe. An apoptotic terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay carried out after laser irradiation confirmed that cell death occurred only in the presence of nanotube dispersions. We show for the first time that both SWCNTs and MWCNTs can be selectively irradiated and detected in cancer cells using a simple

  3. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1985-01-01

    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  4. Cu2+-labeled dansyl compounds as fluorescent and PET probes for imaging apoptosis.

    Science.gov (United States)

    Han, Junyan; Wang, Xukui; Yu, MeiXiang

    2016-11-15

    Compound DNSTT-Cu 2+ , a novel chelate of Cu 2+ with DOTA conjugated to a fluorescent dansyl fragment, is developed for imaging cell apoptosis. Apoptotic U-87MG cells could be selectively visualized by the fluorescence of DNSTT-Cu 2+ from cytoplasm of cells, confirmed by the fluorescence of apoptosis cells co-labeled with Alexa Fluor 568-labeled annexin V, a conventional probe for selectively labeling membranes of apoptosis cells. A radioactive 64 Cu 2 + analog, DNSTT- 64 Cu 2+ , was easily synthesized, providing a potential PET probe for imaging apoptosis in vivo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Influence of probe geometry on the response of an electrostatic probe

    DEFF Research Database (Denmark)

    Johansson, Torben; Crichton, George C; McAllister, Iain Wilson

    1999-01-01

    The response of an electrostatic probe is examined with reference to the probe geometry. The study involves the evaluation of the probe lambda function, from which response-related characteristic parameters can be derived. These parameters enable the probe detection sensitivity Se and spatial...

  6. Probing Complexity using the LCLS and the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-02-19

    The goal of our research program is to investigate fundamental interactions between photons and molecular/nano-systems to advance our quantitative understanding of electron correlations, charge transfer and many body phenomena. Our research projects focus on probing, on a femtosecond time-scale, multi-electron interactions and tracing nuclear motion in order to understand, and ultimately control energy flow and charge transfer processes from electromagnetic radiation to matter. The experiments will be carried out with state of the art instrumentation built by the P.I. team with funds from a DoE "Single Investigator and Small Group Research" (SISGR) grant. The research projects carried out the past three years consisted of first experiments using the linac coherent light source (LCLS) x-ray free electron laser (FEL) facility at the SLAC National Laboratory, as well as the study of correlated processes in select anions using the ALS. A report for the past cycle is described in section II. These studies have paved the way for our renewal application for the next three years. Our research interests for the next three years extend our past and present research by carrying out time-resolved measurements described in section III. They will consist of: a) The study of molecular dynamics that happen on ultrafast time scales, using pump-probe schemes and the study of non-linear physics in the x-ray regime via multi-photon absorption from the LCLS. This will be achieved by measuring and examining both electronic and nuclear dynamics subsequent to the interaction of molecules and nano-systems with LCLS pulses of various wavelength, intensity and pulse duration as described in section III.A. b) The study of molecular dynamics and correlated processes via absorption of vuv-soft x-rays from the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory to provide single-photon ionization baseline results for LCLS studies. In addition, we will study the photodetachment of anions

  7. Expectations for neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Date, M.

    1993-01-01

    Neutrons have been used as microscopic probes to study structural and dynamical properties of various materials. In this paper I shall give a comparative study of the neutron research in the condensed matter physics with other typical microscopic methods such as X-rays, laser optics, magnetic resonances, Moessbauer effect and μSR. It is emphasized that the neutron study will extensively be important in future beyond the condensed matter physics. Chemistry, biology, earth sciences, material engineerings and medical sciences will become new frontiers for neutron study. (author)

  8. Molecular Dynamics Simulations of Orai Reveal How the Third Transmembrane Segment Contributes to Hydration and Ca2+ Selectivity in Calcium Release-Activated Calcium Channels.

    Science.gov (United States)

    Alavizargar, Azadeh; Berti, Claudio; Ejtehadi, Mohammad Reza; Furini, Simone

    2018-04-26

    Calcium release-activated calcium (CRAC) channels open upon depletion of Ca 2+ from the endoplasmic reticulum, and when open, they are permeable to a selective flux of calcium ions. The atomic structure of Orai, the pore domain of CRAC channels, from Drosophila melanogaster has revealed many details about conduction and selectivity in this family of ion channels. However, it is still unclear how residues on the third transmembrane helix can affect the conduction properties of the channel. Here, molecular dynamics and Brownian dynamics simulations were employed to analyze how a conserved glutamate residue on the third transmembrane helix (E262) contributes to selectivity. The comparison between the wild-type and mutated channels revealed a severe impact of the mutation on the hydration pattern of the pore domain and on the dynamics of residues K270, and Brownian dynamics simulations proved that the altered configuration of residues K270 in the mutated channel impairs selectivity to Ca 2+ over Na + . The crevices of water molecules, revealed by molecular dynamics simulations, are perfectly located to contribute to the dynamics of the hydrophobic gate and the basic gate, suggesting a possible role in channel opening and in selectivity function.

  9. Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Raymond, Scott B.; Bacskai, Brian J.; Skoch, Jesse; Hills, Ivory D.; Swager, Timothy M.; Nesterov, Evgueni E.

    2008-01-01

    Near-infrared fluorescent probes for amyloid-beta (Aβ) are an exciting option for molecular imaging in Alzheimer's disease research and may translate to clinical diagnostics. However, Aβ-targeted optical probes often suffer from poor specificity and slow clearance from the brain. We are designing smart optical probes that emit characteristic fluorescence signal only when bound to Aβ. We synthesized a family of dyes and tested Aβ-binding sensitivity with fluorescence spectroscopy and tissue-staining. Select compounds exhibited Aβ-dependent changes in fluorescence quantum yield, lifetime, and emission spectra that may be imaged microscopically or in vivo using new lifetime and spectral fluorescence imaging techniques. Smart optical probes that turn on when bound to Aβ will improve amyloid detection and may enable quantitative molecular imaging in vivo. (orig.)

  10. A dynamical model of hierarchical selection and coordination in speech planning.

    Directory of Open Access Journals (Sweden)

    Sam Tilsen

    Full Text Available studies of the control of complex sequential movements have dissociated two aspects of movement planning: control over the sequential selection of movement plans, and control over the precise timing of movement execution. This distinction is particularly relevant in the production of speech: utterances contain sequentially ordered words and syllables, but articulatory movements are often executed in a non-sequential, overlapping manner with precisely coordinated relative timing. This study presents a hybrid dynamical model in which competitive activation controls selection of movement plans and coupled oscillatory systems govern coordination. The model departs from previous approaches by ascribing an important role to competitive selection of articulatory plans within a syllable. Numerical simulations show that the model reproduces a variety of speech production phenomena, such as effects of preparation and utterance composition on reaction time, and asymmetries in patterns of articulatory timing associated with onsets and codas. The model furthermore provides a unified understanding of a diverse group of phonetic and phonological phenomena which have not previously been related.

  11. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics.

    Science.gov (United States)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  12. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics

    Science.gov (United States)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  13. Translational and rotational diffusion of flexible PEG and rigid dendrimer probes in sodium caseinate dispersions and acid gels

    NARCIS (Netherlands)

    Salami, S.; Rondeau-Mouro, C.; Barhoum, M.; Duynhoven, van J.P.M.; Mariette, F.

    2014-01-01

    The dynamics of rigid dendrimer and flexible PEG probes in sodium caseinate dispersions and acid gels, including both translational diffusion and rotational diffusion, were studied by NMR. Above the onset of the close-packing limit (C ~ 10 g/100 g H2O), translational diffusion of the probe depended

  14. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    Science.gov (United States)

    Hall, B. F.; Povey, T.

