WorldWideScience

Sample records for dynamic load balancing

  1. An efficient dynamic load balancing algorithm

    Science.gov (United States)

    Lagaros, Nikos D.

    2014-01-01

    In engineering problems, randomness and uncertainties are inherent. Robust design procedures, formulated in the framework of multi-objective optimization, have been proposed in order to take into account sources of randomness and uncertainty. These design procedures require orders of magnitude more computational effort than conventional analysis or optimum design processes since a very large number of finite element analyses is required to be dealt. It is therefore an imperative need to exploit the capabilities of computing resources in order to deal with this kind of problems. In particular, parallel computing can be implemented at the level of metaheuristic optimization, by exploiting the physical parallelization feature of the nondominated sorting evolution strategies method, as well as at the level of repeated structural analyses required for assessing the behavioural constraints and for calculating the objective functions. In this study an efficient dynamic load balancing algorithm for optimum exploitation of available computing resources is proposed and, without loss of generality, is applied for computing the desired Pareto front. In such problems the computation of the complete Pareto front with feasible designs only, constitutes a very challenging task. The proposed algorithm achieves linear speedup factors and almost 100% speedup factor values with reference to the sequential procedure.

  2. Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    O'Brien, M; Taylor, J; Procassini, R

    2004-01-01

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations

  3. A Dynamic Model for Load Balancing in Cloud Infrastructure

    Directory of Open Access Journals (Sweden)

    Jitendra Bhagwandas Bhatia

    2015-08-01

    Full Text Available This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform-independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement violations and saves power. To achieve this, incoming requests are monitored for sudden burst, a prediction model is employed to maintain high availability and a power-aware algorithm is applied for choosing a suitable physical node for a virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.For anyone building a private, public or hybrid IaaS cloud infrastructure, load balancing of virtual hosts on a limited number of physical nodes, becomes a crucial aspect. This paper analysis various challenges faced in optimizing computing resource utilization via load balancing and presents a platform independent model for load balancing which targets high availability of resources, low SLA (Service Level agreement violations and saves power. To achieve this, incoming requests are monitored for sudden burst, prediction model is employed to maintain high availability and power aware algorithm is applied for choosing a suitable physical node for virtual host. The proposed dynamic load balancing model provides a way to conflicting goals of saving power and maintaining high resource availability.

  4. Dynamic load-balancing-extended gradient mechanism: Graphic representation

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Francisco J., E-mail: muniz@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Load-balancing methods are quite well described in the open literature (hundreds of articles can be found about this subject). In particularly, about the Dynamic Load-balancing mechanism Extended Gradient (EG), several articles of the author are available. Even though, there are some overlap, each one of them is focused on a particular aspect of the mechanism, in a complementary way. In this article, a graphic representation of the Extended Gradient mechanism is done: this representation way had not yet been explored. However, for an in-depth knowledge of the Extended Gradient mechanism, at least, some other articles should to be read. In the CDTN, Clusters are used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  5. Dynamic load-balancing-extended gradient mechanism: Graphic representation

    International Nuclear Information System (INIS)

    Muniz, Francisco J.

    2017-01-01

    Load-balancing methods are quite well described in the open literature (hundreds of articles can be found about this subject). In particularly, about the Dynamic Load-balancing mechanism Extended Gradient (EG), several articles of the author are available. Even though, there are some overlap, each one of them is focused on a particular aspect of the mechanism, in a complementary way. In this article, a graphic representation of the Extended Gradient mechanism is done: this representation way had not yet been explored. However, for an in-depth knowledge of the Extended Gradient mechanism, at least, some other articles should to be read. In the CDTN, Clusters are used, mainly, in deterministic methods (CFD) and non-deterministic methods (Monte Carlo). (author)

  6. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    Energy Technology Data Exchange (ETDEWEB)

    Fattebert, J.-L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, D.F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glosli, J.N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·106 particles on 65,536 MPI tasks.

  7. Dynamic load balance scheme for the DSMC algorithm

    International Nuclear Information System (INIS)

    Li, Jin; Geng, Xiangren; Jiang, Dingwu; Chen, Jianqiang

    2014-01-01

    The direct simulation Monte Carlo (DSMC) algorithm, devised by Bird, has been used over a wide range of various rarified flow problems in the past 40 years. While the DSMC is suitable for the parallel implementation on powerful multi-processor architecture, it also introduces a large load imbalance across the processor array, even for small examples. The load imposed on a processor by a DSMC calculation is determined to a large extent by the total of simulator particles upon it. Since most flows are impulsively started with initial distribution of particles which is surely quite different from the steady state, the total of simulator particles will change dramatically. The load balance based upon an initial distribution of particles will break down as the steady state of flow is reached. The load imbalance and huge computational cost of DSMC has limited its application to rarefied or simple transitional flows. In this paper, by taking advantage of METIS, a software for partitioning unstructured graphs, and taking the total of simulator particles in each cell as a weight information, the repartitioning based upon the principle that each processor handles approximately the equal total of simulator particles has been achieved. The computation must pause several times to renew the total of simulator particles in each processor and repartition the whole domain again. Thus the load balance across the processors array holds in the duration of computation. The parallel efficiency can be improved effectively. The benchmark solution of a cylinder submerged in hypersonic flow has been simulated numerically. Besides, hypersonic flow past around a complex wing-body configuration has also been simulated. The results have displayed that, for both of cases, the computational time can be reduced by about 50%

  8. Dynamic Load Balancing for PIC code using Eulerian/Lagrangian partitioning

    OpenAIRE

    Sauget, Marc; Latu, Guillaume

    2017-01-01

    This document presents an analysis of different load balance strategies for a Plasma physics code that models high energy particle beams with PIC method. A comparison of different load balancing algorithms is given: static or dynamic ones. Lagrangian and Eulerian partitioning techniques have been investigated.

  9. Dynamic Load Balanced Clustering using Elitism based Random Immigrant Genetic Approach for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    K. Mohaideen Pitchai

    2017-07-01

    Full Text Available Wireless Sensor Network (WSN consists of a large number of small sensors with restricted energy. Prolonged network lifespan, scalability, node mobility and load balancing are important needs for several WSN applications. Clustering the sensor nodes is an efficient technique to reach these goals. WSN have the characteristics of topology dynamics because of factors like energy conservation and node movement that leads to Dynamic Load Balanced Clustering Problem (DLBCP. In this paper, Elitism based Random Immigrant Genetic Approach (ERIGA is proposed to solve DLBCP which adapts to topology dynamics. ERIGA uses the dynamic Genetic Algorithm (GA components for solving the DLBCP. The performance of load balanced clustering process is enhanced with the help of this dynamic GA. As a result, the ERIGA achieves to elect suitable cluster heads which balances the network load and increases the lifespan of the network.

  10. Load Balancing Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, Olga Tkachyshyn [Texas A & M Univ., College Station, TX (United States)

    2014-12-01

    The largest supercomputers have millions of independent processors, and concurrency levels are rapidly increasing. For ideal efficiency, developers of the simulations that run on these machines must ensure that computational work is evenly balanced among processors. Assigning work evenly is challenging because many large modern parallel codes simulate behavior of physical systems that evolve over time, and their workloads change over time. Furthermore, the cost of imbalanced load increases with scale because most large-scale scientific simulations today use a Single Program Multiple Data (SPMD) parallel programming model, and an increasing number of processors will wait for the slowest one at the synchronization points. To address load imbalance, many large-scale parallel applications use dynamic load balance algorithms to redistribute work evenly. The research objective of this dissertation is to develop methods to decide when and how to load balance the application, and to balance it effectively and affordably. We measure and evaluate the computational load of the application, and develop strategies to decide when and how to correct the imbalance. Depending on the simulation, a fast, local load balance algorithm may be suitable, or a more sophisticated and expensive algorithm may be required. We developed a model for comparison of load balance algorithms for a specific state of the simulation that enables the selection of a balancing algorithm that will minimize overall runtime.

  11. Two Stage Secure Dynamic Load Balancing Architecture for SIP Server Clusters

    Directory of Open Access Journals (Sweden)

    G. Vennila

    2014-08-01

    Full Text Available Session Initiation Protocol (SIP is a signaling protocol emerged with an aim to enhance the IP network capabilities in terms of complex service provision. SIP server scalability with load balancing has a greater concern due to the dramatic increase in SIP service demand. Load balancing of session method (request/response and security measures optimizes the SIP server to regulate of network traffic in Voice over Internet Protocol (VoIP. Establishing a honeywall prior to the load balancer significantly reduces SIP traffic and drops inbound malicious load. In this paper, we propose Active Least Call in SIP Server (ALC_Server algorithm fulfills objectives like congestion avoidance, improved response times, throughput, resource utilization, reducing server faults, scalability and protection of SIP call from DoS attacks. From the test bed, the proposed two-tier architecture demonstrates that the ALC_Server method dynamically controls the overload and provides robust security, uniform load distribution for SIP servers.

  12. Insensitive versus efficient dynamic load balancing in networks without blocking

    NARCIS (Netherlands)

    Jonckheere, M.

    2006-01-01

    So-called Whittle networks have recently been shown to give tight approximations for the performance of non-locally balanced networks with blocking, including practical routing policies such as joining the shortest queue. In the present paper, we turn the attention to networks without blocking. To

  13. Efficient graph-based dynamic load-balancing for parallel large-scale agent-based traffic simulation

    NARCIS (Netherlands)

    Xu, Y.; Cai, W.; Aydt, H.; Lees, M.; Tolk, A.; Diallo, S.Y.; Ryzhov, I.O.; Yilmaz, L.; Buckley, S.; Miller, J.A.

    2014-01-01

    One of the issues of parallelizing large-scale agent-based traffic simulations is partitioning and load-balancing. Traffic simulations are dynamic applications where the distribution of workload in the spatial domain constantly changes. Dynamic load-balancing at run-time has shown better efficiency

  14. Dynamic Load Balancing Based on Constrained K-D Tree Decomposition for Parallel Particle Tracing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiang; Guo, Hanqi; Yuan, Xiaoru; Hong, Fan; Peterka, Tom

    2018-01-01

    Particle tracing is a fundamental technique in flow field data visualization. In this work, we present a novel dynamic load balancing method for parallel particle tracing. Specifically, we employ a constrained k-d tree decomposition approach to dynamically redistribute tasks among processes. Each process is initially assigned a regularly partitioned block along with duplicated ghost layer under the memory limit. During particle tracing, the k-d tree decomposition is dynamically performed by constraining the cutting planes in the overlap range of duplicated data. This ensures that each process is reassigned particles as even as possible, and on the other hand the new assigned particles for a process always locate in its block. Result shows good load balance and high efficiency of our method.

  15. Static and dynamic load-balancing strategies for parallel reservoir simulation

    International Nuclear Information System (INIS)

    Anguille, L.; Killough, J.E.; Li, T.M.C.; Toepfer, J.L.

    1995-01-01

    Accurate simulation of the complex phenomena that occur in flow in porous media can tax even the most powerful serial computers. Emergence of new parallel computer architectures as a future efficient tool in reservoir simulation may overcome this difficulty. Unfortunately, major problems remain to be solved before using parallel computers commercially: production serial programs must be rewritten to be efficient in parallel environments and load balancing methods must be explored to evenly distribute the workload on each processor during the simulation. This study implements both a static load-balancing algorithm and a receiver-initiated dynamic load-sharing algorithm to achieve high parallel efficiencies on both the IBM SP2 and Intel IPSC/860 parallel computers. Significant speedup improvement was recorded for both methods. Further optimization of these algorithms yielded a technique with efficiencies as high as 90% and 70% on 8 and 32 nodes, respectively. The increased performance was the result of the minimization of message-passing overhead

  16. Portable Parallel Programming for the Dynamic Load Balancing of Unstructured Grid Applications

    Science.gov (United States)

    Biswas, Rupak; Das, Sajal K.; Harvey, Daniel; Oliker, Leonid

    1999-01-01

    The ability to dynamically adapt an unstructured -rid (or mesh) is a powerful tool for solving computational problems with evolving physical features; however, an efficient parallel implementation is rather difficult, particularly from the view point of portability on various multiprocessor platforms We address this problem by developing PLUM, tin automatic anti architecture-independent framework for adaptive numerical computations in a message-passing environment. Portability is demonstrated by comparing performance on an SP2, an Origin2000, and a T3E, without any code modifications. We also present a general-purpose load balancer that utilizes symmetric broadcast networks (SBN) as the underlying communication pattern, with a goal to providing a global view of system loads across processors. Experiments on, an SP2 and an Origin2000 demonstrate the portability of our approach which achieves superb load balance at the cost of minimal extra overhead.

  17. Multi-agent grid system Agent-GRID with dynamic load balancing of cluster nodes

    Science.gov (United States)

    Satymbekov, M. N.; Pak, I. T.; Naizabayeva, L.; Nurzhanov, Ch. A.

    2017-12-01

    In this study the work presents the system designed for automated load balancing of the contributor by analysing the load of compute nodes and the subsequent migration of virtual machines from loaded nodes to less loaded ones. This system increases the performance of cluster nodes and helps in the timely processing of data. A grid system balances the work of cluster nodes the relevance of the system is the award of multi-agent balancing for the solution of such problems.

  18. A parallel 3D particle-in-cell code with dynamic load balancing

    International Nuclear Information System (INIS)

    Wolfheimer, Felix; Gjonaj, Erion; Weiland, Thomas

    2006-01-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated

  19. A parallel 3D particle-in-cell code with dynamic load balancing

    Energy Technology Data Exchange (ETDEWEB)

    Wolfheimer, Felix [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)]. E-mail: wolfheimer@temf.de; Gjonaj, Erion [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany); Weiland, Thomas [Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder, Schlossgartenstr.8, 64283 Darmstadt (Germany)

    2006-03-01

    A parallel 3D electrostatic Particle-In-Cell (PIC) code including an algorithm for modelling Space Charge Limited (SCL) emission [E. Gjonaj, T. Weiland, 3D-modeling of space-charge-limited electron emission. A charge conserving algorithm, Proceedings of the 11th Biennial IEEE Conference on Electromagnetic Field Computation, 2004] is presented. A domain decomposition technique based on orthogonal recursive bisection is used to parallelize the computation on a distributed memory environment of clustered workstations. For problems with a highly nonuniform and time dependent distribution of particles, e.g., bunch dynamics, a dynamic load balancing between the processes is needed to preserve the parallel performance. The algorithm for the detection of a load imbalance and the redistribution of the tasks among the processes is based on a weight function criterion, where the weight of a cell measures the computational load associated with it. The algorithm is studied with two examples. In the first example, multiple electron bunches as occurring in the S-DALINAC [A. Richter, Operational experience at the S-DALINAC, Proceedings of the Fifth European Particle Accelerator Conference, 1996] accelerator are simulated in the absence of space charge fields. In the second example, the SCL emission and electron trajectories in an electron gun are simulated.

  20. Mizan: A system for dynamic load balancing in large-scale graph processing

    KAUST Repository

    Khayyat, Zuhair

    2013-01-01

    Pregel [23] was recently introduced as a scalable graph mining system that can provide significant performance improvements over traditional MapReduce implementations. Existing implementations focus primarily on graph partitioning as a preprocessing step to balance computation across compute nodes. In this paper, we examine the runtime characteristics of a Pregel system. We show that graph partitioning alone is insufficient for minimizing end-to-end computation. Especially where data is very large or the runtime behavior of the algorithm is unknown, an adaptive approach is needed. To this end, we introduce Mizan, a Pregel system that achieves efficient load balancing to better adapt to changes in computing needs. Unlike known implementations of Pregel, Mizan does not assume any a priori knowledge of the structure of the graph or behavior of the algorithm. Instead, it monitors the runtime characteristics of the system. Mizan then performs efficient fine-grained vertex migration to balance computation and communication. We have fully implemented Mizan; using extensive evaluation we show that - especially for highly-dynamic workloads - Mizan provides up to 84% improvement over techniques leveraging static graph pre-partitioning. © 2013 ACM.

  1. Load Balancing in Hypergraphs

    Science.gov (United States)

    Delgosha, Payam; Anantharam, Venkat

    2018-03-01

    Consider a simple locally finite hypergraph on a countable vertex set, where each edge represents one unit of load which should be distributed among the vertices defining the edge. An allocation of load is called balanced if load cannot be moved from a vertex to another that is carrying less load. We analyze the properties of balanced allocations of load. We extend the concept of balancedness from finite hypergraphs to their local weak limits in the sense of Benjamini and Schramm (Electron J Probab 6(23):13, 2001) and Aldous and Steele (in: Probability on discrete structures. Springer, Berlin, pp 1-72, 2004). To do this, we define a notion of unimodularity for hypergraphs which could be considered an extension of unimodularity in graphs. We give a variational formula for the balanced load distribution and, in particular, we characterize it in the special case of unimodular hypergraph Galton-Watson processes. Moreover, we prove the convergence of the maximum load under some conditions. Our work is an extension to hypergraphs of Anantharam and Salez (Ann Appl Probab 26(1):305-327, 2016), which considered load balancing in graphs, and is aimed at more comprehensively resolving conjectures of Hajek (IEEE Trans Inf Theory 36(6):1398-1414, 1990).

  2. Dynamic load balancing in a concurrent plasma PIC code on the JPL/Caltech Mark III hypercube

    International Nuclear Information System (INIS)

    Liewer, P.C.; Leaver, E.W.; Decyk, V.K.; Dawson, J.M.

    1990-01-01

    Dynamic load balancing has been implemented in a concurrent one-dimensional electromagnetic plasma particle-in-cell (PIC) simulation code using a method which adds very little overhead to the parallel code. In PIC codes, the orbits of many interacting plasma electrons and ions are followed as an initial value problem as the particles move in electromagnetic fields calculated self-consistently from the particle motions. The code was implemented using the GCPIC algorithm in which the particles are divided among processors by partitioning the spatial domain of the simulation. The problem is load-balanced by partitioning the spatial domain so that each partition has approximately the same number of particles. During the simulation, the partitions are dynamically recreated as the spatial distribution of the particles changes in order to maintain processor load balance

  3. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2017-04-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  4. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2016-07-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  5. On delay adjustment for dynamic load balancing in distributed virtual environments.

    Science.gov (United States)

    Deng, Yunhua; Lau, Rynson W H

    2012-04-01

    Distributed virtual environments (DVEs) are becoming very popular in recent years, due to the rapid growing of applications, such as massive multiplayer online games (MMOGs). As the number of concurrent users increases, scalability becomes one of the major challenges in designing an interactive DVE system. One solution to address this scalability problem is to adopt a multi-server architecture. While some methods focus on the quality of partitioning the load among the servers, others focus on the efficiency of the partitioning process itself. However, all these methods neglect the effect of network delay among the servers on the accuracy of the load balancing solutions. As we show in this paper, the change in the load of the servers due to network delay would affect the performance of the load balancing algorithm. In this work, we conduct a formal analysis of this problem and discuss two efficient delay adjustment schemes to address the problem. Our experimental results show that our proposed schemes can significantly improve the performance of the load balancing algorithm with neglectable computation overhead.

  6. Using cellular automata for parallel simulation of laser dynamics with dynamic load balancing

    NARCIS (Netherlands)

    Guisado, J.L.; Fernández de Vega, F.; Jiménez Morales, F.; Iskra, K.A.; Sloot, P.M.A.

    2008-01-01

    We present an analysis of the feasibility of executing a parallel bioinspired model of laser dynamics, based on cellular automata (CA), on the usual target platform of this kind of applications: a heterogeneous non-dedicated cluster. As this model employs a synchronous CA, using the single program,

  7. Cache-aware data structure model for parallelism and dynamic load balancing

    International Nuclear Information System (INIS)

    Sridi, Marwa

    2016-01-01

    for parallel processing where groups are distributed on available cores and a group size ensuring the complete filling of the private cache memories (i.e. L2 level). The strategy logically suggests the experimentation of a two levels parallel solution for nodes composed of several multi-core processors: one group is thus attached to one processor and an inner parallel loop is used inside the group based on the internal cores of the processor. This latter approach still requires consolidation to avoid contention upon the internal processor memory due to coherency enforcement between the different private cache memories. It is noticeable that the best performances are obtained through load balancing based on a dynamic scheduling approach with work stealing, achieved via the XKAAPI library (INRIA). (author) [fr

  8. An adaptive clustering approach to dynamic load balancing and energy efficiency in wireless sensor networks

    International Nuclear Information System (INIS)

    Gherbi, Chirihane; Aliouat, Zibouda; Benmohammed, Mohamed

    2016-01-01

    Clustering is a well known approach to cope with large nodes density and efficiently conserving energy in Wireless Sensor Networks (WSN). Load balancing is an effective approach for optimizing resources like channel bandwidth, the main objective of this paper is to combine these two valuable approaches in order to significantly improve the main WSN service such as information routing. So, our proposal is a routing protocol in which load traffic is shared among cluster members in order to reduce the dropping probability due to queue overflow at some nodes. To this end, a novel hierarchical approach, called Hierarchical Energy-Balancing Multipath routing protocol for Wireless Sensor Networks (HEBM) is proposed. The HEBM approach aims to fulfill the following purposes: decreasing the overall network energy consumption, balancing the energy dissipation among the sensor nodes and as direct consequence: extending the lifetime of the network. In fact, the cluster-heads are optimally determined and suitably distributed over the area of interest allowing the member nodes reaching them with adequate energy dissipation and appropriate load balancing utilization. In addition, nodes radio are turned off for fixed time duration according to sleeping control rules optimizing so their energy consumption. The performance evaluation of the proposed protocol is carried out through the well-known NS2 simulator and the exhibited results are convincing. Like this, the residual energy of sensor nodes was measured every 20 s throughout the duration of simulation, in order to calculate the total number of alive nodes. Based on the simulation results, we concluded that our proposed HEBM protocol increases the profit of energy, and prolongs the network lifetime duration from 32% to 40% compared to DEEAC reference protocol and from 25% to 28% compared to FEMCHRP protocol. The authors also note that the proposed protocol is 41.7% better than DEEAC with respect to FND (Fist node die), and 25

  9. K-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations

    International Nuclear Information System (INIS)

    Marzouk, Youssef M.; Ghoniem, Ahmed F.

    2005-01-01

    A number of complex physical problems can be approached through N-body simulation, from fluid flow at high Reynolds number to gravitational astrophysics and molecular dynamics. In all these applications, direct summation is prohibitively expensive for large N and thus hierarchical methods are employed for fast summation. This work introduces new algorithms, based on k-means clustering, for partitioning parallel hierarchical N-body interactions. We demonstrate that the number of particle-cluster interactions and the order at which they are performed are directly affected by partition geometry. Weighted k-means partitions minimize the sum of clusters' second moments and create well-localized domains, and thus reduce the computational cost of N-body approximations by enabling the use of lower-order approximations and fewer cells. We also introduce compatible techniques for dynamic load balancing, including adaptive scaling of cluster volumes and adaptive redistribution of cluster centroids. We demonstrate the performance of these algorithms by constructing a parallel treecode for vortex particle simulations, based on the serial variable-order Cartesian code developed by Lindsay and Krasny [Journal of Computational Physics 172 (2) (2001) 879-907]. The method is applied to vortex simulations of a transverse jet. Results show outstanding parallel efficiencies even at high concurrencies, with velocity evaluation errors maintained at or below their serial values; on a realistic distribution of 1.2 million vortex particles, we observe a parallel efficiency of 98% on 1024 processors. Excellent load balance is achieved even in the face of several obstacles, such as an irregular, time-evolving particle distribution containing a range of length scales and the continual introduction of new vortex particles throughout the domain. Moreover, results suggest that k-means yields a more efficient partition of the domain than a global oct-tree

  10. DNS load balancing in the CERN cloud

    Science.gov (United States)

    Reguero Naredo, Ignacio; Lobato Pardavila, Lorena

    2017-10-01

    Load Balancing is one of the technologies enabling deployment of large-scale applications on cloud resources. A DNS Load Balancer Daemon (LBD) has been developed at CERN as a cost-effective way to balance applications accepting DNS timing dynamics and not requiring persistence. It currently serves over 450 load-balanced aliases with two small VMs acting as master and slave. The aliases are mapped to DNS subdomains. These subdomains are managed with DDNS according to a load metric, which is collected from the alias member nodes with SNMP. During the last years, several improvements were brought to the software, for instance: support for IPv6, parallelization of the status requests, implementing the client in Python to allow for multiple aliases with differentiated states on the same machine or support for application state. The configuration of the Load Balancer is currently managed by a Puppet type. It discovers the alias member nodes and gets the alias definitions from the Ermis REST service. The Aiermis self-service GUI for the management of the LB aliases has been produced and is based on the Ermis service above that implements a form of Load Balancing as a Service (LBaaS). The Ermis REST API has authorisation based in Foreman hostgroups. The CERN DNS LBD is Open Software with Apache 2 license.

  11. Load Balancing of Parallel Monte Carlo Transport Calculations

    International Nuclear Information System (INIS)

    Procassini, R J; O'Brien, M J; Taylor, J M

    2005-01-01

    The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since he particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality calculations

  12. Hybrid Bee Ant Colony Algorithm for Effective Load Balancing And ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues ... Genetic Algorithm (MO-GA) for dynamic job scheduling that .... Information Networking and Applications Workshops. [7]. M. Dorigo & T.

  13. Stateful load balancing for parallel stream processing

    DEFF Research Database (Denmark)

    Guo, Qingsong; Zhou, Yongluan

    2018-01-01

    -objective optimization problem, namely Minimum-Cost-Load-Balance (MCLB). We address MCLB with two approximate algorithms by a certain relaxation of the objectives: (1) a greedy algorithm ELB performs load balancing eagerly but relaxes the objective of load imbalance to a range; and (2) a periodic algorithm CLB aims...

  14. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  15. Load balancing in integrated optical wireless networks

    DEFF Research Database (Denmark)

    Yan, Ying; Dittmann, Lars; Wong, S-W.

    2010-01-01

    In this paper, we tackle the load balancing problem in Integrated Optical Wireless Networks, where cell breathing technique is used to solve congestion by changing the coverage area of a fully loaded cell tower. Our objective is to design a load balancing mechanism which works closely...... with the integrated control scheme so as to maximize overall network throughput in the integrated network architecture. To the best of our knowledge no load balancing mechanisms, especially based on the Multi-Point Control Protocol (MPCP) defined in the IEEE 802.3ah, have been proposed so far. The major research...... issues are outlined and a cost function based optimization model is developed for power management. In particularly, two alternative feedback schemes are proposed to report wireless network status. Simulation results show that our proposed load balancing mechanism improves network performances....

  16. Quantum load balancing in ad hoc networks

    Science.gov (United States)

    Hasanpour, M.; Shariat, S.; Barnaghi, P.; Hoseinitabatabaei, S. A.; Vahid, S.; Tafazolli, R.

    2017-06-01

    This paper presents a novel approach in targeting load balancing in ad hoc networks utilizing the properties of quantum game theory. This approach benefits from the instantaneous and information-less capability of entangled particles to synchronize the load balancing strategies in ad hoc networks. The quantum load balancing (QLB) algorithm proposed by this work is implemented on top of OLSR as the baseline routing protocol; its performance is analyzed against the baseline OLSR, and considerable gain is reported regarding some of the main QoS metrics such as delay and jitter. Furthermore, it is shown that QLB algorithm supports a solid stability gain in terms of throughput which stands a proof of concept for the load balancing properties of the proposed theory.

  17. Investigation of Unsteady Pressure-Sensitive Paint (uPSP) and a Dynamic Loads Balance to Predict Launch Vehicle Buffet Environments

    Science.gov (United States)

    Schuster, David M.; Panda, Jayanta; Ross, James C.; Roozeboom, Nettie H.; Burnside, Nathan J.; Ngo, Christina L.; Kumagai, Hiro; Sellers, Marvin; Powell, Jessica M.; Sekula, Martin K.; hide

    2016-01-01

    This NESC assessment examined the accuracy of estimating buffet loads on in-line launch vehicles without booster attachments using sparse unsteady pressure measurements. The buffet loads computed using sparse sensor data were compared with estimates derived using measurements with much higher spatial resolution. The current method for estimating launch vehicle buffet loads is through wind tunnel testing of models with approximately 400 unsteady pressure transducers. Even with this relatively large number of sensors, the coverage can be insufficient to provide reliable integrated unsteady loads on vehicles. In general, sparse sensor spacing requires the use of coherence-length-based corrections in the azimuthal and axial directions to integrate the unsteady pressures and obtain reasonable estimates of the buffet loads. Coherence corrections have been used to estimate buffet loads for a variety of launch vehicles with the assumption methodology results in reasonably conservative loads. For the Space Launch System (SLS), the first estimates of buffet loads exceeded the limits of the vehicle structure, so additional tests with higher sensor density were conducted to better define the buffet loads and possibly avoid expensive modifications to the vehicle design. Without the additional tests and improvements to the coherence-length analysis methods, there would have been significant impacts to the vehicle weight, cost, and schedule. If the load estimates turn out to be too low, there is significant risk of structural failure of the vehicle. This assessment used a combination of unsteady pressure-sensitive paint (uPSP), unsteady pressure transducers, and a dynamic force and moment balance to investigate the integration schemes used with limited unsteady pressure data by comparing them with direct integration of extremely dense fluctuating pressure measurements. An outfall of the assessment was to evaluate the potential of using the emerging uPSP technique in a production

  18. A novel grooming algorithm with the adaptive weight and load balancing for dynamic holding-time-aware traffic in optical networks

    Science.gov (United States)

    Xu, Zhanqi; Huang, Jiangjiang; Zhou, Zhiqiang; Ding, Zhe; Ma, Tao; Wang, Junping

    2013-10-01

    To maximize the resource utilization of optical networks, the dynamic traffic grooming, which could efficiently multiplex many low-speed services arriving dynamically onto high-capacity optical channels, has been studied extensively and used widely. However, the link weights in the existing research works can be improved since they do not adapt to the network status and load well. By exploiting the information on the holding times of the preexisting and new lightpaths, and the requested bandwidth of a user service, this paper proposes a grooming algorithm using Adaptively Weighted Links for Holding-Time-Aware (HTA) (abbreviated as AWL-HTA) traffic, especially in the setup process of new lightpath(s). Therefore, the proposed algorithm can not only establish a lightpath that uses network resource efficiently, but also achieve load balancing. In this paper, the key issues on the link weight assignment and procedure within the AWL-HTA are addressed in detail. Comprehensive simulation and experimental results show that the proposed algorithm has a much lower blocking ratio and latency than other existing algorithms.

  19. DYNAMIC LOAD DAMPER MODELING

    Directory of Open Access Journals (Sweden)

    Loktev Aleksey Alekseevich

    2013-01-01

    Full Text Available The authors present their findings associated with their modeling of a dynamic load damper. According to the authors, the damper is to be installed onto a structure or its element that may be exposed to impact, vibration or any other dynamic loading. The damper is composed of paralleled or consecutively connected viscous and elastic elements. The authors study the influence of viscosity and elasticity parameters of the damper produced onto the regular displacement of points of the structure to be protected and onto the regular acceleration transmitted immediately from the damper to the elements positioned below it.

  20. Hydraulic balance by means of electromotoric HKV drives for dynamic load profiles; Hydraulischer Abgleich mittels elektromotorischer HKV-Antriebe fuer dynamische Lastprofile

    Energy Technology Data Exchange (ETDEWEB)

    Szendrei, Danny [Westsaechsische Hochschule Zwickau (Germany)

    2010-07-01

    To date, measures and concepts for saving energy become more and more important. The development of prices for conventional energy sources forces public and private households and businesses to changes in consumer behaviour and purchasing behaviour. Due to the structural infrastructure, the housing construction in communes strongly is affected by these developments. Nearly 35 % of the total energy demand in Europe account for heating of buildings generally. The most common type of heating system for heating of residential buildings is the central hot water heating in the two-tube version. It is assumed that nearly 90 % of the operated plants have a hydraulic unbalance. Additionally, balanced heating systems fulfil the desired efficiency only under certain, structural design conditions. The integration of the control of heating systems in the smart home infrastructure or KNX infrastructure enables a building-independent, tunable heat supply between buildings and consumption acquisition. The hydraulic system loads can be optimized simultaneously via the direct access to the control value. Thus, a homogeneous mass distribution over the plant can be guaranteed which is derived from the dynamic needs of the system users. These heat loads are calculated by the KNX system and the application of HeatingControl.

  1. RPL LOAD BALANCING IN INTERNET OF THINGS

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Parsaei

    2017-12-01

    Full Text Available ABSTRACT:  The wide address space provided by Internet Protocol version 6 (IPv6 lets any thing to be identified uniquely. consistency of the modified version of IPv6 protocol stack with smart objects, facilitated the Internet interconnection of the networks of smart objects and introduced Internet of things. A smart object is a small micro-electronic device that consists of a communication device, a small microprocessor and a sensor or an actuator. A network made of such devices is called low-power and lossy network. RPL routing protocol that is consistent to IPv6, is designed to be used in these kinds of networks. Load balancing is not considered in the RPL design process. Whenever RPL is used in large scale low-power and lossy networks some nodes will suffer from congestion and this problem severely degrades network performance. In this paper, we consider solutions provided to tackle RPL load balancing problems. Load balancing algorithms and protoclos are evaluated through simulation. We evaluate IETF RPL implementation and LB-RPL method with Contiki OS Java (COOJA simulator. They are assessed comprehensively through metrics such as Packet delivery Ratio, Average End to End delay, and Gateway Throughput. LB-RPL improves RPL in terms of Packet delivery Ratio and throughput but increases Average End to End delay. Simulations results show that RPL load balancing needs extensive works to be performed yet.

  2. Load balancing in 5G Networks

    Directory of Open Access Journals (Sweden)

    Tsirakis Christos

    2017-01-01

    Full Text Available The expected huge increase of mobile devices and user data demand by 2020 will stress the current mobile network in an unprecedented way. The future mobile networks must meet several strong requirements regarding the data rate, latency, quality of service and experience, mobility, spectrum and energy efficiency. Therefore, efforts for more efficient mobile network solutions have been recently initiated. To this direction, load balancing has attracted much attention as a promising solution for higher resource utilization, improved system performance and decreased operational cost. It is an effective method for balancing the traffic and alleviating the congestion among heterogeneous networks in the upcoming 5G networks. In this paper, we focus on an offloading scenario for load balancing among LTE and Wi-Fi networks. Additionally, network graphs methodology and its abstracted parameters are investigated in order to better manage wireless resource allocation among multiple connections. The COHERENT architectural framework, which consists of two main control components, makes use of such abstracted network graphs for controlling or managing various tasks such as traffic steering, load balancing, spectrum sharing and RAN sharing. As a result, the COHERENT project eventually develops a unified programmable control framework used to efficiently coordinate the underlying heterogeneous mobile networks as a whole.

  3. Research on a Method of Geographical Information Service Load Balancing

    Science.gov (United States)

    Li, Heyuan; Li, Yongxing; Xue, Zhiyong; Feng, Tao

    2018-05-01

    With the development of geographical information service technologies, how to achieve the intelligent scheduling and high concurrent access of geographical information service resources based on load balancing is a focal point of current study. This paper presents an algorithm of dynamic load balancing. In the algorithm, types of geographical information service are matched with the corresponding server group, then the RED algorithm is combined with the method of double threshold effectively to judge the load state of serve node, finally the service is scheduled based on weighted probabilistic in a certain period. At the last, an experiment system is built based on cluster server, which proves the effectiveness of the method presented in this paper.

  4. Static Load Balancing Algorithms In Cloud Computing Challenges amp Solutions

    Directory of Open Access Journals (Sweden)

    Nadeem Shah

    2015-08-01

    Full Text Available Abstract Cloud computing provides on-demand hosted computing resources and services over the Internet on a pay-per-use basis. It is currently becoming the favored method of communication and computation over scalable networks due to numerous attractive attributes such as high availability scalability fault tolerance simplicity of management and low cost of ownership. Due to the huge demand of cloud computing efficient load balancing becomes critical to ensure that computational tasks are evenly distributed across servers to prevent bottlenecks. The aim of this review paper is to understand the current challenges in cloud computing primarily in cloud load balancing using static algorithms and finding gaps to bridge for more efficient static cloud load balancing in the future. We believe the ideas suggested as new solution will allow researchers to redesign better algorithms for better functionalities and improved user experiences in simple cloud systems. This could assist small businesses that cannot afford infrastructure that supports complex amp dynamic load balancing algorithms.

  5. Dynamic stability under sudden loads

    International Nuclear Information System (INIS)

    Simitses, G.J.

    1998-01-01

    The concept of dynamic stability of elastic structures subjected to sudden (step) loads is discussed. The various criteria and related methodologies for estimating critical conditions are presented with the emphasis on their similarities and differences. These are demonstrated by employing a simple mechanical model. Several structural configurations are analyzed, for demonstration purposes, with the intention of comparing critical dynamic loads to critical static loads. These configurations include shallow arches and shallow spherical caps, two bar frames, and imperfect cylindrical shells of metallic as well as laminated composite construction. In the demonstration examples, the effect of static pre loading on the dynamic critical load is presented

  6. Load Balancing As A Service In Openstack-Liberty

    Directory of Open Access Journals (Sweden)

    Rashmi T V

    2015-08-01

    Full Text Available Cloud computing is a technology which provides computing resource on demand over the internet as a service. To meet this many opensource cloud operating system are provided for the tenants in order to get useful services from the cloud. There are many opensource cloud OS like AWS Open Shift HP OpenStack etc. Out of all these OpenStack comes with free of cost and it has got a huge community. It can be installed and deploy in private institution or company with free of cost. This paper provides a model and techniques for the dynamic load balancing in OpenStack for managing the trafficloads among the Virtual Machines. The main purpose is to increase the utilization of computing resources and minimize the traffic. Load Balancing as a Service is one of the main service in OpenStack Networking. OpenStack is an opensource platform which provides Infrastructure as a Service. It allows userstenants tocreate their own private clouds and to deploy Virtual Machines which manages different workloads. In this paper we provide an architecture of openstack LBaaS for dynamic load balancing in open stack cloud deployment.

  7. A comparative experiment in distributed load balancing

    KAUST Repository

    Randles, Martin

    2009-12-01

    The anticipated uptake of Cloud computing, built on the well-established research fields of web services, networks, utility computing, distributed computing and virtualisation, will bring many advantages in cost, flexibility and availability for service users. These benefits are expected to further drive the demand for cloud services, increasing both the cloud customer base and the scale of cloud installations. This has implications for many technical issues in such Service Oriented Architectures and Internet of Services (IoS) type applications; fault tolerance, high availability and scalability for examples. Central to these issues is the establishment of effective load balancing techniques. It is clear that the scale and complexity of these systems makes centralized individual assignment of jobs to specific servers infeasible; leading to the need for an effective distributed solution. This paper investigates three possible distributed solutions, which have been proposed for load balancing: An approach inspired by the foraging behaviour of the Honeybee, Biased Random Sampling and Active Clustering. © 2009 IEEE.

  8. Load Balancing Routing with Bounded Stretch

    Directory of Open Access Journals (Sweden)

    Chen Siyuan

    2010-01-01

    Full Text Available Routing in wireless networks has been heavily studied in the last decade. Many routing protocols are based on classic shortest path algorithms. However, shortest path-based routing protocols suffer from uneven load distribution in the network, such as crowed center effect where the center nodes have more load than the nodes in the periphery. Aiming to balance the load, we propose a novel routing method, called Circular Sailing Routing (CSR, which can distribute the traffic more evenly in the network. The proposed method first maps the network onto a sphere via a simple stereographic projection, and then the route decision is made by a newly defined "circular distance" on the sphere instead of the Euclidean distance in the plane. We theoretically prove that for a network, the distance traveled by the packets using CSR is no more than a small constant factor of the minimum (the distance of the shortest path. We also extend CSR to a localized version, Localized CSR, by modifying greedy routing without any additional communication overhead. In addition, we investigate how to design CSR routing for 3D networks. For all proposed methods, we conduct extensive simulations to study their performances and compare them with global shortest path routing or greedy routing in 2D and 3D wireless networks.

  9. Biomechanical assessment of dynamic balance: Specificity of different balance tests.

    Science.gov (United States)

    Ringhof, Steffen; Stein, Thorsten

    2018-04-01

    Dynamic balance is vitally important for most sports and activities of daily living, so the assessment of dynamic stability has become an important issue. In consequence, a large number of balance tests have been developed. However, it is not yet known whether these tests (i) measure the same construct and (ii) can differentiate between athletes with different balance expertise. We therefore studied three common dynamic balance tests: one-leg jump landings, Posturomed perturbations and simulated forward falls. Participants were 24 healthy young females in regular training in either gymnastics (n = 12) or swimming (n = 12). In each of the tests, the participants were instructed to recover balance as quickly as possible. Dynamic stability was computed by time to stabilization and margin of stability, deduced from force plates and motion capture respectively. Pearson's correlations between the dynamic balance tests found no significant associations between the respective dynamic stability measures. Furthermore, independent t-tests indicated that only jump landings could properly distinguish between both groups of athletes. In essence, the different dynamic balance tests applied did not measure the same construct but rather task-specific skills, each of which depends on multifactorial internal and external constraints. Our study therefore contradicts the traditional view of considering balance as a general ability, and reinforces that dynamic balance measures are not interchangeable. This highlights the importance of selecting appropriate balance tests. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. A Dynamic and Heuristic Phase Balancing Method for LV Feeders

    Directory of Open Access Journals (Sweden)

    Samad Taghipour Boroujeni

    2016-01-01

    Full Text Available Due to the single-phase loads and their stochastic behavior, the current in the distribution feeders is not balanced. In addition, the single-phase loads are located in different positions along the LV feeders. So the amount of the unbalanced load and its location affect the feeder losses. An unbalanced load causes the feeder losses and the voltage drop. Because of time-varying behavior of the single-phase loads, phase balancing is a dynamic and combinatorial problem. In this research, a heuristic and dynamic solution for the phase balancing of the LV feeders is proposed. In this method, it is supposed that the loads’ tie could be connected to all phases through a three-phase switch. The aim of the proposed method is to make the feeder conditions as balanced as possible. The amount and the location of single-phase loads are considered in the proposed phase balancing method. Since the proposed method needs no communication interface or no remote controller, it is inexpensive, simple, practical, and robust. Applying this method provides a distributed and dynamic phase balancing control. In addition, the feasibility of reducing the used switches is investigated. The ability of the proposed method in the phase balancing of the LV feeders is approved by carrying out some simulations.

  11. Partitioning of unstructured meshes for load balancing

    International Nuclear Information System (INIS)

    Martin, O.C.; Otto, S.W.

    1994-01-01

    Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab

  12. Simulation model of load balancing in distributed computing systems

    Science.gov (United States)

    Botygin, I. A.; Popov, V. N.; Frolov, S. G.

    2017-02-01

    The availability of high-performance computing, high speed data transfer over the network and widespread of software for the design and pre-production in mechanical engineering have led to the fact that at the present time the large industrial enterprises and small engineering companies implement complex computer systems for efficient solutions of production and management tasks. Such computer systems are generally built on the basis of distributed heterogeneous computer systems. The analytical problems solved by such systems are the key models of research, but the system-wide problems of efficient distribution (balancing) of the computational load and accommodation input, intermediate and output databases are no less important. The main tasks of this balancing system are load and condition monitoring of compute nodes, and the selection of a node for transition of the user’s request in accordance with a predetermined algorithm. The load balancing is one of the most used methods of increasing productivity of distributed computing systems through the optimal allocation of tasks between the computer system nodes. Therefore, the development of methods and algorithms for computing optimal scheduling in a distributed system, dynamically changing its infrastructure, is an important task.

  13. Dynamic balance in elite karateka.

    Science.gov (United States)

    Zago, Matteo; Mapelli, Andrea; Shirai, Yuri Francesca; Ciprandi, Daniela; Lovecchio, Nicola; Galvani, Christel; Sforza, Chiarella

    2015-12-01

    In karate, balance control represents a key performance determinant. With the hypothesis that high-level athletes display advanced balance abilities, the purpose of the current study was to quantitatively investigate the motor strategies adopted by elite and non-elite karateka to maintain balance control in competition. The execution of traditional karate techniques (kihon) in two groups of elite Masters (n = 6, 31 ± 19 years) and non-elite Practitioners (n = 4, 25 ± 9 years) was compared assessing body center of mass (CoM) kinematics and other relevant parameters like step width and angular joint behavior. In the considered kihon sequence, normalized average CoM height was 8% lower (p < 0.05), while CoM displacement in the horizontal direction was significantly higher in Masters than in Practitioners (2.5 vs. 1.9 m, p < 0.05), as well as CoM average velocity and rms acceleration (p < 0.05). Step width was higher in Masters in more than half of the sequence steps (p < 0.05). Results suggest that elite karateka showed a refined dynamic balance control, obtained through the increase of the base of support and different maneuvers of lower limbs. The proposed method could be used to objectively detect talented karateka, to measure proficiency level and to assess training effectiveness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Two-Step Load Balancing Scheme for Fairness Improvement in ...

    African Journals Online (AJOL)

    ABSTRACT: The problem of load imbalance in HetNets among wireless access technologies is addressed in this article. ... balancing could either mean balancing the transmit power or the radio ..... Weight for Multimedia Transmission.

  15. Partial Key Grouping: Load-Balanced Partitioning of Distributed Streams

    OpenAIRE

    Nasir, Muhammad Anis Uddin; Morales, Gianmarco De Francisci; Garcia-Soriano, David; Kourtellis, Nicolas; Serafini, Marco

    2015-01-01

    We study the problem of load balancing in distributed stream processing engines, which is exacerbated in the presence of skew. We introduce PARTIAL KEY GROUPING (PKG), a new stream partitioning scheme that adapts the classical “power of two choices” to a distributed streaming setting by leveraging two novel techniques: key splitting and local load estimation. In so doing, it achieves better load balancing than key grouping while being more scalable than shuffle grouping. We test PKG on severa...

  16. Design of a Load-Balancing Architecture For Parallel Firewalls

    National Research Council Canada - National Science Library

    Joyner, William

    1999-01-01

    .... This thesis proposes a load-balancing firewall architecture to meet the Navy's needs. It first conducts an architectural analysis of the problem and then presents a high-level system design as a solution...

  17. Short-term Power Load Forecasting Based on Balanced KNN

    Science.gov (United States)

    Lv, Xianlong; Cheng, Xingong; YanShuang; Tang, Yan-mei

    2018-03-01

    To improve the accuracy of load forecasting, a short-term load forecasting model based on balanced KNN algorithm is proposed; According to the load characteristics, the historical data of massive power load are divided into scenes by the K-means algorithm; In view of unbalanced load scenes, the balanced KNN algorithm is proposed to classify the scene accurately; The local weighted linear regression algorithm is used to fitting and predict the load; Adopting the Apache Hadoop programming framework of cloud computing, the proposed algorithm model is parallelized and improved to enhance its ability of dealing with massive and high-dimension data. The analysis of the household electricity consumption data for a residential district is done by 23-nodes cloud computing cluster, and experimental results show that the load forecasting accuracy and execution time by the proposed model are the better than those of traditional forecasting algorithm.

  18. Efektifitas Load Balancing Dalam Mengurangi Kemacetan Lalu Lintas

    Directory of Open Access Journals (Sweden)

    Erwin Harahap

    2017-12-01

    Full Text Available Abstrak. Kemacetan jalan raya merupakan permasalahan umum di setiap kota yang memerlukan penanganan serius. Pemecahan permasalahan kemacetan jalan raya tidak hanya dapat diselesaikan dengan hanya meningkatkan kualitas dan kuantitas infrastruktur, namun juga manajemen lalu lintas. Pada artikel diusulkan suatu metode untuk mengurangi kemacetan lalu lintas, yaitu dengan menyeimbangkan beban ke berbagai ruas jalan yang disebut dengan load balancing. Melalui metode ini diharapkan beban lalu lintas terbagi secara merata ke berbagai jalur alternatif sedemikian sehingga antrian panjang kendaraan dapat dihindari. Evaluasi efektifitas dari metode load balancing ini dilakukan melalui simulasi dengan mengimplementasikan salah satu bidang ilmu Matematika, yaitu teori Antrian. Simulasi dibuat dengan menggunakan toolbox SimEvents yang dijalankan pada software MATLAB. Kata Kunci: load balancing, kemacetan, lalu lintas, sim-events, matlab Abstract. (the effectiveness of load balancing in reducing the road traffic congestion Road congestion is a common problem in any city that needs serious handling. The solution of the road congestion problems can not only be solved by simply improving the quality and quantity of infrastructure, but also the traffic management. In this article, we proposed a method to reduce the traffic congestion by balancing the vehicle loads to a various road segments, called as load balancing. Through this method, it is expected that the traffic load is evenly distributed to various alternative routes, such that, long queues and traffic jam can be avoided. Evaluation of the load balancing’s effectiveness is performed through a simulation by implementing the Queueing Theory. Simulations are created using the SimEvents toolbox that runs on MATLAB software. Keywords: load balancing, road congestion, traffic, simevents, matlab.

  19. Physical load handling and listening comprehension effects on balance control.

    Science.gov (United States)

    Qu, Xingda

    2010-12-01

    The purpose of this study was to determine the physical load handling and listening comprehension effects on balance control. A total of 16 young and 16 elderly participants were recruited in this study. The physical load handling task required holding a 5-kg load in each hand with arms at sides. The listening comprehension task involved attentive listening to a short conversation. Three short questions were asked regarding the conversation right after the testing trial to test the participants' attentiveness during the experiment. Balance control was assessed by centre of pressure-based measures, which were calculated from the force platform data when the participants were quietly standing upright on a force platform. Results from this study showed that both physical load handling and listening comprehension adversely affected balance control. Physical load handling had a more deleterious effect on balance control under the listening comprehension condition vs. no-listening comprehension condition. Based on the findings from this study, interventions for the improvement of balance could be focused on avoiding exposures to physically demanding tasks and cognitively demanding tasks simultaneously. STATEMENT OF RELEVANCE: Findings from this study can aid in better understanding how humans maintain balance, especially when physical and cognitive loads are applied. Such information is useful for developing interventions to prevent fall incidents and injuries in occupational settings and daily activities.

  20. Effects of dynamic posturographic balance training versus conventional balance training on mobility and balance in elderly

    International Nuclear Information System (INIS)

    Saddiqi, F.A.; Masood, T.

    2017-01-01

    To determine the effects of dynamic posturographic balance training versus conventional balance training in improving mobility and balance in elderly. Methodology: Forty subjects between 50 to 80 years of age were selected via non-probability convenience sampling technique, for this randomized controlled trial. Both females and males with no major co-morbid conditions and cognitive impairments were recruited and randomized via coin toss method into two equal groups: Dynamic Posturographic balance training (DPG) group and Conventional balance training (CBT) group. The DPG training was provided via Biodex Balance System (Static and Dynamic). Both groups received interventions 3 times (35 to 45min each day) a week for 8 weeks, after which terminal assessment was done. Data were collected on demographic profile, balance via berg balance score and mobility by using Timed Up and Go Test. Independent samples t test was used to check difference between CBT group and DPG Group and repeated measures Analysis of Variance (ANOVA) was used for within-group analysis. Results: Baseline analysis of Berg balance scale and timed up and go test between two groups showed no significant difference with (p 0.805 and 0.251, respectively). After 8 weeks of intervention, there was significant difference between the groups in both variables (p 0.019 and 0.001, respectively). Conclusion: Dynamic posturographic balance training was more effective in improving dynamic balance and mobility in elderly population in comparison to conventional balance training. (author)

  1. Dynamical load factor of impact loaded shell structures

    International Nuclear Information System (INIS)

    Hammel, J.

