Finite Dynamic Elements and Modal Analysis
Directory of Open Access Journals (Sweden)
N.J. Fergusson
1993-01-01
Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.
Finite Element Computational Dynamics of Rotating Systems
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.
A Finite Element Solution for Barrel Dynamic Stress
Institute of Scientific and Technical Information of China (English)
ZENG Zhi-yin; NING Bian-fang; WANG Zai-sen
2007-01-01
With the APDL language of ANSYS finite element analysis software, the solution program for barrel dynamic stress is developed. The paper describes the pivotal problems of dynamic strength design and provides a foundation for realizing the engineering and programming of barrel dynamic strength design.
Compatible finite element spaces for geophysical fluid dynamics
Natale, Andrea
2016-01-01
Compatible finite elements provide a framework for preserving important structures in equations of geophysical fluid dynamics, and are becoming important in their use for building atmosphere and ocean models. We survey the application of compatible finite element spaces to geophysical fluid dynamics, including the application to the nonlinear rotating shallow water equations, and the three-dimensional compressible Euler equations. We summarise analytic results about dispersion relations and conservation properties, and present new results on approximation properties in three dimensions on the sphere, and on hydrostatic balance properties.
Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures
DEFF Research Database (Denmark)
Flodén, Ola; Persson, Kent; Sjöström, Anders
2012-01-01
The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...... lightweight structures without noise and disturbing vibrations between storeys and rooms. The dynamic response of floor and wall structures may be investigated using finite element models with three-dimensional solid elements [1]. In order to analyse the global response of complete buildings, finite element...
Finite Element Vibration and Dynamic Response Analysis of Engineering Structures
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
2000-01-01
Full Text Available This bibliography lists references to papers, conference proceedings, and theses/dissertations dealing with finite element vibration and dynamic response analysis of engineering structures that were published from 1994 to 1998. It contains 539 citations. The following types of structures are included: basic structural systems; ground structures; ocean and coastal structures; mobile structures; and containment structures.
Finite element dynamic analysis on CDC STAR-100 computer
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
Investigations on Actuator Dynamics through Theoretical and Finite Element Approach
Directory of Open Access Journals (Sweden)
Somashekhar S. Hiremath
2010-01-01
Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.
Automating the generation of finite element dynamical cores with Firedrake
Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas
2017-04-01
The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present
Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures
DEFF Research Database (Denmark)
Flodén, Ola; Persson, Kent; Sjöström, Anders
2012-01-01
. The objective of the analyses presented in this paper is to evaluate methods for model reduction of detailed finite element models of floor and wall structures and to investigate the influence of reducing the number of degrees of freedom and computational cost on the dynamic response of the models in terms....... The drawback of component mode synthesis compared to modelling with structural elements is the increased computational cost, although the number of degrees of freedom is small in comparison, as a result of the large bandwidth of the system matrices.......The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...
Beidokhti, H.N.; Janssen, D.W.; Khoshgoftar, M.; Sprengers, A.M.; Perdahcioglu, E.S.; Boogaard, T. van de; Verdonschot, N.J.
2016-01-01
The finite element (FE) method has been widely used to investigate knee biomechanics. Time integration algorithms for dynamic problems in finite element analysis can be classified as either implicit or explicit. Although previously both static/dynamic implicit and dynamic explicit method have been u
A general finite element model for numerical simulation of structure dynamics
Institute of Scientific and Technical Information of China (English)
WANG Fujun; LI Yaojun; Han K.; Feng Y.T.
2006-01-01
A finite element model used to simulate the dynamics with continuum and discontinuum is presented. This new approach is conducted by constructing the general contact model. The conventional discrete element is treated as a standard finite element with one node in this new method. The one-node element has the same features as other finite elements, such as element stress and strain. Thus, a general finite element model that is consistent with the existed finite element model is set up. This new model is simple in mathematical concept and is straightforward to be combined into the existing standard finite element code. Numerical example demonstrates that this new approach is more effective to perform the dynamic process analysis in which the interactions among a large number of discrete bodies and continuum objects are included.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
Energy Technology Data Exchange (ETDEWEB)
Key, S.W.; Heinstein, M.W.; Stone, C.M. [Sandia National Labs., Albuquerque, NM (United States)
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.
Tsai, C.; Szabo, B. A.
1973-01-01
An approch to the finite element method which utilizes families of conforming finite elements based on complete polynomials is presented. Finite element approximations based on this method converge with respect to progressively reduced element sizes as well as with respect to progressively increasing orders of approximation. Numerical results of static and dynamic applications of plates are presented to demonstrate the efficiency of the method. Comparisons are made with plate elements in NASTRAN and the high-precision plate element developed by Cowper and his co-workers. Some considerations are given to implementation of the constraint method into general purpose computer programs such as NASTRAN.
Coarse-grained molecular dynamics: Nonlinear finite elements and finite temperature
Energy Technology Data Exchange (ETDEWEB)
Rudd, R E; Broughton, J Q
2005-05-30
Coarse-grained molecular dynamics (CGMD) is a technique developed as a concurrent multiscale model that couples conventional molecular dynamics (MD) to a more coarse-grained description of the periphery. The coarse-grained regions are modeled on a mesh in a formulation that generalizes conventional finite element modeling (FEM) of continuum elasticity. CGMD is derived solely from the MD model, however, and has no continuum parameters. As a result, it provides a coupling that is smooth and provides control of errors that arise at the coupling between the atomistic and coarse-grained regions. In this article, we elaborate on the formulation of CGMD, describing in detail how CGMD is applied to anharmonic solids and finite temperature simulations. As tests of CGMD, we present in detail the calculation of the phonon spectra for solid argon and tantalum in 3D, demonstrating how CGMD provides a better description of the elastic waves than that provided by FEM. We also present elastic wave scattering calculations that show the elastic wave scattering is more benign in CGMD than FEM. We also discuss the dependence of scattering on the properties of the mesh. We introduce a rigid approximation to CGMD that eliminates internal relaxation, similar to the Quasicontinuum technique, and compare it to the full CGMD.
Dynamic test and finite element model updating of bridge structures based on ambient vibration
Institute of Scientific and Technical Information of China (English)
2008-01-01
The dynamic characteristics of bridge structures are the basis of structural dynamic response and seismic analysis,and are also an important target of health condition monitoring.In this paper,a three-dimensional finite-element model is first established for a highway bridge over a railroad on No.312 National Highway.Based on design drawings,the dynamic characteristics of the bridge are studied using finite element analysis and ambient vibration measurements.Thus,a set of data is selected based on sensitivity analysis and optimization theory;the finite element model of the bridge is updated.The numerical and experimental results show that the updated method is more simple and effective,the updated finite element model can reflect the dynamic characteristics of the bridge better,and it can be used to predict the dynamic response under complex external forces.It is also helpful for further damage identification and health condition monitoring.
An implicit finite element method for discrete dynamic fracture
Energy Technology Data Exchange (ETDEWEB)
Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
National Research Council Canada - National Science Library
Zhou, Yadong; Fei, Qingguo
2015-01-01
.... In order to improve the stiffness–mass efficiency, this article presents a combined use of topology optimization and finite element analysis to the dynamic design of stiffeners for a typical panel...
Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics
Wu, Shen R
2012-01-01
A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master
Gao, Yongchang; Jin, Zhongmin; Wang, Ling; Wang, Manyi
2015-06-01
An explicit finite element method was developed to predict the dynamic behavior of the contact mechanics for a hip implant under normal walking conditions. Two key parameters of mesh sensitivity and time steps were examined to balance the accuracy and computational cost. Both the maximum contact pressure and accumulated sliding distance showed good agreement with those in the previous studies using the implicit finite element analysis and analytical methods. Therefore, the explicit finite element method could be used to predict the contact pressure and accumulated sliding distance for an artificial hip joint simultaneously in dynamic manner.
Research on dynamic model of printed circuit board based on finite element method
Wei, Hui; Xu, Liangjun
2017-08-01
The vibration characteristics of printed circuit boards are related to the reliability of electronic components installed on their surface. Finite element software is a powerful tool to analyze the vibration characteristics of printed circuit boards, and the correct establishment of finite element model is very important. In this paper, the dynamic model of anisotropic printed circuit board is established by analyzing the material properties of printed circuit board. The influence of boundary condition and lumped mass on the vibration characteristics of printed circuit board is analyzed. In order to establish a more realistic printed circuit The finite element model of the plate provides the necessary basis.
Finite element analysis of dynamic response and structure borne noise of gearbox
Institute of Scientific and Technical Information of China (English)
LIU Wen; LIN Teng-jiao; LI Run-fang; DU Xue-song
2007-01-01
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
Institute of Scientific and Technical Information of China (English)
J. Awrejcewicz; A.V. Krysko; J. Mrozowski; O.A. Saltykova; M.V. Zhigalov
2011-01-01
Chaotic vibrations of flexible non-linear EulerBernoulli beams subjected to harmonic load and with various boundary conditions (symmetric and non-symmetric) are studied in this work. Reliability of the obtained results is verified by the finite difference method (FDM) and the finite element method (FEM) with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes (regular and non-regular). The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly, dynamic behavior vs. control parameters {ωp, q0} is reported, and scenarios of the system transition into chaos are illustrated.
Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells
Directory of Open Access Journals (Sweden)
Humberto Breves Coda
2009-01-01
Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.
Nonlinear dynamics of planetary gears using analytical and finite element models
Ambarisha, Vijaya Kumar; Parker, Robert G.
2007-05-01
Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.
Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures
Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław
2013-01-01
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...
Dynamic finite element analysis of third size charpy specimens of V-4Cr-4Ti
Energy Technology Data Exchange (ETDEWEB)
Lansberry, M.R.; Kumar, A.S.; Mueller, G.E. [Univ. of Missouri, Rolla, MO (United States); Kurtz, R.J. [Pacific Northwest National Lab., Richland, WA (United States)
1997-04-01
A 2-D finite element analysis was performed on precracked, one third scale CVN specimens to investigate the sensitivity of model results to key material parameters such as yield strength, failure strain and work hardening characteristics. Calculations were carried out at temperatures of -196{degree}C and 50{degree}C. The dynamic finite element analyses were conducted using ABAQUS/Explicit V5.4. The finite element results were compared to experimental results for the production-scale heat of V-4Cr-4Ti (ANL Heat No. 832665) as a benchmark. Agreement between the finite element model and experimental data was very good at -196{degree}C, whereas at 50{degree}C the model predicted a slightly lower absorbed energy than actually measured.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.
A two-scale finite element formulation for the dynamic analysis of heterogeneous materials
Energy Technology Data Exchange (ETDEWEB)
Ionita, Axinte [Los Alamos National Laboratory
2008-01-01
In the analysis of heterogeneous materials using a two-scale Finite Element Method (FEM) the usual assumption is that the Representative Volume Element (RVE) of the micro-scale is much smaller than the finite element discretization of the macro-scale. However there are situations in which the RVE becomes comparable with, or even bigger than the finite element. These situations are considered in this article from the perspective of a two-scale FEM dynamic analysis. Using the principle of virtual power, new equations for the fluctuating fields are developed in terms of velocities rather than displacements. To allow more flexibility in the analysis, a scaling deformation tensor is introduced together with a procedure for its determination. Numerical examples using the new approach are presented.
Linearization of dynamic equations of flexible mechanisms - a finite element approach
Jonker, Ben
1991-01-01
A finite element based method is presented for evaluation of linearized dynamic equations of flexible mechanisms about a nominal trajectory. The coefficient matrices of the linearized equations of motion are evaluated as explicit analytical expressions involving mixed sets of generalized co-ordinate
Space-time discontinuous Galerkin finite element method for inviscid gas dynamics
van der Ven, H.; van der Vegt, Jacobus J.W.; Bouwman, E.G.; Bathe, K.J.
2003-01-01
In this paper an overview is given of the space-time discontinuous Galerkin finite element method for the solution of the Euler equations of gas dynamics. This technique is well suited for problems which require moving meshes to deal with changes in the domain boundary. The method is demonstrated
Dynamics of parabolic equations via the finite element method I. Continuity of the set of equilibria
Figueroa-López, R. N.; Lozada-Cruz, G.
2016-11-01
In this paper we study the dynamics of parabolic semilinear differential equations with homogeneous Dirichlet boundary conditions via the discretization of finite element method. We provide an appropriate functional setting to treat this problem and, as a first step, we show the continuity of the set of equilibria and of its linear unstable manifolds.
Energy Technology Data Exchange (ETDEWEB)
Tinianow, M.A.; Rotelli, R.L. Jr.; Baird, J.A.
1984-06-01
User instructions for the GEODYN Interactive Finite Element Computer Program are presented. The program is capable of performing the analysis of the three-dimensional transient dynamic response of a Polycrystalline Diamond Compact Bit - Bit Sub arising from the intermittent contact of the bit with the downhole rock formations. The program accommodates non-linear, time dependent, loading and boundary conditions.
Robbins, Joshua; Voth, Thomas E.
2007-12-01
The eXtended Finite Element Method (X-FEM) is a finite-element based discretization technique developed originally to model dynamic crack propagation [1]. Since that time the method has been used for modeling physics ranging from static meso-scale material failure to dendrite growth. Here we adapt the recent advances of Vitali and Benson [2] and Song et al. [3] to model dynamic loading of a polycrystalline material. We use demonstration problems to examine the method's efficacy for modeling the dynamic response of polycrystalline materials at the meso-scale. Specifically, we use the X-FEM to model grain boundaries. This approach allows us to i) eliminate ad-hoc mixture rules for multi-material elements and ii) avoid explicitly meshing grain boundaries.
DYNAMIC MODELLING OF BAR-GEAR MIXED MULTIBODY SYSTEMS USING A SPECIFIC FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
A new dynamic model for mixed, flexible bar and gear multibody systems is developed based on a specific finite element method, and a new gear-element is proposed. The gear-element can take into account the time variant stiffness, the gear errors and mass unbalance. The model for geared multibody systems can couple the gear meshing and the flexibility of all contained components. The kinematic and dynamic analyses of the geared multibody systems are expounded and illustrated on an example composed of three gears, two bars and one slider.
Institute of Scientific and Technical Information of China (English)
LI Xikui; YAO Dongmei
2004-01-01
A time-discontinuous Galerkin finite element method for dynamic analyses in saturated poro-elasto-plastic medium is proposed. As compared with the existing discontinuous Galerkin finite element methods, the distinct feature of the proposed method is that the continuity of the displacement vector at each discrete time instant is automatically ensured, whereas the discontinuity of the velocity vector at the discrete time levels still remains. The computational cost is then obviously reduced,particularly, for material non-linear problems. Both the implicit and explicit algorithms to solve the derived formulations for material non-linear problems are developed. Numerical results show a good performance of the present method in eliminating spurious numerical oscillations and providing with much more accurate solutions over the traditional Galerkin finite element method using the Newmark algorithm in the time domain.
Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft
Pak, Chan-Gi; Truong, Samson
2014-01-01
Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
Application of scaled boundary finite element method in static and dynamic fracture problems
Institute of Scientific and Technical Information of China (English)
Zhenjun Yang
2006-01-01
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM)and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion.F0r dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
A finite element approach for the dynamic analysis of joint-dominated structures
Chang, Che-Wei; Wu, Shih-Chin
1991-01-01
A finite element method to model dynamic structural systems undergoing large rotations is presented. The dynamic systems are composed of rigid joint bodies and flexible beam elements. The configurations of these systems are subject to change due to the relative motion in the joints among interconnected elastic beams. A body fixed reference is defined for each joint body to describe the joint body's displacements. Using the finite element method and the kinematic relations between each flexible element and its corotational reference, the total displacement field of an element, which contains gross rigid as well as elastic effects, can be derived in terms of the translational and rotational displacements of the two end nodes. If one end of an element is hinged to a joint body, the joint body's displacements and the hinge degree of freedom at the end are used to represent the nodal displacements. This results in a highly coupled system of differential equations written in terms of hinge degrees of freedom as well as the rotational and translational displacements of joint bodies and element nodes.
Wang, Qing; Yao, Jing-Zheng
2010-12-01
Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.
Solution of the neutronics code dynamic benchmark by finite element method
Avvakumov, A. V.; Vabishchevich, P. N.; Vasilev, A. O.; Strizhov, V. F.
2016-10-01
The objective is to analyze the dynamic benchmark developed by Atomic Energy Research for the verification of best-estimate neutronics codes. The benchmark scenario includes asymmetrical ejection of a control rod in a water-type hexagonal reactor at hot zero power. A simple Doppler feedback mechanism assuming adiabatic fuel temperature heating is proposed. The finite element method on triangular calculation grids is used to solve the three-dimensional neutron kinetics problem. The software has been developed using the engineering and scientific calculation library FEniCS. The matrix spectral problem is solved using the scalable and flexible toolkit SLEPc. The solution accuracy of the dynamic benchmark is analyzed by condensing calculation grid and varying degree of finite elements.
Naghibi Beidokhti, Hamid; Janssen, Dennis; Khoshgoftar, Mehdi; Sprengers, Andre; Perdahcioglu, Emin Semih; Van den Boogaard, Ton; Verdonschot, Nico
2016-10-01
The finite element (FE) method has been widely used to investigate knee biomechanics. Time integration algorithms for dynamic problems in finite element analysis can be classified as either implicit or explicit. Although previously both static/dynamic implicit and dynamic explicit method have been used, a comparative study on the outcomes of both methods is of high interest for the knee modeling community. The aim of this study is to compare static, dynamic implicit and dynamic explicit solutions in analyses of the knee joint to assess the prediction of dynamic effects, potential convergence problems, the accuracy and stability of the calculations, the difference in computational time, and the influence of mass-scaling in the explicit formulation. The heel-strike phase of fast, normal and slow gait was simulated for two different body masses in a model of the native knee. Our results indicate that ignoring the dynamic effect can alter joint motion. Explicit analyses are suitable to simulate dynamic loading of the knee joint in high-speed simulations, as this method offers a substantial reduction of the computational time with a similar prediction of cartilage stresses and meniscus strains. Although mass-scaling can provide even more gain in computational time, it is not recommended for high-speed activities, in which inertial forces play a significant role. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Finite Element Modeling of Dynamic Properties of Power Supply for an Industrial Application
2014-01-01
In this thesis, the dynamic properties of the mechanic structure of Power Supply for an Industrial Application, an Alstom company product, are considered. A finite element model of the Power Supply mechanic structure have been generated with the aid of the MSC Marc software. Based on the FE model; modal analysis have been carried out and the eigenfrequencies and eigenmodes for the FE model have been calculated in a suitable frequency range. Relevant frequency response functions for the FE mod...
3-D finite element computation and dynamic modal analysis on ultrasonic vibration systems
Institute of Scientific and Technical Information of China (English)
倪金刚; 张学仁; 聂景旭(Department of Jet Propulsion 405; Beijing University of Aeronautics and Astronautics; Beijing 100083; China)
1996-01-01
Stress and modal analyses are performed on an ultrasonic vibration system by means of a 3-dimensional finite element computation and dynamic modal analysis code "Algor" The system consists of an edge-cracked specimen linked elastically with one or two amplifying horns which come into resonant longitudinal vibration at 20kHz.Operating principle of the ultrasonic fatigue machines and experimental procedures for ultrasonic fatigue crack growth studies are briefly presented.
Bathe, Klaus-Jürgen
2015-01-01
Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.
Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander
2011-01-01
A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.
A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.
Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan
2013-01-01
The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.
A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.
Directory of Open Access Journals (Sweden)
Zhihui Qian
Full Text Available The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.
Energy Technology Data Exchange (ETDEWEB)
Schunk, Peter Randall; Cairncross, Richard A. (Drexel University, Philadelphia, PA); Madasu, S. (Drexel University, Philadelphia, PA)
2004-03-01
This report summarizes research advances pursued with award funding issued by the DOE to Drexel University through the Presidential Early Career Award (PECASE) program. Professor Rich Cairncross was the recipient of this award in 1997. With it he pursued two related research topics under Sandia's guidance that address the outstanding issue of fluid-structural interactions of liquids with deformable solid materials, focusing mainly on the ubiquitous dynamic wetting problem. The project focus in the first four years was aimed at deriving a predictive numerical modeling approach for the motion of the dynamic contact line on a deformable substrate. A formulation of physical model equations was derived in the context of the Galerkin finite element method in an arbitrary Lagrangian/Eulerian (ALE) frame of reference. The formulation was successfully integrated in Sandia's Goma finite element code and tested on several technologically important thin-film coating problems. The model equations, the finite-element implementation, and results from several applications are given in this report. In the last year of the five-year project the same physical concepts were extended towards the problem of capillary imbibition in deformable porous media. A synopsis of this preliminary modeling and experimental effort is also discussed.
Garvie, Marcus R; Burkardt, John; Morgan, Jeff
2015-03-01
We describe simple finite element schemes for approximating spatially extended predator-prey dynamics with the Holling type II functional response and logistic growth of the prey. The finite element schemes generalize 'Scheme 1' in the paper by Garvie (Bull Math Biol 69(3):931-956, 2007). We present user-friendly, open-source MATLAB code for implementing the finite element methods on arbitrary-shaped two-dimensional domains with Dirichlet, Neumann, Robin, mixed Robin-Neumann, mixed Dirichlet-Neumann, and Periodic boundary conditions. Users can download, edit, and run the codes from http://www.uoguelph.ca/~mgarvie/ . In addition to discussing the well posedness of the model equations, the results of numerical experiments are presented and demonstrate the crucial role that habitat shape, initial data, and the boundary conditions play in determining the spatiotemporal dynamics of predator-prey interactions. As most previous works on this problem have focussed on square domains with standard boundary conditions, our paper makes a significant contribution to the area.
Energy Technology Data Exchange (ETDEWEB)
BHARDWAJ, MANLJ K.; REESE,GARTH M.; DRIESSEN,BRIAN; ALVIN,KENNETH F.; DAY,DAVID M.
2000-04-06
As computational needs for structural finite element analysis increase, a robust implicit structural dynamics code is needed which can handle millions of degrees of freedom in the model and produce results with quick turn around time. A parallel code is needed to avoid limitations of serial platforms. Salinas is an implicit structural dynamics code specifically designed for massively parallel platforms. It computes the structural response of very large complex structures and provides solutions faster than any existing serial machine. This paper gives a current status of Salinas and uses demonstration problems to show Salinas' performance.
Dynamic Finite Element Analysis of Mobile Bearing Type Knee Prosthesis under Deep Flexional Motion
Directory of Open Access Journals (Sweden)
Mohd Afzan Mohd Anuar
2014-01-01
Full Text Available The primary objective of this study is to distinguish between mobile bearing and fixed bearing posterior stabilized knee prostheses in the mechanics performance using the finite element simulation. Quantifying the relative mechanics attributes and survivorship between the mobile bearing and the fixed bearing prosthesis remains in investigation among researchers. In the present study, 3-dimensional computational model of a clinically used mobile bearing PS type knee prosthesis was utilized to develop a finite element and dynamic simulation model. Combination of displacement and force driven knee motion was adapted to simulate a flexion motion from 0° to 135° with neutral, 10°, and 20° internal tibial rotation to represent deep knee bending. Introduction of the secondary moving articulation in the mobile bearing knee prosthesis has been found to maintain relatively low shear stress during deep knee motion with tibial rotation.
Marwala, Tshilidzi
2010-01-01
Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...
Traumatic impact loading on human maxillary incisor: A Dynamic finite element analysis
Directory of Open Access Journals (Sweden)
K Jayasudha
2015-01-01
Full Text Available Background: The most vulnerable tooth is the maxillary incisor, which sustains 80% of dental injuries. Dynamic Finite element analysis is used to understand the biomechanics of fracture of maxillary incisor under traumatic impact loading. Aim: The aim was to investigate the stress patterns of an upper incisor in a three-dimensional (3D model under traumatic impact loading in various directions. Materials and Methods: A 3D finite element model of the upper incisor and surrounding tissues was established. A sinusoidal force of 800N was applied over a period of 4 ms. Results: Software performs a series of calculations and mathematical equations and yields the simulation results. During the horizontal impact (F1, stresses were concentrated in the cervical area of the crown, reaching peak stress of 125 MPa at 2 ms. Conclusion: A horizontal force exerted on the labial surface of the tooth tends to cause cervical crown fractures, oblique crown root fractures, and oblique root fractures.
Institute of Scientific and Technical Information of China (English)
黄春跃; 周德俭; 黄红艳
2004-01-01
Based on the modal analysis theory and by using the dynamics finite element analysis model of a three-dimensional assembly circuit module, dynamic characteristics of circuit module have been studied, including both natural characteristics analysis and dynamic responses analysis. Using a subspace method, modal analysis is first carried out. The first 6 orders of natural frequencies and vibration modes are obtained. Influence of the number of the Z-shaped metal slices on dynamic characteristics of the entire structure is also studied.Harmonic response analysis is then conducted. The steady-state response when the circuit module is subjected to harmonic excitation is determined. A curve of the response values against frequencies is obtained. As a result, the optimal number of Z-shaped metal slices can be determined, and it can be assured that the three-dimensional assembly circuit module has good performance in terms of the dynamic characteristics.
Ride Dynamics of a Tracked Vehicle with a Finite Element Vehicle Model
Directory of Open Access Journals (Sweden)
S. Jothi
2016-01-01
Full Text Available Research on tracked vehicle dynamics is by and large limited to multi-rigid body simulation. For realistic prediction of vehicle dynamics, it is better to model the vehicle as multi-flexible body. In this paper, tracked vehicle is modelled as a mass-spring system with sprung and unsprung masses of the physical tracked vehicle by Finite element method. Using the equivalent vehicle model, dynamic studies are carried out by imparting vertical displacement inputs to the road wheels. Ride characteristics of the vehicle are captured by modelling the road wheel arms as flexible elements using Finite element method. In this work, a typical tracked vehicle test terrain viz., Trapezoidal blocks terrain (APG terrain is considered. Through the simulations, the effect of the road wheel arm flexibility is monitored. Result of the analysis of equivalent vehicle model with flexible road wheel arms, is compared with the equivalent vehicle model with rigid road wheel arms and also with the experimental results of physical tracked vehicle. Though there is no major difference in the vertical bounce response between the flexible model and the rigid model, but there is a visible difference in the roll condition. Result of the flexible vehicle model is also reasonably matches with the experimental result.Defence Science Journal, Vol. 66, No. 1, January 2016, pp. 19-25, DOI: http://dx.doi.org/10.14429/dsj.66.9201
Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model
Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.
2000-01-01
The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.
Besson, François; Ferraris, Guy; Guingand, Michèle; Vaujany, Jean-Pierre De
During the last decade, many new technical solutions dedicated to the comfort of automotive vehicle's drivers have raised, like Electrical Power Steering (EPS). To fulfill the more and more demanding requirements in terms of vibration and acoustics, the dynamic behavior of the whole steering is studied. The system is divided into dedicated finite elements (FE) describing the whole steering. The stress was first put on the gears models (worm gear and rack-and-pinion) and their anti-backlash systems as they have been identified as potential vibration sources. Mechanical non-linearities (clearances, non-linear stiffness) of the mechanical system are taken into account in these models. Then, this model allows simulating the transient response of the system to an input excitation. Each developed element is validated using a fitted experimental test bench. Then, the general model is correlated the same way. Hence models can be used to study the dynamic behavior of EPS systems or sub-systems.
Finite element analysis of dynamic stability of skeletal structures under periodic loading
Institute of Scientific and Technical Information of China (English)
THANA Hemantha Kumar; AMEEN Mohammed
2007-01-01
This paper addresses the dynamic stability problem of columns and frames subjected to axially applied periodic loads. Such a structure can become unstable under certain combinations of amplitudes and frequencies of the imposed load acting on its columns/beams. These are usually shown in the form of plots which describe regions of instability. The finite element method (FEM) is used in this work to analyse dynamic stability problems of columns. Two-noded beam elements are used for this purpose.The periodic loading is decomposed into various harmonics using Fourier series expansion. Computer codes in C++ using object oriented concepts are developed to determine the stability regions of columns subjected to periodic loading. A number of numerical examples are presented to illustrate the working of the program. The direct integration of the equations of motions of the discretised system is carried out using Newmark's method to verify the results.