    2017-03-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design.

  15. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    International Nuclear Information System (INIS)

    Hall, B F; Povey, T

    2017-01-01

    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design. (paper)

  16. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    Science.gov (United States)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  17. Behavior of Triple Langmuir Probes in Non-Equilibrium Plasmas

    Science.gov (United States)

    Polzin, Kurt A.; Ratcliffe, Alicia C.

    2018-01-01

    The triple Langmuir probe is an electrostatic probe in which three probe tips collect current when inserted into a plasma. The triple probe differs from a simple single Langmuir probe in the nature of the voltage applied to the probe tips. In the single probe, a swept voltage is applied to the probe tip to acquire a waveform showing the collected current as a function of applied voltage (I-V curve). In a triple probe three probe tips are electrically coupled to each other with constant voltages applied between each of the tips. The voltages are selected such that they would represent three points on the single Langmuir probe I-V curve. Elimination of the voltage sweep makes it possible to measure time-varying plasma properties in transient plasmas. Under the assumption of a Maxwellian plasma, one can determine the time-varying plasma temperature T(sub e)(t) and number density n(sub e)(t) from the applied voltage levels and the time-histories of the collected currents. In the present paper we examine the theory of triple probe operation, specifically focusing on the assumption of a Maxwellian plasma. Triple probe measurements have been widely employed for a number of pulsed and timevarying plasmas, including pulsed plasma thrusters (PPTs), dense plasma focus devices, plasma flows, and fusion experiments. While the equilibrium assumption may be justified for some applications, it is unlikely that it is fully justifiable for all pulsed and time-varying plasmas or for all times during the pulse of a plasma device. To examine a simple non-equilibrium plasma case, we return to basic governing equations of probe current collection and compute the current to the probes for a distribution function consisting of two Maxwellian distributions with different temperatures (the two-temperature Maxwellian). A variation of this method is also employed, where one of the Maxwellians is offset from zero (in velocity space) to add a suprathermal beam of electrons to the tail of the

  18. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    Science.gov (United States)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  19. Probe Techniques. Introductory Remarks

    Energy Technology Data Exchange (ETDEWEB)

    Emeleus, K. G. [School of Physics and Applied Mathematics, Queen' s University, Belfast (United Kingdom)

    1968-04-15

    In this brief introduction to the session on probes, the history of theii development is first touched on briefly. Reference is then made to the significance of the work to be described by Medicus, for conductivity and recombination calculations, and by Lam and Su, for a wide range of medium and higher pressure plasmas. Finally, a number of other probe topics are mentioned, including multiple probes; probes in electronegative plasmas; resonance probes; probes in noisy discharges; probes as oscillation detectors; use of probes where space-charge is not negligible. (author)

  20. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  1. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  2. A new probe of dark sector dynamics at the LHC

    OpenAIRE

    Gupta, ArpitDepartment of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, U.S.A.; Primulando, Reinard(Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, U.S.A.); Saraswat, Prashant(Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, 21218, U.S.A.)

    2015-01-01

    We propose a LHC search for dilepton resonances in association with large missing energy as a generic probe of TeV dark sector models. Such resonances can occur if the dark sector includes a U(1) gauge boson, or Z ′, which kinetically mixes with the Standard Model U(1). For small mixing, direct 2 → 1 production of the Z ′ is not visible in standard resonance searches due to the large Drell-Yan background. However, there may be significant production of the Z ′ boson in processes involving oth...

  3. Probe-diverse ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, I., E-mail: isaac.russellpeterson@rmit.edu.au [ARC Centre of Excellence for Coherent X-ray Science, the University of Melbourne, School of Physics, Victoria 3010 (Australia); Harder, R. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Robinson, I.K. [Research Complex at Harwell, Didcot, Oxfordshire OX11 0DE (United Kingdom); London Centre for Nanotechnology, University College London, London WC1H 0AH (United Kingdom)

    2016-12-15

    We propose an extension of ptychography where the target sample is scanned separately through several probes with distinct amplitude and phase profiles and a diffraction image is recorded for each probe and each sample translation. The resulting probe-diverse dataset is used to iteratively retrieve high-resolution images of the sample and all probes simultaneously. The method is shown to yield significant improvement in the reconstructed sample image compared to the image obtained using the standard single-probe ptychographic phase-retrieval scheme.

  4. Dynamic behaviors of a broad-area diode laser with lateral-mode-selected external feedback

    DEFF Research Database (Denmark)

    Chi, Mingjun; Petersen, Paul Michael

    2014-01-01

    In this paper, we investigate the dynamics of a BAL with lateral-mode selected external feedback experimentally by measuring the far-field profile, intensity noise spectrum and time series of the output beam. The mode-selection is achieved by adjusting a stripe mirror at the pseudo far-field plan...... with a frequency of the single roundtrip external-cavity loop modulated by periodic low-frequency fluctuation. This is the first observation of pulse-package oscillation in a diode laser with long-cavity feedback, to our knowledge....

  5. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  6. Automated voxelization of 3D atom probe data through kernel density estimation

    International Nuclear Information System (INIS)

    Srinivasan, Srikant; Kaluskar, Kaustubh; Dumpala, Santoshrupa; Broderick, Scott; Rajan, Krishna

    2015-01-01

    Identifying nanoscale chemical features from atom probe tomography (APT) data routinely involves adjustment of voxel size as an input parameter, through visual supervision, making the final outcome user dependent, reliant on heuristic knowledge and potentially prone to error. This work utilizes Kernel density estimators to select an optimal voxel size in an unsupervised manner to perform feature selection, in particular targeting resolution of interfacial features and chemistries. The capability of this approach is demonstrated through analysis of the γ / γ’ interface in a Ni–Al–Cr superalloy. - Highlights: • Develop approach for standardizing aspects of atom probe reconstruction. • Use Kernel density estimators to select optimal voxel sizes in an unsupervised manner. • Perform interfacial analysis of Ni–Al–Cr superalloy, using new automated approach. • Optimize voxel size to preserve the feature of interest and minimizing loss / noise.

  7. Ultrafast molecular dynamics illuminated with synchrotron radiation

    International Nuclear Information System (INIS)

    Bozek, John D.; Miron, Catalin

    2015-01-01

    Highlights: • Ultrafast molecular dynamics probed with synchrotron radiation. • Core-excitation as probe of ultrafast dynamics through core-hole lifetime. • Review of experimental and theoretical methods in ultrafast dynamics using core-level excitation. - Abstract: Synchrotron radiation is a powerful tool for studying molecular dynamics in small molecules in spite of the absence of natural matching between the X-ray pulse duration and the time scale of nuclear motion. Promoting core level electrons to unoccupied molecular orbitals simultaneously initiates two ultrafast processes, nuclear dynamics on the potential energy surfaces of the highly excited neutral intermediate state of the molecule on the one hand and an ultrafast electronic decay of the intermediate excited state to a cationic final state, characterized by a core hole lifetime. The similar time scales of these processes enable core excited pump-probe-type experiments to be performed with long duration X-ray pulses from a synchrotron source. Recent results obtained at the PLIEADES beamline concerning ultrafast dissociation of core excited states and molecular potential energy curve mapping facilitated by changes in the geometry of the short-lived intermediate core excited state are reviewed. High brightness X-ray beams combined with state-of-the art electron and ion-electron coincidence spectrometers and highly sophisticated theoretical methods are required to conduct these experiments and to achieve a full understanding of the experimental results.