    1977-01-01

    Dynamical loaded structures can be analysed by spectral representations, which usually lead to an enormous computational effort. If it is possible to find a fitting dynamical load factor, the dynamical problem can be reduced to a statical one. The computation of this statical problem is much simpler. The disadvantage is that the dynamical load factor usually leads to a very rough approximation. In this paper it will be shown, that by combination of these two methods, the approximation of the dynamical load factor can be improved and the consumption of computation time can be enormously reduced. (Auth.)

  2. Dynamic Analysis of a Pendulum Dynamic Automatic Balancer

    Directory of Open Access Journals (Sweden)

    Jin-Seung Sohn

    2007-01-01

    Full Text Available The automatic dynamic balancer is a device to reduce the vibration from unbalanced mass of rotors. Instead of considering prevailing ball automatic dynamic balancer, pendulum automatic dynamic balancer is analyzed. For the analysis of dynamic stability and behavior, the nonlinear equations of motion for a system are derived with respect to polar coordinates by the Lagrange's equations. The perturbation method is applied to investigate the dynamic behavior of the system around the equilibrium position. Based on the linearized equations, the dynamic stability of the system around the equilibrium positions is investigated by the eigenvalue analysis.

  3. Local Dynamic Stability Associated with Load Carrying

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2013-03-01

    Conclusion: Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying.

  4. Mobility-Aware and Load Balancing Based Clustering Algorithm for Energy Conservation in MANET

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHENG Bao-yu; GUO Gong-de

    2005-01-01

    Mobile ad hoc network (MANET) is one of wireless communication network architecture that has received a lot of attention. MANET is characterized by dynamic network topology and limited energy. With mobility-aware and load balancing based clustering algorithm (MLCA), this paper proposes a new topology management strategy to conserve energy. Performance simulation results show that the proposed MLCA strategy can balances the traffic load inside the whole network, so as to prolong the network lifetime, meanly, at the same time, achieve higher throughput ratio and network stability.

  5. Dynamic loading of galvanized parts

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2010-01-01

    Full Text Available This work is divided into two parts: the theoretical part includes actual knowledge and points of view about degradation processes in construction materials, anticorrosion protection, zinc coat composition and high frequency fatigue. The laboratory part follow-up existing regulations contents Czech standards and formulate specifications for acquisition of objective information from acceleration la­bo­ra­to­ry tests in condensation chests, mechanical high frequency fatigue tests on pulsator machine and possibilities of evaluation of fatigue tests. Laboratory findings declare to fundamental types of damage of constructions with anticorrosion protection in real loading conditions with dynamic high frequency character. Laboratory tests were made in sulphide and chloride environments.

  6. Load Balanced Mapping of Distributed Objects to Minimize Network Communication

    NARCIS (Netherlands)

    Stoyenko, Alexander D.; Bosch, J.; Bosch, Jan; Aksit, Mehmet; Marlowe, Thomas J.

    1996-01-01

    This paper introduces a new load balancing and communica- tion minimizing heuristic used in the Inverse Remote Procedure Call (IRPC) system. While the paper briefly describes the IRPC system, the focus is on the new IRPC assignment heuristic. The IRPC compiler maps a distributed program to a graph

  7. Reimplementing the LBD DNS Load Balancer with concurrency in GO

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Using the current configuration with 430 aliases, today’s implementation of the LBD DNS Load Balancer does one cycle through all aliases in around 240 seconds. We have a scalability limit of 300 seconds - that is the update period of most aliases. This talk will present a PoC showing how the time could be reduced to just 12 seconds.

  8. Adaptive Load Balancing of Parallel Applications with Multi-Agent Reinforcement Learning on Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Johan Parent

    2004-01-01

    Full Text Available We report on the improvements that can be achieved by applying machine learning techniques, in particular reinforcement learning, for the dynamic load balancing of parallel applications. The applications being considered in this paper are coarse grain data intensive applications. Such applications put high pressure on the interconnect of the hardware. Synchronization and load balancing in complex, heterogeneous networks need fast, flexible, adaptive load balancing algorithms. Viewing a parallel application as a one-state coordination game in the framework of multi-agent reinforcement learning, and by using a recently introduced multi-agent exploration technique, we are able to improve upon the classic job farming approach. The improvements are achieved with limited computation and communication overhead.

  9. Bin-packing problems with load balancing and stability constraints

    DEFF Research Database (Denmark)

    Trivella, Alessio; Pisinger, David

    apper in a wide range of disciplines, including transportation and logistics, computer science, engineering, economics and manufacturing. The problem is well-known to be N P-hard and difficult to solve in practice, especially when dealing with the multi-dimensional cases. Closely connected to the BPP...... realistic constraints related to e.g. load balancing, cargo stability and weight limits, in the multi-dimensional BPP. The BPP poses additional challenges compared to the CLP due to the supplementary objective of minimizing the number of bins. In particular, in section 2 we discuss how to integrate bin......-packing and load balancing of items. The problem has only been considered in the literature in simplified versions, e.g. balancing a single bin or introducing a feasible region for the barycenter. In section 3 we generalize the problem to handle cargo stability and weight constraints....

  10. I/O load balancing for big data HPC applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Arnab K. [Virginia Polytechnic Institute and State University; Goyal, Arpit [Virginia Polytechnic Institute and State University; Wang, Feiyi [ORNL; Oral, H Sarp [ORNL; Butt, Ali R. [Virginia Tech, Blacksburg, VA; Brim, Michael J. [ORNL; Srinivasa, Sangeetha B. [Virginia Polytechnic Institute and State University

    2018-01-01

    High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutions typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.

  11. A strategy for load balancing in distributed storage systems

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Distributed storage systems are critical to the operation of the WLCG. These systems are not limited to fulfilling the long term storage requirements. They also serve data for computational analysis and other computational jobs. Distributed storage systems provide the ability to aggregate the storage and IO capacity of disks and tapes, but at the end of the day IO rate is still bound by the capabilities of the hardware, in particular the hard drives. Throughput of hard drives has increased dramatically over the decades, however for computational analysis IOPS is typically the limiting factor. To maximize return of investment, balancing IO load over available hardware is crucial. The task is made complicated by the common use of heterogeneous hardware and software environments that results from combining new and old hardware into a single storage system. This paper describes recent advances made in load balancing in the dCache distributed storage system. We describe a set of common requirements for load balan...

  12. Transcribing the balanced scorecard into system dynamics

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2013-01-01

    The purpose of this paper is to show how a System Dynamics Modelling approach can be integrated into the Balanced Scorecard (BSC) for a case company with special focus on the handling of causality in a dynamic perspective. The BSC model includes five perspectives and a number of financial and non...... the cause-and-effect relationships of an integrated BSC model. Including dynamic aspects of BSCs into the discussion is only in its infancy, so the aim of our work is also to contribute to both scholars’ and practitioners’ general understanding of how such delayed dynamic effects propagate through system...

  13. Reactor primary pumps dynamic balancing test

    International Nuclear Information System (INIS)

    Lu Qunxian

    2002-01-01

    Reactor primary Pump is the important equipment in the primary circuit, its working quality would directly influence the safety and operation of nuclear power plant. The author describes that the primary pump vibration status, vibration fault diagnosis and dynamic balancing process on site have been performed since commercial operation of DA YA BAY Nuclear Power plant

  14. PeerFlow: Secure Load Balancing in Tor

    Directory of Open Access Journals (Sweden)

    Johnson Aaron

    2017-04-01

    Full Text Available We present PeerFlow, a system to securely load balance client traffic in Tor. Security in Tor requires that no adversary handle too much traffic. However, Tor relays are run by volunteers who cannot be trusted to report the relay bandwidths, which Tor clients use for load balancing. We show that existing methods to determine the bandwidths of Tor relays allow an adversary with little bandwidth to attack large amounts of client traffic. These methods include Tor’s current bandwidth-scanning system, TorFlow, and the peer-measurement system EigenSpeed. We present an improved design called PeerFlow that uses a peer-measurement process both to limit an adversary’s ability to increase his measured bandwidth and to improve accuracy. We show our system to be secure, fast, and efficient. We implement PeerFlow in Tor and demonstrate its speed and accuracy in large-scale network simulations.

  15. Scalable and balanced dynamic hybrid data assimilation

    Science.gov (United States)

    Kauranne, Tuomo; Amour, Idrissa; Gunia, Martin; Kallio, Kari; Lepistö, Ahti; Koponen, Sampsa

    2017-04-01

    Scalability of complex weather forecasting suites is dependent on the technical tools available for implementing highly parallel computational kernels, but to an equally large extent also on the dependence patterns between various components of the suite, such as observation processing, data assimilation and the forecast model. Scalability is a particular challenge for 4D variational assimilation methods that necessarily couple the forecast model into the assimilation process and subject this combination to an inherently serial quasi-Newton minimization process. Ensemble based assimilation methods are naturally more parallel, but large models force ensemble sizes to be small and that results in poor assimilation accuracy, somewhat akin to shooting with a shotgun in a million-dimensional space. The Variational Ensemble Kalman Filter (VEnKF) is an ensemble method that can attain the accuracy of 4D variational data assimilation with a small ensemble size. It achieves this by processing a Gaussian approximation of the current error covariance distribution, instead of a set of ensemble members, analogously to the Extended Kalman Filter EKF. Ensemble members are re-sampled every time a new set of observations is processed from a new approximation of that Gaussian distribution which makes VEnKF a dynamic assimilation method. After this a smoothing step is applied that turns VEnKF into a dynamic Variational Ensemble Kalman Smoother VEnKS. In this smoothing step, the same process is iterated with frequent re-sampling of the ensemble but now using past iterations as surrogate observations until the end result is a smooth and balanced model trajectory. In principle, VEnKF could suffer from similar scalability issues as 4D-Var. However, this can be avoided by isolating the forecast model completely from the minimization process by implementing the latter as a wrapper code whose only link to the model is calling for many parallel and totally independent model runs, all of them

  16. Software defined networks reactive flow programming and load balance switching

    OpenAIRE

    Καλλιανιώτης, Νικόλαος; Kallianiotis, Nikolaos

    2017-01-01

    This project serves as a Master Thesis as the requirements of the master’s programme Master of Digital Communications and Networks. It proposes load balancing algorithms applied to Software-Defined Networks to achieve the best possible resource utilisation of each of the links present in a network. The open-sources Opendaylight project and Floodlight project are used as SDN controllers, and the network is emulated using Mininet software

  17. A Meta-Heuristic Load Balancer for Cloud Computing Systems

    OpenAIRE

    Sliwko, L.; Getov, Vladimir

    2015-01-01

    This paper introduces a strategy to allocate services on a cloud system without overloading the nodes and maintaining the system stability with minimum cost. We specify an abstract model of cloud resources utilization, including multiple types of resources as well as considerations for the service migration costs. A prototype meta-heuristic load balancer is demonstrated and experimental results are presented and discussed. We also propose a novel genetic algorithm, where population is seeded ...

  18. Analisis Kinerja Penerapan Container untuk Load Balancing Web Server

    Directory of Open Access Journals (Sweden)

    Muhammad Agung Nugroho

    2016-12-01

    Full Text Available Container merupakan teknologi virtualisasi terbaru. Container memudahkan system administrator dalam mengelola aplikasi pada server. Docker container dapat digunakan untuk membangun, mempersiapkan, dan menjalankan aplikasi. Dapat membuat aplikasi dari bahasa pemrograman yang berbeda pada lapisan apapun. Aplikasi dapat di bungkus dalam container, dan aplikasi dapat berjalan pada lingkungan apapun dimana saja.  Dalam perkembangannya container ini dapat digunakan untuk load balancing, dengan memanfaatkan HA Proxy. Load Balancing dapat digunakan untuk menyelesaikan permasalahan beban kinerja web server yang terlalu berat (overload terhadap permintaan. Load Balancing merupakan salah satu metode untuk meningkatkan skalabilitas web server sekaligus mengurangi beban kerja web server. Ujicoba dilakukan dengan memberikan beban request pada single container dan multi container, dan membandingkan kinerjanya. Analisis kinerja dapat dilakukan dengan menggunakan parameter performance pada processor, memori dan proses layanan. Penerapan ujicoba dilakukan pada raspberry pi. Hasil yang diperoleh multi container dapat digunakan untuk mengembangkan metode load balancing, hasil ujicoba menunjukkan performance raspberry pi dapat optimum karena pembagian beban processor.

  19. Dynamic balance abilities of collegiate men for the bench press.

    Science.gov (United States)

    Piper, Timothy J; Radlo, Steven J; Smith, Thomas J; Woodward, Ryan W

    2012-12-01

    This study investigated the dynamic balance detection ability of college men for the bench press exercise. Thirty-five college men (mean ± SD: age = 22.4 ± 2.76 years, bench press experience = 8.3 ± 2.79 years, and estimated 1RM = 120.1 ± 21.8 kg) completed 1 repetition of the bench press repetitions for each of 3 bar loading arrangements. In a randomized fashion, subjects performed the bench press with a 20-kg barbell loaded with one of the following: a balanced load, one 20-kg plate on each side; an imbalanced asymmetrical load, one 20-kg plate on one side and a 20-kg plate plus a 1.25-kg plate on the other side; or an imbalanced asymmetrical center of mass, 20-kg plate on one side and sixteen 1.25-kg plates on the other side. Subjects were blindfolded and wore ear protection throughout all testing to decrease the ability to otherwise detect loads. Binomial data analysis indicated that subjects correctly detected the imbalance of the imbalanced asymmetrical center of mass condition (p[correct detection] = 0.89, p < 0.01) but did not correctly detect the balanced condition (p[correct detection] = 0.46, p = 0.74) or the imbalanced asymmetrical condition (p[correct detection] = 0.60, p = 0.31). Although it appears that a substantial shift in the center of mass of plates leads to the detection of barbell imbalance, minor changes of the addition of 1.25 kg (2.5 lb) to the asymmetrical condition did not result in consistent detection. Our data indicate that the establishment of a biofeedback loop capable of determining balance detection was only realized under a high degree of imbalance. Although balance detection was not present in either the even or the slightly uneven loading condition, the inclusion of balance training for upper body may be futile if exercises are unable to establish such a feedback loop and thus eliciting an improvement of balance performance.

  20. Dynamic power balance analysis in JET

    International Nuclear Information System (INIS)

    Matthews, G F; Silburn, S A; Challis, C D; Iglesias, D; King, D; Eich, T; Sieglin, B; Contributors, JET

    2017-01-01

    The full scale realisation of nuclear fusion as an energy source requires a detailed understanding of power and energy balance in current experimental devices. In this we explore whether a global power balance model in which some of the calibration factors applied to the source or sink terms are fitted to the data can provide insight into possible causes of any discrepancies in power and energy balance seen in the JET tokamak. We show that the dynamics in the power balance can only be properly reproduced by including the changes in the thermal stored energy which therefore provides an additional opportunity to cross calibrate other terms in the power balance equation. Although the results are inconclusive with respect to the original goal of identifying the source of the discrepancies in the energy balance, we do find that with optimised parameters an extremely good prediction of the total power measured at the outer divertor target can be obtained over a wide range of pulses with time resolution up to ∼25 ms. (paper)

  1. Effect of Selected Balance Exercises on the Dynamic Balance of Children with Visual Impairments

    Science.gov (United States)

    Jazi, Shirin Davarpanah; Purrajabi, Fatemeh; Movahedi, Ahmadreza; Jalali, Shahin

    2012-01-01

    Introduction: Maintaining balance while walking is of utmost importance for individuals with visual impairments because deficits in dynamic balance have been associated with a high risk of falling. Thus, the primary aim of the study presented here was to determine whether balance training effects the dynamic balance of children with visual…

  2. Energy Balance Models and Planetary Dynamics

    Science.gov (United States)

    Domagal-Goldman, Shawn

    2012-01-01

    We know that planetary dynamics can have a significant affect on the climate of planets. Planetary dynamics dominate the glacial-interglacial periods on Earth, leaving a significant imprint on the geological record. They have also been demonstrated to have a driving influence on the climates of other planets in our solar system. We should therefore expect th.ere to be similar relationships on extrasolar planets. Here we describe a simple energy balance model that can predict the growth and thickness of glaciers, and their feedbacks on climate. We will also describe model changes that we have made to include planetary dynamics effects. This is the model we will use at the start of our collaboration to handle the influence of dynamics on climate.

  3. A Comparative Study of Load Balancing Algorithms in Cloud Computing Environment

    OpenAIRE

    Katyal, Mayanka; Mishra, Atul

    2014-01-01

    Cloud Computing is a new trend emerging in IT environment with huge requirements of infrastructure and resources. Load Balancing is an important aspect of cloud computing environment. Efficient load balancing scheme ensures efficient resource utilization by provisioning of resources to cloud users on demand basis in pay as you say manner. Load Balancing may even support prioritizing users by applying appropriate scheduling criteria. This paper presents various load balancing schemes in differ...

  4. An Efficient SDN Load Balancing Scheme Based on Variance Analysis for Massive Mobile Users

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2015-01-01

    Full Text Available In a traditional network, server load balancing is used to satisfy the demand for high data volumes. The technique requires large capital investment while offering poor scalability and flexibility, which difficultly supports highly dynamic workload demands from massive mobile users. To solve these problems, this paper analyses the principle of software-defined networking (SDN and presents a new probabilistic method of load balancing based on variance analysis. The method can be used to dynamically manage traffic flows for supporting massive mobile users in SDN networks. The paper proposes a solution using the OpenFlow virtual switching technology instead of the traditional hardware switching technology. A SDN controller monitors data traffic of each port by means of variance analysis and provides a probability-based selection algorithm to redirect traffic dynamically with the OpenFlow technology. Compared with the existing load balancing methods which were designed to support traditional networks, this solution has lower cost, higher reliability, and greater scalability which satisfy the needs of mobile users.

  5. Synthesis of Dynamically Balanced Mechanisms by Using Counter-Rotary Countermass Balanced Double Pendula

    NARCIS (Netherlands)

    van der Wijk, V.; Herder, Justus Laurens

    2009-01-01

    Complete dynamic balancing principles still cannot avoid a substantial increase in mass and inertia. In addition, the conditions for dynamic balance and inertia equations can be complicated to derive. This article shows how a double pendulum, which is fully dynamically balanced using counter-rotary

  6. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  7. Behavior of Brittle Materials Under Dynamic Loading

    National Research Council Canada - National Science Library

    Kanel, G

    2000-01-01

    Dynamic loading of brittle materials is related to many applications, including explosive excavation of rocks, design of ceramic armor, meteor impact on spacecraft windows, particle damage to turbine blades, etc...

  8. Sustainable Load-Balancing Scheme for Inter-Sensor Convergence Processing of Routing Cooperation Topology

    Directory of Open Access Journals (Sweden)

    Hyun-Woo Kim

    2016-05-01

    Full Text Available Recent advancements in Information Technology (IT have sparked the creation of numerous and diverse types of devices and services. Manual data collection measurement methods have been automated through the use of various wireless or wired sensors. Single sensor devices are included in smart devices such as smartphones. Data transmission is critical for big data collected from sensor nodes, such as Mobile Sensor Nodes (MSNs, where sensors move dynamically according to sensor mobility, or Fixed Sensor Nodes (FSNs, where sensor locations are decided by the users. False data transfer processing of big data results in topology lifespan reduction and data transfer delays. Hence, a variety of simulators and diverse load-balancing algorithms have been developed as protocol verification tools for topology lifespan maximization and effective data transfer processing. However, those previously developed simulators have limited functions, such as an event function for a specific sensor or a battery consumption rate test for sensor deployment. Moreover, since the previous load-balancing algorithms consider only the general traffic distribution and the number of connected nodes without considering the current topology condition, the sustainable load-balancing technique that takes into account the battery consumption rate of the dispersed sensor nodes is required. Therefore, this paper proposes the Sustainable Load-balancing Scheme (SLS, which maximizes the overall topology lifespan through effective and sustainable load-balancing of data transfer among the sensors. SLS is capable of maintaining an effective topology as it considers both the battery consumption rate of the sensors and the data transfer delay.

  9. Study of load balancing technology for EAST data management

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shi, E-mail: lishi@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Wang, Feng [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xiao, Bingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui (China); Yang, Fei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Department of Computer Science, Anhui Medical University, Hefei, Anhui (China); Sun, Xiaoyang; Wang, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2014-05-15

    Highlights: • The load balancing concept is introduced into the MDSplus data service. • The new data service system based on the LVS framework and heartbeat technologies are described. • The scheduling algorithm “WLC” is used, and a software system is developed for optimizing the weight of node server. - Abstract: With the continuous renewal and increasing number of diagnostics, the EAST tokamak routinely generates ∼3 GB of raw data per pulse of the experiment, which is transferred to a centralized data management system. In order to strengthen international cooperation, all the acquired data has been converted and stored in the MDSplus servers. During the data system operation, there are some problems when a lot of client machines connect to a single MDSplus data server. Because the server process keeps the connection until the client closes its connection, a lot of server processes use a lot of network ports and consume a large amount of memory, so that the speed of access to data is very slow, but the CPU resource is not fully utilized. To improve data management system performance, many MDSplus servers will be installed on the blade server and form a server cluster to realize load balancing and high availability by using LVS and heartbeat technology. This paper will describe the details of the design and the test results.

  10. Water balance dynamics in the Nile Basin

    Science.gov (United States)

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  11. A Baseline Load Schedule for the Manual Calibration of a Force Balance

    Science.gov (United States)

    Ulbrich, N.; Gisler, R.

    2013-01-01

    A baseline load schedule for the manual calibration of a force balance is defined that takes current capabilities at the NASA Ames Balance Calibration Laboratory into account. The chosen load schedule consists of 18 load series with a total of 194 data points. It was designed to satisfy six requirements: (i) positive and negative loadings should be applied for each load component; (ii) at least three loadings should be applied between 0 % and 100 % load capacity; (iii) normal and side force loadings should be applied at the forward gage location, aft gage location, and the balance moment center; (iv) the balance should be used in "up" and "down" orientation to get positive and negative axial force loadings; (v) the constant normal and side force approaches should be used to get the rolling moment loadings; (vi) rolling moment loadings should be obtained for 0, 90, 180, and 270 degrees balance orientation. In addition, three different approaches are discussed in the paper that may be used to independently estimate the natural zeros, i.e., the gage outputs of the absolute load datum of the balance. These three approaches provide gage output differences that can be used to estimate the weight of both the metric and non-metric part of the balance. Data from the calibration of a six-component force balance will be used in the final manuscript of the paper to illustrate characteristics of the proposed baseline load schedule.

  12. Disruptions, loads, and dynamic response of ITER

    International Nuclear Information System (INIS)

    Nelson, B.; Riemer, B.; Sayer, R.; Strickler, D.; Barabaschi, P.; Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    Plasma disruptions and the resulting electromagnetic loads are critical to the design of the vacuum vessel and in-vessel components of the International Thermonuclear Experimental Reactor (ITER). This paper describes the status of plasma disruption simulations and related analysis, including the dynamic response of the vacuum vessel and in-vessel components, stresses and deflections in the vacuum vessel, and reaction loads in the support structures

  13. MCNP load balancing and fault tolerance with PVM

    International Nuclear Information System (INIS)

    McKinney, G.W.

    1995-01-01

    Version 4A of the Monte Carlo neutron, photon, and electron transport code MCNP, developed by LANL (Los Alamos National Laboratory), supports distributed-memory multiprocessing through the software package PVM (Parallel Virtual Machine, version 3.1.4). Using PVM for interprocessor communication, MCNP can simultaneously execute a single problem on a cluster of UNIX-based workstations. This capability provided system efficiencies that exceeded 80% on dedicated workstation clusters, however, on heterogeneous or multiuser systems, the performance was limited by the slowest processor (i.e., equal work was assigned to each processor). The next public release of MCNP will provide multiprocessing enhancements that include load balancing and fault tolerance which are shown to dramatically increase multiuser system efficiency and reliability

  14. Road traffic management based on self-load-balancing approach

    Directory of Open Access Journals (Sweden)

    Adnane Ahmed

    2016-01-01

    Full Text Available Traffic congestion is one of the most challenging problems for nowadays cities. Several contributions mainly based on V2V (Vehicle-to-Vehicle communication have been published, but most of them have never been applied due to their communication related problems and costs. In this article, a novel cost-effective approach is introduced inspired by social life of insects where direct (V2V communication does not exist anymore. Vehicles are equipped with devices that perform simple tasks, but their interactions with the environment through RSUs (Road Side Units allow the creation of an intelligence which notifies drivers about congested road segments to avoid them. We call this emerging behavior self-load balancing. Description of the fundamentals of this approach and its performance are detailed in this work.

  15. Load balancing in highly parallel processing of Monte Carlo code for particle transport

    International Nuclear Information System (INIS)

    Higuchi, Kenji; Takemiya, Hiroshi; Kawasaki, Takuji

    1998-01-01

    In parallel processing of Monte Carlo (MC) codes for neutron, photon and electron transport problems, particle histories are assigned to processors making use of independency of the calculation for each particle. Although we can easily parallelize main part of a MC code by this method, it is necessary and practically difficult to optimize the code concerning load balancing in order to attain high speedup ratio in highly parallel processing. In fact, the speedup ratio in the case of 128 processors remains in nearly one hundred times when using the test bed for the performance evaluation. Through the parallel processing of the MCNP code, which is widely used in the nuclear field, it is shown that it is difficult to attain high performance by static load balancing in especially neutron transport problems, and a load balancing method, which dynamically changes the number of assigned particles minimizing the sum of the computational and communication costs, overcomes the difficulty, resulting in nearly fifteen percentage of reduction for execution time. (author)

  16. Scheduling algorithms for saving energy and balancing load

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Antonios

    2012-08-03

    In this thesis we study problems of scheduling tasks in computing environments. We consider both the modern objective function of minimizing energy consumption, and the classical objective of balancing load across machines. We first investigate offline deadline-based scheduling in the setting of a single variable-speed processor that is equipped with a sleep state. The objective is that of minimizing the total energy consumption. Apart from settling the complexity of the problem by showing its NP-hardness, we provide a lower bound of 2 for general convex power functions, and a particular natural class of schedules called s{sub crit}-schedules. We also present an algorithmic framework for designing good approximation algorithms. For general convex power functions our framework improves the best known approximation-factor from 2 to 4/3. This factor can be reduced even further to 137/117 for a specific well-motivated class of power functions. Furthermore, we give tight bounds to show that our framework returns optimal s{sub crit}-schedules for the two aforementioned power-function classes. We then focus on the multiprocessor setting where each processor has the ability to vary its speed. Job migration is allowed, and we again consider classical deadline-based scheduling with the objective of energy minimization. We first study the offline problem and show that optimal schedules can be computed efficiently in polynomial time for any convex and non-decreasing power function. Our algorithm relies on repeated maximum flow computations. Regarding the online problem and power functions P(s) = s{sup {alpha}}, where s is the processor speed and {alpha} > 1 a constant, we extend the two well-known single-processor algorithms Optimal Available and Average Rate. We prove that Optimal Available is {alpha}{sup {alpha}}-competitive as in the single-processor case. For Average Rate we show a competitive factor of (2{alpha}){sup {alpha}}/2 + 1, i.e., compared to the single

  17. BALANCE

    Science.gov (United States)

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  18. Dynamic Gust Load Analysis for Rotors

    Directory of Open Access Journals (Sweden)

    Yuting Dai

    2016-01-01

    Full Text Available Dynamic load of helicopter rotors due to gust directly affects the structural stress and flight performance for helicopters. Based on a large deflection beam theory, an aeroelastic model for isolated helicopter rotors in the time domain is constructed. The dynamic response and structural load for a rotor under the impulse gust and slope-shape gust are calculated, respectively. First, a nonlinear Euler beam model with 36 degrees-of-freedoms per element is applied to depict the structural dynamics for an isolated rotor. The generalized dynamic wake model and Leishman-Beddoes dynamic stall model are applied to calculate the nonlinear unsteady aerodynamic forces on rotors. Then, we transformed the differential aeroelastic governing equation to an algebraic one. Hence, the widely used Newton-Raphson iteration algorithm is employed to simulate the dynamic gust load. An isolated helicopter rotor with four blades is studied to validate the structural model and the aeroelastic model. The modal frequencies based on the Euler beam model agree well with published ones by CAMRAD. The flap deflection due to impulse gust with the speed of 2m/s increases twice to the one without gust. In this numerical example, results indicate that the bending moment at the blade root is alleviated due to elastic effect.

  19. Shaft Center Orbit in Dynamically Loaded Bearings

    DEFF Research Database (Denmark)

    Klit, Peder

    2005-01-01

    The aim of this work is to demonstrate how to utilize the bearings damping coe±cients to estimate the orbit for a dynamically loaded journal bearing. The classical method for this analysis was developed by Booker in 1965 [1]and described further in 1972 [2]. Several authors have re¯ned this metho...

  20. Loading dynamics of a sliding DNA clamp.

    KAUST Repository

    Cho, Won-Ki; Jergic, Slobodan; Kim, Daehyung; Dixon, Nicholas E; Lee, Jong-Bong

    2014-01-01

    8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.

  1. Material properties under intensive dynamic loading

    CERN Document Server

    Cherne, Frank J; Zhernokletov, Mikhail V; Glushak, B L; Zocher, Marvin A

    2007-01-01

    Understanding the physical and thermomechanical response of materials subjected to intensive dynamic loading is a challenge of great significance in engineering today. This volume assumes the task of gathering both experimental and diagnostic methods in one place, since not much information has been previously disseminated in the scientific literature.

  2. Assessment of load of beam-balanced pumping units by electric motor power indicators

    Directory of Open Access Journals (Sweden)

    Д. И. Шишлянников

    2017-10-01

    Full Text Available The results of experimental studies on the loading of beam-balanced pumping units (BP of sucker rod- pumping equipment (SRPE are presented. It is noted that the key factor that has the most significant effect causing the SRPE failure is the balance of the beam pumping unit, which determines the amount of specific energy consumption for the rise of reservoir fluid and the level of dynamic loads on the machine units. The urgency of using software-recording systems for estimating the loading of units of oil field pumping installations is substantiated. The principle of operation and design of the «AKD-SK» software recording system is described. The prospects of using this method for controlling the performance parameters and evaluating the technical state of the sicker rod-pumping units is proved on the basis of an analysis of the magnitude and nature of the changes in the loads of drive motors determined by the registration of the instantaneous values of the consumed power. The main provisions of the methodology for analyzing the watt-meters of drive motors of the sucker rod-pumping units are outlined. The nature of the manifestation of the main defects of submersible pumps and beam-balanced pumping units is described. The results of pilot-industrial tests of the beam-balanced pumping units equipped with advanced permanent magnet motors and intelligent control stations are presented. It is proved that the use of permanent magnet motors allows to reduce the specific energy consumption for the rise of reservoir fluid, which increases the efficiency of the SRPE.However, the presence of transient processes and generator operating modes of the permanent magnet motors results in the occurrence of significant dynamic loads, which, due to the rigid fixing of the rotor of magnet motor on the reducer shaft, negatively affect the life of the gearbox bearings. It has been shown that the lack of its own bearings in the tested motors causes a high probability

  3. Load Balancing in Cloud Computing Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks.

    Science.gov (United States)

    Devi, D Chitra; Uthariaraj, V Rhymend

    2016-01-01

    Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.

  4. Load Balancing in Cloud Computing Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks

    Directory of Open Access Journals (Sweden)

    D. Chitra Devi

    2016-01-01

    Full Text Available Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM’s multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM, the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.

  5. Dynamic loads on the primary system

    International Nuclear Information System (INIS)

    Rohde, J.

    1980-01-01

    As a result of pipe breaks f.ex. in the primary system of a PWR-plant dynamic forces act on the components of the system as well as on their support-structures and internals. The design basis must guarantee that LOCA or system-transient generated loads cannot produce deformations or fractures that endanger the coolability of the reactor, the emergency feedwater supply to the core-region and a safe shut-down of the reactor. In this lecture the first part of a LOCA will be discussed, where the highest dynamic loads on the primary system are expected. In this connection comments are given on the main assumptions and boundary conditions, the related regulations and guide-lines, as well as the possible consequences of an accident. Next, a review is presented of the analytical methods being used for the determination of thermohydraulic generated loads. The stress-calculations on the basis of these load-functions are discussed in the following lectures. The application of the analytical methods, i.e. the different computer codes, and the verification on the basis of the experimental results are described together with a discussion of the theoretical results. In addition a survey will be given of the research work done in connection with the problems of the dynamic loads under accident conditions. Finally, the problems of the fluid-structure interaction will be explained and comments made on computer code development now under way regarding this problem. A short film will be presented to provide a better understanding of fast transient phenomena. (orig./RW)

  6. Perancangan dan Pengujian Load Balancing dan Failover Menggunakan NginX

    Directory of Open Access Journals (Sweden)

    Rahmad Dani

    2017-06-01

    Full Text Available Situs web dengan traffic yang tinggi dapat menyebabkan beban kerja yang berat di sisi server, yang pada gilirannya akan mengakibatkan turunnya kinerja server, bahkan kegagalan sistem secara keseluruhan. Salah satu solusi untuk mengatasi masalah tersebut adalah dengan menerapkan teknik load balancing dan failover. Load balancing merupakan teknologi untuk melakukan pembagian beban kepada beberapa server, memastikan tidak terjadi kelebihan beban pada salah satu server. Sementara itu, failover merupakan kemampuan suatu sistem untuk berpindah ke sistem cadangan jika sistem utama mengalami kegagalan. Dalam penelitian ini load balancing dengan teknik failover akan diimplementasikan pada sistem operasi Ubuntu. Software inti yang digunakan dalam penelitian ini adalah Nginx dan KeepAlived. Nginx akan berfungsi sebagai load balancer, sedangkan KeepAlived untuk mengimplementasikan teknik failover. Beberapa skenario telah disiapkan untuk menguji sistem load balancing yang telah dirancang. Pengujian dilakukan dengan menggunakan perangkat lunak JMeter. Berdasarkan pengujian yang telah dilakukan, sistem yang dirancang berhasil membagikan beban permintaan dan dapat terus bekerja walaupun terjadi kegagalan pada server load balancer ataupun kegagalan pada server backend. Selain itu, dalam beberapa pengujian, penggunaan load balancing terbukti mampu menurunkan waktu respon dan meningkatkan thoughput pada sistem sehingga mampu meningkatkan performa keseluruhan sistem. Mengacu pada hasil penelitian ini, sistem load balancing dan failover menggunakan Nginx dapat dijadikan salah satu solusi pada sistem web server dengan situs web yang memiliki traffic tinggi.

  7. Selecting boundary conditions in physiological strain analysis of the femur: Balanced loads, inertia relief method and follower load.

    Science.gov (United States)

    Heyland, Mark; Trepczynski, Adam; Duda, Georg N; Zehn, Manfred; Schaser, Klaus-Dieter; Märdian, Sven

    2015-12-01

    Selection of boundary constraints may influence amount and distribution of loads. The purpose of this study is to analyze the potential of inertia relief and follower load to maintain the effects of musculoskeletal loads even under large deflections in patient specific finite element models of intact or fractured bone compared to empiric boundary constraints which have been shown to lead to physiological displacements and surface strains. The goal is to elucidate the use of boundary conditions in strain analyses of bones. Finite element models of the intact femur and a model of clinically relevant fracture stabilization by locking plate fixation were analyzed with normal walking loading conditions for different boundary conditions, specifically re-balanced loading, inertia relief and follower load. Peak principal cortex surface strains for different boundary conditions are consistent (maximum deviation 13.7%) except for inertia relief without force balancing (maximum deviation 108.4%). Influence of follower load on displacements increases with higher deflection in fracture model (from 3% to 7% for force balanced model). For load balanced models, follower load had only minor influence, though the effect increases strongly with higher deflection. Conventional constraints of fixed nodes in space should be carefully reconsidered because their type and position are challenging to justify and for their potential to introduce relevant non-physiological reaction forces. Inertia relief provides an alternative method which yields physiological strain results. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. Analisis Perbandingan Load Balancing Web Server Tunggal Dengan Web Server Cluster Menggunakan Linux Virtual Server

    OpenAIRE

    Lukitasari, Desy; Oklilas, Ahmad Fali

    2010-01-01

    Virtual server adalah server yang mempunyai skalabilitas dan ketersedian yang tinggi yang dibangun diatas sebuah cluster dari beberapa real server. Real server dan load balancer akan saling terkoneksi baik dalam jaringan lokal kecepatan tinggi atau yang terpisah secara geografis. Load balancer dapat mengirim permintaan-permintaan ke server yang berbeda dan membuat paralel service dari sebuah cluster pada sebuah alamat IP tunggal dan meminta pengiriman dapat menggunakan teknologi IP load...

  9. Peak load-impulse characterization of critical pulse loads in structural dynamics

    International Nuclear Information System (INIS)

    Abrahamson, G.R.; Lindberg, H.E.

    1975-01-01

    In presenting the characterization scheme, some general features are described first. A detailed analysis is given for the rigid-plastic system of one degree of freedom to illustrate the calculation of critical load curves in terms of peak load and impulse. This is followed by the presentation of critical load curves for uniformly loaded rigid-plastic beams and plates and for dynamic buckling of cylindrical shells under uniform lateral loads. The peak load-impulse characterization of critical pulse loads is compared with the dynamic load factor characterization, and some aspects of the history of the peak load-pulse scheme are presented. (orig./HP) [de

  10. Analysis of pile foundations under dynamic loads

    International Nuclear Information System (INIS)

    Waas, G.; Hartmann, H.G.

    1981-01-01

    A method is presented for the analysis of pile foundations which are subjected to horizontal dynamic loads from earthquakes, airplane impact, gas explosion or other sources. The motion of the pile cap and the pile forces are computed. - The loads may be applied to the pile cap or directly to the piles (e.g. by earthquake wave motion). The soil may be stratified and is considered to be an elastic or visco-elastic medium. The piles are assumed vertical. The method makes use of an approximate fundamental solution for displacements caused by a dynamic point load in a layered visco-elastic medium. The approximation involves a discretization of the medium in the vertical direction. In horizontal directions the medium is treated by continuum theory. The soil medium supports each pile at about 10 to 20 nodes. A dynamic flexiblity matrix for the soil is derived which relates the elastic, damping and inertial forces of the soil to the displacements at each node. It includes effects of radiation damping. All piles are coupled through the soil flexibility matrix. The piles are modelled by beam elements. Transient response is computed using fast discrete Fourier transforms. The arrangement of the piles is arbitrary. However, simple and double symmetry can be accounted for by the computer program. When the pile arrangement is axisymmetric, the degrees of freedom can be reduced to only those of two piles per ring. The influence of the number of piles and the influence of the pile spacing on group stiffness and on pile forces is presented for two soil profiles. Dynamic effects on pile forces of a foundation for a reactor building are studied. They are significant when soils are soft. (orig.)

  11. Modelling and Analysis of a New Piezoelectric Dynamic Balance Regulator

    Directory of Open Access Journals (Sweden)

    Mu-Xun Xu

    2012-11-01

    Full Text Available In this paper, a new piezoelectric dynamic balance regulator, which can be used in motorised spindle systems, is presented. The dynamic balancing adjustment mechanism is driven by an in-plane bending vibration from an annular piezoelectric stator excited by a high-frequency sinusoidal input voltage. This device has different construction, characteristics and operating principles than a conventional balance regulator. In this work, a dynamic model of the regulator is first developed using a detailed analytical method. Thereafter, MATLAB is employed to numerically simulate the relations between the dominant parameters and the characteristics of the regulator based on thedynamic model. Finally, experimental measurements are used to certify the validity of the dynamic model. Consequently, the mathematical model presented and analysed in this paper can be used as a tool for optimising the design of a piezoelectric dynamic balance regulator during steady state operation.

  12. Immediate effects of cryotherapy on static and dynamic balance.

    Science.gov (United States)

    Douglas, Matthew; Bivens, Serena; Pesterfield, Jennifer; Clemson, Nathan; Castle, Whitney; Sole, Gisela; Wassinger, Craig A

    2013-02-01

    Cryotherapy is commonly used in physical therapy with many known benefits; however several investigations have reported decreased functional performance following therapeutic application thereof. The purpose of this study was to determine the effect of cryotherapy applied to the ankle on static and dynamic standing balance. It was hypothesized that balance would be decreased after cryotherapy application. Twenty individuals (aged 18 to 40 years) participated in this research project. Each participant was tested under two conditions: an experimental condition where subjects received ice water immersion of the foot and ankle for 15 minutes immediately before balance testing and a control condition completed at room temperature. A Biodex® Balance System was used to quantify balance using anterior/posterior (AP), medial/lateral (ML), and overall balance indices. Paired t-tests were used to compare the balance indices for the two conditions with alpha set at 0.05 a priori. Effect size was also calculated to account for the multiple comparisons made. The static balance indices did not display statistically significant differences between the post-cryotherapy and the control conditions with low effect sizes. Dynamic ML indices significantly increased following the cryotherapy application compared to the control exhibiting a moderate effect size indicating decreased balance following cryotherapy application. No differences were noted between experimental and control conditions for the dynamic AP or overall balance indices while a small effect size was noted for both. The results suggest that cryotherapy to the ankle has a negative effect on the ML component of dynamic balance following ice water immersion. Immediate return to play following cryotherapy application is cautioned given the decreased dynamic ML balance and potential for increased injury risk. 3b Case-control study.

  13. Studies on load metric and communication for a load balancing algorithm in a distributed data acquisition system

    International Nuclear Information System (INIS)

    Simon, M; Kozielski, S; Sakulin, H

    2011-01-01

    The proposed method is designed for a data acquisition system acquiring data from n independent sources. The data sources are supposed to produce fragments that together constitute some logical wholeness. These fragments are produced with the same frequency and in the same sequence. The discussed algorithm aims to balance the data dynamically between m logically autonomous processing units (consisting of computing nodes) in case of variation in their processing power which could be caused by some faults like failing computing nodes, or broken network connections. As a case study we consider the Data Acquisition System of the Compact Muon Solenoid Experiment at CERN's new Large Hadron Collider. The system acquires data from about 500 sources and combines them into full events. Each data source is expected to deliver event fragments of an average size of 2 kB with 100 kHz frequency. In this paper we present the results of applying proposed load metric and load communication pattern. Moreover, we discuss their impact on the algorithm's overall efficiency and scalability, as well as on fault tolerance of the whole system. We also propose a general concept of an algorithm that allows for choosing the destination processing unit in all source nodes asynchronously and asserts that all fragments of same logical data always go to same unit.

  14. Dynamic load effects on gate valve operability

    International Nuclear Information System (INIS)

    Steele, R. Jr.; MacDonald, P.E.; Arendts, J.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) participated in an internationally sponsored seismic research program conducted at the decommissioned Heissdampfreaktor (HDR) located in the Federal Republic of Germany. An existing piping system was modified by installation of an 8-in., naturally aged, motor-operated gate valve from a US nuclear power plant and a piping support system of US design. Six other piping support systems of varying flexibility from stiff to flexible were also installed at various times during the tests. Additional valve loadings included internal hydraulic loads and, during one block of tests, elevated temperature. The operability and integrity of the aged gate valve and the dynamic response of the various piping support system were measured during 25 representative seismic events

  15. Node Load Balance Multi-flow Opportunistic Routing in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2014-04-01

    Full Text Available Opportunistic routing (OR has been proposed to improve the performance of wireless networks by exploiting the multi-user diversity and broadcast nature of the wireless medium. It involves multiple candidate forwarders to relay packets every hop. The existing OR doesn’t take account of the traffic load and load balance, therefore some nodes may be overloaded while the others may not, leading to network performance decline. In this paper, we focus on opportunities routing selection with node load balance which is described as a convex optimization problem. To solve the problem, by combining primal-dual and sub-gradient methods, a fully distributed Node load balance Multi-flow Opportunistic Routing algorithm (NMOR is proposed. With node load balance constraint, NMOR allocates the flow rate iteratively and the rate allocation decides the candidate forwarder selection of opportunities routing. The simulation results show that NMOR algorithm improves 100 %, 62 % of the aggregative throughput than ETX and EAX, respectively.

  16. Energy-aware hybrid fruitfly optimization for load balancing in cloud environments for EHR applications

    Directory of Open Access Journals (Sweden)

    M. Lawanyashri

    Full Text Available Cloud computing has gained precise attention from the research community and management of IT, due to its scalable and dynamic capabilities. It is evolving as a vibrant technology to modernize and restructure healthcare organization to provide best services to the consumers. The rising demand for healthcare services and applications in cloud computing leads to the imbalance in resource usage and drastically increases the power consumption resulting in high operating cost. To achieve fast execution time and optimum utilization of the virtual machines, we propose a multi-objective hybrid fruitfly optimization technique based on simulated annealing to improve the convergence rate and optimization accuracy. The proposed approach is used to achieve the optimal resource utilization and reduces the energy consumption and cost in cloud computing environment. The result attained in our proposed technique provides an improved solution. The experimental results show that the proposed algorithm efficiently outperforms compared to the existing load balancing algorithms. Keywords: Cloud computing, Electronic Health Records (EHR, Load balancing, Fruitfly Optimization Algorithm (FOA, Simulated Annealing (SA, Energy consumption

  17. Dynamic balancing of planar mechanisms using toric geometry

    OpenAIRE

    Moore, Brian; Schicho, Josef; Gosselin, Clement M.

    2007-01-01

    In this paper, a new method to determine the complete set of dynamically balanced planar four-bar mechanims is presented. Using complex variables to model the kinematics of the mechanism, the dynamic balancing constraints are written as algebraic equations over complex variables and joint angular velocities. After elimination of the joint angular velocity variables, the problem is formulated as a problem of factorization of Laurent polynomials. Using toric polynomial division, necessary and s...

  18. Loading dynamics of a sliding DNA clamp.

    KAUST Repository

    Cho, Won-Ki

    2014-05-22

    Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the γ clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.

  19. Developing a balanced scorecard with System Dynamics

    NARCIS (Netherlands)

    Akkermans, H.A.; Oorschot, van K.E.

    2002-01-01

    The Balanced Scorecard (BSC) is a popular concept for performance measurement, because it focuses attention of management on just a few measures and bridges different functional areas (both financial and non-financial measures are included in the BSC). But, the BSC has also received some criticism.

  20. Automatic mesh refinement and parallel load balancing for Fokker-Planck-DSMC algorithm

    Science.gov (United States)

    Küchlin, Stephan; Jenny, Patrick

    2018-06-01

    Recently, a parallel Fokker-Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers was developed by the authors. Fokker-Planck-DSMC (FP-DSMC) is an augmentation of the classical DSMC algorithm, which mitigates the near-continuum deficiencies in terms of computational cost of pure DSMC. At each time step, based on a local Knudsen number criterion, the discrete DSMC collision operator is dynamically switched to the Fokker-Planck operator, which is based on the integration of continuous stochastic processes in time, and has fixed computational cost per particle, rather than per collision. In this contribution, we present an extension of the previous implementation with automatic local mesh refinement and parallel load-balancing. In particular, we show how the properties of discrete approximations to space-filling curves enable an efficient implementation. Exemplary numerical studies highlight the capabilities of the new code.

  1. System Dynamics Modelling for a Balanced Scorecard

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    2008-01-01

    /methodology/approach - We use a case study model to develop time or dynamic dimensions by using a System Dynamics modelling (SDM) approach. The model includes five perspectives and a number of financial and non-financial measures. All indicators are defined and related to a coherent number of different cause...... have a major influence on other indicators and profit and may be impossible to predict without using a dynamic model. Practical implications - The model may be used as the first step in quantifying the cause-and-effect relationships of an integrated BSC model. Using the System Dynamics model provides......Purpose - To construct a dynamic model/framework inspired by a case study based on an international company. As described by the theory, one of the main difficulties of BSC is to foresee the time lag dimension of different types of indicators and their combined dynamic effects. Design...

  2. A Simple Method for Static Load Balancing of Parallel FDTD Codes

    DEFF Research Database (Denmark)

    Franek, Ondrej

    2016-01-01

    A static method for balancing computational loads in parallel implementations of the finite-difference timedomain method is presented. The procedure is fairly straightforward and computationally inexpensive, thus providing an attractive alternative to optimization techniques. The method is descri...

  3. Design of a Load-Balancing Architecture For Parallel Firewalls

    National Research Council Canada - National Science Library

    Joyner, William

    1999-01-01

    Because firewalls can become a potential choke point as network speeds and loads increase, the Navy needs a cost-effective means of increasing data rate through firewalls by placing several machines...

  4. Green IGP Link Weights for Energy-efficiency and Load-balancing in IP Backbone Networks

    OpenAIRE

    Francois, Frederic; Wang, Ning; Moessner, Klaus; Georgoulas, Stylianos; Xu, Ke

    2013-01-01

    The energy consumption of backbone networks has become a primary concern for network operators and regulators due to the pervasive deployment of wired backbone networks to meet the requirements of bandwidth-hungry applications. While traditional optimization of IGP link weights has been used in IP based load-balancing operations, in this paper we introduce a novel link weight setting algorithm, the Green Load-balancing Algorithm (GLA), which is able to jointly optimize both energy efficiency ...

  5. EFFECT OF WOBBLE BOARD BALANCE TRAINING PROGRAM ON STATIC BALANCE, DYNAMIC BALANCE & TRIPLE HOP DISTANCE IN MALE COLLEGIATE BASKETBALL ATHLETE

    OpenAIRE

    Neeraj Panwar, MPT (Sports); Gaurav Kadyan, MPT (Sports); Aseem Gupta, MPT (Sports); Ravinder Narwal, MPT (Ortho,Cardiopulmonary)

    2014-01-01

    Aim & Objective: The aim of the study was to determine the effect of wobble board balance training program on static & dynamic balance & on triple hop distance in male collegiate basketball athletes. Methodology: Fifty healthy basketball players within a age group of 18-22 yrs. were randomly selected with a baseline BESS score between 6 to 14 & modified SEBT score equal to or greater than 94 (till 100) and they randomly divided into control (n-25) & training group (n-25).The training grou...

  6. Aggregated Residential Load Modeling Using Dynamic Bayesian Networks

    Energy Technology Data Exchange (ETDEWEB)

    Vlachopoulou, Maria; Chin, George; Fuller, Jason C.; Lu, Shuai

    2014-09-28

    Abstract—It is already obvious that the future power grid will have to address higher demand for power and energy, and to incorporate renewable resources of different energy generation patterns. Demand response (DR) schemes could successfully be used to manage and balance power supply and demand under operating conditions of the future power grid. To achieve that, more advanced tools for DR management of operations and planning are necessary that can estimate the available capacity from DR resources. In this research, a Dynamic Bayesian Network (DBN) is derived, trained, and tested that can model aggregated load of Heating, Ventilation, and Air Conditioning (HVAC) systems. DBNs can provide flexible and powerful tools for both operations and planing, due to their unique analytical capabilities. The DBN model accuracy and flexibility of use is demonstrated by testing the model under different operational scenarios.

  7. Power-aware load balancing of large scale MPI applications

    OpenAIRE

    Etinski, Maja; Corbalán González, Julita; Labarta Mancho, Jesús José; Valero Cortés, Mateo; Veidenbaum, Alex

    2009-01-01

    Power consumption is a very important issue for HPC community, both at the level of one application or at the level of whole workload. Load imbalance of a MPI application can be exploited to save CPU energy without penalizing the execution time. An application is load imbalanced when some nodes are assigned more computation than others. The nodes with less computation can be run at lower frequency since otherwise they have to wait for the nodes with more computation blocked in MPI calls. A te...