A topology-motivated mixed finite element method for dynamic response of porous media
Lotfian, Zahrasadat
2015-01-01
In this paper, we propose a numerical method for computing solutions to Biot's fully dynamic model of incompressible saturated porous media [Biot;1956]. Our spatial discretization scheme is based on the three-field formulation (u-w-p) and the coupling of a lowest order Raviart-Thomas mixed element [Raviart,Thomas;1977] for fluid variable fields (w, p ) and a nodal Galerkin finite element for skeleton variable field (u). These mixed spaces are constructed based on the natural topology of the variables; hence, are physically compatible and able to exactly model the kind of continuity which is expected. The method automatically satisfies the well known LBB (inf-sup) stability condition and avoids locking that usually occurs in the numerical computations in the incompressible limit and very low hydraulic conductivity. In contrast to the majority of approaches, our three-field formulation can fully capture dynamic behavior of porous media even in high frequency loading phenomena with considerable fluid acceleratio...
Second order tensor finite element
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Moreno Chaparro, Nicolas
2013-06-01
A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.
Spatial Finite Element Analysis for Dynamic Response of Curved Thin-Walled Box Girder Bridges
Directory of Open Access Journals (Sweden)
Yinhui Wang
2016-01-01
Full Text Available According to the flexural and torsional characteristics of curved thin-walled box girder with the effect of initial curvature, 7 basic displacements of curved box girder are determined. And then the strain-displacement calculation correlations were established. Under the curvilinear coordinate system, a three-noded curved girder finite element which has 7 degrees of freedom per node for the vibration characteristic and dynamic response analysis of curved box girder is constructed. The shape functions are used as the interpolation functions of variable curvature and variable height to accommodate to the variation of curvature and section height. A MATLAB numerical analysis program has been implemented.
A multiscale modeling technique for bridging molecular dynamics with finite element method
Energy Technology Data Exchange (ETDEWEB)
Lee, Yongchang, E-mail: yl83@buffalo.edu; Basaran, Cemal
2013-11-15
In computational mechanics, molecular dynamics (MD) and finite element (FE) analysis are well developed and most popular on nanoscale and macroscale analysis, respectively. MD can very well simulate the atomistic behavior, but cannot simulate macroscale length and time due to computational limits. FE can very well simulate continuum mechanics (CM) problems, but has the limitation of the lack of atomistic level degrees of freedom. Multiscale modeling is an expedient methodology with a potential to connect different levels of modeling such as quantum mechanics, molecular dynamics, and continuum mechanics. This study proposes a new multiscale modeling technique to couple MD with FE. The proposed method relies on weighted average momentum principle. A wave propagation example has been used to illustrate the challenges in coupling MD with FE and to verify the proposed technique. Furthermore, 2-Dimensional problem has also been used to demonstrate how this method would translate into real world applications. -- Highlights: •A weighted averaging momentum method is introduced for bridging molecular dynamics (MD) with finite element (FE) method. •The proposed method shows excellent coupling results in 1-D and 2-D examples. •The proposed method successfully reduces the spurious wave reflection at the border of MD and FE regions. •Big advantages of the proposed method are simplicity and inexpensive computational cost of multiscale analysis.
Dynamic finite element model updating of prestressed concrete continuous box-girder bridge
Institute of Scientific and Technical Information of China (English)
Lin Xiankun; Zhang Lingmi; Guo Qintao; Zhang Yufeng
2009-01-01
The dynamic finite element model (FEM) of a prestressed concrete continuous box-girder bridge, called the Tongyang Canal Bridge, is built and updated based on the results of ambient vibration testing (AVT) using a real-coded accelerating genetic algorithm (RAGA). The objective functions are defined based on natural frequency and modal assurance criterion (MAC) metrics to evaluate the updated FEM. Two objective functions are defined to fully account for the relative errors and standard deviations of the natural frequencies and MAC between the AVT results and the updated FEM predictions. The dynamically updated FEM of the bridge can better represent its structural dynamics and serve as a baseline in long-term health monitoring, condition assessment and damage identification over the service life of the bridge.
Institute of Scientific and Technical Information of China (English)
GUO Qintao; ZHANG Lingmi; TAO Zheng
2008-01-01
Thin wall component is utilized to absorb impact energy of a structure. However, the dynamic behavior of such thin-walled structure is highly non-linear with material, geometry and boundary non-linearity. A model updating and validation procedure is proposed to build accurate finite element model of a frame structure with a non-linear thin-walled component for dynamic analysis. Design of experiments (DOE) and principal component decomposition (PCD) approach are applied to extract dynamic feature from nonlinear impact response for correlation of impact test result and FE model of the non-linear structure. A strain-rate-dependent non-linear model updating method is then developed to build accurate FE model of the structure. Computer simulation and a real frame structure with a highly non-linear thin-walled component are employed to demonstrate the feasibility and effectiveness of the proposed approach.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps
Directory of Open Access Journals (Sweden)
Lanhao Zhao
2014-01-01
Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.
Advanced finite element technologies
Wriggers, Peter
2016-01-01
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
Hashemi, Seyed M.; Roach, Andrew
2011-12-01
The application of a Dynamic Finite Element (DFE) technique to the extensional-torsional free vibration analysis of nonuniform composite beams, in the absence of flexural coupling, is presented. The proposed method is a fusion of the Galerkin weighted residual formulation and the Dynamic Stiffness Matrix (DSM) method, where the basis functions of approximation space are assumed to be the closed form solutions of the differential equations governing uncoupled extensional and torsional vibrations of the beam. The use of resulting dynamic trigonometric interpolation (shape) functions leads to a frequency dependent stiffness matrix, representing both mass and stiffness properties of the beam element. Assembly of the element matrices and the application of the boundary conditions then leads to a frequency dependent nonlinear eigenproblem, which is solved to evaluate the system natural frequencies and modes. Two illustrative examples of uniform and tapered cantilevered, Circumferentially Uniform Stiffness ( CUS), hollow, composite beams are presented. The influence of ply fibre-angle on the natural frequencies is also studied. The correctness of the theory and the superiority of the proposed DFE over the contrasting DSM and conventional FEM methods are confirmed by the published results and numerical checks. The discussion of results is followed by some concluding remarks.
Finite-element (FE modelling of bridge dynamics from exposure to moving load
Directory of Open Access Journals (Sweden)
G.M. Kadisov
2013-12-01
Full Text Available Solutions to the problem of cable-stayed bridge dynamics are received and analysed on the basis of two modelling options. According to the first one space-time finite-elements are used. The first three bridge vibration modes are shown to study cable-stayed bridge fluctuations when exposed to the vertical force moving at a constant speed and compile charts of time history strains in fixed sections of a deck. According to the second option a suspended superstructure is represented by a fold with absolutely rigid transverse membranes in joints of cables, a bridge tower is represented by a beam. Natural modes of the bridge are received by a solution of homogeneous system equations of the mixed method. Nodal lines of a fold for the first four natural modes are shown. The comparative description of applicability of the above-mentioned methods of solving problems of dynamics affected by moving load is given.
Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces
Tal, Yuval; Hager, Bradford H.
2017-09-01
This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Finite element mesh generation
Lo, Daniel SH
2014-01-01
Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques
Energy Technology Data Exchange (ETDEWEB)
Steibler, P.
2000-07-01
The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet
Simulation of the dynamic behavior of the coffee fruit-stem system using finite element method
Directory of Open Access Journals (Sweden)
Fábio Lúcio Santos
2015-01-01
Full Text Available Mechanical harvesting can be considered an important factor to reduce the costs in coffee production and to improve the quality of the final product. Coffee harvesting machinery uses mechanical vibrations to accomplish the harvesting. Therefore, the determination of the natural frequencies of the fruit-stem systems is an essential dynamic parameter for the development of mechanized harvesting system by mechanical vibrations. The objective of this study was to develop a three-dimensional finite element model to determine the natural frequencies and mode shapes of the coffee fruit-stem systems, considering different fruit ripeness. Moreover, it was carried out a theoretical study, using the finite element three-dimensional model, based on the linear theory of elasticity, for determining the generated stress in a coffee fruit-stem system, during the harvesting process by mechanical vibration. The results showed that natural frequencies decrease as the ripeness condition of the fruit increases. Counter-phase mode shape can provide better detachment efficiency considering the stress generation on coffee fruit-stem system during the harvesting by mechanical vibrations and presented a difference greater than 40 Hz between the natural frequencies of the green and ripe fruit.
Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
Srivastava, S; Yazdchi, K; Luding, S
2014-08-06
A new method for two-way fluid-particle coupling on an unstructured mesoscopically coarse mesh is presented. In this approach, we combine a (higher order) finite-element method (FEM) on the moving mesh for the fluid with a soft sphere discrete-element method for the particles. The novel feature of the proposed scheme is that the FEM mesh is a dynamic Delaunay triangulation based on the positions of the moving particles. Thus, the mesh can be multi-purpose: it provides (i) a framework for the discretization of the Navier-Stokes equations, (ii) a simple tool for detecting contacts between moving particles, (iii) a basis for coarse-graining or upscaling, and (iv) coupling with other physical fields (temperature, electromagnetic, etc.). This approach is suitable for a wide range of dilute and dense particulate flows, because the mesh resolution adapts with particle density in a given region. Two-way momentum exchange is implemented using semi-empirical drag laws akin to other popular approaches; for example, the discrete particle method, where a finite-volume solver on a coarser, fixed grid is used. We validate the methodology with several basic test cases, including single- and double-particle settling with analytical and empirical expectations, and flow through ordered and random porous media, when compared against finely resolved FEM simulations of flow through fixed arrays of particles.
DYNAMIC ANALYSIS OF A DOUBLE IMPACT TRIAXIAL TEST ON SAND BY THE FINITE ELEMENT METHOD
Directory of Open Access Journals (Sweden)
Mohammed Y. Fattah,
2011-04-01
Full Text Available Impact problems have recently been the subject of intense research. Impact tests have found a great interest by several researchers, and dynamic testing apparatus were developed in different laboratories. Inaddition, several theoretical models were developed to simulate impact tests theoretically and get the corresponding stress-strain relations. A general mixed finite element formulation (u – w – π is presented in this paper. This formulation includes the inertia effects and the materials (solid grains and water are considered compressible. The application of this formulation in solving impact problems of dry sand is made by restricting the boundary conditions concerning the pore fluid, and comparisons are made between laboratory tests conducted at the University of Baghdad in 1989 against elasto-plastic model named ALTERNAT are made herein. A comparison is made between the experimental results and theoretical ones which are obtained by simulating the impact tests using the finite element method. The ALTERNAT model gave very good predictions for displacements of dense (Dr = 75 % sands when subjected to double impacts.
Finite Element Simulation of Dynamic Wetting Flows as an Interface Formation Process
Sprittles, James
2012-01-01
A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows -the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the `hydrodynamic resist to dynamic wetting', is discovered where the influence of the capillary's radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where...
Finite element simulation of dynamic wetting flows as an interface formation process
Sprittles, J.E.
2013-01-01
A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows - the dynamic contact angle - depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the \\'hydrodynamic resist to dynamic wetting\\', is discovered where the influence of the capillary\\'s radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a user-friendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations. © 2012 Elsevier Inc.
Conforming finite elements with embedded strong discontinuities
Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Areias, P.; Fernandes, C.; Julio, E.
2012-01-01
The possibility of embedding strong discontinuities into finite elements allowed the simulation of different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain problems and simulation of reinforcement concrete members. However, despite the significant contributi
2010-01-01
Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.
A Stochastic Finite Element Model for the Dynamics of Globular Macromolecules
Oliver, Robin; Harlen, Oliver G; Harris, Sarah A
2012-01-01
We describe a novel coarse-grained simulation method for modelling the dynamics of globular macromolecules, such as proteins. The macromolecule is treated as a continuum that is subject to thermal fluctuations. The model includes a non-linear treatment of elasticity and viscosity with thermal noise that is solved using finite element analysis. We have validated the method by demonstrating that the model provides average kinetic and potential energies that are in agreement with the classical equipartition theorem. In addition, we have performed Fourier analysis on the simulation trajectories obtained for a series of linear beams to confirm that the correct average energies are present in the first two Fourier bending modes. We have then used the new modelling method to simulate the thermal fluctuations of a representative protein over 500ns timescales. Using reasonable parameters for the material properties, we have demonstrated that the overall deformation of the biomolecule is consistent with the results obt...
Lin, Hung-Ming; Liu, Chien-Lin; Pan, Yung-Ning; Huang, Chang-Hung; Shih, Shih-Liang; Wei, Shun-Hwa; Chen, Chen-Sheng
2014-05-01
Surgeons often use spinal fixators to manage spinal instability. Dynesys (DY) is a type of dynamic fixator that is designed to restore spinal stability and to provide flexibility. The aim of this study was to design a new spinal fixator using topology optimization [the topology design (TD) system]. Here, we constructed finite element (FE) models of degenerative disc disease, DY, and the TD system. A hybrid-controlled analysis was applied to each of the three FE models. The rod structure of the topology optimization was modelled at a 39 % reduced volume compared with the rigid rod. The TD system was similar to the DY system in terms of stiffness. In contrast, the TD system reduced the cranial adjacent disc stress and facet contact force at the adjacent level. The TD system also reduced pedicle screw stresses in flexion, extension, and lateral bending.
Directory of Open Access Journals (Sweden)
J. Fankhänel
2016-01-01
Full Text Available Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM experiments and Molecular Dynamic Finite Element Method (MDFEM simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.
Dynamic simulation of free surfaces in capillaries with the finite element method
Trutschel, R.; Schellenberger, U.
1998-02-01
The mathematical formulation of the dynamics of free liquid surfaces including the effects of surface tension is governed by a non-linear system of elliptic differential equations. The major difficulty of getting unique closed solutions only in trivial cases is overcome by numerical methods. This paper considers transient simulations of liquid-gas menisci in vertical capillary tubes and gaps in the presence of gravity. Therefore the CFD code FIDAP 7.52 based on the Galerkin finite element method (FEM) is used. Calculations using the free surface model are presented for a variety of contact angles and cross-sections with experimental and theoretical verification. The liquid column oscillations are compared for numerical accuracy with a mechanical mathematical model, and the sensitivity with respect to the node density is investigated. The efficiency of the numerical treatment of geometric non-trivial problems is demonstrated by a prismatic capillary. Present restrictions limiting efficient transient simulations with irregularly shaped calculational domains are stated.
Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang
2016-09-01
The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.
Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.
Directory of Open Access Journals (Sweden)
S. Skachko
2008-12-01
Full Text Available This study focuses on an accurate estimation of ocean circulation via assimilation of satellite measurements of ocean dynamical topography into the global finite-element ocean model (FEOM. The dynamical topography data are derived from a complex analysis of multi-mission altimetry data combined with a referenced earth geoid. The assimilation is split into two parts. First, the mean dynamic topography is adjusted. To this end an adiabatic pressure correction method is used which reduces model divergence from the real evolution. Second, a sequential assimilation technique is applied to improve the representation of thermodynamical processes by assimilating the time varying dynamic topography. A method is used according to which the temperature and salinity are updated following the vertical structure of the first baroclinic mode. It is shown that the method leads to a partially successful assimilation approach reducing the rms difference between the model and data from 16 cm to 2 cm. This improvement of the mean state is accompanied by significant improvement of temporal variability in our analysis. However, it remains suboptimal, showing a tendency in the forecast phase of returning toward a free run without data assimilation. Both the mean difference and standard deviation of the difference between the forecast and observation data are reduced as the result of assimilation.
Finite element model updating of natural fibre reinforced composite structure in structural dynamics
Directory of Open Access Journals (Sweden)
Sani M.S.M.
2016-01-01
Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Structural Stability and Dynamics of FGM Plates Using an Improved 8-ANS Finite Element
Directory of Open Access Journals (Sweden)
Weon-Tae Park
2016-01-01
Full Text Available I investigate the vibration and buckling analysis of functionally graded material (FGM structures, using a modified 8-node shell element. The properties of FGM vary continuously through the thickness direction according to the volume fraction of constituents defined by sigmoid function. The modified 8-ANS shell element has been employed to study the effect of power law index on dynamic analysis of FGM plates with various boundary conditions and buckling analysis under combined loads, and interaction curves of FGM plates are carried out. To overcome shear and membrane locking problems, the assumed natural strain method is employed. In order to validate and compare the finite element numerical solutions, the reference results of plates based on Navier’s method, the series solutions of sigmoid FGM (S-FGM plates are compared. Results of the present study show good agreement with the reference results. The solutions of vibration and buckling analysis are numerically illustrated in a number of tables and figures to show the influence of power law index, side-to-thickness ratio, aspect ratio, types of loads, and boundary conditions in FGM structures. This work is relevant to the simulation of wing surfaces, aircrafts, and box structures under various boundary conditions and loadings.
Using Plate Finite Elements for Modeling Fillets in Design, Optimization, and Dynamic Analysis
Brown, A. M.; Seugling, R. M.
2003-01-01
A methodology has been developed that allows the use of plate elements instead of numerically inefficient solid elements for modeling structures with 90 degree fillets. The technique uses plate bridges with pseudo Young's modulus (Eb) and thickness (tb) values placed between the tangent points of the fillets. These parameters are obtained by solving two nonlinear simultaneous equations in terms of the independent variables rlt and twallt. These equations are generated by equating the rotation at the tangent point of a bridge system with that of a fillet, where both rotations are derived using beam theory. Accurate surface fits of the solutions are also presented to provide the user with closed-form equations for the parameters. The methodology was verified on the subcomponent level and with a representative filleted structure, where the technique yielded a plate model exhibiting a level of accuracy better than or equal to a high-fidelity solid model and with a 90-percent reduction in the number of DOFs. The application of this method for parametric design studies, optimization, and dynamic analysis should prove extremely beneficial for the finite element practitioner. Although the method does not attempt to produce accurate stresses in the filleted region, it can also be used to obtain stresses elsewhere in the structure for preliminary analysis. A future avenue of study is to extend the theory developed here to other fillet geometries, including fillet angles other than 90 and multifaceted intersections.
Finite Element Based Lagrangian Vortex Dynamics Model for Wind Turbine Aerodynamics
McWilliam, Michael K.; Crawford, Curran
2014-06-01
This paper presents a novel aerodynamic model based on Lagrangian Vortex Dynamics (LVD) formulated using a Finite Element (FE) approach. The advantage of LVD is improved fidelity over Blade Element Momentum Theory (BEMT) while being faster than Numerical Navier-Stokes Models (NNSM) in either primitive or velocity-vorticity formulations. The model improves on conventional LVD in three ways. First, the model is based on an error minimization formulation that can be solved with fast root finding algorithms. In addition to improving accuracy, this eliminates the intrinsic numerical instability of conventional relaxed wake simulations. The method has further advantages in optimization and aero-elastic simulations for two reasons. The root finding algorithm can solve the aerodynamic and structural equations simultaneously, avoiding Gauss-Seidel iteration for compatibility constraints. The second is that the formulation allows for an analytical definition for sensitivity calculations. The second improvement comes from a new discretization scheme based on an FE formulation and numerical quadrature that decouples the spatial, influencing and temporal meshes. The shape for each trailing filament uses basis functions (interpolating splines) that allow for both local polynomial order and element size refinement. A completely independent scheme distributes the influencing (vorticity) elements along the basis functions. This allows for concentrated elements in the near wake for accuracy and progressively less in the far-wake for efficiency. Finally the third improvement is the use of a far-wake model based on semi-infinite vortex cylinders where the radius and strength are related to the wake state. The error-based FE formulation allows the transition to the far wake to occur across a fixed plane.
Pak, Chan-Gi; Truong, Samson S.
2014-01-01
Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test Bed, X-56A, aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of X-56A. The ground vibration test validated structural dynamic finite element model of the X-56A is created in this study. The structural dynamic finite element model of the X-56A is improved using a model tuning tool. In this study, two different weight configurations of the X-56A have been improved in a single optimization run.
Directory of Open Access Journals (Sweden)
Di Wang
2015-01-01
Full Text Available The energy density governing equation to analyze the high-frequency dynamic behavior of plates in thermal environments is derived in this paper, in which the thermal effects are considered to change the membrane stress state and temperature dependent material properties of plates. Then the thermal effects on the energy reflection and transmission coefficients are dealt with hereof. Based on the above, an EFEM (energy finite element method based approximate approach for the energy analysis of coupled plates under nonuniform thermal environments is proposed. The approach could be conducted by three steps: (1 thermal analysis, (2 thermal stress analysis, and (3 forming element matrixes, joint matrixes, and the whole EFEM formulation for the energy analysis. The same mesh model is used for all the three steps. The comparison between EFEM results and classical modal superposition method results of simply supported plates in various uniform thermal environments and coupled plates in nonuniform thermal environments demonstrated that the derived energy governing equation and the proposed approach described well the smooth time- and locally space-averaged energy density. It is found that the distributions and levels of energy density are affected by thermal effects, and the variation trends are related to exciting frequency.
Solar, Mathieu; Meyer, Hendrik; Gauthier, Christian; Fond, Christophe; Benzerara, Olivier; Schirrer, Robert; Baschnagel, Jörg
2012-02-01
This paper studies the rheology of weakly entangled polymer melts and films in the glassy domain and near the rubbery domain using two different methods: molecular dynamics (MD) and finite element (FE) simulations. In a first step, the uniaxial mechanical behavior of a bulk polymer sample is studied by means of particle-based MD simulations. The results are in good agreement with experimental data, and mechanical properties may be computed from the simulations. This uniaxial mechanical behavior is then implemented in FE simulations using an elasto-viscoelasto-viscoplastic constitutive law in a continuum mechanics (CM) approach. In a second step, the mechanical response of a polymer film during an indentation test is modeled with the MD method and with the FE simulations using the same constitutive law. Good agreement is found between the MD and CM results. This work provides evidence in favor of using MD simulations to investigate the local physics of contact mechanics, since the volume elements studied are representative and thus contain enough information about the microstructure of the polymer model, while surface phenomena (adhesion and surface tension) are naturally included in the MD approach.
Elastoplastic dynamic analysis of strike-slip faults with bends using finite element method
Duan, B.; Day, S. M.
2006-12-01
Nonelastic off-fault response may play a role in rupture dynamics on geometrically complex faults, particularly in the vicinity of bends or other points of stress concentration. In this study, we have performed nonelastic dynamic analysis of strike-slip faults with bends by using a finite element method. The Coulomb yield criterion has been implemented in the code to model off-fault nonelastic response. We find that a smooth scheme (such as viscoplasticity) is required to regularize the numerical calculation of plastic yielding near a fault bend. The method is extensible to other material rheologies (e.g., damage mechanics models, tensile failure, etc), and amenable to parallel implementation. Compared with those from a calculation with elastic off-fault response, results from a calculation with nonelastic off-fault response show that (1) bends are locations of large plastic deformation; (2) stress near a bend is less heterogeneous; (3) less radiation is generated from a bend; (4) lower strong ground motion is produced.
Dynamic Finite Element Analysis of Impulsive Stress Waves Propagating from Distal End of Femur
Directory of Open Access Journals (Sweden)
Sarai,Takaaki
2012-10-01
Full Text Available The human femur is subjected to an impulsive load at its distal end during daily life. Femoral bone fracture caused by impact loading is common in elderly women. It is important to clarify the dynamic response of the femur and to evaluate the change in its stress state during impact loading. A 3-dimensional model of the femur was prepared in the present study, and the impulsive stress waves propagating from the distal end of the femur were analyzed by the dynamic finite element method. This model showed that the von Mises equivalent stress is large on the anterior and posterior sides of the mid-diaphysis when the impact direction is different from that of the bone axis. As for the femoral neck, the absolute value of minimum principal stress initially increases on the medial side;slightly later the maximum principal stress increases on the lateral side. In this case, the absolute value of the maximum principal stress was found to be larger than that of the minimum principal stress, and the absolute value of the principal stress decreased as the impact angle increased. Further, the femoral neck and the trochanter were shown to have a higher risk of bone fracture when the impact direction is coincident with the bone axis.
A Space-Time Finite Element Model for Design and Control Optimization of Nonlinear Dynamic Response
Directory of Open Access Journals (Sweden)
P.P. Moita
2008-01-01
Full Text Available A design and control sensitivity analysis and multicriteria optimization formulation is derived for flexible mechanical systems. This formulation is implemented in an optimum design code and it is applied to the nonlinear dynamic response. By extending the spatial domain to the space-time domain and treating the design variables as control variables that do not change with time, the design space is included in the control space. Thus, one can unify in one single formulation the problems of optimum design and optimal control. Structural dimensions as well as lumped damping and stiffness parameters plus control driven forces, are considered as decision variables. The dynamic response and its sensitivity with respect to the design and control variables are discretized via space-time finite elements, and are integrated at-once, as it is traditionally used for static response. The adjoint system approach is used to determine the design sensitivities. Design optimization numerical examples are performed. Nonlinear programming and optimality criteria may be used for the optimization process. A normalized weighted bound formulation is used to handle multicriteria problems.
Fitzpatrick, Clare K; Baldwin, Mark A; Clary, Chadd W; Maletsky, Lorin P; Rullkoetter, Paul J
2014-01-01
Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional-integral-derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip-ankle anterior-posterior (A-P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressive joint load, medial-lateral load distribution or varus-valgus torque, internal-external torque, A-P force) for deep knee bend, chair rise, stance-phase gait and step-down activities.
Dynamic finite element knee simulation for evaluation of knee replacement mechanics.
Baldwin, Mark A; Clary, Chadd W; Fitzpatrick, Clare K; Deacy, James S; Maletsky, Lorin P; Rullkoetter, Paul J
2012-02-02
In vitro pre-clinical testing of total knee replacement (TKR) devices is a necessary step in the evaluation of new implant designs. Whole joint knee simulators, like the Kansas knee simulator (KKS), provide a controlled and repeatable loading environment for comparative evaluation of component designs or surgical alignment under dynamic conditions. Experimental testing, however, is time and cost prohibitive for design-phase evaluation of tens or hundreds of design variations. Experimentally-verified computational models provide an efficient platform for analysis of multiple components, sizes, and alignment conditions. The purpose of the current study was to develop and verify a computational model of a dynamic, whole joint knee simulator. Experimental internal-external and valgus-varus laxity tests, followed by dynamic deep knee bend and gait simulations in the KKS were performed on three cadaveric specimens. Specimen-specific finite element (FE) models of posterior-stabilized TKR were created from magnetic resonance images and CAD geometry. The laxity data was used to optimize mechanical properties of tibiofemoral soft-tissue structures on a specimen-specific basis. Each specimen was subsequently analyzed in a computational model of the experimental KKS, simulating both dynamic activities. The computational model represented all joints and actuators in the experimental setup, including a proportional-integral-derivative (PID) controller to drive quadriceps actuation. The computational model was verified against six degree-of-freedom patellofemoral (PF) and tibiofemoral (TF) kinematics and actuator loading during both deep knee bend and gait activities, with good agreement in trends and magnitudes between model predictions and experimental kinematics; differences were less than 1.8 mm and 2.2° for PF and TF translations and rotations. The whole joint FE simulator described in this study can be applied to investigate a wide range of clinical and research questions.
Robinson, J. C.
1982-01-01
A systematic finite-element model modification technique has been applied to two small problems and a model of the main wing box of a research drone aircraft. The procedure determines the sensitivity of the eigenvalues and eigenvector components to specific structural changes, calculates the required changes and modifies the finite-element model. Good results were obtained where large stiffness modifications were required to satisfy large eigenvalue changes. Sensitivity matrix conditioning problems required the development of techniques to insure existence of a solution and accelerate its convergence. A method is proposed to assist the analyst in selecting stiffness parameters for modification.
Directory of Open Access Journals (Sweden)
A.S.M. Ayman Ashab
2016-03-01
Full Text Available The mechanical behavior of aluminum hexagonal honeycombs subjected to out-of-plane dynamic indentation and compression loads has been investigated numerically using ANSYS/LS-DYNA in this paper. The finite element (FE models have been verified by previous experimental results in terms of deformation pattern, stress-strain curve, and energy dissipation. The verified FE models have then been used in comprehensive numerical analysis of different aluminum honeycombs. Plateau stress, σpl, and dissipated energy (EI for indentation and EC for compression have been calculated at different strain rates ranging from 102 to 104 s−1. The effects of strain rate and t/l ratio on the plateau stress, dissipated energy, and tearing energy have been discussed. An empirical formula is proposed to describe the relationship between the tearing energy per unit fracture area, relative density, and strain rate for honeycombs. Moreover, it has been found that a generic formula can be used to describe the relationship between tearing energy per unit fracture area and relative density for both aluminum honeycombs and foams.