  8. Probe station for testing of ALICE silicon drift detectors

    CERN Document Server

    Humanic, T J; Piemonte, C; Rashevsky, A; Sugarbaker, E R; Vacchi, A

    2003-01-01

    Large area, 7.25 cm multiplied by 8.76 cm silicon drift detectors have been developed and are in production for the ALICE experiment at LHC. An active area of the detector of more than 50 cm**2 imposes high demands on the quality of processing and raw material. Automated testing procedures have been developed to test detectors before mounting them on the ladders. Probe stations for ALICE SDD testing were designed and built at INFN, Trieste and Ohio State University (OSU). Testing procedures, detector selection criteria and some details of the OSU probe station design are discussed.

  9. Preconditioned dynamic mode decomposition and mode selection algorithms for large datasets using incremental proper orthogonal decomposition

    Science.gov (United States)

    Ohmichi, Yuya

    2017-07-01

    In this letter, we propose a simple and efficient framework of dynamic mode decomposition (DMD) and mode selection for large datasets. The proposed framework explicitly introduces a preconditioning step using an incremental proper orthogonal decomposition (POD) to DMD and mode selection algorithms. By performing the preconditioning step, the DMD and mode selection can be performed with low memory consumption and therefore can be applied to large datasets. Additionally, we propose a simple mode selection algorithm based on a greedy method. The proposed framework is applied to the analysis of three-dimensional flow around a circular cylinder.

  10. Origin of the Drude peak and of zero sound in probe brane holography

    Directory of Open Access Journals (Sweden)

    Chi-Fang Chen

    2017-11-01

    Full Text Available At zero temperature, the charge current operator appears to be conserved, within linear response, in certain holographic probe brane models of strange metals. At small but finite temperature, we analytically show that the weak non-conservation of this current leads to both a collective “zero sound” mode and a Drude peak in the electrical conductivity. This simultaneously resolves two outstanding puzzles about probe brane theories. The nonlinear dynamics of the current operator itself appears qualitatively different.

  11. PROBING THE ROLE OF DYNAMICAL FRICTION IN SHAPING THE BSS RADIAL DISTRIBUTION. I. SEMI-ANALYTICAL MODELS AND PRELIMINARY N-BODY SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Miocchi, P.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Alessandrini, E. [Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna (Italy); Pasquato, M.; Lee, Y.-W. [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Vesperini, E. [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States)

    2015-01-20

    We present semi-analytical models and simplified N-body simulations with 10{sup 4} particles aimed at probing the role of dynamical friction (DF) in determining the radial distribution of blue straggler stars (BSSs) in globular clusters. The semi-analytical models show that DF (which is the only evolutionary mechanism at work) is responsible for the formation of a bimodal distribution with a dip progressively moving toward the external regions of the cluster. However, these models fail to reproduce the formation of the long-lived central peak observed in all dynamically evolved clusters. The results of N-body simulations confirm the formation of a sharp central peak, which remains as a stable feature over time regardless of the initial concentration of the system. In spite of noisy behavior, a bimodal distribution forms in many cases, with the size of the dip increasing as a function of time. In the most advanced stages, the distribution becomes monotonic. These results are in agreement with the observations. Also, the shape of the peak and the location of the minimum (which, in most of cases, is within 10 core radii) turn out to be consistent with observational results. For a more detailed and close comparison with observations, including a proper calibration of the timescales of the dynamical processes driving the evolution of the BSS spatial distribution, more realistic simulations will be necessary.

  12. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    International Nuclear Information System (INIS)

    Rius, G; Clark, I T; Yoshimura, M

    2013-01-01

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  13. Van Allen Probes Science Gateway: Single-Point Access to Long-Term Radiation Belt Measurements and Space Weather Nowcasting

    Science.gov (United States)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G.

    2017-12-01

    The Science Gateway gives single-point access to over 4.5 years of comprehensive wave and particle measurements from the Van Allen Probes NASA twin-spacecraft mission. The Gateway provides a set of visualization and data analysis tools including: HTML5-based interactive visualization of high-level data products from all instrument teams in the form of: line plots, orbital content plots, dynamical energy spectra, L-shell context plots (including two-spacecraft plotting), FFT spectra of wave data, solar wind and geomagnetic indices data, etc.; download custom multi-instrument CDF data files of selected data products; publication quality plots of digital data; combined orbit predicts for mission planning and coordination including: Van Allen Probes, MMS, THEMIS, Arase (ERG), Cluster, GOES, Geotail, FIREBIRD; magnetic footpoint calculator for coordination with LEO and ground-based assets; real-time computation and processing of empirical magnetic field models - computation of magnetic ephemeris, computation of adiabatic invariants. Van Allen Probes is the first spacecraft mission to provide a nowcast of the radiation environment in the heart of the radiation belts, where the radiation levels are the highest and most dangerous for spacecraft operations. For this purpose, all instruments continuously broadcast a subset of their science data in real time. Van Allen Probes partners with four foreign institutions who operate ground stations that receive the broadcast: Korea (KASI), the Czech republic (CAS), Argentina (CONAE), and Brazil (INPE). The SpWx broadcast is then collected at APL and delivered to the community via the Science Gateway.

  14. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    International Nuclear Information System (INIS)

    Orme, C A; Giocondi, J L

    2007-01-01

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth

  15. Compound speckles and their statistical and dynamical properties

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Jakobsen, Michael Linde; Skov Hansen, Rene

    2008-01-01

    Two issues will be treated in this presentation, both focusing on gaining a deeper understanding of dynamic speckles, aiming at the use for probing dynamical properties of scattering structures. The first issue to be addressed is the dynamics of speckles arising from illuminating a solid surface...

  16. Dynamics of ions in the selectivity filter of the KcsA channel: Towards a coupled Brownian particle description

    OpenAIRE

    Cosseddu, Salvatore M.; Khovanov, Igor A.; Allen, Michael P.; Rodger, P. M.; Luchinsky, Dmitry G.; McClintock, Peter V. E.

    2013-01-01

    The statistical and dynamical properties of ions in the selectivity filter of the KcsA ion channel are considered on the basis of molecular dynamics (MD) simulations of the KcsA protein embedded in a lipid membrane surrounded by an ionic solution. A new approach to the derivation of a Brownian dynamics (BD) model of ion permeation through the filter is discussed, based on unbiased MD simulations. It is shown that depending on additional assumptions, ion’s dynamics can be described either by u...

  17. Dynamics of the evolution of learning algorithms by selection

    International Nuclear Information System (INIS)

    Neirotti, Juan Pablo; Caticha, Nestor

    2003-01-01

    We study the evolution of artificial learning systems by means of selection. Genetic programming is used to generate populations of programs that implement algorithms used by neural network classifiers to learn a rule in a supervised learning scenario. In contrast to concentrating on final results, which would be the natural aim while designing good learning algorithms, we study the evolution process. Phenotypic and genotypic entropies, which describe the distribution of fitness and of symbols, respectively, are used to monitor the dynamics. We identify significant functional structures responsible for the improvements in the learning process. In particular, some combinations of variables and operators are useful in assessing performance in rule extraction and can thus implement annealing of the learning schedule. We also find combinations that can signal surprise, measured on a single example, by the difference between predicted and correct classification. When such favorable structures appear, they are disseminated on very short time scales throughout the population. Due to such abruptness they can be thought of as dynamical transitions. But foremost, we find a strict temporal order of such discoveries. Structures that measure performance are never useful before those for measuring surprise. Invasions of the population by such structures in the reverse order were never observed. Asymptotically, the generalization ability approaches Bayesian results

  18. Comparison of attraction capabilities associated with high-speed, dual-pneumatic vitrectomy probes.

    Science.gov (United States)