  8. Balance of power theory meets Al Qaeda : dynamics of non-state actor balancing in postinternational politics

    OpenAIRE

    Denk, Aytaç

    2008-01-01

    Ankara : The Department of International Relations, Bilkent University, 2008. Thesis (Master's) -- Bilkent University, 2008. Includes bibliographical references leaves 196-207. The bulk of studies on the balance of power, which constitutes balance of power theory, suggest that only states are involved in balance of power dynamics. This thesis maintains that exclusion of non-state actors (NSAs) from balance of power dynamics constitutes a significant gap in balance of power t...

  9. Comparison of dynamic balance in collegiate field hockey and football players using star excursion balance test.

    Science.gov (United States)

    Bhat, Rashi; Moiz, Jamal Ali

    2013-09-01

    The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Field hockey players and football players did not differ in terms of dynamic balance.

  10. Dynamic workload balancing of parallel applications with user-level scheduling on the Grid

    CERN Document Server

    Korkhov, Vladimir V; Krzhizhanovskaya, Valeria V

    2009-01-01

    This paper suggests a hybrid resource management approach for efficient parallel distributed computing on the Grid. It operates on both application and system levels, combining user-level job scheduling with dynamic workload balancing algorithm that automatically adapts a parallel application to the heterogeneous resources, based on the actual resource parameters and estimated requirements of the application. The hybrid environment and the algorithm for automated load balancing are described, the influence of resource heterogeneity level is measured, and the speedup achieved with this technique is demonstrated for different types of applications and resources.

  11. The research of hourglass worm dynamic balancing simulation based on SolidWorks motion

    Science.gov (United States)

    Wang, Zhuangzhuang; Yang, Jie; Liu, Pingyi; Zhao, Junpeng

    2018-02-01

    Hourglass worm is extensively used in industry due to its characteristic of heavy-load and a large reduction ratio. Varying sizes of unbalanced mass distribution appeared in the design of a single head worm. With machines developing towards higher speed and precision, the vibration and shock caused by the unbalanced mass distribution of rotating parts must be considered. Therefore, the balance grade of these parts must meet higher requirements. A method based on theoretical analysis and SolidWorks motion software simulation is presented in this paper; the virtual dynamic balance simulation test of the hourglass worm was carried out during the design of the product, so as to ensure that the hourglass worm meet the requirements of dynamic balance in the design process. This can effectively support the structural design of the hourglass worm and provide a way of thinking and designing the same type of products.

  12. Software defined network architecture based research on load balancing strategy

    Science.gov (United States)

    You, Xiaoqian; Wu, Yang

    2018-05-01

    As a new type network architecture, software defined network has the key idea of separating the control place of the network from the transmission plane, to manage and control the network in a concentrated way; in addition, the network interface is opened on the control layer and the data layer, so as to achieve programmable control of the network. Considering that only the single shortest route is taken into the calculation of traditional network data flow transmission, and congestion and resource consumption caused by excessive load of link circuits are ignored, a link circuit load based flow media business QoS gurantee system is proposed in this article to divide the flow in the network into ordinary data flow and QoS flow. In this way, it supervises the link circuit load with the controller so as to calculate reasonable route rapidly and issue the flow table to the exchanger, to finish rapid data transmission. In addition, it establishes a simulation platform to acquire optimized result through simulation experiment.

  13. A strategy to load balancing for non-connectivity MapReduce job

    Science.gov (United States)

    Zhou, Huaping; Liu, Guangzong; Gui, Haixia

    2017-09-01

    MapReduce has been widely used in large scale and complex datasets as a kind of distributed programming model. Original Hash partitioning function in MapReduce often results the problem of data skew when data distribution is uneven. To solve the imbalance of data partitioning, we proposes a strategy to change the remaining partitioning index when data is skewed. In Map phase, we count the amount of data which will be distributed to each reducer, then Job Tracker monitor the global partitioning information and dynamically modify the original partitioning function according to the data skew model, so the Partitioner can change the index of these partitioning which will cause data skew to the other reducer that has less load in the next partitioning process, and can eventually balance the load of each node. Finally, we experimentally compare our method with existing methods on both synthetic and real datasets, the experimental results show our strategy can solve the problem of data skew with better stability and efficiency than Hash method and Sampling method for non-connectivity MapReduce task.

  14. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance

    Science.gov (United States)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.

    2017-01-01

    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  15. Replication and load balancing strategy of STAR's relational database management system (RDBM)

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M; Lauret, J; Kopytine, M [Brookhaven National Laboratory, Upton NY 11973 (United States); Kent State University, Kent Ohio 44242 (United States)], E-mail: jlauret@bnl.gov

    2008-07-15

    Database demand resulting from offline analysis and production of data at the STAR experiment at Brookhaven National Laboratory's Relativistic Heavy-Ion Collider has steadily increased over the last six years of data taking activities. With each year, STAR more than doubles the number of events recorded with an anticipation of reaching a billion event capabilities as early as next year. The challenges faced from producing and analyzing this magnitude of events in parallel have raised issues with regard to the distribution of calibrations and geometry data, via databases, to STAR's growing global collaboration. Rapid distribution, availability, ensured synchronization and load balancing have become paramount considerations. Both conventional technology and novel approaches are used in parallel to realize these goals. This paper discusses how STAR uses load balancing to optimize database usage. It discusses distribution methods via MySQL master slave replication; the synchronization issues that arise from this type of distribution and solutions, mostly homegrown, put forth to overcome these issues. A novel approach toward load balancing between slave nodes that assists in maintaining a high availability rate for a veracious community is discussed in detail. This load balancing addresses both, pools of nodes internal to a given location, as well as balancing the load for remote users between different available locations. Challenges, trade-offs, rationale for decisions and paths forward will be discussed in all cases, presenting a solid production environment with a vision for scalable growth.

  16. Replication and load balancing strategy of STAR's relational database management system (RDBM)

    International Nuclear Information System (INIS)

    DePhillips, M; Lauret, J; Kopytine, M

    2008-01-01

    Database demand resulting from offline analysis and production of data at the STAR experiment at Brookhaven National Laboratory's Relativistic Heavy-Ion Collider has steadily increased over the last six years of data taking activities. With each year, STAR more than doubles the number of events recorded with an anticipation of reaching a billion event capabilities as early as next year. The challenges faced from producing and analyzing this magnitude of events in parallel have raised issues with regard to the distribution of calibrations and geometry data, via databases, to STAR's growing global collaboration. Rapid distribution, availability, ensured synchronization and load balancing have become paramount considerations. Both conventional technology and novel approaches are used in parallel to realize these goals. This paper discusses how STAR uses load balancing to optimize database usage. It discusses distribution methods via MySQL master slave replication; the synchronization issues that arise from this type of distribution and solutions, mostly homegrown, put forth to overcome these issues. A novel approach toward load balancing between slave nodes that assists in maintaining a high availability rate for a veracious community is discussed in detail. This load balancing addresses both, pools of nodes internal to a given location, as well as balancing the load for remote users between different available locations. Challenges, trade-offs, rationale for decisions and paths forward will be discussed in all cases, presenting a solid production environment with a vision for scalable growth

  17. CAC DPLB MCN: A Distributed Load Balancing Scheme in Multimedia Mobile Cellular Networks

    Directory of Open Access Journals (Sweden)

    Sharma Abhijit

    2016-11-01

    Full Text Available The problem of non-uniform traffic demand in different cells of a cellular network may lead to a gross imbalance in the system performance. Thus, the users in hot cells may suffer from low throughput. In this paper, an effective and simple load balancing scheme CAC_DPLB_MCN is proposed that can effectively reduce the overall call blocking. This model considers dealing with multi-media traffic as well as time-varying geographical traffic distribution. The proposed scheme uses the concept of cell-tiering thereby creating fractional frequency reuse environment. A message exchange based distributed scheme instead of centralized one is used which help the proposed scheme be implemented in a multiple hot cell environment also. Furthermore, concept of dynamic pricing is used to serve the best interest of the users as well as for the service providers. The performance of the proposed scheme is compared with two other existing schemes in terms of call blocking probability and bandwidth utilization. Simulation results show that the proposed scheme can reduce the call blocking significantly in highly congested cell with highest bandwidth utilization. Use of dynamic pricing also makes the scheme useful to increase revenue of the service providers in contrast with compared schemes.

  18. Response of Rubble Foundation to Dynamic Loading

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Ibsen, Lars Bo

    1993-01-01

    The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both...

  19. Response of Rubble Foundation to Dynamic Loading

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Ibsen, Lars Bo

    1994-01-01

    The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both...

  20. Peningkatan Kinerja Siakad Menggunakan Metode Load Balancing dan Fault Tolerance Di Jaringan Kampus Universitas Halu Oleo

    Directory of Open Access Journals (Sweden)

    Alimuddin Alimuddin

    2016-01-01

    Full Text Available The application of academic information system (siakad a web-based college is essential to improve the academic services. Siakad the application has many obstacles, especially in dealing with a high amount of access that caused the overload. Moreover in case of hardware or software failure caused siakad inaccessible. The solution of this problem is the use of many existing servers where the load is distributed in the respective server. Need a method of distributing the load evenly in the respective server load balancing is the method by round robin algorithm so high siakad scalability. As for dealing with the failure of a server need fault tolerance for the availability siakad be high. This research is to develop methods of load balancing and fault tolerance using software linux virtual server and some additional programs such as ipvsadm and heartbeat that has the ability to increase scalability and availability siakad. The results showed that with load balancing to minimize the response time to 5,7%, increase throughput by 37% or 1,6 times and maximize resource utilization or utilization of 1,6 times increased, and avoid overload. While high availability is obtained from the server's ability to perform failover or move another server in the event of failure. Thus implementing load balancing and fault tolerance can improve the service performance of siakad and avoid mistakes.

  1. Improved postural control after dynamic balance training in older overweight women.

    Science.gov (United States)

    Bellafiore, Marianna; Battaglia, Giuseppe; Bianco, Antonino; Paoli, Antonio; Farina, Felicia; Palma, Antonio

    2011-01-01

    Many studies have reported a greater frequency of falls among older women than men in conditions which stress balance. Previously, we found an improvement in static balance in older women with an increased support surface area and equal load redistribution on both feet, in response to a dynamic balance training protocol. The aim of the present study was to examine whether the same training program and body composition would have effects on the postural control of older overweight women. Ten healthy women (68.67 ± 5.50 yrs; 28.17 ± 3.35 BMI) participated in a five-week physical activity program. This included dynamic balance exercises, such as heel-to-toe walking in different directions, putting their hands on their hips, eyes open (EO) or closed (EC), with a tablet on their heads, going up and down one step, and walking on a mat. Postural stability was assessed before and after training with an optoelectronic platform and a uni-pedal balance performance test. Body composition of the trunk, upper limbs and lower limbs was measured by bio-impedance analysis. The mean speed (MS), medial-lateral MS (MS-x), anterior-posterior MS (MS-y), sway path (SP) and ellipse surface area (ESA) of the pressure center was reduced after training in older women. However, only MS, MS-x, MS-y and SP significantly decreased in bipodalic conditions with EO and MS-y also with EC (punipedal static balance. Our dynamic balance training protocol appears to be feasible, safe and repeatable for older overweight women and to have positive effects in improving their lateral and anterior-posterior postural control, mainly acting on the visual and skeletal muscle components of the balance control system.

  2. Dynamic calibration and validation of an accelerometer force balance for hypersonic lifting models.

    Science.gov (United States)

    Singh, Prakash; Trivedi, Sharad; Menezes, Viren; Hosseini, Hamid

    2014-01-01

    An accelerometer-based force balance was designed and developed for the measurement of drag, lift, and rolling moment on a blunt-nosed, flapped delta wing in a short-duration hypersonic shock tunnel. Calibration and validation of the balance were carried out by a convolution technique using hammer pulse test and surface pressure measurements. In the hammer pulse test, a known impulse was applied to the model in the appropriate direction using an impulse hammer, and the corresponding output of the balance (acceleration) was recorded. Fast Fourier Transform (FFT) was operated on the output of the balance to generate a system response function, relating the signal output to the corresponding load input. Impulse response functions for three components of the balance, namely, axial, normal, and angular, were obtained for a range of input load. The angular system response function was corresponding to rolling of the model. The impulse response functions thus obtained, through dynamic calibration, were operated on the output (signals) of the balance under hypersonic aerodynamic loading conditions in the tunnel to get the time history of the unknown aerodynamic forces and moments acting on the model. Surface pressure measurements were carried out on the model using high frequency pressure transducers, and forces and moments were deduced thereon. Tests were carried out at model angles of incidence of 0, 5, 10, and 15 degrees. A good agreement was observed among the results of different experimental methods. The balance developed is a comprehensive force/moment measurement device that can be used on complex, lifting, aerodynamic geometries in ground-based hypersonic test facilities.

  3. ANALISIS PENGARUH KONFIGURASI EIGRP EQUAL DAN UNEQUAL COST LOAD BALANCING TERHADAP KINERJA ROUTER

    Directory of Open Access Journals (Sweden)

    Dian Bagus Saptonugroho

    2015-04-01

    Full Text Available Routing protocol is tasked with finding the best route to send the packet. Assessed using the metric. If there is more than one route with the same metric value, Routing Information Path (RIP, Open Shortest Path First (OSPF, and Enhanched Interior Gateway Routing Protocol (EIGRP support equal cost load balancing to send packets to the destination. If there is more than one route with a different metric values, EIGRP can do unequal cost load balancing. Research needs to be conducted to determine the effect of the configuration of EIGRP equal and unequal cost load balancing on the performance of the router which can be used as a proof-of-concept testing that is part of the project design document on a network. Research networks using EIGRP as the routing protocol. After the equal and unequal load balancing is enabled by configuring the variance, CEF, per-destination load balancing, per-packet load balancing, or traffic sharing and analyzing its effect on the neighbor table, topology table, routing table, the data transmission, survivability, convergence, throughput, and utilization. This study used an emulator GNS3 as Cisco 2691 Router with Cisco IOS version 12:24 (25 c and advanced enterprise-adventerprisek9 image c2691-mz.124-25c.bin, and OPNET Modeler 14.5 for simulation. The results of the study can be used as a proof-of-concept testing in the design document for later use as contemplated in the manufacture of plan implementation and verification plan.

  4. DNA Dynamics Studied Using the Homogeneous Balance Method

    International Nuclear Information System (INIS)

    Zayed, E. M. E.; Arnous, A. H.

    2012-01-01

    We employ the homogeneous balance method to construct the traveling waves of the nonlinear vibrational dynamics modeling of DNA. Some new explicit forms of traveling waves are given. It is shown that this method provides us with a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. Strengths and weaknesses of the proposed method are discussed. (general)

  5. Public Infrastructure Investment, Output Dynamics, and Balanced Budget Fiscal Rules

    NARCIS (Netherlands)

    Duarte Bom, P.R.; Ligthart, J.E.

    2011-01-01

    We study the dynamic output and welfare effects of public infrastructure investment under a balanced budget fiscal rule, using an overlapping generations model of a small open economy. The government finances public investment by employing distortionary labor taxes. We find a negative short-run

  6. Deep Constrained Siamese Hash Coding Network and Load-Balanced Locality-Sensitive Hashing for Near Duplicate Image Detection.

    Science.gov (United States)

    Hu, Weiming; Fan, Yabo; Xing, Junliang; Sun, Liang; Cai, Zhaoquan; Maybank, Stephen

    2018-09-01

    We construct a new efficient near duplicate image detection method using a hierarchical hash code learning neural network and load-balanced locality-sensitive hashing (LSH) indexing. We propose a deep constrained siamese hash coding neural network combined with deep feature learning. Our neural network is able to extract effective features for near duplicate image detection. The extracted features are used to construct a LSH-based index. We propose a load-balanced LSH method to produce load-balanced buckets in the hashing process. The load-balanced LSH significantly reduces the query time. Based on the proposed load-balanced LSH, we design an effective and feasible algorithm for near duplicate image detection. Extensive experiments on three benchmark data sets demonstrate the effectiveness of our deep siamese hash encoding network and load-balanced LSH.

  7. An Investigation of dynamic characteristics of structures subjected to dynamic load from the viewpoint of design

    International Nuclear Information System (INIS)

    Lee, Hyun Ah; Kim, Yong Il; Park, Gyung Jin; Kang, Byung Soo; Kim, Joo Sung

    2006-01-01

    All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads

  8. Implementation of GAMMON - An efficient load balancing strategy for a local computer system

    Science.gov (United States)

    Baumgartner, Katherine M.; Kling, Ralph M.; Wah, Benjamin W.

    1989-01-01

    GAMMON (Global Allocation from Maximum to Minimum in cONstant time), an efficient load-balancing algorithm, is described. GAMMON uses the available broadcast capability of multiaccess networks to implement an efficient search technique for finding hosts with maximal and minimal loads. The search technique has an average overhead which is independent of the number of participating stations. The transition from the theoretical concept to a practical, reliable, and efficient implementation is described.

  9. Effects of a dynamic balance training protocol on podalic support in older women. Pilot Study.

    Science.gov (United States)

    Battaglia, Giuseppe; Bellafiore, Marianna; Bianco, Antonino; Paoli, Antonio; Palma, Antonio

    2010-01-01

    The foot provides the only direct contact with supporting surfaces and therefore plays an important role in all postural tasks. Changes in the musculoskeletal and neurological characteristics of the foot with advancing age can alter plantar loading patterns and postural balance. Several studies have reported that exercise training improves postural performance in elderly individuals. The aim of our study was to investigate the effectiveness of a dynamic balance training protocol performed for 5 weeks on the support surface, percentage distribution of load in both feet, and body balance performance in healthy elderly women. Ten subjects (68.67±5.50 yrs old; 28.17±3.35 BMI) were evaluated with a monopodalic performance test and baropodometric analyses before and after the training period. We found a significant improvement in balance unipedal performance times on left and right foot by 20.18% and 26.23% respectively (p0.05). The increased support surface and equal redistribution of body weight on both feet obtained in response to our training protocol may be postural adaptations sufficient to improve static balance in elderly women.

  10. A dynamic balanced scorecard for identification internal process factor

    Directory of Open Access Journals (Sweden)

    Javad sofiyabadi

    2012-08-01

    Full Text Available We present a dynamic balanced score card (BSC to investigate the strategic internal process management factors. The proposed dynamic BSC emphasizes on internal processes aspect, and using VIKOR and Shannon Entropy, determinants the internal processes, process management and improvement and all important factors are ranked. The current study first introduces dynamic BSC and examines effective factors on the process. The proposed model focuses on internal processes perspective of BSC and determines importance degree of each factor is used using VIKOR decision-making techniques.

  11. Dynamic balancing of mechanisms and synthesizing of parallel robots

    CERN Document Server

    Wei, Bin

    2016-01-01

    This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: ·       Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept ·       Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms ·       Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass a...

  12. Vestibular control of standing balance is enhanced with increased cognitive load.

    Science.gov (United States)

    McGeehan, Michael A; Woollacott, Marjorie H; Dalton, Brian H

    2017-04-01

    When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.

  13. Multi-Layer Mobility Load Balancing in a Heterogeneous LTE Network

    DEFF Research Database (Denmark)

    Fotiadis, Panagiotis; Polignano, Michele; Laselva, Daniela

    2012-01-01

    This paper analyzes the behavior of a distributed Mobility Load Balancing (MLB) scheme in a multi-layer 3GPP (3rd Generation Partnership Project) Long Term Evolution (LTE) deployment with different User Equipment (UE) densities in certain network areas covered with pico cells. Target of the study...

  14. A Location Selection Policy of Live Virtual Machine Migration for Power Saving and Load Balancing

    Directory of Open Access Journals (Sweden)

    Jia Zhao

    2013-01-01

    Full Text Available Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA. This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  15. A location selection policy of live virtual machine migration for power saving and load balancing.

    Science.gov (United States)

    Zhao, Jia; Ding, Yan; Xu, Gaochao; Hu, Liang; Dong, Yushuang; Fu, Xiaodong

    2013-01-01

    Green cloud data center has become a research hotspot of virtualized cloud computing architecture. And load balancing has also been one of the most important goals in cloud data centers. Since live virtual machine (VM) migration technology is widely used and studied in cloud computing, we have focused on location selection (migration policy) of live VM migration for power saving and load balancing. We propose a novel approach MOGA-LS, which is a heuristic and self-adaptive multiobjective optimization algorithm based on the improved genetic algorithm (GA). This paper has presented the specific design and implementation of MOGA-LS such as the design of the genetic operators, fitness values, and elitism. We have introduced the Pareto dominance theory and the simulated annealing (SA) idea into MOGA-LS and have presented the specific process to get the final solution, and thus, the whole approach achieves a long-term efficient optimization for power saving and load balancing. The experimental results demonstrate that MOGA-LS evidently reduces the total incremental power consumption and better protects the performance of VM migration and achieves the balancing of system load compared with the existing research. It makes the result of live VM migration more high-effective and meaningful.

  16. Implementasi Cluster Server pada Raspberry Pi dengan Menggunakan Metode Load Balancing

    Directory of Open Access Journals (Sweden)

    Ridho Habi Putra

    2016-06-01

    Full Text Available Server merupakan bagian penting dalam sebuah layanan didalam jaringan komputer. Peran server dapat menentukan kualitas baik buruknya dari layanan tersebut. Kegagalan dari sebuah server bisa disebabkan oleh beberapa faktor diantaranya kerusakan perangkat keras, sistem jaringan serta aliran listrik. Salah satu solusi untuk mengatasi kegagalan server dalam suatu jaringan komputer adalah dengan melakukan clustering server.  Tujuan dari penelitian ini adalah untuk mengukur kemampuan Raspberry Pi (Raspi digunakan sebagai web server. Raspberry Pi yang digunakan menggunakan Raspberry Pi 2 Model B dengan menggunakan processor ARM Cortex-A7 berjalan pada frekuensi 900MHz dengan memiliki RAM 1GB. Sistem operasi yang digunakan pada Raspberry Pi adalah Linux Debian Wheezy. Konsep penelitian ini menggunakan empat buah perangkat Raspberry Pi dimana dua Raspi digunakan sebagai web server dan dua Raspi lainnya digunakan sebagai penyeimbang beban (Load Balancer serta database server. Metode yang digunakan dalam pembangunan cluster server ini menggunakan metode load balancing, dimana beban server bekerja secara merata di masing-masing node. Pengujian yang diterapkan dengan melakukan perbandingan kinerja dari Raspbery Pi yang menangani lalu lintas data secara tunggal tanpa menggunakan load balancer serta pengujian Raspberry Pi dengan menggunakan load balancer sebagai beban penyeimbang antara anggota cluster server.

  17. Lifting an unexpectedly heavy object : the effects on low-back loading and balance loss

    NARCIS (Netherlands)

    van der Burg, J C; van Dieën, J H; Toussaint, H M

    OBJECTIVE: This study evaluates the effects of lifting an unexpectedly heavy object on low-back loading and loss of balance. BACKGROUND: It is often suggested that lifting an unexpectedly heavy object may be a major risk factor for low-back pain. This may lead to an increase in muscle activation,

  18. Multi-Class load balancing scheme for QoS and energy ...

    African Journals Online (AJOL)

    Multi-Class load balancing scheme for QoS and energy conservation in cloud computing. ... If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from ...

  19. Model of load balancing using reliable algorithm with multi-agent system

    Science.gov (United States)

    Afriansyah, M. F.; Somantri, M.; Riyadi, M. A.

    2017-04-01

    Massive technology development is linear with the growth of internet users which increase network traffic activity. It also increases load of the system. The usage of reliable algorithm and mobile agent in distributed load balancing is a viable solution to handle the load issue on a large-scale system. Mobile agent works to collect resource information and can migrate according to given task. We propose reliable load balancing algorithm using least time first byte (LFB) combined with information from the mobile agent. In system overview, the methodology consisted of defining identification system, specification requirements, network topology and design system infrastructure. The simulation method for simulated system was using 1800 request for 10 s from the user to the server and taking the data for analysis. Software simulation was based on Apache Jmeter by observing response time and reliability of each server and then compared it with existing method. Results of performed simulation show that the LFB method with mobile agent can perform load balancing with efficient systems to all backend server without bottleneck, low risk of server overload, and reliable.

  20. Correlation of energy balance method to dynamic pipe rupture analysis

    International Nuclear Information System (INIS)

    Kuo, H.H.; Durkee, M.

    1983-01-01

    When using an energy balance approach in the design of pipe rupture restraints for nuclear power plants, the NRC specifies in its Standard Review Plan 3.6.2 that the input energy to the system must be multiplied by a factor of 1.1 unless a lower value can be justified. Since the energy balance method is already quite conservative, an across-the-board use of 1.1 to amplify the energy input appears unneccessary. The paper's purpose is to show that this 'correlation factor' could be substantially less than unity if certain design parameters are met. In this paper, result of nonlinear dynamic analyses were compared to the results of the corresponding analyses based on the energy balance method which assumes constant blowdown forces and rigid plastic material properties. The appropriate correlation factors required to match the energy balance results with the dynamic analyses results were correlated to design parameters such as restraint location from the break, yield strength of the energy absorbing component, and the restraint gap. It is shown that the correlation factor is related to a single nondimensional design parameter and can be limited to a value below unity if appropriate design parameters are chosen. It is also shown that the deformation of the restraints can be related to dimensionless system parameters. This, therefore, allows the maximum restraint deformation to be evaluated directly for design purposes. (orig.)

  1. Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen

    Data.gov (United States)

    National Aeronautics and Space Administration — A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of...

  2. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  3. The effects of smartphone multitasking on gait and dynamic balance.

    Science.gov (United States)

    Lee, Jeon Hyeong; Lee, Myoung Hee

    2018-02-01

    [Purpose] This study was performed to analyze the influence of smartphone multitasking on gait and dynamic balance. [Subjects and Methods] The subjects were 19 male and 20 female university students. There were 4 types of gait tasks: General Gait (walking without a task), Task Gait 1 (walking while writing a message), Task Gait 2 (walking while writing a message and listening to music), Task Gait 3 (walking while writing a message and having a conversation). To exclude the learning effect, the order of tasks was randomized. The Zebris FDM-T treadmill system (Zebris Medical GmbH, Germany) was used to measure left and right step length and width, and a 10 m walking test (10MWT) was conducted for gait velocity. In addition, a Timed Up and Go test (TUG) was used to measure dynamic balance. All the tasks were performed 3 times, and the mean of the measured values was analyzed. [Results] There were no statistically significant differences in step length and width. There were statistically significant differences in the 10MWT and TUG tests. [Conclusion] Using a smartphone while walking decreases a person's dynamic balance and walking ability. It is considered that accident rates are higher when using a smartphone.

  4. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  5. Influence of foundation mass and surface roughness on dynamic response of beam on dynamic foundation subjected to the moving load

    Science.gov (United States)

    Tran Quoc, Tinh; Khong Trong, Toan; Luong Van, Hai

    2018-04-01

    In this paper, Improved Moving Element Method (IMEM) is used to analyze the dynamic response of Euler-Bernoulli beam structures on the dynamic foundation model subjected to the moving load. The effects of characteristic foundation model parameters such as Winkler stiffness, shear layer based on the Pasternak model, viscoelastic dashpot and characteristic parameter of mass on foundation. Beams are modeled by moving elements while the load is fixed. Based on the principle of the publicly virtual balancing and the theory of moving element method, the motion differential equation of the system is established and solved by means of the numerical integration based on the Newmark algorithm. The influence of mass on foundation and the roughness of the beam surface on the dynamic response of beam are examined in details.

  6. Dynamically-Loaded Hardware Libraries (HLL) Technology for Audio Applications

    DEFF Research Database (Denmark)

    Esposito, A.; Lomuscio, A.; Nunzio, L. Di

    2016-01-01

    In this work, we apply hardware acceleration to embedded systems running audio applications. We present a new framework, Dynamically-Loaded Hardware Libraries or HLL, to dynamically load hardware libraries on reconfigurable platforms (FPGAs). Provided a library of application-specific processors......, we load on-the-fly the specific processor in the FPGA, and we transfer the execution from the CPU to the FPGA-based accelerator. The proposed architecture provides excellent flexibility with respect to the different audio applications implemented, high quality audio, and an energy efficient solution....

  7. Incorporating moving dynamic tyre loads in pavement design and analysis

    CSIR Research Space (South Africa)

    Steyn, WJvdM

    2000-07-01

    Full Text Available at the University of Pretoria. 4 REAL LIFE TYRE LOADS Characterisation Pavement loading has been shown by various authors to be a dynamic (time-dependent) phenomenon (Divine, 1997; Cebon, 1999). A pavement experiences a vehicle as a moving, time-varying set... frequencies. Body bounce generally dominates the dynamic loading, and is mainly caused by the response of the sprung mass of the vehicle to the pavement roughness. Axle hop becomes more significant at higher vehicle speeds and higher pavement roughnesses...

  8. Predictive coding of dynamical variables in balanced spiking networks.

    Science.gov (United States)

    Boerlin, Martin; Machens, Christian K; Denève, Sophie

    2013-01-01

    Two observations about the cortex have puzzled neuroscientists for a long time. First, neural responses are highly variable. Second, the level of excitation and inhibition received by each neuron is tightly balanced at all times. Here, we demonstrate that both properties are necessary consequences of neural networks that represent information efficiently in their spikes. We illustrate this insight with spiking networks that represent dynamical variables. Our approach is based on two assumptions: We assume that information about dynamical variables can be read out linearly from neural spike trains, and we assume that neurons only fire a spike if that improves the representation of the dynamical variables. Based on these assumptions, we derive a network of leaky integrate-and-fire neurons that is able to implement arbitrary linear dynamical systems. We show that the membrane voltage of the neurons is equivalent to a prediction error about a common population-level signal. Among other things, our approach allows us to construct an integrator network of spiking neurons that is robust against many perturbations. Most importantly, neural variability in our networks cannot be equated to noise. Despite exhibiting the same single unit properties as widely used population code models (e.g. tuning curves, Poisson distributed spike trains), balanced networks are orders of magnitudes more reliable. Our approach suggests that spikes do matter when considering how the brain computes, and that the reliability of cortical representations could have been strongly underestimated.

  9. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  10. A Novel Load Balancing Scheme for Multipath Routing Protocol in MANET

    Directory of Open Access Journals (Sweden)

    Kokilamani Mounagurusamy

    2016-09-01

    Full Text Available The recent advancements in information and communication technology create a great demand for multipath routing protocols. In MANET, nodes can be arbitrarily located and can move freely at any given time. The topology of MANET can change rapidly and unpredictably. Because wireless link capacities are usually limited, congestion is possible in MANETs. Hence, balancing the load in a MANET is important since nodes with high load will deplete their batteries quickly, thereby increasing the probability of disconnecting or partitioning the network. To overcome these, the multipath protocol should be aware of load at route discovery phase. The main objective of the proposed article is to balance the load on a node and to extend the lifetime of the node due to the congestion, energy depletion and link failures. This article describes a novel load and congestion aware scheme called Path Efficient Ad-hoc On-demand Multipath Distance Vector (PE-AOMDV protocol to increase the performance of routing process in MANET in terms of congestion, end-to-end delay and load balancing. A new threshold value and a counter variable are introduced to limit the number of communication paths passing over a node in route discovery phase. For every new request the counter variable is incremented by one and the threshold value is compared to see whether the maximum number of connections has been reached or not. The proposed method is network simulator ns-2 and it is found that there is a significant improvement in the proposed scheme. It reduces the energy consumption, average end-to-end delay and normalized routing overhead. Also the proposed scheme increases packet delivery ratio, throughput and minimizes routing overheads.

  11. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Science.gov (United States)

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  12. Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming; Suhr, Karin Isabel; Dalsgaard, Anne Johanne Tang

    2012-01-01

    This study investigated the effects of applying four fixed feed loadings to three replicated recirculating aquaculture systems (RAS) on water quality changes, nitrogenous balances and growth performance of rainbow trout (Oncorhynchus mykiss).Feed loadings ranged from 1.6 to 6.3kgfeed/m3 make-up...... water, with a constant make-up water renewal of 4.7% of total water volume per day in all twelve RAS. Fish densities ranged from 14 to 92kg/m3 during the prolonged trial of 10weeks. Selected water quality parameters were measured during two intensive sampling campaigns, evaluating biofilter...

  13. Load Balancing in Cloud Computing Environment Using Improved Weighted Round Robin Algorithm for Nonpreemptive Dependent Tasks

    OpenAIRE

    Devi, D. Chitra; Uthariaraj, V. Rhymend

    2016-01-01

    Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM’s mul...

  14. Apparatus and method for optimal phase balancing using dynamic programming with spatial consideration

    Science.gov (United States)

    Robertazzi, Thomas G.; Skiena, Steven; Wang, Kai

    2017-08-08

    Provided are an apparatus and method for load-balancing of a three-phase electric power distribution system having a multi-phase feeder, including obtaining topology information of the feeder identifying supply points for customer loads and feeder sections between the supply points, obtaining customer information that includes peak customer load at each of the points between each of the feeder sections, performing a phase balancing analysis, and recommending phase assignment at the customer load supply points.

  15. Effect of segmental, localized lower limb cooling on dynamic balance.

    Science.gov (United States)

    Montgomery, Roger E; Hartley, Geoffrey L; Tyler, Christopher J; Cheung, Stephen S

    2015-01-01

    This study aimed to determine the effect of cooling progressively greater portions of the lower extremities on dynamic balance and neuromuscular activation. Ten healthy males (22.8 ± 3.4 yr, 76.5 ± 9.1 kg) performed one room air temperature control (22.4°C ± 0.8°C) and three trials of cold water immersion at 12°C (lateral malleolus, ankle; lateral femoral epicondyle, knee; anterior superior iliac spine, hip) for 10 min before performing a unipedal balance test (Star Excursion Balance Test (SEBT)) with their dominant limb. Muscle activation of the vastus lateralis, biceps femoris, tibialis anterior, and lateral gastrocnemius was measured with surface EMG during the SEBT. Core temperature remained euthermic throughout all trials. Gastrocnemius temperature decreased from control (30.4°C ± 0.5°C) with knee (23.7°C ± 1.7°C) and hip immersion (22.4°C ± 1.0°C), whereas vastus lateralis temperature decreased from control (33.7°C ± 1.7°C) with hip immersion (27.3°C ± 2.0°C) (P water immersion influenced mean anterior and posterior reach distance on the SEBT in a dose-dependent fashion. Compared with those in control, mean anterior and posterior SEBT reach distances were not decreased with ankle (-1.38% and -0.74%, respectively) and knee immersion (-2.48% and -2.74%), whereas hip immersion significantly reduced SEBT by 4.73% and 4.05% (P lower extremities were cooled, with only the lateral gastrocnemius during the anterior SEBT approaching a decrease (P = 0.059). Cooling larger portions of the lower extremities progressively affect dynamic balance, and thermal protection strategies should focus on maintaining temperature in the large muscle mass of the thigh.

  16. Characterization of dynamic loads on the LMFBR rotating shield

    International Nuclear Information System (INIS)

    Morris, E.

    1979-01-01

    The rotating shields structure is a potential weak point of some current designs of primary containment against postulated whole core explosions. The calculation of the effect of transient loads on this structure, resulting from such an explosion, is therefore important in developing a safety case. The transient loads are usually calculated by computer codes such as ASTARTE, SEURBNUK, REXCO or ICECO and the effect of these loads on the structure by a suitable finite element code. Such procedure can be lengthly and costly. The present paper proposed a procedure which allows the consequences of changes in the transient loads, resulting from design changes for example, to be quickly and simply gauged. The load-impulse method of characterizing dynamic response of a structural system is well established. Provided loads with a similar temporal variation are compared, it can be shown that the dynamic response depends on only two features of the load, an average load and a time intregrated load or impulse. The scope of this approach has been extended by Youngdahl who has shown, for structures which deform in a rigid-plastic manner, that complex laoding histories can be equated to a rectangular form of loading, in a precise manner for simple structures and in an approximate manner for more complicated structures. This paper proposes that the failure characteristics of the rotating shields for which extensive plastic deformation is involved, be calculated for rectangular type loadings. The complex transient loadings calculated for various explosions and various changes in the primary vessel design can then be reduced to an equivalent rectangular form and the consequencial response of the shields structure deduced. (orig.)

  17. Dissipation and energy balance in electronic dynamics of Na clusters

    Science.gov (United States)

    Vincendon, Marc; Suraud, Eric; Reinhard, Paul-Gerhard

    2017-06-01

    We investigate the impact of dissipation on the energy balance in the electron dynamics of metal clusters excited by strong electro-magnetic pulses. The dynamics is described theoretically by Time-Dependent Density-Functional Theory (TDDFT) at the level of Local Density Approximation (LDA) augmented by a self interaction correction term and a quantum collision term in Relaxation-Time Approximation (RTA). We evaluate the separate contributions to the total excitation energy, namely energy exported by electron emission, potential energy due to changing charge state, intrinsic kinetic and potential energy, and collective flow energy. The balance of these energies is studied as function of the laser parameters (frequency, intensity, pulse length) and as function of system size and charge. We also look at collisions with a highly charged ion and here at the dependence on the impact parameter (close versus distant collisions). Dissipation turns out to be small where direct electron emission prevails namely for laser frequencies above any ionization threshold and for slow electron extraction in distant collisions. Dissipation is large for fast collisions and at low laser frequencies, particularly at resonances. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  18. Load Balancing Scheme on the Basis of Huffman Coding for P2P Information Retrieval

    Science.gov (United States)

    Kurasawa, Hisashi; Takasu, Atsuhiro; Adachi, Jun

    Although a distributed index on a distributed hash table (DHT) enables efficient document query processing in Peer-to-Peer information retrieval (P2P IR), the index costs a lot to construct and it tends to be an unfair management because of the unbalanced term frequency distribution. We devised a new distributed index, named Huffman-DHT, for P2P IR. The new index uses an algorithm similar to Huffman coding with a modification to the DHT structure based on the term distribution. In a Huffman-DHT, a frequent term is assigned to a short ID and allocated a large space in the node ID space in DHT. Throuth ID management, the Huffman-DHT balances the index registration accesses among peers and reduces load concentrations. Huffman-DHT is the first approach to adapt concepts of coding theory and term frequency distribution to load balancing. We evaluated this approach in experiments using a document collection and assessed its load balancing capabilities in P2P IR. The experimental results indicated that it is most effective when the P2P system consists of about 30, 000 nodes and contains many documents. Moreover, we proved that we can construct a Huffman-DHT easily by estimating the probability distribution of the term occurrence from a small number of sample documents.

  19. Enhanced method of fast re-routing with load balancing in software-defined networks

    Science.gov (United States)

    Lemeshko, Oleksandr; Yeremenko, Oleksandra

    2017-11-01

    A two-level method of fast re-routing with load balancing in a software-defined network (SDN) is proposed. The novelty of the method consists, firstly, in the introduction of a two-level hierarchy of calculating the routing variables responsible for the formation of the primary and backup paths, and secondly, in ensuring a balanced load of the communication links of the network, which meets the requirements of the traffic engineering concept. The method provides implementation of link, node, path, and bandwidth protection schemes for fast re-routing in SDN. The separation in accordance with the interaction prediction principle along two hierarchical levels of the calculation functions of the primary (lower level) and backup (upper level) routes allowed to abandon the initial sufficiently large and nonlinear optimization problem by transiting to the iterative solution of linear optimization problems of half the dimension. The analysis of the proposed method confirmed its efficiency and effectiveness in terms of obtaining optimal solutions for ensuring balanced load of communication links and implementing the required network element protection schemes for fast re-routing in SDN.

  20. Purinergic responses of chondrogenic stem cells to dynamic loading

    Directory of Open Access Journals (Sweden)

    Gađanski Ivana

    2013-01-01

    Full Text Available In habitually loaded tissues, dynamic loading can trigger ATP (adenosine 5’- triphosphate release to extracellular environment, and result in calcium signaling via ATP binding to purine P2 receptors1. In the current study we have compared purinergic responses (ATP release of two types of cells: bovine chondrocytes (bCHs and human mesenchymal stem cells (hMSC that were encapsulated in agarose and subjected to dynamic loading. Both cell types were cultured under chondrogenic conditions, and their responses to loading were evaluated by ATP release assay in combination with connexin (Cx-sensitive fluorescent dye (Lucifer Yellow - LY and a Cx-hemichannel blocker (Flufenamic acid - FFA. In response to dynamic loading, chondrogenic hMSCs released significantly higher amounts of ATP (5-fold in comparison to the bCHs early in culture (day 2. Triggering of LY uptake in the bCHs and hMSCs by dynamic loading implies opening of the Cx-hemichannels. However, the number of LY-positive cells in hMSC-constructs was 2.5-fold lower compared to the loaded bCH-constructs, suggesting utilization of additional mechanisms of ATP release. Cx-reactive sites were detected in both bCHs and hMSCs-constructs. FFA application led to reduced ATP release both in bCHs and hMSCs, which confirms the involvement of connexin hemichannels, with more prominent effects in bCHs than in hMSCs, further implying the existence of additional mechanism of ATP release in chondrogenic hMSCs. Taken together, these results indicate stronger purinergic response to dynamic loading of chondrogenic hMSCs than primary chondrocytes, by activation of connexin hemichannels and additional mechanisms of ATP release. [Projekat Ministrastva nauke Republike Srbije, ON174028 i br. III41007

  1. STUDY ON HEAT DYNAMIC LOADING OF RUBBER

    Directory of Open Access Journals (Sweden)

    T. I. Igumenova

    2015-01-01

    Full Text Available A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodifiers (fulleren technical carbon in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physico-chemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinz-Petrikeev, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.

  2. A network flow model for load balancing in circuit-switched multicomputers

    Science.gov (United States)

    Bokhari, Shahid H.

    1990-01-01

    In multicomputers that utilize circuit switching or wormhole routing, communication overhead depends largely on link contention - the variation due to distance between nodes is negligible. This has a major impact on the load balancing problem. In this case, there are some nodes with excess load (sources) and others with deficit load (sinks) and it is required to find a matching of sources to sinks that avoids contention. The problem is made complex by the hardwired routing on currently available machines: the user can control only which nodes communicate but not how the messages are routed. Network flow models of message flow in the mesh and the hypercube were developed to solve this problem. The crucial property of these models is the correspondence between minimum cost flows and correctly routed messages. To solve a given load balancing problem, a minimum cost flow algorithm is applied to the network. This permits one to determine efficiently a maximum contention free matching of sources to sinks which, in turn, tells one how much of the given imbalance can be eliminated without contention.

  3. Programming Algorithms of load balancing with HA-Proxy in HTTP services

    Directory of Open Access Journals (Sweden)

    José Teodoro Mejía Viteri

    2018-02-01

    Full Text Available The access to the public and private services through the web gains daily protagonism, and sometimes they must support amounts of requests that a team can not process, so there are solutions that use algorithms that allow to distribute the load of requests of a web application in several equipment; the objective of this work is to perform an analysis of load balancing scheduling algorithms through the HA-Proxy tool, and deliver an instrument that identifies the load distribution algorithm to be used and the technological infrastructure, to largely cover implementation. The information used for this work is based on a bibliographic analysis, eld study and implementation of the different load balancing algorithms in equipment, where the distribution and its performance will be analyzed. The incorporation of this technology to the management of services on the web, improves availability, helps business continuity and through the different forms of distribution of the requests of the algorithms that can be implemented in HA-Proxy to provide those responsible for information technology systems with a view of their advantages and disadvantages.

  4. Dynamic Response of Coarse Granular Material to Wave Load

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    1998-01-01

    The soil beneath vertical breakwaters is subjected to a combination of forces induced by the waves. The forces acting on the soil can be characterized as 1) static load due to submerged weight of the structure, 2) quasi-static forces induced by cyclic wave loading, and 3) wave impact from breaking...... waves. The stress conditions in the soil below a foundation exposed to these types of loading are very complex. The key to explain and quantify the soil response beneath a vertical breakwater is to understand the role of the volume changes and to be able to model these correctly. It is shown...... that the volume changes in soil subjected to static and dynamic loading are controlled by the characteristic line. Experiments have been performed to study the factors that influence the location of the characteristic line in drained and undrained tests for various types of sand and various types of loading...

  5. Quantitative analysis of impact measurements using dynamic load cells

    Directory of Open Access Journals (Sweden)

    Brent J. Maranzano

    2016-03-01

    Full Text Available A mathematical model is used to estimate material properties from a short duration transient impact force measured by dropping spheres onto rectangular coupons fixed to a dynamic load cell. The contact stress between the dynamic load cell surface and the projectile are modeled using Hertzian contact mechanics. Due to the short impact time relative to the load cell dynamics, an additional Kelvin–Voigt element is included in the model to account for the finite response time of the piezoelectric crystal. Calculations with and without the Kelvin–Voigt element are compared to experimental data collected from combinations of polymeric spheres and polymeric and metallic surfaces. The results illustrate that the inclusion of the Kelvin–Voigt element qualitatively captures the post impact resonance and non-linear behavior of the load cell signal and quantitatively improves the estimation of the Young's elastic modulus and Poisson's ratio. Mathematically, the additional KV element couples one additional differential equation to the Hertzian spring-dashpot equation. The model can be numerically integrated in seconds using standard numerical techniques allowing for its use as a rapid technique for the estimation of material properties. Keywords: Young's modulus, Poisson's ratio, Dynamic load cell

  6. L2-LBMT: A Layered Load Balance Routing Protocol for underwater multimedia data transmission

    Science.gov (United States)

    Lv, Ze; Tang, Ruichun; Tao, Ye; Sun, Xin; Xu, Xiaowei

    2017-12-01

    Providing highly efficient underwater transmission of mass multimedia data is challenging due to the particularities of the underwater environment. Although there are many schemes proposed to optimize the underwater acoustic network communication protocols, from physical layer, data link layer, network layer to transport layer, the existing routing protocols for underwater wireless sensor network (UWSN) still cannot well deal with the problems in transmitting multimedia data because of the difficulties involved in high energy consumption, low transmission reliability or high transmission delay. It prevents us from applying underwater multimedia data to real-time monitoring of marine environment in practical application, especially in emergency search, rescue operation and military field. Therefore, the inefficient transmission of marine multimedia data has become a serious problem that needs to be solved urgently. In this paper, A Layered Load Balance Routing Protocol (L2-LBMT) is proposed for underwater multimedia data transmission. In L2-LBMT, we use layered and load-balance Ad Hoc Network to transmit data, and adopt segmented data reliable transfer (SDRT) protocol to improve the data transport reliability. And a 3-node variant of tornado (3-VT) code is also combined with the Ad Hoc Network to transmit little emergency data more quickly. The simulation results show that the proposed protocol can balance energy consumption of each node, effectively prolong the network lifetime and reduce transmission delay of marine multimedia data.

  7. Feasibility of Applying Controllable Lubrication to Dynamically Loaded Journal Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    A multibody dynamic model of the main mechanical components of a hermetic reciprocating compressor is presented in this work. Considering that some of the mechanical elements are interconnected via thin fluid films, the multibody dynamic model is coupled to the equations from the dynamics...... of the fluid films, based on fluid film theory. For a dynamically loaded journal bearing, the fluid film pressure distribution can be computed by numerically solving the Reynolds equation, by means of finite-difference method. Particularly, in this study the main focus is on the lubrication behavior...... and reaction forces in a reciprocating compressor have a cyclic behavior, periodic oil pressure injection rules based on the instantaneous crank angle and load bearing condition can be established. In this paper, several bearing configurations working under different oil pressure injection rules conditions...

  8. Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm.

    Science.gov (United States)

    Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian

    2016-01-01

    With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.

  9. Nonlinear dynamics analysis of the human balance control subjected to physical and sensory perturbations.

    Science.gov (United States)

    Ashtiani, Mohammed N; Mahmood-Reza, Azghani

    2017-01-01

    Postural control after applying perturbation involves neural and muscular efforts to limit the center of mass (CoM) motion. Linear dynamical approaches may not unveil all complexities of body efforts. This study was aimed at determining two nonlinear dynamics parameters (fractal dimension (FD) and largest Lyapunov exponent (LLE)) in addition to the linear standing metrics of balance in perturbed stance. Sixteen healthy young males were subjected to sudden rotations of the standing platform. The vision and cognition during the standing were also interfered. Motion capturing was used to measure the lower limb joints and the CoM displacements. The CoM path length as a linear parameter was increased by elimination of vision (pnonlinear metric FD was decreased due to the cognitive loads (pnonlinear metrics of the perturbed stance showed that a combination of them may properly represent the body behavior.

  10. Application of self-balanced loading test to socketed pile in weak rock

    Science.gov (United States)

    Cheng, Ye; Gong, Weiming; Dai, Guoliang; Wu, JingKun

    2008-11-01

    Method of self-balanced loading test differs from the traditional methods of pile test. The key equipment of the test is a cell. The cell specially designed is used to exert load which is placed in pile body. During the test, displacement values of the top plate and the bottom plate of the cell are recorded according to every level of load. So Q-S curves can be obtained. In terms of test results, the bearing capacity of pile can be judged. Equipments of the test are simply and cost of it is low. Under some special conditions, the method will take a great advantage. In Guangxi Province, tertiary mudstone distributes widely which is typical weak rock. It is usually chosen as the bearing stratum of pile foundation. In order to make full use of its high bearing capacity, pile is generally designed as belled pile. Foundations of two high-rise buildings which are close to each other are made up of belled socketed piles in weak rock. To obtain the bearing capacity of the belled socketed pile in weak rock, loading test in situ should be taken since it is not reasonable that experimental compression strength of the mudstone is used for design. The self-balanced loading test was applied to eight piles of two buildings. To get the best test effect, the assembly of cell should be taken different modes in terms of the depth that pile socketed in rock and the dimension of the enlarged toe. The assembly of cells had been taken three modes, and tests were carried on successfully. By the self-balanced loading test, the large bearing capacities of belled socketed piles were obtained. Several key parameters required in design were achieved from the tests. For the data of tests had been analyzed, the bearing performance of pile tip, pile side and whole pile was revealed. It is further realized that the bearing capacity of belled socketed pile in the mudstone will decrease after the mudstone it socketed in has been immerged. Among kinds of mineral ingredient in the mudstone

  11. Dynamic loads during failure risk assessment of bridge crane structures

    Science.gov (United States)

    Gorynin, A. D.; Antsev, V. Yu; Shaforost, A. N.

    2018-03-01

    The paper presents the method of failure risk assessment associated with a bridge crane metal structure at the design stage. It also justifies the necessity of taking into account dynamic loads with regard to the operational cycle of a bridge crane during failure risk assessment of its metal structure.

  12. Shaft centre orbit for dynamically loaded radial bearings

    DEFF Research Database (Denmark)

    Klit, Peder; Vølund, Anders

    2002-01-01

    The aim of this work is to demonstrate how to utilize the bearings damping coefficients to estimate the orbit for a dynamically loaded journal bearing. The classical method for this analysis was developed by Booker in 1965 Booker1 and described further in 1972 Booker2. Several authors have refine...

  13. 46 CFR 154.409 - Dynamic loads from vessel motion.

    Science.gov (United States)

    2010-10-01

    ... in length and is an analysis by the following formulae that corresponds to a 10−8 probability level... EC02FE91.086 (d) If a cargo tank is designed to avoid fatigue, the dynamic loads determined under paragraph...

  14. Dynamic modelling of heavy metals - time scales and target loads

    NARCIS (Netherlands)

    Posch, M.; Vries, de W.

    2009-01-01

    Over the past decade steady-state methods have been developed to assess critical loads of metals avoiding long-term risks in view of food quality and eco-toxicological effects on organisms in soils and surface waters. However, dynamic models are needed to estimate the times involved in attaining a

  15. Dynamic analysis of reactor containment subjected to aircraft impact loading

    International Nuclear Information System (INIS)

    Li Xiaotian; He Shuyan

    2004-01-01

    In this paper, dynamic character of reactor containment subjected to aircraft impact loading is analyzed with MSC.DYTRAN program. The displacement of concrete and velocity curve of airplane is obtained. The results of the different material model are compared with empirical formula. It is concluded that reasonable result can be obtained using cap model for concrete

  16. Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Beth Leigh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT* when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis

  17. Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients.

