Modelling of Attentional Dwell Time
DEFF Research Database (Denmark)
Petersen, Anders; Kyllingsbæk, Søren; Bundesen, Claus
2009-01-01
into the temporal domain. In the neural interpretation of TVA (NTVA; Bundesen, Habekost and Kyllingsbæk, 2005), processing resources are implemented as allocation of cortical cells to objects in the visual field. A feedback mechanism is then used to keep encoded objects in VSTM alive. The proposed model...... of attentional dwell time extends these mechanisms by proposing that the processing resources (cells) already engaged in a feedback loop (i.e. allocated to an object) are locked in VSTM and therefore cannot be allocated to other objects in the visual field before the encoded object has been released...
Yet one more dwell time algorithm
Haberl, Alexander; Rascher, Rolf
2017-06-01
The current demand of even more powerful and efficient microprocessors, for e.g. deep learning, has led to an ongoing trend of reducing the feature size of the integrated circuits. These processors are patterned with EUV-lithography which enables 7 nm chips [1]. To produce mirrors which satisfy the needed requirements is a challenging task. Not only increasing requirements on the imaging properties, but also new lens shapes, such as aspheres or lenses with free-form surfaces, require innovative production processes. However, these lenses need new deterministic sub-aperture polishing methods that have been established in the past few years. These polishing methods are characterized, by an empirically determined TIF and local stock removal. Such a deterministic polishing method is ion-beam-figuring (IBF). The beam profile of an ion beam is adjusted to a nearly ideal Gaussian shape by various parameters. With the known removal function, a dwell time profile can be generated for each measured error profile. Such a profile is always generated pixel-accurately to the predetermined error profile, with the aim always of minimizing the existing surface structures up to the cut-off frequency of the tool used [2]. The processing success of a correction-polishing run depends decisively on the accuracy of the previously computed dwell-time profile. So the used algorithm to calculate the dwell time has to accurately reflect the reality. But furthermore the machine operator should have no influence on the dwell-time calculation. Conclusively there mustn't be any parameters which have an influence on the calculation result. And lastly it should take a minimum of machining time to get a minimum of remaining error structures. Unfortunately current dwell time algorithm calculations are divergent, user-dependent, tending to create high processing times and need several parameters to bet set. This paper describes an, realistic, convergent and user independent dwell time algorithm. The
Critical dwell time of switched linear systems
Institute of Scientific and Technical Information of China (English)
Lijun ZHANG; Chunwen LI
2006-01-01
In this paper, we consider the relation between the switching dwell time and the stabilization of switched linear control systems. First of all, a concept of critical dwell time is given for switched linear systems without control inputs, and the critical dwell time is taken as an arbitrary given positive constant for a switched linear control systems with controllable switching models. Secondly, when a switched linear system has many stabilizable switching models, the problem of stabilization of the overall system is considered. An on-line feedback control is designed such that the overall system is asymptotically stabilizable under switching laws which depend only on those of uncontrollable subsystems of the switching models. Finally, when a switched system is partially controllable (While some switching models are probably unstabilizable), an on-line feedback control and a cyclic switching strategy are designed such that the overall system is asymptotically stabilizable if all switching models of this uncontrollable subsystems are asymptotically stable. In addition,algorithms for designing switching laws and controls are presented.
Pitts, T
1998-01-01
This theory makes time symmetric by Weyl's definition; it hypothesizes that space, time and mass-energy expand outward from the Big Bang along the time axis equally in the (+-) and (-) directions. In the Feynman-Stueckelberg Interpretation, antimatter is identical to matter but moves backward in time. This essay argues that this interpretation is physically real via an analysis of the time-symmetry of the Schrodinger equation. As time expands from zero, in both directions in time away from the origin, quantum uncertainty allows a brief, decreasing leakage of mass between (+-) and (-) universes. Matter leaking from (-) to (+-) time moves forward in time, producing a preponderance of matter in (+-) time. Antimatter leakage from (+-) time to (-) time in the same way produces an antimatter preponderance in the (-) time universe. The remaining opposite particles left behind after the leakage, (antimatter and matter respectively) proceeding outward in antitime and time respectively, after many annihilations also in...