    Dugel, Pravin U; Abulon, Dina J K; Dimalanta, Ramon

    2015-05-01

    To measure membrane attraction capabilities of enhanced 27-gauge, enhanced 25-gauge, and 23-gauge vitrectomy probes under various parameters. A membrane-on-cantilever apparatus was used to measure membrane attraction for enhanced 27-, enhanced 25-, and 23-gauge UltraVit probes (n = 6 for each). The following parameters were evaluated: effects of cut rates and duty cycles on membrane attraction distances, and flow rates and vacuum levels required to attract a membrane at a fixed distance. The enhanced 27-gauge probe had the shortest attraction distance across all cutting speeds and duty cycles. To attract a membrane at a fixed distance, increasing vacuum was necessary with higher cutting rates and smaller probe gauges but flow rate remained relatively constant. The biased open duty cycle was associated with a longer attraction distance than 50/50 or biased closed modes. The shorter membrane attraction distance of the enhanced 27-gauge probe versus 23-gauge and enhanced 25-gauge probes may permit greater membrane dissection precision while providing improved access to small tissue planes. Equivalent fluid flow capabilities of the 27-gauge probe compared with the 23-gauge and 25-gauge probes may provide efficient aspiration. Surgeon selection of duty cycle modes may improve intraoperative fluid control and expand the cutter utility as a multifunctional tool.

  19. Is There Really a Global Business Cycle? : A Dynamic Factor Model with Stochastic Factor Selection

    NARCIS (Netherlands)

    T. Berger (Tino); L.C.G. Pozzi (Lorenzo)

    2016-01-01

    textabstractWe investigate the presence of international business cycles in macroeconomic aggregates (output, consumption, investment) using a panel of 60 countries over the period 1961-2014. The paper presents a Bayesian stochastic factor selection approach for dynamic factor models with

  20. Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model

    DEFF Research Database (Denmark)

    Fellermann, Harold; Tanaka, Shinpei; Rasmussen, Steen

    2017-01-01

    Template-directed replication of nucleic acids is at the essence of all living beings and a major milestone for any origin of life scenario. We present an idealized model of prebiotic sequence replication, where binary polymers act as templates for their autocatalytic replication, thereby serving...... as each others reactants and products in an intertwined molecular ecology. Our model demonstrates how autocatalysis alters the qualitative and quantitative system dynamics in counterintuitive ways. Most notably, numerical simulations reveal a very strong intrinsic selection mechanism that favors...... the appearance of a few population structures with highly ordered and repetitive sequence patterns when starting from a pool of monomers. We demonstrate both analytically and through simulation how this "selection of the dullest" is caused by continued symmetry breaking through random fluctuations...

  1. Planar dynamical systems selected classical problems

    CERN Document Server

    Liu, Yirong; Huang, Wentao

    2014-01-01

    This book presents in an elementary way the recent significant developments in the qualitative theory of planar dynamical systems. The subjects are covered as follows: the studies of center and isochronous center problems, multiple Hopf bifurcations and local and global bifurcations of the equivariant planar vector fields which concern with Hilbert's 16th problem. This book is intended for graduate students, post-doctors and researchers in the area of theories and applications of dynamical systems. For all engineers who are interested the theory of dynamical systems, it is also a reasona

  2. A simple rhodamine hydrazide-based turn-on fluorescent probe for HOCl detection.

    Science.gov (United States)

    Zhang, Zhen; Zou, Yuan; Deng, Chengquan; Meng, Liesu

    2016-06-01

    Hypochlorous acid (HOCl) plays a crucial role in daily life and mediates a variety of physiological processes, however, abnormal levels of HOCl have been associated with numerous human diseases. It is therefore of significant interest to establish a simple, selective, rapid and sensitive fluorogenic method for the detection of HOCl in environmental and biological samples. A hydrazide-containing fluorescent probe based on a rhodamine scaffold was facilely developed that could selectively detect HOCl over other biologically relevant reactive oxygen species, reactive nitrogen species and most common metal ions in vitro. Via an irreversible oxidation-hydrolysis mechanism, and upon HOCl-triggered opening of the intramolecular spirocyclic ring during detection, the rhodamine hydrazide-based probe exhibited large fluorescence enhancement in the emission spectra with a fast response, low detection limit and comparatively wide pH detection range in aqueous media. The probe was further successfully applied to monitoring trace HOCl in tap water and imaging both exogenous and endogenous HOCl within living cells. It is anticipated that this simple and useful probe might be an efficient tool with which to facilitate more HOCl-related chemical and biological research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  3. A Ratiometric Acoustogenic Probe for in Vivo Imaging of Endogenous Nitric Oxide.

    Science.gov (United States)

    Reinhardt, Christopher J; Zhou, Effie Y; Jorgensen, Michael D; Partipilo, Gina; Chan, Jefferson

    2018-01-24

    Photoacoustic (PA) imaging is an emerging imaging modality that utilizes optical excitation and acoustic detection to enable high resolution at centimeter depths. The development of activatable PA probes can expand the utility of this technology to allow for detection of specific stimuli within live-animal models. Herein, we report the design, development, and evaluation of a series of Acoustogenic Probe(s) for Nitric Oxide (APNO) for the ratiometric, analyte-specific detection of nitric oxide (NO) in vivo. The best probe in the series, APNO-5, rapidly responds to NO to form an N-nitroso product with a concomitant 91 nm hypsochromic shift. This property enables ratiometric PA imaging upon selective irradiation of APNO-5 and the corresponding product, tAPNO-5. Moreover, APNO-5 displays the requisite photophysical characteristics for in vivo PA imaging (e.g., high absorptivity, low quantum yield) as well as high biocompatibility, stability, and selectivity for NO over a variety of biologically relevant analytes. APNO-5 was successfully applied to the detection of endogenous NO in a murine lipopolysaccharide-induced inflammation model. Our studies show a 1.9-fold increase in PA signal at 680 nm and a 1.3-fold ratiometric turn-on relative to a saline control.

  4. A Single Electrochemical Probe Used for Analysis of Multiple Nucleic Acid Sequences

    Science.gov (United States)

    Mills, Dawn M.; Calvo-Marzal, Percy; Pinzon, Jeffer M.; Armas, Stephanie; Kolpashchikov, Dmitry M.; Chumbimuni-Torres, Karin Y.

    2017-01-01

    Electrochemical hybridization sensors have been explored extensively for analysis of specific nucleic acids. However, commercialization of the platform is hindered by the need for attachment of separate oligonucleotide probes complementary to a RNA or DNA target to an electrode’s surface. Here we demonstrate that a single probe can be used to analyze several nucleic acid targets with high selectivity and low cost. The universal electrochemical four-way junction (4J)-forming (UE4J) sensor consists of a universal DNA stem-loop (USL) probe attached to the electrode’s surface and two adaptor strands (m and f) which hybridize to the USL probe and the analyte to form a 4J associate. The m adaptor strand was conjugated with a methylene blue redox marker for signal ON sensing and monitored using square wave voltammetry. We demonstrated that a single sensor can be used for detection of several different DNA/RNA sequences and can be regenerated in 30 seconds by a simple water rinse. The UE4J sensor enables a high selectivity by recognition of a single base substitution, even at room temperature. The UE4J sensor opens a venue for a re-useable universal platform that can be adopted at low cost for the analysis of DNA or RNA targets. PMID:29371782

  5. An NBD derivative of the selective rat toxicant norbormide as a new probe for living cell imaging.

    Directory of Open Access Journals (Sweden)