Directory of Open Access Journals (Sweden)
Luiza Fabrino Favato
2015-04-01
Full Text Available This article presents a study of a testing bench structure for Rocket Engines, which is under development by the PUC-Minas Aerospace Research Group. The Bench is being built for civilian’s liquid bipropellant rocket engines up to 5 kN of thrust. The purpose of this article is to evaluate the bench structure using the Finite Element Method (FEM, by structural linear static and dynamic analysis. Performed to predict the behavior of the structure to the requests of the tests. The virtual simulations were performed using a CAE software with the Nastran solver. The structure is 979 x 1638 mm by 2629 mm, consisting of folded-plates (¼ "x 3¼" x 8" and plates of 1/4" and 1/2 ", both SAE 1020 Steel .The rocket engine is fixed on the structure through a set called engine mount. It was included in the analysis clearances or misalignments that may occur during tests. As well as, the load applied was evaluated with components in varying orientations and directions. It was considered the maximum size of the engine mount and the maximum inclination angle of load. At the end of this article it was observed that the worst stress and displacement values obtained were for the hypothesis with the inclination of five-degrees with load components in the positive directions of the axes defined and it was also obtained the first twenty frequency modes of the structure.
Dynamic Simulation of a CPV/T System Using the Finite Element Method
Directory of Open Access Journals (Sweden)
Carlo Renno
2014-11-01
Full Text Available The aim of this paper is the determination of a concentrating thermo-photovoltaic (CPV/T system dynamic model by means of the finite element method (FEM. The system consist of triple-junction InGaP/InGaAs/Ge (indium-gallium phosphide/indium-gallium-arsenide/germanium solar cells connected to a metal core printed circuit board (MCPCB placed on a coil circuit used for the thermal energy recovery. In particular, the main aim is to determine the fluid outlet temperature. It is evaluated corresponding both to a constant cell temperature equal to 120 °C, generally representing the maximum operating temperature, and to cell temperature values instantly variable with the direct normal irradiation (DNI. Hence, an accurate DNI analysis is realized adopting the Gordon-Reddy statistical model. Using an accurate electric model, the cell temperature and efficiency are determined together with the CPV/T module electric and thermal powers. Generally, the CPV system size is realized according to the user electric load demand and, then, it is important to evaluate the necessary minimum concentration ratio (Cmin, the limit of CPV system applicability, in order to determine the energy convenience profile. The fluid outlet temperature can be then obtained by the FEM analysis to verify if a CPV/T system can be used in solar heating and cooling applications.
Finite element analysis of the dynamic behavior of pear under impact loading
Directory of Open Access Journals (Sweden)
Alireza Salarikia
2017-03-01
Full Text Available Pear fruit is susceptible to bruising from mechanical impact during field harvesting operations and at all stages of postharvest handling. The postharvest shelf life of bruised fruits were shorter, and they softened rapidly under cold storage compared with non-bruised samples. Developing strategies for reducing bruising during the supply chain requires an understanding of fruit dynamic behavior to different enforced loadings. Finite Element Method (FEM is among the best techniques, in terms of accuracy and cost-efficiency, for studying the factors effective in impact-induced bruising. In this research, the drop test of pear sample was simulated using FEM. The simulation was conducted on a 3D solid model of the pear that was created by using non-contact optical scanning technology. This computer-based study aimed to assess the stress and strain distribution patterns within pear generated by collision of the fruit with a flat surface made of different materials. The contact force between two colliding surfaces is also investigated. The simulations were conducted at two different drop orientations and four different impact surfaces. Results showed that, in both drop orientations, the largest and smallest stresses, strains and contact forces were developed in collision with the steel and rubber surfaces, respectively. In general, these parameters were smaller when fruit collided with the surfaces along its horizontal axis than when collided along its vertical axis. Finally, analyses of stress and strain magnitudes showed that simulation stress and strain values were compatible with experiments data.
Dynamic Modelling of Tooth Deformation Using Occlusal Kinematics and Finite Element Analysis.
Directory of Open Access Journals (Sweden)
Stefano Benazzi
Full Text Available Dental biomechanics based on finite element (FE analysis is attracting enormous interest in dentistry, biology, anthropology and palaeontology. Nonetheless, several shortcomings in FE modeling exist, mainly due to unrealistic loading conditions. In this contribution we used kinematics information recorded in a virtual environment derived from occlusal contact detection between high resolution models of an upper and lower human first molar pair (M1 and M1, respectively to run a non-linear dynamic FE crash colliding test.MicroCT image data of a modern human skull were segmented to reconstruct digital models of the antagonistic right M1 and M1 and the dental supporting structures. We used the Occlusal Fingerprint Analyser software to reconstruct the individual occlusal pathway trajectory during the power stroke of the chewing cycle, which was applied in a FE simulation to guide the M1 3D-path for the crash colliding test.FE analysis results showed that the stress pattern changes considerably during the power stroke, demonstrating that knowledge about chewing kinematics in conjunction with a morphologically detailed FE model is crucial for understanding tooth form and function under physiological conditions.Results from such advanced dynamic approaches will be applicable to evaluate and avoid mechanical failure in prosthodontics/endodontic treatments, and to test material behavior for modern tooth restoration in dentistry. This approach will also allow us to improve our knowledge in chewing-related biomechanics for functional diagnosis and therapy, and it will help paleoanthropologists to illuminate dental adaptive processes and morphological modifications in human evolution.
Ultrafast vortex core dynamics investigated by finite-element micromagnetic simulations
Energy Technology Data Exchange (ETDEWEB)
Gliga, Sebastian
2010-07-01
The investigations carried out in this thesis concern the ultrafast dynamics of a fundamental micromagnetic configuration: the vortex. Over the past decade, a detailed understanding of the dynamic and static properties of such magnetic nanostructures has been achieved as a result of close interplay between experiments, theory and numeric simulations. Here, micromagnetic simulations were performed based on the finite-element method. The vortex structure arises in laterally-confined ferromagnets, in particular in thin-film elements, and is characterized by an in-plane curling of the magnetic moments around a very stable and narrow core. In the present study, a novel process in micromagnetism was found: the ultrafast reversal of the vortex core. The possibility of easily switching the core orientation by means of short in-plane field pulses is surprising in view of the very high stability of the core. Moreover, the simulations presented here showed that this reversal process unfolds on a time scale of only a few tens of picoseconds, which leads to the prediction of the fastest and most complex micromagnetic reversal process known to date. Indeed, the vortex core is not merely switched: it is destroyed and recreated in the immediate vicinity with an opposite direction. This is mediated by a rapid sequence of vortex-antivortex pair creation and annihilation subprocesses and results in a sudden burst-like emission of spin waves. Equally fascinating is the ultrafast dynamics of an isolated magnetic antivortex, the topological counterpart of the vortex. The simulations performed here showed that the static complementarity between vortices and antivortices is equally reflected in their ultrafast dynamics, which leads to the reversal of the antivortex core. A promising means for the control of the magnetization on the nanoscale consists in exploiting the spin-transfer torque effect. The study of the current-induced dynamics of vortices showed that the core reversal can be
Dynamic finite element analysis of the aortic root from MRI-derived parameters.
Conti, Carlo A; Votta, Emiliano; Della Corte, Alessandro; Del Viscovo, Luca; Bancone, Ciro; Cotrufo, Maurizio; Redaelli, Alberto
2010-03-01
An understanding of aortic root biomechanics is pivotal for the optimisation of surgical procedures aimed at restoring normal root function in pathological subjects. For this purpose, computational models can provide important information, as long as they realistically capture the main anatomical and functional features of the aortic root. Here we present a novel and realistic finite element (FE) model of the physiological aortic root, which simulates its function during the entire cardiac cycle. Its geometry is based on magnetic resonance imaging (MRI) data obtained from 10 healthy subjects and accounts for the geometrical differences between the leaflet-sinus units. Morphological realism is combined with the modelling of the leaflets' non-linear and anisotropic mechanical response, in conjunction with dynamic boundary conditions. The results show that anatomical differences between leaflet-sinus units cause differences in stress and strain patterns. These are notably higher for the leaflets and smaller for the sinuses. For the maximum transvalvular pressure value, maximum principal stresses on the leaflets are equal to 759, 613 and 603 kPa on the non-coronary, right and left leaflet, respectively. For the maximum aortic pressure, average maximum principal stresses values are equal to 118, 112 and 111 kPa on the right, non-coronary and left sinus, respectively. Although liable of further improvements, the model seems to reliably reproduce the behaviour of the real aortic root: the model's leaflet stretches, leaflet coaptation lengths and commissure motions, as well as the timings of aortic leaflet closures and openings, all matched with the experimental findings reported in the literature.
Energy Technology Data Exchange (ETDEWEB)
Karimi, Alireza; Navidbakhsh, Mahdi, E-mail: mnavid@iust.ac.ir; Razaghi, Reza
2014-09-01
There have been intensive efforts to find a suitable kinetic energy absorbing material for helmet and bulletproof vest design. Polyvinyl alcohol (PVA) sponge is currently in extensive use as scaffolding material for tissue engineering applications. PVA can also be employed instead of commonly use kinetic energy absorbing materials to increase the kinetic energy absorption capacity of current helmet and bulletproof vest materials owing to its excellent mechanical properties. In this study, a combined hexahedral finite element (FE) model is established to determine the potential protection ability of PVA sponge in controlling the level of injury for gunshot wounds to the human mandible. Digital computed tomography data for the human mandible are used to establish a three-dimensional FE model of the human mandible. The mechanism by which a gunshot injures the protected mandible by PVA sponge is dynamically simulated using the LS-DYNA code under two different shot angles. The stress distributions in different parts of the mandible and sponge after injury are also simulated. The modeling results regardless of shot angle reveal that the substantial amount of kinetic energy of the steel ball (67%) is absorbed by the PVA sponge and, consequently, injury severity of the mandible is significantly decreased. The highest energy loss (170 J) is observed for the impact at entry angle of 70°. The results suggest the application of the PVA sponge as an alternative reinforcement material in helmet and bulletproof vest design to absorb most of the impact energy and reduce the transmitted load. - Highlights: • The ability of PVA sponge to control the injury to the human mandible is computed. • A hexahedral FE model for gunshot wounds to the human mandible is established. • The kinetic energy and injury severity of the mandible is minimized by the sponge. • The highest energy loss (170 J) is observed for the impact at entry angle of 70°. • PVA suggests as an alternative
Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun
2017-03-28
A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
A Consistent Dynamic Finite Element Formulation For a Pipe Using Euler Parameters
Directory of Open Access Journals (Sweden)
Ara Arabyan
1998-01-01
Full Text Available A pipe element developed earlier for the analysis of combined large bending and torsional deformations of blood vessels under static loading is extended to model behavior in the presence of large rotations and time-varying external forces. As in the case of the earlier element, the enhanced element supports ovalization and warping of its cross-section. The enhancements presented in this paper are comprised of a mass matrix and gyroscopic effects resulting from fast rotation rates and large deformations. The effectiveness of the element is demonstrated by two examples, which simulate the three-dimensional behavior of a highly flexible pipe under dynamic loading conditions.
Institute of Scientific and Technical Information of China (English)
Yi-rang Yuan
2007-01-01
For a coupled system of multiplayer dynamics of fluids in porous media,the characteristic finite element domain decomposition procedures applicable to parallel arithmetic are put forward.Techniques such as calculus of variations,domain decomposition,characteristic method,negative norm estimate,energy method and the theory of prior estimates are adopted.Optimal order estimates in L2 norm are derived for the error in the approximate solution.
2014-11-01
2006; White and Borja, 2008; Sun, Ostien, and Salinger , 2013) Q8P8 hexahedral element is also implemented within the coupled dynamics framework, and...but based on our implementation, it was ineffective for our particular applications of soft tissues at finite strain. Sun, Ostien, and Salinger ...large deformation. Int. J. Numer. Methods Engrg., vol. 32, pp. 1411–1439. Sun, W.-C.; Ostien, J.; Salinger , A. (2013): A stabilized assumed
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Accurate Finite Element Modelling of Chipboard Single-Stud Floor Panels subjected to Dynamic Loads
DEFF Research Database (Denmark)
Sjöström, A.; Flodén, O.; Persson, K.;
2012-01-01
In multi-storey buildings, the use of lightweight material has many advantages. The low weight, the low energy consumption and the sustainability of the material are some attractive benefits from using lightweight materials. Compared with heavier structures i.e. concrete the challenge...... in constructing a building compliant with building codes vis-a-vis the propagation of sound and vibrations within the structure is a challenge. Focusing on junctions in a multi-storey lightweight buildings, a modular finite element model is developed to be used for analyses of vibration transmission...... in lightweight buildings subjected to different types of loads....
Finite Element Approximation for the Dynamics of Fluidic Two-Phase Biomembranes
Barrett, John W; Nürnberg, Robert
2016-01-01
Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn--Hilliard model on an evolving hypersurface coupled to Navier--Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn--Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element approximation is introduced and, with the help of a fully discrete method, several phenomena occurring for two-phase membranes are computed.
[Development and validation of a finite element model of human knee joint for dynamic analysis].
Li, Haiyan; Gu, Yulong; Ruan, Shijie; Cui, Shihai
2012-02-01
Based on the biomechanical response of human knee joint to a front impact in occupants accidents, a finite element (FE) model of human knee joint was developed by using computer simulation technique for impacting. The model consists of human anatomical structure, including femoral condyle, tibia condyle, fibular small head, patellar, cartilage, meniscus and primary ligament. By comparing the results of the FE model with experiments of the knee joint in axial load conditions, the validation of the model was verified. Furthermore, this study provides data for the mechanical of human knee joint injury, and is helpful for the design and optimization of the vehicle protective devices.
Kim, Jeong Soo; Kyum Kim, Moon
2012-08-01
In this study, finite element analysis of beam on elastic foundation, which received great attention of researchers due to its wide applications in engineering, is performed for estimating dynamic responses of shallow foundation using exact stiffness matrix. First, element stiffness matrix based on the closed solution of beam on elastic foundation is derived. Then, we performed static finite element analysis included exact stiffness matrix numerically, comparing results from the analysis with some exact analysis solutions well known for verification. Finally, dynamic finite element analysis is performed for a shallow foundation structure under rectangular pulse loading using trapezoidal method. The dynamic analysis results exist in the reasonable range comparing solution of single degree of freedom problem under a similar condition. The results show that finite element analysis using exact stiffness matrix is evaluated as a good tool of estimating the dynamic response of structures on elastic foundation.
Energy Technology Data Exchange (ETDEWEB)
Mourad, Hashem M [Los Alamos National Laboratory; Bronkhorst, Curt A [Los Alamos National Laboratory; Addessio, Francis L [Los Alamos National Laboratory
2010-12-16
An explicit finite element formulation, used to study the behavior and failure mechanisms of metallic materials under high strain rate loading, is presented. The formulation is based on the assumed-strain approach of Fish and Belytschko [1988], which allows localization bands to be embedded within an element, thereby alleviating mesh sensitivity and reducing the required computational effort. The behavior of the material outside localization bands (and of the virgin material prior to the onset of strain localization) is represented using a Gurson-type coupled plasticity-damage model based on the work of Johnson and Addessio [1988]. Assuming adiabatic conditions, the response of the localization band material is represented by a set of constitutive equations for large elasticviscoplastic deformations in metals at high strain rates and high homologous temperatures (see Brown et al. [1989]). Computational results are compared to experimental data for different metallic alloys to illustrate the advantages of the proposed modeling strategy.
Lafontaine, N. M.; Rossi, R.; Cervera, M.; Chiumenti, M.
2015-03-01
Low-order finite elements face inherent limitations related to their poor convergence properties. Such difficulties typically manifest as mesh-dependent or excessively stiff behaviour when dealing with complex problems. A recent proposal to address such limitations is the adoption of mixed displacement-strain technologies which were shown to satisfactorily address both problems. Unfortunately, although appealing, the use of such element technology puts a large burden on the linear algebra, as the solution of larger linear systems is needed. In this paper, the use of an explicit time integration scheme for the solution of the mixed strain-displacement problem is explored as an alternative. An algorithm is devised to allow the effective time integration of the mixed problem. The developed method retains second order accuracy in time and is competitive in terms of computational cost with the standard irreducible formulation.
Qian, Jing-Guang; Li, Zhaoxia; Zhang, Hong; Bian, Rong; Zhang, Songning
2014-06-28
The purpose of the study was to establish a dynamics model and a three-dimensional (3D) finite element model to analyze loading characteristics of femoral neck during walking, squat, single-leg standing, and forward and lateral lunges. One male volunteer performed three trials of the five movements. The 3D kinematic data were captured and imported into the LifeMOD to establish a musculoskeletal dynamics model to obtain joint reaction and muscle forces of iliacus, gluteus medius, gluteus maximus, psoas major and adductor magnus. The loading data LfeMOD were imported and transformed into a hip finite-element model. The results of the finite element femur model showed that stress was localized along the compression arc and the tension arc. In addition, the trabecular bone and tension lines of the Ward's triangle also demonstrated high stress. The compact bone received the greatest peak stress in the forward lunge and the least stress in the squat. However, the spongy bone in the femoral neck region had the greatest stress during the walk and the least stress in the squat. The results from this study indicate that the forward lunge may be an effective method to prevent femoral neck fractures. Walking is another effective and simple method that may improve bone mass of the Ward's triangle and prevent osteoporosis and femoral neck fracture.
Directory of Open Access Journals (Sweden)
Qian Jing-Guang
2014-07-01
Full Text Available The purpose of the study was to establish a dynamics model and a three-dimensional (3D finite element model to analyze loading characteristics of femoral neck during walking, squat, single-leg standing, and forward and lateral lunges. One male volunteer performed three trials of the five movements. The 3D kinematic data were captured and imported into the LifeMOD to establish a musculoskeletal dynamics model to obtain joint reaction and muscle forces of iliacus, gluteus medius, gluteus maximus, psoas major and adductor magnus. The loading data LfeMOD were imported and transformed into a hip finite-element model. The results of the finite element femur model showed that stress was localized along the compression arc and the tension arc. In addition, the trabecular bone and tension lines of the Ward's triangle also demonstrated high stress. The compact bone received the greatest peak stress in the forward lunge and the least stress in the squat. However, the spongy bone in the femoral neck region had the greatest stress during the walk and the least stress in the squat. The results from this study indicate that the forward lunge may be an effective method to prevent femoral neck fractures. Walking is another effective and simple method that may improve bone mass of the Ward's triangle and prevent osteoporosis and femoral neck fracture.
Institute of Scientific and Technical Information of China (English)
ZHONG Yi-feng; WANG Rui; YING Xue-gang; CHEN Huai
2006-01-01
In this paper, we established a finite element (FEM) model to analyze the dynamic characteristics of arch bridges. In this model, the effects of adjustment to the length of a suspender on its geometry stiffness matrix are stressed. The FEM equations of mechanics characteristics, natural frequency and main mode are set up based on the first order matrix perturbation theory. Applicantion of the proposed model to analyze a real arch bridge proved the improvement in the simulation precision of dynamical characteristics of the arch bridge by considering the effects of suspender length variation.
Chien, C.-C.; Wu, T.-Y.
This work presents an improved predictor/multi-corrector algorithm for linear structural dynamics problems, based on the time-discontinuous Galerkin finite element method. The improved algorithm employs the Gauss-Seidel method to calculate iteratively the solutions that exist in the phase of the predictor/multi-corrector of the numerical implementation. Stability analyses of iterative algorithms reveal that such an improved scheme retains the unconditionally stable behavior with greater efficiency than another iterative algorithm. Also, numerical examples are presented, demonstrating that the proposed method is more stable and accurate than several commonly used algorithms in structural dynamic applications.
Solution of Finite Element Equations
DEFF Research Database (Denmark)
Krenk, Steen
An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation
Aagaard, B.; Williams, C. A.; Knepley, M. G.
2011-12-01
We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.6) can be used for quasi-static viscoelastic modeling, dynamic spontaneous rupture and/or ground-motion modeling. Unstructured and structured finite-element discretizations allow for spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales in dynamic problems ranging from milliseconds to minutes and temporal scales in quasi-static problems ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries (Linux, Darwin, and Windows systems) and source code are available from geodynamics.org. PyLith uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current PyLith features include prescribed fault ruptures with multiple earthquakes and aseismic creep, spontaneous fault ruptures with a variety of fault constitutive models, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, and gravitational body forces. PyLith supports infinitesimal and small strain formulations for linear elastic rheologies, linear and generalized Maxwell viscoelastic rheologies, power-law viscoelastic rheologies, and Drucker-Prager elastoplastic rheologies. Current software development focuses on coupling quasi-static and dynamic simulations to resolve multi-scale deformation across the entire seismic cycle and the coupling of elasticity to heat and/or fluid flow.
Computational statics and dynamics an introduction based on the finite element method
Öchsner, Andreas
2016-01-01
This book introduces readers to modern computational mechanics based on the finite element method. It helps students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the derived equations and theories, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the chapter, followed by calculation problems. In total over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.
Dynamic Analysis of Overhead Power Lines after Ice-Shedding Using Finite Element Method
Murín, Justín; Hrabovský, Juraj; Gogola, Roman; Janíček, František
2016-12-01
In this paper, the analysis of ice-shedding from ACSR conductors to its swing up height and vibration using Finite Element Method (FEM) is presented. For the numerical simulations the effective material properties of the ACSR conductor are calculated using the homogenisation method. Numerical analysis concerning vibration of one and triple-bundle conductors with icing for a whole range or on their certain parts are performed. The impact of ice-shedding to the mechanical tension in the conductors at the points of attachment is investigated and evaluated. Identification of the impact of ice-shedding from the ACSR conductors on its mechanical state may contribute to increasing the safety and quality of an electrical transmission system.
Directory of Open Access Journals (Sweden)
M. Sanbi
2014-01-01
Full Text Available Smart structures with integrated sensors, actuators, and control electronics are of importance to the next generation high-performance structural systems. In this study, thermopiezoelastic characteristics of piezoelectric beam continua are studied and applications of the theory to active structures in sensing and optimal control are discussed. Using linear thermopiezoelastic theory and Timoshenko assumptions, a generic thermopiezoelastic theory for piezolaminated composite beam is derived. Finite element equations for the thermopiezoelastic media are obtained by using the linear constitutive equations in Hamilton's principle together with the finite element approximations. The structure consists of a modeling of cantilevered piezolaminated Timoshenko beam with integrated thermopiezoelectric elements between two aluminium layers. The structure is modelled analytically and then numerically and the results of simulations are presented in order to visualize the states of their dynamics and the state of control. The optimal control LQG accompanied by the Kalman filter is applied. The effects of thermoelastic and pyroelectric couplings on the dynamics of the structure and on the control procedure are studied and discussed. We show that the control procedure cannot be perturbed by applying a thermal gradient and the control can be applied at any time during the period of vibration of the beam.
Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.
2012-01-01
Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.
quadratic spline finite element method
Directory of Open Access Journals (Sweden)
A. R. Bahadir
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Finite element computational fluid mechanics
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Finite element analysis of flexible, rotating blades
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Faria, Marco Tulio C.
This paper presents a finite element procedure specially devised to analyze the misalignment effects on the behavior of spiral groove gas face seals operating at high speeds. In this study, the seal stationary face is slightly misaligned and the flexibly mounted face is perfectly aligned. Predictions of some steady-state and dynamic performance characteristics versus misalignment angle are presented for spirally grooved gas seals operating under stringent conditions. Curves of dynamic force coefficients versus the static misalignment angle of the seal face indicate that the seal misalignment affects considerably the dynamic response of gas lubricated face seals. At high speeds, the static seal misalignment not only results in increased stiffness coefficients but also leads to negative damping coefficients, which may be a sign of the seal susceptibility to excessive angular motions.
Institute of Scientific and Technical Information of China (English)
Zhang Jia-Hong; Mao Xiao-Li; Liu Qing-Quan; Gu Fang; Li Min; Liu Heng; Ge Yi-Xian
2012-01-01
Mechanical properties of silicon nanobeams are of prime importance in nanoelectromechanical system applications.A numerical experimental method of determining resonant frequencies and Young's modulus of nanobeams by combining finite element analysis and frequency response tests based on an electrostatic excitation and visual detection by using a laser Doppler vibrometer is presented in this paper.Silicon nanobeam test structures are fabricated from silicon-on-insulator wafers by using a standard lithography and anisotropic wet etching release process,which inevitably generates the undercut of the nanobeam clamping.In conjunction with three-dimensional finite element numerical simulations incorporating the geometric undercut,dynamic resonance tests reveal that the undercut significantly reduces resonant frequencies of nanobeams due to the fact that it effectively increases the nanobeam length by a correct value △L,which is a key parameter that is correlated with deviations in the resonant frequencies predicted from the ideal Euler-Bernoulli beam theory and experimentally measured data.By using a least-square fit expression including △L,we finally extract Young's modulus from the measured resonance frequency versus effective length dependency and find that Young's modulus of a silicon nanobeam with 200-nm thickness is close to that of bulk silicon.This result supports that the finite size effect due to the surface effect does not play a role in the mechanical elastic behaviour of silicon nanobeams with thickness larger than 200 nm.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Directory of Open Access Journals (Sweden)
Li Ming Zhou
2016-01-01
Full Text Available Based on the finite element software ABAQUS and graded element method, we developed a dummy node fracture element, wrote the user subroutines UMAT and UEL, and solved the energy release rate component of functionally graded material (FGM plates with cracks. An interface element tailored for the virtual crack closure technique (VCCT was applied. Fixed cracks and moving cracks under dynamic loads were simulated. The results were compared to other VCCT-based analyses. With the implementation of a crack speed function within the element, it can be easily expanded to the cases of varying crack velocities, without convergence difficulty for all cases. Neither singular element nor collapsed element was required. Therefore, due to its simplicity, the VCCT interface element is a potential tool for engineers to conduct dynamic fracture analysis in conjunction with commercial finite element analysis codes.
Directory of Open Access Journals (Sweden)
L. F. Kong
2013-01-01
Full Text Available This paper presents a method to enhance computational efficiency of the nonlinear dynamic analysis of the large-scale deep-hole drilling machine. Based on finite element model, the drilling shaft system is constructed into Timoshenko beam element on the basis of flexible rotary shaft so as to increase the accuracy of numerical calculation. In order to save the calculation time and resources, modal synthesis technique is adopted to reduce the feature modal of linear freedom degrees of drilling shaft system. As a result, the accuracy required by the non-linear analysis will not be loss. On the basis of these, the whirling characteristics of drilling shaft system are studied under the conditions of different shaft lengths, and simultaneously, the stability patterns of drilling shaft motion and its stability region are obtained in the selected drilling depth and cutting speed parameters while drilling intersection holes.
Institute of Scientific and Technical Information of China (English)
Hai-bo Jiang
2007-01-01
Four different structural models of artificial joints were developed and the finite element method (FEM) was employed to investigate their mechanical characteristics under static and dynamic conditions. The materials used in the FEM calculation were ultra-high molecular weight polyethylene (UHMWPE), 316L stainless steel, CoCrMo alloy and Ti6A14V alloy. The stress distribution, strain, and elastic deformation under static and dynamic conditions were obtained. Analysis and comparison of the calculation results of different models were conducted. It is shown that with the same parameters the model of a metallic femur head covered with an artificial cartilage layer is more similar to the structure of the natural human joint and its mechanical characteristics are the best of the four models.
Directory of Open Access Journals (Sweden)
Liu Bing
2014-10-01
Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.
Level set methods for detonation shock dynamics using high-order finite elements
Energy Technology Data Exchange (ETDEWEB)
Dobrev, V. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grogan, F. C. [Univ. of California, San Diego, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, T. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tomov, V. Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-05-26
Level set methods are a popular approach to modeling evolving interfaces. We present a level set ad- vection solver in two and three dimensions using the discontinuous Galerkin method with high-order nite elements. During evolution, the level set function is reinitialized to a signed distance function to maintain ac- curacy. Our approach leads to stable front propagation and convergence on high-order, curved, unstructured meshes. The ability of the solver to implicitly track moving fronts lends itself to a number of applications; in particular, we highlight applications to high-explosive (HE) burn and detonation shock dynamics (DSD). We provide results for two- and three-dimensional benchmark problems as well as applications to DSD.