The effect of masking in the attentional dwell time paradigm
DEFF Research Database (Denmark)
Petersen, Anders
2009-01-01
A temporary functional blindness to the second of two spatially separated targets has been identified in numerous studies of temporal visual attention. This effect is known as attentional dwell time and is maximal 200 to 500 ms after presentation of the first target (e.g. Duncan, Ward, Shapiro......, 1994). In most studies of attentional dwell time, two masked targets have been used. Moore et al. (1996) have criticised the masking of the first target when measuring the attentional dwell time, finding a shorter attentional dwell time when the first mask was omitted. In the presented work, the effect...... an impairment of the second target. Hence, the attentional dwell time may be a combined effect arising from attending to both the first target and its mask....
Parity-time symmetry broken by point-group symmetry
Energy Technology Data Exchange (ETDEWEB)
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar; Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2014-04-15
We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.
Balvert, M.; Gorissen, B.L.; den Hertog, D.; Hoffmann, A.L.
2015-01-01
Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell
Predictive modelling of running and dwell times in railway traffic
Kecman, P.; Goverde, R.M.P.
2015-01-01
Accurate estimation of running and dwell times is important for all levels of planning and control of railway traffic. The availability of historical track occupation data with a high degree of granularity inspired a data-driven approach for estimating these process times. In this paper we present
Effective dissipation: breaking time-reversal symmetry
Brown, Aidan I
2016-01-01
At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. Such insight into symmetry-breaking factors that produce particularly high time asymmetry suggests generalizations to a broader class of systems.
Coupled oscillators with parity-time symmetry
Tsoy, Eduard N.
2017-02-01
Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed.
Field, J H
2016-01-01
Space-time intervals corresponding to different events on the worldline of any ponderable object (for example a clock) are time-like. In consequence, in the analysis of any space-time experiment involving clocks only the region for $c\\Delta t \\ge 0$ between the line $\\Delta x = 0$ and the light cone projection $c\\Delta t = \\Delta x$ of the $c\\Delta t$ versus $\\Delta x$ Minkowski plot is physically relevant. This breaks the manifest space-time symmetry of the plot. A further consequence is the unphysical nature of the `relativity of simultaneity' and `length contraction' effects of conventional special relativity theory. The only modification of space-time transformation laws in passing from Galilean to special relativity is then the replacement of universal Newtonian time by a universal (position independent) time dilation effect for moving clocks.
Time-reversal symmetry and random polynomials
Braun, D; Zyczkowski, K
1996-01-01
We analyze the density of roots of random polynomials where each complex coefficient is constructed of a random modulus and a fixed, deterministic phase. The density of roots is shown to possess a singular component only in the case for which the phases increase linearly with the index of coefficients. This means that, contrary to earlier belief, eigenvectors of a typical quantum chaotic system with some antiunitary symmetry will not display a clustering curve in the stellar representation. Moreover, a class of time-reverse invariant quantum systems is shown, for which spectra display fluctuations characteristic of orthogonal ensemble, while eigenvectors confer to predictions of unitary ensemble.
Is space-time symmetry a suitable generalization of parity-time symmetry?
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo, E-mail: paolo.amore@gmail.com [Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima (Mexico); Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina); Garcia, Javier [INIFTA (UNLP, CCT La Plata-CONICET), División Química Teórica, Diag. 113 y 64 (S/N), Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2014-11-15
We discuss space-time symmetric Hamiltonian operators of the form H=H{sub 0}+igH{sup ′}, where H{sub 0} is Hermitian and g real. H{sub 0} is invariant under the unitary operations of a point group G while H{sup ′} is invariant under transformation by elements of a subgroup G{sup ′} of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0
Dynamics symmetries of Hamiltonian system on time scales
Energy Technology Data Exchange (ETDEWEB)
Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)
2014-04-15
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Dynamics symmetries of Hamiltonian system on time scales
Peng, Keke; Luo, Yiping
2014-04-01
In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.