    Claudio D'amore

    2016-09-01

    Full Text Available Norbormide (NRB is a unique compound that acts directly on rat vascular myocytes to trigger a contractile process, through an as yet unknown mechanism, which results in the selective contraction of rat peripheral arteries. To gain insight into the mechanisms involved in NRB rat-selective activity, we investigated the subcellular distribution of NRB-AF12, a nitrobenzodiazole (NBD-derivative of NRB, in living NRB-sensitive and NRB-insensitive cells. In both cell types, NRB-AF12 localised to the endoplasmic reticulum (ER, Golgi apparatus, mitochondria, lysosomes and endosomes; however, in NRB-sensitive cells, the fluorescence also extended to the plasma membrane. NRB-AF12 was rapidly internalised into the cells, could easily be washed out and then reloaded back into the same cells, all with a high degree of reproducibility. Cells exposed for 24 h to NRB-AF12 did not show apparent signs of toxicity, even at concentrations of the dye (10 µM much higher than those required for fluorescence labelling (500 ηM. The distribution pattern of NRB-AF12 fluorescence was near identical to that of ER-Tracker® (Er-Tr, a fluorescent derivative of glibenclamide, a known KATP channel blocker. Displacement tests did not demonstrate, but at the same time did not rule out the possibility of a common target for ER-Tr, NRB-AF12, NRB and glibenclamide. On the basis of these results we hypothesize a common target site for NRB-AF12 and ER-Tr, and a similar target profile for norbormide and glibenclamide, and propose NRB-AF12 as an alternative fluorescence probe to ER-Tracker. Furthermore, NRB-based fluorescence derivatives could be designed to selectively label single cellular structures.

  6. Perceiving the vertical distances of surfaces by means of a hand-held probe.

    Science.gov (United States)

    Chan, T C; Turvey, M T

    1991-05-01

    Nine experiments were conducted on the haptic capacity of people to perceive the distances of horizontal surfaces solely on the basis of mechanical stimulation resulting from contacting the surfaces with a vertically held rod. Participants touched target surfaces with rods inside a wooden cabinet and reported the perceived surface location with an indicator outside the cabinet. The target surface, rod, and the participant's hand were occluded, and the sound produced in exploration was muffled. Properties of the probe (length, mass, moment of inertia, center of mass, and shape) were manipulated, along with surface distance and the method and angle of probing. Results suggest that for the most common method of probing, namely, tapping, perceived vertical distance is specific to a particular relation among the rotational inertia of the probe, the distance of the point of contact with the surface from the probe's center of percussion, and the inclination at contact of the probe to the surface. They also suggest that the probe length and the distance probed are independently perceivable. The results were discussed in terms of information specificity versus percept-percept coupling and parallels between selective attention in haptic and visual perception.

  7. Facile sonochemical synthesis and morphology control of CePO4 nanostructures via an oriented attachment mechanism: Application as luminescent probe for selective sensing of Pb2+ ion in aqueous solution

    International Nuclear Information System (INIS)

    Shiralizadeh Dezfuli, Amin; Ganjali, Mohammad Reza; Norouzi, Parviz

    2014-01-01

    CePO 4 nanostructures with hexagonal phase were controllably synthesized using Ce(NO 3 ) 3 reaction with NH 4 H 2 PO 4 through a sonochemical method by simply varying the reaction conditions. By adding ethanol and polyethylene glycol (PEG), coral-reef nanostructures (CRNs) were synthesized and controlling over pH caused to nanorods/nanowires. Oriented attachment (OA) is proposed as dominant mechanism on the growth of nanostructures which is in competition with Ostwald ripening (OR). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. The luminescent properties of CePO 4 with different morphologies have been studied. Among the nanostructures, nanoparticles with the highest intensity of fluorescent have been used as luminescent probe for selective sensing of Pb 2+ ion in aqueous solution. - Highlights: • Facile sonochemical method has been used for synthesis of CePO 4 nanostructures. • Coral-reef as a new morphology of nanostructures is introduced. • CePO 4 NPs have been used as luminescent probe for selective sensing of Pb 2+ ion

  8. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  9. Low temperature excitonic spectroscopy and dynamics as a probe of quality in hybrid perovskite thin films.

    Science.gov (United States)

    Sarang, Som; Ishihara, Hidetaka; Chen, Yen-Chang; Lin, Oliver; Gopinathan, Ajay; Tung, Vincent C; Ghosh, Sayantani

    2016-10-19

    We have developed a framework for using temperature dependent static and dynamic photoluminescence (PL) of hybrid organic-inorganic perovskites (PVSKs) to characterize lattice defects in thin films, based on the presence of nanodomains at low temperature. Our high-stability PVSK films are fabricated using a novel continuous liquid interface propagation technique, and in the tetragonal phase (T > 120 K), they exhibit bi-exponential recombination from free charge carriers with an average PL lifetime of ∼200 ns. Below 120 K, the emergence of the orthorhombic phase is accompanied by a reduction in lifetimes by an order of magnitude, which we establish to be the result of a crossover from free carrier to exciton-dominated radiative recombination. Analysis of the PL as a function of excitation power at different temperatures provides direct evidence that the exciton binding energy is different in the two phases, and using these results, we present a theoretical approach to estimate this variable binding energy. Our findings explain this anomalous low temperature behavior for the first time, attributing it to an inherent fundamental property of the hybrid PVSKs that can be used as an effective probe of thin film quality.

  10. Visualizing tributyltin (TBT) in bacterial aggregates by specific rhodamine-based fluorescent probes.

    Science.gov (United States)

    Jin, Xilang; Hao, Likai; She, Mengyao; Obst, Martin; Kappler, Andreas; Yin, Bing; Liu, Ping; Li, Jianli; Wang, Lanying; Shi, Zhen

    2015-01-01

    Here we present the first examples of fluorescent and colorimetric probes for microscopic TBT imaging. The fluorescent probes are highly selective and sensitive to TBT and have successfully been applied for imaging of TBT in bacterial Rhodobacter ferrooxidans sp. strain SW2 cell-EPS-mineral aggregates and in cell suspensions of the marine cyanobacterium Synechococcus PCC 7002 by using confocal laser scanning microscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  12. Investigation of static and dynamic behavior of functionally graded piezoelectric actuated Poly-Si micro cantilever probe

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vibhuti Bhushan; Parashar, Sandeep Kumar, E-mail: skparashar@rtu.ac.in [Department of Mechanical Engineering, Rajasthan Technical University, Kota (India)

    2016-04-13

    In the present paper a novel functionally graded piezoelectric (FGP) actuated Poly-Si micro cantilever probe is proposed for atomic force microscope. The shear piezoelectric coefficient d{sub 15} has much higher value than coupling coefficients d{sub 31} and d{sub 33}, hence in the present work the micro cantilever beam actuated by d{sub 15} effect is utilized. The material properties are graded in the thickness direction of actuator by a simple power law. A three dimensional finite element analysis has been performed using COMSOL Multiphysics® (version 4.2) software. Tip deflection and free vibration analysis for the micro cantilever probe has been done. The results presented in the paper shall be useful in the design of micro cantilever probe and their subsequent utilization in atomic force microscopes.

  13. A light-up fluorescent probe for citrate detection based on bispyridinum amides with aggregation-induced emission feature.