Finite element methods for engineers
Fenner, Roger T
2013-01-01
This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...
Mishra, Manish; Ozawa, Shogo; Masuda, Tatsuhiko; Yoshioka, Fumi; Tanaka, Yoshinobu
2011-09-01
Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.
Gélat, P.; Yang, J.; Thomas, P. J.; Hutchins, D. A.; Akanji, O.; Davis, L. A. J.; Freear, S.; Harput, S.; Saffari, N.
2016-01-01
There has been recent interest in the transmission of acoustic signals along granular chains of spherical beads to produce waveforms of relevance to biomedical ultrasound applications. Hertzian contact between adjacent beads can introduce different harmonic content into the signal as it propagates. This transduction mechanism has the potential to be of use in both diagnostic and therapeutic ultrasound applications, and is the object of the study presented here. Although discrete dynamics models of this behaviour exist, a more comprehensive solution must be sought if changes in shape and deformation of individual beads are to be considered. Thus, the finite element method was used to investigate the dynamics of a granular chain of six, 1 mm diameter chrome steel spherical beads excited at one end using a sinusoidal displacement signal at 73 kHz. Output from this model was compared with the solution provided by the discrete dynamics model, and good overall agreement obtained. In addition, it was able to resolve the complex dynamics of the granular chain, including the multiple collisions which occur. It was demonstrated that under dynamic excitation conditions, the inability of discrete mechanics models to account for elastic deformation of the beads when these lose contact, could lead to discrepancies with experimental observations.
Shih, Kao-Shang; Hsu, Ching-Chi; Hsu, Tzu-Pin; Hou, Sheng-Mou; Liaw, Chen-Kun
2014-02-01
Femoral shaft fractures can be treated using retrograde interlocking nailing systems; however, fracture nonunion still occurs. Dynamic fixation techniques, which remove either the proximal or distal locking screws, have been used to solve the problem of nonunion. In addition, a surgical rule for dynamic fixation techniques has been defined based on past clinical reports. However, the biomechanical performance of the retrograde interlocking nailing systems with either the traditional static fixation technique or the dynamic fixation techniques has not been investigated by using nonlinear numerical modeling. Three-dimensional nonlinear finite element models were developed, and the implant strength, fixation stability, and contact area of the fracture surfaces were evaluated. Three types of femoral shaft fractures (a proximal femoral shaft fracture, a middle femoral shaft fracture, and a distal femoral shaft fracture) fixed by three fixation techniques (insertion of all the locking screws, removal of the proximal locking screws, or removal of the distal locking screws) were analyzed. The results showed that the static fixation technique resulted in sufficient fixation stability and that the dynamic fixation techniques decreased the failure risk of the implant and produced a larger contact area of the fracture surfaces. The outcomes of the current study could assist orthopedic surgeons in comprehending the biomechanical performances of both static and dynamic fixation techniques. In addition, the surgeons could also select a fixation technique based on the specific patient situation using the numerical outcomes of this study.
Energy Technology Data Exchange (ETDEWEB)
Sidener, S.E. [Missouri Univ., Rolla, MO (United States); Kumar, A.S. [Missouri Univ., Rolla, MO (United States); Oglesby, D.B. [Missouri Univ., Rolla, MO (United States); Schubert, L.E. [Pacific Northwest Lab., Richland, WA (United States); Hamilton, M.L. [Pacific Northwest Lab., Richland, WA (United States); Rosinski, S.T. [Electric Power Research Inst., Inc. (EPRI), Charlotte, NC (United States)
1996-12-01
Dynamic finite element modeling (FEM) of the fracture behavior of fatigue-precracked Charpy specimens was performed to determine the effect of single variable changes in ligament size, width, span, and thickness on the upper shelf energy. A tensile fracture-strain based method for modeling crack initiation and propagation was used. It was found that the upper shelf energy of precracked specimens (USE{sub p}) is proportional to b{sup n}, where b is ligament size and n varies from about 1.6 for subsize to 1.9 for full size specimens. The USE{sub p} was found to be proportional to (width){sup 2.5}. The dependence on span was found to be non-linear. The dependence on thickness was found to be linear for all cases studied. Some of the data from the FEM analysis were compared with experimental data and were found to be in reasonable agreement. (orig.).
Finite elements of nonlinear continua
Oden, J T
2000-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
Institute of Scientific and Technical Information of China (English)
Siyu Yuan; Liwen Zhang; Shulun Liao; Mao Li; Min Qi; Yu Zhen; Shuqi Guo
2008-01-01
Three-dimensional finite element models were developed to analyze 304 stainless steel rod and wire hot continuous rolling process with the help of MSC.Marc software. The entire 30-pass deformation process and the actual parameters of production line were taken into account. Static and dynamic procedures were used to study the continuous rolling process with the aid of the thermo-mechanical coupled FEM of elastic-plasticity. The properties of billets, such as deformation, temperature field and rolling force, were mainly discussed. The simulation results of temperature agree well with the measured values. Comparisons of the analysis results obtained using static implicit method and dynamic implicit method were presented. It is shown that static implicit proce-dure is more accurate than dynamic implicit procedure and is able to simulate the rolling process with a lower speed, such as a rough-ing mill. Whereas, dynamic analysis shows a higher efficiency than static analysis and is fit for simulating the rolling process with a higher speed, such as a finishing mill.
Barall, M.
2009-01-01
We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/ USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm. ?? Journal compilation ?? 2009 RAS.
Energy Technology Data Exchange (ETDEWEB)
Rousseau, J.
2009-07-15
That study focuses on concrete structures submitted to impact loading and is aimed at predicting local damage in the vicinity of an impact zone as well as the global response of the structure. The Discrete Element Method (DEM) seems particularly well suited in this context for modeling fractures. An identification process of DEM material parameters from macroscopic data (Young's modulus, compressive and tensile strength, fracture energy, etc.) will first be presented for the purpose of enhancing reproducibility and reliability of the simulation results with DE samples of various sizes. Then, a particular interaction, between concrete and steel elements, was developed for the simulation of reinforced concrete. The discrete elements method was validated on quasi-static and dynamic tests carried out on small samples of concrete and reinforced concrete. Finally, discrete elements were used to simulate impacts on reinforced concrete slabs in order to confront the results with experimental tests. The modeling of a large structure by means of DEM may lead to prohibitive computation times. A refined discretization becomes required in the vicinity of the impact, while the structure may be modeled using a coarse FE mesh further from the impact area, where the material behaves elastically. A coupled discrete-finite element approach is thus proposed: the impact zone is modeled by means of DE and elastic FE are used on the rest of the structure. An existing method for 3D finite elements was extended to shells. This new method was then validated on many quasi-static and dynamic tests. The proposed approach is then applied to an impact on a concrete structure in order to validate the coupled method and compare computation times. (author)
The Relation of Finite Element and Finite Difference Methods
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
2010-05-01
ers of bricks. Different element groups can be prescribed different material properties (e.g. spar, skin , and honey - comb). The component merger can...ensures that computations of the same complexity are compared and that the speed-up is not contaminated with the benefits of substructuring itself
A Coupled Helicopter Rotor/Fuselage Dynamics Model Using Finite Element Multi-body
Directory of Open Access Journals (Sweden)
Cheng Qi-you
2016-01-01
Full Text Available To develop a coupled rotor/flexible fuselage model for vibration reduction studies, the equation of coupled rotor-fuselage is set up based on the theory of multi-body dynamics, and the dynamic analysis model is established with the software MSC.ADMAS and MSC.NASTRAN. The frequencies and vibration acceleration responses of the system are calculated with the model of coupled rotor-fuselage, and the results are compared with those of uncoupled modeling method. Analysis results showed that compared with uncoupled model, the dynamic characteristic obtained by the model of coupled rotor-fuselage are some different. The intrinsic frequency of rotor is increased with the increase of rotational velocities. The results also show that the flying speed has obvious influence on the vibration acceleration responses of the fuselage. The vibration acceleration response in the vertical direction is much higher at the low speed and high speed flight conditions.
Finite Element Modelling of Seismic Liquefaction in Soils
Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.
2013-01-01
Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom
A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis
Bian, Jian; Gu, Yuantong; Murray, Martin Howard
2013-06-01
Wheel-rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel-rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel-rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional finite element (FE) model for the impact analysis induced by the wheel flat is developed by the use of the FE analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this FEA and they are important for track engineers to improve their understanding of the design and maintenance of the track system.
Xin, L.; Markine, V. L.; Shevtsov, I. Y.
2016-03-01
A three-dimensional (3-D) explicit dynamic finite element (FE) model is developed to simulate the impact of the wheel on the crossing nose. The model consists of a wheel set moving over the turnout crossing. Realistic wheel, wing rail and crossing geometries have been used in the model. Using this model the dynamic responses of the system such as the contact forces between the wheel and the crossing, crossing nose displacements and accelerations, stresses in rail material as well as in sleepers and ballast can be obtained. Detailed analysis of the wheel set and crossing interaction using the local contact stress state in the rail is possible as well, which provides a good basis for prediction of the long-term behaviour of the crossing (fatigue analysis). In order to tune and validate the FE model field measurements conducted on several turnouts in the railway network in the Netherlands are used here. The parametric study including variations of the crossing nose geometries performed here demonstrates the capabilities of the developed model. The results of the validation and parametric study are presented and discussed.
Deoghare, Ashish B.; Kashyap, Siddharth; Padole, Pramod M.
2013-03-01
Degenerative disc disease is a major source of lower back pain and significantly alters the biomechanics of the lumbar spine. Dynamic stabilization device is a remedial technique which uses flexible materials to stabilize the affected lumbar region while preserving the natural anatomy of the spine. The main objective of this research work is to investigate the stiffness variation of dynamic stabilization device under various loading conditions under compression, axial rotation and flexion. Three dimensional model of the two segment lumbar spine is developed using computed tomography (CT) scan images. The lumbar structure developed is analyzed in ANSYS workbench. Two types of dynamic stabilization are considered: one with stabilizing device as pedicle instrumentation and second with stabilization device inserted around the inter-vertebral disc. Analysis suggests that proper positioning of the dynamic stabilization device is of paramount significance prior to the surgery. Inserting the device in the posterior region indicates the adverse effects as it shows increase in the deformation of the inter-vertebral disc. Analysis executed by positioning stabilizing device around the inter-vertebral disc yields better result for various stiffness values under compression and other loadings. [Figure not available: see fulltext.
Park, Gwansik; Kim, Taewung; Forman, Jason; Panzer, Matthew B; Crandall, Jeff R
2017-08-01
The goal of this study was to predict the structural response of the femoral shaft under dynamic loading conditions using subject-specific finite element (SS-FE) models and to evaluate the prediction accuracy of the models in relation to the model complexity. In total, SS-FE models of 31 femur specimens were developed. Using those models, dynamic three-point bending and combined loading tests (bending with four different levels of axial compression) of bare femurs were simulated, and the prediction capabilities of five different levels of model complexity were evaluated based on the impact force time histories: baseline, mass-based scaled, structure-based scaled, geometric SS-FE, and heterogenized SS-FE models. Among the five levels of model complexity, the geometric SS-FE and the heterogenized SS-FE models showed statistically significant improvement on response prediction capability compared to the other model formulations whereas the difference between two SS-FE models was negligible. This result indicated the geometric SS-FE models, containing detailed geometric information from CT images with homogeneous linear isotropic elastic material properties, would be an optimal model complexity for prediction of structural response of the femoral shafts under the dynamic loading conditions. The average and the standard deviation of the RMS errors of the geometric SS-FE models for all the 31 cases was 0.46 kN and 0.66 kN, respectively. This study highlights the contribution of geometric variability on the structural response variation of the femoral shafts subjected to dynamic loading condition and the potential of geometric SS-FE models to capture the structural response variation of the femoral shafts.
DOLFIN: Automated Finite Element Computing
Logg, Anders; 10.1145/1731022.1731030
2011-01-01
We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Selective Smoothed Finite Element Method
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.
Jahng, Tae-Ahn; Kim, Young Eun; Moon, Kyung Yun
2013-01-01
Recently, nonfusion pedicle-based dynamic stabilization systems (PBDSs) have been developed and used in the management of degenerative lumbar spinal diseases. Still effects on spinal kinematics and clinical effects are controversial. Little biomechanical information exists for providing biomechanical characteristics of pedicle-based dynamic stabilization according to the PBDS design before clinical implementation. To investigate the effects of implanting PBDSs into the spinal functional unit and elucidate the differences in biomechanical characteristics according to different materials and design. The biomechanical effects of implantation of PBDS were investigated using the nonlinear three-dimensional finite element model of L4-L5. An already validated three-dimensional, intact osteoligamentous L4-L5 finite element model was modified to incorporate the insertion of pedicle screws. The implanted models were constructed after modifying the intact model to simulate postoperative changes using four different fixation systems. Four models instrumented with PBDS (Dynesys, NFlex, and polyetheretherketone [PEEK]) and rigid fixation systems (conventional titanium rod) were developed for comparison. The instrumented models were compared with those of the intact and rigid fixation model. Range of motion (ROM) in three motion planes, center of rotation (COR), force on the facet joint, and von Mises stress distribution on the vertebral body and implants with flexion-extension were compared among the models. Simulated results demonstrated that implanted segments with PBDSs have limited ROM when compared with the intact spine. Flexion motion was the most limited, and axial rotation was the least limited, after device implantation. Among the PBDS selected in this analysis, the NFlex system had the closest instantaneous COR compared with the intact model and a higher ROM compared with other PBDS. Contact force on the facet joint in extension increased with an increase of moment in
Nonlinear Finite Element Analysis of Ocean Cables
Institute of Scientific and Technical Information of China (English)
Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM
2004-01-01
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.
Split Node and Stress Glut Methods for Dynamic Rupture Simulations in Finite Elements.
Ramirez-Guzman, L.; Bielak, J.
2008-12-01
I present two numerical techniques to solve the Dynamic problem. I revisit and modify the Split Node approach and introduce a Stress Glut type Method. Both algorithms are implemented using a iso/sub- parametric FEM solver. In the first case, I discuss the formulation and perform an analysis of convergence for different orders of approximation for the acoustic case. I describe the algorithm of the second methodology as well as the assumptions made. The key to the new technique is to have an accurate representation of the traction. Thus, I devote part of the discussion to analyze the tractions for a simple example. The sensitivity of the method is tested by comparing against Split Node solutions.
Kandasamy, Ramkumar; Cui, Fangsen
2016-04-01
In the traditional layered piezoelectric structures, high stress concentrations could cause the structural failure in interlayer surfaces due to repeated strain reversals. To overcome the performance limitations of these structures, the concept of Functionally Graded Materials (FGMs) has been introduced to improve the lifetime, integrity, and reliability of these structures. In this paper, the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders under different sets of loading are studied. Material properties such as piezoelectric, elastic and permittivity are assumed to change along its thickness, based on a specific gradation function. Four-parameter power law distribution is used to grade the volume fraction of the constituents comprising of PZT-5A and PZT-5H. Material property is assumed to be temperature dependent for a few numerical studies. The present modeling approach is validated by comparing the free and forced vibration of radially polarized Functionally Graded Piezoelectric (FGP) cylinders with those reported in the literature. The effects of material composition, loading and boundary conditions on the dynamic behavior of FGP cylinder are described. Since the modeling of functionally graded piezoelectric systems is challenging, the present study can help in the design and analysis of FGP cylinders.
Wit, de A.J.; Akcay Perdahcioglu, D.; Brink, van den W.M.; Boer, de A.
2011-01-01
Depending on the type of analysis, Finite Element(FE) models of different fidelity are necessary. Creating these models manually is a labor intensive task. This paper discusses a generic approach for generating FE models of different fidelity from a single reference FE model. These different fidelit
Wit, de A.J.; Akcay-Perdahcioglu, D.; Brink, van den W.M.; Boer, de A.
2012-01-01
Depending on the type of analysis, Finite Element(FE) models of different fidelity are necessary. Creating these models manually is a labor intensive task. This paper discusses a generic approach for generating FE models of different fidelity from a single reference FE model. These different fidelit
de Wit, A.J.; Akcay-Perdahcioglu, Didem; van den Brink, W.M.; de Boer, Andries; Rolfes, R.; Jansen, E.L.
2011-01-01
Depending on the type of analysis, Finite Element(FE) models of different fidelity are necessary. Creating these models manually is a labor intensive task. This paper discusses a generic approach for generating FE models of different fidelity from a single reference FE model. These different
Infinite Possibilities for the Finite Element.
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Dynamic finite element modeling of the effects of size on the upper shelf energy of ferritic steels
Energy Technology Data Exchange (ETDEWEB)
Sidener, S.E.; Kumar, A.S.; Schubert, L.E.; Hamilton, M.L.; Rosinski, S.T.
1996-04-01
Both the fusion and light water reactor program require the use of the subsize specimens to obtain sufficient irradiation data on neutron-induced embrittlement of ferritic steels. While the development of fusion-relevant size effects correlations can proceed analytically, it is more cost-effective at this time to use data currently being obtained on embrittlement of pressure vessel steels to test and expand the correlations developed earlier using fusion relevant steels. Dynamic finite elements modeling of the fracture behavior of fatigue-precracked Charpy Specimens was performed to determine the effect of single variable changes in ligament size, width, span, and thickness on the upper shelf energy. A method based on tensile fracture strain was used for modeling crack initiation and propagation. It was found that the upper shelf energy of precracked specimens (USE{sub p}) is proportional to b{sup n}, where b is ligament size and n varies from about 1.6 for subsize to 1.9 for full size specimens. The USE{sub p} was found to be proportional to width according to W{sup 25}. The dependence on thickness was found to be linear for all cases studied. Some of the data from the FEM analysis were compared with experimental data and were found to be in reasonable agreement.
Institute of Scientific and Technical Information of China (English)
Zhao Guo-Zhong; Yu Xi-Jun; Zhang Rong-Pei
2013-01-01
In this paper,Runge-Kutta Discontinuous Galerkin (RKDG) finite element method is presented to solve the onedimensional inviscid compressible gas dynamic equations in a Lagrangian coordinate.The equations are discretized by the DG method in space and the temporal discretization is accomplished by the total variation diminishing Runge-Kutta method.A limiter based on the characteristic field decomposition is applied to maintain stability and non-oscillatory property of the RKDG method.For multi-medium fluid simulation,the two cells adjacent to the interface are treated differently from other cells.At first,a linear Riemann solver is applied to calculate the numerical flux at the interface.Numerical examples show that there is some oscillation in the vicinity of the interface.Then a nonlinear Riemann solver based on the characteristic formulation of the equation and the discontinuity relations is adopted to calculate the numerical flux at the interface,which suppresses the oscillation successfully.Several single-medium and multi-medium fluid examples are given to demonstrate the reliability and efficiency of the algorithm.
Directory of Open Access Journals (Sweden)
Fernando Cortés
2015-01-01
Full Text Available This paper presents an analysis of the dynamic behaviour of constrained layer damping (CLD beams with thick viscoelastic layer. A homogenised model for the flexural stiffness is formulated using Reddy-Bickford’s quadratic shear in each layer, and it is compared with Ross-Kerwin-Ungar (RKU classical model, which considers a uniform shear deformation for the viscoelastic core. In order to analyse the efficiency of both models, a numerical application is accomplished and the provided results are compared with those of a 2D model using finite elements, which considers extensional and shear stress and longitudinal, transverse, and rotational inertias. The intermediate viscoelastic material is characterised by a fractional derivative model, with a frequency dependent complex modulus. Eigenvalues and eigenvectors are obtained from an iterative method avoiding the computational problems derived from the frequency dependence of the stiffness matrices. Also, frequency response functions are calculated. The results show that the new model provides better accuracy than the RKU one as the thickness of the core layer increases. In conclusion, a new model has been developed, being able to reproduce the mechanical behaviour of thick CLD beams, reducing storage needs and computational time compared with a 2D model, and improving the results from the RKU model.
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Karaağaçlı, Taylan; Yıldız, Erdinç N.; Nevzat Özgüven, H.
2012-08-01
Flutter analysis is a major requirement to predict safe flight envelops and to decide on flutter testing conditions of newly designed or modified aircraft structures. In order to achieve reliable flutter analysis of an aircraft structure, it is necessary to obtain a good correlation between its finite element (FE) model and experimental modal data. Currently available model updating methods require construction of a detailed initial FE model in order to achieve convergence of the modes obtained from updated FE model to their experimental counterparts. If the updating procedure is not carried out by the original design team of the aircraft structure but a subsidiary company that makes certain modification on it, construction of an appropriate initial FE model from scratch becomes a tedious task requiring considerable amount of engineering work. To overcome the foregoing problem, this paper presents a new method that aims to derive dynamically equivalent FE model of an aircraft structure directly from its experimental modal data. The application of the method is illustrated with two case studies. In the first case study, the performance of the method is tested with the modal test data of a benchmark structure built to simulate dynamic behavior of an airplane, namely GARTEUR SM-AG 19 test bed, and very satisfactory results are obtained: the first 10 elastic FE modes of the test bed closely correlate with experimental data. In the second case study, the method is applied to the modal test data obtained from ground vibration test (GVT) of a real aircraft. In this application, it is observed that only the first 4 modes of the resultant FE model correlate well with experimental data. It is concluded that the method suggested works perfectly well for simple structures like GARTEUR test bed, and it gives quite promising results when applied to real aircraft structures.
Aagaard, Brad T; Williams, Charles A
2013-01-01
We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.
Energy Technology Data Exchange (ETDEWEB)
Pask, J E; Sukumar, N; Guney, M; Hu, W
2011-02-28
Over the course of the past two decades, quantum mechanical calculations have emerged as a key component of modern materials research. However, the solution of the required quantum mechanical equations is a formidable task and this has severely limited the range of materials systems which can be investigated by such accurate, quantum mechanical means. The current state of the art for large-scale quantum simulations is the planewave (PW) method, as implemented in now ubiquitous VASP, ABINIT, and QBox codes, among many others. However, since the PW method uses a global Fourier basis, with strictly uniform resolution at all points in space, and in which every basis function overlaps every other at every point, it suffers from substantial inefficiencies in calculations involving atoms with localized states, such as first-row and transition-metal atoms, and requires substantial nonlocal communications in parallel implementations, placing critical limits on scalability. In recent years, real-space methods such as finite-differences (FD) and finite-elements (FE) have been developed to address these deficiencies by reformulating the required quantum mechanical equations in a strictly local representation. However, while addressing both resolution and parallel-communications problems, such local real-space approaches have been plagued by one key disadvantage relative to planewaves: excessive degrees of freedom (grid points, basis functions) needed to achieve the required accuracies. And so, despite critical limitations, the PW method remains the standard today. In this work, we show for the first time that this key remaining disadvantage of real-space methods can in fact be overcome: by building known atomic physics into the solution process using modern partition-of-unity (PU) techniques in finite element analysis. Indeed, our results show order-of-magnitude reductions in basis size relative to state-of-the-art planewave based methods. The method developed here is
Finite element models applied in active structural acoustic control
Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.
2002-01-01
This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll
Viscoelastic finite-element analysis of human skull - dura mater ...
African Journals Online (AJOL)
SERVER
2008-03-18
Mar 18, 2008 ... In the work, the dynamic characteristics of the human skull-dura mater ... Ansys' finite element processor, a simplified three-dimensional finite element ... brain, cerebrospinal fluid (CSF), and the brain's blood ... ICP is often not preventable. .... The creep of linear viscoelastic solid can be simulated by the.
Finite Element Program Generator and Its Application in Engineering
Institute of Scientific and Technical Information of China (English)
WANShui; HUHong; CHENJian-pin
2004-01-01
A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.
Energy Technology Data Exchange (ETDEWEB)
Williams, P. T. [Univ. of Tennessee, Knoxville, TN (United States)
1993-09-01
As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H^{1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.
Energy Technology Data Exchange (ETDEWEB)
Williams, P.T.
1993-09-01
As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H{sup 1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.
Finite element differential forms on cubical meshes
Arnold, Douglas N
2012-01-01
We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.
Elements with Square Roots in Finite Groups
Institute of Scientific and Technical Information of China (English)
M.S. Lucido; M.R. Pournaki
2005-01-01
In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.
Finite element model updating using bayesian framework and modal properties
CSIR Research Space (South Africa)
Marwala, T
2005-01-01
Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...
Doyeux, Vincent; Chabannes, Vincent; Prud'Homme, Christophe; Ismail, Mourad
2012-01-01
A new framework for two-fluids flow using a Finite Element/Level Set method is presented and verified through the simulation of the rising of a bubble in a viscous fluid. This model is then enriched to deal with vesicles (which mimic red blood cells mechanical behavior) by introducing a Lagrange multiplier to constrain the inextensibility of the membrane. Moreover, high order polynomial approximation is used to increase the accuracy of the simulations. A validation of this model is finally presented on known behaviors of vesicles under flow such as "tank treading" and tumbling motions.
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Unified Framework for Finite Element Assembly
Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160
2012-01-01
At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
Aminjikarai Vedagiri, Srinivasa Babu
An active field of research that has developed due to the increasing use of computational techniques like finite element simulations for analysis of highly complex structural mechanics problems and the increasing use of composite laminates in varied industries such as aerospace, automotive, bio-medical, etc. is the development of numerical models to capture the behavior of composite materials. One of the big challenges not yet overcome convincingly in this field is the modeling of delamination failure which is one of the primary modes of damage in composite laminates. Hence, the primary aim of this work is to develop two numerical models for finite element simulations of delamination failure in composite laminates and implement them in the explicit finite element software DYNA3D/LS-DYNA. Dynamic fracture mechanics is an example of a complex structural analysis problem for which finite element simulations seem to be the only possible way to extract detailed information on sophisticated physical quantities of the crack-tip at any instant of time along a highly transient history of fracture. However, general purpose, commercial finite element software which have capabilities to do fracture analyses are still limited in their use to stationary cracks and crack propagation along trajectories known a priori. Therefore, an automated dynamic fracture procedure capable of simulating dynamic propagation of through-thickness cracks in arbitrary directions in linear, isotropic materials without user-intervention is first developed and implemented in DYNA3D for its default 8-node solid (brick) element. Dynamic energy release rate and stress intensity factors are computed in the model using integral expressions particularly well-suited for the finite element method. Energy approach is used to check for crack propagation and the maximum circumferential stress criterion is used to determine the direction of crack growth. Since the re-meshing strategy used to model crack growth
Finite Element Analysis of Fluid-Conveying Timoshenko Pipes
Directory of Open Access Journals (Sweden)
Chih-Liang Chu
1995-01-01
Full Text Available A general finite element formulation using cubic Hermitian interpolation for dynamic analysis of pipes conveying fluid is presented. Both the effects of shearing deformations and rotary inertia are considered. The development retains the use of the classical four degrees-of-freedom for a two-node element. The effect of moving fluid is treated as external distributed forces on the support pipe and the fluid finite element matrices are derived from the virtual work done due to the fluid inertia forces. Finite element matrices for both the support pipe and moving fluid are derived and given explicitly. A numerical example is given to demonstrate the validity of the model.
Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.
2017-08-01
This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.
Superconvergence for rectangular serendipity finite elements
Institute of Scientific and Technical Information of China (English)
CHEN; Chuanmiao(陈传淼)
2003-01-01
Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.
Finite elements and finite differences for transonic flow calculations
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Continuous finite element methods for Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Why do probabilistic finite element analysis ?
Thacker, B H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....
Institute of Scientific and Technical Information of China (English)
Zhong-xiu FEI; Shui-guang TONG; Chao WEI
2013-01-01
Recently,the finite element method (FEM) has been commonly applied in the engineering analysis of rotor dynamics.Gyroscopic moments,rotary inertia,transverse shear deformation and gravity can be included in computational models of rotor-bearing systems.In this paper,a finite element model and its solution method are presented for the calculation of the dynamics of dual rotor systems.A typical structure with two rotor shafts is discussed and the procedure for obtaining the coupling motion equations of the subsystems is illustrated.A computer program is developed to solve critical speeds and to simulate the transient motion.The influence of gyroscopic moments on co-rotation and counter-rotation is analyzed,and the effect of the speed ratio on critical speed is studied.The dynamic characteristics under different conditions of increasing speed during start-up are demonstrated by comparison with transient nodal displacements.The presented model provides a complete foundation for further investigation of the dynamics of dual rotor systems.