Time-symmetry breaking in turbulence
Jucha, Jennifer; Pumir, Alain; Bodenschatz, Eberhard
2014-01-01
In three-dimensional turbulent flows, the flux of energy from large to small scales breaks time symmetry. We show here that this irreversibility can be quantified by following the relative motion of several Lagrangian tracers. We find by analytical calculation, numerical analysis and experimental observation that the existence of the energy flux implies that, at short times, two particles separate temporally slower forwards than backwards, and the difference between forward and backward dispersion grows as $t^3$. We also find the geometric deformation of material volumes, surrogated by four points spanning an initially regular tetrahedron, to show sensitivity to the time-reversal with an effect growing linearly in $t$. We associate this with the structure of the strain rate in the flow.
Geometric Approach to Lie Symmetry of Discrete Time Toda Equation
Institute of Scientific and Technical Information of China (English)
JIA Xiao-Yu; WANG Na
2009-01-01
By using the extended Harrison and Estabrook geometric approach,we investigate the Lie symmetry of discrete time Toda equation from the geometric point of view.Its one-dimensional continuous symmetry group is presented.
Lie symmetry analysis of some time fractional partial differential equations
El Kinani, E. H.; Ouhadan, A.
2015-04-01
This paper uses Lie symmetry analysis to reduce the number of independent variables of time fractional partial differential equations. Then symmetry properties have been employed to construct some exact solutions.
Estimation of train dwell time at short stops based on track occupation event data
Li, D.; Daamen, W.; Goverde, R.M.P.
2015-01-01
Train dwell time is one of the most unpredictable components of railway operations mainly due to the varying volumes of alighting and boarding passengers. For reliable estimations of train running times and route conflicts on main lines it is however necessary to obtain accurate estimations of dwell
Directory of Open Access Journals (Sweden)
Zhibin Jiang
2015-04-01
Full Text Available Understanding the nature of rail transit dwell time has potential benefits for both the users and the operators. Crowded passenger trains cause longer dwell times and may prevent some passengers from boarding the first available train that arrives. Actual dwell time and the process of passenger alighting and boarding are interdependent through the sequence of train stops and propagated delays. A comprehensive and feasible dwell time simulation model was developed and optimized to address the problems associated with scheduled timetables. The paper introduces the factors that affect dwell time in urban rail transit systems, including train headway, the process and number of passengers alighting and boarding the train, and the inability of train doors to properly close the first time because of overcrowded vehicles. Finally, based on a time-driven micro-simulation system, Shanghai rail transit Line 8 is used as an example to quantify the feasibility of scheduled dwell times for different stations, directions of travel and time periods, and a proposed dwell time during peak hours in several crowded stations is presented according to the simulation results.
Balvert, Marleen; Gorissen, Bram L.; den Hertog, Dick; Hoffmann, Aswin L.
2015-01-01
Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2-5 cc. However, this comes at a cost of a reduction in D90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D90% against uncertainty in dwell positions for both models.
Floquet topological phases protected by time glide symmetry
Morimoto, Takahiro; Po, Hoi Chun; Vishwanath, Ashvin
2017-05-01
We study Floquet topological phases in periodically driven systems that are protected by "time glide symmetry", a combination of reflection and half time period translation. Time glide symmetry is an analog of glide symmetry with partial time translation replacing the partial space translation and, hence, is an intrinsically dynamical symmetry which may be engineered in periodically driven systems by exploiting the controllability of driving. We present lattice models of time glide symmetric Floquet topological insulators in two and three dimensions. The topological numbers characterizing those Floquet topological phases are derived from the half-period time-evolution operator along with time glide operator. Moreover, we classify Floquet topological phases protected by time glide symmetry in general dimensions using a Clifford algebra approach. The obtained classification table is similar to that for topological crystalline insulators protected by static reflection symmetry, but shows nontrivial entries in different combination of symmetries, which clarifies that time glide symmetric Floquet topological phases are a distinct set of topological phases from topological crystalline insulators. We also classify Floquet topological phases with "time screw symmetry", defined as a twofold spatial rotation accompanied by half-period time translation.