    Science.gov (United States)

    Cho, Ki Hun; Lee, Kyoung Jin; Song, Chang Ho

    2012-09-01

    Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.

  18. Optimized balance rehabilitation training strategy for the elderly through an evaluation of balance characteristics in response to dynamic motions

    Science.gov (United States)

    Jung, HoHyun; Chun, Keyoung Jin; Hong, Jaesoo; Lim, Dohyung

    2015-01-01

    Balance is important in daily activities and essential for maintaining an independent lifestyle in the elderly. Recent studies have shown that balance rehabilitation training can improve the balance ability of the elderly, and diverse balance rehabilitation training equipment has been developed. However, there has been little research into optimized strategies for balance rehabilitation training. To provide an optimized strategy, we analyzed the balance characteristics of participants in response to the rotation of a base plate on multiple axes. Seven male adults with no musculoskeletal or nervous system-related diseases (age: 25.5±1.7 years; height: 173.9±6.4 cm; body mass: 71.3±6.5 kg; body mass index: 23.6±2.4 kg/m2) were selected to investigate the balance rehabilitation training using customized rehabilitation equipment. Rotation of the base plate of the equipment was controlled to induce dynamic rotation of participants in the anterior–posterior, right-diagonal, medial–lateral, and left-diagonal directions. We used a three-dimensional motion capture system employing infrared cameras and the Pedar Flexible Insoles System to characterize the major lower-extremity joint angles, center of body mass, and center of pressure. We found statistically significant differences between the changes in joint angles in the lower extremities in response to dynamic rotation of the participants (P0.05). These results indicate that optimizing rotation control of the base plate of balance rehabilitation training equipment to induce anterior–posterior and medial–lateral dynamic rotation preferentially can lead to effective balance training. Additional tests with varied speeds and ranges of angles of base plate rotation are expected to be useful as well as an analysis of the balance characteristics considering a balance index that reflects the muscle activity and cooperative characteristics. PMID:26508847

  19. Load Balancing Issues with Constructing Phylogenetic Trees using Neighbour-Joining Algorithm

    International Nuclear Information System (INIS)

    Al Mamun, S M

    2012-01-01

    Phylogenetic tree construction is one of the most important and interesting problems in bioinformatics. Constructing an efficient phylogenetic tree has always been a research issue. It needs to consider both the correctness and the speed of the tree construction. In this paper, we implemented the neighbour-joining algorithm, using Message Passing Interface (MPI) for constructing the phylogenetic tree. Performance is efficacious, comparing to the best sequential algorithm. From this paper, it would be clear to the researchers that how load balance can make a great effect for constructing phylogenetic trees using neighbour-joining algorithm.

  20. A high performance load balance strategy for real-time multicore systems.

    Science.gov (United States)

    Cho, Keng-Mao; Tsai, Chun-Wei; Chiu, Yi-Shiuan; Yang, Chu-Sing

    2014-01-01

    Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS). Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.

  1. A High Performance Load Balance Strategy for Real-Time Multicore Systems

    Directory of Open Access Journals (Sweden)

    Keng-Mao Cho

    2014-01-01

    Full Text Available Finding ways to distribute workloads to each processor core and efficiently reduce power consumption is of vital importance, especially for real-time systems. In this paper, a novel scheduling algorithm is proposed for real-time multicore systems to balance the computation loads and save power. The developed algorithm simultaneously considers multiple criteria, a novel factor, and task deadline, and is called power and deadline-aware multicore scheduling (PDAMS. Experiment results show that the proposed algorithm can greatly reduce energy consumption by up to 54.2% and the deadline times missed, as compared to the other scheduling algorithms outlined in this paper.

  2. Adaptive control of structural balance for complex dynamical networks based on dynamic coupling of nodes

    Science.gov (United States)

    Gao, Zilin; Wang, Yinhe; Zhang, Lili

    2018-02-01

    In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.

  3. Dynamic Regression Intervention Modeling for the Malaysian Daily Load

    Directory of Open Access Journals (Sweden)

    Fadhilah Abdrazak

    2014-05-01

    Full Text Available Malaysia is a unique country due to having both fixed and moving holidays.  These moving holidays may overlap with other fixed holidays and therefore, increase the complexity of the load forecasting activities. The errors due to holidays’ effects in the load forecasting are known to be higher than other factors.  If these effects can be estimated and removed, the behavior of the series could be better viewed.  Thus, the aim of this paper is to improve the forecasting errors by using a dynamic regression model with intervention analysis.   Based on the linear transfer function method, a daily load model consists of either peak or average is developed.  The developed model outperformed the seasonal ARIMA model in estimating the fixed and moving holidays’ effects and achieved a smaller Mean Absolute Percentage Error (MAPE in load forecast.

  4. Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms

    NARCIS (Netherlands)

    van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens

    2012-01-01

    Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic

  5. Dynamic queuing transmission model for dynamic network loading

    DEFF Research Database (Denmark)

    Raovic, Nevena; Nielsen, Otto Anker; Prato, Carlo Giacomo

    2017-01-01

    and allowing for the representation of multiple vehicle classes, queue spillbacks and shock waves. The model assumes that a link is split into a moving part plus a queuing part, and p that traffic dynamics are given by a triangular fundamental diagram. A case-study is investigated and the DQTM is compared...

  6. Reduction of Dynamic Loads in Mine Lifting Installations

    Science.gov (United States)

    Kuznetsov, N. K.; Eliseev, S. V.; Perelygina, A. Yu

    2018-01-01

    Article is devoted to a problem of decrease in the dynamic loadings arising in transitional operating modes of the mine lifting installations leading to heavy oscillating motions of lifting vessels and decrease in efficiency and reliability of work. The known methods and means of decrease in dynamic loadings and oscillating motions of the similar equipment are analysed. It is shown that an approach based on the concept of the inverse problems of dynamics can be effective method of the solution of this problem. The article describes the design model of a one-ended lifting installation in the form of a two-mass oscillation system, in which the inertial elements are the mass of the lifting vessel and the reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of this system and results of an efficiency research of an active way of reduction of dynamic loadings of lifting installation on the basis of the concept of the inverse problems of dynamics are given.

  7. PPOOLEX experiments on dynamic loading with pressure feedback

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-01-01

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  8. PPOOLEX experiments on dynamic loading with pressure feedback

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  9. Effects of static pre-loading on the dynamic stability of a column on ...

    African Journals Online (AJOL)

    This paper presents, from strictly analytical consideration, the dynamic analysis of a finite column stressed by a step load but in the presence of a previously imposed static load. The results show that (a) the dynamic buckling load for this type of loading is relatively higher than that of a similar column stressed by a step load ...

  10. Design of dynamic loading support on high temperature pipe

    International Nuclear Information System (INIS)

    Sitandung, Y.B.; Bandriyana, B.

    2002-01-01

    As a follow up to pipe stress analysis result caused by high temperature operation loading, a design of dynamic loading support was made. The type of variable and constant support as acceptable choosing are applicated for reduce of over stress and over load on piping system. Analysis line schedule of AP600 as an example with apply three dynamic loading support (two type variable and one type constant support). The pre-design of the third support above are based on analysis result with follow the support catalog and field condition wherein its supports are installed. To guarantee the performance and accurate of the support, checking is performed for spring working rate tolerance, support variability and swing angle. The design results of variable spring are loads, size, working rate, type tolerance, spring rate, variability, long and sway angle with each values 5000; 15; 1,25; VM; 0.655; 1080; 0.114; 114,5; 0,48 for S1 and 2045; 12; 0,583; VS; 0,237; 900; 0,132; 130; 0,34 for S3

  11. Analysis of temperature changes on three-phase synchronous generator using infrared: comparison between balanced and unbalanced load

    Science.gov (United States)

    Amien, S.; Yoga, W.; Fahmi, F.

    2018-02-01

    Synchronous generators are a major tool in an electrical energy generating systems, the load supplied by the generator is unbalanced. This paper discusses the effect of synchronous generator temperature on the condition of balanced load and unbalanced load, which will then be compared with the measurement result of both states of the generator. Unbalanced loads can be caused by various asymmetric disturbances in the power system and the failure of load forecasting studies so that the load distribution in each phase is not the same and causing the excessive heat of the generator. The method used in data collection was by using an infrared thermometer and resistance calculation method. The temperature comparison result between the resistive, inductive and capacitive loads in the highest temperature balance occured when the generator is loaded with a resistive load, where T = 31.9 ° C and t = 65 minutes. While in a state of unbalanced load the highest temperature occured when the generator is loaded with a capacitive load, where T = 40.1 ° C and t = 60 minutes. By understanding this behavior, we can maintain the generator for longer operation life.

  12. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas M.; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\access point (AP) and multiple VLC\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  13. Joint Load Balancing and Power Allocation for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-01-15

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF\\\\access point (AP) and multiple VLC\\\\APs. An iterative algorithm is proposed to distribute the users on the APs and distribute the powers of these APs on their users. In PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for the total achievable data rates maximization. It is proved that the PA optimization problem is concave but not easy to tackle. Therefore, we provide a new algorithm to obtain the optimal dual variables after formulating them in terms of each other. Then, the users that are connected to the overloaded APs and receive less data rates start seeking for other APs that offer higher data rates. Users with lower data rates continue re-connecting from AP to other to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  14. Operational Strategy of CBPs for load balancing of Operators in Advanced Main Control Room

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea

    2014-01-01

    With the using of a computer-based control room in an APR1400 (Advanced Pressurized Reactor-1400), the operators' behaviors in the main control room had changed. However, though the working environment of operators has been changed a great deal, digitalized interfaces can also change the cognitive tasks or activities of operators. First, a shift supervisor (SS) can confirm/check the conduction of the procedures and the execution of actions of board operators (BOs) while confirming directly the operation variables without relying on the BOs. Second, all operators added to their work the use of a new CBP and Soft Controls, increasing their procedural workload. New operational control strategies of CBPs are necessary for load balancing of operator's task load in APR1400. In this paper, we compared the workloads of operators in an APR1400 who work with two different usages of the CBP. They are SS oriented usage and SS-BO collaborative usage. In this research, we evaluated the workloads of operators in an advanced main control room by the COCOA method. Two types of CBP usages were defined and the effects of these usages on the workloads were investigated. The obtained results showed that the workloads between operators in a control room can be balanced according to the CBP usages by assigning control authority to the operators

  15. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    Science.gov (United States)

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-01-01

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism. PMID:29495346

  16. Operational Strategy of CBPs for load balancing of Operators in Advanced Main Control Room

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seunghwan; Kim, Yochan; Jung, Wondea [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    With the using of a computer-based control room in an APR1400 (Advanced Pressurized Reactor-1400), the operators' behaviors in the main control room had changed. However, though the working environment of operators has been changed a great deal, digitalized interfaces can also change the cognitive tasks or activities of operators. First, a shift supervisor (SS) can confirm/check the conduction of the procedures and the execution of actions of board operators (BOs) while confirming directly the operation variables without relying on the BOs. Second, all operators added to their work the use of a new CBP and Soft Controls, increasing their procedural workload. New operational control strategies of CBPs are necessary for load balancing of operator's task load in APR1400. In this paper, we compared the workloads of operators in an APR1400 who work with two different usages of the CBP. They are SS oriented usage and SS-BO collaborative usage. In this research, we evaluated the workloads of operators in an advanced main control room by the COCOA method. Two types of CBP usages were defined and the effects of these usages on the workloads were investigated. The obtained results showed that the workloads between operators in a control room can be balanced according to the CBP usages by assigning control authority to the operators.

  17. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management

    Directory of Open Access Journals (Sweden)

    Bhagya Nathali Silva

    2018-02-01

    Full Text Available The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  18. Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management.

    Science.gov (United States)

    Silva, Bhagya Nathali; Khan, Murad; Han, Kijun

    2018-02-25

    The emergence of smart devices and smart appliances has highly favored the realization of the smart home concept. Modern smart home systems handle a wide range of user requirements. Energy management and energy conservation are in the spotlight when deploying sophisticated smart homes. However, the performance of energy management systems is highly influenced by user behaviors and adopted energy management approaches. Appliance scheduling is widely accepted as an effective mechanism to manage domestic energy consumption. Hence, we propose a smart home energy management system that reduces unnecessary energy consumption by integrating an automated switching off system with load balancing and appliance scheduling algorithm. The load balancing scheme acts according to defined constraints such that the cumulative energy consumption of the household is managed below the defined maximum threshold. The scheduling of appliances adheres to the least slack time (LST) algorithm while considering user comfort during scheduling. The performance of the proposed scheme has been evaluated against an existing energy management scheme through computer simulation. The simulation results have revealed a significant improvement gained through the proposed LST-based energy management scheme in terms of cost of energy, along with reduced domestic energy consumption facilitated by an automated switching off mechanism.

  19. Loading technique for dynamic response studies of geological materials

    International Nuclear Information System (INIS)

    Butler, R.I.; Forrestal, M.J.

    1979-04-01

    A loading technique to study the dynamic response of tuff was explored. Loading is provided by electrically exploding etched copper mesh patterns with current from a capacitor discharge. Pressure pulses with peak pressures up to 1.25 kbar and 0.10 to 0.20 ms durations were measured with a pressure bar. The upper value of peak pressure was limited by the strength of the experimental apparatus, and higher pressure generation is possible with a redesign of test hardware. 6 figures, 2 tables

  20. The relationship between gait parameters and static and dynamic balance in the elderly

    Directory of Open Access Journals (Sweden)

    Razieh Tabe

    2015-02-01

    Full Text Available Background: The physiological changes and muscle problems can lead to balance disorder and increased risk of falling among the elderly. Therefore, it is necessary to evaluate the factors associated with balance in the elderly, to increase their awareness of the falling risks and to provide them with appropriate assistive devices.. Hence, this study was carried out to investigate the relationship between some gait parameters and static and dynamic balance in the elderly. Methods: In this quasi-experimental study, 44 men and women in two groups (22 per group participated as the study sample. The measured values included step length, stride length, step width, rotating angle of toes, and static and dynamic balance. The static balance was measured with Romberg test and dynamic balance with TUGTU test. Data were analysed by SPSS-15 software using t-test and Pearson correlation coefficient. Results: There was a significant relationship between step length and stride length with static and dynamic balance and between step width and dynamic balance (p0/05. But no significant relationship was reported between step width and static balance and between rotating angle of toes with static and dynamic balance among the elderly. Conclusions: the elderly balance can be improved by decreasing the step length and increasing the stride length, thereby reducing the possibility of their falling.

  1. DYNAMIC TIME HISTORY ANALYSIS OF BLAST RESISTANT DOOR USING BLAST LOAD MODELED AS IMPACT LOAD

    Directory of Open Access Journals (Sweden)

    Y. A. Pranata

    2012-06-01

    Full Text Available A blast resistant single door was designed to withstand a 0.91 bar blast pressure and 44 ms blast duration. The analysis was done using Dynamic Time History Analysis using Blast Load modeled as Impact Load for given duration. The material properties used have been modified to accommodate dynamic effects. The analysis was done using dynamic finite element method (fem for time of the blast duration, and the maximum/minimum internal forces and displacement were taken from the time history output, in order to know the behavior under blast load and estimate the safety margin of the door. Results obtained from this research indicated that the maximum z-displacement is 1.709 mm, while in the term of serviceability, the permitted is 25 mm. The maximum reaction force is 73,960 N, while the maximum anchor capacity is 82,069 N. On blast condition, the maximum frame stress is 71.71 MPa, the maximum hinge shear stress is 45.28 MPa. While on rebound condition, the maximum frame stress is 172.11 MPa, the maximum hinge shear stress is 29.46 MPa. The maximum door edge rotation is 0.44 degree, which is not exceed the permitted boundary (1.2 degree. Keywords: Dynamic time history, blast resistant door, single door, finite element method.

  2. Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms

    KAUST Repository

    Fidel, Adam; Jacobs, Sam Ade; Sharma, Shishir; Amato, Nancy M.; Rauchwerger, Lawrence

    2014-01-01

    Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. © 2014 IEEE.

  3. Using Load Balancing to Scalably Parallelize Sampling-Based Motion Planning Algorithms

    KAUST Repository

    Fidel, Adam

    2014-05-01

    Motion planning, which is the problem of computing feasible paths in an environment for a movable object, has applications in many domains ranging from robotics, to intelligent CAD, to protein folding. The best methods for solving this PSPACE-hard problem are so-called sampling-based planners. Recent work introduced uniform spatial subdivision techniques for parallelizing sampling-based motion planning algorithms that scaled well. However, such methods are prone to load imbalance, as planning time depends on region characteristics and, for most problems, the heterogeneity of the sub problems increases as the number of processors increases. In this work, we introduce two techniques to address load imbalance in the parallelization of sampling-based motion planning algorithms: an adaptive work stealing approach and bulk-synchronous redistribution. We show that applying these techniques to representatives of the two major classes of parallel sampling-based motion planning algorithms, probabilistic roadmaps and rapidly-exploring random trees, results in a more scalable and load-balanced computation on more than 3,000 cores. © 2014 IEEE.

  4. A technique for measuring dynamic friction coefficient under impact loading.

    Science.gov (United States)

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  5. The dynamic behavior of mortar under impact-loading

    Science.gov (United States)

    Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner

    2007-06-01

    Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.

  6. Response of porous beryllium to static and dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Isbell, W.M.; Walton, O.R.; Ree, F.H.

    1977-07-01

    Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions.

  7. Response of porous beryllium to static and dynamic loading

    International Nuclear Information System (INIS)

    Isbell, W.M.; Walton, O.R.; Ree, F.H.

    1977-07-01

    Previous investigstions of the mechanical response of porous materials to dynamic loading have been extended to include the shock wave response of a brittle metal. The complex response of berylliums of 85 to 90 percent porosity in two initial conditions has been examined in a theoretical and experimental program to be described. The study has resulted in the development of constitutive relations placed in hydrocodes which are capable of accurately predicting wave propagation in the berylliums. A comprehensive set of static (0 to 4 Gpa) and dynamic (0 to 35 Gpa) experiments was performed to measure the behavior of these brittle, porous materials to imposed loads. The results of the experiments guided a modeling effort which added several new features to previous models, including deviatoric stresses, porosity-dependent relaxation time of pore closure, elastic-plastic reopening of pores, and improved compaction functions

  8. Discontinuity effects in dynamically loaded tilting pad journal bearings

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder; Vølund, Anders

    2011-01-01

    This paper describes two discontinuity effects that can occur when modelling radial tilting pad bearings subjected to high dynamic loads. The first effect to be treated is a pressure build-up discontinuity effect. The second effect is a contact-related discontinuity that disappears when a contact...... force is included in the theoretical model. Methods for avoiding the pressure build-up discontinuity effect are proposed....

  9. Numerical evaluation of cracked pipes under dynamic loading

    International Nuclear Information System (INIS)

    Petit, M.; Jamet, P.

    1989-01-01

    In order to apply the leak-before-break concept to piping systems, the behavior of cracked pipes under dynamic, and especially seismic, loadings must be studied. A simple finite element model of a cracked pipe has been developed and implemented in the general purpose computer code CASTEM 2000. The model is a generalization of the approach proposed by Paris and Tada (1). Considered loads are bending moment and axial force (representing thermal expansion and internal pressure.) The elastic characteristics of the model are determined using the Zahoor formulae for the geometry-dependent factors. Owing to the material behabior plasticity must be taken into account. To represent the crack growth, the material is defined by two characteristic values: J 1c which is the level of energy corresponding to crack initiation and the tearing modulus, T, which governs the length of propagation of the crack. For dynamic loads, unilateral conditions are imposed to represent crack closure. The model has been used for the design of dynamic tests to be conducted on shaking tables. Test principle is briefly described and numerical results are presented. Finally evaluation of margin, due to plasticity, in comparison with the standard design procedure is made

  10. Dynamic intelligent cleaning model of dirty electric load data

    International Nuclear Information System (INIS)

    Zhang Xiaoxing; Sun Caixin

    2008-01-01

    There are a number of dirty data in the load database derived from the supervisory control and data acquisition (SCADA) system. Thus, the data must be carefully and reasonably adjusted before it is used for electric load forecasting or power system analysis. This paper proposes a dynamic and intelligent data cleaning model based on data mining theory. Firstly, on the basis of fuzzy soft clustering, the Kohonen clustering network is improved to fulfill the parallel calculation of fuzzy c-means soft clustering. Then, the proposed dynamic algorithm can automatically find the new clustering center (the characteristic curve of the data) with the updated sample data; At last, it is composed with radial basis function neural network (RBFNN), and then, an intelligent adjusting model is proposed to identify the dirty data. The rapid and dynamic performance of the model makes it suitable for real time calculation, and the efficiency and accuracy of the model is proved by test results of electrical load data analysis in Chongqing

  11. Measures of static postural control moderate the association of strength and power with functional dynamic balance.

    Science.gov (United States)

    Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina

    2014-12-01

    Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p balance tasks. Practical implications for assessment and training are discussed.

  12. Dynamic balance and stepping versus tai chi training to improve balance and stepping in at-risk older adults.

    Science.gov (United States)

    Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B

    2006-12-01

    To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.

  13. Analysis of Dynamic Properties of Piezoelectric Structure under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2015-10-01

    Full Text Available An analytical model of the dynamic properties is established for a piezoelectric structure under impact load, without considering noise and perturbations in this paper. Based on the general theory of piezo-elasticity and impact mechanics, the theoretical solutions of the mechanical and electrical fields of the smart structure are obtained with the standing and traveling wave methods, respectively. The comparisons between the two methods have shown that the standing wave method is better for studying long-time response after an impact load. In addition, good agreements are found between the theoretical and the numerical results. To simulate the impact load, both triangle and step pulse loads are used and comparisons are given. Furthermore, the influence of several parameters is discussed so as to provide some advices for practical use. It can be seen that the proposed analytical model would benefit, to some extent, the design and application (especially the airport runway of the related smart devices by taking into account their impact load performance.

  14. Vortex-induced dynamic loads on a non-spinning volleyball

    Science.gov (United States)

    Qing-ding, Wei; Rong-sheng, Lin; Zhi-jie, Liu

    1988-09-01

    An experiment on vortex-induced dynamic loads on a non-spinning Volleyball was conducted in a wind tunnel. The flow past the Volleyball was visualized, and the aerodynamic load was measured by use of a strain gauge balance. The separation on the Volleyball was measured with hot-film. The experimental results suggest that under the action of an unstable tail vortex system the separation region is changeable, and that the fluctuation of drag and lateral forces is the same order of magnitude as the mean drag, no matter whether the seam of the Volleyball is symmetric or asymmetric, with regard to the flow. Based on the experimental data a numerical simulation of Volleyball swerve motion was made.

  15. Relationships among age, gender, anthropometric characteristics, and dynamic balance in children 5 to 12 years old.

    Science.gov (United States)

    Butz, Sarah M; Sweeney, Jane K; Roberts, Pamela L; Rauh, Mitchell J

    2015-01-01

    To examine relationships among age, gender, anthropometrics, and dynamic balance. Height, weight, and arm and foot length were measured in 160 children with typical development aged 5 to 12 years. Dynamic balance was assessed using the Timed Up and Go (TUG) test, Pediatric Reach Test (PRT), and Pediatric Balance Scale (PBS). Moderate to good positive relationships (r = 0.61 and r = 0.56) were found between increasing age and PRT and PBS scores. A fair negative relationship (r = -0.49) was observed between age and TUG test. No significant gender-by-age group difference was observed. Age had the strongest influence on TUG and PBS scores; arm length had the strongest influence on PRT scores. Dynamic balance ability is directly related to chronological age. Age and arm length have the strongest relationships with balance scores. These findings may assist pediatric therapists in selecting dynamic balance tests according to age rather than specific diagnosis.

  16. Dynamic Loading of Carrara Marble in a Heated State

    Science.gov (United States)

    Wong, Louis Ngai Yuen; Li, Zhihuan; Kang, Hyeong Min; Teh, Cee Ing

    2017-06-01

    Useable land is a finite space, and with a growing global population, countries have been exploring the use of underground space as a strategic resource to sustain the growth of their society and economy. However, the effects of impact loading on rocks that have been heated, and hence the integrity of the underground structure, are still not fully understood and has not been included in current design standards. Such scenarios include traffic accidents and explosions during an underground fire. This study aims to provide a better understanding of the dynamic load capacity of Carrara marble at elevated temperatures. Dynamic uniaxial compression tests are performed on Carrara marble held at various temperatures using a split-Hopkinson Pressure Bar (SHPB) setup with varying input force. A customized oven is included in the SHPB setup to allow for testing of the marble specimens in a heated state. After the loading test, a three-wave analysis is performed to obtain the dynamic stress-strain curve of the specimen under loading. The fragments of the failed specimens were also collected and dry-sieved to obtain the particle size distribution. The results reveal that the peak stress of specimens that have been heated is negatively correlated with the heating temperature. However, the energy absorbed by the specimens at peak stress at all temperatures is similar, indicating that a significant amount of energy is dissipated via plastic deformation. Generally, fragment size is also found to show a negative correlation with heating temperature and loading pressure. However, in some cases this relationship does not hold true, probably due to the occurrence of stress shadowing. Linear Elastic Fracture Mechanics has been found to be generally applicable to specimens tested at low temperatures; but at higher temperatures, Elastic-Plastic Fracture Mechanics will give a more accurate prediction. Another contribution of this study is to show that other than the peak stress of the

  17. Concussion History and Time Since Concussion Do not Influence Static and Dynamic Balance in Collegiate Athletes.

    Science.gov (United States)

    Merritt, Eric D; Brown, Cathleen N; Queen, Robin M; Simpson, Kathy J; Schmidt, Julianne D

    2017-11-01

    Dynamic balance deficits exist following a concussion, sometimes years after injury. However, clinicians lack practical tools for assessing dynamic balance. To determine if there are significant differences in static and dynamic balance performance between individuals with and without a history of concussion. Cross sectional. Clinical research laboratory. 45 collegiate student-athletes with a history of concussion (23 males, 22 females; age = 20.0 ± 1.4 y; height = 175.8 ± 11.6 cm; mass = 76.4 ± 19.2 kg) and 45 matched controls with no history of concussion (23 males, 22 females; age = 20.0 ± 1.3 y; height = 178.8 ± 13.2 cm; mass = 75.7 ± 18.2 kg). Participants completed a static (Balance Error Scoring System) and dynamic (Y Balance Test-Lower Quarter) balance assessment. A composite score was calculated from the mean normalized Y Balance Test-Lower Quarter reach distances. Firm, foam, and overall errors were counted during the Balance Error Scoring System by a single reliable rater. One-way ANOVAs were used to compare balance performance between groups. Pearson's correlations were performed to determine the relationship between the time since the most recent concussion and balance performance. A Bonferonni adjusted a priori α balance performance did not significantly differ between groups. No significant correlation was found between the time since the most recent concussion and balance performance. Collegiate athletes with a history of concussion do not present with static or dynamic balance deficits when measured using clinical assessments. More research is needed to determine whether the Y Balance Test-Lower Quarter is sensitive to acute balance deficits following concussion.

  18. A screw-based dynamic balancing approach, applied to a 5-bar mechanism

    NARCIS (Netherlands)

    de Jong, Jan Johannes; van Dijk, Johannes; Herder, Justus Laurens; Lenarcic, Jadran; Merlet, Jean-Pierre

    2016-01-01

    Dynamic balancing aims to reduce or eliminate the shaking base reaction forces and moments of mechanisms, in order to minimize vibration and wear. The derivation of the dynamic balance conditions requires significant algebraic effort, even for simple mechanisms. In this study, a screw-based

  19. Static and dynamic balance of children and adolescents with sensorineural hearing loss

    OpenAIRE

    Melo, Renato de Souza; Marinho, Sônia Elvira dos Santos; Freire, Maryelly Evelly Araújo; Souza, Robson Arruda; Damasceno, Hélio Anderson Melo; Raposo, Maria Cristina Falcão

    2017-01-01

    ABSTRACT Objective To assess the static and dynamic balance performance of students with normal hearing and with sensorineural hearing loss. Methods A cross-sectional study assessing 96 students, 48 with normal hearing and 48 with sensorineural hearing loss of both sexes, aged 7 and 18 years. To evaluate static balance, Romberg, Romberg-Barré and Fournier tests were used; and for the dynamic balance, we applied the Unterberger test. Results Hearing loss students showed more changes in static ...

  20. Static and dynamic balance of children and adolescents with sensorineural hearing loss

    OpenAIRE

    Melo, Renato de Souza; Marinho, Sônia Elvira dos Santos; Freire, Maryelly Evelly Araújo; Souza, Robson Arruda; Damasceno, Hélio Anderson Melo; Raposo, Maria Cristina Falcão

    2017-01-01

    ABSTRACT Objective To assess the static and dynamic balance performance of students with normal hearing and with sensorineural hearing loss. Methods A cross-sectional study assessing 96 students, 48 with normal hearing and 48 with sensorineural hearing loss of both sexes, aged 7 and 18 years. To evaluate static balance, Romberg, Romberg-Barré and Fournier tests were used; and for the dynamic balance, we applied the Unterberger test. Results Hearing loss students showed more changes in s...

  1. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tom, Nathan M [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  2. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nikhar; Tom, Nathan

    2017-09-01

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalman filter and autoregressive model to evaluate model predictive control performance.

  3. A New Approach of Parallelism and Load Balance for the Apriori Algorithm

    Directory of Open Access Journals (Sweden)

    BOLINA, A. C.

    2013-06-01

    Full Text Available The main goal of data mining is to discover relevant information on digital content. The Apriori algorithm is widely used to this objective, but its sequential version has a low performance when execu- ted over large volumes of data. Among the solutions for this problem is the parallel implementation of the algorithm, and among the parallel implementations presented in the literature that based on Apriori, it highlights the DPA (Distributed Parallel Apriori [10]. This paper presents the DMTA (Distributed Multithread Apriori algorithm, which is based on DPA and exploits the parallelism level of threads in order to increase the performance. Besides, DMTA can be executed over heterogeneous hardware platform, using different number of cores. The results showed that DMTA outperforms DPA, presents load balance among processes and threads, and it is effective in current multicore architectures.

  4. A Secure and Stable Multicast Overlay Network with Load Balancing for Scalable IPTV Services

    Directory of Open Access Journals (Sweden)

    Tsao-Ta Wei

    2012-01-01

    Full Text Available The emerging multimedia Internet application IPTV over P2P network preserves significant advantages in scalability. IPTV media content delivered in P2P networks over public Internet still preserves the issues of privacy and intellectual property rights. In this paper, we use SIP protocol to construct a secure application-layer multicast overlay network for IPTV, called SIPTVMON. SIPTVMON can secure all the IPTV media delivery paths against eavesdroppers via elliptic-curve Diffie-Hellman (ECDH key exchange on SIP signaling and AES encryption. Its load-balancing overlay tree is also optimized from peer heterogeneity and churn of peer joining and leaving to minimize both service degradation and latency. The performance results from large-scale simulations and experiments on different optimization criteria demonstrate SIPTVMON's cost effectiveness in quality of privacy protection, stability from user churn, and good perceptual quality of objective PSNR values for scalable IPTV services over Internet.

  5. Dynamic control of a bistable wing under aerodynamic loading

    International Nuclear Information System (INIS)

    Bilgen, Onur; Arrieta, Andres F; Friswell, Michael I; Hagedorn, Peter

    2013-01-01

    The aerodynamic evaluation of a dynamic control technique applied to a bistable unsymmetrical cross-ply composite plate with surface bonded piezoelectric actuators is presented. The plate is clamped on one end to form a low-aspect-ratio wing. A previously proposed dynamic control method, utilizing bending resonance in different stable equilibrium positions, is used to induce snap-through between the two equilibrium states. Compared to quasi-static actuation, driving the bistable plate near resonance using surface bonded piezoelectric materials requires, theoretically, a lower peak excitation voltage to achieve snap-through. First, a set of extensive wind tunnel experiments are conducted on the passive bistable wing to understand the change in the dynamic behavior under various aerodynamic conditions. The passive wing demonstrated sufficient bending stiffness to sustain its shape under aerodynamic loading while preserving the desired bistable behavior. Next, by the use of the resonant control technique, the plate is turned into an effectively monostable structure, or alternatively, both stable equilibrium positions can be reached actively from the other stable equilibrium. Dynamic forward and reverse snap-through is demonstrated in the wind tunnel which shows both the effectiveness of the piezoelectric actuation as well as the load carrying capability of both states of the bistable wing. (paper)

  6. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad

    2018-04-18

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  7. Joint Optimization of Power Allocation and Load Balancing for Hybrid VLC/RF Networks

    KAUST Repository

    Obeed, Mohanad; Salhab, Anas; Zummo, Salam A.; Alouini, Mohamed-Slim

    2018-01-01

    In this paper, we propose and study a new joint load balancing (LB) and power allocation (PA) scheme for a hybrid visible light communication (VLC) and radio frequency (RF) system consisting of one RF access point (AP) and multiple VLC APs. An iterative algorithm is proposed to distribute users on APs and distribute the powers of the APs on their users. In the PA subproblem, an optimization problem is formulated to allocate the power of each AP to the connected users for total achievable data rate maximization. In this subproblem, we propose a new efficient algorithm that finds optimal dual variables after formulating them in terms of each other. This new algorithm provides faster convergence and better performance than the traditional subgradient method. In addition, it does not depend on the step size or the initial values of the variables, which we look for, as the subgradient does. Then, we start with the user of the minimum data rate seeking another AP that offers a higher data rate for that user. Users with lower data rates continue reconnecting from one AP to another to balance the load only if this travel increases the summation of the achievable data rates and enhances the system fairness. Two approaches are proposed to have the joint PA and LB performed: a main approach that considers the exact interference information for all users, and a suboptimal approach that aims to decrease the complexity of the first approach by considering only the approximate interference information of users. The numerical results demonstrate that the proposed algorithms improve the system capacity and system fairness with fast convergence.

  8. Static and Dynamic Balance in Congenital Severe to Profound Hearing-Impaired Children

    Directory of Open Access Journals (Sweden)

    Farideh HajiHeydari

    2011-09-01

    Full Text Available Background and Aim: Research conducted since the early 1900s has consistently identified differences between deaf and hearing children on performance of a wide variety of motor tasks, most notably balance. Our study was performed to test static and dynamic balance skills in congenital severe to profound hearing impaired children in comparison with normal age-matched children.Methods: This cross-sectional study was conducted on 30 severe to profound hearing impaired and 40 normal children with age 6 to 10 years old. Bruininks-Oseretsky test of motor proficiency 2, balance subset with 9 parts was used for evaluation of balance skills.Results: Hearing-impaired children showed 16.7 to 100% fail results in 7 parts of the balance subset. In normal children fail result was revealed just in 3 parts of the balance subset from 2.5 to 57.5%, and differences between two groups were significant (p<0.0001. There was a significant difference between two groups in two static balance skills of standing on one leg on a line and standing on one leg on a balance beam with eyes closed (p<0.0001.conclusion: It seems that development of static balance skills are longer than dynamic ones. Because severe to profound hearing-impaired children showed more weakness than normal children in both static and dynamic balance abilities, functional tests of balance proficiency can help to identify balance disorders in these children.

  9. 云计算环境下的DPSO资源负载均衡算法%DPSO resource load balancing in cloud computing

    Institute of Scientific and Technical Information of China (English)

    冯小靖; 潘郁

    2013-01-01

    Load balancing problem is one of the hot issues in cloud computing. Discrete particle swarm optimization algoritm is used to research load balancing on cloud computing environment. According to dynamic change of resources demand and low require of servers, each resource management node servers as node of the topological structure, and this paper establishes appropriate resource-task model which is resolved by DPSO. Verification results show that the algorithm enhances the utilization ratio and load balancing of resources.%负载均衡问题是云计算研究的热点问题之一.运用离散粒子群算法对云计算环境下的负载均衡问题进行研究,根据云计算环境下资源需求动态变化,并且对资源节点服务器的要求较低的特点,把各个资源节点当做网络拓扑结构中的各个节点,建立相应的资源-任务分配模型,运用离散粒子群算法实现资源负载均衡.验证表明,该算法提高了资源利用率和云计算资源的负载均衡.

  10. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents.

    Science.gov (United States)

    Emery, Carolyn A; Cassidy, J David; Klassen, Terry P; Rosychuk, Rhonda J; Rowe, Brian B

    2005-06-01

    There is a need in sports medicine for a static and dynamic standing balance measure to quantify balance ability in adolescents. The purposes of this study were to determine the test-retest reliability of timed static (eyes open) and dynamic (eyes open and eyes closed) unipedal balance measurements and to examine factors associated with balance. Adolescents (n=123) were randomly selected from 10 Calgary high schools. This study used a repeated-measures design. One rater measured unipedal standing balance, including timed eyes-closed static (ECS), eyes-open dynamic (EOD), and eyes-closed dynamic (ECD) balance at baseline and 1 week later. Dynamic balance was measured on a foam surface. Reliability was examined using both intraclass correlation coefficients (ICCs) and Bland and Altman statistical techniques. Multiple linear regressions were used to examine other potentially influencing factors. Based on ICCs, test-retest reliability was adequate for ECS, EOD, and ECD balance (ICC=.69, .59, and .46, respectively). The results of Bland and Altman methods, however, suggest that caution is required in interpreting reliability based on ICCs alone. Although both ECS balance and ECD balance appear to demonstrate adequate test-retest reliability by ICC, Bland and Altman methods of agreement demonstrate sufficient reliability for ECD balance only. Thirty percent of the subjects reached the 180-second maximum on EOD balance, suggesting that this test is not appropriate for use in this population. Balance ability (ECS and ECD) was better in adolescents with no past history of lower-extremity injury. Timed ECD balance is an appropriate and reliable clinical measurement for use in adolescents and is influenced by previous injury.

  11. Decrease of dynamic loads in mobile energy means

    Science.gov (United States)

    Polivaev, O. I.; Gorban, L. K.; Vorohobin, A. V.; Vedrinsky, O. S.

    2018-03-01

    The increase in the productivity of machine and tractor units is possible due to the increase in operating speeds, this leads to the emergence of increased dynamic loads in the system “engine-transmission-propulsion unit-soil”, which worsens the performance of machine-tractor aggregates. To reduce fluctuations in the “engine-transmission” system, special vibration dampers are used, which installed in close proximity to the engine and protect well the transmission from uneven engine operation; however, such dampers practically do not eliminate the oscillations of external loads. Reducing dynamic loads on the transmission and the mobile power engine (MPE) is an important issue directly related to improving the performance, reliability and durability of the tractor, as well as reducing the slippage of the drive wheels. In order to reduce effectively dynamic loads on the transmission and on the MPE, it is necessary to introduce resilient damping elements closer to the sources of oscillations, namely, to the driving wheels. At the same time, the elastic-damping element should provide accumulation of vibration energy caused by external influences and have a large energy capacity. The installation of an elastic-damping element in the final link of the tractor transmission ensures a reduction in the magnitude of external influences, thereby protecting the engine and transmission from large dynamic loads, and allows one to reduce the slippage of the propellers, which has a positive effect on the traction and energy characteristics of the tractor. Traction tests of the LTP-55 tractor on a concrete road showed that the use of an elasto-damping drive makes it possible to increase the maximum tractive power from 33.5 to 35.3 kW and to reduce the slipping of propellers by 12-30%, the specific fuel consumption by 6-10%. When driving on stubble, the use of an elastic-damping drive increases the maximum tractive power from 25 to 26 kW, reduces the skidding of propellers by

  12. Acid Balance, Dietary Acid Load, and Bone Effects—A Controversial Subject

    Directory of Open Access Journals (Sweden)

    Lynda Frassetto

    2018-04-01

    Full Text Available Modern Western diets, with higher contents of animal compared to fruits and vegetable products, have a greater content of acid precursors vs. base precursors, which results in a net acid load to the body. To prevent inexorable accumulation of acid in the body and progressively increasing degrees of metabolic acidosis, the body has multiple systems to buffer and titrate acid, including bone which contains large quantities of alkaline salts of calcium. Both in vitro and in vivo studies in animals and humans suggest that bone base helps neutralize part of the dietary net acid load. This raises the question of whether decades of eating a high acid diet might contribute to the loss of bone mass in osteoporosis. If this idea is true, then additional alkali ingestion in the form of net base-producing foods or alkalinizing salts could potentially prevent this acid-related loss of bone. Presently, data exists that support both the proponents as well as the opponents of this hypothesis. Recent literature reviews have tended to support either one side or the other. Assuming that the data cited by both sides is correct, we suggest a way to reconcile the discordant findings. This overview will first discuss dietary acids and bases and the idea of changes in acid balance with increasing age, then review the evidence for and against the usefulness of alkali therapy as a treatment for osteoporosis, and finally suggest a way of reconciling these two opposing points of view.

  13. A 10 bit 200 MS/s pipeline ADC using loading-balanced architecture in 0.18 μm CMOS

    Science.gov (United States)

    Wang, Linfeng; Meng, Qiao; Zhi, Hao; Li, Fei

    2017-07-01

    A new loading-balanced architecture for high speed and low power consumption pipeline analog-to-digital converter (ADC) is presented in this paper. The proposed ADC uses SHA-less, op-amp and capacitor-sharing technique, capacitor-scaling scheme to reduce the die area and power consumption. A new capacitor-sharing scheme was proposed to cancel the extra reset phase of the feedback capacitors. The non-standard inter-stage gain increases the feedback factor of the first stage and makes it equal to the second stage, by which, the load capacitor of op-amp shared by the first and second stages is balanced. As for the fourth stage, the capacitor and op-amp no longer scale down. From the system’s point of view, all load capacitors of the shared OTAs are balanced by employing a loading-balanced architecture. The die area and power consumption are optimized maximally. The ADC is implemented in a 0.18 μm 1P6M CMOS technology, and occupies a die area of 1.2 × 1.2 mm{}2. The measurement results show a 55.58 dB signal-to-noise-and-distortion ratio (SNDR) and 62.97 dB spurious-free dynamic range (SFDR) with a 25 MHz input operating at a 200 MS/s sampling rate. The proposed ADC consumes 115 mW at 200 MS/s from a 1.8 V supply.

  14. Mass balance approaches to assess critical loads and target loads of heavy metals for terrestrial and aquatic ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Groenenberg, J.E.; Posch, M.

    2015-01-01

    Critical loads of heavy metals address not only ecotoxicological effects on organisms in soils and surface waters, but also food quality in view of public health. A critical load for metals is the load resulting at steady state in a metal concentration in a compartment (e.g. soil solution, surface

  15. Current scaling of axially radiated power in dynamic hohlraums and dynamic hohlraum load design for ZR

    International Nuclear Information System (INIS)

    Mock, Raymond Cecil; Nash, Thomas J.; Sanford, Thomas W. L.

    2007-01-01

    We present designs for dynamic hohlraum z-pinch loads on the 28 MA, 140 ns driver ZR. The scaling of axially radiated power with current in dynamic hohlraums is reviewed. With adequate stability on ZR this scaling indicates that 30 TW of axially radiated power should be possible. The performance of the dynamic hohlraum load on the 20 MA, 100 ns driver Z is extensively reviewed. The baseline z-pinch load on Z is a nested tungsten wire array imploding onto on-axis foam. Data from a variety of x-ray diagnostics fielded on Z are presented. These diagnostics include x-ray diodes, bolometers, fast x-ray imaging cameras, and crystal spectrometers. Analysis of these data indicates that the peak dynamic radiation temperature on Z is between 250 and 300 eV from a diameter less than 1 mm. Radiation from the dynamic hohlraum itself or from a radiatively driven pellet within the dynamic hohlraum has been used to probe a variety of matter associated with the dynamic hohlraum: the tungsten z-pinch itself, tungsten sliding across the end-on apertures, a titanium foil over the end aperture, and a silicon aerogel end cap. Data showing the existence of asymmetry in radiation emanating from the two ends of the dynamic hohlraum is presented, along with data showing load configurations that mitigate this asymmetry. 1D simulations of the dynamic hohlraum implosion are presented and compared to experimental data. The simulations provide insight into the dynamic hohlraum behavior but are not necessarily a reliable design tool because of the inherently 3D behavior of the imploding nested tungsten wire arrays

  16. LBMR: Load-Balanced Multipath Routing for Wireless Data-Intensive Transmission in Real-Time Medical Monitoring.

    Science.gov (United States)

    Tseng, Chinyang Henry

    2016-05-31

    In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.

  17. Adaptive control of dynamic balance in human gait on a split-belt treadmill.

    Science.gov (United States)

    Buurke, Tom J W; Lamoth, Claudine J C; Vervoort, Danique; van der Woude, Lucas H V; den Otter, Rob

    2018-05-17

    Human bipedal gait is inherently unstable and staying upright requires adaptive control of dynamic balance. Little is known about adaptive control of dynamic balance in reaction to long-term, continuous perturbations. We examined how dynamic balance control adapts to a continuous perturbation in gait, by letting people walk faster with one leg than the other on a treadmill with two belts (i.e. split-belt walking). In addition, we assessed whether changes in mediolateral dynamic balance control coincide with changes in energy use during split-belt adaptation. In nine minutes of split-belt gait, mediolateral margins of stability and mediolateral foot roll-off changed during adaptation to the imposed gait asymmetry, especially on the fast side, and returned to baseline during washout. Interestingly, no changes in mediolateral foot placement (i.e. step width) were found during split-belt adaptation. Furthermore, the initial margin of stability and subsequent mediolateral foot roll-off were strongly coupled to maintain mediolateral dynamic balance throughout the gait cycle. Consistent with previous results net metabolic power was reduced during split-belt adaptation, but changes in mediolateral dynamic balance control were not correlated with the reduction of net metabolic power during split-belt adaptation. Overall, this study has shown that a complementary mechanism of relative foot positioning and mediolateral foot roll-off adapts to continuously imposed gait asymmetry to maintain dynamic balance in human bipedal gait. © 2018. Published by The Company of Biologists Ltd.

  18. Acute effects of rearfoot manipulation on dynamic standing balance in healthy individuals.

    Science.gov (United States)

    Wassinger, Craig A; Rockett, Ariel; Pitman, Lucas; Murphy, Matthew Matt; Peters, Charles

    2014-06-01

    Dynamic standing balance is essential to perform functional activities and is included in the treatment of many lower extremity injuries. Physiotherapists utilize many methods to restore standing balance including stability exercises, functional retraining, and manual therapy. The purpose of this study was to investigate the effects of a rearfoot distraction manipulation on dynamic standing balance. Twenty healthy participants (age: 24.4 ± 2.8 years; height: 162.9 ± 37.7 cm; mass: 68.0 ± 4.8 kg; right leg dominant = 20) completed this study. Following familiarization, dynamic standing balance was assessed during: (1) an experimental condition immediately following a rearfoot distraction manipulation, and (2) a control condition. Dominant leg balance was quantified using the Y-balance test which measures lower extremity reach distances. Reach distances were normalized to leg length and measured in the anterior, posteromedial and posterolateral directions. Overall balance was calculated through the summing of all normalized directions. Paired t-tests and Wilcoxon rank tests were used to compare balance scores for parametric and non-parametric data as appropriate. Significance was set at 0.05 a priori. Effect size (ES) was calculated to determine the clinical impact of the manipulation. Increased reach distances (indicating improved balance) were noted following manipulation for overall balance (p = 0.03, ES = 0.26) and in the posteromedial direction (p = 0.01, ES = 0.42). Reach distances did not differ for the anterior (p = 0.11, ES = 0.16) or posterolateral (p = 0.11, ES = 0.25) components. Dynamic standing balance improved after a rearfoot distraction manipulation in healthy participants. It is hypothesized that manual therapy applied to the foot and ankle may be beneficial to augment other therapeutic modalities when working with patients to improve dynamic standing balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Automatic provisioning, deployment and orchestration for load-balancing THREDDS instances

    Science.gov (United States)

    Cofino, A. S.; Fernández-Tejería, S.; Kershaw, P.; Cimadevilla, E.; Petri, R.; Pryor, M.; Stephens, A.; Herrera, S.

    2017-12-01

    THREDDS is a widely used web server to provide to different scientific communities with data access and discovery. Due to THREDDS's lack of horizontal scalability and automatic configuration management and deployment, this service usually deals with service downtimes and time consuming configuration tasks, mainly when an intensive use is done as is usual within the scientific community (e.g. climate). Instead of the typical installation and configuration of a single or multiple independent THREDDS servers, manually configured, this work presents an automatic provisioning, deployment and orchestration cluster of THREDDS servers. This solution it's based on Ansible playbooks, used to control automatically the deployment and configuration setup on a infrastructure and to manage the datasets available in THREDDS instances. The playbooks are based on modules (or roles) of different backends and frontends load-balancing setups and solutions. The frontend load-balancing system enables horizontal scalability by delegating requests to backend workers, consisting in a variable number of instances for the THREDDS server. This implementation allows to configure different infrastructure and deployment scenario setups, as more workers are easily added to the cluster by simply declaring them as Ansible variables and executing the playbooks, and also provides fault-tolerance and better reliability since if any of the workers fail another instance of the cluster can take over it. In order to test the solution proposed, two real scenarios are analyzed in this contribution: The JASMIN Group Workspaces at CEDA and the User Data Gateway (UDG) at the Data Climate Service from the University of Cantabria. On the one hand, the proposed configuration has provided CEDA with a higher level and more scalable Group Workspaces (GWS) service than the previous one based on Unix permissions, improving also the data discovery and data access experience. On the other hand, the UDG has improved its

  20. Dynamic balance during walking adaptability tasks in individuals post-stroke.

    Science.gov (United States)

    Vistamehr, Arian; Balasubramanian, Chitralakshmi K; Clark, David J; Neptune, Richard R; Fox, Emily J

    2018-04-24

    Maintaining dynamic balance during community ambulation is a major challenge post-stroke. Community ambulation requires performance of steady-state level walking as well as tasks that require walking adaptability. Prior studies on balance control post-stroke have mainly focused on steady-state walking, but walking adaptability tasks have received little attention. The purpose of this study was to quantify and compare dynamic balance requirements during common walking adaptability tasks post-stroke and in healthy adults and identify differences in underlying mechanisms used for maintaining dynamic balance. Kinematic data were collected from fifteen individuals with post-stroke hemiparesis during steady-state forward and backward walking, obstacle negotiation, and step-up tasks. In addition, data from ten healthy adults provided the basis for comparison. Dynamic balance was quantified using the peak-to-peak range of whole-body angular-momentum in each anatomical plane during the paretic, nonparetic and healthy control single-leg-stance phase of the gait cycle. To understand differences in some of the key underlying mechanisms for maintaining dynamic balance, foot placement and plantarflexor muscle activation were examined. Individuals post-stroke had significant dynamic balance deficits in the frontal plane across most tasks, particularly during the paretic single-leg-stance. Frontal plane balance deficits were associated with wider paretic foot placement, elevated body center-of-mass, and lower soleus activity. Further, the obstacle negotiation task imposed a higher balance requirement, particularly during the trailing leg single-stance. Thus, improving paretic foot placement and ankle plantarflexor activity, particularly during obstacle negotiation, may be important rehabilitation targets to enhance dynamic balance during post-stroke community ambulation. Copyright © 2018. Published by Elsevier Ltd.

  1. Effect of support conditions on structural response under dynamic loading

    International Nuclear Information System (INIS)

    Akram, T.; Memon, S.A.