    Science.gov (United States)

    Liu, Chenchen; Hang, Yandi; Jiang, Tao; Yang, Ji; Zhang, Xiao; Hua, Jianli

    2018-02-01

    Citrate is an important intermediate in the citric acid cycle, a vital metabolic pathway for animals, plants and bacteria. It is of great significance to detect its levels in human beings because several diseases may cause the abnormal of citrate. In this paper, a new turn-on fluorescent sensor (TPE-Py) using the classic tetraphenylethylene (TPE) as the aggregation-induced emission (AIE) fluorophore and bipyridinium-based amides as the recognition receptor has been synthesized for the detection of citrate. The probe exhibits good selectivity and sensitivity to citrate with a relatively low detection limit (1.0 × 10 -7 M). The enhancement of the fluorescence is relevant with the AIE property based on the complexation of TPE-Py with citrate caused by the hydrogen bonding and electrostatic interactions between the bipyridinium diamides and citrate, which has been proved by 1 H NMR and mass spectra titration, scanning electronic microscope and dynamic light scattering analyses. More importantly, the quantification of citrate in artificial urine may develop TPE-Py fluorometric probe for the citrate detection in real biosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    Science.gov (United States)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  15. Transverse Electromagnetic Mode Conversion for High-Harmonic Self-Probing Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antoine Camper

    2015-02-01

    Full Text Available We report on high-order harmonic (HHG two-source interferometry (TSI in molecular gases. We used a 0-\\(\\pi\\ phase plate to create two bright spots at the focus of a lens by converting a Gaussian laser beam into a TEM please define \\(_{01}\\ Transverse Electromagnetic Mode. The two bright foci produce two synchronized HHG sources. One of them is used to probe on-going dynamics in the generating medium, while the other serves to heterodyne the signal. The interference of the emissions in the far–field gives access to the phase difference between the two sources. In self–probing HHG phase spectroscopy, one of the two sources is used as a reference while the other one probes some on goin dynamics in the generating medium. We first compute overlap integrals to investigate the mode conversion efficiency. We then establish a clear relation between the laser phase-front curvature and the far-field overlap of the two HHG beams. Both Fresnel diffraction calculations and an experimental lens position scan are used to reveal variations of the phase front inclination in each source. We show that this arrangement offers \\(\\frac{\\lambda_{XUV}}{100}\\ precision, enabling extremely sensitive phase measurements. Finally, we use this compact setup for TSI and measure phase variations across the molecular alignment revival of nitrogen and in vibrating sulfur hexafluoride. In both gases, the phase variations change sign around the ionization threshold of the investigated molecule.

  16. Solar Probe Plus: A NASA Mission to Touch the Sun

    Science.gov (United States)

    Fox, N. J.; Velli, M. M. C.; Kasper, J. C.; McComas, D. J.; Howard, R.; Bale, S. D.; Decker, R. B.

    2014-12-01

    Solar Probe Plus (SPP), currently in Phase C, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind and energetic particles are accelerated, solving fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this presentation, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.

  17. Traversing incore probe device

    International Nuclear Information System (INIS)

    Yoshioka, Michiko.

    1985-01-01

    Purpose: To measure the neutron flux distribution in the reactor core always at a high accuracy. Constitution: A nuclear fission ionizing chamber type detector is disposed at the end of a cable for sending a detection signal of a traversing incore probe device and, further, a gamma-ray ionizing chamber type detector is connected in adjacent therewith and a selection circuit for selecting both of the detection signals and inputting them to a display device is disposed. Then, compensation for the neutron monitors is conducted by the gamma-ray ionizing chamber type detector during normal operation in which control rods are not driven and the positioning is carried out by the nuclear fission ionizing chamber type detector. Furthermore, both of the compensation for the neutron detector and the positioning are carried out by the nuclear fission ionizing chamber type detector upon starting where the control rods are driven. (Sekiya, K.)

  18. Gravitational wave as probe of superfluid dark matter

    Science.gov (United States)

    Cai, Rong-Gen; Liu, Tong-Bo; Wang, Shao-Jiang

    2018-02-01

    In recent years, superfluid dark matter (SfDM) has become a competitive model of emergent modified Newtonian dynamics (MOND) scenario: MOND phenomenons naturally emerge as a derived concept due to an extra force mediated between baryons by phonons as a result of axionlike particles condensed as superfluid at galactic scales; Beyond galactic scales, these axionlike particles behave as normal fluid without phonon-mediated MOND-like force between baryons, therefore SfDM also maintains the usual success of Λ CDM at cosmological scales. In this paper, we use gravitational waves (GWs) to probe the relevant parameter space of SfDM. GWs through Bose-Einstein condensate (BEC) could propagate with a speed slightly deviation from the speed-of-light due to the change in the effective refractive index, which depends on the SfDM parameters and GW-source properties. We find that Five hundred meter Aperture Spherical Telescope (FAST), Square Kilometre Array (SKA) and International Pulsar Timing Array (IPTA) are the most promising means as GW probe of relevant parameter space of SfDM. Future space-based GW detectors are also capable of probing SfDM if a multimessenger approach is adopted.

  19. Scanning probe microscopy with vertically oriented cantilevers made easy

    International Nuclear Information System (INIS)

    Valdrè, G; Moro, D; Ulian, G

    2012-01-01

    Non-contact imaging in scanning probe microscopy (SPM) is becoming of great importance in particular for imaging biological matter and in general soft materials. Transverse dynamic force microscopy (TDFM) is an SPM-based methodology that exploiting a cantilever oriented in a vertical configuration with respect to the sample surface may work with very low tip to sample interaction forces. The probe is oscillated parallel to the sample surface, usually by a piezoelectric element. However, this methodology often requires complex microscope setups and detection systems, so it is usually developed in specific laboratories as a prototype microscope. Here, we present a very simple device that easily enables a commercial SPM head to be oriented in such a way to have the cantilever long axis perpendicular to the sample surface. No modifications of the SPM hardware and software are required and commercial available cantilevers can be used as probes. Performance tests using polystyrene spheres, muscovite crystallographic steps and DNA single molecules were successful and all resulted in agreement with other TDFM and SPM observations demonstrating the reliability of the device. (paper)

  20. CO{sub 2} geothermal heat probe - Phase 2; CO{sub 2}-Erdwaermesonde - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Grueniger, A.; Wellig, B.

    2009-12-15

    In this project the fluid dynamics and thermodynamics inside a CO{sub 2} geothermal heat probe have been investigated. The functionality of such a probe, which works like a thermosyphon, was analyzed by means of a simulation model in MATLAB. The model couples the behaviour inside the heat probe with the heat conduction in the earth. A parameter study revealed that the self-circulation character of such a probe leads to flattening of the vertical earth temperature profile near the probe and, hence, leads to more uniform heat removal along the probe. The circulation of CO{sub 2} even goes on when the heat pump is off. This might be advantageous for the regeneration phase. The heat transfer resistance of the evaporating CO{sub 2} film flowing down the probe wall is very small compared to the conduction resistance of the earth. Therefore, no difference has been found between the performances of a conventional heat pipe and a configuration where the liquid phase injection is distributed on different height stages along the probe. It is estimated that the seasonal performance factor of heat pumps can be improved by 15-25% with a CO{sub 2} geothermal heat probe. The main advantage is that the heat transfer to the evaporator of the heat pump (condensation of CO{sub 2} / evaporation of refrigerant) is much more efficient than in a conventional brine probe without phase change. Furthermore, no circulation pump is needed. (authors)

  1. Measurement of dynamic viscoelasticity of confined lubricant by using oscillating optical fiber probe

    International Nuclear Information System (INIS)