Gauge and space-time symmetry unification
Besprosvany, J
2000-01-01
Unification ideas suggest an integral treatment of fermion and boson spin and gauge-group degrees of freedom. Hence, a generalized quantum field equation, based on Dirac's, is proposed and investigated which contains gauge and flavor symmetries, determines vector gauge field and fermion solution representations, and fixes their mode of interaction. The simplest extension of the theory with a 6-dimensional Clifford algebra predicts an SU(2)_L X U(1) symmetry, which is associated with the isospin and the hypercharge, their vector carriers, two-flavor charged and chargeless leptons, and scalar particles. A mass term produces breaking of the symmetry to an electromagnetic U(1), and a Weinberg's angle theta_W with sin^2(theta_W)=.25 . A more realistic 8-d extension gives coupling constants of the respective groups g=1/sqrt 2~.707 and g'=1/sqrt 6~.408, with the same theta_W.
A Fuzzy Logic-Based Approach for Estimation of Dwelling Times of Panama Metro Stations
Directory of Open Access Journals (Sweden)
Aranzazu Berbey Alvarez
2015-04-01
Full Text Available Passenger flow modeling and station dwelling time estimation are significant elements for railway mass transit planning, but system operators usually have limited information to model the passenger flow. In this paper, an artificial-intelligence technique known as fuzzy logic is applied for the estimation of the elements of the origin-destination matrix and the dwelling time of stations in a railway transport system. The fuzzy inference engine used in the algorithm is based in the principle of maximum entropy. The approach considers passengers’ preferences to assign a level of congestion in each car of the train in function of the properties of the station platforms. This approach is implemented to estimate the passenger flow and dwelling times of the recently opened Line 1 of the Panama Metro. The dwelling times obtained from the simulation are compared to real measurements to validate the approach.
Huang, Chuangxia; Cao, Jie; Cao, Jinde
2016-10-01
This paper addresses the exponential stability of switched cellular neural networks by using the mode-dependent average dwell time (MDADT) approach. This method is quite different from the traditional average dwell time (ADT) method in permitting each subsystem to have its own average dwell time. Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals, linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex approach, we derived some novel and less conservative conditions on exponential stability of the networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem is smaller and the switched system stabilizes faster. The obtained results extend and improve some existing ones. Moreover, the validness and effectiveness of these results are demonstrated through numerical simulations.
Foster, B. K.; Beese, A. M.; Keist, J. S.; McHale, E. T.; Palmer, T. A.
2017-09-01
Path planning in additive manufacturing (AM) processes has an impact on the thermal histories experienced at discrete locations in simple and complex AM structures. One component of path planning in directed energy deposition is the time required for the laser or heat source to return to a given location to add another layer of material. As structures become larger and more complex, the length of this interlayer dwell time can significantly impact the resulting thermal histories. The impact of varying dwell times between 0 and 40 seconds on the microstructural and mechanical properties of Inconel® 625 and Ti-6Al-4V builds has been characterized. Even though these materials display different microstructures and solid-state phase transformations, the addition of an interlayer dwell generally led to a finer microstructure in both materials that impacted the resulting mechanical properties. With the addition of interlayer dwell times up to 40 seconds in the Inconel® 625 builds, finer secondary dendrite arm spacing values, produced by changes in the thermal history, correspond to increased yield and tensile strengths. These mechanical properties did not appear to change significantly, however, for dwell times greater than 20 seconds in the Inconel® 625 builds, indicating that longer dwell times have a minimal impact. The addition of interlayer dwell times in Ti-6Al-4V builds resulted in a slight decrease in the measured alpha lath widths and a much more noticeable decrease in the width of prior beta grains. In addition, the yield and tensile values continued to increase, nearly reaching the values observed in the rolled plate substrate material with dwell times up to 40 seconds.