    2008-01-01

    In design practice, dynamic structural analysis is carried out with base of structure considered as fixed; this means that foundation is placed on rock like soil material. While conducting this type of analyses the role of foundation and soil behaviour is totally neglected. The actions in members and loads transferred at foundation level obtained in this manner do not depict the true structural behaviour. FEM (Finite Element Methods) analysis where both superstructure and foundation soil are coupled together is quite complicated and expensive for design environments. A simplified model is required to depict dynamic response of structures with foundations based on flexible soils. The primary purpose of this research is to compare the superstructure dynamic responses of structural systems with fixed base to that of simple soil model base. The selected simple soil model is to be suitable for use in a design environment to give more realistic results. For this purpose building models are idealized with various heights and structural systems in both 2D (Two Dimensional) and 3D (Three Dimensional) space. These models are then provided with visco-elastic supports representing three soil bearing capacities and the analysis results are compared to that of fixed supports models. The results indicate that fixed support system underestimates natural time period of the structures. Dynamic behavior and force response of visco-elastic support is different from fixed support model. Fixed support models result in over designed base columns and under designed beams. (author)

  2. Dynamic loads on reactor vessel components by low pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-01-01

    Starting from the conservation theorems for mass and impulses the code DRUWE has been developed enabling the calculation of dynamic loads of the reactor shell on the basis of simplified assumptions for the first period shortly after rupture. According to the RSK-guidelines it can be assumed that the whole weld size is opened within 15 msec. This time-dependent opening of the fractured plane can be taken into account in the computer program. The calculation is composed in a way that for a reactor shell devided into cross and angle sections the local, chronological pressure and strength curves, the total dynamic load as well as the moments acting on the fastenings of the reactor shell can be calculated. As input data only geometrical details concerning the concept of the pressure vessel and its components as well as the effective subcooling of the fluid are needed. By means of several parameters the program can be operated in a way that the results are available in form of listings or diagrams, respectively, but also as card pile for further examinations, e.g. strength analysis. (orig./RW) [de

  3. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    Energy Technology Data Exchange (ETDEWEB)

    PLIMPTON,STEVEN J.; SEIDEL,DAVID B.; PASIK,MICHAEL F.; COATS,REBECCA S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER.

  4. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs.

    Science.gov (United States)

    Lin, Chun-Yuan; Wang, Chung-Hung; Hung, Che-Lun; Lin, Yu-Shiang

    2015-01-01

    Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n (2)), where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC). The intrinsic time complexity of MCC problem is O(k (2) n (2)) with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  5. Accelerating Multiple Compound Comparison Using LINGO-Based Load-Balancing Strategies on Multi-GPUs

    Directory of Open Access Journals (Sweden)

    Chun-Yuan Lin

    2015-01-01

    Full Text Available Compound comparison is an important task for the computational chemistry. By the comparison results, potential inhibitors can be found and then used for the pharmacy experiments. The time complexity of a pairwise compound comparison is O(n2, where n is the maximal length of compounds. In general, the length of compounds is tens to hundreds, and the computation time is small. However, more and more compounds have been synthesized and extracted now, even more than tens of millions. Therefore, it still will be time-consuming when comparing with a large amount of compounds (seen as a multiple compound comparison problem, abbreviated to MCC. The intrinsic time complexity of MCC problem is O(k2n2 with k compounds of maximal length n. In this paper, we propose a GPU-based algorithm for MCC problem, called CUDA-MCC, on single- and multi-GPUs. Four LINGO-based load-balancing strategies are considered in CUDA-MCC in order to accelerate the computation speed among thread blocks on GPUs. CUDA-MCC was implemented by C+OpenMP+CUDA. CUDA-MCC achieved 45 times and 391 times faster than its CPU version on a single NVIDIA Tesla K20m GPU card and a dual-NVIDIA Tesla K20m GPU card, respectively, under the experimental results.

  6. The effects of cognitive loading on balance control in patients with multiple sclerosis.

    Science.gov (United States)

    Negahban, Hossein; Mofateh, Razieh; Arastoo, Ali Asghar; Mazaheri, Masood; Yazdi, Mohammad Jafar Shaterzadeh; Salavati, Mahyar; Majdinasab, Nastaran

    2011-10-01

    The aim of this study was to compare the effects of concurrent cognitive task (silent backward counting) on balance performance between two groups of multiple sclerosis (MS) (n=23) and healthy (n=23) participates. Three levels of postural difficulty were studied on a force platform, i.e. rigid surface with eyes open, rigid surface with eyes closed, and foam surface with eyes closed. A mixed model analysis of variance showed that under difficult sensory condition of foam surface with eyes closed, execution of concurrent cognitive task caused a significant decrement in variability of sway velocity in anteroposterior direction for the patient group (P<0.01) while this was not the case for healthy participants (P=0.22). Also, the variability of sway velocity in mediolateral direction was significantly decreased during concurrent execution of cognitive task in patient group (P<0.01) and not in healthy participants (P=0.39). Furthermore, in contrast to single tasking, dual tasking had the ability to discriminate between the 2 groups in all conditions of postural difficulty. In conclusion, findings of variability in sway velocity seem to confirm the different response to cognitive loading between two groups of MS and healthy participants. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A balancing act of the brain: activations and deactivations driven by cognitive load.

    Science.gov (United States)

    Arsalidou, Marie; Pascual-Leone, Juan; Johnson, Janice; Morris, Drew; Taylor, Margot J

    2013-05-01

    The majority of neuroimaging studies focus on brain activity during performance of cognitive tasks; however, some studies focus on brain areas that activate in the absence of a task. Despite the surge of research comparing these contrasted areas of brain function, their interrelation is not well understood. We systematically manipulated cognitive load in a working memory task to examine concurrently the relation between activity elicited by the task versus activity during control conditions. We presented adults with six levels of task demand, and compared those with three conditions without a task. Using whole-brain analysis, we found positive linear relations between cortical activity and task difficulty in areas including middle frontal gyrus and dorsal cingulate; negative linear relations were found in medial frontal gyrus and posterior cingulate. These findings demonstrated balancing of activation patterns between two mental processes, which were both modulated by task difficulty. Frontal areas followed a graded pattern more closely than other regions. These data also showed that working memory has limited capacity in adults: an upper bound of seven items and a lower bound of four items. Overall, working memory and default-mode processes, when studied concurrently, reveal mutually competing activation patterns.

  8. STAR load balancing and tiered-storage infrastructure strategy for ultimate db access

    International Nuclear Information System (INIS)

    Arkhipkin, D; Lauret, J; Betts, W; Didenko, L; Van Buren, G

    2011-01-01

    In recent years, the STAR experiment's database demands have grown in accord not only with simple facility growth, but also with a growing physics program. In addition to the accumulated metadata from a decade of operations, refinements to detector calibrations force user analysis to access database information post data production. Users may access any year's data at any point in time, causing a near random access of the metadata queried, contrary to time-organized production cycles. Moreover, complex online event selection algorithms created a query scarcity ( s parsity ) scenario for offline production further impacting performance. Fundamental changes in our hardware approach were hence necessary to improve query speed. Initial strategic improvements were focused on developing fault-tolerant, load-balanced access to a multi-slave infrastructure. Beyond that, we explored, tested and quantified the benefits of introducing a Tiered storage architecture composed of conventional drives, solid-state disks, and memory-resident databases as well as leveraging the use of smaller database services fitting in memory. The results of our extensive testing in real life usage are presented.

  9. Load-balancing techniques for a parallel electromagnetic particle-in-cell code

    International Nuclear Information System (INIS)

    Plimpton, Steven J.; Seidel, David B.; Pasik, Michael F.; Coats, Rebecca S.

    2000-01-01

    QUICKSILVER is a 3-d electromagnetic particle-in-cell simulation code developed and used at Sandia to model relativistic charged particle transport. It models the time-response of electromagnetic fields and low-density-plasmas in a self-consistent manner: the fields push the plasma particles and the plasma current modifies the fields. Through an LDRD project a new parallel version of QUICKSILVER was created to enable large-scale plasma simulations to be run on massively-parallel distributed-memory supercomputers with thousands of processors, such as the Intel Tflops and DEC CPlant machines at Sandia. The new parallel code implements nearly all the features of the original serial QUICKSILVER and can be run on any platform which supports the message-passing interface (MPI) standard as well as on single-processor workstations. This report describes basic strategies useful for parallelizing and load-balancing particle-in-cell codes, outlines the parallel algorithms used in this implementation, and provides a summary of the modifications made to QUICKSILVER. It also highlights a series of benchmark simulations which have been run with the new code that illustrate its performance and parallel efficiency. These calculations have up to a billion grid cells and particles and were run on thousands of processors. This report also serves as a user manual for people wishing to run parallel QUICKSILVER

  10. UE-Initiated Cell Reselection Game for Cell Load Balancing in a Wireless Network

    Directory of Open Access Journals (Sweden)

    Jaesung Park

    2018-01-01

    Full Text Available A user changes its serving cell if the quality of experience (QoE provided by the current serving cell is not satisfactory. Since users reselect cells to increase their QoEs selfishly, the system resource efficiency can be deteriorated and a system can be unstable if users are not driven to cooperate appropriately. In this paper, inspired by the minority game (MG model, we design a UE-initiated cell reselection policy. The MG has a salient characteristic that the number of players who win the game converges to a prespecified value even though players act selfishly without knowing the actions taken by the other players. Using the MG model, we devise a rule by which each UE plays a cell reselection game. We also design a criterion that a system controller uses to determine the result of a game and public information sent by a system controller to induce implicit cooperation among UEs. The simulation results show that compared with noncooperative method the proposed method increases not only the system performance, such as cell load balance index and system utility, but also the performance of UEs in terms of a downlink data rate and an outage probability received from a system.

  11. Workload Balancing on Heterogeneous Systems: A Case Study of Sparse Grid Interpolation

    KAUST Repository

    Muraraşu, Alin; Weidendorfer, Josef; Bode, Arndt

    2012-01-01

    load balancing is essential. This paper proposes static and dynamic solutions for load balancing in the context of an application for visualizing high-dimensional simulation data. The application relies on the sparse grid technique for data compression

  12. Using motor imagery to study the neural substrates of dynamic balance

    NARCIS (Netherlands)

    Ferraye, M.U.; Debû, B.H.G.; Heil, L.; Carpenter, M.; Bloem, B.R.; Toni, I.

    2014-01-01

    This study examines the cerebral structures involved in dynamic balance using a motor imagery (MI) protocol. We recorded cerebral activity with functional magnetic resonance imaging while subjects imagined swaying on a balance board along the sagittal plane to point a laser at target pairs of

  13. Comparison of Various Dynamic Balancing Principles Regarding Additional Mass and Additional Inertia

    NARCIS (Netherlands)

    van der Wijk, V.; Demeulenaere, Bram; Herder, Justus Laurens

    2009-01-01

    The major disadvantage of existing dynamic balancing principles is that a considerable amount of mass and inertia is added to the system. The objectives of this article are to summarize, to compare, and to evaluate existing complete balancing principles regarding the addition of mass and the

  14. Dynamic game balancing implementation using adaptive algorithm in mobile-based Safari Indonesia game

    Science.gov (United States)

    Yuniarti, Anny; Nata Wardanie, Novita; Kuswardayan, Imam

    2018-03-01

    In developing a game there is one method that should be applied to maintain the interest of players, namely dynamic game balancing. Dynamic game balancing is a process to match a player’s playing style with the behaviour, attributes, and game environment. This study applies dynamic game balancing using adaptive algorithm in scrolling shooter game type called Safari Indonesia which developed using Unity. The game of this type is portrayed by a fighter aircraft character trying to defend itself from insistent enemy attacks. This classic game is chosen to implement adaptive algorithms because it has quite complex attributes to be developed using dynamic game balancing. Tests conducted by distributing questionnaires to a number of players indicate that this method managed to reduce frustration and increase the pleasure factor in playing.

  15. Effect of Jaw Clenching on Balance Recovery: Dynamic Stability and Lower Extremity Joint Kinematics after Forward Loss of Balance

    OpenAIRE

    Ringhof, Steffen; Stein, Thorsten; Hellmann, Daniel; Schindler, Hans J.; Potthast, Wolfgang

    2016-01-01

    Postural control is crucial for most tasks of daily living, delineating postural orientation and balance, with its main goal of fall prevention. Nevertheless, falls are common events, and have been associated with deficits in muscle strength and dynamic postural stability. Recent studies reported on improvements in rate of force development and static postural control evoked by jaw clenching activities, potentially induced by facilitation of human ...

  16. Relationship between maximum dynamic force of inferior members and body balance in strength training apprentices

    Directory of Open Access Journals (Sweden)

    Ariane Martins

    2010-08-01

    Full Text Available The relationship between force and balance show controversy results and has directimplications in exercise prescription practice. The objective was to investigate the relationshipbetween maximum dynamic force (MDF of inferior limbs and the static and dynamic balances.Participated in the study 60 individuals, with 18 to 24 years old, strength training apprentices.The MDF was available by mean the One Maximum Repetition (1MR in “leg press” and “kneeextension” and motor testes to available of static and dynamic balances. The correlation testsand multiple linear regression were applied. The force and balance variables showed correlationin females (p=0.038. The corporal mass and static balance showed correlation for the males(p=0.045. The explication capacity at MDF and practices time were small: 13% for staticbalance in males, 18% and 17%, respectively, for static and dynamic balance in females. Inconclusion: the MDF of inferior limbs showed low predictive capacity for performance in staticand dynamic balances, especially for males.

  17. A method, device and application for the dynamic balancing of a rotating component

    International Nuclear Information System (INIS)

    Voinis, P.

    1995-01-01

    The dynamic balancing method is based on the detection of the vibrations generated by an unbalance; two satellites are then displaced in order to create a counter-unbalance and their position is measured. Their position is then adjusted so as the unbalance and counter-unbalance phases and intensities differences are inferior to predetermined reference values in order to balance dynamically the rotating component. Application to superpower turbogenerator shafting systems. 4 fig

  18. Balancing the dynamic Stark shift in a driven Jaynes-Cummings system

    International Nuclear Information System (INIS)

    Mogilevtsev, D; Kilin, S

    2004-01-01

    In this work we discuss the possibility of balancing a dynamic Shark shift in a Jaynes-Cummings system by simultaneously driving the cavity and the atom with classical fields, of the same frequency. For a lossless Jaynes-Cummings system this can lead to unusual atomic population dynamics. For a lossy Jaynes-Cummings system such balancing can lead to complete suppression of resonance fluorescence even for leaky cavities

  19. Dynamic Balance Performance and Noncontact Lower Extremity Injury in College Football Players

    OpenAIRE

    Butler, Robert J.; Lehr, Michael E.; Fink, Michael L.; Kiesel, Kyle B.; Plisky, Phillip J.

    2013-01-01

    Background: Field expedient screening tools that can identify individuals at an elevated risk for injury are needed to minimize time loss in American football players. Previous research has suggested that poor dynamic balance may be associated with an elevated risk for injury in athletes; however, this has yet to be examined in college football players. Hypothesis: To determine if dynamic balance deficits are associated with an elevated risk of injury in collegiate football players. It was hy...

  20. The relationships of eccentric strength and power with dynamic balance in male footballers.

    Science.gov (United States)

    Booysen, Marc Jon; Gradidge, Philippe Jean-Luc; Watson, Estelle

    2015-01-01

    Unilateral balance is critical to kicking accuracy in football. In order to design interventions to improve dynamic balance, knowledge of the relationships between dynamic balance and specific neuromuscular factors such as eccentric strength and power is essential. Therefore, the aim was to determine the relationships of eccentric strength and power with dynamic balance in male footballers. The Y-balance test, eccentric isokinetic strength testing (knee extensors and flexors) and the countermovement jump were assessed in fifty male footballers (university (n = 27, mean age = 20.7 ± 1.84 years) and professional (n = 23, mean age = 23.0 ± 3.08 years). Spearman Rank Order correlations were used to determine the relationships of eccentric strength and power with dynamic balance. Multiple linear regression, adjusting for age, mass, stature, playing experience and competitive level was performed on significant relationships. Normalised reach score in the Y-balance test using the non-dominant leg for stance correlated with (1) eccentric strength of the non-dominant leg knee extensors in the university group (r = 0.50, P = 0.008) and (2) countermovement jump height in the university (r = 0.40, P = 0.04) and professional (r = 0.56, P = 0.006) football groups, respectively. No relationships were observed between eccentric strength (knee flexors) and normalised reach scores. Despite the addition of potential confounders, the relationship of power and dynamic balance was significant (r = 0.52, P power correlates moderately with dynamic balance on the non-dominant leg in male footballers.

  1. Effect of Jaw Clenching on Balance Recovery: Dynamic Stability and Lower Extremity Joint Kinematics after Forward Loss of Balance

    Directory of Open Access Journals (Sweden)

    Steffen eRinghof

    2016-03-01

    Full Text Available Postural control is crucial for most tasks of daily living, delineating postural orientation and balance, with its main goal of fall prevention. Nevertheless, falls are common events and have been associated with deficits in muscle strength and dynamic stability. Recent studies reported on improvements in rate of force development and static postural control evoked by jaw clenching activities, potentially induced by facilitation of human motor system excitability. However, there are no studies describing the effects on dynamic stability. The present study, therefore, aimed investigated the effects of submaximum jaw clenching on recovery behavior from forward loss of balance. Participants were twelve healthy young adults, who were instructed to recover balance from a simulated forward fall by taking a single step while either biting at a submaximum force or keeping the mandible at rest. Bite forces were measured by means of hydrostatic splints, whereas a 3D motion capture system was used to analyze spatiotemporal parameters and joint angles, respectively. Additionally, dynamic stability was quantified by the extrapolated CoM concept, designed to determine postural stability in dynamic situations. Paired t-tests revealed that submaximum biting did not significantly influence recovery behavior with respect to any variable under investigation. Therefore, reductions in postural sway evoked by submaximum biting are obviously not transferable to dynamic stability. It is suggested that these contradictions are the result of different motor demands associated with the abovementioned tasks. Furthermore, floor effects and the sample size might be discussed as potential reasons for the absence of significances. Notwithstanding this, the present study also revealed that bite forces under both conditions significantly increased from subjects’ release to touchdown of the recovery limb. Clenching the jaw, hence, seems to be part of a common physiological

  2. Prediction-based dynamic load-sharing heuristics

    Science.gov (United States)

    Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.

    1993-01-01

    The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.

  3. Dynamic Stability of Columns Subjected to Follower Loads: a Survey

    Science.gov (United States)

    LANGTHJEM, M. A.; SUGIYAMA, Y.

    2000-12-01

    This paper offers a survey of simple, flexible structural elements subjected to non-conservative follower loads, such as those caused by the thrust of rocket- and jet engines, and by dry friction in automotive disk- and drum-brake systems. Emphasis is on the “canonical problems”, Beck's, Reut's, Leipholz's, and Hauger's columns. Beck's and Reut's columns have been realized experimentally, and very good agreement between theory and experiments has been found. Leipholz's column is basically realized in an automobile brake system, where noise due to dynamic or parametric instability (brake squeal) is a well-known environmental problem. It is attempted to give a broad overview, with emphasis on experimental works and the associated theoretical problems. Structural optimization is also included in the review, as many studies in that area have served an important purpose in the development of optimization techniques for practical, large-scale optimization problems with non-conservative forces, such as in aeroelasticity.

  4. Planar dynamics of large-deformation rods under moving loads

    Science.gov (United States)

    Zhao, X. W.; van der Heijden, G. H. M.

    2018-01-01

    We formulate the problem of a slender structure (a rod) undergoing large deformation under the action of a moving mass or load motivated by inspection robots crawling along bridge cables or high-voltage power lines. The rod is described by means of geometrically exact Cosserat theory which allows for arbitrary planar flexural, extensional and shear deformations. The equations of motion are discretised using the generalised-α method. The formulation is shown to handle the discontinuities of the problem well. Application of the method to a cable and an arch problem reveals interesting nonlinear phenomena. For the cable problem we find that large deformations have a resonance detuning effect on cable dynamics. The problem also offers a compelling illustration of the Timoshenko paradox. For the arch problem we find a stabilising (delay) effect on the in-plane collapse of the arch, with failure suppressed entirely at sufficiently high speed.

  5. Prediction of dynamic blade loading of the Francis-99 turbine

    International Nuclear Information System (INIS)

    Nicolle, J; Cupillard, S

    2015-01-01

    CFD simulations focusing on capturing dynamic fluctuations of the flow for three operating points were performed for a scale model of a high head Francis turbine. A mesh sensitivity study showed an influence of the near wall resolution, consequently a low Reynolds mesh with a SST turbulence model was used. Rotor/stator fluctuations are well reproduced with the full turbine simulation at all operating points. Velocity contours and average velocity profiles from LDV measurements in the draft tube confirm that the flow physics is generally well reproduced. Simplified approaches such as profile transform and Fourier transform underestimated the measured fluctuations. As full turbine simulations were time-consuming, a simulation with only the draft tube was performed at part load to predict the fluctuations in the draft tube cone. The SAS-SST turbulence model was able to capture the vortex rope behavior

  6. Dynamics and mechanics of bed-load tracer particles

    Directory of Open Access Journals (Sweden)

    C. B. Phillips

    2014-12-01

    Full Text Available Understanding the mechanics of bed load at the flood scale is necessary to link hydrology to landscape evolution. Here we report on observations of the transport of coarse sediment tracer particles in a cobble-bedded alluvial river and a step-pool bedrock tributary, at the individual flood and multi-annual timescales. Tracer particle data for each survey are composed of measured displacement lengths for individual particles, and the number of tagged particles mobilized. For single floods we find that measured tracer particle displacement lengths are exponentially distributed; the number of mobile particles increases linearly with peak flood Shields stress, indicating partial bed load transport for all observed floods; and modal displacement distances scale linearly with excess shear velocity. These findings provide quantitative field support for a recently proposed modeling framework based on momentum conservation at the grain scale. Tracer displacement is weakly negatively correlated with particle size at the individual flood scale; however cumulative travel distance begins to show a stronger inverse relation to grain size when measured over many transport events. The observed spatial sorting of tracers approaches that of the river bed, and is consistent with size-selective deposition models and laboratory experiments. Tracer displacement data for the bedrock and alluvial channels collapse onto a single curve – despite more than an order of magnitude difference in channel slope – when variations of critical Shields stress and flow resistance between the two are accounted for. Results show how bed load dynamics may be predicted from a record of river stage, providing a direct link between climate and sediment transport.

  7. DECREASING OF MECHANISMS DYNAMIC LOADING AT THE TRANSIENT STATE

    Directory of Open Access Journals (Sweden)

    V. S. Loveikin

    2015-11-01

    Full Text Available Purpose. It is necessary to select modes of motion to reduce the dynamic loads in the mechanisms. This choice should be made on optimization basis. The purpose of research is to study methods of synthesis regimes of mechanisms and machines motion that provide optimal modes of movement for terminal and integral criteria. Methodology. For research the one-mass dynamic model of the mechanism has been used. As optimization criteria the terminal and comprehensive integral criteria were used. The stated optimization problem has been solved using dynamic programming and variational calculation. The direct variation method, which allowed finding only approximate solution of the original problem of optimal control, has been used as well. Findings. The ways of ensuring the absolute minimum of terminal criterion have been set for each method of problem solving. The stated characteristics show softness changes of kinematic functions during braking of mechanism. They point to the absolute minimum of adopted terminal criterion in the calculation. Originality. It is necessary to introduce new variables in the system equations during the solving of optimal control problems using dynamic programming to achieve an absolute minimum of terminal criteria. In general, to achieve a minimum of n-order terminal criterion an optimization problem should find relatively (n+1-th order function. When optimization problems is solving by variational calculation in order to ensure a minimization of n-th order terminal criterion by selecting the appropriate boundary conditions, it is necessary to solve the Euler-Poisson 2(n+1-th order equation (subject to symmetric setting boundary conditions. It is a necessary condition for an extremum of the functional with the (n+1-th order integrant. Practical value. Minimizing of adopted terminal criterion in the calculation allows eliminate the brunt in kinematic gearing of mechanisms, which increases their operational life. In addition

  8. Exploring the dynamics of balance data - movement variability in terms of drift and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gottschall, Julia [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)], E-mail: julia.gottschall@uni-oldenburg.de; Peinke, Joachim [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)], E-mail: peinke@uni-oldenburg.de; Lippens, Volker [Department of Human Movement, University of Hamburg, Moller Street 10, D-20148 Hamburg (Germany)], E-mail: vlippens@uni-hamburg.de; Nagel, Volker [Department of Human Movement, University of Hamburg, Moller Street 10, D-20148 Hamburg (Germany)

    2009-02-23

    We introduce a method to analyze postural control on a balance board by reconstructing the underlying dynamics in terms of a Langevin model. Drift and diffusion coefficients are directly estimated from the data and fitted by a suitable parametrization. The governing parameters are utilized to evaluate balance performance and the impact of supra-postural tasks on it. We show that the proposed method of analysis gives not only self-consistent results but also provides a plausible model for the reconstruction of balance dynamics.

  9. Exploring the dynamics of balance data - movement variability in terms of drift and diffusion

    International Nuclear Information System (INIS)

    Gottschall, Julia; Peinke, Joachim; Lippens, Volker; Nagel, Volker

    2009-01-01

    We introduce a method to analyze postural control on a balance board by reconstructing the underlying dynamics in terms of a Langevin model. Drift and diffusion coefficients are directly estimated from the data and fitted by a suitable parametrization. The governing parameters are utilized to evaluate balance performance and the impact of supra-postural tasks on it. We show that the proposed method of analysis gives not only self-consistent results but also provides a plausible model for the reconstruction of balance dynamics

  10. Examine the Relationship between Dynamic Balance and Physical Fitness Tests in Preschool Children

    OpenAIRE

    杉浦, 宏季; Sugiura, Hiroki; 杉本, 寛恵; Sugimoto, Hiroe

    2016-01-01

    This study examined the relationship between dynamic balance tests and various physical fitness tests in preschool children. The subjects were 22 preschool children (age, 5.0+0.4years; height, 107.3+5.7cm; weight, 17.9+3.4 kg). Dynamic balance was assessed by walking the length of a balance beam several times (beam height, 30cm; width, 10cm; length, 200cm) and walking a pathway (width, 10cm; length, 200cm). Physical fitness was assessed with activities such as a 25-meter run, continuous bilat...

  11. Static, dynamic balance and functional performance in subjects with and without plantar fasciitis

    Directory of Open Access Journals (Sweden)

    Geiseane Aguiar Gonçalves

    Full Text Available Abstract Introduction: Plantar fasciitis (PF is characterized by non-inflammatory degeneration and pain under the heel, and is one of the most common foot complaints. The compensations and adjustments made to decrease the discomfort caused by the disease are clinical findings and can be a factor that contributes to impaired balance and decreased functional performance. Objective: To compare functional performance as well as static and dynamic balance among subjects with and without PF. Methods: The sample consisted of 124 subjects of both sexes aged 20-60 years. Participants were divided into two groups: a bilateral PF group (PFG; n = 62 and a control group (CG, n = 62. The following outcomes were analyzed: static and dynamic balance (using functional tests and functional performance (using a questionnaire. We used Student’s t test for independent samples to compare variables between the groups. The alpha error was set at 0.05. Results: Subjects with PF showed greater impairment in their overall dynamic balance performance (p < 0.001 than the control group, except for left posteromedial movement (p = 0.19. The CG showed showed better functional performance (p < 0.001 than the PF group. There was no difference between groups for the variable static balance on stable (p = 0.160 and unstable surfaces (p = 0.085. Conclusion: Subjects with PF displayed smaller reach distances in the overall Star Excursion Balance Test (SEBT, demonstrating a deficit in dynamic balance and functional performance when compared with healthy subjects.

  12. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  13. EURDYN, Nonlinear Transient Analysis of Structure with Dynamic Loads

    International Nuclear Information System (INIS)

    Donea, J.; Giuliani, S.; Halleux, J.P.

    1987-01-01

    1 - Description of program or function: The EURDYN computer codes are under development at JRC-Ispra since 1973 for the simulation of non- linear dynamic response of fast-reactor components submitted to impulsive loading due to abnormal working conditions. They are thus mainly used in reactor safety analysis but can apply to other fields. Indeed the codes compute the elasto-plastic transient response of 2-D and thin 3-D structures submitted to fast dynamic loading generated by explosions, impacts... and represented by time dependent pressures, concentrated loads and prescribed displacements, or by initial speeds. Two releases of the structural computer codes EURDYN 01 (2-D beams and triangles and axisymmetric conical shells and triangular tori), 02 (axisymmetric and 2-D quadratic iso-parametric elements) and 03 (triangular plate elements) have already been produced in 1976(1) and 1980(2). They include material (elasto-plasticity using the classical flow theory approach) and geometrical (large displacements and rotations treated by a co-rotational technique) nonlinearities. The present version (Release 3) has been completed mid-1982 and is documented in EUR 8357 EN. The new features of Release 3, as compared to the former ones, roughly consist in: - full large strain capability for 9-node iso-parametric elements (EURDYN 02), - generalized array dimensions, - introduction of the radial return algorithm for elasto-plastic material modelling, - extension of the energy check facility to the case of prescribed displacements, - possible interface to a post-processing package including time plot facilities (TPLOT). The theoretical aspects can be found in refs. 2,4,5,6,7,8. 2 - Method of solution: - Finite element space discretization. - Explicit time integration. - Lumped masses. - EURDYN 01: 2-D co-rotational formulation including constant strain triangles (plane or axisymmetric), beams and conical shells, this last element being particularly useful for the study of thin

  14. A dynamic human water and electrolyte balance model for verification and optimization of life support systems in space flight applications

    Science.gov (United States)

    Hager, P.; Czupalla, M.; Walter, U.

    2010-11-01

    In this paper we report on the development of a dynamic MATLAB SIMULINK® model for the water and electrolyte balance inside the human body. This model is part of an environmentally sensitive dynamic human model for the optimization and verification of environmental control and life support systems (ECLSS) in space flight applications. An ECLSS provides all vital supplies for supporting human life on board a spacecraft. As human space flight today focuses on medium- to long-term missions, the strategy in ECLSS is shifting to closed loop systems. For these systems the dynamic stability and function over long duration are essential. However, the only evaluation and rating methods for ECLSS up to now are either expensive trial and error breadboarding strategies or static and semi-dynamic simulations. In order to overcome this mismatch the Exploration Group at Technische Universität München (TUM) is developing a dynamic environmental simulation, the "Virtual Habitat" (V-HAB). The central element of this simulation is the dynamic and environmentally sensitive human model. The water subsystem simulation of the human model discussed in this paper is of vital importance for the efficiency of possible ECLSS optimizations, as an over- or under-scaled water subsystem would have an adverse effect on the overall mass budget. On the other hand water has a pivotal role in the human organism. Water accounts for about 60% of the total body mass and is educt and product of numerous metabolic reactions. It is a transport medium for solutes and, due to its high evaporation enthalpy, provides the most potent medium for heat load dissipation. In a system engineering approach the human water balance was worked out by simulating the human body's subsystems and their interactions. The body fluids were assumed to reside in three compartments: blood plasma, interstitial fluid and intracellular fluid. In addition, the active and passive transport of water and solutes between those

  15. Study of regeneration system of 300 MW power unit based on nondeaerating heat balance diagram at reduced load

    Science.gov (United States)

    Esin, S. B.; Trifonov, N. N.; Sukhorukov, Yu. G.; Yurchenko, A. Yu.; Grigor'eva, E. B.; Snegin, I. P.; Zhivykh, D. A.; Medvedkin, A. V.; Ryabich, V. A.

    2015-09-01

    More than 30 power units of thermal power stations, based on the nondeaerating heat balance diagram, successfully operate in the former Soviet Union. Most of them are power units with a power of 300 MW, equipped with HTGZ and LMZ turbines. They operate according to a variable electric load curve characterized by deep reductions when undergoing night minimums. Additional extension of the range of power unit adjustment makes it possible to maintain the dispatch load curve and obtain profit for the electric power plant. The objective of this research is to carry out estimated and experimental processing of the operating regimes of the regeneration system of steam-turbine plants within the extended adjustment range and under the conditions when the constraints on the regeneration system and its equipment are removed. Constraints concerning the heat balance diagram that reduce the power unit efficiency when extending the adjustment range have been considered. Test results are presented for the nondeaerating heat balance diagram with the HTGZ turbine. Turbine pump and feed electric pump operation was studied at a power unit load of 120-300 MW. The reliability of feed pump operation is confirmed by a stable vibratory condition and the absence of cavitation noise and vibration at a frequency that characterizes the cavitation condition, as well as by oil temperature maintenance after bearings within normal limits. Cavitation performance of pumps in the studied range of their operation has been determined. Technical solutions are proposed on providing a profitable and stable operation of regeneration systems when extending the range of adjustment of power unit load. A nondeaerating diagram of high-pressure preheater (HPP) condensate discharge to the mixer. A regeneration system has been developed and studied on the operating power unit fitted with a deaeratorless thermal circuit of the system for removing the high-pressure preheater heating steam condensate to the mixer

  16. Dynamic balance ability in young elite soccer players: implication of isometric strength.

    Science.gov (United States)

    Chtara, Moktar; Rouissi, Mehdi; Bragazzi, Nicola L; Owen, Adam L; Haddad, Monoem; Chamari, Karim

    2018-04-01

    Soccer requires maintaining unilateral balance when executing movement with the contralateral leg. Despite the fact that balance requires standing with maintaining isometric posture with the support leg, currently there is a lack of studies regarding the implication of isometric strength on dynamic balance's performance among young soccer players. Therefore, the aim of this study was to examine the relationship between the Y-Balance Test and 12 lower limbs isometric strength tests. Twenty-six right footed soccer players (mean±SD, age=16.2±1.6 years, height=175±4.2 cm, body mass=68.8±6.1 kg) performed a dynamic balance test (star excursion balance-test with dominant- (DL) and nondominant-legs (NDL). Furthermore, maximal isometric contraction tests of 12 lower limb muscle groups were assessed in DL and NDL. Correlations analysis reported a significant positive relationship between some of isometric strength tests (with DL and NDL) and the Y-Balance Test. Furthermore, stepwise multiple regression analysis showed that maximal isometric strength explained between 21.9% and 49.4% of the variance of the Y-Balance Test. Moreover, maximal isometric strength was dependent upon the reaching angle of the Y-Balance Test and the leg used to support body weight. This study showed a significant implication of maximal isometric strength of the lower limb and the Y-Balance Test. Moreover, the present investigation suggests the implementation of specific lower limb strengthening exercises depending on players' deficit in each reaching direction and leg. This result suggests that further studies should experiment if increasing lower limbs isometric strength could improve dynamic balance ability among young soccer players.

  17. Investigation of Dynamic Friction Induced by Shock Loading Conditions

    International Nuclear Information System (INIS)

    Juanicotena, A.; Szarzynski, S.

    2006-01-01

    Modeling the frictional sliding of one surface against another under high pressure is often required to correctly describe the response of complex systems to shock loading. In order to provide data for direct code and model comparison, a new friction experiment investigating dry sliding characteristics of metal on metal at normal pressures up to 10 GPa and sliding velocities up to 400 m/s has been developed. The test consists of a specifically designed target made of two materials. A plane shock wave generated by plate impact results in one material sliding against the other. The material velocity of the rear surface of the target is recorded versus time by Doppler Laser Interferometry. The dynamic friction coefficient μ is then indirectly determined by comparison with results of numerical simulations involving the conventional Coulomb law. Using this new experimental configuration, three dynamic friction experiments were performed on AA 5083-Al (H111) / AISI 321 stainless steel tribo-pair. Results suggest a decrease in the friction coefficient with increasing sliding velocity

  18. The Response of Simple Polymer Structures Under Dynamic Loading

    Science.gov (United States)

    Proud, William; Ellison, Kay; Yapp, Su; Cole, Cloe; Galimberti, Stefano; Institute of Shock Physics Team

    2017-06-01

    The dynamic response of polymeric materials has been widely studied with the effects of degree of crystallinity, strain rate, temperature and sample size being commonly reported. This study uses a simple PMMA structure, a right cylindrical sample, with structural features such as holes. The features are added an varied in a systematic fashion. Samples were dynamically loaded using a Split Hopkinson Pressure Bar up to failure. The resulting stress-strain curves are presented showing the change in sample response. The strain to failure is shown to increase initially with the presence of holes, while failure stress is relatively unaffected. The fracture patterns seen in the failed samples change, with tensile cracks, Hertzian cones, shear effects being dominant for different holes sizes and geometries. The sample were prepared by laser cutting and checked for residual stress before experiment. The data is used to validate predictive model predictions where material, structure and damage are included.. The Institute of Shock Physics acknowledges the support of Imperial College London and the Atomic Weapons Establishment.

  19. The effect of virtual reality gaming on dynamic balance in older adults.

    Science.gov (United States)

    Rendon, Abel Angel; Lohman, Everett B; Thorpe, Donna; Johnson, Eric G; Medina, Ernie; Bradley, Bruce

    2012-07-01

    physical therapy interventions that increase functional strength and balance have been shown to reduce falls in older adults. this study compared a virtual reality group (VRG) and a control group (CG). randomised controlled 6-week intervention with pre- and post-test evaluations. outpatient geriatric orthopaedic and balance physical therapy clinic. forty participants were randomised into two groups. the VRG received three different Nintendo® Wii FIT balance interventions three times per week for 6 weeks and the CG received no intervention. compared with the CG, post-intervention measurements showed significant improvements for the VRG in the 8-foot Up & Go test [median decrease of 1.0 versus -0.2 s, (P=0.038) and the Activities-specific Balance Confidence Scale (6.9 versus 1.3%) (P=0.038)]. virtual reality gaming provides clinicians with a useful tool for improving dynamic balance and balance confidence in older adults.

  20. Instrumented static and dynamic balance assessment after stroke using Wii Balance Boards: reliability and association with clinical tests.

    Science.gov (United States)

    Bower, Kelly J; McGinley, Jennifer L; Miller, Kimberly J; Clark, Ross A

    2014-01-01

    The Wii Balance Board (WBB) is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke. Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand) in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach) on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated. All WBB-based outcomes were found to be highly reliable between testing occasions (ICC  = 0.82 to 0.98). Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test. The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness.

  1. In Situ Test Study of Characteristics of Coal Mining Dynamic Load

    Directory of Open Access Journals (Sweden)

    Jiang He

    2015-01-01

    Full Text Available Combination of coal mining dynamic load and high static stress can easily induce such dynamic disasters as rock burst, coal and gas outburst, roof fall, and water inrush. In order to obtain the characteristic parameters of mining dynamic load and dynamic mechanism of coal and rock, the stress wave theory is applied to derive the relation of mining dynamic load strain rate and stress wave parameters. The in situ test was applied to study the stress wave propagation law of coal mine dynamic load by using the SOS microseismic monitoring system. An evaluation method for mining dynamic load strain rate was proposed, and the statistical evaluation was carried out for the range of strain rate. The research results show that the loading strain rate of mining dynamic load is in direct proportion to the seismic frequency of coal-rock mass and particle peak vibration velocity and is in inverse proportion to wave velocity. The high-frequency component damps faster than the low-frequency component in the shockwave propagating process; and the peak particle vibration velocity has a power functional relationship with the transmitting distance. The loading strain rate of mining dynamic load is generally less than class 10−1/s.

  2. Dynamic strength of rock with single planar joint under various loading rates at various angles of loads applied

    Directory of Open Access Journals (Sweden)

    Pei-Yun Shu

    2018-06-01

    Full Text Available Intact rock-like specimens and specimens that include a single, smooth planar joint at various angles are prepared for split Hopkinson pressure bar (SHPB testing. A buffer pad between the striker bar and the incident bar of an SHPB apparatus is used to absorb some of the shock energy. This can generate loading rates of 20.2–4627.3 GPa/s, enabling dynamic peak stresses/strengths and associated failure patterns of the specimens to be investigated. The effects of the loading rate and angle of load applied on the dynamic peak stresses/strengths of the specimens are examined. Relevant experimental results demonstrate that the failure pattern of each specimen can be classified as four types: Type A, integrated with or without tiny flake-off; Type B, slide failure; Type C, fracture failure; and Type D, crushing failure. The dynamic peak stresses/strengths of the specimens that have similar failure patterns increase linearly with the loading rate, yielding high correlations that are evident on semi-logarithmic plots. The slope of the failure envelope is the smallest for slide failure, followed by crushing failure, and that of fracture failure is the largest. The magnitude of the plot slope of the dynamic peak stress against the loading rate for the specimens that are still integrated after testing is between that of slide failure and crushing failure. The angle of application has a limited effect on the dynamic peak stresses/strengths of the specimens regardless of the failure pattern, but it affects the bounds of the loading rates that yield each failure pattern, and thus influences the dynamic responses of the single jointed specimen. Slide failure occurs at the lowest loading rate of any failure, but can only occur in single jointed specimen that allows sliding. Crushing failure is typically associated with the largest loading rate, and fracture failure may occur when the loading rate is between the boundaries for slide failure and crushing

  3. Dynamic Response of Inextensible Beams by Improved Energy Balance Method

    DEFF Research Database (Denmark)

    Sfahani, M. G.; Barari, Amin; Omidvar, M.

    2011-01-01

    An improved He's energy balance method (EBM) for solving non-linear oscillatory differential equation using a new trial function is presented. The problem considered represents the governing equations of the non-linear, large-amplitude free vibrations of a slender cantilever beam...... with a rotationally flexible root and carrying a lumped mass at an intermediate position along its span. Based on the simple EBM, the variational integral of the non-linear conservative system is established, and the Fourier series expansion is employed to address the governing algebraic equations. An alternate...

  4. The effect of time-of-day on static and dynamic balance in recreational athletes.

    Science.gov (United States)

    Heinbaugh, Erika M; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi

    2015-09-01

    The purpose of this study was to investigate the effect of time-of-day (morning vs. afternoon) on static and dynamic balance in recreational athletes. A total of 34 recreational athletes completed the single-leg stance test with or without eyes open, lower quarter Y-balance test, upper quarter Y-balance test, and single-leg landing balance test in a random order in the morning (7:00-10:00 am) and afternoon (3:00-6:00 pm) for two consecutive days. Compared with the morning, participants demonstrated decreased centre of pressure (COP) sway areas (p = 0.002; Cohen's d (d) = 0.28) and sway speeds (p = 0.002; d = 0.17) during the eyes-open single-leg stance test, increased stance time (p = 0.031; d = 0.16) and decreased COP sway areas (p = 0.029; d = 0.22) during the eyes-closed single-leg stance test, and increased reaching distances (p = 0.024; d = 0.10) during the upper quarter Y-balance test in the afternoon. The between-day effect (day 1 vs. day 2) was observed for several parameters. Time-of-day had a minimal effect on dynamic balance and a noticeable effect on static balance. Time-of-day may be considered as a factor in designing balance training programmes and intervention studies for recreational athletes.

  5. Nonlinear dynamics modeling and simulation of two-wheeled self-balancing vehicle

    Directory of Open Access Journals (Sweden)

    Yunping Liu

    2016-11-01

    Full Text Available Two-wheeled self-balancing vehicle system is a kind of naturally unstable underactuated system with high-rank unstable multivariable strongly coupling complicated dynamic nonlinear property. Nonlinear dynamics modeling and simulation, as a basis of two-wheeled self-balancing vehicle dynamics research, has the guiding effect for system design of the project demonstration and design phase. Dynamics model of the two-wheeled self-balancing vehicle is established by importing a TSi ProPac package to the Mathematica software (version 8.0, which analyzes the stability and calculates the Lyapunov exponents of the system. The relationship between external force and stability of the system is analyzed by the phase trajectory. Proportional–integral–derivative control is added to the system in order to improve the stability of the two-wheeled self-balancing vehicle. From the research, Lyapunov exponent can be used to research the stability of hyperchaos system. The stability of the two-wheeled self-balancing vehicle is better by inputting the proportional–integral–derivative control. The Lyapunov exponent and phase trajectory can help us analyze the stability of a system better and lay the foundation for the analysis and control of the two-wheeled self-balancing vehicle system.

  6. Seismicity as dynamic load of pipes and fittings

    International Nuclear Information System (INIS)

    Rejent, B.

    1984-01-01

    The load is discussed of pipe systems and fittings for nuclear power plants which may result from earthquakes, etc. Modifications of the equation of motion are discussed which may be solved using the response spectrum method or the method of direct numerical integration. A mathematical description of both methods is given. The seismic resistance of fittings, pumps, etc., is experimentally determined by loking for their eigenfrequencies and monitoring the response of equipment to resonance oscillations. The principle is described of uniaxial hydraulic and mechanical shock absorbers and a viscous damper. The presented computation method was used for evaluating the primary circuit (Sigma Modrany) and rods for the remote control of fittings (Sigma Hodonin) supplied for the Mochovce nuclear power plant. Variants were compared of seismic protection of the primary circuit by hydraulic and mechanical shock absorbers with viscous dampers and of circuits without any protection. The unprotected system oscillates in the first harmonic, the system with shock absorbers keeps the deflections within the range of the shock absorber function (to 2 mm), and the system using viscous dampers oscillates approximately according to the first waveform with a deflection of around 11 mm. A diagram and a dynamic model are presented of a rod for the remote control of fittings. Figure shows the computation model and the response of this rod in individual time moments, both affected and not affected by play in the dilatation joint. Table shows the effect of play in the dilatation joint on deformation maxima and on rod bend stress from a symmetric load of 8g. (E.S.)

  7. Characteristics and modeling of spruce wood under dynamic compression load

    International Nuclear Information System (INIS)

    Eisenacher, Germar

    2014-01-01

    Spruce wood is frequently used as an energy absorbing material in impact limiters of packages for the transportation of radioactive material. A 9m drop test onto an unyielding target is mandatory for the packages. The impact results in a dynamic compression load of the spruce wood inside the impact limiter. The lateral dilation of the wood is restrained thereby due to encasing steel sheets. This work's objective was to provide a material model for spruce wood based on experimental investigations to enable the calculation of such loading conditions. About 600 crush tests with cubical spruce wood specimens were performed to characterize the material. The compression was up to 70% and the material was assumed to be transversely isotropic. Particularly the lateral constraint showed to have an important effect: the material develops a high lateral dilation without lateral constraint. The force-displacement characteristics show a comparably low force level and no or only slight hardening. Distinctive softening occurs after the linear-elastic region when loaded parallel to the fiber. On the other hand, using a lateral constraint results in significantly higher general force levels, distinctive hardening and lateral forces. The softening effect when loaded parallel to the fiber is less distinctive. Strain rate and temperature raise or lower the strength level, which was quantified for the applicable ranges of impact limiters. The hypothesis of an uncoupled evolution of the yield surface was proposed based on the experimental findings. It postulates an independent strength evolution with deviatoric and volumetric deformation. The hypothesis could be established using the first modeling approach, the modified LS-DYNA material model MAT075. A transversely isotropic material model was developed based thereupon and implemented in LS-DYNA. The material characteristics of spruce wood were considered using a multi-surface yield criterion and a non-associated flow rule. The yield

  8. Microworlds of the dynamic balanced scorecard for university (DBSC-UNI)

    Science.gov (United States)

    Hawari, Nurul Nazihah; Tahar, Razman Mat

    2015-12-01

    This research focuses on the development of a Microworlds of the dynamic balanced scorecard for university in order to enhance the university strategic planning process. To develop the model, we integrated both the balanced scorecard method and the system dynamics modelling method. Contrasting the traditional university planning tools, the developed model addresses university management problems holistically and dynamically. It is found that using system dynamics modelling method, the cause-and-effect relationships among variables related to the four conventional balanced scorecard perspectives are better understand. The dynamic processes that give rise to performance differences between targeted and actual performances also could be better understood. So, it is expected that the quality of the decisions taken are improved because of being better informed. The developed Microworlds can be exploited by university management to design policies that can positively influence the future in the direction of desired goals, and will have minimal side effects. This paper integrates balanced scorecard and system dynamics modelling methods in analyzing university performance. Therefore, this paper demonstrates the effectiveness and strength of system dynamics modelling method in solving problem in strategic planning area particularly in higher education sector.

  9. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    Science.gov (United States)

    2017-03-01

    computed at various pitch angles through changes in actuator length. The linear spring stiffness was estimated by using the internal volume of the...Vehicle Technology Directorate Mechanics Division (ATTN: RDRL-VTM) Aberdeen Proving Ground, MD 21005-5066 8. PERFORMING ORGANIZATION REPORT NUMBER...Finally, the balance loads are not only induced by the rotor hub loads, but also by loads transmitted via the pitch links to the swashplate. Thus

  10. System Dynamic Modelling for a Balanced Scorecard: A Case Study

    DEFF Research Database (Denmark)

    Nielsen, Steen; Nielsen, Erland Hejn

    Purpose - The purpose of this research is to make an analytical model of the BSC foundation by using a dynamic simulation approach for a 'hypothetical case' model, based on only part of an actual case study of BSC. Design/methodology/approach - The model includes five perspectives and a number...

  11. The Pneumatic Actuators As Vertical Dynamic Load Simulators On Medium Weighted Wheel Suspension Mechanism

    Science.gov (United States)

    Ka'ka, Simon; Himran, Syukri; Renreng, Ilyas; Sutresman, Onny

    2018-02-01

    Almost all of road damage can be caused by dynamic loads of vehicles that fluctuate according to the type of vehicle that passes through. This study aims to calculate the vertical dynamic load of the vehicle actually occurs on road construction by the mechanism of vehicle wheel suspension. Pneumatic cylinders driven by pressurized air directly load the spring and shock absorber installed on the wheels of the vehicle. The load fluctuations of the medium weight categorized vehicles are determined by the regulation of the amount of pressurized air that enters into the pneumatic cylinder chamber, pushing the piston and connecting rods. The displacement that occurs during compression on the spring and shock absorber, is substituted into the equation of vehicle dynamic load while taking into account the spring stiffness constant, and the fluid or damper gas coefficient. The results show that the magnitude of the displacement when the compression force works has significant influences to the amount of vertical dynamic load of the vehicle that overlies the road construction. The presence of dynamic load of vehicles that fluctuates and repeats, also affects on the reduction of road ability to receive the load. Experimental results using pneumatic actuators instead of real dynamic vehicle loads illustrate the characteristics of the relationship between work pressure and dynamic load. If the working pressure of P2 (bar) is greater, the vertical dynamic load Ft (N) that overloads the road structure is also greater. The associate graphs show that the shock absorber has a greater ability to reduce dynamic load vertically that burden the road structure when compared with the ability of screw spring.

  12. Cooperation of axisymmetric connection elements under dynamic load

    Directory of Open Access Journals (Sweden)

    Kołodziej Andrzej

    2018-01-01

    Full Text Available The article presents a method for determining the parameters that define the cooperation of the elements in the axisymmetic connection. The connection, which constitutes a shaft cooperating with a sleeve, has been tested for reaction forces in the connection during shaft rotation in the static sleeve. The shaft was characterized by deliberately modelled roundness deviations in the form of ovality, triangularity and quadrangularity. In addition, the research programme has taken into account the determination of the impact of tolerance of the outside diameter of the shaft. Determination of reaction forces has been carried out using the FEM software. The shaft has been modelled as a rigid element that rotates with a given rotational speed in the deformable sleeve. The conclusions present the impact of roundness deviation types and the tolerance value on reaction forces in the connection restraint. The method presented in the article can be used to predict the behaviour of the elements of axisymmetic connections under dynamic load, which can contribute to forecasting the durability of the connection.

  13. Response of borehole extensometers to explosively generated dynamic loads

    International Nuclear Information System (INIS)

    Patrick, W.C.; Brough, W.G.