DEFF Research Database (Denmark)
Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin
2012-01-01
As a result of the increasing interest of constructing environmentally friendly lightweight buildings, analyses of vibrational and acoustical transmission in these buildings have become increasingly important. Structures where vibrational transmission may result in undesirable vibrations....... With the number of modules in the three axial directions defined, wall and floor panels are constructed, placed and coupled in the global model. The core of this modular finite element model consists of connecting the different panels to each other in a rational manner, where the accuracy is as high as possible...... of a similar construction without a skeleton. These parameters are selected in a way where decoupled pseudo-modes of the skeleton are avoided, alongside the insignificant influence of the overall structure achieved with a low mass, small profile, and a relatively low Young's modulus, approximately 1...
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Krebs, Derek; Budynas, Richard G.
A common procedure for performing a cross orthogonality check for the purpose of modal correlation between the test and the finite element analysis results incorporates the Guyan reduction method to obtain a reduced mass matrix. This paper describes a procedure which uses NASTRAN's Generalized Dynamic Reduction solution routine which is much more accurate than the standard Guyan reduction solution and which offers the advantage of not requiring the selection of mdof. Using NASTRAN's DMAP programming methods, a modal reduction of the full analytical mass matrix is performed based on the accelerometer locations and the analytical modal matrix results. The accuracy of the procedure is illustrated in two case studies.
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...3-D steady-state seepage analysis of permeability of the cutoff walls was varied from 10 to Cerrillos Dam near Ponce , Puerto Rico, for the U.S.-6 10...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).
Finite element analysis of optical waveguides
Mabaya, N.; Lagasse, P. E.; Vandenbulcke, P.
1981-06-01
Several finite element programs for the computation of the guided modes of optical waveguides are presented. The advantages and limitations of a very general program for the analysis of anisotropic guides are presented. A possible solution to the problem of the spurious numerical modes, encountered when calculating higher order modes, is proposed. For isotropic waveguides, it is shown that both EH- and HE-type modes can be very accurately approximated by two different scalar finite element programs. Finally, a boundary perturbation method is outlined that makes it possible to calculate the attenuation coefficient of leaky modes in single material guides, starting from a finite element calculation.
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Will Finite Elements Replace Structural Mechanics?
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
Superconvergence of tricubic block finite elements
Institute of Scientific and Technical Information of China (English)
2009-01-01
In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.
Pfaller, Sebastian; Possart, Gunnar; Steinmann, Paul; Rahimi, Mohammad; Müller-Plathe, Florian; Böhm, Michael C.
2016-05-01
A recently developed hybrid method is employed to study the mechanical behavior of silica-polystyrene nanocomposites (NCs) under uniaxial elongation. The hybrid method couples a particle domain to a continuum domain. The region of physical interest, i.e., the interphase around a nanoparticle (NP), is treated at molecular resolution, while the surrounding elastic continuum is handled with a finite-element approach. In the present paper we analyze the polymer behavior in the neighborhood of one or two nanoparticle(s) at molecular resolution. The coarse-grained hybrid method allows us to simulate a large polymer matrix region surrounding the nanoparticles. We consider NCs with dilute concentration of NPs embedded in an atactic polystyrene matrix formed by 300 chains with 200 monomer beads. The overall orientation of polymer segments relative to the deformation direction is determined in the neighborhood of the nanoparticle to investigate the polymer response to this perturbation. Calculations of strainlike quantities give insight into the deformation behavior of a system with two NPs and show that the applied strain and the nanoparticle distance have significant influence on the deformation behavior. Finally, we investigate to what extent a continuum-based description may account for the specific effects occurring in the interphase between the polymer matrix and the NPs.
Energy Technology Data Exchange (ETDEWEB)
Gardner, David [Lawrence Livermore National Laboratory (LLNL); Woodward, Carol S. [Lawrence Livermore National Laboratory (LLNL); Evans, Katherine J [ORNL
2015-01-01
Efficient solution of global climate models requires effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a time step dictated by accuracy of the processes of interest rather than by stability governed by the fastest of the time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton s method is applied for these systems. Each iteration of the Newton s method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but this Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite-difference which may show a loss of accuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite-difference approximations of these matrix-vector products for climate dynamics within the spectral-element based shallow-water dynamical-core of the Community Atmosphere Model (CAM).
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Moving Finite Elements in 2-D.
1984-08-06
34 . - ; .-’- . - . -- .- -. . - -.. -- ; -. - - - - - ." . ,- . -••. - - ; . IOSR : TR. SAI-84/1299 (0 N MOVING FINITE ELEMENTS IN 2-I Final Report AFOSR Contract: F4962U-81-C-UO73 Program Manager
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Finite element modeling of corneal strip extensometry
CSIR Research Space (South Africa)
Botha, N
2012-12-01
Full Text Available numerically modelled in several studies, this study focusses on accurately modelling the strip extensiometry test. Two methods were considered to simulate the experimental conditions namely, a single phase and a two phase method. A finite element model...
A survey of mixed finite element methods
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Test Simulation using Finite Element Method
Energy Technology Data Exchange (ETDEWEB)
Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)
2011-02-15
The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.
Infinite to finite: An overview of finite element analysis
Directory of Open Access Journals (Sweden)
Srirekha A
2010-01-01
Full Text Available The method of finite elements was developed at perfectly right times; growing computer capacities, growing human skills and industry demands for ever faster and cost effective product development providing unlimited possibilities for the researching community. This paper reviews the basic concept, current status, advances, advantages, limitations and applications of finite element method (FEM in restorative dentistry and endodontics. Finite element method is able to reveal the otherwise inaccessible stress distribution within the tooth-restoration complex and it has proven to be a useful tool in the thinking process for the understanding of tooth biomechanics and the biomimetic approach in restorative dentistry. Further improvement of the non-linear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.
Finite element modeling of the human pelvis
Energy Technology Data Exchange (ETDEWEB)
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
A NOTE ON FINITE ELEMENT WAVELETS
Institute of Scientific and Technical Information of China (English)
谌秋辉; 陈翰麟
2001-01-01
The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These coefficients are very important for the properties of wavelets, such as vanishing moments and regularity.
Hajimiragha, Habib; Abolbashari, Mohammadreza; Nokar, Saeed; Abolbashari, AmirHossein; Abolbashari, Mehrdad
2014-10-01
The present study was done to evaluate the effects of different types of abutments on the rate and distribution of stress on the bone surrounding the implant by dynamic finite element analysis method. In this study two ITI abutment models-one-piece and multi-piece-along with fixture, bone, and superstructure have been simulated with the help of company-made models. The maximum Von Mises stress (MVMS) was observed in the distobuccal area of the cortical bone near the crest of implant in two implant models. In the multi-piece abutment, MVMS was higher than the one-piece model (27.9 MPa and 23.3 MPa, respectively). Based on the results of this study, it can be concluded that type of abutment influences the stress distribution in the area surrounding the implant during dynamic loading.
Footbridge between finite volumes and finite elements with applications to CFD
Pascal, Frédéric; Ghidaglia, Jean-Michel
2001-12-01
The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright
New triangular and quadrilateral plate-bending finite elements
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
Error computation for adaptive finite element analysis
Khan, A A; Memon, I R; Ming, X Y
2002-01-01
The paper gives a simple numerical procedure for computations of errors generated by the discretisation process of finite element method. The procedure given is based on the ZZ error estimator which is believed to be reasonable accurate and thus can be readily implemented in any existing finite element codes. The devised procedure not only estimates the global energy norm error but also evaluates the local errors in individual elements. In the example, the given procedure is combined with an adaptive refinement procedure, which provides guidance for optimal mesh designing and allows the user to obtain a desired accuracy with a limited number of interaction. (author)
Dynamic Analysis of a Centrifugal Compressor by Finite Element Method%用有限元法分析离心压缩机的动力学特性
Institute of Scientific and Technical Information of China (English)
余光伟; 朱勤; 徐礼胜
2000-01-01
This paper mainly deals with dynamic analysis of rotor-bearing system in a centrifugal compressor. A finite element model of the rotor-bearing system has been developed. The considered factors of the model include the rotary inertia of solid elements, stiffness and damping of hydrodynamic bearing. In the calculating, ANSYS software was used. Both calculated and measured results are in good agreement.
Language dynamics in finite populations.
Komarova, Natalia L; Nowak, Martin A
2003-04-01
Any mechanism of language acquisition can only learn a restricted set of grammars. The human brain contains a mechanism for language acquisition which can learn a restricted set of grammars. The theory of this restricted set is universal grammar (UG). UG has to be sufficiently specific to induce linguistic coherence in a population. This phenomenon is known as "coherence threshold". Previously, we have calculated the coherence threshold for deterministic dynamics and infinitely large populations. Here, we extend the framework to stochastic processes and finite populations. If there is selection for communicative function (selective language dynamics), then the analytic results for infinite populations are excellent approximations for finite populations; as expected, finite populations need a slightly higher accuracy of language acquisition to maintain coherence. If there is no selection for communicative function (neutral language dynamics), then linguistic coherence is only possible for finite populations.
Experimental Finite Element Approach for Stress Analysis
Directory of Open Access Journals (Sweden)
Ahmet Erklig
2014-01-01
Full Text Available This study aims to determining the strain gauge location points in the problems of stress concentration, and it includes both experimental and numerical results. Strain gauges were proposed to be positioned to corresponding locations on beam and blocks to related node of elements of finite element models. Linear and nonlinear cases were studied. Cantilever beam problem was selected as the linear case to approve the approach and conforming contact problem was selected as the nonlinear case. An identical mesh structure was prepared for the finite element and the experimental models. The finite element analysis was carried out with ANSYS. It was shown that the results of the experimental and the numerical studies were in good agreement.
Finite element analysis of two disk rotor system
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Adaptive grid finite element model of the tokamak scrapeoff layer
Energy Technology Data Exchange (ETDEWEB)
Kuprat, A.P.; Glasser, A.H. [Los Alamos National Lab., NM (United States)
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Baqersad, Javad
Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or interior locations where failures may occur. Within this work, an unique expansion algorithm was extended and combined with finite element (FE) modeling and an optical measurement technique to identify the dynamic strain in rotating structures. The merit of the approach is shown by using the approach to predict the dynamic strain on a small non-rotating and rotating wind turbine. A three-bladed wind turbine having 2.3-meter long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. A finite element model of the three wind turbine blades assembled to the hub was created and used to extract resonant frequencies and mode shapes. The FE model was validated and updated using experimental modal tests. For the non-rotating optical test, the turbine was excited using a sinusoidal excitation, a pluck test, arbitrary impacts on three blades, and random force excitations with a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure the displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the work show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for all of the three loading conditions. Similar to the non-rotating case, optical measurements were also preformed on a rotating wind turbine. The point tracking technique measured both rigid body displacement and flexible
Exact finite elements for conduction and convection
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Finite element simulation of wheel impact test
Directory of Open Access Journals (Sweden)
S.H. Yang
2008-06-01
Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel
Finite Element Residual Stress Analysis of Planetary Gear Tooth
Directory of Open Access Journals (Sweden)
Jungang Wang
2013-01-01
Full Text Available A method to simulate residual stress field of planetary gear is proposed. In this method, the finite element model of planetary gear is established and divided to tooth zone and profile zone, whose different temperature field is set. The gear's residual stress simulation is realized by the thermal compression stress generated by the temperature difference. Based on the simulation, the finite element model of planetary gear train is established, the dynamic meshing process is simulated, and influence of residual stress on equivalent stress of addendum, pitch circle, and dedendum of internal and external meshing planetary gear tooth profile is analyzed, according to non-linear contact theory, thermodynamic theory, and finite element theory. The results show that the equivalent stresses of planetary gear at both meshing and nonmeshing surface are significantly and differently reduced by residual stress. The study benefits fatigue cracking analysis and dynamic optimization design of planetary gear train.
Directory of Open Access Journals (Sweden)
Wołowicz Marcin
2015-09-01
Full Text Available The paper presents dynamic model of hot water storage tank. The literature review has been made. Analysis of effects of nodalization on the prediction error of generalized finite element method (GFEM is provided. The model takes into account eleven various parameters, such as: flue gases volumetric flow rate to the spiral, inlet water temperature, outlet water flow rate, etc. Boiler is also described by sizing parameters, nozzle parameters and heat loss including ambient temperature. The model has been validated on existing data. Adequate laboratory experiments were provided. The comparison between 1-, 5-, 10- and 50-zone boiler is presented. Comparison between experiment and simulations for different zone numbers of the boiler model is presented on the plots. The reason of differences between experiment and simulation is explained.
Institute of Scientific and Technical Information of China (English)
YUAN Yirang
2005-01-01
For coupled system of multilayer dynamics of fluids in porous media,the characteristic alternating-direction finite element methods for nonrectangular regions applicable to parallel arithmetic are put forward and two-dimensional and three-dimensional schemes are used to form a complete set. Some techniques,such as calculus of variations,isoparametric transformation,patch approximation,operator-splitting,characteristic method,negative norm estimate,energy method,the theory of prior estimates and techniques are used.For the nonrectangular regions case,optimal order estimates in L2norm are derived for the error in the approximation solution.Thus the well-known theoretical problem has been thoroughly and completely solved.These methods have been successfully used in multilayer oil resources migration-accumulation numerical simulation.
Latest Trends in Finite Element Analysis
Directory of Open Access Journals (Sweden)
L. S. Madhav
1996-01-01
Full Text Available This paper highlights the advances in computer graphics and the computational power of the processors which have promoted a method of analysis, applicable to almost all the fields of engineering. The advantages of the computers have been judiciously used in the design of algorithms, based on the principles of finite difference, finite element, boundary element, etc., intended for the analysis of engineering components. The concept of finite element method which has been generalised with the availability of commercial software, is also reviewed with a special emphasis on the future trends. The modelling and visualisation techniques have also been discussed with an inner perspective on future of visual display of multidimensional complex information. The application of these techniques in some fields is also indicated.
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
Energy Technology Data Exchange (ETDEWEB)
Menouillard, T
2007-09-15
Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
Hyperelastic Modelling and Finite Element Analysing of Rubber Bushing
Directory of Open Access Journals (Sweden)
Merve Yavuz ERKEK
2015-03-01
Full Text Available The objective of this paper is to obtain stiffness curves of rubber bushings which are used in automotive industry with hyperelastic finite element model. Hyperelastic material models were obtained with different material tests. Stress and strain values and static stiffness curves were determined. It is shown that, static stiffness curves are nonlinear. The level of stiffness affects the vehicle dynamics behaviour.
Finite element estimation of acoustical response functions in HID lamps
Energy Technology Data Exchange (ETDEWEB)
Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)
2009-11-21
High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.
Numerical computation of transonic flows by finite-element and finite-difference methods
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Orthodontic treatment: Introducing finite element analysis
Driel, W.D. van; Leeuwen, E.J. van
1998-01-01
The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process e
Interval Finite Element Analysis of Wing Flutter
Institute of Scientific and Technical Information of China (English)
Wang Xiaojun; Qiu Zhiping
2008-01-01
The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.
Fast finite elements for surgery simulation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix, an...
Goldgruber, Markus; Shahriari, Shervin; Zenz, Gerald
2015-11-01
To reduce the natural hazard risks—due to, e.g., earthquake excitation—seismic safety assessments are carried out. Especially under severe loading, due to maximum credible or the so-called safety evaluation earthquake, critical infrastructure, as these are high dams, must not fail. However, under high loading local failure might be allowed as long as the entire structure does not collapse. Hence, for a dam, the loss of sliding stability during a short time period might be acceptable if the cumulative displacements after an event are below an acceptable value. This performance is not only valid for gravity dams but also for rock blocks as sliding is even more imminent in zones with higher seismic activity. Sliding modes cannot only occur in the dam-foundation contact, but also in sliding planes formed due to geological conditions. This work compares the qualitative possible and critical displacements for two methods, the well-known Newmark's sliding block analysis and a Fluid-Foundation-Structure Interaction simulation with the finite elements method. The results comparison of the maximum displacements at the end of the seismic event of the two methods depicts that for high friction angles, they are fairly close. For low friction angles, the results are differing more. The conclusion is that the commonly used Newmark's sliding block analysis and the finite elements simulation are only comparable for high friction angles, where this factor dominates the behaviour of the structure. Worth to mention is that the proposed simulation methods are also applicable to dynamic rock wedge problems and not only to dams.
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
Finite element analysis of magnetization reversal in granular thin films
Spargo, A W
2002-01-01
This thesis develops a Galerkin finite element model of magnetisation dynamics in granular thin films. The governing equations of motion are the Gilbert equations with an effective magnetic field taking contributions from exchange interactions, magnetocrystalline anisotropy, applied magnetic field as well as the magnetostatic field given by Maxwells equations. The magnetostatic field is formulated as a scalar potential described by Poissons equation which is solved using a second order finite element method. The Gilbert equations are discretized in time using an implicit midpoint method which naturally conserves the magnitude of the magnetisation vector. An infinite thin film is approximated using periodic boundary conditions with material microstructure represented using the Voronoi tessellation. The effects of thermal fluctuations are modelled by the stochastic Langevin-Gilbert equations, again solved by a Galerkin finite element method. The implicit midpoint time-stepping scheme ensures that solutions conv...
A review of flexibility-based finite element method for beam-column elements
Institute of Scientific and Technical Information of China (English)
LI Shuang; ZHAI Changhai; XIE Lili
2009-01-01
For material nonlinear problem, elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.
Finite element approach for transient analysis of multibody systems
Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.
1992-01-01
A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.
On Hybrid and mixed finite element methods
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
Directory of Open Access Journals (Sweden)
Xiaoqing Wang
2016-01-01
Full Text Available Parallel analyses about the dynamic responses of a large-scale water conveyance tunnel under seismic excitation are presented in this paper. A full three-dimensional numerical model considering the water-tunnel-soil coupling is established and adopted to investigate the tunnel’s dynamic responses. The movement and sloshing of the internal water are simulated using the multi-material Arbitrary Lagrangian Eulerian (ALE method. Nonlinear fluid–structure interaction (FSI between tunnel and inner water is treated by using the penalty method. Nonlinear soil-structure interaction (SSI between soil and tunnel is dealt with by using the surface to surface contact algorithm. To overcome computing power limitations and to deal with such a large-scale calculation, a parallel algorithm based on the modified recursive coordinate bisection (MRCB considering the balance of SSI and FSI loads is proposed and used. The whole simulation is accomplished on Dawning 5000 A using the proposed MRCB based parallel algorithm optimized to run on supercomputers. The simulation model and the proposed approaches are validated by comparison with the added mass method. Dynamic responses of the tunnel are analyzed and the parallelism is discussed. Besides, factors affecting the dynamic responses are investigated. Better speedup and parallel efficiency show the scalability of the parallel method and the analysis results can be used to aid in the design of water conveyance tunnels.
SURFACE FINITE ELEMENTS FOR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
G. Dziuk; C.M. Elliott
2007-01-01
In this article we define a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces Γ in (R)n+1. The key idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γh which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on Γ. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward.We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. Numerical experiments are described for several linear and nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow.
DEFF Research Database (Denmark)
Kiel, Nikolaj; Andersen, Lars Vabbersgaard; Niu, Bin
2012-01-01
As a result of the increasing interest of constructing environmentally friendly lightweight buildings, analyses of vibrational and acoustical transmission in these buildings have become increasingly important. Structures where vibrational transmission may result in undesirable vibrations....... In this way a well-defined master geometry is present onto which all panels can be tied. But as the skeleton is an element itself, it will have a physical mass and a corresponding stiffness to be included in the linear system of equations. This means that the skeleton will influence the structure...
A weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Weak Hamiltonian finite element method for optimal control problems
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Sohn, Jeong L.
1988-08-01
The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.
Finite Element Model of Cardiac Electrical Conduction.
Yin, John Zhihao
1994-01-01
In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very
Shakib, Farzin; Hughes, Thomas J. R.; Johan, Zdenek
1991-01-01
A space-time element method is presented for solving the compressible Euler and Navier-Stokes equations. The proposed formulation includes the variational equation, predictor multi-corrector algorithms and boundary conditions. The variational equation is based on the time-discontinuous Galerkin method, in which the physical entropy variables are employed. A least-squares operator and a discontinuity-capturing operator are added, resulting in a high-order accurate and unconditionally stable method. Implicit/explicit predictor multi-corrector algorithms, applicable to steady as well as unsteady problems, are presented; techniques are developed to enhance their efficiency. Implementation of boundary conditions is addressed; in particular, a technique is introduced to satisfy nonlinear essential boundary conditions, and a consistent method is presented to calculate boundary fluxes. Numerical results are presented to demonstrate the performance of the method.
Finite element modeling of permanent magnet devices
Brauer, J. R.; Larkin, L. A.; Overbye, V. D.
1984-03-01
New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan
2001-02-01
The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
Quantum Finite Elements for Lattice Field Theory
Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan
2016-01-01
Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.
Finite element modelling of SAW correlator
Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek
2007-12-01
Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.
FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS
Directory of Open Access Journals (Sweden)
URDEA Mihaela
2015-06-01
Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.
Finite Element Simulation of Metal Quenching
Institute of Scientific and Technical Information of China (English)
方刚; 曾攀
2004-01-01
The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.
FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS
Institute of Scientific and Technical Information of China (English)
Tang Liu; Yan-ping Lin; Ming Rao; J. R. Cannon
2002-01-01
A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method axe derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.
Finite element analysis of human joints
Energy Technology Data Exchange (ETDEWEB)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...
Multiphase Transformer Modelling using Finite Element Method
Directory of Open Access Journals (Sweden)
Nor Azizah Mohd Yusoff
2015-03-01
Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
The finite element modeling of spiral ropes
Institute of Scientific and Technical Information of China (English)
Juan Wu
2014-01-01
Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.
Finite element contact analysis of fractal surfaces
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)
2007-07-21
The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Finite Element Simulation for Interfacial Evolutions
Institute of Scientific and Technical Information of China (English)
JianmingHUANG; WeiYANG
1998-01-01
A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.
FINITE-ELEMENT MODELING OF SALT TECTONICS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2012-09-01
Full Text Available The two-dimensional thermal model of graben structure in the presence of salt tectonics on the basis of a finite elements method is constructed. The analysis of the thermal field is based on the solution of stationary equation of heat conductivity with variable boundary conditions. The high precision of temperatures distribution and heat flows is received. The decision accuracy is no more than 0,6 %.
Finite element model of needle electrode sensitivity
Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.
2010-04-01
We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.
Quick finite elements for electromagnetic waves
Pelosi, Giuseppe; Selleri, Stefano
2009-01-01
This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.
EXODUS II: A finite element data model
Energy Technology Data Exchange (ETDEWEB)
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Finite Element Analysis of Reverberation Chambers
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
膝关节动态有限元模型的力学分析*★%Mechanical analysis of knee dynamic finite element model
Institute of Scientific and Technical Information of China (English)
侯波; 王毅; 沈宇辉
2013-01-01
BACKGROUND: Knee joint has the characteristics of complex anatomical structure and active diversity. The development of the biomechanical research of human knee joint is slow as in vivo experiments cannot be conducted. The experiments performed on corpse do not have the normal physiological environment of the human body, so the results are not accurate. OBJECTIVE: To investigate the force condition on different parts of the knee joint with engineering finite element analysis method in non-invasive and in vivo conditions. METHODS: CT image was used to build dynamic three-dimensional finite element model of the knee joint. The force on the anterior cruciate ligament, posterior cruciate ligament and patel ofemorel joint was analyzed in the range of 0°-90° of knee joint. RESULTS AND CONCLUSION: According to our study we found that the anterior cruciate ligament had the largest tension when the knee joint flexed at 0°, then gradual y decreased. There was no significant change when the knee joint flexed at 50° to 90°. The posterior cruciate ligament had the opposite changing trend: there was no significant change when the knee joint flexed between 0° to 50°, and then gradual y increased, and the posterior cruciate ligament had the largest tension when the knee joint flexed at 90°. The analysis of the stress experienced on patel ofemorel joint showed the stress on the patel ofemorel joint was gradual y increased along with the increasing of the angle. The dynamic three-dimensional finite element model of the knee joint was able to simulate the motion of knee joint. Studying the stress experienced on different parts of the human knee joint is an important tool for biomechanics analysis in orthopedics.% 背景：膝关节具有解剖结构复杂性，活动多样性的特点。目前人体膝关节的生物力学研究由于不能进行直接的人体实验而进展缓慢，在尸体上进行实验又不具备正常人体的生理环境，其实验结果并不
Finite Element Methods On Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces
DEFF Research Database (Denmark)
Nemitz, Oliver; Nielsen, Michael Bang; Rumpf, Martin
2009-01-01
The simulation of physical processes on interfaces and a variety of applications in geometry processing and geometric modeling are based on the solution of partial differential equations on curved and evolving surfaces. Frequently, an implicit level set type representation of these surfaces...... is the most effective and computationally advantageous approach. This paper addresses the computational problem of how to solve partial differential equations on highly resolved level sets with an underlying very high-resolution discrete grid. These high-resolution grids are represented in a very efficient...... dynamic tubular grid encoding format for a narrow band. A reaction diffusion model on a fixed surface and surface evolution driven by a nonlinear geometric diffusion approach, by isotropic or truly anisotropic curvature motion, are investigated as characteristic model problems. The proposed methods...
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
Directory of Open Access Journals (Sweden)
X. Z. Zhu
2013-01-01
Full Text Available Three-dimensional finite element modeling of polymer melt flowing in a new co-rotating tri-screw extruder was established with mesh superposition technique. Based on the particle tracking technology, three typical particle trajectories in the tri-screw extruder were calculated using a 4th-order-Runge-Kutta method to study the dynamic motions of the particles. Then the flow visualizations in the local center region were carried out. Moreover, the dispersive, distributive and stretching mixing efficiencies of the tri-screw and twin-screw extruders were compared, respectively. The results show that when the particles move from one screw to another, there are great abrupt changes in the velocities and displacements, which induce the abrupt change in the stress magnitude. Most of particles, which are initially distributed in the inlet plane of the center region, fast flow out the outlet and don’t pass through any screw. This special phenomenon induces a series of new characteristics in the residence time distribution (RTD, flow number, segregation scale and time averaged efficiency. In comparison with the twin-screw extruder, the tri-screw extruder has better mixing efficiency.
Lidorikis, Elefterios; Bachlechner, Martina E.; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2005-09-01
A hybrid atomistic-continuum simulation approach has been implemented to study strain relaxation in lattice-mismatched Si/Si3N4 nanopixels on a Si(111) substrate. We couple the molecular-dynamics (MD) and finite-element simulation approaches to provide an atomistic description near the interface and a continuum description deep into the substrate, increasing the accessible length scales and greatly reducing the computational cost. The results of the hybrid simulation are validated against full multimillion-atom MD simulations. We find that strain relaxation in Si/Si3N4 nanopixels may occur through the formation of a network of interfacial domain boundaries reminiscent of interfacial misfit dislocations. They result from the nucleation of domains of different interfacial bonding at the free edges and corners of the nanopixel, and subsequent to their creation they propagate inwards. We follow the motion of the domain boundaries and estimate a propagation speed of about ˜2.5×103m/s . The effects of temperature, nanopixel architecture, and film structure on strain relaxation are also investigated. We find: (i) elevated temperature increases the interfacial domain nucleation rates; (ii) a thin compliant Si layer between the film and the substrate plays a beneficial role in partially suppressing strain relaxation; and (iii) additional control over the interface morphology may be achieved by varying the film structure.
A finite element parametric modeling technique of aircraft wing structures
Institute of Scientific and Technical Information of China (English)
Tang Jiapeng; Xi Ping; Zhang Baoyuan; Hu Bifu
2013-01-01
A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge-driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the pro-cess of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
Finite element modeling for materials engineers using Matlab
Oluwole, Oluleke
2014-01-01
Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.
Salinas, P.; Jackson, M.; Pavlidis, D.; Pain, C.; Adam, A.; Xie, Z.; Percival, J. R.