Time-reversal symmetry and random polynomials
Braun, D; Kus, M.; Zyczkowski, K.
1996-01-01
We analyze the density of roots of random polynomials where each complex coefficient is constructed of a random modulus and a fixed, deterministic phase. The density of roots is shown to possess a singular component only in the case for which the phases increase linearly with the index of coefficients. This means that, contrary to earlier belief, eigenvectors of a typical quantum chaotic system with some antiunitary symmetry will not display a clustering curve in the stellar representation. M...
Space-Time Symmetries of Noncommutative Spaces
Calmet, Xavier
2004-01-01
We define a noncommutative Lorentz symmetry for canonical noncommutative spaces. The noncommutative vector fields and the derivatives transform under a deformed Lorentz transformation. We show that the star product is invariant under noncommutative Lorentz transformations. We then apply our idea to the case of actions obtained by expanding the star product and the fields taken in the enveloping algebra via the Seiberg-Witten maps and verify that these actions are invariant under these new non...
Noncommutative geometry, symmetries and quantum structure of space-time
Energy Technology Data Exchange (ETDEWEB)
Govindarajan, T R [Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113 (India); Gupta, Kumar S [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Harikumar, E [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Meljanac, S, E-mail: trg@imsc.res.in, E-mail: kumars.gupta@saha.ac.in, E-mail: harisp@uohyd.ernet.in, E-mail: meljanac@irb.hr [Rudjer Botkovic Institute, Bijenicka c.54, HR-10002 Zagreb (Croatia)
2011-07-08
We discuss how space-time noncommutativity affects the symmetry groups and particle statistics. Assuming that statistics is superselected under a symmetry transformation, we argue that the corresponding flip operator must be twisted. It is argued that the twisted statistics naturally leads to a deformed oscillator algebra for scalar fields in such a background.
Finite-frequency model reduction of continuous-time switched linear systems with average dwell time
Ding, Da-Wei; Du, Xin
2016-11-01
This paper deals with the model reduction problem of continuous-time switched linear systems with finite-frequency input signals. The objective of the paper is to propose a finite-frequency model reduction method for such systems. A finite-frequency ? performance index is first defined in frequency domain, and then a finite-frequency performance analysis condition is derived by Parseval's theorem. Combined with the average dwell time approach, sufficient conditions for the existence of exponentially stable reduced-order models are derived. An algorithm is proposed to construct the desired reduced-order models. The effectiveness of the proposed method is illustrated by a numerical example.
Finding tree symmetries using continuous-time quantum walk
Institute of Scientific and Technical Information of China (English)
Wu Jun-Jie; Zhang Bai-Da; Tang Yu-Hua; Qiang Xiao-Gang; Wang Hui-Quan
2013-01-01
Quantum walk,the quantum counterpart of random walk,is an important model and widely studied to develop new quantum algorithms.This paper studies the relationship between the continuous-time quantum walk and the symmetry of a graph,especially that of a tree.Firstly,we prove in mathematics that the symmetry of a graph is highly related to quantum walk.Secondly,we propose an algorithm based on the continuous-time quantum walk to compute the symmetry of a tree.Our algorithm has better time complexity O(N3) than the current best algorithm.Finally,through testing three types of 10024 trees,we find that the symmetry of a tree can be found with an extremely high efficiency with the help of the continuous-time quantum walk.
An ELM-Based Approach for Estimating Train Dwell Time in Urban Rail Traffic
Directory of Open Access Journals (Sweden)
Wen-jun Chu
2015-01-01
Full Text Available Dwell time estimation plays an important role in the operation of urban rail system. On this specific problem, a range of models based on either polynomial regression or microsimulation have been proposed. However, the generalization performance of polynomial regression models is limited and the accuracy of existing microsimulation models is unstable. In this paper, a new dwell time estimation model based on extreme learning machine (ELM is proposed. The underlying factors that may affect urban rail dwell time are analyzed first. Then, the relationships among different factors are extracted and modeled by ELM neural networks, on basis of which an overall estimation model is proposed. At last, a set of observed data from Beijing subway is used to illustrate the proposed method and verify its overall performance.