    1980-01-01

    Commercially available, hydraulically anchored, multiple-point borehole extensometers (MPBX) were evaluated with respect to response to dynamic loads produced by explosions. This study is part of the DOE-funded Spent Fuel Test-Climax (SFT-C), currently being conducted in the Climax granitic stock at the Nevada Test Site. The SFT-C is an investigation of the feasibility of short-term storage and retrieval of spent nuclear reactor fuel assemblies at a plausible repository depth in granitic rock. Eleven spent fuel assemblies are stored at a depth of 420 m for three to five years, and will then be retrieved. MPBX units are used in the SFT-C to measure both excavation-induced and thermally induced rock displacements. Long-term reliability of extensometers in this hostile environment is essential in order to obtain valid data during the course of this test. Research to date shows conclusively that extensometers of this type continue to function reliably even though subjected to accelerations of 1.8 g; research also implies that they function well though subjected to accelerations in excess of 100 g. MPBX survivability during the first four months of testing at ambient temperatures was about 90 percent

  14. Research Paper: Effect of Lower Leg Cold Immersion on Dynamic Balance of Athletes and Nonathlete

    Directory of Open Access Journals (Sweden)

    Ruhollah Salehi

    2016-07-01

    Conclusion The results of this study suggest that cryotherapy through immersion of foot and ankle does not have a negative effect on the overall and anteroposterior indices of dynamic balance of athletes and nonathletes following an 8-min ice water immersion. It seems that the immersion process affected only the surface receptors of the skin and did not affect the deeper joint receptors that have a key role in balance.

  15. Effects of moving dynamic tyre loads on tyre-pavement contact stresses

    CSIR Research Space (South Africa)

    Steyn, WJvdM

    2002-01-01

    Full Text Available The purpose of this paper is to indicate the effect that moving dynamic tyre loads has on the tyre-pavement contact stresses used in pavement analysis. Traditionally tyre loads (in pavement analysis) are modelled as constant loads applied through...

  16. Predictors of chronic ankle instability: Analysis of peroneal reaction time, dynamic balance and isokinetic strength.

    Science.gov (United States)

    Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier

    2018-05-01

    Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Instrumented static and dynamic balance assessment after stroke using Wii Balance Boards: reliability and association with clinical tests.

    Directory of Open Access Journals (Sweden)

    Kelly J Bower

    Full Text Available The Wii Balance Board (WBB is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke.Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated.All WBB-based outcomes were found to be highly reliable between testing occasions (ICC  = 0.82 to 0.98. Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test.The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness.

  18. Static and dynamic balance of children and adolescents with sensorineural hearing loss.

    Science.gov (United States)

    Melo, Renato de Souza; Marinho, Sônia Elvira Dos Santos; Freire, Maryelly Evelly Araújo; Souza, Robson Arruda; Damasceno, Hélio Anderson Melo; Raposo, Maria Cristina Falcão

    2017-01-01

    To assess the static and dynamic balance performance of students with normal hearing and with sensorineural hearing loss. A cross-sectional study assessing 96 students, 48 with normal hearing and 48 with sensorineural hearing loss of both sexes, aged 7 and 18 years. To evaluate static balance, Romberg, Romberg-Barré and Fournier tests were used; and for the dynamic balance, we applied the Unterberger test. Hearing loss students showed more changes in static and dynamic balance as compared to normal hearing, in all tests used (pRomberg, Romberg-Barré, Fournier and Unterberger test p values were, respectively, p=0.004, pRomberg, Romberg-Barré and Fournier tests were, respectively, p=0.007, pRomberg, Romberg-Barré, Fournier and Unterberger tests were p=0.002, pRomberg-Barré, Fournier and Unterberger tests were, respectively, p=0.037, p<0.001 and p=0.037. Hearing-loss students showed more changes in static and dynamic balance comparing to normal hearing of same sex and age groups.

  19. Comparison of dynamic balance ability in healthy university students according to foot shape.

    Science.gov (United States)

    Hyong, In Hyouk; Kang, Jong Ho

    2016-01-01

    [Purpose] This study aimed to compare dynamic balance ability according to foot shape, defined as normal, pronated, or supinated on the basis of the height of the medial arch. [Subjects] In this study, 14 subjects for the pronated foot group, 14 for the supinated foot group, and 14 for the normal foot group were selected from among 162 healthy university students by using the navicular drop test proposed by Brody. To measure dynamic balance ability, a star excursion balance test (SEBT) was conducted for each group, in which a cross-shaped line and lines at 45° in eight directions were drawn on the floor. In this study, only three directions were used, namely anterior, posterolateral, and posteromedial. The mean of the SEBT was calculated by measuring three times for each group, and the values were standardized using the following equation: measured value/leg length × 100. [Results] No significant differences in dynamic balance ability were found between the normal, pronated, and supinated foot groups. [Conclusion] No significant differences in dynamic balance ability according to the foot shape were found among the healthy university students with normal, pronated, and supinated feet.

  20. The Effects of Core Stability Exercise on the Dynamic Balance of Volleyball Players

    Directory of Open Access Journals (Sweden)

    Hassan Sadeghi

    2013-12-01

    Full Text Available Dynamic balance is a key component of injury prevention and rehabilitation in sports. Training the core muscles has been hypothesized as an intervention for improving balance. However, there is a lack of current scientific evidence to support this claim. The purpose of this study was to evaluate the effects of a core stability program on dynamic balance of volleyball players as measured with the Star Excursion Balance Test (SEBT. Thirty healthy participants were divided into 2 groups: control and exercise groups. All participants performed the SEBT before and after 8-week exercise time. During the 8-week time, the exercise group performed a core stability program, whereas the control group abstained from any new exercise. These results also illustrated there was significant differences in the scores for pre-test and post-test of all direction according SEBT in the experimental group. An independent sample t-test was conducted to compare experimental and control group (F=43.573, Sig=0.000. These results were a significant difference in the scores for control and experimental groups. Maximum excursion distances improved for the exercise group, compared with the control group. This result justifies the hypothesis that core strengthening can improve dynamic postural control during landing of volleyball players significantly. Keywords: Core stabilization; volleyball player; dynamic balance; SEBT

  1. Influence of the implant abutment types and the dynamic loading on initial screw loosening

    OpenAIRE

    Kim, Eun-Sook; Shin, Soo-Yeon

    2013-01-01

    PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at ...

  2. Multi-Stage Admission Control for Load Balancing in Next Generation Systems

    DEFF Research Database (Denmark)

    Mihovska, Albena D.; Anggorojati, Bayu; Luo, Jijun

    2008-01-01

    This paper describes a load-dependent multi-stage admission control suitable for next generation systems. The concept uses decision polling in entities located at different levels of the architecture hierarchy and based on the load to activate a sequence of actions related to the admission...

  3. Dynamic Balance of Excitation and Inhibition in Human and Monkey Neocortex

    Science.gov (United States)

    Dehghani, Nima; Peyrache, Adrien; Telenczuk, Bartosz; Le van Quyen, Michel; Halgren, Eric; Cash, Sydney S.; Hatsopoulos, Nicholas G.; Destexhe, Alain

    2016-03-01

    Balance of excitation and inhibition is a fundamental feature of in vivo network activity and is important for its computations. However, its presence in the neocortex of higher mammals is not well established. We investigated the dynamics of excitation and inhibition using dense multielectrode recordings in humans and monkeys. We found that in all states of the wake-sleep cycle, excitatory and inhibitory ensembles are well balanced, and co-fluctuate with slight instantaneous deviations from perfect balance, mostly in slow-wave sleep. Remarkably, these correlated fluctuations are seen for many different temporal scales. The similarity of these computational features with a network model of self-generated balanced states suggests that such balanced activity is essentially generated by recurrent activity in the local network and is not due to external inputs. Finally, we find that this balance breaks down during seizures, where the temporal correlation of excitatory and inhibitory populations is disrupted. These results show that balanced activity is a feature of normal brain activity, and break down of the balance could be an important factor to define pathological states.

  4. Using Gait Dynamics to Estimate Load from a Body-Worn Accelerometer

    Science.gov (United States)

    2016-02-05

    dynamics, ambulation, correlation structure, musculoskeletal injury I. INTRODUCTION ilitary personnel commonly engage in training and operational...according to their load estimation accuracy, which is defined by the Pearson correlation , r, of its load estimates with the true loads (see Tables...method. In Table IV are shown the mean absolute error, MAE, and Pearson correlation , r, of the load estimates using estimates from GS alone, PLS alone

  5. Dynamic cellular manufacturing system considering machine failure and workload balance

    Science.gov (United States)

    Rabbani, Masoud; Farrokhi-Asl, Hamed; Ravanbakhsh, Mohammad

    2018-02-01

    Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.

  6. Dynamic Analysis of Load Operations of Two-Stage SOFC Stacks Power Generation System

    Directory of Open Access Journals (Sweden)

    Paulina Pianko-Oprych

    2017-12-01

    Full Text Available The main purpose of this paper was to develop a complete dynamic model of a power generation system based on two serially connected solid oxide fuel cell stacks. The uniqueness of this study lies in a different number of fuel cells in the stacks. The model consists of the electrochemical model, mass and energy balance equations implemented in MATLAB Simulink environment. Particular attention has been paid to the analysis of the transient response of the reformers, fuel cells and the burner. The dynamic behavior of the system during transient conditions was investigated by load step changing. The model evaluates electrical and thermal responses of the system at variable drawn current. It was found that a decrease of 40% in the 1st stage and 2nd solid oxide fuel cell (SOFC stacks drawn current caused both stacks temperature to drop by 2%. An increase of the cell voltage for the 1st and 2nd SOFC stacks led to very fast steam reformer response combined with a slight decrease in reformer temperature, while a considerable burner temperature increase of 70 K can be observed. Predictions of the model provide the basic insight into the operation of the power generation-based SOFC system during various transients and support its further design modifications.

  7. The Effect of Water Exercise Program on Static and Dynamic Balance in Elderly Women

    Directory of Open Access Journals (Sweden)

    Heydar Sadeghi

    2008-01-01

    Full Text Available Objectives: Poor balance is one of risk factors of falling, a cause of injury and even death in elderly. The aim of this study was to evaluate the effect of a water exercise program on static and dynamic balance in elder women. Methods & Materials: Thirty participants aged 55-70 years completed an exercise program (60 min, 3 days and 6 weeks, in 2 groups, exercise and control, voluntarily. Static and dynamic balances were measured before and after exercise program in both groups. Postural sway parameters, including mean displacement of center of pressure and velocity of center of pressure in Medio-Lateral (ML and Anterio-Posterior (AP directions, in single stance position, as a measure of static balance and functional reach test, functional reach right test and functional reach left test, as dynamic measure of balance was considered. T test for deepened groups was used for evaluation of changes within groups, and T test for independent groups was used for between groups' changes at threshold of 0.05 After 6 weeks. Results: Significant changes were observed in results of Functional Reach Test (FRT, Functional Reach Left Test (FRLT after exercise program, also in average displacement of cop and velocity of cop in ML direction. Between groups significant differences were observed in results of average cop displacement and velocity of displacement, FRT and FRLT. Conclusion: These results suggest that challenging the physiological systems involved in balance control, in water, while on the non stable support surface, improved both static and dynamic balance and probably might decrease the risk of falling.

  8. A versatile computer package for mechanism analysis, part 2: Dynamics and balance

    Science.gov (United States)

    Davies, T.

    The algorithms required for the shaking force components, the shaking moment about the crankshaft axis, and the input torque and bearing load components are discussed using the textile machine as a focus for the discussion. The example is also used to provide illustrations of the output for options on the hodograph of the shaking force vector. This provides estimates of the optimum contrarotating masses and their locations for a generalized primary Lanchester balancer. The suitability of generalized Lanchester balancers particularly for textile machinery, and the overall strategy used during the development of the package are outlined.

  9. Recovery of dynamic balance after general anesthesia with sevoflurane in short-duration oral surgery.

    Science.gov (United States)

    Fujisawa, Toshiaki; Miyamoto, Eriko; Takuma, Shigeru; Shibuya, Makiko; Kurozumi, Akihiro; Kimura, Yukifumi; Kamekura, Nobuhito; Fukushima, Kazuaki

    2009-01-01

    Recovery of dynamic balance, involving adjustment of the center of gravity, is essential for safe discharge on foot after ambulatory anesthesia. The purpose of this study was to assess the recovery of dynamic balance after general anesthesia with sevoflurane, using two computerized dynamic posturographies. Nine hospitalized patients undergoing oral surgery of less than 2 h duration under general anesthesia (air-oxygensevoflurane) were studied. A dynamic balance test, assessing the ability of postural control against unpredictable perturbation stimuli (Stability System; Biodex Medical), a walking analysis test using sheets with foot pressure sensors (Walk Way-MG1000; Anima), and two simple psychomotor function tests were performed before anesthesia (baseline), and 150 and 210 min after the emergence from anesthesia. Only the double-stance phase in the walking analysis test showed a significant difference between baseline and results at 150 min. None of the other variables showed any differences among results at baseline and at 150 and 210 min. The recovery times for dynamic balance and psychomotor function seem to be within 150 min after emergence from general anesthesia with sevoflurane in patients undergoing oral surgery of less than 2-h duration.

  10. Gaze stability, dynamic balance and participation deficits in people with multiple sclerosis at fall-risk.

    Science.gov (United States)

    Garg, Hina; Dibble, Leland E; Schubert, Michael C; Sibthorp, Jim; Foreman, K Bo; Gappmaier, Eduard

    2018-05-05

    Despite the common complaints of dizziness and demyelination of afferent or efferent pathways to and from the vestibular nuclei which may adversely affect the angular Vestibulo-Ocular Reflex (aVOR) and vestibulo-spinal function in persons with Multiple Sclerosis (PwMS), few studies have examined gaze and dynamic balance function in PwMS. 1) Determine the differences in gaze stability, dynamic balance and participation measures between PwMS and controls, 2) Examine the relationships between gaze stability, dynamic balance and participation. Nineteen ambulatory PwMS at fall-risk and 14 age-matched controls were recruited. Outcomes included (a) gaze stability [angular Vestibulo-Ocular Reflex (aVOR) gain (ratio of eye to head velocity); number of Compensatory Saccades (CS) per head rotation; CS latency; gaze position error; Coefficient of Variation (CV) of aVOR gain], (b) dynamic balance [Functional Gait Assessment, FGA; four square step test], and (c) participation [dizziness handicap inventory; activities-specific balance confidence scale]. Separate independent t-tests and Pearson's correlations were calculated. PwMS were age = 53 ± 11.7yrs and had 4.2 ± 3.3 falls/yr. PwMS demonstrated significant (pbalance and participation measures compared to controls. CV of aVOR gain and CS latency were significantly correlated with FGA. Deficits and correlations across a spectrum of disability measures highlight the relevance of gaze and dynamic balance assessment in PwMS. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Dynamic balance performance and noncontact lower extremity injury in college football players: an initial study.

    Science.gov (United States)

    Butler, Robert J; Lehr, Michael E; Fink, Michael L; Kiesel, Kyle B; Plisky, Phillip J

    2013-09-01

    Field expedient screening tools that can identify individuals at an elevated risk for injury are needed to minimize time loss in American football players. Previous research has suggested that poor dynamic balance may be associated with an elevated risk for injury in athletes; however, this has yet to be examined in college football players. To determine if dynamic balance deficits are associated with an elevated risk of injury in collegiate football players. It was hypothesized that football players with lower performance and increased asymmetry in dynamic balance would be at an elevated risk for sustaining a noncontact lower extremity injury. Prospective cohort study. Fifty-nine collegiate American football players volunteered for this study. Demographic information, injury history, and dynamic balance testing performance were collected, and noncontact lower extremity injuries were recorded over the course of the season. Receiver operator characteristic curves were calculated based on performance on the Star Excursion Balance Test (SEBT), including composite score and asymmetry, to determine the population-specific risk cut-off point. Relative risk was then calculated based on these variables, as well as previous injury. A cut-off point of 89.6% composite score on the SEBT optimized the sensitivity (100%) and specificity (71.7%). A college football player who scored below 89.6% was 3.5 times more likely to get injured. Poor performance on the SEBT may be related to an increased risk for sustaining a noncontact lower extremity injury over the course of a competitive American football season. College football players should be screened preseason using the SEBT to identify those at an elevated risk for injury based upon dynamic balance performance to implement injury mitigation strategies to this specific subgroup of athletes.

  12. Dynamic Balanced Scorecard for companies in the business field of power supply; Dynamic Balanced Scorecard fuer Unternehmen im Geschaeftsfeld der dezentralen Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, M.; Roy, I. [Paderborn Univ. (Germany). Lehrstuhl fuer Nachhaltige Energiekonzepte

    2006-06-19

    Due to deregulation and liberalisation of the power market and due to the opting out of the nuclear energy, the decentralized power supply increasingly gains in importance in comparison to the classical power supply. Thus, the entrepreneur who wants to engage in the decentralized power supply needs a management tool for conversion and supervision his strategy. A pertinent means for this already is the Dynamic Balanced Scorecard. By means of an evaluation of a simple balanced scorecard, the entrepreneur realizes his vision and strategy in order to determine the success-critical factors. These success-critical factors are related together in a causal chain. By this, the entrepreneur can recognize, what has to be done in order to act successfully on the market, and in order to secure the success on a long-term basis. The modelling of the Dynamic balanced Scorecard enables the examination of the corporate strategy, before it is implemented in the enterprise. Thus, the entrepreneur saves time and minimizes the corporate risk.

  13. Mental, Physical and Mixed Practice Effects on Elderly Static and Dynamic Balance

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Aslankhani

    2008-10-01

    Full Text Available Objectives: After age of 65, annually 10 percent of older adults> loss their independent in one or more daily task. Because of decreasing changes in neuromuscular system that is important factor in loss the balance and walking ability in this group of people. In according to these sentences, the aim of this research was to the comparison of mental, physical and mixed practices on static and dynamic balance in health older adults. Methods & Materials: The study is semi-experimental with pre and post test design and three experimental groups. Statistical sample included 60 older adults> with age range of 60-70 years from Shahre-kord, that randomly divided to three experimental groups. In this research, the Stroke stands test (standing with one leg were used to measure the static balance and Star Excursion Balance Test (SEBT test was used to measure the dynamic balance. After 8 session of training, subject of each group participated in post test that similar to pretest. The data were analyzed by one way ANOVA and Tukey post hoc and in order to detect the homogeny of variances, Leaven>s test was used in level of P balance by strength training, coaches and related affairs can use this training method in their specific programs for older adults.

  14. Online Dynamic Balance Technology for High Speed Spindle Based on Gain Parameter Adaption and Scheduling Control

    Directory of Open Access Journals (Sweden)

    Shihai Zhang

    2018-06-01

    Full Text Available Unbalance vibration is one of the main vibration forms of a high speed machine tool spindle. The overlarge unbalance vibration will have some adverse effects on the working life of the spindle system and the surface quality of the work-piece. In order to reduce the unbalance of a high speed spindle system, a pneumatic online dynamic balance device and its control system are presented in the paper. To improve the balance accuracy and adaptation of the balance system, the gain parameter adaption and scheduling control method are proposed first, and then the different balance effects of the influence coefficient method and the gain scheduling control method are compared through many dynamic balance experiments of the high speed spindle. The experimental results indicate that the gain parameters can be changed timely according to the transformation of the speed and kinetic parameters of the spindle system. The balance accuracy can be improved for a high speed spindle with time-varying characteristics, based on the adaptive gain scheduling control method.

  15. Power balance provision through co-ordinated control of modern storage heater load

    OpenAIRE

    Qazi, Hassan Wajahat; Flynn, Damian

    2013-01-01

    Operational inflexibility due to wind variability at high penetration levels can be mitigated through flexible demand. However, most flexible loads entail a subsequent short-term higher energy payback and aggregated load coincidence. Storage heaters operating on a dual tariff, that typically charge during a fixed time window, can be considered as distributed thermal storage without an associated energy payback period. Modern storage heaters have improved heat retention, the capability to esti...

  16. Effect of smart phone using duration and gender on dynamic balance

    Directory of Open Access Journals (Sweden)

    Doaa Rafat El Azab

    2017-01-01

    Full Text Available Smart phones are constantly used for extended periods while looking at the visual display terminals this may causes musculoskeletal problems. So, the purpose of this study was to investigate effect of smart phone using duration and gender on dynamic balance. Subjects: Sixty normal subjects included in this study their age ranged from 20 years to 35 years were divided into three groups, A not using smart phone, B using smart phone less than 4 h per day, C using smart phone more than 4 h per day. Methods: Biodex Stability System was utilized to assess dynamic balance; 3 trials were performed from which the mean value was calculated. Results: there is a significant decrease in all balance directions for group B and C (using smart phone with favor reduction for group C (using smart phone more than 4 h per day and there is a significant difference between male and female subjects as dynamic balance decreased more in female subjects more than male subjects. Conclusion: Long duration of smart phone using affect negatively the balance ability especially in females, so we should develop preventive programs to alleviate its negative effects.

  17. Effects of Rigid and Soft Foot Orthoses on Dynamic Balance in Females With Flatfoot

    Directory of Open Access Journals (Sweden)

    Hassan Saeedi

    2007-08-01

    Full Text Available Background:Various types of foot orthoses are prescribed for people with flatfoot.It has been reported that orthoses not only improve the biomechanics of the lower limb, but also have good effects on some balance parameters in these subjects.It is hypothesized that the latter effect is dependent on the rigidity of the orthoses. The aim of this study was to evaluate and compare the effects of rigid and soft foot orthoses on dynamic balance in females with flatfoot. The Biodex Balance System was used in a clinical trial study. Methods: 20 healthy students with bilateral flatfoot were randomly assigned to two equal groups. Each participant was tested on two days with 2-week interval. On each day, dynamic stability test was performed while standing in single-leg stance on an unstable platform of the balance system in 3 conditions (barefoot, with shoe, shoe with orthosis. SPSS11.5 was used for statistical analysis. Results: A significant group-by-day-by-condition interaction was found. Both groups on day 2 testing had a decreased overall stability index while wearing orthoses. Overall stability index was significantly lower on day 2 testing. Conclusion: Foot orthoses, depending on the amount of rigidity, were associated with some improvements in dynamic balance in subjects with flatfoot.

  18. Effects of dynamic loading of motor-operated valve actuators

    International Nuclear Information System (INIS)

    Damerell, P.S.; Daubresse, S.; Wolfe, K.J.; Dogan, T.; Gleeson, J.

    1994-01-01

    Experience has shown that valves with rising, nonrotating stems that are operated using electro-motor driven actuators can be susceptible to changes in output thrust at a constant torque switch setting as a result of changes in stem load time history. This effect is a concern because tests on these types of valves to verify thrust achieved at torque switch trip are often performed in situ under load conditions different from the required performance conditions. As part of a motor-operated valve research program being carried out by the Electric Power Research Institute, tests of typical electric motor actuators used with nuclear services valves have been performed. The test results show that changes in output thrust with load time history occur o varying degrees on different stem and stem nut combinations. When the effect exists, there is generally an increase in thrust at torque switch trip when load is developed rapidly from low initial loads, compared to when load is developed slowly. The effect is mainly a result of changes in the coefficient of friction at the stem-stem nut interface. The coefficient of friction is temporarily reduced under rapid loading conditions from low initial load, leading to increased thrust. The root cause is hypothesized to be a open-quotes squeeze-filmclose quotes effect, whereby mixed-mode lubrication (hydrodynamic plus boundary) temporarily replaces boundary lubrication. This paper describes the results of tests performed to better understand the phenomenon

  19. Wii Fit exer-game training improves sensory weighting and dynamic balance in healthy young adults.

    Science.gov (United States)

    Cone, Brian L; Levy, Susan S; Goble, Daniel J

    2015-02-01

    The Nintendo Wii Fit is a balance training tool that is growing in popularity due to its ease of access and cost-effectiveness. While considerable evidence now exists demonstrating the efficacy of the Wii Fit, no study to date has determined the specific mechanism underlying Wii Fit balance improvement. This paucity of knowledge was addressed in the present study using the NeuroCom Balance Manager's Sensory Organization Test (SOT) and Limits of Stability (LOS) test. These well-recognized posturography assessments, respectively, measure sensory weighting and dynamic stability mechanisms of balance. Forty healthy, young participants were recruited into two groups: Wii Fit Balance Intervention (WFBI) (n=20) and Control (CON) (n=20). Balance training consisted of seven Wii Fit exer-games played over the course of six consecutive weeks (2-4×/week, 30-45min/day). The WFBI group performed Neurocom testing before and after the intervention, while the CON group was tested along a similar timeline with no intervention. Mixed-design ANOVAs found significant interactions for testing time point and condition 5 of the SOT (peffects were such that greater improvements were seen for the WFBI group following Wii Fit training. These findings suggest that individuals with known issues regarding the processing of multiple sources of sensory information and/or who have limited functional bases of support may benefit most from Wii Fit balance training. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Changes in dynamic balance control over time in children with and without Developmental Coodination Disorder

    NARCIS (Netherlands)

    Jelsma, L.D.; Smits-Engelsman, B.C.M.; Geuze, R.H.

    2015-01-01

    Changes in dynamic balance control over time in children with and without Developmental Coordination Disorder L.D. Jelsma1, B.C.M. Smits-Engelsman2 & R.H. Geuze1 1Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2-1, 9712 TS Groningen, the Netherlands.

  1. Dynamic Axle Load of an Automotive Vehicle When Driven on a Mobile Measurement Platform

    OpenAIRE

    Jagiełowicz-Ryznar C.

    2014-01-01

    An analysis of the dynamic axle load of an automotive vehicle (AV) when it is driven on a mobile measurement platform is presented in this paper. During the ride, the time characteristic of the dynamic force N(t), acting on the axle, was recorded. The effect of the vehicle axle mass on the maximum dynamic force value and the dynamic coefficient were studied. On this basis it was attempted to calculate the total vehicle’s weight. Conclusions concerning the dynamic loads of the vehicle axles in...

  2. Effect of loading rate on dynamic fracture of reaction bonded silicon nitride

    Science.gov (United States)

    Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.

    1986-01-01

    Wedge-loaded, modified tapered double cantilever beam (WL-MTDCB) specimens under impact loading were used to determine the room temperature dynamic fracture response of reaction bonded silicon nitride (RBSN). The crack extension history, with the exception of the terminal phase, was similar to that obtained under static loading. Like its static counterpart, a distinct crack acceleration phase, which was not observed in dynamic fracture of steel and brittle polymers, was noted. Unlike its static counterpart, the crack continued to propagate at nearly its terminal velocity under a low dynamic stress intensity factor during the terminal phase of crack propagation. These and previously obtained results for glass and RBSN show that dynamic crack arrest under a positive dynamic stress intensity factor is unlikely in static and impact loaded structural ceramics.

  3. A New Wind Turbine Generating System Model for Balanced and Unbalanced Distribution Systems Load Flow Analysis

    Directory of Open Access Journals (Sweden)

    Ahmet Koksoy

    2018-03-01

    Full Text Available Wind turbine generating systems (WTGSs, which are conventionally connected to high voltage transmission networks, have frequently been employed as distributed generation units in today’s distribution networks. In practice, the distribution networks always have unbalanced bus voltages and line currents due to uneven distribution of single or double phase loads over three phases and asymmetry of the lines, etc. Accordingly, in this study, for the load flow analysis of the distribution networks, Conventional Fixed speed Induction Generator (CFIG based WTGS, one of the most widely used WTGS types, is modelled under unbalanced voltage conditions. The Developed model has active and reactive power expressions in terms of induction machine impedance parameters, terminal voltages and input power. The validity of the Developed model is confirmed with the experimental results obtained in a test system. The results of the slip calculation based phase-domain model (SCP Model, which was previously proposed in the literature for CFIG based WTGSs under unbalanced voltages, are also given for the comparison. Finally, the Developed model and the SCP model are implemented in the load flow analysis of the IEEE 34 bus test system with the CFIG based WTGSs and unbalanced loads. Thus, it is clearly pointed out that the results of the load flow analysis implemented with both models are very close to each other, and the Developed model is computationally more efficient than the SCP model.

  4. Balancing Power Absorption and Fatigue Loads in Irregular Waves for an Oscillating Surge Wave Energy Converter: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Tom, Nathan M.; Yu, Yi-Hsiang; Wright, Alan D.; Lawson, Michael

    2016-06-01

    The aim of this paper is to describe how to control the power-to-load ratio of a novel wave energy converter (WEC) in irregular waves. The novel WEC that is being developed at the National Renewable Energy Laboratory combines an oscillating surge wave energy converter (OSWEC) with control surfaces as part of the structure; however, this work only considers one fixed geometric configuration. This work extends the optimal control problem so as to not solely maximize the time-averaged power, but to also consider the power-take-off (PTO) torque and foundation forces that arise because of WEC motion. The objective function of the controller will include competing terms that force the controller to balance power capture with structural loading. Separate penalty weights were placed on the surge-foundation force and PTO torque magnitude, which allows the controller to be tuned to emphasize either power absorption or load shedding. Results of this study found that, with proper selection of penalty weights, gains in time-averaged power would exceed the gains in structural loading while minimizing the reactive power requirement.

  5. Dynamic backcalculation with different load-time histories

    DEFF Research Database (Denmark)

    Madsen, Stine Skov; Levenberg, Eyal

    2017-01-01

    This paper focused attention to the falling weight deflectometer (FWD) load-time history. For a commonly used device, it studied the pulse generation mechanism and the influence of different load histories on backcalculation results. In this connection, a semi-analytic impact theory was first...... for an experimental dataset that resulted from operating an FWD with different loading configurations. It was found that backcalculated parameters are sensitive to the FWD pulse features. Consequently, it is recommended that, whenever advanced pavement characterisation is sought, experimental attention should...

  6. Dynamic modeling and analysis of load sharing characteristics of wind turbine gearbox

    Directory of Open Access Journals (Sweden)

    Pengxing Yi

    2015-03-01

    Full Text Available A coupled dynamic model, which contains helical gears-shafts-bearings for a wind turbine gearbox transmission system, was built considering nonlinear factors of the time-varying mesh stiffness, the external varying load, and the dynamic transmission error at first. The model is confirmed to be right after comparing the theoretical data with the experimental load sharing values, and also it is found that the static load sharing is conservative to evaluate the non-equilibrium effect of a planetary gear system. Besides, the analyzing results of the influence of average error and amplitude error on the load sharing show that the load sharing could be decreased if the error goes up a little. Then, by means of treating the static tracing point as the dynamic initial values, we analyzed the initial position’s influence on the load sharing of transmission system to provide a theoretical basis of load sharing control. Furthermore, we explored the influence of high-speed shaft position angle on the load sharing and the dynamic load factor of gears fixed on the parallel shafts. The results provide useful theoretical guidelines for the design of parallel shaft gear system in the wind turbines.

  7. Testing for time-varying loadings in dynamic factor models

    DEFF Research Database (Denmark)

    Mikkelsen, Jakob Guldbæk

    Abstract: In this paper we develop a test for time-varying factor loadings in factor models. The test is simple to compute and is constructed from estimated factors and residuals using the principal components estimator. The hypothesis is tested by regressing the squared residuals on the squared...... there is evidence of time-varying loadings on the risk factors underlying portfolio returns for around 80% of the portfolios....

  8. Dynamic Response to Pedestrian Loads with Statistical Frequency Distribution

    DEFF Research Database (Denmark)

    Krenk, Steen

    2012-01-01

    on the magnitude of the resulting response. A frequency representation of vertical pedestrian load is developed, and a compact explicit formula is developed for the magnitude of the resulting response, in terms of the damping ratio of the structure, the bandwidth of the pedestrian load, and the mean footfall...... frequency. The accuracy of the formula is verified by a statistical moment analysis using the Lyapunov equations....

  9. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators.

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H-S; Ahn, Jaewook

    2018-05-04

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  10. Research on dynamic balancing simulation of rotary shaft based on ADAMS

    Science.gov (United States)

    Zheng, Weiqiang; Rui, Chengjie; Yang, Jie; Liu, Pingyi

    2018-02-01

    Due to the design and processing technology of rotary shaft, the mass center of it does not coincide with the rotating axis of the rotary shaft and there is an unbalanced mass. The unbalanced mass can have some disadvantages, such as the centrifugal force, the vibration and so on. Those disadvantages could reduce the accuracy and service life of the equipment.In this paper, the dynamic balance of the rotary shaft is analysed by the theory analysis combined with the dynamic simulation software. This method ensures that the rotary shaft meets the dynamic balancing requirements during the design stage. It effectively supports the structural design of the rotary shift, and provides a way of thinking and method for the design and development of the same type of products.

  11. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators

    Science.gov (United States)

    Kim, Hyosub; Park, YeJe; Kim, Kyungtae; Sim, H.-S.; Ahn, Jaewook

    2018-05-01

    Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.

  12. Dynamic MR cholangiography after fatty meal loading. Cystic contractility and dynamic evaluation of biliary stasis

    International Nuclear Information System (INIS)

    Omata, Takayuki; Saito, Kazuhiro; Kotake, Fumio; Mizokami, Yuji; Matsuoka, Takeshi; Abe, Kimihiko

    2002-01-01

    Dynamic MR cholangiography was conducted on patients with cholelithiasis or choledocholithiasis who had consumed a fatty test meal (Molyork) and the cystic contractility and dynamics of biliary stasis was evaluated. The subjects were 25 with intracystic cholelithiasis, 10 with choledocholithiasis and 10 normal controls. For an imaging sequence, the rapid acquisition with relaxation enhancement (RARE) method was employed and imaging was conducted for 40 min (every 30 s following Molyork administration) without breath-holding. The gallbladder contraction ratio was computed and the contractile ratio for the common bile duct was calculated. To determine the bile flow to the duodenum, the high-intensity signal, indicating the flow from the lower common bile duct, and perfusion of the duodenum were observed in dynamic mode on the monitor with the naked eye and interpreted as positive bile flow. The frequency of this flow was visually monitored. The gallbladder contractile ratio was significantly reduced in patients with cholelithiasis or choledocholithiasis compared with the controls. In a comparison with the normal controls, no sequential changes were noted in the mean contractile ratio of the common bile duct of the patients with cholelithiasis or choledocholithiasis. The mean frequency of bile flow observed for each 40 min period was 13±2.4, 6±2.2, and 4±1.3 times for the controls, those with intracystic cholelithiasis, and those with choledocholithiasis, respectively. Compared with the controls, the latter two patient groups showed evident reductions in the frequency of bile flow to the duodenum (p<0.001). Dynamic MRC combined with Molyork loading makes it possible to compute cystic contractile ratios and perform a dynamic examination of bile flow under non-invasive, near-physiological conditions. (author)

  13. Simple Models for Model-based Portfolio Load Balancing Controller Synthesis

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Mølbak, Tommy; Bendtsen, Jan Dimon

    2010-01-01

    of generation units existing in an electrical power supply network, for instance in model-based predictive control or declarative control schemes. We focus on the effectuators found in the Danish power system. In particular, the paper presents models for boiler load, district heating, condensate throttling...

  14. Queue balancing of load and expedition service in a cement industry in Brazil

    Directory of Open Access Journals (Sweden)

    David Custódio de Sena

    2013-11-01

    Full Text Available The load and weight process in a cement industry is one of logistic step that shows the biggest time of occurrence, increasing the queues. This study aims to do a scenarios to solve this queue problem. This way, it pretends to find an better resources distribuition.

  15. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    Science.gov (United States)

    Faruq Ibn Ibrahimy, Abdullah; Rafiqul, Islam Md; Anwar, Farhat; Ibn Ibrahimy, Muhammad

    2013-12-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper.

  16. Two Dimensional Array Based Overlay Network for Balancing Load of Peer-to-Peer Live Video Streaming

    International Nuclear Information System (INIS)

    Ibrahimy, Abdullah Faruq Ibn; Rafiqul, Islam Md; Anwar, Farhat; Ibrahimy, Muhammad Ibn

    2013-01-01

    The live video data is streaming usually in a tree-based overlay network or in a mesh-based overlay network. In case of departure of a peer with additional upload bandwidth, the overlay network becomes very vulnerable to churn. In this paper, a two dimensional array-based overlay network is proposed for streaming the live video stream data. As there is always a peer or a live video streaming server to upload the live video stream data, so the overlay network is very stable and very robust to churn. Peers are placed according to their upload and download bandwidth, which enhances the balance of load and performance. The overlay network utilizes the additional upload bandwidth of peers to minimize chunk delivery delay and to maximize balance of load. The procedure, which is used for distributing the additional upload bandwidth of the peers, distributes the additional upload bandwidth to the heterogeneous strength peers in a fair treat distribution approach and to the homogeneous strength peers in a uniform distribution approach. The proposed overlay network has been simulated by Qualnet from Scalable Network Technologies and results are presented in this paper

  17. Effect of Static-Dynamic Coupling Loading on Fracture Toughness and Failure Characteristics in Marble

    Directory of Open Access Journals (Sweden)

    Z. Q. Yin

    2014-03-01

    Full Text Available Fracture experiments in a notched semi-circular bend configuration were conducted to test the dynamic fracture toughness of a marble under static-dynamic coupling load using a modified split Hopkinson pressure bar. The fracture process of the specimen was monitored using a high speed (HS camera. Based on digital image correlation (DIC and strain gauges, the full-field strain fields and time-to-fracture of the marble were measured under static-dynamic coupling load. Experimental results show that dynamic fracture toughness was well determined, and the HS-DIC technique provides reliable full-field strain fields in the specimens under static-dynamic coupling loads. The failure characteristics of the marble under external impact were affected obviously by pre-compression stress. Increase of axial pre-compression stress was helpful to improve the crack propagation velocity, and dynamic crack initiation toughness was decreased.

  18. Influence of traditional dance training programs on dynamic balance of people with intellectual disability: a short review

    OpenAIRE

    Vasileios, K.

    2015-01-01

    Traditional dance is gaining popularity as an intervention choice for improving poor balance ability of people with intellectual disability (ID). Balance improvement for individuals with ID through dance provides opportunities for participation in sport activities and promotes independent living. This short review provides in brief research evidence of dynamic balance improvement as measured by means of a balance deck in duration of 30, 45, and 60 sec intervals, highlighting the need to incor...

  19. Single, childless working women's construction of wellbeing: On balance, being dynamic and tensions between them.

    Science.gov (United States)

    Engler, Kim; Frohlich, Katherine; Descarries, Francine; Fernet, Mylène

    2011-01-01

    Single, childless working women (SCWW) are a notable proportion of the female workforce. The budding research on this population suggests that they have issues of wellbeing that may be tied to specific needs of both their workplaces and their personal lives, and hence, distinct work-life dynamics that require attention. This study explores how SCWW construct their wellbeing. The sample was composed of 22 SCWW aged 29 to 45. A discourse analysis of the transcripts of semi-structured interviews with these women was performed. Most women drew on an interpretative repertoire of "wellbeing as balance" (e.g., diversification and reasonable dosing of life's dimensions). It was associated with a recurrent subject position we have termed "the dynamic woman" whose intensity transfused talk of the activities in her life. Here, work becomes a "passion" and a source of appreciated challenges. However, a dilemma could arise from these constructions for positioning oneself in relation to the cadence of one's active life or rather, in articulating an unambiguous claim to balance. Balance/dosing and dynamicity/passion can be uneasy bedfellows. Our analyses raise questions about possible counter[balancing] discourses and further argue the relevance of work-life issues for SCWW.

  20. Effects of Water-Based Training on Static and Dynamic Balance of Older Women.

    Science.gov (United States)

    Bento, Paulo Cesar Barauce; Lopes, Maria de Fátima A; Cebolla, Elaine Cristine; Wolf, Renata; Rodacki, André L F

    2015-08-01

    The aim of this study was to evaluate the effects of a water-based exercise program on static and dynamic balance. Thirty-six older women were randomly assigned to a water-based training (3 days/week for 12 weeks) or control group. Water level was kept at the level of the xiphoid process and temperature at ∼28-30°C. Each session included aerobic activities and lower limb strength exercises. The medial-lateral, the anterior-posterior amplitude, and displacement of the center of pressure (CP-D) were measured in a quiet standing position (60 sec eyes opened and closed). The dynamic balance and 8-Foot Up-and-Go tests were also applied. Group comparisons were made using two-way analysis of variance (ANOVA) with repeated measures. No differences were found in the center of pressure variables; however, the WBT group showed better performance in the 8 Foot Up-and-Go Test after training (5.61±0.76 vs. 5.18±0.42; pwater-based training was effective in improving dynamic balance, but not static balance.

  1. Masticatory efficiency contributing to the improved dynamic postural balance: A cross-sectional study.

    Science.gov (United States)

    Hwang, Hae-Yun; Choi, Jun-Seon; Kim, Hee-Eun

    2018-05-28

    To evaluate whether masticatory efficiency is associated with dynamic postural balance. Masticatory dysfunction can cause deterioration of general health due to nutritional imbalances, thereby negatively affecting postural balance. However, few studies have investigated the association between masticatory efficiency and postural balance. The masticatory efficiency of 74 participants was evaluated by calculating mixing ability index (MAI) using a wax cube. The timed up and go test (TUGT) was used to measure dynamic balance. Participants with an MAI above or below the median value of 1.05 were defined as having high or low masticatory efficiency, respectively. An independent samples t-test was used to identify significant differences in TUGT, according to masticatory efficiency. Analysis of covariance was performed to adjust for confounding factors. Logistic regression analysis was used to assess the correlation between masticatory efficiency and postural balance. The high masticatory efficiency group could complete the TUGT exercise approximately 1.67 seconds faster while maintaining the postural balance, compared to the low masticatory efficiency group (P = .005). Furthermore, the postural imbalance odds of the group with high mastication efficiency decreased by 0.14-fold, relative to the group with low mastication efficiency (95% confidence interval: 0.04-0.46). With some reservations about statistical power, the association found between masticatory efficiency and postural balance justifies further investigations to confirm the strength of the associations, and possibly to identify causal relationships between mastication and posture in old age. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  2. Improvements in Dynamic Balance Using an Adaptive Snowboard with the Nintendo Wii.

    Science.gov (United States)

    Sullivan, Brendan; Harding, Alexandra G; Dingley, John; Gras, Laura Z

    2012-08-01

    The purpose of this case report is to see if a novel balance board could improve balance and gait of a subject with dynamic balance impairments and enjoyment of virtual rehabilitation training. A novel Adaptive Snowboard™ (developed by two of the authors, B.S. and J.D.) was used in conjunction with the Nintendo(®) (Redmond, WA) Wii™ snowboarding and wakeboarding games with a participant in a physical therapy outpatient clinic. Baseline measurements were taken for gait velocity and stride length, Four Square Step Test, Star Balance Excursion Test, Sensory Organization Test, and the Intrinsic Motivation Inventory. Two 60-90-minute sessions per week for 5 weeks included seven to nine trials of Wii snowboarding or wakeboarding games. Improvements were seen in every outcome measure. This study had comparable results to studies performed using a wobble board in that improvements in balance were made. Use of virtual snowboard simulation improved the subject's balance, gait speed, and stride length, as well as being an enjoyable activity.

  3. Effect of progressive resistance exercise with neuromuscular joint facilitation on the dynamic balance performance of junior soccer players.

    Science.gov (United States)

    Wang, Hongzhao; Huo, Ming; Guan, Peipei; Onoda, Ko; Chen, Di; Huang, Qiuchen; Maruyama, Hitoshi

    2015-11-01

    [Purpose] The aim of this study was to investigate the change in dynamic balance performance of junior soccer players after progressive resistance treatment with neuromuscular joint facilitation (NJF). [Subjects] The subjects were 14 healthy males who were divided into two groups, namely the NJF and control groups. The NJF group consisted of 8 subjects, and the control group consisted of 6 subjects. [Methods] The participants in the NJF group received NJF progressive resistance treatment. Dynamic balance performance was measured before and after 3 weeks of exercise. [Results] Significant improvement in dynamic balance performance was observed both in the NJF and control groups. In the NJF group, dynamic balance performance was significantly increased compared with that in the control group. [Conclusion] The NJF intervention shortened movement time, which implies that NJF is effective for dynamic balance performance.

  4. Differences in dynamic balance scores in one sport versus multiple sport high school athletes.

    Science.gov (United States)

    Gorman, Paul P; Butler, Robert J; Rauh, Mitchell J; Kiesel, Kyle; Plisky, Phillip J

    2012-04-01

    Researchers have previously reported on the importance of dynamic balance in assessing an individual's risk for injury during sport. However, to date there is no research on whether multiple sport participation affects dynamic balance ability. Therefore, the purpose of this study was to determine if there was a difference in dynamic balance scores in high school athletes that competed in one sport only as compared athletes who competed in multiple sports, as tested by the Lower Quarter Y Balance Test (YBT-LQ). Ninety-two high school athletes who participated in one sport were matched, by age, gender and sport played, to athletes who participated in the same sport as well as additional sports. All individuals were assessed using the YBT-LQ to examine differences in composite reach score and reach direction asymmetry between single sport and multiple sport athletes. The greatest reach distance of three trials in each reach direction for right and left lower-extremities was normalized by limb length and used for analysis. A two-way ANOVA (gender x number of sports played) was used to statistically analyze the variables in the study. No significant interactions or main effects related to number of sports played were observed for any YBT-LQ score (p>0.05). Male athletes exhibited significantly greater normalized reach values for the posteromedial, posterolateral, and composite reach while also exhibiting a larger anterior reach difference when compared to the females. Athletes who participated in multiple sports had similar performances on the YBT-LQ when compared to athletes who participated in a single sport. The findings of this study suggest that the number of sports played by a high school athlete does not need to be controlled for when evaluating dynamic balance with the YBT-LQ.

  5. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  6. Testing of tunnel support: dynamic load testing of rock support containment systems (eg wire mesh).

    CSIR Research Space (South Africa)

    Ortlepp, WD

    1997-07-01

    Full Text Available The objective of this project was to determine the performance characteristics of containment elements of tunnel support in common use in South African mines under dynamic loading. The magnitude of the energy levels in this testing had...

  7. Quality of computerized blast load simulation for non-linear dynamic ...

    African Journals Online (AJOL)

    Quality of computerized blast load simulation for non-linear dynamic response ... commercial software system and a special-purpose, blast-specific software product to ... depend both on the analysis model of choice and the stand-off distances.

  8. Dynamic analysis of scraper conveyor operation with external loads

    Directory of Open Access Journals (Sweden)

    Świder Jerzy

    2017-01-01

    Full Text Available A load to an armoured face conveyor (AFC during coal mining is changeable and very difficult or even impossible to be predicted. Changes of the load to the upper scraper chain affect the load of the driving motor and generate changes in a scraper chain tension. Impact of increasing the external load to the upper scraper chain on the operation of electric motors and on the scraper chain tension is presented. The developed numerical model of the Rybnik 850 conveyor enabled identifying the places of the scraper chain high tension or places of its loosening. An impact of changing frequency of driving motor voltage on AFC’s operational conditions was tested and analysed using the AFC’s numerical model. During tests, tension of the scraper chain on the discharge end and the return end was recorded. High tension of the scraper chain and its loosening during the changeable load were also recorded on upward and downward transportation of run-of-mine material.

  9. Dynamic axle and wheel loads identification: laboratory studies

    Science.gov (United States)

    Zhu, X. Q.; Law, S. S.

    2003-12-01

    Two methods have been reported by Zhu and Law to identify moving loads on the top of a bridge deck. One is based on the exact solution (ESM) and the other is based on the finite element formulation (FEM). Simulation studies on the effect of different influencing factors have been reported previously. This paper comparatively studies the performances of these two methods with experimental measurements obtained from a bridge/vehicle system in the laboratory. The strains of the bridge deck are measured when a model car moves across the bridge deck along different paths. The moving loads on the bridge deck are identified from the measured strains using these two methods, and the responses are reconstructed from the identified loads for comparison with the measured responses to verify the performances of these methods. Studies on the identification accuracy due to the effect of the number of vibration mode used, the number of measuring points and eccentricities of travelling paths are performed. Results show that the ESM could identify the moving loads individually or as axle loads when they are travelling at an eccentricity with the sensors located close to the travelling path of the forces. And the accuracy of the FEM is dependent on the amount of measured information used in the identification.

  10. The effects of moderate fatigue on dynamic balance control and attentional demands

    Directory of Open Access Journals (Sweden)

    Teasdale Normand

    2006-09-01

    Full Text Available Abstract Background During daily activities, the active control of balance often is a task per se (for example, when standing in a moving bus. Other constraints like fatigue can add to the complexity of this balance task. In the present experiment, we examined how moderate fatigue induced by fast walking on a treadmill challenged dynamic balance control. We also examined if the attentional demands for performing the balance task varied with fatigue. Methods Subjects (n = 10 performed simultaneously a dynamic balance control task and a probe reaction time task (RT (serving as an indicator of attentional demands before and after three periods of moderate fatigue (fast walking on a treadmill. For the balance control task, the real-time displacement of the centre of pressure (CP was provided on a monitor placed in front of the subject, at eye level. Subjects were asked to keep their CP within a target (moving box moving upward and downward on the monitor. The tracking performance was measured (time spent outside the moving box and the CP behavior analyzed (mean CP speed and mean frequency of the CP velocity. Results Moderate fatigue led to an immediate decrement of the performance on the balance control task; increase of the percentage of time spent outside the box and increase of the mean CP speed. Across the three fatigue periods, subjects improved their tracking performance and reduced their mean CP speed. This was achieved by increasing their frequency of actions; mean frequency of the CP velocity were higher for the fatigue periods than for the no fatigue periods. Fatigue also induced an increase in the attentional demands suggesting that more cognitive resources had to be allocated to the balance task with than without fatigue. Conclusion Fatigue induced by fast walking had an initial negative impact on the control of balance. Nonetheless, subjects were able to compensate the effect of the moderate fatigue by increasing the frequency of

  11. The dynamic response and perturbation of magnetic field vector of orthotropic cylinders under various shock loads

    International Nuclear Information System (INIS)

    Dai, H.L.; Wang, X.

    2006-01-01

    In this paper, an analytical method is introduced to solve the problem for the dynamic stress-focusing and centred-effect of perturbation of the magnetic field vector in orthotropic cylinders under thermal and mechanical shock loads. Analytical expressions for the dynamic stresses and the perturbation of the magnetic field vector are obtained by means of finite Hankel transforms and Laplace transforms. The response histories of dynamic stresses and the perturbation of the field vector are also obtained. In practical examples, the dynamic focusing effect on both magnetoelastic stress and perturbation of the axial magnetic field vector in an orthotropic cylinder subjected to various shock loads is presented and discussed

  12. Automated load balancing in the ATLAS high-performance storage software

    CERN Document Server

    Le Goff, Fabrice; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment collects proton-proton collision events delivered by the LHC accelerator at CERN. The ATLAS Trigger and Data Acquisition (TDAQ) system selects, transports and eventually records event data from the detector at several gigabytes per second. The data are recorded on transient storage before being delivered to permanent storage. The transient storage consists of high-performance direct-attached storage servers accounting for about 500 hard drives. The transient storage operates dedicated software in the form of a distributed multi-threaded application. The workload includes both CPU-demanding and IO-oriented tasks. This paper presents the original application threading model for this particular workload, discussing the load-sharing strategy among the available CPU cores. The limitations of this strategy were reached in 2016 due to changes in the trigger configuration involving a new data distribution pattern. We then describe a novel data-driven load-sharing strategy, designed to automatical...