    Itoh, S; Fukuzawa, K; Hamamoto, Y; Zhang, H

    2007-01-01

    When a liquid is confined in molecularly narrow gaps, it shows characteristic viscoelasticity such as enhanced viscosity or prolonged relaxation time. In order to investigate the dynamic viscoelasticity of the confined liquid, we developed a new shear force measuring method that uses a ball-ended optical fiber as a shearing probe. Our method can measure the shear force of 0.1 nN order with the oscillation frequency of up to 10 kHz. In addition, the gap that confines the liquid can be set at any constant value ranging from 10 μm to 0.1 nm. In this study, we measured the gap dependence of viscoelasticity of confined liquid lubricants. The gap ranged from 200 nm to a few nm. The tested lubricant was Fomblin Z03 and Zdo14000. A magnetic disk was used as the solid substrate. Oscillation frequency was set at 800 Hz. The experiment showed the viscosity of both Z03 and Zdo14000 gradually increased as the confining gap decreased. The gap width where the viscosity increase started was wider than 100 nm, which is dozens of times larger than the gyration diameter of lubricant molecules. Although Z03 and Zdo14000 have negligibly small elasticity in a bulk state, elasticity suddenly appeared at gaps less than about 8 nm with Zdo14000, and at gaps less than about 4 nm with Z03. Stronger affinity of Zdo14000 molecules to the solid substrate could cause the wider gap width of elasticity appearance

  2. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    OpenAIRE

    Bawendi M.G.; Strasfeld D.; Roitblat A.; Sachs H.; Gdor I.; Ruhman S.

    2013-01-01

    Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times tha...

  3. Dynamical sensitivity control of a single-spin quantum sensor.

    Science.gov (United States)

    Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan

    2017-07-26

    The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.

  4. Tritium labelling of highly selective probes for. delta. -opioid receptors: ( sup 3 H)Tyr-D-Ser(O-t-Bu)-Gly-Phe-Leu-Thr(DSTBULET) and ( sup 3 H)Tyr-D-Ser(O-t-Bu)-Gly-Phe-Leu-Thr(O-t-Bu)(BUBU)

    Energy Technology Data Exchange (ETDEWEB)

    Fellion, E.; Gacel, G.; Roques, B.P. (Institut National de la Sante et de la Recherche Medicale (INSERM), 75 - Paris (France)); Roy, J.; Morgat, J.L. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Service de Biochimie)

    1990-08-01

    The introduction of bulky residue(s) in linear enkephalin-related hexapeptides represents a new approach in the design of selective probes for {delta}-opioid receptors, displaying the appropriate criteria to investigate biological and pharmacological properties of the assumed binding site ({delta}) of endogenous enkephalins. The selectivities and high affinities of Tyr-D-Ser(O-t-Bu)-Gly-Phe-Leu-Thr(DSTBULET) and especially Tyr-D-Ser(O-t-Bu)Gly-Phe-Leu-Thr(O-t-Bu) (BUBU) associated with a satisfactory resistance to peptidases, make them the most suitable {delta}-probes reported to date. In the present paper, we report the synthesis of DSTBULET and BUBU under tritiated forms with high specific radioactivities. These radio-labelled probes will enable extensive in vitro and in vivo investigations of {delta}-opioid receptors properties to be carried out. (author).

  5. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  6. A highly sensitive fluorescent probe based on BODIPY for Hg2+ in aqueous solution

    Directory of Open Access Journals (Sweden)

    ZHAO Junwei

    2016-12-01

    Full Text Available A highly sensitive fluorescent probe based on BODIPY and hydrazine for Hg2+ was designed and synthesized.This probe could detect mercury ions in aqueous solutions within 5 min.With the increase of Hg2+ mole concentration,an obvious red shift of UV-Vis absorption wavelength was observed and the fluorescence intensity significantly enhanced.It was found that the fluorescence intensity of an aqueous solution containing 0.1 μmol/L Hg2+ is much stronger than that of blank solution,which indicats that the fluorescent probe has high sensitivity.In addition,other metal ions could not cause the change of fluorescent spectra,which means this probe has good selectivity,as well.

  7. Spin excitations in the quasi-two-dimensional charge-ordered insulator α -(BEDT-TTF ) 2I3 probed via 13C NMR

    Science.gov (United States)

    Ishikawa, Kyohei; Hirata, Michihiro; Liu, Dong; Miyagawa, Kazuya; Tamura, Masafumi; Kanoda, Kazushi

    2016-08-01

    The spin excitations from the nonmagnetic charge-ordered insulating state of α -(BEDT-TTF ) 2I3 at ambient pressure have been investigated by probing the static and low-frequency dynamic spin susceptibilities via site-selective nuclear magnetic resonance at 13C sites. The site-dependent values of the shift and the spin-lattice relaxation rate 1 /T1 below the charge-ordering transition temperature (TCO≈135 K ) demonstrate a spin density imbalance in the unit cell, in accord with the charge-density ratio reported earlier. The shift and 1 /T1 show activated temperature dependence with a static (shift) gap ΔS≈47 -52 meV and a dynamic (1 /T1 ) gap ΔR≈40 meV . The sizes of the gaps are well described in terms of a localized spin model, where spin-1/2 antiferromagnetic dimer chains are weakly coupled with each other.

  8. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  9. 1-(2-Methyl-5H-chromeno[2,3-b]pyridin-5-ylidene) hydrazone as fluorescent probes for selective zinc sensing in DMSO

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, Hela [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France); LACReSNE—Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte (Tunisia); Cadiou, Cyril, E-mail: cyril.cadiou@univ-reims.fr [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France); Henry, Axelle; Déchamps-Olivier, Isabelle [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France); Ternane, Riadh; Trabelsi-Ayadi, Malika [LACReSNE—Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte (Tunisia); Lemercier, Gilles; Chuburu, Françoise [URCA—Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Groupe Chimie de Coordination, UFR Sciences, BP 1039, 51687 Reims Cedex 2 (France)

    2014-04-15

    Two methyl-chromeno-pyridinylidene hydrazone derivatives L1, a cyclen derivative, and L2 were studied as potential fluorescent OFF–ON sensors towards Zn{sup 2+} in DMSO. Upon addition of one equivalent of Zn{sup 2+}, L1 fluorescence was quenched, but addition of a second equivalent of Zn{sup 2+} restored partially the signal. Therefore ZnL1 behaved as a OFF–ON sensor for zinc. By comparison, L2 behaved as a very sensitive probe for zinc. ZnL1 and L2 sensor efficiencies were correlated to Zn{sup 2+} coordination via the hydrazone moiety of the fluorophore, which prevented a photoinduced electron transfer (PET), and allowed an efficient CHelation-Enhanced Fluorescence (CHEF) effect. -- Highlights: • According to Zn{sup 2+} concentration, L1 behaves as an on-off-on sensor. • Given that L1 concentration is known, its fluorescence response could give an immediate suggestion about the range of Zn{sup 2+} concentration. • L2 exhibited a strong fluorescence enhancement upon Zn{sup 2+} addition. • It was demonstrated that L2 was highly specific to Zn{sup 2+}, which rendered this very straightforward ligand as an efficient and selective probe for this ion.