Time symmetry in wave-function collapse
Bedingham, D. J.; Maroney, O. J. E.
2017-04-01
The notion of a physical collapse of the wave function is embodied in dynamical collapse models. These involve a modification of the unitary evolution of the wave function so as to give a dynamical account of collapse. The resulting dynamics is at first sight time asymmetric for the simple reason that the wave function depends on those collapse events in the past but not those in the future. Here we show that dynamical wave-function collapse models admit a general description that has no built-in direction of time. Given some simple constraints, we show that there exist empirically equivalent pictures of collapsing wave functions in both time directions, each satisfying the same dynamical rules. A preferred direction is singled out only by the asymmetric initial and final time constraints on the state of the universe.
Influence of overloads on dwell time fatigue crack growth in Inconel 718
Energy Technology Data Exchange (ETDEWEB)
Saarimäki, Jonas, E-mail: jonas.saarimaki@liu.se [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Moverare, Johan [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Siemens Industrial Turbomachinery AB, Materials Technology, SE-61283 Finspång (Sweden); Eriksson, Robert; Johansson, Sten [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden)
2014-08-26
Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate.
Intermittent stochastic fields and space-time symmetry
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole E.; Schmiegel, Jürgen
We present a spatio-temporal modelling framework for stochastic fields that obey exact symmetry in space and time, i.e. the field amplitude considered as a stochastic process in time at a fixed position in space is identical, as a stochastic process, to the field amplitude considered as a stochas...
Asymptotic symmetries of de Sitter space-time
Energy Technology Data Exchange (ETDEWEB)
Chrusciel, P.T. (Polska Akademia Nauk, Warsaw. Inst. Fizyki)
1981-01-01
The general form of the metric of an axially-symmetrical asymptotically de Sitter space-time fulfilling a radiation condition was found. Using the Bondi-Metzner method, the group of asymptotic symmetries of de Sitter space-time was found. The results obtained in this work agree only partially with Penrose's theory.
Abad-Álvaro, Isabel; Peña-Vázquez, Elena; Bolea, Eduardo; Bermejo-Barrera, Pilar; Castillo, Juan R; Laborda, Francisco
2016-07-01
The quality of the quantitative information in single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) depends directly on the number concentration of the nanoparticles in the sample analyzed, which is proportional to the flux of nanoparticles through the plasma. Particle number concentrations must be selected in accordance with the data acquisition frequency, to control the precision from counting statistics and the bias, which is produced by the occurrence of multiple-particle events recorded as single-particle events. With quadrupole mass spectrometers, the frequency of data acquisition is directly controlled by the dwell time. The effect of dwell times from milli- to microseconds (10 ms, 5 ms, 100 μs, and 50 μs) on the quality of the quantitative data has been studied. Working with dwell times in the millisecond range, precision figures about 5 % were achieved, whereas using microsecond dwell times, the suitable fluxes of nanoparticles are higher and precision was reduced down to 1 %; this was independent of the dwell time selected. Moreover, due to the lower occurrence of multiple-nanoparticle events, linear ranges are wider when dwell times equal to or shorter than 100 μs are used. A calculation tool is provided to determine the optimal concentration for any instrument or experimental conditions selected. On the other hand, the use of dwell times in the microsecond range reduces significantly the contribution of the background and/or the presence of dissolved species, in comparison with the use of millisecond dwell times. Although the use of dwell times equal to or shorter than 100 μs offers improved performance working in single-particle mode, the use of conventional dwell times (3-10 ms) should not be discarded, once their limitations are known.