  13. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    Science.gov (United States)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  14. A balancing act of the brain: activations and deactivations driven by cognitive load

    OpenAIRE

    Arsalidou, Marie; Pascual-Leone, Juan; Johnson, Janice; Morris, Drew; Taylor, Margot J

    2013-01-01

    The majority of neuroimaging studies focus on brain activity during performance of cognitive tasks; however, some studies focus on brain areas that activate in the absence of a task. Despite the surge of research comparing these contrasted areas of brain function, their interrelation is not well understood. We systematically manipulated cognitive load in a working memory task to examine concurrently the relation between activity elicited by the task versus activity during control conditions. ...

  15. The Influence of External Load on Quadriceps Muscle and Tendon Dynamics during Jumping.

    Science.gov (United States)

    Earp, Jacob E; Newton, Robert U; Cormie, Prue; Blazevich, Anthony J

    2017-11-01

    Tendons possess both viscous (rate-dependent) and elastic (rate-independent) properties that determine tendon function. During high-speed movements external loading increases both the magnitude (FT) and rate (RFDT) of tendon loading. The influence of external loading on muscle and tendon dynamics during maximal vertical jumping was explored. Ten resistance-trained men performed parallel-depth, countermovement vertical jumps with and without additional load (0%, 30%, 60%, and 90% of maximum squat lift strength), while joint kinetics and kinematics, quadriceps tendon length (LT) and patellar tendon FT and RFDT were estimated using integrated ultrasound, motion analysis and force platform data and muscle tendon modelling. Estimated FT and RFDT, but not peak LT, increased with external loading. Temporal comparisons between 0% and 90% loads revealed that FT was greater with 90% loading throughout the majority of the movement (11%-81% and 87%-95% movement duration). However, RFDT was greater with 90% load only during the early movement initiation phase (8%-15% movement duration) but was greater in the 0% load condition later in the eccentric phase (27%-38% movement duration). LT was longer during the early movement (12%-23% movement duration) but shorter in the late eccentric and early concentric phases (48%-55% movement duration) with 90% load. External loading positively influenced peak FT and RFDT but tendon strain appeared unaffected, suggesting no additive effect of external loading on patellar tendon lengthening during human jumping. Temporal analysis revealed that external loading resulted in a large initial RFDT that may have caused dynamic stiffening of the tendon and attenuated tendon strain throughout the movement. These results suggest that external loading influences tendon lengthening in both a load- and movement-dependent manner.

  16. Evaluation of muscle activity for loaded and unloaded dynamic squats during vertical whole-body vibration.

    Science.gov (United States)

    Hazell, Tom J; Kenno, Kenji A; Jakobi, Jennifer M

    2010-07-01

    The purpose of this investigation was to examine if the addition of a light external load would enhance whole-body vibration (WBV)-induced increases in muscle activity during dynamic squatting in 4 leg muscles. Thirteen recreationally active male university students performed a series of dynamic squats (unloaded with no WBV, unloaded with WBV, loaded with no WBV, and loaded with WBV). The load was set to 30% of body mass and WBV included 25-, 35-, and 45-Hz frequencies with 4-mm amplitude. Muscle activity was recorded with surface electromyography (EMG) on the vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GC) and is reported as EMGrms (root mean square) normalized to %maximal voluntary exertion. During unloaded dynamic squats, exposure to WBV (45 Hz) significantly (p squat exercise in all muscles but decreased the TA. This loaded level of muscle activity was further increased with WBV (45 Hz) in all muscles. The WBV-induced increases in muscle activity in the loaded condition (approximately 3.5%) were of a similar magnitude to the WBV-induced increases during the unloaded condition (approximately 2.5%) demonstrating the addition of WBV to unloaded or loaded dynamic squatting results in an increase in muscle activity. These results demonstrate the potential effectiveness of using external loads with exposure to WBV.

  17. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  18. Balance of alkaline and acidic pollution loads in the area affected by oil shale combustion

    International Nuclear Information System (INIS)

    Kaasik, M.

    2000-01-01

    Field measurements of concentrations of SO 2 and NO 2 in the air and deposition of Ca 2+ , Mg 2+ , K + , Na + , SO 4 2- , NO 3 - and Cl - in northeastern Estonia were carried out in the end of winter 1998/99. Concentrations in the air were measured by passive sampling method (Palmes tubes); snow samples were used to quantify the deposition loads. The measurement domain covered entire Ida-Viru County, eastern part of Laeaene-Viru County and a few sites in Jogeva County. These measurements and comparison with earlier investigations show that in wintertime most of sulfate over the area affected by oil shale industrial complex appears to be deposited with fly ash particles. The regression formulae for wintertime sulfate and calcium deposition loads for oil-shale region are derived. The inhomogeneous chemical composition of fly ash and influence of other (domestic, traffic) emissions are suggested as possible factors affecting the ratio of sulfate and calcium deposition loads. (author)

  19. Loading Processes Dynamics Modelling Taking into Account the Bucket-Soil Interaction

    Directory of Open Access Journals (Sweden)

    Carmen Debeleac

    2007-10-01

    Full Text Available The author propose three dynamic models specialized for the vibrations and resistive forces analysis that appear at the loading process with different construction equipment like frontal loaders and excavators.The models used putting into evidence the components of digging: penetration, cutting, and loading.The conclusions of this study consist by evidentiate the dynamic overloads that appear on the working state and that induced the self-oscillations into the equipment structure.

  20. A Reduced-Order Model for Evaluating the Dynamic Response of Multilayer Plates to Impulsive Loads

    Science.gov (United States)

    2016-04-12

    A REDUCED-ORDER MODEL FOR EVALUATING THE DYNAMIC RESPONSE OF MULTILAYER PLATES TO IMPULSIVE LOADS Weiran Jiang, Alyssa Bennett, Nickolas...innovative multilayer materials or structures to optimize the dynamic performance as a mechanism to absorb and spread energy from an impulsive load...models. • Optimizing the structural weight and levels of protection of the multilayer plates with a good combination of materials. Technical Approach 2016

  1. Ensuring dynamic load smoothness in problem of controlling Atomic Electric Power Stations exclusive mechanisms

    International Nuclear Information System (INIS)

    Shumilov, V.F.

    2003-01-01

    New methods for the investigation of automatic systems based on the inverse tasks of dynamics with the use of rational, trigonometric and polynomial spline functions are discussed. By means of SH function the technological regimes: start-up, steadiness, racing, braking, reverse, stop were determined. Procedure for the provision of dynamic load smoothness is suggested, and example of control over the transport systems for fuel load is considered [ru

  2. Safety margins associated with containment structures under dynamic loading

    International Nuclear Information System (INIS)

    Lu, S.C.

    1978-01-01

    A technical basis for assessing the true safety margins of containment structures involved with MARK I boiling water reactor reevaluation activities is presented. It is based on the results of a plane-strain, large displacement, elasto-plastic, finite-element analysis of a thin cylindrical shell subjected to external and internal pressure pulses. An analytical procedure is presented for estimating the ultimate load capacity of the thin shell structure, and subsequently, for quantifying the design margins of safety for the type of loads under consideration. For defining failure of structures, a finite strain failure criterion is derived that accounts for multiaxiality effects

  3. Zhong-Yong as Dynamic Balancing Between Yin-Yang Opposites

    DEFF Research Database (Denmark)

    Li, Xin

    2018-01-01

    of Zhong-Yong balancing being incorrect and incomplete, the author proposes an alternative perspective on Zhong-Yong as dynamic balancing between Yin-Yang opposites. Design/methodology/approach: The author first explain why Peter P. Li’s “asymmetry” and “superiority” arguments are flawed by referring...... to the original text of the classical book of Zhong-Yong (中庸) and a comparison between Zhong-Yong and Aristotle’s doctrine of the mean. The author then propose an alternative approach to Zhong-Yong balancing that is embedded in the original text Zhong-Yong but somehow has been neglected by many Chinese scholars...

  4. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.

    Science.gov (United States)

    Barbareschi, Giulia; Richards, Rosie; Thornton, Matt; Carlson, Tom; Holloway, Catherine

    2015-01-01

    In recent years exoskeletons able to replicate human gait have begun to attract growing popularity for both assistive and rehabilitative purposes. Although wearable robots often need the use of external support in order to maintain stability, the REX exoskeleton by REX Bionics is able to self-balance through the whole cycle. However this statically balanced gait presents important differences with the dynamically balanced gait of human subjects. This paper will examine kinematic and kinetic differences between the gait analysis performed on a subject wearing the REX exoskeleton and human gait analysis data as presented in literature. We will also provide an insight on the impact that these differences can have for both rehabilitative and assistive applications.

  5. Strength and Power Training Effects on Lower Limb Force, Functional Capacity, and Static and Dynamic Balance in Older Female Adults.

    Science.gov (United States)

    Lopes, Paula Born; Pereira, Gleber; Lodovico, Angélica; Bento, Paulo C B; Rodacki, André L F

    2016-03-03

    It has been proposed that muscle power is more effective to prevent falls than muscle force production capacity, as rapid reactions are required to allow the postural control. This study aimed to compare the effects of strength and power training on lower limb force, functional capacity, and static and dynamic balance in older female adults. Thirty-seven volunteered healthy women had been allocated into the strength-training group (n = 14; 69 ± 7.3 years, 155 ± 5.6 cm, 72 ± 9.7 kg), the power-training group (n = 12; 67 ± 7.4 years, 153 ± 5.5 cm, 67.2 ± 7 kg), and control group (n = 11; 65 ± 3.1 years, 154 ± 5.6 cm, 70.9 ± 3 kg). After 12 weeks of training, the strength-training and power-training groups increased significantly maximum dynamic strength (29% and 27%), isometric strength (26% and 37%), and step total time (13% and 14%, dynamic balance), respectively. However, only the power-training group increased the rate of torque development (55%) and the functional capacity in 30-second chair stand (22%) and in time up and go tests (-10%). Empirically, power training may reduce the risk of injuries due to lower loads compared to strength training, and consequently, the physical effort demand during the training session is lower. Therefore, power training should be recommended as attractive training stimuli to improve lower limb force, functional capacity, and postural control of older female adults.

  6. Load bearing and deformation behaviour of dynamically loaded wide plate specimens

    International Nuclear Information System (INIS)

    Julisch, P.; Haedrich, H.J.; Stadtmueller, W.; Sturm, D.

    1989-01-01

    For the testing of large-scale specimens, a 12 MN-High Loading Rate Tensile Testing Machine was designed and built at MPA Stuttgart. The aim was to determine the influence of high loading rates on the stress and strain behaviour of unwelded and welded components of ferritic and austenitic materials. This new generation of testing machines is driven by a propellant charge, and generates a maximum tensile force of 12 MN with a piston velocity of 25 m/s after a stroke of 20 mm, or a maximum velocity of 60 m/s after a stroke of 400 mm. In a first test programme, welded and unwelded wide plate specimens made of material X 6 CrNi 18 11 were tested at room temperature with different strain rates from 10 -3 /s to 63/s. In addition to a description of the 12 MN-High Loading Rate Tensile Testing Machine, the results of the high loading rate tensile tests performed will be presented and compared with quasistatically tested wide plate specimens. (orig.)

  7. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    Science.gov (United States)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  8. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    Science.gov (United States)

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluation of static and dynamic balance in elderly women performing aquatic exercise and gymnastics

    Directory of Open Access Journals (Sweden)

    Ana Paula Almeida

    2010-01-01

    Full Text Available This study evaluated static and dynamic balance and related motor valences in elderly women who had been undergone gymnastics or aquatic exercise training for at least 6 months, three times a week. Thirty-one women performed water gymnastics (mean age: 69.32 ± 6.57 years and 28 gymnastics (65.57 ± 7.67 years. Height (cm, weight (kg and waist, hip and abdominal circumference (cm were measured and the body mass index (BMI and waist-hip ratio (WHR were calculated. Physical fitness was measured using the “sit and get up in 30 seconds” test (leg endurance and “8-foot up-and-go” test (dynamic balance, both proposed by Rikli and Jones (1999, and the “sit and reach” (flexibility and static balance tests described by Caromano (1998. Statistical analysis was performed using the Student t-test and Pearson’s correlation, with a level of significance of 0.05. No significant difference in the anthropometric measures (BMI and WHR was observed between groups. In the physical fitness tests, significant differences were only found in the “8-foot up-and-go” and “sit and get up” tests, with the gymnastics group presenting better results. No correlations within or between groups were observed regarding static and dynamic balance or motor valences. In conclusion, neither type of exercise was superior but the gymnastics group tended to show better results in terms of parameters such as agility, balance and flexibility.

  10. The influence of the external ankle support on the dynamic balance in volleyball athletes

    Directory of Open Access Journals (Sweden)

    Manuela Azevedo Correia de Lima

    2015-09-01

    Full Text Available AbstractThe purpose of this study was to assess the effect of ankle external supports on proprioception and dynamic balance in volleyball players. Seventeen female volleyball players (18.94±2.49 years; 65.45±9.49 kg; 1.71±0.05 m; BMI=22.0±2.67 kg/m² took part in this study. The dynamic balance was assessed through the Star Excursion Balance Test (SEBT. Comparisons between stabilization (no stabilizer/NS, orthosis/ORT and functional bandaging/FB modes and the SEBT grid lines and inter-limb were carried out. The SEBT assessment showed a significant difference between the groups NS x ORT and NS x FB (p < .01, and between the lines (p< .01. Significant line/limb interaction in DL and NDL (p< .01 was detected. The external supports tested herein showed similar effects on balance, restricting lower limb's reach in the SEBT execution in some of tested directions.

  11. The effects of attention capacity on dynamic balance control following concussion

    Directory of Open Access Journals (Sweden)

    Chou Li-Shan

    2011-02-01

    Full Text Available Abstract The purpose of this study was to examine how individuals modulate attention in a gait/cognition dual task during a 4-week period following a concussion. Ten individuals suffering from a grade 2 concussion and 10 matched controls performed a single task of level walking, a seated auditory Stroop task and a simultaneous auditory Stroop and walking task. Reaction time and accuracy were measured from the Stroop task. Dynamic balance control during gait was measured by the interaction (displacement and velocity between the center of mass (CoM and center of pressure (CoP in the coronal and sagittal planes. Concussed individuals shifted from conservative control of balance (shorter separation between CoM and CoP immediately after injury to normal balance control over 28 days post-injury. Immediately after injury, correlations analyses using each subject on each testing day as a data point showed that there was a spectrum of deficient performance among concussed individuals on the first testing day. Within a testing session, deficiencies in reaction time of processing involved in the Stroop task were commonly seen with reduce dynamic balance control. However, the prioritization was not always towards the same task between trials. There were no correlations in the control group. Information provided in this study would enhance our understanding of the interaction between attention and gait following concussion.

  12. Dynamic fracture initiation in brittle materials under combined mode I/II loading

    International Nuclear Information System (INIS)

    Nakano, M.; Kishida, K.; Yamauchi, Y.; Sogabe, Y.

    1994-01-01

    A new test method has been developed to measure the resistance of dynamic fracture initiation in brittle materials under combined mode I/II loadings. The Brazilian disks with center-cracks have been fractured under oblique impact loadings in diametral-compression. The dynamic stress intensity factors of mode I and II are evaluated from the superposition integrals of the step response functions for the cracked disk. The experimental results are presented to elucidate the influence of loading rate on the combined mode fracture toughness for ceramics and glasses. (orig.)

  13. A STUDY ON DYNAMIC LOAD HISTORY RECONSTRUCTION USING PSEUDO-INVERSE METHODS

    OpenAIRE

    Santos, Ariane Rebelato Silva dos; Marczak, Rogério José

    2017-01-01

    Considering that the vibratory forces generally cannot be measured directly at the interface of two bodies, an inverse method is studied in the present work to recover the load history in such cases. The proposed technique attempts to reconstruct the dynamic loads history by using a frequency domain analysis and Moore-Penrose pseudo-inverses of the frequency response function (FRF) of the system. The methodology consists in applying discrete dynamic loads on a finite element model in the time...

  14. Breaking the excitation-inhibition balance makes the cortical network’s space-time dynamics distinguish simple visual scenes

    DEFF Research Database (Denmark)

    Roland, Per E.; Bonde, Lars H.; Forsberg, Lars E.

    2017-01-01

    Brain dynamics are often taken to be temporal dynamics of spiking and membrane potentials in a balanced network. Almost all evidence for a balanced network comes from recordings of cell bodies of few single neurons, neglecting more than 99% of the cortical network. We examined the space......-time dynamics of excitation and inhibition simultaneously in dendrites and axons over four visual areas of ferrets exposed to visual scenes with stationary and moving objects. The visual stimuli broke the tight balance between excitation and inhibition such that the network exhibited longer episodes of net...... excitation subsequently balanced by net inhibition, in contrast to a balanced network. Locally in all four areas the amount of net inhibition matched the amount of net excitation with a delay of 125 ms. The space-time dynamics of excitation-inhibition evolved to reduce the complexity of neuron interactions...

  15. A Markov model for the temporal dynamics of balanced random networks of finite size

    Science.gov (United States)

    Lagzi, Fereshteh; Rotter, Stefan

    2014-01-01

    The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between

  16. Load Balancing Metric with Diversity for Energy Efficient Routing in Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Moad, Sofiane; Hansen, Morten Tranberg; Jurdak, Raja

    2011-01-01

    The expected number of transmission (ETX) represents a routing metric that considers the highly variable link qualities for a specific radio in Wireless Sensor Networks (WSNs). To adapt to these differences, radio diversity is a recently explored solution for WSNs. In this paper, we propose...... an energy balancing metric which explores the diversity in link qualities present at different radios. The goal is to effectively use the energy of the network and therefore extend the network lifetime. The proposed metric takes into account the transmission and reception costs for a specific radio in order...... to choose an energy efficient radio. In addition, the metric uses the remaining energy of nodes in order to regulate the traffic so that critical nodes are avoided. We show by simulations that our metric can improve the network lifetime up to 20%....

  17. Numerical modeling of sandwich panel response to ballistic loading - energy balance for varying impactor geometries

    DEFF Research Database (Denmark)

    Kepler, Jørgen Asbøl; Hansen, Michael Rygaard

    2007-01-01

    thickness but significantly smaller than panel length dimensions. Experimental data for the total loss in impactor kinetic energy and momentum and estimated damage energy are described. For a selection of impactor tip shapes, the numerical model is used to evaluate different simplified force histories...... between the impactor and the panel during penetration. The force histories are selected from a primary criterion of conservation of linear momentum in the impactor-panel system, and evaluated according to agreement with the total measured energy balance.......A sandwich panel is described by an axisymmetric lumped mass- spring model. The panel compliance is simplified, considering only core shear deformation uniformly distributed across the core thickness. Transverse penetrating impact is modeled for impactors of diameters comparable to the panel...

  18. Dynamic behaviour of a typical PHWR under earthquake load conditions

    International Nuclear Information System (INIS)

    Fischer, U.; Brandt, K.; Krutzik, N.J.

    1984-01-01

    The paper deals with dynamic calculations for a PHWR reactor building founded on rock and on a base isolation system. The zero period accelerations, displacements, mode shapes and the floor response spectra of both calculations are compared. (Author) [pt

  19. Aircraft dynamic loads generated in wake vortex encounters

    OpenAIRE

    Suñer Perucho, Carles

    2014-01-01

    The study illustrated in these pages was developed in the Structural Dynamics and Aeroelasticity Department of the Military Aircraft division of Airbus Defence and Space in Getafe, Madrid (Spain). That department is a multidisciplinary one involving several categories. Some of its competences are the analysis of impacts, acoustics and vibrations for the aircraft and all their systems. Also, the dynamic response of the aircraft to different events is part of the tasks for that department. It i...

  20. The Effects of Core Stabilization Exercise on Dynamic Balance and Gait Function in Stroke Patients

    OpenAIRE

    Chung, Eun-Jung; Kim, Jung-Hee; Lee, Byoung-Hee

    2013-01-01

    [Purpose] The purpose of this study was to determine the effects of core stabilization exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects were 16 stroke patients, who were randomly divided into two groups: a core stabilization exercise group of eight subjects and control group of eight subjects. [Methods] Subjects in both groups received general training five times per week. Subjects in the core stabilization exercise group practiced an additional core s...

  1. Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Satadru Das [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Li, Bing, E-mail: cbli@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Fujikake, Kazunori [Department of Civil and Environmental Engineering, National Defense Academy, Yokosuka 239 8686 (Japan)

    2013-06-15

    Highlights: ► Effects of wider range of loading rates on dynamic shear behavior of RC deep beams. ► Experimental investigation of RC deep beam with and without shear reinforcements. ► Verification of experimental results with truss model and FE simulation results. ► Empirical equations are proposed to predict the dynamic increase factor of maximum resistance. -- Abstract: Research on reinforced concrete (RC) deep beams has seen considerable headway over the past three decades; however, information on the dynamic shear strength and behavior of RC deep beams under varying rates of loads remains limited. This paper describes the experimental results of 24 RC deep beams with and without shear reinforcements under varying rates of concentrated loading. Results obtained serve as useful data on shear resistance, failure patterns and strain rates corresponding to varying loading rates. An analytical truss model approach proves its efficacy in predicting the dynamic shear resistance under varying loading rates. Furthermore, three-dimensional nonlinear finite element (FE) model is described and the simulation results are verified with the experimental results. A parametric study is then conducted to investigate the influence of longitudinal reinforcement ratio, transverse reinforcement ratio and shear span to effective depth ratio on shear behavior. Subsequently, two empirical equations were proposed by integrating the various parameters to assess the dynamic increase factor (DIF) of maximum resistance under varying rates of concentrated loading.

  2. Influence of the implant abutment types and the dynamic loading on initial screw loosening

    Science.gov (United States)

    Kim, Eun-Sook

    2013-01-01

    PURPOSE This study examined the effects of the abutment types and dynamic loading on the stability of implant prostheses with three types of implant abutments prepared using different fabrication methods by measuring removal torque both before and after dynamic loading. MATERIALS AND METHODS Three groups of abutments were produced using different types of fabrication methods; stock abutment, gold cast abutment, and CAD/CAM custom abutment. A customized jig was fabricated to apply the load at 30° to the long axis. The implant fixtures were fixed to the jig, and connected to the abutments with a 30 Ncm tightening torque. A sine curved dynamic load was applied for 105 cycles between 25 and 250 N at 14 Hz. Removal torque before loading and after loading were evaluated. The SPSS was used for statistical analysis of the results. A Kruskal-Wallis test was performed to compare screw loosening between the abutment systems. A Wilcoxon signed-rank test was performed to compare screw loosening between before and after loading in each group (α=0.05). RESULTS Removal torque value before loading and after loading was the highest in stock abutment, which was then followed by gold cast abutment and CAD/CAM custom abutment, but there were no significant differences. CONCLUSION The abutment types did not have a significant influence on short term screw loosening. On the other hand, after 105 cycles dynamic loading, CAD/CAM custom abutment affected the initial screw loosening, but stock abutment and gold cast abutment did not. PMID:23509006

  3. Effect of Hydrotherapy on Static and Dynamic Balance in Older Adults: Comparison of Perturbed and Non-Perturbed Programs

    Directory of Open Access Journals (Sweden)

    Elham Azimzadeh

    2013-01-01

    Full Text Available Objectives: Falling is a main cause of mortality in elderly. Balance training exercises can help to prevent falls in older adults. According to the principle of specificity of training, the perturbation-based trainings are more similar to the real world. So these training programs can improve balance in elderly. Furthermore, exercising in an aquatic environment can reduce the limitations for balance training rather than a non-aquatic on. The aim of this study is comparing the effectiveness of perturbed and non-perturbed balance training programs in water on static and dynamic balance in aforementioned population group. Methods & Materials: 37 old women (age 80-65, were randomized to the following groups: perturbation-based training (n=12, non-perturbation-based training (n=12 and control (n=13 groups. Static and dynamic balance had been tested before and after the eight weeks of training by the postural stability test of the Biodex balance system using dynamic (level 4 and static platform. The data were analyzed by one sample paired t-test, Independent t-test and ANOVA. Results: There was a significant improvement for all indexes of static and dynamic balance in perturbation-based training (P<0.05. However, in non-perturbed group, all indexes were improved except ML (P<0.05. ANOVA showed that perturbed training was more effective than non-perturbed training on both static and dynamic balances. Conclusion: The findings confirmed the specificity principle of training. Although balance training can improve balance abilities, these kinds of trainings are not such specific for improving balance neuromuscular activities.The perturbation-based trainings can activate postural compensatory responses and reduce falling risk. According to results, we can conclude that hydrotherapy especially with perturbation-based programs will be useful for rehabilitation interventions in elderly .

  4. A constitutive model for concrete under dynamic loading

    International Nuclear Information System (INIS)

    Suaris, W.; Shah, S.P.

    1983-01-01

    A continuous damage theory for the quasistatic and dynamic behaviour of concrete is presented. The continuous damage theory is rational choice for use in predicing the dynamic behaviour of concrete as the strain-rate effects that have been observed for concrete can to a large extent be attributed to the rate-sensitivity of the microcracking process. A vectorial representation is adopted for the damage to account for the planar nature of the microcracks in concrete. Damage is treated as an internal state variable influencing the free energy of the material and the constitutive equations and the damage evolution equations are derived consistently using thermodynamic considerations. The developed constitutive model is then calibrated by using test results in flexure and compression over a range of strain-rates. The constitutive model is also shown to be capable of predicting certain other experimentally observed characteristics of the dynamic response of concrete. (orig./HP)

  5. Dynamic Analysis of Helical Planetary Gear Sets under Combined Force and Moment Loading

    Directory of Open Access Journals (Sweden)

    Yanfang Liu

    2017-01-01

    Full Text Available The dynamic behavior of a single-stage planetary gear set with helical gears of multishaft automotive automatic transmissions has been studied, in which one component of the planetary gear set is imposed by additional external vertical and axial loading from countershaft gear pair in addition to the moment. Under these combined loading conditions, the contributions of the deflections of the ring gear and the carrier cannot be neglected. A three-dimensional nonlinear time-variant dynamic model considering not only the transverse, torsional, axial, and rotational motions of the gears but also the elasticity of the mounted shafts has been developed by combining the lumped parameter method with finite element method. The natural modes and the forced vibration responses due to static transmission errors have been obtained. The proposed dynamic model is employed to describe the effects of the combined external loading condition and positioning on the dynamic behavior of a four-planet system.

  6. Dynamic analysis of a pumped-storage hydropower plant with random power load

    Science.gov (United States)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Patelli, Edoardo; Tolo, Silvia

    2018-02-01

    This paper analyzes the dynamic response of a pumped-storage hydropower plant in generating mode. Considering the elastic water column effects in the penstock, a linearized reduced order dynamic model of the pumped-storage hydropower plant is used in this paper. As the power load is always random, a set of random generator electric power output is introduced to research the dynamic behaviors of the pumped-storage hydropower plant. Then, the influences of the PI gains on the dynamic characteristics of the pumped-storage hydropower plant with the random power load are analyzed. In addition, the effects of initial power load and PI parameters on the stability of the pumped-storage hydropower plant are studied in depth. All of the above results will provide theoretical guidance for the study and analysis of the pumped-storage hydropower plant.

  7. Study on the Flare Load Estimation of the Deethanizer using Dynamic Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyungtae; Won, Wangyun [GS EC, Seoul (Korea, Republic of); Shin, Dongil [Myongji University, Yongin (Korea, Republic of)

    2014-10-15

    A flare system is a very important system that crucially affects on the process safety in chemical plants. If a flare system is designed too small, it cannot prevent catastrophic accidents of a chemical plant. On the other hand, if a flare system is designed too large, it will waste resources. Therefore, reasonable relief load estimation has been a crucial issue in the industry. American Petroleum Institute (API) suggests basic guidelines for relief load estimation, and a lot of engineering companies have developed their own relief load estimation methods that use an unbalanced heat and material method. However, these methods have to involve lots of conservative assumptions that lead to an overestimation of relief loads. In this study, the new design procedure for a flare system based on dynamic simulation was proposed in order to avoid the overestimation of relief loads. The relief load of a deethanizer process was tested to verify the performance of the proposed design procedure.

  8. EFFECT OF DYNAMIC BALANCE TRAINING ON AGILITY IN MALE BASKETBALL PLAYERS

    Directory of Open Access Journals (Sweden)

    Avi Saraswat

    2015-10-01

    Full Text Available Background: Athletes focus their training on two major goals, i.e., avoidance of the injury and increasing the performance. Balance training has been widely used in competitive sports to improve the balance and thus reduce the risk of injury, for example, ligamentous sprains, which are very common in Basketball. On the other hand, various drills are being used to improve the performance parameters such as agility. Our effort is to find out an exercise program which focuses on balance training and see whether it has any effect on agility. Methods: The study design was a Pretest-Posttest Control-Group Design. 30 healthy school level Male Basketball Players were selected from V-One Basketball Academy, Don Bosco Basketball Academy, Modern School Basketball Academy, New Delhi. They were randomly divided into two groups. Group A performed dynamic balance training 3 sessions per week for 4 weeks. Group B performed conventional exercises throughout the duration of the study. Outcome measure, i.e., T- test was measured pre and post 4 week period. Results: Data analysis was done by Independent t test and Paired t test for between group analysis and within group analysis respectively. There was a significant reduction in T-test times in the experimental group as compared to the control group (‘p’ value <0.05 while there was no significant improvement in the control group. Conclusion: Four weeks of dynamic balance training significantly improved agility as detected by T-test. Thus it can be concluded that the used protocol can be incorporated in the training regimes to reduce the risk of injury as well as improve the performance.

  9. A Load Balancing Scheme Using Federate Migration Based on Virtual Machines for Cloud Simulations

    Directory of Open Access Journals (Sweden)

    Xiao Song

    2015-01-01

    Full Text Available A maturing and promising technology, Cloud computing can benefit large-scale simulations by providing on-demand, anywhere simulation services to users. In order to enable multitask and multiuser simulation systems with Cloud computing, Cloud simulation platform (CSP was proposed and developed. To use key techniques of Cloud computing such as virtualization to promote the running efficiency of large-scale military HLA systems, this paper proposes a new type of federate container, virtual machine (VM, and its dynamic migration algorithm considering both computation and communication cost. Experiments show that the migration scheme effectively improves the running efficiency of HLA system when the distributed system is not saturated.

  10. Dynamic supplier selection problem considering full truck load in probabilistic environment

    Science.gov (United States)

    Sutrisno, Wicaksono, Purnawan Adi

    2017-11-01

    In this paper, we propose a mathematical model in a probabilistic dynamic optimization to solve a dynamic supplier selection problem considering full truck load in probabilistic environment where some parameters are uncertain. We determine the optimal strategy for this problem by using stochastic dynamic programming. We give some numerical experiments to evaluate and analyze the model. From the results, the optimal supplier and the optimal product volume from the optimal supplier were determined for each time period.

  11. Response of Buried Vertically Oriented Cylinders to Dynamic Loading,

    Science.gov (United States)

    1980-06-01

    BALSARA • , . / ,, _,-, -. 1i S ,LESPONSE OF BURIED VERTICALLY 9RIENTED CYLINDERS 𔃺 .-TO DINAMIC LOADING_ 9AYLE E. LRTOrwW&-N JIIMY P./BALSARA Nk...1.7, 2,8, and 4.0 inches). The end caps for the cylinders consisted of a steel shell filled with high- strength concrete; however, the end caps were...not designed to be test articles. The average concrete compressive strength of the cylinders on test day was 44.0 MPa (6,380 psi). The three DEOT

  12. Understanding balance differences in individuals with multiple sclerosis with mild disability: An investigation of differences in sensory feedback on postural and dynamic balance control

    Science.gov (United States)

    Denomme, Luke T.

    Multiple sclerosis (MS) is an autoimmune disease that affects the central nervous system (CNS) and causes a broad range of neurological symptoms. One of the most common symptoms experienced by individuals with MS is poor balance control during standing and walking. The main mechanism underlying impaired balance control in MS appears to result from slowed somatosensory conduction and impaired central integration. The current thesis assessed postural and dynamic control of balance of 'individuals with MS with mild disability' (IwMS). IwMS were compared to 'healthy age-matched individuals' (HAMI) and community-dwelling 'older adults' (OA). The purpose of this thesis was to quantify differences in postural and dynamic control of balance in IwMS to the two populations who display balance control differences across the lifespan and represent two extreme ends of the balance control continuum due to natural aging. IwMS (n = 12, x¯age: 44 +/- 9.4 years), HAMI (n = 12, x¯age: 45 +/- 9.9 years) and community-dwelling OA (n = 12, x¯ age: 68.1 +/- 4.5 years) postural and dynamic balance control were evaluated during a Romberg task as well as a dynamic steering task. The Romberg task required participants to stand with their feet together and hands by their sides for 45 seconds with either their eyes open or closed. The dynamic steering task required participants to walk and change direction along the M-L plane towards a visual goal. Results from these two tasks reveal that IwMS display differences in postural control when compared to HAMI when vision was removed as well as differences in dynamic stability margin during steering situations. During the postural control task IwMS displayed faster A-P and M-L COP velocities when vision was removed and their COP position was closer to their self-selected maximum stability limits compared to HAMI. Assessment of dynamic stability during the steering task revealed that IwMS displayed reduced walking speed and cadence during the

  13. A preliminary study of static and dynamic balance in sedentary obese young adults: the relationship between BMI, posture and postural balance.

    Science.gov (United States)

    do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R

    2017-12-01

    The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P  0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.

  14. Load-bearing Characters Analysis of Large Diameter Rock-Socketed Filling Piles Based on Self-Balanced Method

    Science.gov (United States)

    tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao

    2018-03-01

    Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.

  15. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    Science.gov (United States)

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  16. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    Science.gov (United States)

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-03-05

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  17. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies,bone tissues will grow into their porous structure,which will reinforce their strength and stiffness.The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around,as if they were part of the bone.The mechanical compatibility of bone substitutes includes both static and dynamic behavior,due to the mechanical properties of bone depending on the strain rate.In this study,split Hopkinson pressure bar technique(SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite,bones with and bones without organic com-ponents,and their dynamic stress-strain curves of the three materials were obtained.The mechanical effects of collagens in bone were assessed,by comparing the difference between the Young’s moduli of the three materials.As the implanted bone substitute becomes a part of bone,it can be regarded as an inclusion composite.The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness.The evaluated result shows that the suitable porosity of HA is 0.8,which is in favor of both static and dynamic stiffness compatibility.

  18. Stiffness compatibility of coralline hydroxyapatite bone substitute under dynamic loading

    Institute of Scientific and Technical Information of China (English)

    REN ChaoFeng; HOU ZhenDe; ZHAO Wei

    2009-01-01

    When hydroxyapatite bone substitutes are implanted in human bodies, bone tissues will grow into their porous structure, which will reinforce their strength and stiffness. The concept of mechanical com-patibility of bone substitutes implies that their mechanical properties are similar to the bone tissues around, as if they were part of the bone. The mechanical compatibility of bone substitutes includes both static and dynamic behavior, due to the mechanical properties of bone depending on the strain rate. In this study, split Hopkinson pressure bar technique (SHPB) was employed to determine the dy-namic mechanical properties of coralline hydroxyapatite, bones with and bones without organic com-ponents, and their dynamic stress-strain curves of the three materials were obtained. The mechanical effects of collagens in bone were assessed, by comparing the difference between the Young's moduli of the three materials. As the implanted bone substitute becomes a part of bone, it can be regarded as an inclusion composite. The effective modulus of the composite was also evaluated in order to estimate its mechanical compatibility on stiffness. The evaluated result shows that the suitable porosity of HA is0.8, which is in favor of both static and dynamic stiffness compatibility.

  19. Wideband impedance measurements of DC motors under dynamic load conditions

    NARCIS (Netherlands)

    Diouf, F.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2013-01-01

    One of the principal conducted EMI(electromagnetic interferences) sources of low voltage DC (direct current) motors is the commutation occurring during rotation. In this paper the small-signal impedance of low voltage DC motors under different functioning modes, including the dynamic one is studied

  20. Computerized dynamic posturography in the objective assessment of balance in patients with intermittent claudication.

    Science.gov (United States)

    Mockford, Katherine A; Mazari, Fayyaz A K; Jordan, Alastair R; Vanicek, Natalie; Chetter, Ian C; Coughlin, Patrick A

    2011-02-01

    One-third of all elderly patients fall each year and impaired balance has been recognized as a specific risk factor. Intermittent claudication is common among the elderly population, affecting approximately 5% of the population over the age of 50. The aim of this proof-of-concept study was to assess the prevalence of impaired balance among elderly claudicants and to assess each patient's insight into their own risk of falling. A total of 58 claudicants (45 men), median age of 70 (interquartile range = 65-73) years, underwent objective balance assessment by using computerized dynamic posturography. As compared with 195 (5%) historic controls, 24 (41%) of the claudicants demonstrated abnormal balance when the Sensory Organization Test (SOT) was used. Vestibular dysfunction occurred in 52% of the claudicants. Abnormalities including somatosensory (22%), visual function (17%), and preferential reliance on inaccurate visual cues (17%) occurred less often. Prolonged Motor Control Test latency times were uncommon (n = 13) and were in most cases evenly distributed between those with normal (n = 7) and abnormal (n = 6) composite SOT scores. There was a significant difference in history of falling between claudicants with abnormal and normal SOT scores (p = 0.003), with a higher number of patients with abnormal SOT having experienced falling in the past year. However, no correlation between fear of falling and composite SOT score was found (Spearman rank correlation, r = 0.124; p = 0.381). Impaired balance, particularly secondary to vestibular problems, is very common among claudicants and may predispose to a high incidence of falls. Claudicants with abnormal balance are more likely to have a history of falls but not a fear of falling, thus potentially rendering these patients to be at a greater risk. Copyright © 2011. Published by Elsevier Inc.

  1. Effects of nutrient loading on the carbon balance of coastal wetland sediments

    Science.gov (United States)

    Morris, J.T.; Bradley, P.M.

    1999-01-01

    Results of a 12-yr study in an oligotrophic South Carolina salt marsh demonstrate that soil respiration increased by 795 g C m-2 yr-1 and that carbon inventories decreased in sediments fertilized with nitrogen and phosphorus. Fertilized plots became net sources of carbon to the atmosphere, and sediment respiration continues in these plots at an accelerated pace. After 12 yr of treatment, soil macroorganic matter in the top 5 cm of sediment was 475 g C m-2 lower in fertilized plots than in controls, which is equivalent to a constant loss rate of 40 g C m-2 yr-1. It is not known whether soil carbon in fertilized plots has reached a new equilibrium or continues to decline. The increase in soil respiration in the fertilized plots was far greater than the loss of sediment organic matter, which indicates that the increase in soil respiration was largely due to an increase in primary production. Sediment respiration in laboratory incubations also demonstrated positive effects of nutrients. Thus, the results indicate that increased nutrient loading of oligotrophic wetlands can lead to an increased rate of sediment carbon turnover and a net loss of carbon from sediments.

  2. Dynamic behavior of reinforced concrete beam subjected to impact load

    International Nuclear Information System (INIS)

    Ito, Chihiro; Ohnuma, Hiroshi; Sato, Koichi; Takano, Hiroshi

    1984-01-01

    The purpose of this report is to find out the impact behavior of reinforced concrete beams by means of experiment. The reinforced concrete is widely used for such an important structure as the building facilities of the nuclear power plant, and so the impact behavior of the reinforced concrete structures must be examined to estimate the resistance of concrete containment against impact load and to develope the reasonable and reliable design procedure. The impact test on reinforced concrete beam which is one of the most basic elements in the structure was conducted. Main results are summarized as follows. 1) Bending failure occured on static test. On the other hand, shear failure occured in the case of high impact velocity on impact test. 2) Penetration depth and residual deflection are approximately proportional to V 2 (V: velocity at impact). 3) Flexural wave propagates about at the speed of 2000 m/s. 4) The resistance of reinforced concrete beam against the impact load is fairly good. (author)

  3. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  4. Active influence in dynamical models of structural balance in social networks

    Science.gov (United States)

    Summers, Tyler H.; Shames, Iman

    2013-07-01

    We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.

  5. The Comprehensive Biomechanics and Load-Sharing of Semirigid PEEK and Semirigid Posterior Dynamic Stabilization Systems

    Directory of Open Access Journals (Sweden)

    D. K. Sengupta

    2013-01-01

    Full Text Available Alternatives to conventional rigid fusion have been proposed for several conditions related to degenerative disc disease when nonoperative treatment has failed. Semirigid fixation, in the form of dynamic stabilization or PEEK rods, is expected to provide compression under loading as well as an intermediate level of stabilization. This study systematically examines both the load-sharing characteristics and kinematics of these two devices compared to the standard of internal rigid fixators. Load-sharing was studied by using digital pressure films inserted between an artificially machined disc and two loading fixtures. Rigid rods, PEEK rods, and the dynamic stabilization system were inserted posteriorly for stabilization. The kinematics were quantified on ten, human, cadaver lumbosacral spines (L3-S1 which were tested under a pure bending moment, in flexion-extension, lateral bending, and axial rotation. The magnitude of load transmission through the anterior column was significantly greater with the dynamic device compared to PEEK rods and rigid rods. The contact pressures were distributed more uniformly, throughout the disc with the dynamic stabilization devices, and had smaller maximum point-loading (pressures on any particular point within the disc. Kinematically, the motion was reduced by both semirigid devices similarly in all directions, with slight rigidity imparted by a lateral interbody device.

  6. A simplified model of dynamic interior cooling load evaluation for office buildings

    International Nuclear Information System (INIS)

    Ding, Yan; Zhang, Qiang; Wang, Zhaoxia; Liu, Min; He, Qing

    2016-01-01

    Highlights: • The core interior disturbance was determined by principle component analysis. • Influences of occupants on cooling load should be described using time series. • A simplified model was built to evaluate dynamic interior building cooling load. - Abstract: Predicted cooling load is a valuable tool for assessing the operation of air-conditioning systems. Compared with exterior cooling load, interior cooling load is more unpredictable. According to principle components analysis, occupancy was proved to be a typical factor influencing interior cooling loads in buildings. By exploring the regularity of interior disturbances in an office building, a simplified evaluation model for interior cooling load was established in this paper. The stochastic occupancy rate was represented by a Markov transition model. Equipment power, lighting power and fresh air were all related to occupancy rate based on time sequence. The superposition of different types of interior cooling loads was also considered in the evaluation model. The error between the evaluation results and measurement results was found to be lower than 10%. In reference to the cooling loads calculated by the traditional design method and area-based method in case study office rooms, the evaluated cooling loads were suitable for operation regulation.

  7. Using Maximal Isometric Force to Determine the Optimal Load for Measuring Dynamic Muscle Power

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason R.; Nash, Roxanne E.; Sinka, Joseph; Bloomberg, Jacob J.

    2009-01-01

    Maximal power output occurs when subjects perform ballistic exercises using loads of 30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of

  8. Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Strong, B.R. Jr.; Baschiere, R.J.

    1978-01-01

    The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)

  9. On the balance energy and nuclear dynamics in peripheral heavy-ion collisions

    International Nuclear Information System (INIS)

    Chugh, Rajiv; Puri, Rajeev K.

    2010-01-01

    We present here the system size dependence of balance energy for semi-central and peripheral collisions using quantum molecular dynamics model. For this study, the reactions of Ne 20 +Ne 20 , Ca 40 +Ca 40 , Ni 58 + Ni 58 , Nb 93 +Nb 93 , Xe 131 +Xe 131 , and Au 197 +Au 197 are simulated at different incident energies and impact parameters. A hard equation of state along with nucleon–nucleon cross-sections between 40 and 55 mb explains the data nicely. Interestingly, balance energy follows a power law ∝A τ for the mass dependence at all colliding geometries. The power factor τ is close to –1/3 in central collisions, whereas it is –2/3 for peripheral collisions suggesting stronger system size dependence at peripheral geometries. This also suggests that in the absence of momentum dependent interactions, Coulomb's interaction plays an exceedingly significant role. These results are further analyzed for nuclear dynamics at the balance point. (author)

  10. Static and dynamic balance performance in patients with osteoporotic vertebral compression fracture.

    Science.gov (United States)

    Wang, Ling-Yi; Liaw, Mei-Yun; Huang, Yu-Chi; Lau, Yiu-Chung; Leong, Chau-Peng; Pong, Ya-Ping; Chen, Chia-Lin

    2013-01-01

    Patients with osteoporotic vertebral compression fracture (OVCF) have postural changes and increased risk of falling. The aim of this study is to compare balance characteristics between patients with OVCF and healthy control subjects. Patients with severe OVCF and control subjects underwent computerised dynamic posturography (CDP) in this case-control study. Forty-seven OVCF patients and 45 controls were recruited. Compared with the control group, the OVCF group had significantly decreased average stability; maximal stability under the `eye open with swayed support surface' (CDP subtest 4) and 'eye closed with swayed support surface' conditions (subtest 5); and decreased ankle strategy during subtests 4 and 5 and under the `swayed vision with swayed support surface' condition (subtest 6). The OVCF group fell more frequently during subtests 5 and 6 and had longer overall reaction time and longer reaction time when moving backward during the directional control test. OVCF patients had poorer static and dynamic balance performance compared with normal control. They had decreased postural stability and ankle strategy with increased fall frequency on a swayed surface; they also had longer reaction times overall and in the backward direction. Therefore, we suggest balance rehabilitation for patients with OVCF to prevent fall.

  11. Investigation of Balance Function Using Dynamic Posturography under Electrical-Acoustic Stimulation in Cochlear Implant Recipients

    Directory of Open Access Journals (Sweden)

    B. Schwab

    2010-01-01

    Full Text Available Introduction. The purpose of the present study is to investigate the effect of electrical-acoustic stimulation on vestibular function in CI patients by using the EquiTest and to help answer the question of whether electrically stimulating the inner ear using a cochlear implant influences the balance system in any way. Material and Methods. A test population (=50 was selected at random from among the cochlear implant recipients. Dynamic posturography (using the EquiTest was performed with the device switched off an switched on. Results. In summary, it can be said that an activated cochlear implant affects the function of the vestibular system and may, to an extent, even lead to a stabilization of balance function under the static conditions of dynamic posturography, but nevertheless also to a significant destabilization. Significant improvements in vestibular function were seen mainly in equilibrium scores under conditions 4 and 5, the composite equilibrium score, and the vestibular components as revealed by sensory analysis. Conclusions. Only under the static conditions are significantly poorer scores achieved when stimulation is applied. It may be that the explanation for any symptoms of dizziness lies precisely in the fact that they occur in supposedly noncritical situations, since, when the cochlear implant makes increased demands on the balance system, induced disturbances can be centrally suppressed.

  12. Measuring and modeling the temporal dynamics of nitrogen balance in an experimental-scale paddy field

    Science.gov (United States)

    Tseng, C.; Lin, Y.

    2013-12-01

    Nitrogen balance involves many mechanisms and plays an important role to maintain the function of nature. Fertilizer application in agriculture activity is usually seen as a common and significant nitrogen input to environment. Improper fertilizer application on paddy field can result in great amount of various types of nitrogen losses. Hence, it is essential to understand and quantify the nitrogen dynamics in paddy field for fertilizer management and pollution control. In this study, we develop a model which considers major transformation processes of nitrogen (e.g. volatilization, nitrification, denitrification and plant uptake). In addition, we measured different types of nitrogen in plants, soil and water at plant growth stages in an experimental-scale paddy field in Taiwan. The measurement includes total nitrogen in plants and soil, and ammonium-N (NH4+-N), nitrate-N (NO3--N) and organic nitrogen in water. The measured data were used to calibrate the model parameters and validate the model for nitrogen balance simulation. The results showed that the model can accurately estimate the temporal dynamics of nitrogen balance in paddy field during the whole growth stage. This model might be helpful and useful for future fertilizer management and pollution control in paddy field.

  13. The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems

    NARCIS (Netherlands)

    Jelsma, Dorothee; Geuze, Reint H; Mombarg, Remo; Smits-Engelsman, Bouwien C.M.

    The aim of this study was to examine differences in the performance of children with probable Developmental Coordination Disorder (p-DCD) and balance problems (BP) and typical developing children (TD) on a Wii Fit task and to measure the effect on balance skills after a Wii Fit intervention.

  14. Body drop into a fluid tank and dynamic loads calculation

    Directory of Open Access Journals (Sweden)

    Komarov Aleksandr Andreevich

    2014-05-01

    Full Text Available The theory of a body striking a fluid began intensively developing due to the tasks of hydroplanes landing. For the recent years the study of a stroke and submersion of bodies into fluid became even more current. We face them in the process of strength calculation of ship hulls and other structures in modern technology. These tasks solution represents great mathematical difficulty even in case of the mentioned simplifications. These difficulties emerge due to the unsteady character of fluid motion in case of body submersion, and also jet and spray phenomena, which lead to discontinuous motions. On the basis of G.V. Logvinovich’s concept the problem of loads determination with consideration for air gap is solved for both a body and reservoir enclosing structures when a body falls into a fluid. Numerical method is based on the decay of an arbitrary discontinuity.

  15. Modeling of dynamically loaded hydrodynamic bearings at low Sommerfeld numbers

    DEFF Research Database (Denmark)

    Thomsen, Kim

    Current state of the art within the wind industry dictates the use of conventional rolling element bearings for main bearings. As wind turbine generators increase in size and output, so does the size of the main bearings and accordingly also the cost and potential risk of failure modes. The cost...... and failure risk of rolling element bearings do, however, grow exponentially with the size. Therefore hydrodynamic bearings can prove to be a competitive alternative to the current practice of rolling element bearings and ultimately help reducing the cost and carbon footprint of renewable energy generation....... The challenging main bearing operation conditions in a wind turbine pose a demanding development task for the design of a hydrodynamic bearing. In general these conditions include operation at low Reynolds numbers with frequent start and stop at high loads as well as difficult operating conditions dictated...

  16. Study on heat under dynamic loading of rubber

    Directory of Open Access Journals (Sweden)

    T. I. Igumenova

    2016-01-01

    Full Text Available A number of studies on heat buildup in tire rubber surface scan method samples using a thermal imaging camera. Investigated the exothermic chemical reaction mechanical destruction rubber when loading designs permanent cyclic stretching with deformation of the working zone 50%. Percentage of deformation of the working zone was chosen on the basis of the actual data on the stretch-compression zone "Rusk" tires, which is the maximum level difference of deformation during run-in. Experiment plan provided for periodic relaxation samples of at least 72 hours for more accurate simulation of operation process of structural products. Created and processed data on temperature changes in samples for bar and line profile for rubber compounds with the introduction of nanomodificator (fullerene-containing technical carbon in comparison with the control sample without him. The data obtained reflect the nature of heat depending on the composition of the compound. Identified common patterns of thermal nature of physicochemical process mechanical destruction rubbers. For rubber with nanomodifikatorom there has been an increase in the temperature interval reaction from a minimum to a maximum 2 degrees that is also linked to the rise in the average temperature of the reaction on the histogram also at 2-3 degrees of deformation under the same conditions and the level of cyclic loading. However, the temperature in the control sample that is associated with the beginning of the formation of hardened rubber structures, economies of Mallinza-Petrikeeva, occurs with delay twice compared with modified Fullerenes. Measurement of physic-mechanical indicators selected in the course of testing of samples showed the beginning of formation of structure with increased strength of samples in the sample temperature zone that corresponds to the thermal effect of èndotermičeskomu recombination reactions of macromolecules.

  17. The Effects of Short-Term Ski Trainings on Dynamic Balance Performance and Vertical Jump in Adolescents

    Science.gov (United States)

    Camliguney, Asiye Filiz

    2013-01-01

    Skiing is a sport where balance and strength are critical and which can be practiced actively especially from early years to old age. The purpose of this study is to examine the effect of a 5-day training of skiing skills on dynamic balance performance and development of vertical jump strength in adolescents. Sixteen adolescent volunteers who do…

  18. Estimating sediment loads in an intra-Apennine catchments: balance between modeling and monitoring

    Science.gov (United States)

    Pelacani, Samanta; Cassi, Paola; Borselli, Lorenzo

    2010-05-01

    an 8 time increase in suspended sediment load. Furthermore, the fine-grained (Gis and field numerical assessment. Catena 75 (3): 268-277.