  10. Counting probe

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki

    1976-01-01

    Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)

  11. A new fluorescent pH probe for extremely acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Jiang, Zheng [School of Life Science, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Xiao, Yu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Bi, Fu-Zhen [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-04-01

    A new coumarin-based fluorescent probe can detect highly acidic conditions in both solution and bacteria with high selectivity and sensitivity. Highlights: • A new fluorescence probe for very low pH was synthesized and characterized. • The probe can monitor pH in solution and bacteria. • The two-step protonation of N atoms of the probe leads to fluorescence quenching. Abstract: A novel turn-off fluorescent probe based on coumarin and imidazole moiety for extremely acidic conditions was designed and developed. The probe with pKa = 2.1 is able to respond to very low pH value (below 3.5) with high sensitivity relying on fluorescence quenching at 460 nm in fluorescence spectra or the ratios of absorbance maximum at 380 nm to that at 450 nm in UV–vis spectra. It can quantitatively detect pH value based on equilibrium equation, pH = pKa -log[(Ix - Ib)/(Ia - Ix)]. It had very short response time that was less than 1 min, good reversibility and nearly no interference from common metal ions. Moreover, using ¹H NMR analysis and theoretical calculation of molecular orbital, we verified that a two-step protonation process of two N atoms of the probe leaded to photoinduced electron transfer (PET), which was actually the mechanism of the fluorescence quenching phenomenon under strongly acidic conditions. Furthermore, the probe was also applied to imaging strong acidity in bacteria, E.coli and had good effect. This work illustrates that the new probe could be a practical and ideal pH indicator for strongly acidic conditions with good biological significance.

  12. Dynamic selective switching in antiferromagnetically-coupled bilayers close to the spin reorientation transition

    International Nuclear Information System (INIS)

    Fernández-Pacheco, A.; Mansell, R.; Petit, D.; Lee, J. H.; Cowburn, R. P.; Ummelen, F. C.; Swagten, H. J. M.

    2014-01-01

    We have designed a bilayer synthetic antiferromagnet where the order of layer reversal can be selected by varying the sweep rate of the applied magnetic field. The system is formed by two ultra-thin ferromagnetic layers with different proximities to the spin reorientation transition, coupled antiferromagnetically using Ruderman-Kittel-Kasuya-Yosida interactions. The different dynamic magnetic reversal behavior of both layers produces a crossover in their switching fields for field rates in the kOe/s range. This effect is due to the different effective anisotropy of both layers, added to an appropriate asymmetric antiferromagnetic coupling between them. Field-rate controlled selective switching of perpendicular magnetic anisotropy layers as shown here can be exploited in sensing and memory applications.

  13. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    Science.gov (United States)

    Gdor, I.; Sachs, H.; Roitblat, A.; Strasfeld, D.; Bawendi, M. G.; Ruhman, S.

    2013-03-01

    Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times that of the band gap.

  14. Hyperspectral Probing of Exciton dynamics and Multiplication in PbSe Nanocrystals

    Directory of Open Access Journals (Sweden)

    Bawendi M.G.

    2013-03-01

    Full Text Available Height time hyperspectral near IR probing providing broad-band coverage is employed on PbSe nanocrystals, uncovering spectral evolution following high energy photo-excitation due to hot exciton relaxation and recombination. Separation of single, double and triple exciton state contributions to these spectra is demonstrated, and the mechanisms underlying the course of spectral evolution are investigated. In addition no sign of MEG was detected in this sample up to a photon energy 3.7 times that of the band gap.

  15. Transitional behavior of different energy protons based on Van Allen Probes observations

    International Nuclear Information System (INIS)

    Yue, Chao; Bortnik, Jacob; Chen, Lunjin; Ma, Qianli

    2016-01-01

    Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. In this paper, we statistically analyze ~1 eV to 50 keV hydrogen (H + ) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H + dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H + behaviors within different energy ranges, which is consistent with previous theory predictions. Finally, using simple electric and magnetic field models in UBK coordinates, we have further constrained the source regions of different energy ions and their drift directions.

  16. On dynamic selection of households for direct marketing based on Markov chain models with memory

    NARCIS (Netherlands)

    Otter, Pieter W.

    A simple, dynamic selection procedure is proposed, based on conditional, expected profits using Markov chain models with memory. The method is easy to apply, only frequencies and mean values have to be calculated or estimated. The method is empirically illustrated using a data set from a charitable

  17. Mobile probes

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Jørgensen, Anna Neustrup; Noesgaard, Signe Schack

    2016-01-01

    A project investigating the effectiveness of a collection of online resources for teachers' professional development used mobile probes as a data collection method. Teachers received questions and tasks on their mobile in a dialogic manner while in their everyday context as opposed...... to in an interview. This method provided valuable insight into the contextual use, i.e. how did the online resource transfer to the work practice. However, the research team also found that mobile probes may provide the scaffolding necessary for individual and peer learning at a very local (intra-school) community...... level. This paper is an initial investigation of how the mobile probes process proved to engage teachers in their efforts to improve teaching. It also highlights some of the barriers emerging when applying mobile probes as a scaffold for learning....

  18. Calix[2]pyreno[2]pyrrole as a Fluorescence Chemical Probe for Polynitroaromatics

    International Nuclear Information System (INIS)

    Park, Kyung Hwa; Yoo, Jae Duk; Lee, Chang Hee; Ka, Jae Won

    2012-01-01

    We have demonstrated that the new, readily synthesized and well characterized calix pyreno pyrrole fluorescence molecular probe can detect polynitroaromatic compounds with high affinity. In addition, this highly fluorescent neutral molecular receptor also exhibits enhanced binding affinity towards TNT which is associated with the formation of a pi-complex. The dynamic nature of the current system may enable it to serve as an excellent scaffold for electron-deficient guest molecular binding. Studies for other neutral molecules including metal ions are under in active progress. The elevated selectivity and sensitivity for specific analytes are the core requirements for an ideal chemical probes. A signal induced by guest binding must be sensitive enough so that accurate real time monitoring could be satisfactorily achieved. Introduction of signaling units at suitable places in which they can directly interact with the recognition events is critical in designing chemosensors. Among various signaling events, fluorescence changes are often applied for the sensitive detection of various analytes. An easy modulation of the photochemical properties of the signaling units is an additional advantage in compatibility and applications. Chemosensors for the detection of explosives becomes important due to their immediate applications in remedation of explosive manufacturing sites, homeland security or forensic sciences. With that in mind, numerous methods for the explosive detection have been reported in recent years. Nevertheless, some detection methods sometimes require sophisticated instrumentation which is not easy for on-site testing

  19. Scanning probe microscopy studies on the adsorption of selected molecular dyes on titania

    Directory of Open Access Journals (Sweden)

    Jakub S. Prauzner-Bechcicki

    2016-11-01

    Full Text Available Titanium dioxide, or titania, sensitized with organic dyes is a very attractive platform for photovoltaic applications. In this context, the knowledge of properties of the titania–sensitizer junction is essential for designing efficient devices. Consequently, studies on the adsorption of organic dyes on titania surfaces and on the influence of the adsorption geometry on the energy level alignment between the substrate and an organic adsorbate are necessary. The method of choice for investigating the local environment of a single dye molecule is high-resolution scanning probe microscopy. Microscopic results combined with the outcome of common spectroscopic methods provide a better understanding of the mechanism taking place at the titania–sensitizer interface. In the following paper, we review the recent scanning probe microscopic research of a certain group of molecular assemblies on rutile titania surfaces as it pertains to dye-sensitized solar cell applications. We focus on experiments on adsorption of three types of prototypical dye molecules, i.e., perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, phtalocyanines and porphyrins. Two interesting heteromolecular systems comprising molecules that are aligned with the given review are discussed as well.

  20. Selective interaction between Xanthophylls and Chlorophylls in LHCII probed by femtosecond transient absoprtion spectroscopy

    NARCIS (Netherlands)

    Gradinaru, C.C.; Grondelle, van R.; Amerongen, van H.

    2003-01-01

    We have performed femtosecond transient absorption measurements on trimeric light-harvesting complex II from spinach. Either chlorophyll (Chl) a (675 nm) or Chl b (650 nm) was excited, and the spectral response was probed for wavelengths longer than 470 nm. Excitation of Chl b led to instantaneous