Time-reversal symmetry breaking in quantum billiards
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Florian
2009-01-26
The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally
Stochastic kinetics of a single headed motor protein: dwell time distribution of KIF1A
Garai, Ashok
2010-01-01
KIF1A, a processive single headed kinesin superfamily motor, hydrolyzes Adenosine triphosphate (ATP) to move along a filamentous track called microtubule. The stochastic movement of KIF1A on the track is characterized by an alternating sequence of pause and translocation. The sum of the durations of pause and the following translocation defines the dwell time at the binding site on the microtubule. Using the NOSC model (Nishinari et. al. PRL, {\\bf 95}, 118101 (2005)), which captures the Brownian ratchet mechanism of individual KIF1A along with its biochemical cycle, we systematically derive an analytical expression for the dwell time distribution. In principle, our theoretical prediction can be tested by carrying out single-molecule experiments with adequate spatio-temporal resolution.
Avelar, Ariane Ferreira Machado; Peterlini, Maria Angélica Sorgini; da Pedreira, Mavilde Luz Gonçalves
2013-06-01
Randomized controlled trial which aimed to verify whether the use of vascular ultrasound (VUS) increases assertiveness in the use of peripheral venous catheter in children, and the catheter dwell time, when compared to traditional puncture. Data were collected after approval of theethical merit. Children and adolescents undergoing VUS-guided peripheral intravenous (GVUS) or puncture guided by clinical assessment of the venous conditions(CG) were included in the study. Significance level was set at pAssertiveness was found in 73 (71.6%) GVUS catheters and in 84(71.8%) of the CG (p=0.970), and catheter dwell time presented a median of less than one day in both groups (p=0.121), showing nostatistically significant difference. VUS did not significantly influence the results of the dependent variables investigated. ClinicalTrials.govNCT00930254.
Long, Lijun; Zhao, Jun
2015-07-01
This paper investigates the problem of adaptive neural tracking control via output-feedback for a class of switched uncertain nonlinear systems without the measurements of the system states. The unknown control signals are approximated directly by neural networks. A novel adaptive neural control technique for the problem studied is set up by exploiting the average dwell time method and backstepping. A switched filter and different update laws are designed to reduce the conservativeness caused by adoption of a common observer and a common update law for all subsystems. The proposed controllers of subsystems guarantee that all closed-loop signals remain bounded under a class of switching signals with average dwell time, while the output tracking error converges to a small neighborhood of the origin. As an application of the proposed design method, adaptive output feedback neural tracking controllers for a mass-spring-damper system are constructed.
Quantum transport enhancement by time-reversal symmetry breaking.
Zimborás, Zoltán; Faccin, Mauro; Kádár, Zoltán; Whitfield, James D; Lanyon, Ben P; Biamonte, Jacob
2013-01-01
Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry of the unitary dynamics in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.
The Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times
DEFF Research Database (Denmark)
Fonseca, Joao Filipe Paiva; Larsen, Allan; van der Hurk, Evelien;
times at important transfer points based on expected passenger ows. We introduce a compact mixed integer linear formulation of the SVSPSP-FDT able to address small instances. We also present a meta-heuristic approach to solve medium/large instances of the problem. The e ectiveness of the proposed......In this talk, we deal with a generalization of the well-known Vehicle Scheduling Problem(VSP) that we call Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times (SVSPSP-FDT). The SVSPSP-FDT generalizes the VSP because the original timetables of the trips can...
Random Dirac operators with time-reversal symmetry
Sadel, Christian
2009-01-01
Quasi-one-dimensional stochastic Dirac operators with an odd number of channels, time reversal symmetry but otherwise efficiently coupled randomness are shown to have one conducting channel and absolutely continuous spectrum of multiplicity two. This follows by adapting the criteria of Guivac-Raughi and Goldsheid-Margulis to the analysis of random products of matrices in the group SO$^*(2L)$, and then a version of Kotani theory for these operators. Absence of singular spectrum can be shown by adapting an argument of Jaksic-Last if the potential contains random Dirac peaks with absolutely continuous distribution.