  19. Dynamic Loads and Wake Prediction for Large Wind Turbines Based on Free Wake Method

    Institute of Scientific and Technical Information of China (English)

    Cao Jiufa; Wang Tongguang; Long Hui; Ke Shitang; Xu Bofeng

    2015-01-01

    With large scale wind turbines ,the issue of aerodynamic elastic response is even more significant on dy-namic behaviour of the system .Unsteady free vortex wake method is proposed to calculate the shape of wake and aerodynamic load .Considering the effect of aerodynamic load ,inertial load and gravity load ,the decoupling dy-namic equations are established by using finite element method in conjunction of the modal method and equations are solved numerically by Newmark approach .Finally ,the numerical simulation of a large scale wind turbine is performed through coupling the free vortex wake modelling with structural modelling .The results show that this coupling model can predict the flexible wind turbine dynamic characteristics effectively and efficiently .Under the influence of the gravitational force ,the dynamic response of flapwise direction contributes to the dynamic behavior of edgewise direction under the operational condition of steady wind speed .The difference in dynamic response be-tween the flexible and rigid wind turbines manifests when the aerodynamics/structure coupling effect is of signifi-cance in both wind turbine design and performance calculation .

  20. Detailed balance method for chemical potential determination in Monte Carlo and molecular dynamics simulations

    International Nuclear Information System (INIS)

    Fay, P.J.; Ray, J.R.; Wolf, R.J.

    1994-01-01

    We present a new, nondestructive, method for determining chemical potentials in Monte Carlo and molecular dynamics simulations. The method estimates a value for the chemical potential such that one has a balance between fictitious successful creation and destruction trials in which the Monte Carlo method is used to determine success or failure of the creation/destruction attempts; we thus call the method a detailed balance method. The method allows one to obtain estimates of the chemical potential for a given species in any closed ensemble simulation; the closed ensemble is paired with a ''natural'' open ensemble for the purpose of obtaining creation and destruction probabilities. We present results for the Lennard-Jones system and also for an embedded atom model of liquid palladium, and compare to previous results in the literature for these two systems. We are able to obtain an accurate estimate of the chemical potential for the Lennard-Jones system at higher densities than reported in the literature

  1. Effect of core strength training on dynamic balance and agility in adolescent badminton players.

    Science.gov (United States)

    Ozmen, Tarik; Aydogmus, Mert

    2016-07-01

    The aim of the present study was to investigate effect of core strength training (CST) on core endurance, dynamic balance and agility in adolescent badminton players. Twenty adolescent (age = 10.8 ± 0.3 years; height = 140.6 ± 4.4 cm, weight = 33.9 ± 5.8 kg) badminton players were randomly divided into two groups as training group (TG) and control (CG) group. All subjects were evaluated with Star Excursion Balance Test (SEBT), Illinois Agility Test, and the core endurance tests. The TG completed CST twice a week, for 6 weeks. There were significant increases in (p  0.05). The CST resulted in significant gains in directions of the SEBT and core endurances in adolescent badminton players, but not in agility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Collective circular motion in synchronized and balanced formations with second-order rotational dynamics

    Science.gov (United States)

    Jain, Anoop; Ghose, Debasish

    2018-01-01

    This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.

  3. Effects of Physical Fitness Exercise, Mental Exercise and Mindfulness Exercise on Static and Dynamic Balance in Elderly Women

    Directory of Open Access Journals (Sweden)

    Latifeh Ghasempour

    2017-09-01

    Conclusion The study showed that physical exercises, mindfulness and mental training have a significant effect on the improvement of static and dynamic balance in elderly women, though the association of cognitive practices (mindfulness and mental training with motor training (physical exercises could cause a lasting impact. So, it is recommended to use physical exercises with cognitive training to improve static and dynamic balance in elderly people.

  4. Dynamic response of beams on elastic foundations to impact loading

    International Nuclear Information System (INIS)

    Prasad, B.B.; Sinha, B.P.

    1987-01-01

    The beam considered is a Timoshenko beam in which the effects of rotatory inertia and shear deformations are included and the foundation model consists of Winkler-Zimmermann type having Hookean linear elastic springs. The analysis is very useful for predicting the dynamic response of structural components of aircraft or nuclear reactors or even runways if that component may be mathematically idealized as a beam on elastic foundation. The effect of rotatory inertia and shear deformation is very much pronounced and hence should not be neglected in solving such impact problems. In general the effect of foundation modulus is to further increase the values of frequencies of vibrations. (orig./HP)

  5. Dynamic analysis of elastic rubber tired car wheel breaking under variable normal load

    Science.gov (United States)

    Fedotov, A. I.; Zedgenizov, V. G.; Ovchinnikova, N. I.

    2017-10-01

    The purpose of the paper is to analyze the dynamics of the braking of the wheel under normal load variations. The paper uses a mathematical simulation method according to which the calculation model of an object as a mechanical system is associated with a dynamically equivalent schematic structure of the automatic control. Transfer function tool analyzing structural and technical characteristics of an object as well as force disturbances were used. It was proved that the analysis of dynamic characteristics of the wheel subjected to external force disturbances has to take into account amplitude and phase-frequency characteristics. Normal load variations impact car wheel braking subjected to disturbances. The closer slip to the critical point is, the higher the impact is. In the super-critical area, load variations cause fast wheel blocking.

  6. Modifying a dynamic global vegetation model for simulating large spatial scale land surface water balance

    Science.gov (United States)

    Tang, G.; Bartlein, P. J.

    2012-01-01

    Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p 0.46, p 0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.

  7. The Balanced Scorecard and the Strategic Learning Process: A System Dynamics Modeling Approach

    Directory of Open Access Journals (Sweden)

    Steen Nielsen

    2015-01-01

    Full Text Available The main purpose of this paper is to improve on the conceptual as well as the methodological aspects of BSC as a quantitative model by combining elements from traditional balanced scorecard (BSC thinking with the Systems Thinking. This is done by combining short and long term aspects of measurements. The result is then used to build and construct a balanced scorecard model for strategic learning with the specific aim to maintain satisfied customers and motivated employees. Strategic planning, operational execution, feedback, and learning are some of the most important key features of any performance measurement model. This paper aims to address not only the conceptual domain related to BSC, that is, learning and system dynamics causality and feedback, but also the methodological domain concept of precision solved by differential equations. Our results show how a potential move from a static strategic vision map to a linked and dynamic understanding may be not fully realistic but very useful for learning purposes. The new knowledge obtained from the learning feedbacks fertilizes both decision discussion and decision-making and what may be required in order to move to the next level of BSC and system dynamics integration.

  8. Application of dynamic flux balance analysis to an industrial Escherichia coli fermentation.

    Science.gov (United States)

    Meadows, Adam L; Karnik, Rahi; Lam, Harry; Forestell, Sean; Snedecor, Brad

    2010-03-01

    We have developed a reactor-scale model of Escherichia coli metabolism and growth in a 1000 L process for the production of a recombinant therapeutic protein. The model consists of two distinct parts: (1) a dynamic, process specific portion that describes the time evolution of 37 process variables of relevance and (2) a flux balance based, 123-reaction metabolic model of E. coli metabolism. This model combines several previously reported modeling approaches including a growth rate-dependent biomass composition, maximum growth rate objective function, and dynamic flux balancing. In addition, we introduce concentration-dependent boundary conditions of transport fluxes, dynamic maintenance demands, and a state-dependent cellular objective. This formulation was able to describe specific runs with high-fidelity over process conditions including rich media, simultaneous acetate and glucose consumption, glucose minimal media, and phosphate depleted media. Furthermore, the model accurately describes the effect of process perturbations--such as glucose overbatching and insufficient aeration--on growth, metabolism, and titer. (c) 2009 Elsevier Inc. All rights reserved.

  9. The Effect of the Loading on Dynamic Stability and Scapular Asymmetry

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Azarsa

    2014-03-01

    Full Text Available Background: Scapular stabilization and neuromuscular control provide an important parameter to characterize shoulder function during dynamic activities. Many studies have confirmed the effect of the loading on scapular position and scapulohumeral rhythm. Therefore, the evaluation of stabilizer muscles involvement in scapular asymmetry may assist in the development of clinical examination and rehabilitation program. The aim of this study was to evaluate the effect of loading on dynamic stability and scapular asymmetry in basketball players. Methods: Thirty healthy male basketball players aged between 20 to 31 years old were tested. The linear distance between scapular inferior angle and T7 spinous process was measured using a caliper in 90 degrees of unloaded scaption and with 1, 2 and 4 kg loading. The difference of distances of two sides in the above 4 positions was analyzed. Results: The amount of distances difference in two sides with 1 kg loading was minimal (9.36 mm. This difference increased to 10.19 mm and 12.22 mm, with increasing the loading to 2 and 4 kg respectively; although the 4 positions of the test did not show significant differences in distances difference (P>0.05. Conclusion: This study shows that dynamic stability of the scapula is dependent on the role of muscles, so that with increasing load on the muscles, the scapular asymmetry is more pronounced.

  10. Lineage dynamics and mutation-selection balance in non-adapting asexual populations

    Science.gov (United States)

    Pénisson, Sophie; Sniegowski, Paul D.; Colato, Alexandre; Gerrish, Philip J.

    2013-02-01

    In classical population genetics, mutation-selection balance refers to the equilibrium frequency of a deleterious allele established and maintained under two opposing forces: recurrent mutation, which tends to increase the frequency of the allele; and selection, which tends to decrease its frequency. In a haploid population, if μ denotes the per capita rate of production of the deleterious allele by mutation and s denotes the selective disadvantage of carrying the allele, then the classical mutation-selection balance frequency of the allele is approximated by μ/s. This calculation assumes that lineages carrying the mutant allele in question—the ‘focal allele’—do not accumulate deleterious mutations linked to the focal allele. In principle, indirect selection against the focal allele caused by such additional mutations can decrease the frequency of the focal allele below the classical mutation-selection balance. This effect of indirect selection will be strongest in an asexual population, in which the entire genome is in linkage. Here, we use an approach based on a multitype branching process to investigate this effect, analyzing lineage dynamics under mutation, direct selection, and indirect selection in a non-adapting asexual population. We find that the equilibrium balance between recurrent mutation to the focal allele and the forces of direct and indirect selection against the focal allele is closely approximated by γμ/(s + U) (s = 0 if the focal allele is neutral), where γ ≈ eθθ-(ω+θ)(ω + θ)(Γ(ω + θ) - Γ(ω + θ,θ)), \\theta =U/\\tilde {s}, and \\omega =s/\\tilde {s}; U denotes the genomic deleterious mutation rate and \\tilde {s} denotes the geometric mean selective disadvantage of deleterious mutations elsewhere on the genome. This mutation-selection balance for asexual populations can remain surprisingly invariant over wide ranges of the mutation rate.

  11. An improved model for considering strain rate effects on reinforced concrete elements behavior under dynamic loads

    International Nuclear Information System (INIS)

    Sim, J.; Soroushian, P.

    1989-01-01

    An improved model for predicting the reinforced concrete element behavior under dynamic strain rates was developed using the layer modeling technique. The developed strain rate sensitive model for axial/flexural analysis of reinforced concrete elements was used to predict the test results, performed at different loading rates, and the predictions were reasonable. The developed analysis technique was used to study the loading rate sensitivity of reinforced concrete beams and columns with different geometry and material properties. Two design formulas for computing the loading rate dependent axial and flexural strengths of reinforced concrete sections are suggested

  12. Management of postural sensory conflict and dynamic balance control in late-stage Parkinson's disease.

    Science.gov (United States)

    Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P

    2011-10-13

    Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.

  13. Infrared Thermographic Diagnosis Mechanism for Fault Detection of Ball Bearing under Dynamic Loading Conditions

    International Nuclear Information System (INIS)

    Seo, Jin Ju; Yoon, Hanvit; Kim, Dong Yeon; Hong, Dong Pyo; Kim, Won Tae

    2011-01-01

    Fault detection for dynamic loading conditions of rotational machineries was considered from the contactless, non-destructive infrared thermographic method, rather than the traditional diagnosis method. In this paper, by applying a rotating deep-grooved ball bearing, passive thermographic experiment was performed as an alternative way proceeding the traditional fault monitoring. In addition, the thermographic experiments were compared with the vibration spectrum analysis to evaluate the efficiency of the proposed method. Based on the results, it was concluded the temperature characteristics of the ball bearing under dynamic loading conditions were analyzed thoroughly

  14. Rating of Power Cables for Dynamic Load Situations

    OpenAIRE

    Kitimbo, Andrew

    2016-01-01

    Huvudsyftet med detta projekt var att utvärdera möjligheten att använda metoder för ”dynamic rating” för att dimensionera (trekärniga) strömkablar som ansluter havsbaserade vindkraftparker. Flera publikationer från kabelindustrin visar att de metoder för att beräkna armeringsförluster som föreslås av IEC för (trekärniga) strömkablar är väldigt konservativa. Målet med projektet var att utveckla mer precisa modeller för att uppskatta armeringsförluster på ett mindre konservativt sätt. Kabelmode...

  15. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    Science.gov (United States)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  16. Fatigue behaviour of core-spun yarns containing filament by means of cyclic dynamic loading

    Science.gov (United States)

    Esin, S.; Osman, B.

    2017-10-01

    The behaviour of yarns under dynamic loading is important that leads to understand the growth characteristics which is exposed to repetitive loadings during usage of fabric made from these yarns. Fabric growth is undesirable property that originated from low resilience characteristics of fabric. In this study, the effects of the filament fineness and yarn linear density on fatigue behaviour of rigid-core spun yarns were determined. Cotton covered yarns containing different filament fineness of polyester (PET) draw textured yarns (DTY) (100d/36f, 100d/96f, 100d/144f, 100d/192f and 100d/333f) and yarn linear densities (37 tex, 30 tex, 25 tex and 21 tex) were manufactured by using a modified ring spinning system at the same spinning parameters. Repetitive loads were applied for 25 cycles at levels between 0.1 and 3 N. Dynamic modulus and dynamic strain of yarn samples were analyzed statistically. Results showed that filament fineness and yarn linear density have significance effect on dynamic modulus and dynamic strain after cyclic loading.

  17. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein

    Directory of Open Access Journals (Sweden)

    Mingyuan Xu

    2018-05-01

    Full Text Available A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA9-NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  18. Effect of 8-Week of Selected Aerobic Exercise on Static and Dynamic Balance in Healthy Elderly Inactive Men

    Directory of Open Access Journals (Sweden)

    Masoud Mirmoezzi

    2016-04-01

    Conclusion: Our results showed that regular aerobic exercise improves dynamic balance in elderly men. We also found that jogging and walking improved dynamic balance. The improvement in balance may be due to the increase in nervous compatibility (due to exercise; increase in fitness, strength, and motion domain; improvement in aerobic status, response time and mental status; improvement in neuromuscular control, including a decrease in changing movement units; and improvement in simultaneous movement units. Furthermore, there is a positive relationship between body composition and movement with balance. Therefore, regular aerobic activities are recommended as a suitable training method for improving balance.

  19. Prediction of dynamic loads and induced vibrations in stall

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J.; Aagaard Madsen, H. [Risoe National Lab. (Denmark); Bjoerck, A. [Aeronautical Research Inst. of Sweden (Sweden); Enevoldsen, P. [Bonus Energy A/S (Denmark); Oeye, S. [The Technical Univ. of Denmark (Denmark); Ganander, H. [Teknikgruppen AB (Sweden); Winkelaar, D. [Netherlands Energy Research Foundation (Netherlands)

    1998-05-01

    Results from research in an EC Joule-III project and from national projects are presented. The objectives are improvement of design methods for stall regulated wind turbines with emphasis on stall induced vibrations and dynamic stall. The primary concern is limitation of the edgewise vibrations in the fundamental blade natural mode shape, which have caused trouble on modern wind turbines of approximate size 500 kW nominal power and 40 m rotor diameter. A theoretical study of quasi-steady aerodynamics confirms that the vibrations are driven basically by energy supplied from the aerodynamic forces during stalled operation. This energy exchange is equivalent to negative aerodynamic damping. The theoretical approach identifies the main parameters controlling the phenomenon. These parameters describe the steady and the dynamic airfoil characteristics, the overall aerodynamic layout of the blade, e.g. chord length and twist, the structural properties of the blade, e.g. structural damping and properties controlling the resulting vibration direction. Furthermore, full aeroelastic calculations and comparison with measurements show that the properties of the supporting structure, i.e. the main shaft, the nacelle and the tower, are important, as the global vibration of the rotor on its support may exchange energy with the blade vibration, when the blade natural frequency is close to one of the frequencies of the coupled rotor tilt-yaw mode shapes, usually denoted the global rotor whirl frequencies. It is confirmed that the influence of changing the primary design parameters can be determined by use of qualified aeroelastic calculations. Presented design guidelines therefore build on both the simple quasi-steady models, which can be used for the preliminary choice of the design variables mentioned above, and on full aeroelastic calculations. The aeroelastic calculations refine the design basis and should be used for choosing the final design variables and for final

  20. Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.F. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Jiao, Z.M. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Y.S.; Wang, Z. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Z.H.; Ma, S.G. [Institute of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Qiao, J.W., E-mail: qiaojunwei@gmail.com [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2016-11-20

    Quasi-static and dynamic compressive properties of in-situ Ti{sub 60}Zr{sub 14}V{sub 12}Cu{sub 4}Be{sub 10} bulk metallic glass matrix composites containing ductile dendrites were investigated. Upon quasi-static compressive loading, the composite exhibits a high fracture strength of ~2,600 MPa, combined with a considerable plasticity of ~40% at room temperature. However, upon dynamic loading, an excellent plasticity of ~16% can be obtained due to the abundant dislocations and severe lattice distortions within dendrites and multiplication of shear bands within the glass matrix analyzed by transmission-electron microscopy. A constitutive relationship is obtained by Johnson-Cook plasticity model, which is employed to model the dynamic flow stress behavior. In addition, under dynamic compression, the adiabatic temperature rise increases with increasing strain rates, resulting in that the softening effect within the glass matrix is obviously enhanced during deformation.

  1. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  2. Modeling the dynamic stiffness of cracked reinforced concrete beams under low-amplitude vibration loads

    Science.gov (United States)

    Xu, Tengfei; Castel, Arnaud

    2016-04-01

    In this paper, a model, initially developed to calculate the stiffness of cracked reinforced concrete beams under static loading, is used to assess the dynamic stiffness. The model allows calculating the average inertia of cracked beams by taking into account the effect of bending cracks (primary cracks) and steel-concrete bond damage (i.e. interfacial microcracks). Free and forced vibration experiments are used to assess the performance of the model. The respective influence of bending cracks and steel-concrete bond damage on both static and dynamic responses is analyzed. The comparison between experimental and simulated deflections confirms that the effects of both bending cracks and steel-concrete bond loss should be taken into account to assess reinforced concrete stiffness under service static loading. On the contrary, comparison of experimental and calculated dynamic responses reveals that localized steel-concrete bond damages do not influence significantly the dynamic stiffness and the fundamental frequency.

  3. On the dynamic stability of shear deformable beams under a tensile load

    Science.gov (United States)

    Caddemi, S.; Caliò, I.; Cannizzaro, F.

    2016-07-01

    Loss of stability of beams in a linear static context due to the action of tensile loads has been disclosed only recently in the scientific literature. However, tensile instability in the dynamic regime has been only marginally covered. Several aspects concerning the role of shear deformation on the tensile dynamic instability on continuous and discontinuous beams are still to be addressed. It may appear as a paradox, but also for the case of the universally studied Timoshenko beam model, despite its old origin, frequency-axial load diagrams in the range of negative values of the load (i.e. tensile load) has never been brought to light. In this paper, for the first time, the influence of a conservative tensile axial loads on the dynamic behaviour of the Timoshenko model, according to the Haringx theory, is assessed. It is shown that, under increasing tensile loads, regions of positive/negative fundamental frequency variations can be distinguished. In addition, the beam undergoes eigen-mode changes, from symmetric to anti-symmetric shapes, until tensile instability of divergence type is reached. As a further original contribution on the subject, taking advantage of a new closed form solution, it is shown that the same peculiarities are recovered for an axially loaded Euler-Bernoulli vibrating beam with multiple elastic sliders. This latter model can be considered as the discrete counterpart of the Timoshenko beam-column in which the internal sliders concentrate the shear deformation that in the Timoshenko model is continuously distributed. Original aspects regarding the evolution of the vibration frequencies and the relevant mode shapes with the tensile load value are highlighted.

  4. DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS

    International Nuclear Information System (INIS)

    Robbins, D.L.; Kelly, A.M.; Alexander, D.J.; Hanrahan, R.J.; Snow, R.C.; Gehr, R.J.; Rupp, Ted Dean; Sheffield, S.A.; Stahl, D.B.

    2001-01-01

    A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurements of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.

  5. Dynamic Responses of Continuous Girder Bridges with Uniform Cross-Section under Moving Vehicular Loads

    OpenAIRE

    Gao, Qingfei; Wang, Zonglin; Jia, Hongyu; Liu, Chenguang; Li, Jun; Guo, Binqiang; Zhong, Junfei

    2015-01-01

    To address the drawback of traditional method of investigating dynamic responses of the continuous girder bridge with uniform cross-section under moving vehicular loads, the orthogonal experimental design method is proposed in this paper. Firstly, some empirical formulas of natural frequencies are obtained by theoretical derivation and numerical simulation. The effects of different parameters on dynamic responses of the vehicle-bridge coupled vibration system are discussed using our own progr...

  6. Feasibility of Applying Active Lubrication to Dynamically Loaded Fluid Film Bearings

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    The feasibility of modifying the dynamics of the thin fluid films of dynamically loaded journal bearings, using different strategies of active lubrication is studied in this work. A significant reduction in the vibration levels, wear and power friction losses, is expected. Particularly, the focus...... of this study is on the analysis of main crankshaft bearings, where the conventional hydrodynamic lubrication is modified by injecting oil at actively controllable pressures, through orifices circumferentially located along the bearing surface....

  7. Fluid and structural dynamics calculations to determine core barrel loads during blowdown (EV 3,000)

    International Nuclear Information System (INIS)

    Krieg, R.; Schlechtendahl, E.G.

    1977-01-01

    To begin with, the main physical phenomena in connection with blowdown loads on the care barrel and the computer models used are briefly described. These models have also been used in the design of the HTR test care barrel. The fluid dynamics part of the calculations was carried out using the WHAMMOD and DAPSY codes; for the structural dynamics part, the STRUDL/Dynal code was employed. (orig./RW) [de

  8. Self-organized dynamics in local load-sharing fiber bundle models.

    Science.gov (United States)

    Biswas, Soumyajyoti; Chakrabarti, Bikas K

    2013-10-01

    We study the dynamics of a local load-sharing fiber bundle model in two dimensions under an external load (which increases with time at a fixed slow rate) applied at a single point. Due to the local load-sharing nature, the redistributed load remains localized along the boundary of the broken patch. The system then goes to a self-organized state with a stationary average value of load per fiber along the (increasing) boundary of the broken patch (damaged region) and a scale-free distribution of avalanche sizes and other related quantities are observed. In particular, when the load redistribution is only among nearest surviving fiber(s), the numerical estimates of the exponent values are comparable with those of the Manna model. When the load redistribution is uniform along the patch boundary, the model shows a simple mean-field limit of this self-organizing critical behavior, for which we give analytical estimates of the saturation load per fiber values and avalanche size distribution exponent. These are in good agreement with numerical simulation results.

  9. Dynamic balancing of super-critical rotating structures using slow-speed data via parametric excitation

    Science.gov (United States)

    Tresser, Shachar; Dolev, Amit; Bucher, Izhak

    2018-02-01

    High-speed machinery is often designed to pass several "critical speeds", where vibration levels can be very high. To reduce vibrations, rotors usually undergo a mass balancing process, where the machine is rotated at its full speed range, during which the dynamic response near critical speeds can be measured. High sensitivity, which is required for a successful balancing process, is achieved near the critical speeds, where a single deflection mode shape becomes dominant, and is excited by the projection of the imbalance on it. The requirement to rotate the machine at high speeds is an obstacle in many cases, where it is impossible to perform measurements at high speeds, due to harsh conditions such as high temperatures and inaccessibility (e.g., jet engines). This paper proposes a novel balancing method of flexible rotors, which does not require the machine to be rotated at high speeds. With this method, the rotor is spun at low speeds, while subjecting it to a set of externally controlled forces. The external forces comprise a set of tuned, response dependent, parametric excitations, and nonlinear stiffness terms. The parametric excitation can isolate any desired mode, while keeping the response directly linked to the imbalance. A software controlled nonlinear stiffness term limits the response, hence preventing the rotor to become unstable. These forces warrant sufficient sensitivity required to detect the projection of the imbalance on any desired mode without rotating the machine at high speeds. Analytical, numerical and experimental results are shown to validate and demonstrate the method.

  10. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading

    Science.gov (United States)

    Chyuan, Shiang-Woei

    2003-11-01

    Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.

  11. Dynamical prediction and pattern mapping in short-term load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Luis Antonio; Rodrigues, Daniela D.; Lima, Silvio T. [Departamento de Engenharia Eletronica, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG (Brazil); Martinez, Carlos Barreira [Departamento de Engenharia Hidraulica e Recursos Hidricos, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG (Brazil)

    2008-01-15

    This work will not put forward yet another scheme for short-term load forecasting but rather will provide evidences that may improve our understanding about fundamental issues which underlay load forecasting problems. In particular, load forecasting will be decomposed into two main problems, namely dynamical prediction and pattern mapping. It is argued that whereas the latter is essentially static and becomes nonlinear when weekly features in the data are taken into account, the former might not be deterministic at all. In such cases there is no determinism (serial correlations) in the data apart from the average cycle and the best a model can do is to perform pattern mapping. Moreover, when there is determinism in addition to the average cycle, the underlying dynamics are sometimes linear, in which case there is no need to resort to nonlinear models to perform dynamical prediction. Such conclusions were confirmed using real load data and surrogate data analysis. In a sense, the paper details and organizes some general beliefs found in the literature on load forecasting. This sheds some light on real model-building and forecasting problems and helps understand some apparently conflicting results reported in the literature. (author)

  12. Mechanical behavior of ultrafine-grained materials under combined static and dynamic loadings

    Directory of Open Access Journals (Sweden)

    Guo Y.Z.

    2015-01-01

    Full Text Available Ultrafine-grained (UFG materials have extensive prospects for engineering application due to their excellent mechanical properties. However, the grain size decrease reduces their strain hardening ability and makes UFG materials more susceptible to deformation instability such as shear localization. In most cases, critical shear strain is taken as the criterion for formation of shear localization under impact loading or adiabatic shear band (ASB. Recently, some researchers found that the formation of ASB was determined only by the dynamic loading process and had nothing to do with its static loading history. They proposed for coarse-grained metals a dynamic stored energy-based criterion for ASB and verified it by some experiments. In this study, we will focus on the shear localization behavior of UFG metals such as UFG titanium and magnesium alloy AZ31. Quasi-static loading and dynamic loading will be applied on the same specimen alternately. The shear localization behavior will be analyzed and the criterion of its formation will be evaluated.

  13. Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction

    Science.gov (United States)

    Hardebeck, J.

    2014-12-01

    Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although

  14. The Effect of Teeth Clenching on Dynamic Balance at Jump-Landing: A Pilot Study.

    Science.gov (United States)

    Nakamura, Tomomasa; Yoshida, Yuriko; Churei, Hiroshi; Aizawa, Junya; Hirohata, Kenji; Ohmi, Takehiro; Ohji, Shunsuke; Takahashi, Toshiyuki; Enomoto, Mitsuhiro; Ueno, Toshiaki; Yagishita, Kazuyoshi

    2017-07-01

    The aim of this study was to analyze the effect of teeth clenching on dynamic balance at jump landing. Twenty-five healthy subjects performed jump-landing tasks with or without teeth clenching. The first 3 trials were performed with no instruction; subsequently, subjects were ordered to clench at the time of landing in the following 3 trials. We collected the data of masseter muscle activity by electromyogram, the maximum vertical ground reaction force (vGRFmax) and center of pressure (CoP) parameters by force plate during jump-landing. According to the clenching status of control jump-landing, all participants were categorized into a spontaneous clenching group and no clenching group, and the CoP data were compared. The masseter muscle activity was correlated with vGRFmax during anterior jump-landing, while it was not correlated with CoP. In comparisons between the spontaneous clenching and the no clenching group during anterior jump-landing, the spontaneous clenching group showed harder landing and the CoP area became larger than the no clenching group. There were no significant differences between pre- and postintervention in both spontaneous clenching and no clenching groups. The effect of teeth clenching on dynamic balance during jump-landing was limited.

  15. Dynamic modelling of balance of plant systems for a pulsed DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, C., E-mail: Chris.Harrington@ccfe.ac.uk

    2015-10-15

    Highlights: • A fully dynamic model of the balance of plant systems for pulsed DEMO is presented. • An operating strategy for handling pulse/dwell transitions has been devised. • Operation of a water-cooled system without energy storage appears feasible. • Steam turbine cycling can be minimised if rotation speed is maintained. - Abstract: The current baseline concept for a European DEMO defines a pulsed reactor producing power for periods of 2–4 h at a time, interrupted by dwell periods of approximately half an hour, potentially leading to cyclic fatigue of the heat transfer system and power generation equipment. Thermal energy storage systems could mitigate pulsing issues; however, the requirements for such a system cannot be defined without first understanding the challenges for pulsed operation, while any system will simultaneously increase the cost and complexity of the balance of plant. This work therefore presents a dynamic model of the primary heat transfer system and associated steam plant for a water-cooled DEMO, without energy storage, capable of simulating pulsed plant operation. An operating regime is defined such that the primary coolant flows continuously throughout the dwell period while the secondary steam flow is reduced. Simulation results show minimised thermal and pressure transients in the primary circuit, and small thermally induced stresses on the steam turbine rotor. If the turbine can be kept spinning to also minimise mechanical cycling, pulsed operation of a water-cooled DEMO without thermal energy storage may be feasible.

  16. The effects of core stabilization exercise on dynamic balance and gait function in stroke patients.

    Science.gov (United States)

    Chung, Eun-Jung; Kim, Jung-Hee; Lee, Byoung-Hee

    2013-07-01

    [Purpose] The purpose of this study was to determine the effects of core stabilization exercise on dynamic balance and gait function in stroke patients. [Subjects] The subjects were 16 stroke patients, who were randomly divided into two groups: a core stabilization exercise group of eight subjects and control group of eight subjects. [Methods] Subjects in both groups received general training five times per week. Subjects in the core stabilization exercise group practiced an additional core stabilization exercise program, which was performed for 30 minutes, three times per week, during a period of four weeks. All subjects were evaluated for dynamic balance (Timed Up and Go test, TUG) and gait parameters (velocity, cadence, step length, and stride length). [Results] Following intervention, the core exercise group showed a significant change in TUG, velocity, and cadence. The only significant difference observed between the core group and control group was in velocity. [Conclusion] The results of this study suggest the feasibility and suitability of core stabilization exercise for stroke patients.

  17. A stochastic approach for the description of the water balance dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    S. Manfreda

    2008-09-01

    Full Text Available The present paper introduces an analytical approach for the description of the soil water balance dynamics over a schematic river basin. The model is based on a stochastic differential equation where the rainfall forcing is interpreted as an additive noise in the soil water balance. This equation can be solved assuming known the spatial distribution of the soil moisture over the basin transforming the two-dimensional problem in space in a one dimensional one. This assumption is particularly true in the case of humid and semihumid environments, where spatial redistribution becomes dominant producing a well defined soil moisture pattern. The model allowed to derive the probability density function of the saturated portion of a basin and of its relative saturation. This theory is based on the assumption that the soil water storage capacity varies across the basin following a parabolic distribution and the basin has homogeneous soil texture and vegetation cover. The methodology outlined the role played by the soil water storage capacity distribution of the basin on soil water balance. In particular, the resulting probability density functions of the relative basin saturation were found to be strongly controlled by the maximum water storage capacity of the basin, while the probability density functions of the relative saturated portion of the basin are strongly influenced by the spatial heterogeneity of the soil water storage capacity. Moreover, the saturated areas reach their maximum variability when the mean rainfall rate is almost equal to the soil water loss coefficient given by the sum of the maximum rate of evapotranspiration and leakage loss in the soil water balance. The model was tested using the results of a continuous numerical simulation performed with a semi-distributed model in order to validate the proposed theoretical distributions.

  18. Estimation of dynamic load of mercury in a river with BASINS-HSPF model

    Science.gov (United States)

    Ying Ouyang; John Higman; Jeff Hatten

    2012-01-01

    Purpose Mercury (Hg) is a naturally occurring element and a pervasive toxic pollutant. This study investigated the dynamic loads of Hg from the Cedar-Ortega Rivers watershed into the Lower St. Johns River (LSJR), Florida, USA, using the better assessment science integrating point and nonpoint sources (BASINS)-hydrologic simulation program - FORTRAN (HSPF) model....

  19. A novel reformulation of the Theory of Critical Distances to design notched metals against dynamic loading

    International Nuclear Information System (INIS)

    Yin, T.; Tyas, A.; Plekhov, O.; Terekhina, A.; Susmel, L.

    2015-01-01

    Highlights: • The proposed method is successful in estimating dynamic strength of metals. • The critical distance varies as the loading/strain/displacement rate increases. • The reference strength varies as the loading/strain/displacement rate increases. • This method is recommended to be used with safety factors larger than 1.25. - Abstract: In the present study the linear-elastic Theory of Critical Distances (TCD) is reformulated to make it suitable for predicting the strength of notched metallic materials subjected to dynamic loading. The accuracy and reliability of the proposed reformulation of the TCD was checked against a number of experimental results generated by testing, under different loading/strain rates, notched cylindrical samples of aluminium alloy 6063-T5, titanium alloy Ti–6Al–4V, aluminium alloy AlMg6, and an AlMn alloy. To further validate the proposed design method also different data sets taken from the literature were considered. Such an extensive validation exercise allowed us to prove that the proposed reformulation of the TCD is successful in predicting the dynamic strength of notched metallic materials, this approach proving to be capable of estimates falling within an error interval of ±20%. Such a high level of accuracy is certainly remarkable, especially in light of the fact that it was reached without the need for explicitly modelling the stress vs. strain dynamic behaviour of the investigated ductile metals

  20. Relation between coordinate systems describing the dynamics of a loaded Stewart platform

    Science.gov (United States)

    Petrova, V. I.

    2018-05-01

    The paper puts forward formulae for transformation of coordinates in three coordinate frames used for the study of motion of a loaded Stewart platform, which is the central mechanism of the dynamic bench. A new method for finding the law of variation of coordinates is proposed. This method depends on solving the problem-specific system of differential equations.

  1. Wake Influence on Dynamic Load Characteristics of Offshore Floating Wind Turbines

    DEFF Research Database (Denmark)

    Jeon, Minu; Lee, Soogab; Kim, Taeseong

    2016-01-01

    Because the flow conditions of an offshore floating wind turbine and onshore fixed wind turbine differ, it is debatable whether the aerodynamic load predictions of an offshore floating wind turbine using the conventional blade-element momentum theory, which does not consider the dynamic wake effe...

  2. HOLD MODE BASED DYNAMIC PRIORITY LOAD ADAPTIVE INTERPICONET SCHEDULING FOR BLUETOOTH SCATTERNETS

    Directory of Open Access Journals (Sweden)

    G.S. Mahalakshmi

    2011-09-01

    Full Text Available Scheduling in piconets has emerged as a challenging research area. Interpiconet scheduling focuses on when a bridge is switched among various piconets and how a bridge node communicates with the masters in different piconets. This paper proposes an interpiconet scheduling algorithm named, hold mode based dynamic traffic priority load adaptive scheduling. The bridges are adaptively switched between the piconets according to various traffic loads. The main goal is to maximize the utilization of the bridge by reducing the bridge switch wastes, utilize intelligent decision making algorithm, resolve conflict between the masters, and allow negotiation for bridge utilization in HDPLIS using bridge failure-bridge repair procedure . The Hold mode - dynamic traffic - priority based - load adaptive scheduling reduces the number of bridge switch wastes and hence increases the efficiency of the bridge which results in increased performance of the system.

  3. Applicability of laboratory data to large scale tests under dynamic loading conditions

    International Nuclear Information System (INIS)

    Kussmaul, K.; Klenk, A.

    1993-01-01

    The analysis of dynamic loading and subsequent fracture must be based on reliable data for loading and deformation history. This paper describes an investigation to examine the applicability of parameters which are determined by means of small-scale laboratory tests to large-scale tests. The following steps were carried out: (1) Determination of crack initiation by means of strain gauges applied in the crack tip field of compact tension specimens. (2) Determination of dynamic crack resistance curves of CT-specimens using a modified key-curve technique. The key curves are determined by dynamic finite element analyses. (3) Determination of strain-rate-dependent stress-strain relationships for the finite element simulation of small-scale and large-scale tests. (4) Analysis of the loading history for small-scale tests with the aid of experimental data and finite element calculations. (5) Testing of dynamically loaded tensile specimens taken as strips from ferritic steel pipes with a thickness of 13 mm resp. 18 mm. The strips contained slits and surface cracks. (6) Fracture mechanics analyses of the above mentioned tests and of wide plate tests. The wide plates (960x608x40 mm 3 ) had been tested in a propellant-driven 12 MN dynamic testing facility. For calculating the fracture mechanics parameters of both tests, a dynamic finite element simulation considering the dynamic material behaviour was employed. The finite element analyses showed a good agreement with the simulated tests. This prerequisite allowed to gain critical J-integral values. Generally the results of the large-scale tests were conservative. 19 refs., 20 figs., 4 tabs

  4. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    International Nuclear Information System (INIS)

    Chang, Shih-Jung.

    1995-01-01

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged

  5. Optimization of structures subjected to dynamic load: deterministic and probabilistic methods

    Directory of Open Access Journals (Sweden)

    Élcio Cassimiro Alves

    Full Text Available Abstract This paper deals with the deterministic and probabilistic optimization of structures against bending when submitted to dynamic loads. The deterministic optimization problem considers the plate submitted to a time varying load while the probabilistic one takes into account a random loading defined by a power spectral density function. The correlation between the two problems is made by one Fourier Transformed. The finite element method is used to model the structures. The sensitivity analysis is performed through the analytical method and the optimization problem is dealt with by the method of interior points. A comparison between the deterministic optimisation and the probabilistic one with a power spectral density function compatible with the time varying load shows very good results.

  6. Computational fluid dynamics modeling of bun baking process under different oven load conditions.

    Science.gov (United States)

    Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C

    2014-09-01

    A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.

  7. STAMINA OF A GASKETED BOLTED FLANGED PIPE JOINT UNDER DYNAMIC LOADING

    Directory of Open Access Journals (Sweden)

    Muhammad Abid

    2016-11-01

    Full Text Available Gasketed bolted flange joints are the most critical components in pipelines for their sealing and strength under operating conditions. Most of the work available in literature is under static loading, whereas in industry, cyclic loads are applied due to the vibrating machinery such as motors, pumps, sloshing in offshore applications and in the ships etc. In this study a three dimensional finite element analysis of a gasketed joint is carried out using a spiral wound gasket under bolt up and dynamic operating conditions (internal pressure, axial and bending singly and in combination. The cyclic axial loads are concluded relatively more challenging for both the sealing and strength of the joint. Higher magnitudes of loads and frequencies are also observed more challenging to the joints performance.

  8. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  9. Impact of the variation in dynamic vehicle load on flexible pavement responses

    Science.gov (United States)

    Ahsanuzzaman, Md

    The purpose of this research was to evaluate the dynamic variation in asphalt pavement critical responses due to dynamic tire load variations. An attempt was also made to develop generalized regression equations to predict the dynamic response variation in flexible pavement under various dynamic load conditions. The study used an extensive database of computed pavement response histories for five different types of sites (smooth, rough, medium rough, very rough and severely rough), two different asphalt pavement structures (thin and thick) at two temperatures (70 °F and 104 °F), subjected to a tandem axle dual tire at three speeds 25, 37 and 50 mph (40, 60 and 80 km/h). All pavement responses were determined using the 3D-Move Analysis program (Version 1.2) developed by University of Nevada, Reno. A new term called Dynamic Response Coefficient (DRC) was introduced in this study to address the variation in critical pavement responses due to dynamic loads as traditionally measured by the Dynamic Load Coefficient (DLC). While DLC represents the additional varying component of the tire load, DRC represents the additional varying component of the response value (standard deviation divided by mean response). In this study, DRC was compared with DLC for five different sites based on the roughness condition of the sites. Previous studies showed that DLC varies with vehicle speed and suspension types, and assumes a constant value for the whole pavement structure (lateral and vertical directions). On the other hand, in this study, DRC was found to be significantly varied with the asphalt pavement and function of pavement structure, road roughness conditions, temperatures, vehicle speeds, suspension types, and locations of the point of interest in the pavement. A major contribution of the study is that the variation of pavement responses due to dynamic load in a flexible pavement system can be predicted with generalized regression equations. Fitting parameters (R2) in the

  10. Comparison of Static and Dynamic Balance at Different Levels of Sport Competition in Professional and Junior Elite Soccer Players.

    Science.gov (United States)

    Jadczak, Łukasz; Grygorowicz, Monika; Dzudziński, Witold; Śliwowski, Robert

    2018-04-12

    Jadczak, Ł, Grygorowicz, M, Dzudziński, W, and Śliwowski, R. Comparison of static and dynamic balance at different levels of sport competition in professional and junior elite soccer players. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to compare body balance control and balance recovery strategies of professional football players, representing various sports levels in static (eyes open, eyes closed) and dynamic conditions, both on the dominant and nondominant leg. Three groups of professional and junior elite soccer players were investigated: a PRO group (n = 52), a U-21 group (n = 55), and a U-19 group (n = 47). The study of body balance control was performed using a Delos Postural Proprioceptive System measurement tool. The analysis of the results showed an effect of group (p balance on both legs, which allows for a comprehensive comparison of body balance control and the balance recovery strategy depending on the represented sport level. Our study indicates that the higher the sport level of football players (the PRO group), the better their balance, which may indirectly contribute to the prevention of injuries and more effective performance of any actions directly related to the game.

  11. Can segmental model reductions quantify whole-body balance accurately during dynamic activities?

    Science.gov (United States)

    Jamkrajang, Parunchaya; Robinson, Mark A; Limroongreungrat, Weerawat; Vanrenterghem, Jos

    2017-07-01

    When investigating whole-body balance in dynamic tasks, adequately tracking the whole-body centre of mass (CoM) or derivatives such as the extrapolated centre of mass (XCoM) can be crucial but add considerable measurement efforts. The aim of this study was to investigate whether reduced kinematic models can still provide adequate CoM and XCoM representations during dynamic sporting tasks. Seventeen healthy recreationally active subjects (14 males and 3 females; age, 24.9±3.2years; height, 177.3±6.9cm; body mass 72.6±7.0kg) participated in this study. Participants completed three dynamic movements, jumping, kicking, and overarm throwing. Marker-based kinematic data were collected with 10 optoelectronic cameras at 250Hz (Oqus Qualisys, Gothenburg, Sweden). The differences between (X)CoM from a full-body model (gold standard) and (X)CoM representations based on six selected model reductions were evaluated using a Bland-Altman approach. A threshold difference was set at ±2cm to help the reader interpret which model can still provide an acceptable (X)CoM representation. Antero-posterior and medio-lateral displacement profiles of the CoM representation based on lower limbs, trunk and upper limbs showed strong agreement, slightly reduced for lower limbs and trunk only. Representations based on lower limbs only showed less strong agreement, particularly for XCoM in kicking. Overall, our results provide justification of the use of certain model reductions for specific needs, saving measurement effort whilst limiting the error of tracking (X)CoM trajectories in the context of whole-body balance investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dynamic Load on a Pipe Caused by Acetylene Detonations – Experiments and Theoretical Approaches

    Directory of Open Access Journals (Sweden)

    Axel Sperber

    1999-01-01

    Full Text Available The load acting on the wall of a pipe by a detonation, which is travelling through, is not yet well characterized. The main reasons are the limited amount of sufficiently accurate pressure time history data and the requirement of considering the dynamics of the system. Laser vibrometry measurements were performed to determine the dynamic response of the pipe wall on a detonation. Different modelling approaches were used to quantify, theoretically, the radial displacements of the pipe wall. There is good agreement between measured and predicted values of vibration frequencies and the propagation velocities of transverse waves. Discrepancies mainly due to wave propagation effects were found in the amplitudes of the radial velocities. They might be overcome by the use of a dynamic load factor or improved modelling methods.

  13. Damage propagation in a masonry arch subjected to slow cyclic and dynamic loadings

    Directory of Open Access Journals (Sweden)

    J. Toti

    2014-07-01

    Full Text Available In the present work, the damage propagation of a masonry arch induced by slow cyclic and dynamic loadings is studied. A two-dimensional model of the arch is proposed. A nonlocal damage-plastic constitutive law is adopted to reproduce the hysteretic characteristics of the masonry material, subjected to cyclic static loadings or to harmonic dynamic excitations. In particular, the adopted cohesive model is able to take into account different softening laws in tension and in compression, plastic strains, stiffness recovery and loss due to crack closure and reopening. The latter effect is an unavoidable feature for realistically reproducing hysteretic cycles. In the studied case, an inverse procedure is used to calibrate the model parameters. Then, nonlinear static and dynamic responses of the masonry arch are described together with damage propagation paths.

  14. Nonlinear dynamic response of electro-thermo-mechanically loaded piezoelectric cylindrical shell reinforced with BNNTs

    International Nuclear Information System (INIS)

    Yang, J H; Yang, J; Kitipornchai, S

    2012-01-01

    This paper presents an investigation on the nonlinear dynamic response of piezoelectric cylindrical shells reinforced with boron nitride nanotubes (BNNTs) under a combined axisymmetric electro-thermo-mechanical loading. By employing the classical Donnell shell theory, the von Kármán–Donnell kinematic relationship, and a piezo-elastic constitutive law including thermal effects, the nonlinear governing equations of motion of the shell are derived through the Reissner variational principle. The finite difference method and a time-integration scheme are used to obtain the nonlinear dynamic response of the BNNT-reinforced piezoelectric shell. A parametric study is conducted, showing the effects of geometrically nonlinear deformation, applied voltage, temperature change, mechanical load, BNNT volume fraction and boundary conditions on the nonlinear dynamic response. (paper)

  15. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    Energy Technology Data Exchange (ETDEWEB)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  16. Relationship Between Elderly Body Composition Indices and Static and Dynamic Balance in Relation to Their Rate of Falling

    Directory of Open Access Journals (Sweden)

    Elham Azimzadeh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to investigate relationship between body composition indices with static and dynamic balance and rate of falling in active elderly people. Methods & Materials: This research was a correlation study. Active elderly women volunteered for participation in this research (n=45. Body composition indices (body fat mass, fat free mass, body mass index, waist to hip ratio measured with the body composition analyzer. Static and dynamic balance measured by Biodex, with postural stability and fall risk tests, respectively. Also, the rate of falling in the previous 1- year asked for subjects. Statically analyses performed with the Pearson correlation test, significant level was set at P≤0.05. SPSS software was used. Results: The results of this study showed all of body composition indices have significant correlation with static and dynamic balance and rate of falling (P≤0.05. Conclusion: The finding of this research showed that all of body composition indices have significant correlation with static and dynamic balance and rate of falling in active elderly people. Therefore, it seems physical activity through improvement of body composition indices in active elderly people, causes improvement of static and dynamic balance and lowering the rate of falling.

  17. Research on dynamic creep strain and settlement prediction under the subway vibration loading.

    Science.gov (United States)

    Luo, Junhui; Miao, Linchang

    2016-01-01

    This research aims to explore the dynamic characteristics and settlement prediction of soft soil. Accordingly, the dynamic shear modulus formula considering the vibration frequency was utilized and the dynamic triaxial test conducted to verify the validity of the formula. Subsequently, the formula was applied to the dynamic creep strain function, with the factors influencing the improved dynamic creep strain curve of soft soil being analyzed. Meanwhile, the variation law of dynamic stress with sampling depth was obtained through the finite element simulation of subway foundation. Furthermore, the improved dynamic creep strain curve of soil layer was determined based on the dynamic stress. Thereafter, it could to estimate the long-term settlement under subway vibration loading by norms. The results revealed that the dynamic shear modulus formula is straightforward and practical in terms of its application to the vibration frequency. The values predicted using the improved dynamic creep strain formula closed to the experimental values, whilst the estimating settlement closed to the measured values obtained in the field test.

  18. Dynamic stresses in a Francis model turbine at deep part load

    Science.gov (United States)

    Weber, Wilhelm; von Locquenghien, Florian; Conrad, Philipp; Koutnik, Jiri

    2017-04-01

    A comparison between numerically obtained dynamic stresses in a Francis model turbine at deep part load with experimental ones is presented. Due to the change in the electrical power mix to more content of new renewable energy sources, Francis turbines are forced to operate at deep part load in order to compensate stochastic nature of wind and solar power and to ensure grid stability. For the extension of the operating range towards deep part load improved understanding of the harsh flow conditions and their impact on material fatigue of hydraulic components is required in order to ensure long life time of the power unit. In this paper pressure loads on a model turbine runner from unsteady two-phase computational fluid dynamics simulation at deep part load are used for calculation of mechanical stresses by finite element analysis. Therewith, stress distribution over time is determined. Since only few runner rotations are simulated due to enormous numerical cost, more effort has to be spent to evaluation procedure in order to obtain objective results. By comparing the numerical results with measured strains accuracy of the whole simulation procedure is verified.

  19. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    Science.gov (United States)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  20. Snow cover dynamics and water balance in complex high alpine terrain

    Science.gov (United States)

    Warscher, Michael; Kraller, Gabriele; Kunstmann, Harald; Strasser, Ulrich; Franz, Helmut

    2010-05-01

    The water balance in high alpine regions in its full complexity is so far insufficiently understood. High altitudinal gradients, a strong variability of meteorological variables in time and space, complex hydrogeological situations, unquantified lateral snow transport processes and heterogenous snow cover dynamics result in high uncertainties in the quantification of the water balance. To achieve interpretable modeling results we have complemented the deterministic hydrological model WaSiM-ETH with the high-alpine specific snow model AMUNDSEN. The integration of the new snow module was done to improve the modeling of water fluxes influenced by the dynamics of the snow cover, which greatly affect the water cycle in high alpine regions. To enhance the reproduction of snow deposition and ablation processes, the new approach calculates the energy balance of the snow cover considering the terrain-dependent radiation fluxes, the interaction between tree canopy and snow cover as well as lateral snow transport processes. The test site for our study is the Berchtesgaden National Park which is characterized by an extreme topography with mountain ranges covering an altitude from 607 to 2713 m.a.s.l. About one quarter of the investigated catchment area, which comprises 433 km² in total, is terrain steeper than 35°. Due to water soluble limestone being predominant in the region, a high number of subsurface water pathways (karst) exist. The results of several tracer experiments and extensive data of spring observations provide additional information to meet the challenge of modeling the unknown subsurface pathways and the complex groundwater system of the region. The validation of the new snow module is based on a dense network of meteorological stations which have been adapted to measure physical properties of the snow cover like snow water equivalent and liquid water content. We will present first results which show that the integration of the new snow module generates a