2015-12-01
We present a new, high-order, control-volume-finite-element (CVFE) method with discontinuous representation for pressure and velocity to simulate multiphase flow in heterogeneous porous media. Time is discretized using an adaptive, fully implicit method. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. A given model typically contains numerous such geologic domains. Our approach conserves mass and does not require the use of CVs that span domain boundaries. Computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields, such as pressure, velocity or saturation, whilst preserving the geometry of the geologic domains. Up-, cross- or down-scaling of material properties during mesh optimization is not required, as the properties are uniform within each geologic domain. We demonstrate that the approach, amongst other features, accurately preserves sharp saturation changes associated with high aspect ratio geologic domains such as fractures and mudstones, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than an equivalent fine, fixed mesh and conventional CVFE methods. The use of implicit time integration allows the method to efficiently converge using highly anisotropic meshes without having to reduce the time-step. The work is significant for two key reasons. First, it resolves a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media, in which CVs span boundaries between domains of contrasting material properties. Second, it reduces computational cost/increases solution accuracy through the use of dynamic mesh optimization and time-stepping with large Courant number.
Stochastic finite elements: Where is the physics?
Directory of Open Access Journals (Sweden)
Ostoja-Starzewski Martin
2011-01-01
Full Text Available The micromechanics based on the Hill-Mandel condition indicates that the majority of stochastic finite element methods hinge on random field (RF models of material properties (such as Hooke’s law having no physical content, or even at odds with physics. At the same time, that condition allows one to set up the RFs of stiffness and compliance tensors in function of the mesoscale and actual random microstructure of the given material. The mesoscale is defined through a Statistical Volume Element (SVE, i.e. a material domain below the Representative Volume Element (RVE level. The paper outlines a procedure for stochastic scale-dependent homogenization leading to a determination of mesoscale one-point and two-point statistics and, thus, a construction of analytical RF models.
Closed Loop Finite Element Modeling of Piezoelectric Smart Structures
Directory of Open Access Journals (Sweden)
Guang Meng
2006-01-01
Full Text Available The objective of this paper is to develop a general design and analysis scheme for actively controlled piezoelectric smart structures. The scheme involves dynamic modeling of a smart structure, designing control laws and closed-loop simulation in a finite element environment. Based on the structure responses determined by finite element method, a modern system identification technique known as Observer/Kalman filter Identification (OKID technique is used to determine the system Markov parameters. The Eigensystem Realization Algorithm (ERA is then employed to develop an explicit state space model of the equivalent linear system for control law design. The Linear Quadratic Gaussian (LQG control law design technique is employed to design a control law. By using ANSYS parametric design language (APDL, the control law is incorporated into the ANSYS finite element model to perform closed loop simulations. Therefore, the control law performance can be evaluated in the context of a finite element environment. Finally, numerical examples have demonstrated the validity and efficiency of the proposed design scheme. Without any further modifications, the design scheme can be readily applied to other complex smart structures.
Finite element analysis of a deployable space structure
Hutton, D. V.
1982-01-01
To assess the dynamic characteristics of a deployable space truss, a finite element model of the Scientific Applications Space Platform (SASP) truss has been formulated. The model incorporates all additional degrees of freedom associated with the pin-jointed members. Comparison of results with SPAR models of the truss show that the joints of the deployable truss significantly affect the vibrational modes of the structure only if the truss is relatively short.
Finite Element Method for Stochastic Extended KdV Equations
Karczewska, Anna; Rozmej, Piotr; Boguniewicz, Bartosz
2016-01-01
The finite element method is applied to obtain numerical solutions to the recently derived nonlinear equation for shallow water wave problem for several cases of bottom shapes. Results for time evolution of KdV solitons and cnoidal waves under stochastic forces are presented. Though small effects originating from second order dynamics may be obscured by stochastic forces, the main waves, both cnoidal and solitary ones, remain very robust against any distortions.
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
Finite element modeling methods for photonics
Rahman, B M Azizur
2013-01-01
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...
The serendipity family of finite elements
Arnold, Douglas N
2011-01-01
We give a new, simple, dimension-independent definition of the serendipity finite element family. The shape functions are the span of all monomials which are linear in at least s-r of the variables where s is the degree of the monomial or, equivalently, whose superlinear degree (total degree with respect to variables entering at least quadratically) is at most r. The degrees of freedom are given by moments of degree at most r-2d on each face of dimension d. We establish unisolvence and a geometric decomposition of the space.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
Finite element modelingof spherical induction actuator
Galary, Grzegorz
2005-01-01
The thesis deals with finite element method simulations of the two-degree of freedom spherical induction actuator performed using the 2D and 3D models. In some cases non-linear magnetization curves, rotor movement and existence of higher harmonics are taken into account. The evolution of the model leading to its simplification is presented. Several rotor structures are tested, namely the one-layer, two-layers and two-layers-with-teeth rotor. The study of some rotor parameters, i.e. t...
A finite element model of ultrasonic extrusion
Energy Technology Data Exchange (ETDEWEB)
Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
A finite element model of ultrasonic extrusion
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
Iterative methods for mixed finite element equations
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Mixed finite elements for global tide models
Cotter, Colin J
2014-01-01
We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Finite element analysis of bolted flange connections
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
Impeller deflection and modal finite element analysis.
Energy Technology Data Exchange (ETDEWEB)
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Directory of Open Access Journals (Sweden)
Américo G Hossne
2010-12-01
Full Text Available A lineal finite element with constant traverse section, it can adopt any orientation in the plane, and their ends or nodes tie it to the rest of the elements. The kinetic energy (T and potential (V of a dynamic elastic element are the basement in the implementation of the Hamilton principle for the definition of a finite element. The definition of the kinetic energy and potential is the first step for the preliminary variational formulation to the enunciation for finite elements that it is used to solve, say, the problems of mechanisms that move in the plane using the Hamilton equation. The general objective consisted on defining the equation of the movement of a finite lineal dynamic elastic plane element using the equation of Hamilton, starting from the lagrangiana (T − V obtained with the use of a polynomial of fifth and first degree, with eight degrees of freedom, four in each node that represented the deformations: axial (u(x, traverse (w(x, slope ((dw(x/dx and bend ((d2w(x/dx2. The deformation due to traverse shearing, insignificant with respect to flexional and axial deformations, the rotational inertia and the frictional forces in the nodes, were underrated with the purpose of producing a friendly element. The specific objectives were to take place: (a the translational mass matrix [MD], (b the translational gyroscopic matrix [AD], (c the translational total rigidity matrix [KD], and (d the deformation vector (S. As a result the movement equation of a finite lineal dynamic elastic plane element was forged [MD]( ¨ S − 2¨[AD]( ˙S + {[K] − ˙2[MD] − ¨[AD]}(S = (Q . On concluded that the equation obtained variationally with the application of the Hamilton Principle is the state–of–the–art pattern, and that the procedure can be used when it is required to increase the number of the pattern freedom degrees.Un elemento finito lineal con sección transversal constante puede adoptar cualquier orientación en el plano y sus
Arbatani, Siamak; Callejo, Alfonso; Kövecses, József; Kalantari, Masoud; Marchand, Nick R.; Dargahi, Javad
2016-06-01
Directional drilling is a popular technique for oil well drilling. Accurate prediction of the directional performance is critical in order to achieve the desired well profile. Simplified geometry methods are, to date, the industry standard for predicting directional performance. A comprehensive, high-fidelity method for the simulation of directional drilling is presented here. It consists of a detailed discretization of the actual geometry and a rigorous application of two modeling techniques: the finite element and the finite segment methods. By doing so, the dynamic problem is addressed from two different yet complementary perspectives: structural mechanics and rigid-body motion. Collision detection and contact dynamics algorithms are also presented. Results show that both methods agree in terms of the dynamic response, and that the build rate estimations are consistent with available experimental data. Owing to the framework efficiency and physics-based nature, the presented tools are very well-suited for design engineering and real-time simulation.
Accurate finite element modeling of acoustic waves
Idesman, A.; Pham, D.
2014-07-01
In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.
Finite-element analysis of flawed and unflawed pipe tests
Energy Technology Data Exchange (ETDEWEB)
James, R.J.; Nickell, R.E.; Sullaway, M.F. (ANATECH Research Corp., La Jolla, CA (USA))
1989-12-01
Contemporary versions of the general purpose, nonlinear finite element program ABAQUS have been used in structural response verification exercises on flawed and unflawed austenitic stainless steel and ferritic steel piping. Among the topics examined, through comparison between ABAQUS calculations and test results, were: (1) the effect of using variations in the stress-strain relationship from the test article material on the calculated response; (2) the convergence properties of various finite element representations of the pipe geometry, using shell, beam and continuum models; (3) the effect of test system compliance; and (4) the validity of ABAQUS J-integral routines for flawed pipe evaluations. The study was culminated by the development and demonstration of a macroelement'' representation for the flawed pipe section. The macroelement can be inserted into an existing piping system model, in order to accurately treat the crack-opening and crack-closing static and dynamic response. 11 refs., 20 figs., 1 tab.
Stochastic Finite Element Simulation of Uncertain Structures Subjected to Earthquake
Directory of Open Access Journals (Sweden)
Subrata Chakraborty
2000-01-01
Full Text Available In present study, the stochastic finite element simulation based on the efficient Neumann expansion technique is extended for the analysis of uncertain structures under seismically induced random ground motion. The basic objective is to investigate the possibility of applying the Neumann expansion technique coupled with the Monte Carlo simulation for dynamic stochastic systems upto that extent of parameter variation after which the method is no longer gives accurate results compared to that of the direct Monte carlo simulation. The stochastic structural parameters are discretized by the local averaging method and then simulated by Cholesky decomposition of the respective covariance matrix. The earthquake induced ground motion is treated as stationary random process defined by respective power spectral density function. Finally, the finite element solution has been obtained in frequency domain utilizing the advantage of Neumann expansion technique.
Finite element model of magnetoconvection of a ferrofluid
Snyder, Suzanne M.; Cader, Tahir; Finlayson, Bruce A.
2003-06-01
Combined natural and magnetic convective heat transfer through a ferrofluid in a cubic enclosure is simulated numerically. The momentum equation includes a magnetic term that arises when a magnetic fluid is in the presence of a magnetic field gradient and a temperature gradient. In order to validate the theory, the wall temperature isotherms and Nusselt numbers are compared to experimental work of Sawada et al. (Int. J. Appl. Electromagn. Mater. 4 (1994) 329). Results are obtained using standard computational fluid dynamics codes, with modifications to account for the Langevin factor when needed. The CFD code FIDAP uses the finite element method, sometimes with a user-defined subroutine. The CFD code FEMLAB uses the finite element method with a user-supplied body force.
Evaluation of finite element formulations for transient conduction forced-convection analysis
Thornton, E. A.; Wieting, A. R.
1979-01-01
Numerical studies clarifying the advantages and disavantages of conventional versus upwind convective finite elements are presented along with lumped versus consistent formulations for practical conduction forced-convection analysis. A finite-element procedure for treatment of negligible capacitance fluid nodes is presented. The procedure is based on procedures used in finite-element structural dynamics to treat nodes with negligible structural mass. Two finite-element programs and a finite-difference lumped-parameter program used in the studies are discussed. Evaluation studies utilizing three convection and two combined conduction-convection problems are then presented and discussed. Additionally, the computational time saving offered by the finite element procedure is considered for a practical combined conduction-convection problem.
Finite-Element Modelling of Biotransistors
Directory of Open Access Journals (Sweden)
Selvaganapathy PR
2010-01-01
Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.
Friction welding; Magnesium; Finite element; Shear test.
Directory of Open Access Journals (Sweden)
Leonardo Contri Campanelli
2013-06-01
Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.
Finite element methods in resistivity logging
Lovell, J. R.
1993-09-01
Resistivity measurements are used in geophysical logging to help determine hydrocarbon reserves. The derivation of formation parameters from resistivity measurements is a complicated nonlinear procedure often requiring additional geological information. This requires an excellent understanding of tool physics, both to design new tools and interpret the measurements of existing tools. The Laterolog measurements in particular are difficult to interpret because the response is very nonlinear as a function of electrical conductivity, unlike Induction measurements. Forward modeling of the Laterolog is almost invariably done with finite element codes which require the inversion of large sparse matrices. Modern techniques can be used to accelerate this inversion. Moreover, an understanding of the tool physics can help refine these numerical techniques.
Optimizing the Evaluation of Finite Element Matrices
Kirby, Robert C; Logg, Anders; Scott, L Ridgway; 10.1137/040607824
2012-01-01
Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising.
Nonlinear Finite Element Analysis of Sloshing
Directory of Open Access Journals (Sweden)
Siva Srinivas Kolukula
2013-01-01
Full Text Available The disturbance on the free surface of the liquid when the liquid-filled tanks are excited is called sloshing. This paper examines the nonlinear sloshing response of the liquid free surface in partially filled two-dimensional rectangular tanks using finite element method. The liquid is assumed to be inviscid, irrotational, and incompressible; fully nonlinear potential wave theory is considered and mixed Eulerian-Lagrangian scheme is adopted. The velocities are obtained from potential using least square method for accurate evaluation. The fourth-order Runge-Kutta method is employed to advance the solution in time. A regridding technique based on cubic spline is employed to avoid numerical instabilities. Regular harmonic excitations and random excitations are used as the external disturbance to the container. The results obtained are compared with published results to validate the numerical method developed.
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Trantow, Thomas
The Bering-Bagley Glacial System (BBGS) is the largest glacier system outside of the Greenland and Antarctic ice sheets, and is the Earth's largest surge-type glacier. Surging is one of three types of glacial acceleration and the least understood one. Understanding glacial acceleration is paramount when trying to explain ice discharge to the oceans and the glacial contribution to sea-level rise, yet there are currently no numerical glacial models that account for surging. The recent 2011-2013 surge of the BBGS provides a rare opportunity to study the surge process through observations and the subsequent data analysis and numerical modeling. Using radar, altimeter, and image data collected from airborne and satellite missions, various descriptions of ice geometry are created at different times throughout the surge. Using geostatistical estimation techniques including variography and ordinary kriging, surface and bedrock Digital Elevation Maps (DEMs) are derived. A time series analysis of elevation change during the current surge is then conducted and validated using a complete error analysis along with airborne observations. The derived DEMs are then used as inputs to a computer simulated model of glacier dynamics in the BBGS. Using the Finite Element software Elmer/Ice, a full-Stokes simulation, with Glen's flow law for temperate ice, is created for numerical experiments. With consideration of free surface evolution, glacial hydrology and surface mass balance, the model is able to predict a variety of field variables including velocity, stress, strain-rate, pressure and surface elevation change at any point forward in time. These outputs are compared and validated using observational data such as CryoSat-2 altimetry, airborne field data, imagery and previous detailed analysis of the BBGS. Preliminary results reveal that certain surge phenomena such as surface elevation changes, surge progression and locations at which the surge starts, can be recreated using the
2-D Finite element analysis of magnetic pull force for a real AC electromagnetic contactor
Energy Technology Data Exchange (ETDEWEB)
Alabern, X.; Mujal, R. [Universitat Politecnica de Catalunya, Department of Electrical Engineering, Barcelona (Spain); Figa-Tena, G. [General Electric Power Controls, Senior Engineer Laboratory Dept., Barcelona (Spain)
2000-08-01
In order to analyze the dynamic behavior of an alternating current eletromagnetic contactor, it is necessary to find the static attractive force characteristics by using a bidimensional model, Finite Element Method Magnetic (FEMM). (orig.)
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
CHEN ShaoChun; XIAO LiuChao
2008-01-01
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
Convergence of adaptive finite element methods for eigenvalue problems
Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos
2008-01-01
In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
2008-01-01
Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.
Elements of analytical dynamics
Kurth, Rudolph; Stark, M
1976-01-01
Elements of Analytical Dynamics deals with dynamics, which studies the relationship between motion of material bodies and the forces acting on them. This book is a compilation of lectures given by the author at the Georgia and Institute of Technology and formed a part of a course in Topological Dynamics. The book begins by discussing the notions of space and time and their basic properties. It then discusses the Hamilton-Jacobi theory and Hamilton's principle and first integrals. The text concludes with a discussion on Jacobi's geometric interpretation of conservative systems. This book will
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
An edge element approach for dynamic micromagnetic modeling
Bottauscio, O.; Chiampi, M.; Manzin, A.
2008-04-01
This paper proposes a three-dimensional dynamic micromagnetic model, based on the Galerkin weak formulation, reconstructing magnetization by finite element edge vector shape functions. The demagnetizing filed is computed using a hybrid finite element boundary element method. The procedure is compared to analytical formulas and simulations performed with the NIST/OOMMF code, focusing on damping and precessional switching in magnetic thin films.
Beam and Truss Finite Element Verification for DYNA3D
Energy Technology Data Exchange (ETDEWEB)
Rathbun, H J
2007-07-16
The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
Impact of new computing systems on finite element computations
Noor, A. K.; Storassili, O. O.; Fulton, R. E.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.
Radial flow of slightly compressible fluids: A finite element-finite ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Radial flow of slightly compressible fluids: A finite element-finite differences approach. JA Akpobi, ED Akpobi ...
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
Introduction to finite element analysis using MATLAB and Abaqus
Khennane, Amar
2013-01-01
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA
Ablative Thermal Response Analysis Using the Finite Element Method
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
An improved optimal elemental method for updating finite element models
Institute of Scientific and Technical Information of China (English)
Duan Zhongdong(段忠东); Spencer B.F.; Yan Guirong(闫桂荣); Ou Jinping(欧进萍)
2004-01-01
The optimal matrix method and optimal elemental method used to update finite element models may not provide accurate results. This situation occurs when the test modal model is incomplete, as is often the case in practice. An improved optimal elemental method is presented that defines a new objective function, and as a byproduct, circumvents the need for mass normalized modal shapes, which are also not readily available in practice. To solve the group of nonlinear equations created by the improved optimal method, the Lagrange multiplier method and Matlab function fmincon are employed. To deal with actual complex structures,the float-encoding genetic algorithm (FGA) is introduced to enhance the capability of the improved method. Two examples, a 7-degree of freedom (DOF) mass-spring system and a 53-DOF planar frame, respectively, are updated using the improved method.Thc example results demonstrate the advantages of the improved method over existing optimal methods, and show that the genetic algorithm is an effective way to update the models used for actual complex structures.
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Institute of Scientific and Technical Information of China (English)
黄春跃; 周德俭; 黄红艳
2004-01-01
Based on the modal analysis theory and by using the dynamics finite element analysis model of a three-dimensional assembly circuit module, dynamic characteristics of circuit module have been studied, including both natural characteristics analysis and dynamic responses analysis. Using a subspace method, modal analysis is first carried out. The first 6 orders of natural frequencies and vibration modes are obtained. Influence of the number of the Z-shaped metal slices on dynamic characteristics of the entire structure is also studied.Harmonic response analysis is then conducted. The steady-state response when the circuit module is subjected to harmonic excitation is determined. A curve of the response values against frequencies is obtained. As a result, the optimal number of Z-shaped metal slices can be determined, and it can be assured that the three-dimensional assembly circuit module has good performance in terms of the dynamic characteristics.
Finite element modelling of a rotating piezoelectric ultrasonic motor.
Frangi, A; Corigliano, A; Binci, M; Faure, P
2005-10-01
The evaluation of the performance of ultrasonic motors as a function of input parameters such as the driving frequency, voltage input and pre-load on the rotor is of key importance to their development and is here addressed by means of a finite element three-dimensional model. First the stator is simulated as a fully deformable elastic body and the travelling wave dynamics is accurately reproduced; secondly the interaction through contact between the stator and the rotor is accounted for by assuming that the rotor behaves as a rigid surface. Numerical results for the whole motor are finally compared to available experimental data.
Finite element method for extended KdV equations
Karczewska, Anna; Szczeciński, Maciej; Boguniewicz, Bartosz
2016-01-01
The finite element method (FEM) is applied to obtain numerical solutions to a recently derived nonlinear equation for the shallow water wave problem. A weak formulation and the Petrov-Galerkin method are used. It is shown that the FEM gives a reasonable description of the wave dynamics of soliton waves governed by extended KdV equations. Some new results for several cases of bottom shapes are presented. The numerical scheme presented here is suitable for taking into account stochastic effects, which will be discussed in a subsequent paper.
Finite element model calibration of a nonlinear perforated plate
Ehrhardt, David A.; Allen, Matthew S.; Beberniss, Timothy J.; Neild, Simon A.
2017-03-01
This paper presents a case study in which the finite element model for a curved circular plate is calibrated to reproduce both the linear and nonlinear dynamic response measured from two nominally identical samples. The linear dynamic response is described with the linear natural frequencies and mode shapes identified with a roving hammer test. Due to the uncertainty in the stiffness characteristics from the manufactured perforations, the linear natural frequencies are used to update the effective modulus of elasticity of the full order finite element model (FEM). The nonlinear dynamic response is described with nonlinear normal modes (NNMs) measured using force appropriation and high speed 3D digital image correlation (3D-DIC). The measured NNMs are used to update the boundary conditions of the full order FEM through comparison with NNMs calculated from a nonlinear reduced order model (NLROM). This comparison revealed that the nonlinear behavior could not be captured without accounting for the small curvature of the plate from manufacturing as confirmed in literature. So, 3D-DIC was also used to identify the initial static curvature of each plate and the resulting curvature was included in the full order FEM. The updated models are then used to understand how the stress distribution changes at large response amplitudes providing a possible explanation of failures observed during testing.
Biomechanical investigation of naso-orbitoethmoid trauma by finite element analysis.
Huempfner-Hierl, Heike; Schaller, Andreas; Hemprich, Alexander; Hierl, Thomas
2014-11-01
Naso-orbitoethmoid fractures account for 5% of all facial fractures. We used data derived from a white 34-year-old man to make a transient dynamic finite element model, which consisted of about 740 000 elements, to simulate fist-like impacts to this anatomically complex area. Finite element analysis showed a pattern of von Mises stresses beyond the yield criterion of bone that corresponded with fractures commonly seen clinically. Finite element models can be used to simulate injuries to the human skull, and provide information about the pathogenesis of different types of fracture.
Magnetic Elements at Finite Temperature and Large Deviation Theory
Kohn, R. V.; Reznikoff, M. G.; vanden-Eijnden, E.
2005-08-01
We investigate thermally activated phenomena in micromagnetics using large deviation theory and concepts from stochastic resonance. We give a natural mathematical definition of finite-temperature astroids, finite-temperature hysteresis loops, etc. Generically, these objects emerge when the (generalized) Arrhenius timescale governing the thermally activated barrier crossing event of magnetic switching matches the timescale at which the magnetic element is pulsed or ramped by an external field; in the special and physically relevant case of multiple-pulse experiments, on the other hand, short-time switching can lead to non-Arrhenius behavior. We show how large deviation theory can be used to explain some properties of the astroids, like their shrinking and sharpening as the number of applied pulses is increased. We also investigate the influence of the dynamics, in particular the relative importance of the gyromagnetic and the damping terms. Finally, we discuss some issues and open questions regarding spatially nonuniform magnetization.
A multi-mesh finite element method for Lagrange elements of arbitrary degree
Witkowski, Thomas
2010-01-01
We consider within a finite element approach the usage of different adaptively refined meshes for different variables in systems of nonlinear, time-depended PDEs. To resolve different solution behaviours of these variables, the meshes can be independently adapted. The resulting linear systems are usually much smaller, when compared to the usage of a single mesh, and the overall computational runtime can be more than halved in such cases. Our multi-mesh method works for Lagrange finite elements of arbitrary degree and is independent of the spatial dimension. The approach is well defined, and can be implemented in existing adaptive finite element codes with minimal effort. We show computational examples in 2D and 3D ranging from dendritic growth to solid-solid phase-transitions. A further application comes from fluid dynamics where we demonstrate the applicability of the approach for solving the incompressible Navier-Stokes equations with Lagrange finite elements of the same order for velocity and pressure. The...
Institute of Scientific and Technical Information of China (English)
佟金; 张智泓; 陈东辉; 张清珠; 马云海
2014-01-01
This study aims to provide a three-dimensional (3D) finite element model to simulate soil and toothed wheel interaction dynamically. A toothed wheel is a novel apparatus that is used for micro-topography preparation. It has a series of peripheral tooth circumscribing rolling wheel. When this device is hauled and rolled across the soil surface, a series of consolidated small depressions are created. Accordingly, the soil is restructured to a desired form, and micro-topography preparation is achieved. To ensure the applicability and effectiveness of micro-topography preparation, depression shapes and capacity should be adapted to ensure the satisfactory volume of collected run-off. Thus, a toothed wheel requires adequate working conditions such as an implemented load and vertical displacement to prepare adequate imprints in the soil surface. Therefore, predicting the interaction behavior between a toothed wheel and soil is of prime importance in helping to enhance operation workability and efficiency. When studying the interaction behavior between a toothed wheel and soil, field experimental studies can give valuable insights, but can also be expensive, and may be limited to certain working conditions. In addition, results are highly dependent on the accuracy of the measuring devices. Yet numerical simulations help to minimize the number of field experimental tests required, and help to interpret test results. FEM is a powerful numerical technique and good at analyzing complex engineering problems, especially for dynamic systems with large deformation and problems related to soil mechanics. Therefore, the FEM approach increasingly shows promise in analyzing the factors affecting the interaction between soil and tillage tools. Yet, by far available models are mainly focused on disk plow, blade, or moldboard. There are few available reports of 3D models that are used to predict toothed wheel working behavior on soil. Consequently, there is a need for a three
Model order reduction techniques with applications in finite element analysis
Qu, Zu-Qing
2004-01-01
Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order mo...
A Finite element model of tactile flow for softness perception.
Battaglia, Edoardo; Bianchi, Matteo; D'Angelo, Maria Laura; D'Imperio, Mariapaola; Cannella, Ferdinando; Scilingo, Enzo P; Bicchi, Antonio
2015-01-01
Touch is an extremely dynamic sense. To take into account this aspect, it has been hypothesized that there are mechanisms in the brain that specialize in processing dynamic tactile stimuli, in a way not too dissimilar from what happens for optical flow in dynamic vision. The concept of tactile flow, related to the rate of expansion of isostrain volumes in the human fingerpad, was used to explain some perceptual illusions as well as mechanisms of human softness perception. In this paper we describe a computational model of tactile flow, and apply it to a finite element model of interaction between deformable bodies. The shape and material properties of the bodies are modeled from those of a human fingertip interacting with specimens with different softness properties. Results show that the rate of expansion of isostrain volumes can be used to discriminate different materials in terms of their softness characteristics.
Finite element form of FDV for widely varying flowfields
Richardson, G. A.; Cassibry, J. T.; Chung, T. J.; Wu, S. T.
2010-01-01
We present the Flowfield Dependent Variation (FDV) method for physical applications that have widely varying spatial and temporal scales. Our motivation is to develop a versatile numerical method that is accurate and stable in simulations with complex geometries and with wide variations in space and time scales. The use of a finite element formulation adds capabilities such as flexible grid geometries and exact enforcement of Neumann boundary conditions. While finite element schemes are used extensively by researchers solving computational fluid dynamics in many engineering fields, their use in space physics, astrophysical fluids and laboratory magnetohydrodynamic simulations with shocks has been predominantly overlooked. The FDV method is unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in these regimes. The first part of this paper concentrates on the presentation of our numerical method formulation for Newtonian and relativistic hydrodynamics. In the second part we present several standard simulation examples that test the method's limitations and verify the FDV method. We show that our finite element formulation is stable and accurate for a range of both Mach numbers and Lorentz factors in one-dimensional test problems. We also present the converging/diverging nozzle which contains both incompressible and compressible flow in the flowfield over a range of subsonic and supersonic regions. We demonstrate the stability of our method and the accuracy by comparison with the results of other methods including the finite difference Total Variation Diminishing method. We explore the use of FDV for both non-relativistic and relativistic fluids (hydrodynamics) with strong shocks in order to establish the effectiveness in future applications of this method in astrophysical and laboratory plasma environments.
MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM
Institute of Scientific and Technical Information of China (English)
Chun-jia Bi; Li-kang Li
2004-01-01
In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.
Finite Element Analysis (FEA) in Design and Production.
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
A Finite Element Analysis of Optimal Variable Thickness Sheets
DEFF Research Database (Denmark)
Petersson, Joakim S
1996-01-01
A quasimixed Finite Element (FE) method for maximum stiffness of variablethickness sheets is analysed. The displacement is approximated with ninenode Lagrange quadrilateral elements and the thickness is approximated aselementwise constant. One is guaranteed that the FE displacement solutionswill...
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod......The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value....... To accomodate non-constant stress or strain, a mode factor may be introduced or the dissipated energy may be used instead of stress or strain.Cracking of asphalt (or other materials) may be described as a process consisting of three phases. In phase one diffuse microcracking is formed in the material...... damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...
An iterative algorithm for finite element analysis
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Finite Element Simulation for Springback Prediction Compensation
Directory of Open Access Journals (Sweden)
Agus Dwi Anggono
2011-01-01
Full Text Available An accurate modelling of the sheet metal deformations including the springback prediction is one of the key factors in the efficient utilisation of Finite Element Method (FEM process simulation in industrial application. Assuming that springback can be predicted accurately, there still remains the problem of how to use such results to appear at a suitable die design to produce a target part shape. It is this second step of springback compensation that is addressed in the current work. This paper presents an evaluation of a standard benchmark model defined as Benchmark II of Numisheet 2008, S-channel model with various drawbeads and blank holder force (BHF. The tool geometry modified based on springback calculation for a part to compensate springback. The result shows that the combination of the smooth bead with BHF of 650 kN resulted in the minimum springback and the tool compensation was successfully to accommodate the springback errors.
Studying a dental pathology by finite elements
Directory of Open Access Journals (Sweden)
Fernando Mejía Umaña
2010-04-01
Full Text Available Abfractives lesions or abfractions are non-cavity lesions of dental structures in which a biomechanical factor has been identified as being the most probable cause for it occurring. Even throught such lesion can be presented in any tooth, it occurs more frequently in people aged over 35. This article presents some results obtained by the Universidad Nacional de Colombia's multidisciplinary research group for studying "dental material's structure and propierties". The introduction describes such lesion's characteristics and possible causes. The results of various modelling exercises using finite elements (in two and three dimensions are presented regarding a first premolar tooth subjected to normal mastication load and also to abnormal loads produced by occlusion problems. The most important findings (accompanied by clinical observations were that: areas of high concentration of forces were identified where lesions were frequently presented, associated with loads whose line of action did not pass through the central part of the section of tooth at cervical level; a direct relationship between facets of wear being orientated with the direction of forces produced by a high concentration of force; and the presence of high compression forces in the cervical region.
Finite element modeling of retinal prosthesis mechanics
Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.
2009-10-01
Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.
Intra Plate Stresses Using Finite Element Modelling
Directory of Open Access Journals (Sweden)
Jayalakshmi S.
2016-10-01
Full Text Available One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo-Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma.
Finite Element Analysis of Deformed Legs of Offshore Platform Structures
Institute of Scientific and Technical Information of China (English)
柳春图; 秦太验; 段梦兰
2002-01-01
The element stiffness matrix of the equivalent beam or pipe element of the deformed leg of the platform is derived bythe finite element method. The stresses and displacements of some damaged components are calculated, and the numeri-cal solutions agree well with those obtained by the fine mesh finite element method. Finally, as an application of thismethod, the stresses of some platform structures are calculated and analyzed.
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
Vibration Analysis of Beams by Spline Finite Element
Institute of Scientific and Technical Information of China (English)
YANG Hao; SUN Li
2011-01-01
In this paper,the spline finite element method is developed to investigate free vibration problems of beams.The cubic B-spline functions are used to construct the displacement field.The assembly of elements and the introduction of boundary conditions follow the standard finite element procedure.The results under various boundary conditions are compared with those obtained by the exact method and the finite difference method.It shows that the results are in excellent agreement with the analytical results and much more accurate than the results obtained by the finite difference method,especially for higher order modes.
Finite element analysis for general elastic multi-structures
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A finite element method is introduced to solve the general elastic multi-structure problem, in which the displacements on bodies, the longitudinal displacements on plates and the longitudinal displacements on beams are discretized using conforming linear elements, the rotational angles on beams are discretized using conforming elements of second order, the transverse displacements on plates and beams are discretized by the Morley elements and the Hermite elements of third order, respectively. The generalized Korn's inequality is established on related nonconforming element spaces, which implies the unique solvability of the finite element method. Finally, the optimal error estimate in the energy norm is derived for the method.
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis. Spec
ALTERNATING DIRECTION FINITE ELEMENT METHOD FOR SOME REACTION DIFFUSION MODELS
Institute of Scientific and Technical Information of China (English)
江成顺; 刘蕴贤; 沈永明
2004-01-01
This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated.
OBJECT-ORIENTED FINITE ELEMENT ANALYSIS AND PROGRAMMING IN VC + +
Institute of Scientific and Technical Information of China (English)
马永其; 冯伟
2002-01-01
The design of finite element analysis program using object-oriented programming(OOP) techniques is presented. The objects, classes and the subclasses used in theprogramming are explained. The system of classes library of finite element analysis programand Windows-type Graphical User Interfaces by VC + + and its MFC are developed. Thereliability, reusability and extensibility of program are enhanced. It is a reference todevelop the large-scale, versatile and powerful systems of object-oriented finite elementsoftware.
Institute of Scientific and Technical Information of China (English)
谢勤伟; 姜年朝; 周光明; 张逊; 王克选; 张志清
2012-01-01
The finite element model of structural dynamics of fuselage frame of unmanned helicopter was established and the natural frequencies and mode shapes of its first 6 orders were obtained. Compared with modal test, the maximum error of calculation was less than 3 %. It shows that the finite element model is correct and accurately reflects the structural dynamics character of the fuselage frame of unmanned helicopter. The computational natural frequencies of frame avoided the natural frequencies of main rotor, tail blade and engine and can meet the request of dynamic of unmanned helicopter. The dynamic analysis method based on finite element analyses, which combines verification test and modal modification, can effectively guarantee the accuracy of the fuselage frame of unmanned helicopter. And it also provides the refrence for finite element dynamic modeling about other structure of unmanned helicopter.%建立某无人直升机机身框架的动力学有限元模型,计算得到前六阶固有频率和振型,与模态试验结果相比较,误差小于3％,验证了有限元模型的正确性,表明该有限元模型能准确地反映该无人直升机框架的结构动力学特性.有限元计算的机身框架固有频率值避开了旋翼、尾桨、发动机主通过频率值,满足动力学设计要求.这种有限元计算、试验验证以及模型修改相结合的动力学分析方法,能保证框架固有特性计算的精确,也为无人直升机其它结构的动力学建模提供借鉴.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using...
Finite-element impact response of debonded composite turbine blades
Dey, Sudip; Karmakar, Amit
2014-02-01
This paper investigates on the transient behavior of debonded composite pretwisted rotating shallow conical shells which could be idealized as turbine blades subjected to low velocity normal impact using finite-element method. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and the moderate rotational speeds are considered neglecting the Coriolis effect. An eight-noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the impact parameters. The time-dependent equations are solved by using Newmark's time integration scheme. Parametric studies are performed to investigate the effects of triggering parameters like angle of twist, rotational speed, laminate configuration and location of debonding considering low velocity normal impact at the center of eight-layered graphite-epoxy composite cantilevered conical shells with bending stiff ([0o2/{±} 30o]s), torsion stiff ([45°/-45°/-45°/45°]s) and cross-ply ([0°/90°/0°/90°]s) laminate configurations.
Finite Element Analysis of Connecting Rod of IC Engine
Directory of Open Access Journals (Sweden)
Samal Prasanta Kumar
2015-01-01
Full Text Available A connecting rod of IC engine is subjected to complex dynamic loading conditions. Therefore it is a critical machine element which attracts researchers’ attention. This paper aims at development of simple 3D model, finite element analyses and the optimization by intuition of the connecting rod for robust design. In this study the detailed load analysis under in-service loading conditions was performed for a typical connecting rod. The CAD model was prepared taking the detailed dimensions from a standard machine drawing text book. Based on the gas pressure variation in the cylinder of an IC engine, the piston forces were calculated for critical positions. MATLAB codes were written for this calculation. Altair Hypermesh and Hyperview were used for pre-processing and post-processing of the model respectively. The finite element analyses were performed using Altair Radioss. The results obtained were compared to a case study for the field failure of the connecting rod. By comparing the induced stress result with the yield strength of the material, the component was redesigned. This was done to save some mass keeping in mind that the induced stress value should be well below the yield strength of the material. The optimized connecting rod is 11.3% lighter than the original design.
Finite element simulation of thick sheet thermoforming
Mercier, Daniel
This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.
Finite element analysis of posterior cervical fixation.
Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q
2015-02-01
Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Thermal Analysis of Thin Plates Using the Finite Element Method
Er, G. K.; Iu, V. P.; Liu, X. L.
2010-05-01
The isotropic thermal plate is analyzed with finite element method. The solution procedure is presented. The elementary stiffness matrix and loading vector are derived rigorously with variation principle and the principle of minimum potential energy. Numerical results are obtained based on the derived equations and tested with available exact solutions. The problems in the finite element analysis are figured out. It is found that the finite element solutions can not converge as the number of elements increases around the corners of the plate. The derived equations presented in this paper are fundamental for our further study on more complicated thermal plate analysis.
Hashemi-Kia, M.; Toossi, M.
1990-01-01
As a result of this work, a reduction procedure has been developed which can be applied to large finite element model of airframe type structures. This procedure, which is tailored to be used with MSC/NASTRAN finite element code, is applied to the full airframe dynamic finite element model of AH-64A Attack Helicopter. The applicability of the resulting reduced model to parametric and optimization studies is examined. Through application of the design sensitivity analysis, the viability and efficiency of this reduction technique has been demonstrated in a vibration reduction study.
Energy Technology Data Exchange (ETDEWEB)
Kim, Ju Hee [Korea Military Academy, Seoul (Korea, Republic of); Kim, Yun Jae [Korea University, Seoul (Korea, Republic of); Kim, Joung Soo [KAERI, Daejeon (Korea, Republic of)
2013-07-15
By using finite element analysis, we proposed an applicable finite element method of laser shock peening (LSP) and discussed various parameters, such as solution time, stability limit, dynamic yield stress, peak pressure, pressure pulse duration, laser spot size, and multiple LSP. The effects of parameters related to the finite element simulation of the LSP process on the residual stresses of 35CD4 30HRC steel alloy are discussed. Parametric sensitivity analyses were performed to establish the optimum processing variables of the LSP process. In addition, we evaluated the effects of initial residual stress, such as welding-induced residual stress field.
Energy Technology Data Exchange (ETDEWEB)
Sena, Manoel Jose dos Santos; Mesquita, Andre Luiz Amarante [Para Univ., Belem, PA (Brazil). Dept. de Engenharia Mecanica. Grupo de Turbomaquinas]. E-mail: gtdem@ufpa.br
2000-07-01
The purpose of this work is describe the implementation of a finite element model for dynamic response analysis of Darrieus-type turbine runners. A fluid-structure coupling is be used to put in evidence some aspects of the rotor-water interaction. The rotating system fixed to the rotor will be used when writing the equations governing the system. A procedure using the ANSYS Parametric Design Language is discussed and some results obtained for the free-free configuration are shown. (author)
PHG: A Toolbox for Developing Parallel Adaptive Finite Element Programs
Institute of Scientific and Technical Information of China (English)
ZHANG Linbo
2011-01-01
@@ Significance of the finite element method The finite element method (Feng, 1965) is mainly used for numerical solution of partial differential equations.It consists of partitioning the computational domain into a mesh composed of disjoint smaller sub-domains called elements which cover the whole domain, and approximating the solution in each element using simple functions (usually polynomials) so that the original problem can be turned into a suitable one to be solved on modern computers.The finite element method has a very wide range of applications as one of the most important methods in scientific and engineering computing.In the finite element method, two key factors which can affect the computational efficiency and precision of the computed solution are quality and distribution of the mesh elements.The adaptive finite element method, first proposed by I.Babuska and W.Rheinboldt in 1978 (Babuska et al., 1978), automatically adjusts and optimizes the distribution of mesh elements according to estimation on the distribution of the error of the computed solution, in order to improve the precision of the computed solution.Recent researches show that for many problems with locally singular solutions, by using mathematically rigorous a posteriori error estimates and suitable adaptive strategy, the adaptive finite element method can produce quasi-optimal meshes and dramatically improve the overall computational efficiency.
Dynamical CP violation at finite temperature
Institute of Scientific and Technical Information of China (English)
WANG Dian-Fu; SUN Xiao-Yu; LIANG Chao
2012-01-01
By using the generalized Yang-Mills model,CP violation behavior at finite temperature is investigated,and it is shown that dynamical CP violation of the generalized Yang-Mills model at zero temperature can be restored at finite temperature.
Dynamic Pricing and Learning with Finite Inventories
Zwart, A.P.; Boer, A.V. den
2015-01-01
We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season perishes. The goal of the seller is to determine a pricing strategy t
Dynamic pricing and learning with finite inventories
Boer, den Arnoud V.; Zwart, Bert
2015-01-01
We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season perishes. The goal of the seller is to determine a pricing strategy t
Dynamic pricing and learning with finite inventories
Boer, den Arnoud; Zwart, Bert
2013-01-01
We study a dynamic pricing problem with finite inventory and parametric uncertainty on the demand distribution. Products are sold during selling seasons of finite length, and inventory that is unsold at the end of a selling season, perishes. The goal of the seller is to determine a pricing strategy
Finite element method for thermal analysis of concentrating solar receivers
Shtrakov, Stanko; Stoilov, Anton
2006-01-01
Application of finite element method and heat conductivity transfer model for calculation of temperature distribution in receiver for dish-Stirling concentrating solar system is described. The method yields discretized equations that are entirely local to the elements and provides complete geometric flexibility. A computer program solving the finite element method problem is created and great number of numerical experiments is carried out. Illustrative numerical results are given for an array...
PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAIC MULTIGRID METHOD OF LINEAR ELEMENTS
Institute of Scientific and Technical Information of China (English)
Yun-qing Huang; Shi Shu; Xi-jun Yu
2006-01-01
We present and analyze a robust preconditioned conjugate gradient method for the higher order Lagrangian finite element systems of a class of elliptic problems. An auxiliary linear element stiffness matrix is chosen to be the preconditioner for higher order finite elements. Then an algebraic multigrid method of linear finite element is applied for solving the preconditioner. The optimal condition number which is independent of the mesh size is obtained. Numerical experiments confirm the efficiency of the algorithm.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
准双曲面齿轮动态啮合性能的有限元分析研究%Finite element analysis for dynamic meshing of a pair of hypoid gears
Institute of Scientific and Technical Information of China (English)
唐进元; 彭方进
2011-01-01
研究准双曲面齿轮动态啮合有限元分析模型的构建方法,建立了合理的有限元模型.基于接触动力学的基本理论和显式有限元分析方法,对准双曲面齿轮的动态啮合性能进行了研究,得到啮合接触冲击特性、齿面接触区域、齿面接触应力及齿根弯曲应力等在轮齿动态啮合过程中的变化规律.以转速和负载两个典型的工作条件为变量,建立对比分析模型,研究转速和负载对准双曲面齿轮动态啮合性能的影响.转速对准双曲面齿轮动态啮合性能影响显著,而负载对准双面齿轮的动态啮合性能影响则跟转速有关,随着转速的增大,相同的负载变化对动态啮合性能的影响逐渐减弱.%The method to build a finite element model for dynamic meshing analysis of a pair of hypoid gears was discussed. A reasonable finite element model was introduced. Based on the theory of nonlinear dynamics and finite element explicit algorithm, the characteristics of the hypoid gears in dynamic meshing were studied. The laws of gear motion, the contact area, the contact stress and the tooth root bending stress in dynamic meshing of hypoid gears were obtained. The two typical working factors; votating speed and load were taken as variables. The influences of rotating speed and load on the dynamic meshing characteristics were discussed. The contrast study showed that rotational speed has an obvious influence on the characteristics of the hypoid gears in dynamic meshing, and the influence of load is related to the rotational speed; as the rotational speed increases, the influence of the same load change on the dynamic meshing characteristics gradually decreases.
Finite Element Simulation of Blanking Process
Directory of Open Access Journals (Sweden)
Afzal Ahmed
2012-10-01
daya penembusan sebanyak 42%. Daya tebukan yang diukur melalui eksperimen dan simulasi kekal pada kira-kira 90kN melepasi penembusan punch sebanyak 62%. Apabila ketebalan keputusan kunci ditambah, ketinggian retak dikurangkan dan ini meningkatkan kualiti pengosongan.KEYWORDS: simulation; finite element simulation; blanking; computer aided manufacturing
A finite element method for analysis of vibration induced by maglev trains
Ju, S. H.; Ho, Y. S.; Leong, C. C.
2012-07-01
This paper developed a finite element method to perform the maglev train-bridge-soil interaction analysis with rail irregularities. An efficient proportional integral (PI) scheme with only a simple equation is used to control the force of the maglev wheel, which is modeled as a contact node moving along a number of target nodes. The moving maglev vehicles are modeled as a combination of spring-damper elements, lumped mass and rigid links. The Newmark method with the Newton-Raphson method is then used to solve the nonlinear dynamic equation. The major advantage is that all the proposed procedures are standard in the finite element method. The analytic solution of maglev vehicles passing a Timoshenko beam was used to validate the current finite element method with good agreements. Moreover, a very large-scale finite element analysis using the proposed scheme was also tested in this paper.
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Effective Stiffness: Generalizing Effective Resistance Sampling to Finite Element Matrices
Avron, Haim
2011-01-01
We define the notion of effective stiffness and show that it can used to build sparsifiers, algorithms that sparsify linear systems arising from finite-element discretizations of PDEs. In particular, we show that sampling $O(n\\log n)$ elements according to probabilities derived from effective stiffnesses yields an high quality preconditioner that can be used to solve the linear system in a small number of iterations. Effective stiffness generalizes the notion of effective resistance, a key ingredient of recent progress in developing nearly linear symmetric diagonally dominant (SDD) linear solvers. Solving finite elements problems is of considerably more interest than the solution of SDD linear systems, since the finite element method is frequently used to numerically solve PDEs arising in scientific and engineering applications. Unlike SDD systems, which are relatively easy to precondition, there has been limited success in designing fast solvers for finite element systems, and previous algorithms usually tar...
Finite Element Analysis of Reinforced Concrete Plate Impacted by Block
Institute of Scientific and Technical Information of China (English)
LUO Xiaoyang; Pascal PERROTIN; YAN Quansheng
2006-01-01
A new concept of structurally dissipating rock-shed (SDR) was developed by the lab of Tonello IC and LOCIE-ESIGEC (France).To decide the dimension of the plate used in SDR,an ANSYS model which could simulate the impact of rock in the centre of the plate was established by Fabien Delhomme.By using this model,some finite element analyses are carried out in the present paper Firstly,a plate impacted by a block is numerically simulated,the numerical results obtained from different mesh sizes are compared and the accuracy of the finite element model is verified.Then,the dynamic response of the plate impacted at the boundary and in the medium part is computed.By analyzing the stress in rebar,the most dangerous region of impact of plate was found.For a rectangular plate,the most dangerous region is at the corner of the plate when a block drops in.Finally,the whole deformation process of the plate under dropping block was simulated and a simplified definition (effect zone) to describe the deformation process in different positions of plate was given.From this study,it is found that the impact only affects heavily within the effect zone.
Optimization Design and Finite Element Analysis of Core Cutter
Institute of Scientific and Technical Information of China (English)
CAO Pin-lu; YIN Kun; PENG Jian-ming; LIU Jian-lin
2007-01-01
The hydro-hammer sampler is a new type of sampler compared with traditional ones. An important part of this new offshore sampler is that the structure of the core cutter has a significant effect on penetration and core recovery. In our experiments, a commercial finite element code with a capability of simulating large-strain frictional contact between two or more solid bodies is used to simulate the core cutter-soil interaction. The effects of the cutting edge shape, the diameter and the edge angle on penetration are analyzed by non-liner transient dynamic analysis using a finite element method (FEM). Simulation results show that the cutter shape clearly has an effect on the penetration and core recovery. In addition, the penetration of the sampler increases with an increase in the inside diameter of the cutter, but decreases with an increase in the cutting angle. Based on these analyses, an optimum structure of the core cutter is designed and tested in the north margin of the Dalian gulf. Experiment results show that the penetration rate is about 16.5 m/h in silty clay and 15.4 m/h in cohesive clay, while the recovery is 68% and 83.3% respectively.
Essentials of finite element modeling and adaptive refinement
Dow, John O
2012-01-01
Finite Element Analysis is a very popular, computer-based tool that uses a complex system of points called nodes to make a grid called a ""mesh. "" The mesh contains the material and structural properties that define how the structure will react to certain loading conditions, allowing virtual testing and analysis of stresses or changes applied to the material or component design. This groundbreaking text extends the usefulness of finite element analysis by helping both beginners and advanced users alike. It simplifies, improves, and extends both the finite element method while at the same t
A mixed finite element for the analysis of laminated plates
Putcha, N. S.; Reddy, J. N.
1983-01-01
A new mixed shear-flexible finite element based on the Hellinger-Reissner's variational principle is developed. The element is constructed using a mixed formulation of the shear deformation theory of laminated composite plates, and consists of three displacements, two shear rotations, and three moments as the independent degrees of freedom. The numerical convergence and accuracy characteristics of the element are investigated for bending of laminated anisotropic composite plates. The element is relatively simple to construct and has better accuracy and convergence features when compared to other conventional finite elements.
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems.It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H1- and L2-norms.
Error Estimates for Finite-Element Navier-Stokes Solvers without Standard Inf-Sup Conditions
Institute of Scientific and Technical Information of China (English)
JianGuo LIU; Jie LIU; Robert L.PEGO
2009-01-01
The authors establish error estimates for recently developed finite-element methods for incompressible viscous flow in domains with no-slip boundary conditions. The methods arise by discretization of a well-posed extended Navier-Stokes dynamics for which pressure is determined from current velocity and force fields. The methods use C1 elements for velocity and C0 elements for pressure. A stability estimate is proved for a related finite-element projection method close to classical time-splitting methods of Orszag, Israeli, DeVille and Karniadakis.
Energy Technology Data Exchange (ETDEWEB)
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Partitions of nonzero elements of a finite field into pairs
Karasev, R N
2010-01-01
In this paper we prove two theorems. Informally, they claim that the nonzero elements of a finite field with odd characteristic can be partitioned into pairs with prescribed difference (maybe, with some alternatives) in each pair. We also consider some generalizations of these results to packing translates in a finite or infinite field.
Finite Element Method for Analysis of Material Properties
DEFF Research Database (Denmark)
Rauhe, Jens Christian
The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...... and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... description of the material microstructure the finite element models must contain a large number of elements and this problem is solved by using the preconditioned conjugated gradient solver with an Element-By-Element preconditioner. Finite element analysis provides the volume averaged stresses and strains...
Institute of Scientific and Technical Information of China (English)
Bahattin Kanber; O.Yavuz Bozkurt
2006-01-01
In this work,the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements.The shape functions of the transition plate elements are derived based on a practical rule.The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements.The mesh convergence rates of the models including the transition elements are compared with the regular element models.To verify the developed elements,simple tests are demonstrated and various elasto-plastic problems are solved.Their results are compared with ANSYS results.
Finite Element Crash Simulations and Impact-Induced Injuries
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...
Vehicle Interior Noise Prediction Using Energy Finite Element Analysis Project
National Aeronautics and Space Administration — It is proposed to develop and implement a computational technique based on Energy Finite Element Analysis (EFEA) for interior noise prediction of advanced aerospace...
Structural analysis with the finite element method linear statics
Oñate, Eugenio
2013-01-01
STRUCTURAL ANALYSIS WITH THE FINITE ELEMENT METHOD Linear Statics Volume 1 : The Basis and Solids Eugenio Oñate The two volumes of this book cover most of the theoretical and computational aspects of the linear static analysis of structures with the Finite Element Method (FEM). The content of the book is based on the lecture notes of a basic course on Structural Analysis with the FEM taught by the author at the Technical University of Catalonia (UPC) in Barcelona, Spain for the last 30 years. Volume1 presents the basis of the FEM for structural analysis and a detailed description of the finite element formulation for axially loaded bars, plane elasticity problems, axisymmetric solids and general three dimensional solids. Each chapter describes the background theory for each structural model considered, details of the finite element formulation and guidelines for the application to structural engineering problems. The book includes a chapter on miscellaneous topics such as treatment of inclined supports, elas...
Finite Element Crash Simulations and Impact-Induced Injuries
Mackerle, Jaroslav
1999-01-01
This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.
Finite element analysis of rotating beams physics based interpolation
Ganguli, Ranjan
2017-01-01
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
Accurate Parallel Algorithm for Adini Nonconforming Finite Element
Institute of Scientific and Technical Information of China (English)
罗平; 周爱辉
2003-01-01
Multi-parameter asymptotic expansions are interesting since they justify the use of multi-parameter extrapolation which can be implemented in parallel and are well studied in many papers for the conforming finite element methods. For the nonconforming finite element methods, however, the work of the multi-parameter asymptotic expansions and extrapolation have seldom been found in the literature. This paper considers the solution of the biharmonic equation using Adini nonconforming finite elements and reports new results for the multi-parameter asymptotic expansions and extrapolation. The Adini nonconforming finite element solution of the biharmonic equation is shown to have a multi-parameter asymptotic error expansion and extrapolation. This expansion and a multi-parameter extrapolation technique were used to develop an accurate approximation parallel algorithm for the biharmonic equation. Finally, numerical results have verified the extrapolation theory.
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES
Institute of Scientific and Technical Information of China (English)
Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey
2009-01-01
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.
SPECTRAL FINITE ELEMENT METHOD FOR A UNSTEADY TRANSPORT EQUATION
Institute of Scientific and Technical Information of China (English)
MeiLiquan
1999-01-01
In this paper,a new numerical method,the coupling method of spherical harmonic function spectral and finite elements,for a unsteady transport equation is dlscussed,and the error analysis of this scheme is proved.
On mixed finite element techniques for elliptic problems
Directory of Open Access Journals (Sweden)
M. Aslam Noor
1983-01-01
mildly nonlinear elliptic problems by means of finite element methods of mixed type. The technique is based on an extended variational principle, in which the constraint of interelement continuity has been removed at the expense of introducing a Lagrange multiplier.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Finite Element Meshes Auto-Generation for the Welted Bifurcation
Institute of Scientific and Technical Information of China (English)
YUANMei; LIYa-ping
2004-01-01
In this paper, firstly, a mathematical model for a specific kind of welted bifurcation is established, the parametric equation for the intersecting curve is resulted in. Secondly, a method for partitioning finite element meshes of the welted bifurcation is put forward, its main idea is that developing the main pipe surface and the branch pipe surface respectively, dividing meshes on each developing plane and obtaining meshes points, then transforming their plane coordinates into space coordinates. Finally, an applied program for finite element meshes auto-generation is simply introduced, which adopt ObjectARX technique and its running result can be shown in AutoCAD. The meshes generated in AutoCAD can be exported conveniently to most of finite element analysis soft wares, and the finite element computing result can satisfy the engineering precision requirement.
Finite elements in fracture mechanics theory, numerics, applications
Kuna, Meinhard
2013-01-01
Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.
Probabilistic Study of Bone Remodeling Using Finite Element Analysis
Werner, C.; Gorla, R. S. R.
2013-08-01
The dynamic bone remodeling process is a computationally challenging research area that struggles to understand the actual mechanisms. It has been observed that a mechanical stimulus in the bone greatly affects the remodeling process. A 3D finite element model of a femur is created and a probabilistic analysis is performed on the model. The probabilistic analysis measures the sensitivities of various parameters related to the material properties, geometric properties, and the three load cases defined as Single Leg Stance, Abduction, and Adduction. The sensitivity of each parameter is based on the calculated maximum mechanical stimulus and analyzed at various values of probabilities ranging from 0.001 to 0.999. The analysis showed that the parameters associated with the Single Leg Stance load case had the highest sensitivity with a probability of 0.99 and the angle of the force applied to the joint of the proximal femur had the overall highest sensitivity
Finite Element Analysis of the 2 m Telescope Assemble
Institute of Scientific and Technical Information of China (English)
ZHAO Fu; WANG Ping; ZHAO Yue-jin; ZHANG Li; XIN Hong-bing
2007-01-01
To improve the performance of the 2 m telescope,the optimum design is applied to the telescope assemble.Referring to the telescope assemble with the dimetric truss,a group of reasonable sizes of the telescope assemble are found by optimization methods and modal analysis,which will raise the resonant frequency by 4.21%.As a result,the telescope assemble is less likely to resonate.Besides,the dynamic response module in ANSYS is utilized to analyze the modal type,harmonic vibration response and random vibration response of the telescope assemble.By the calculation of ANSYS,finite element analysis (FEA) method proves that the performance of the telescope assemble is mildly enhanced by means of optimum design.
FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE
Energy Technology Data Exchange (ETDEWEB)
Jordan, J.
2010-06-02
The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.
Institute of Scientific and Technical Information of China (English)
R ANSARI; S ROUHI; M ARYAYI
2013-01-01
By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes.
On the error bounds of nonconforming finite elements
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We prove that the error estimates of a large class of nonconforming finite elements are dominated by their approximation errors, which means that the well-known Cea’s lemma is still valid for these nonconforming finite element methods. Furthermore, we derive the error estimates in both energy and L2 norms under the regularity assumption u ∈ H1+s(Ω) with any s > 0. The extensions to other related problems are possible.
Anisotropic rectangular nonconforming finite element analysis for Sobolev equations
Institute of Scientific and Technical Information of China (English)
SHI Dong-yang; WANG Hai-hong; GUO Cheng
2008-01-01
An anisotropic rectangular nonconforming finite element method for solving the Sobolev equations is discussed under semi-discrete and full discrete schemes.The corresponding optimal convergence error estimates and superclose property are derived,which are the same as the traditional conforming finite elements.Furthermore,the global superconvergence is obtained using a post-processing technique.The numerical results show the validity of the theoretical analysis.
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
THE DERIVATIVE PATCH INTERPOLATING RECOVERY TECHNIQUE FOR FINITE ELEMENT APPROXIMATIONS
Institute of Scientific and Technical Information of China (English)
TieZhang; Yan-pingLin; R.J.Tait
2004-01-01
A derivative patch interpolating recovery technique is analyzed for the finite element approximation to the second order elliptic boundary value problems in two dimensional case.It is shown that the convergence rate of the recovered gradient admits superc onvergence on the recovered subdomain, and is two order higher than the optimal global convergence rate (ultracovergence) at an internal node point when even order finite element spaces and local uniform meshes are used.
Integration of geometric modeling and advanced finite element preprocessing
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Symmetric Matrix Fields in the Finite Element Method
Directory of Open Access Journals (Sweden)
Gerard Awanou
2010-07-01
Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.
Finite element analysis to model complex mitral valve repair.
Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent
2016-01-01
Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.
Determination of a synchronous generator characteristics via Finite Element Analysis
Directory of Open Access Journals (Sweden)
Kolondzovski Zlatko
2005-01-01
Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.
Martinez, J.; Belahcen, A.; Detoni, J. G.
2016-01-01
This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.
A finite element primer for beginners the basics
Zohdi, Tarek I
2014-01-01
The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th
Finite Element Model Updating Using Response Surface Method
Marwala, Tshilidzi
2007-01-01
This paper proposes the response surface method for finite element model updating. The response surface method is implemented by approximating the finite element model surface response equation by a multi-layer perceptron. The updated parameters of the finite element model were calculated using genetic algorithm by optimizing the surface response equation. The proposed method was compared to the existing methods that use simulated annealing or genetic algorithm together with a full finite element model for finite element model updating. The proposed method was tested on an unsymmetri-cal H-shaped structure. It was observed that the proposed method gave the updated natural frequen-cies and mode shapes that were of the same order of accuracy as those given by simulated annealing and genetic algorithm. Furthermore, it was observed that the response surface method achieved these results at a computational speed that was more than 2.5 times as fast as the genetic algorithm and a full finite element model and 24 ti...
Applications of finite element simulation in orthopedic and trauma surgery.
Herrera, Antonio; Ibarz, Elena; Cegoñino, José; Lobo-Escolar, Antonio; Puértolas, Sergio; López, Enrique; Mateo, Jesús; Gracia, Luis
2012-04-18
Research in different areas of orthopedic and trauma surgery requires a methodology that allows both a more economic approach and the ability to reproduce different situations in an easy way. Simulation models have been introduced recently in bioengineering and could become an essential tool in the study of any physiological unity, regardless of its complexity. The main problem in modeling with finite elements simulation is to achieve an accurate reproduction of the anatomy and a perfect correlation of the different structures, in any region of the human body. Authors have developed a mixed technique, joining the use of a three-dimensional laser scanner Roland Picza captured together with computed tomography (CT) and 3D CT images, to achieve a perfect reproduction of the anatomy. Finite element (FE) simulation lets us know the biomechanical changes that take place after hip prostheses or osteosynthesis implantation and biological responses of bone to biomechanical changes. The simulation models are able to predict changes in bone stress distribution around the implant, so allowing preventing future pathologies. The development of a FE model of lumbar spine is another interesting application of the simulation. The model allows research on the lumbar spine, not only in physiological conditions but also simulating different load conditions, to assess the impact on biomechanics. Different degrees of disc degeneration can also be simulated to determine the impact on adjacent anatomical elements. Finally, FE models may be useful to test different fixation systems, i.e., pedicular screws, interbody devices or rigid fixations compared with the dynamic ones. We have also developed models of lumbar spine and hip joint to predict the occurrence of osteoporotic fractures, based on densitometric determinations and specific biomechanical models, including approaches from damage and fracture mechanics. FE simulations also allow us to predict the behavior of orthopedic splints
Enhanced patch test of finite element methods
Institute of Scientific and Technical Information of China (English)
CHEN; Wanji
2006-01-01
Theoretically, the constant stress patch test is not rigorous. Also, either the patch test of non-zero constant shear for Mindlin plate problem or non-zero strain gradient curvature of the microstructures cannot be performed. To improve the theory of the patch test, in this paper, based on the variational principle with relaxed continuity requirement of nonconforming element for homogeneous differential equations, the author proposed the individual element condition for passing the patch test and the convergence condition of the element: besides passing the patch test, the element function should include the rigid body modes and constant strain modes and satisfy the weak continuity condition, and no extra zero energy modes occur. Moreover, the author further established a variational principle with relaxed continuity requirement of nonconforming element for inhomogeneous differential equations, the enhanced patch test condition and the individual element condition. To assure the convergence of the element that should pass the enhanced patch test, the element function should include the rigid body modes and non-zero strain modes which satisfied the equilibrium equations, and no spurious zero energy modes occur and should satisfy new weak continuity condition. The theory of the enhanced patch test proposed in this paper can be applied to both homogeneous and inhomogeneous differential equations. Based on this theory, the patch test of the non-zero constant shear stress for Mindlin plate and the C0-1 patch test of the non-zero constant curvature for the couple stress/strain gradient theory were established.
CSIR Research Space (South Africa)
Loveday, PW
2007-03-01
Full Text Available conventional finite element methods available in commercial software, these models tend to be very large. An alternative method is to use specially formulated waveguide finite elements (sometimes called Semi-Analytical Finite Elements). Models using...
Advances in the study of hybrid finite elements
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Some new concepts and research progress in hybrid finite elements advanced in recent years are in troduced. On the basis of incompatible energy consistency analysis, the optimal condition of hybrid elements is derived and the formulation for fulfilling this condition is given. A post-processing penalty equilibrium optimization technique of hybrid element is presented to create high quality hybrid model. For incompressible problems, a method of deviatoric hybrid element is proposed and unification of computation between compressible and incompressible media is achieved.
THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS
Institute of Scientific and Technical Information of China (English)
李宏; 刘儒勋
2001-01-01
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L∞ (L2) norm, that is maximum-norm in time, L2norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
A generalized layerwise finite element for multi-layer damping treatments
Moreira, R. A. S.; Rodrigues, J. D.; Ferreira, A. J. M.
2006-04-01
This paper presents a 4-node facet type quadrangular shell finite element, based on a layerwise theory, developed for dynamic modelling of laminated structures with viscoelastic damping layers. The bending stiffness of the facet shell element is based on the Reissner-Mindlin assumptions and the plate theory is enriched with a shear locking protection adopting the MITC approach. The membrane component is corrected by using incompatible quadratic modes and the drilling degrees of freedom are introduced through a fictitious stiffness stabilization matrix. Linear static tests, using several pathological tests, showed good and convergent results. Dynamic analysis evaluation is provided by using two eigenproblems with exact analytical solution, as well as a conical sandwich shell with a closed-form analytical solution and a semi-analytical ring finite element solution. The applicability of the proposed finite element to viscoelastic core sandwich plates is assessed through experimental validation.
Narayanaswami, R.
1973-01-01
A new higher order triangular plate-bending finite element is presented which possesses high accuracy for practical mesh subdivisions and which uses only translations and rotations as grid point degrees of freedom. The element has 18 degrees of freedom, the transverse displacement and two rotations at the vertices and mid-side grid points of the triangle. The transverse displacement within the element is approximated by a quintic polynomial; the bending strains thus vary cubically within the element. Transverse shear flexibility is taken into account in the stiffness formulation. Two examples of static and dynamic analysis are included to show the behavior of the element.
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo
Asymptotic Behavior of the Finite Difference and the Finite Element Methods for Parabolic Equations
Institute of Scientific and Technical Information of China (English)
LIU Yang; FENG Hui
2005-01-01
The asymptotic convergence of the solution of the parabolic equation is proved. By the eigenvalues estimation, we obtain that the approximate solutions by the finite difference method and the finite element method are asymptotically convergent. Both methods are considered in continuous time.
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex
Institute of Scientific and Technical Information of China (English)
陈蔚
2003-01-01
The transient behavior of a semiconductor device consists of a Poisson equation for the electric potential and of two nonlinear parabolic equations for the electron density and hole density.The electric potential equation is discretized by a mixed finite element method.The electron and hole density equations are treated by implicit-explicit multistep finite element methods.The schemes are very efficient.The optimal order error estimates both in time and space are derived.
B Free Finite Element Approach for Saturated Porous Media: Consolidation
Directory of Open Access Journals (Sweden)
M. M. Stickle
2016-01-01
Full Text Available The B free finite element approach is applied to the governing equations describing the consolidation process in saturated poroelastic medium with intrinsically incompressible solid and fluid phases. Under this approach, where Voigt notation is avoided, the finite element equilibrium equations and the linearization of the coupled governing equations are fully derived using tensor algebra. In order to assess the B free approach for the consolidation equations, direct comparison with analytical solution of the response of a homogeneous and isotropic water-saturated poroelastic finite column under harmonic load is presented. The results illustrate the capability of this finite element approach of reproducing accurately the response of quasistatic phenomena in a saturated porous medium.
Kriging-Based Finite Element Method: Element-By-Element Kriging Interpolation
Directory of Open Access Journals (Sweden)
W. Kanok-Nukulchai
2009-01-01
Full Text Available An enhancement of the finite element method with Kriging shape functions (K-FEM was recently proposed. In this method, the field variables of a boundary value problem are approximated using ‘element-by-element’ piecewise Kriging interpolation (el-KI. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. This paper presents a numerical study on the accuracy and convergence of the el-KI in function fitting problems. Several examples of functions in two-dimensional space are employed in this study. The results show that very accurate function fittings and excellent convergence can be attained by the el-KI.
Solar Electric Generating System II finite element analysis
Energy Technology Data Exchange (ETDEWEB)
Dohner, J.L.; Anderson, J.R.
1994-04-01
On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.
Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications
Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.
Institute of Scientific and Technical Information of China (English)
张士宏; 尚彦凌; 郎利辉; 康达昌; 王仲仁
2001-01-01
The theory and features of the dynamic explicit finite element methods are discussed, the available various commercial FEM codes used for sheet metal forming simulation are introduced. The dynamic explicit FEM code LS-DYNA3D is used for the simulation of a few sheet metal forming processes. Process defects such as wrinkling, local thinning and ruptures are predicted. The design of the tools and the process parameters can thus be improved. The time and the costs of the manufacturing of the tools are reduced, so that it is effective and cost-effective to use the dynamic explicit finite element methods for simulation of sheet metal forming production.%介绍了动态显式有限元法的原理和特点，总结讨论了国际现有各种商用有限元软件的情况。采用显式有限元软件LS-DYNA3D 对板材零件冲压过程进行计算机模拟分析，预测冲压过程中可能出现的各种工艺缺陷，例如坯料的起皱、局部减薄和破裂，并以模拟结果为依据提出改进模具和工艺参数的办法，优化工艺参数，可以减少调试和修模的次数，以此实现降低模具费用、缩短制模时间、提高产品成品率和材料利用率，最终达到减少产品成本的目的。
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
2005-01-01
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent
Finite Element Vibration Analysis of Beams, Plates and Shells
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element vibration analysis of beams, plates and shells that were published in 1994–1998. It contains 361 citations. Also included, as separated subsections, are vibration analysis of composite materials and vibration analysis of structural elements with cracks/contacts.
A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Tian-xiao Zhou; Xiao-ping Xie
2003-01-01
In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.
Efficient Finite Element Methods for Transient Analysis of Shells.
1985-04-01
Triangular Shell Element with Improved Membrane Interpolation," Communications in Applied Numerical Methods , in press 1985. Results of this work were...in Applied Numerical Methods , to appear. G.R. Cowper, G.M. Lindberg and M.D. Olson (1970), "A Shallow Shell Finite Element of Triangular Shape," Int. J
Research of Stamp Forming Simulation Based on Finite Element Method
Institute of Scientific and Technical Information of China (English)
SU Xaio-ping; XU Lian
2008-01-01
We point out that the finite element method offers a greta functional improvement for analyzing the stamp forming process of an automobile panel. Using the finite element theory and the simulation method of sheet stamping forming, the element model of sheet forming is built based on software HyperMesh,and the simulation of the product's sheet forming process is analyzed based on software Dynaform. A series of simulation results are obtained. It is clear that the simulation results from the theoretical basis for the product's die design and are useful for selecting process parameters.
Preconditioned CG-solvers and finite element grids
Energy Technology Data Exchange (ETDEWEB)
Bauer, R.; Selberherr, S. [Technical Univ. of Vienna (Austria)
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
ELASTO-PLASTIC FINITE ELEMENT ANALYSIS OF HOOK'S JOINT
Directory of Open Access Journals (Sweden)
Adnan ATICI
1996-03-01
Full Text Available In this study, stress analysis has been done in Hooke's joint by the finite element method. In finite element meshing, isoparametric quadrilateral elements with four nodes has been chosen and Lagrange polynomial has been used as the interpolation function. The special computer program has been written for the automatic mesh generation. In addition the other program has been developed to solve the finite element problems. Elastoplastic stress analysis is done to calculate the residual stresses in hooke's joint. Elasto-plastic stress values are calculated under loading from 400 daN to 1000 daN with increment of 100 daN. In this analysis "The initial stress method" is used.
Finite element analysis of piezoelectric underwater transducers for acoustic characteristics
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae Hwan [Inha University, Incheon (Korea, Republic of); Kim, Heung Soo [Catholic University, Daegu (Korea, Republic of)
2009-02-15
This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater transducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. An in-house finite element program is developed and technical issues for implementing the program are explained. Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the areas of nondestructive evaluation, underwater acoustics and bioengineering
Finite element analysis for acoustic characteristics of a magnetostrictive transducer
Kim, Jaehwan; Jung, Eunmi
2005-12-01
This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.
A finite element approach to x-ray optics design
Honkanen, A. P.; Ferrero, C.; Guigay, J. P.; Mocella, V.
2017-05-01
Dynamical diffraction in a deformed (often bent) crystal is described by the Takagi equations 1 which, in general, have to be solved numerically on a regular 2-D grid of points representing a planar cross section of the crystal in which the diffraction of an incident X-ray wavefront occurs . Presently, the majority of numerical approaches are based on a finite difference solving scheme2-4 which can be easily implemented on a regular Cartesian grid but is not suitable for deformed meshes. In this case, the inner deformed crystal structure can be taken into account, but not the shape of the crystal surface if this differs substantially from a planar profile 5,6. Conversely, a finite element method (FEM) can be easily applied to a deformed mesh and serves very well to the purpose of modelling any incident wave on an arbitrarily shaped entrance surface 7 e.g. that of a bent crystal or a crystal submitted to a strong heat load 8-10. For instance, the cylindrical shape of the surface of a strongly bent crystal plate can easily be taken into account in a FEM calculation. Bent crystals are often used as focusing optical elements in Xray beamlines 11-13. In the following, we show the implementation of a general numerical framework for describing the propagation of X-rays inside a crystal based on the solution of the Takagi equations via the COMSOL Multiphysics FEM software package (www.comsol.com). A cylindrically bent crystal will be taken as an example to illustrate the capabilities of the new approach.
Effective Finite Elements for Shell Analysis.
1984-02-20
conjunction with a shallow shell theory . It 2 should be noteJ that contrary to the results of earlier investigators [12,19], use of a shallow shell theory in...the inadequacy of the shallow shell theory for the relatively deep element emerging from such a coarse mesh. A considerable improvement is obtained
FINITE ELEMENT METHODS FOR THE NAVIER-STOKES EQUATIONS BY H(div) ELEMENTS
Institute of Scientific and Technical Information of China (English)
Junping Wang; Xiaoshen Wang; Xiu Ye
2008-01-01
We derived and analyzed a new numerical scheme for the Navier-Stokes equations by using H(div) conforming finite elements. A great deal of effort was given to an establishment of some Sobolev-type inequalities for piecewise smooth functions. In particular, the newly derived Sobolev inequalities were employed to provide a mathematical theory for the H(div) finite element scheme. For example, it was proved that the new finite element scheme has solutions which admit a certain boundedness in terms of the input data. A solution uniqueness was also possible when the input data satisfies a certain smallness condition. Optimal-order error estimates for the corresponding finite element solutions were established in various Sobolev norms. The finite element solutions from the new scheme feature a full satisfaction of the continuity equation which is highly demanded in scientific computing.
Institute of Scientific and Technical Information of China (English)
LIANG Xinhua; ZHU Ping; LIN Zhongqin; ZHANG Yan
2007-01-01
A lightweight automotive prototype using alter- native materials and gauge thickness is studied by a numeri- cal method. The noise, vibration, and harshness (NVH) performance is the main target of this study. In the range of 1-150 Hz, the frequency response function (FRF) of the body structure is calculated by a finite element method (FEM) to get the dynamic behavior of the auto-body structure. The pressure response of the interior acoustic domain is solved by a boundary element method (BEM). To find the most contrib- uting panel to the inner sound pressure, the panel acoustic contribution analysis (PACA) is performed. Finally, the most contributing panel is located and the resulting structural optimization is found to be more efficient.
Evaluation of an existing bridge`s modal properties using simplified finite element analysis
Energy Technology Data Exchange (ETDEWEB)
Farrar, C.R.; Duffey, T.A.
1996-02-01
The purpose of this paper is to present results of a simplified approach to the dynamic finite element modeling of composite girder-slab bridges using a single beam element to represent the girder-slab cross section. Dynamic properties calculated with these simplified models are compared to experimental results and results obtained from more detailed shell element models. The method for modeling flexural behavior is first discussed followed by a discussion of modeling torsional behavior. The beam element models accurately calculated the mode shapes of the structure, but the associated resonant frequencies showed some error.
Variational formulation of high performance finite elements: Parametrized variational principles
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
On Using Particle Finite Element for Hydrodynamics Problems Solving
Directory of Open Access Journals (Sweden)
E. V. Davidova
2015-01-01
Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \
Finite Element Analysis of Circular Plate using SolidWorks
Energy Technology Data Exchange (ETDEWEB)
Kang, Yeo Jin; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2011-10-15
Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts
Finite Element Modeling of a Fluid Filled Cylindrical Shell with Active Constrained Layer Damping
Institute of Scientific and Technical Information of China (English)
ZHANG Yi; ZHANG Zhi-yi; TONG Zong-peng; HUA Hong-xing
2005-01-01
On the basis of the piezoelectric theory, Mindlin plate theory, viscoelastic theory and ideal fluid equa tion, the finite element modeling of a fluid-filled cylindrical shell with active constrained layer damping (ACLD) was discussed. Energy methods and Lagrange's equation were used to obtain dynamic equations of the cylindrical shell with ACLD treatments, which was modeled as well with the finite element method. The GHM (Golla-Hughes-McTavish) method was applied to model the frequency dependent damping of viscoelastic material. Ideal and incompressible fluid was considered to establish the dynamic equations of the fluid-filled cylindrical shell with ACLD treatments, Numerical results obtained from the finite element analysis were compared with those from an experiment. The comparison shows that the proposed modeling method is accurate and reliable.
Institute of Scientific and Technical Information of China (English)
GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah
2004-01-01
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.
Three Case Studies in Finite Element Model Updating
Directory of Open Access Journals (Sweden)
M. Imregun
1995-01-01
Full Text Available This article summarizes the basic formulation of two well-established finite element model (FEM updating techniques for improved dynamic analysis, namely the response function method (RFM and the inverse eigensensitivity method (IESM. Emphasis is placed on the similarities in their mathematical formulation, numerical treatment, and on the uniqueness of the resulting updated models. Three case studies that include welded L-plate specimens, a car exhaust system, and a highway bridge were examined in some detail and measured vibration data were used throughout the investigation. It was experimentally observed that significant dynamic behavior discrepancies existed between some of the nominally identical structures, a feature that makes the task of model updating even more difficult because no unequivocal reference data exist in this particular case. Although significant improvements were obtained in all cases where the updating of the FE model was possible, it was found that the success of the updated models depended very heavily on the parameters used, such as the selection and number of the frequency points for RFM, and the selection of modes and the balancing of the sensitivity matrix for IESM. Finally, the performance of the two methods was compared from general applicability, numerical stability, and computational effort standpoints.
A Finite Element Method for Cracked Components of Structures
Institute of Scientific and Technical Information of China (English)
刘立名; 段梦兰; 秦太验; 刘玉标; 柳春图; 余建星
2003-01-01
In this paper, a method is developed for determining the effective stiffness of the cracked component. The stiffness matrix of the cracked component is integrated into the global stiffness matrix of the finite element model of the global platform for the FE calculation of the structure in any environmental conditions. The stiffness matrix equation of the cracked component is derived by use of the finite variation principle and fracture mechanics. The equivalent parameters defining the element that simulates the cracked component are mathematically presented, and can be easily used for the FE calculation of large scale cracked structures together with any finite element program. The theories developed are validated by both lab tests and numerical calculations, and applied to the evaluation of crack effect on the strength of a fixed platform and a self-elevating drilling rig.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Energy Technology Data Exchange (ETDEWEB)
Koning, J M
2004-08-12
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Energy Technology Data Exchange (ETDEWEB)
Koning, Joseph M. [Univ. of California, Berkeley, CA (United States)
2004-03-01
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Finite element modeling for volume phantom in Electrical Impedance Tomography
Directory of Open Access Journals (Sweden)
I. O. Rybina
2011-10-01
Full Text Available Using surface phantom, "shadows" of currents, which flow below and under surface tomographic lays, include on this lay, that is cause of adding errors in reconstruction image. For processing modeling in studied object volume isotropic finite elements should be used. Cube is chosen for finite element modeling in this work. Cube is modeled as sum of six rectangular (in the base pyramids, each pyramid consists of four triangular pyramids (with rectangular triangle in the base and hypotenuse, which is equal to cube rib to provide its uniformity and electrical definition. In the case of modeling on frequencies higher than 100 kHz biological tissue resistivities are complex. In this case weight coefficient k will be complex in received cube electrical model (inverse conductivity matrix of the cube finite element.
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Probabilistic finite elements for transient analysis in nonlinear continua
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
EXPLICIT ERROR ESTIMATES FOR MIXED AND NONCONFORMING FINITE ELEMENTS
Institute of Scientific and Technical Information of China (English)
Shipeng Mao; Zhong-Ci Shi
2009-01-01
In this paper, we study the explicit expressions of the constants in the error estimates of the lowest order mixed and nonconforming finite element methods. We start with an ex-plicit relation between the error constant of the lowest order Raviart-Thomas interpolation error and the geometric characters of the triangle. This gives an explicit error constant of the lowest order mixed finite element method. Furthermore, similar results can be ex-tended to the nonconforming P1 scheme based on its close connection with the lowest order Raviart-Thomas method. Meanwhile, such explicit a priori error estimates can be used as computable error bounds, which are also consistent with the maximal angle condition for the optimal error estimates of mixed and nonconforming finite element methods.Mathematics subject classification: 65N12, 65N15, 65N30, 65N50.
Finite element simulation of barge impact into a rigid wall
Directory of Open Access Journals (Sweden)
H.W. Leheta
2014-03-01
Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.
INTERVAL ARITHMETIC AND STATIC INTERVAL FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
郭书祥; 吕震宙
2001-01-01
When the uncertainties of structures may be bounded in intervals, through some suitable discretization, interval finite element method can be constructed by combining the interval analysis with the traditional finite element method(FEM). The two parameters,median and deviation, were used to represent the uncertainties of interval variables. Based on the arithmetic rules of intervals, some properties and arithmetic rules of interval variables were demonstrated. Combining the procedure of interval analysis with FEM, a static linear interval finite element method was presented to solve the non-random uncertain structures. The solving of the characteristic parameters of n-freedom uncertain displacement field of the static governing equation was transformed into 2 n-order linear equations. It is shown by a numerical example that the proposed method is practical and effective.
Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method
Directory of Open Access Journals (Sweden)
Emir Gülümser
2014-01-01
Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.
Splitting extrapolation based on domain decomposition for finite element approximations
Institute of Scientific and Technical Information of China (English)
吕涛; 冯勇
1997-01-01
Splitting extrapolation based on domain decomposition for finite element approximations is a new technique for solving large scale scientific and engineering problems in parallel. By means of domain decomposition, a large scale multidimensional problem is turned to many discrete problems involving several grid parameters The multi-variate asymptotic expansions of finite element errors on independent grid parameters are proved for linear and nonlin ear second order elliptic equations as well as eigenvalue problems. Therefore after solving smaller problems with similar sizes in parallel, a global fine grid approximation with higher accuracy is computed by the splitting extrapolation method.
Least-squares finite-element lattice Boltzmann method.
Li, Yusong; LeBoeuf, Eugene J; Basu, P K
2004-06-01
A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain complex or irregular geometric boundaries by using finite-element method's geometric flexibility and numerical stability, while employing efficient and accurate least-squares optimization. For the pure advection equation on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accuracy in time, with unconditional stability in the time domain. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow and Couette flow.
NURBS-enhanced finite element method for Euler equations
Sevilla Cárdenas, Rubén; Fernandez Mendez, Sonia; Huerta, Antonio , coaut.
2008-01-01
This is the pre-peer reviewed version of the following article: Sevilla, R.; Fernandez, S.; Huerta, A. NURBS-enhanced finite element method for Euler equations. "International journal for numerical methods in fluids", Juliol 2008, vol. 57, núm. 9, p. 1051-1069., which has been published in final form at http://www3.interscience.wiley.com/journal/117905455/abstract In this work, the NURBS-enhanced finite element method (NEFEM) is combined with a discontinuous Galerkin (DG) formulation for t...
Substructure System Identification for Finite Element Model Updating
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
FINITE ELEMENT IMPLEMENTATION OF DELAMINATION IN COMPOSITE PLATES
Directory of Open Access Journals (Sweden)
Milan Žmindák
2012-12-01
Full Text Available Modelling of composite structures by finite element (FE codes to effectively model certain critical failure modes such as delamination is limited. Previous efforts to model delamination and debonding failure modes using FE codes have typically relied on ad hoc failure criteria and quasi-static fracture data. Improvements to these modelling procedures can be made by using an approach based on fracture mechanics. A study of modelling delamination using the finite element code ANSYS was conducted. This investigation demonstrates the modelling of composites through improved delamination modelling. Further developments to this approach may be improved.
THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM
Institute of Scientific and Technical Information of China (English)
Dongying Hua; Lieheng Wang
2007-01-01
We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from (O)(h3/4) to quasi-optimal (O)(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available,the convergence rate can be improved to the optimal (O)(h) as expected by the linear approximation.