Fluctuations in Markov Processes Time Symmetry and Martingale Approximation
Komorowski, Tomasz; Olla, Stefano
2012-01-01
The present volume contains the most advanced theories on the martingale approach to central limit theorems. Using the time symmetry properties of the Markov processes, the book develops the techniques that allow us to deal with infinite dimensional models that appear in statistical mechanics and engineering (interacting particle systems, homogenization in random environments, and diffusion in turbulent flows, to mention just a few applications). The first part contains a detailed exposition of the method, and can be used as a text for graduate courses. The second concerns application to exclu
Signatures of time reversal symmetry breaking in multiband superconductors
Maiti, Saurabh
Multiband superconductors serve as natural host to several possible gound states that compete with each other. At the boundaries of such competing phases, the system usually compromises and settles for `mixed' phases that can show intriguing properties like co-existence of magnetism and superconductiivty or even co-existence of different superconducting phases. The latter is particularly interesting as it can lead to non-magnetic ground states that spontaneously break Time-Reversal symmetry. While the experimental verification of such states has proved to been challenging, the theoretical investigations have provided exciting new insights into the nature of the ground state and its excitations all of which have experimental consequences of some sort. These include extrinsic properties like spontaneous currents around impurity sites, and intrinsic properties in the form of collective excitations. These collective modes bear a unique signature and should provide clear evidence for time reversal symmetry broken state. While the results are general, in light of recent Raman scattering experiments, its direct relevance to extremely hole doped Ba(1-x)K(FeAs)2 will be presented where a strong competition of s-wave and d-wave ground state is expected.
Spontaneous breaking of time-reversal symmetry in topological insulators
Energy Technology Data Exchange (ETDEWEB)
Karnaukhov, Igor N., E-mail: karnaui@yahoo.com
2017-06-21
Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.
Eisenhart lifts and symmetries of time-dependent systems
Cariglia, M; Gibbons, G W; Horvathy, P A
2016-01-01
Certain dissipative systems, such as Caldirola and Kannai's damped simple harmonic oscillator, may be modelled by time-dependent Lagrangian and hence time dependent Hamiltonian systems with $n$ degrees of freedom. In this paper we treat these systems, their projective and conformal symmetries as well as their quantisation from the point of view of the Eisenhart lift to a Bargmann spacetime in $n+2$ dimensions, equipped with its covariantly constant null Killing vector field. Reparametrization of the time variable corresponds to conformal rescalings of the Bargmann metric. We show how the Arnold map lifts to Bargmann spacetime. We contrast the greater generality of the Caldirola-Kannai approach with that of Arnold and Bateman. At the level of quantum mechanics, we are able to show how the relevant Schr\\"odinger equation emerges naturally using the techniques of quantum field theory in curved spacetimes, since a covariantly constant null Killing vector field gives rise to well defined one particle Hilbert space...
Fission yeast mtr1p regulates interphase microtubule cortical dwell-time
Directory of Open Access Journals (Sweden)
Frédérique Carlier-Grynkorn
2014-06-01
Full Text Available The microtubule cytoskeleton plays important roles in cell polarity, motility and division. Microtubules inherently undergo dynamic instability, stochastically switching between phases of growth and shrinkage. In cells, some microtubule-associated proteins (MAPs and molecular motors can further modulate microtubule dynamics. We present here the fission yeast mtr1+, a new regulator of microtubule dynamics that appears to be not a MAP or a motor. mtr1-deletion (mtr1Δ primarily results in longer microtubule dwell-time at the cell tip cortex, suggesting that mtr1p acts directly or indirectly as a destabilizer of microtubules. mtr1p is antagonistic to mal3p, the ortholog of mammalian EB1, which stabilizes microtubules. mal3Δ results in short microtubules, but can be partially rescued by mtr1Δ, as the double mutant mal3Δ mtr1Δ exhibits longer microtubules than mal3Δ single mutant. By sequence homology, mtr1p is predicted to be a component of the ribosomal quality control complex. Intriguingly, deletion of a predicted ribosomal gene, rps1801, also resulted in longer microtubule dwell-time similar to mtr1Δ. The double-mutant mal3Δ rps1801Δ also exhibits longer microtubules than mal3Δ single mutant alone. Our study suggests a possible involvement of mtr1p and the ribosome complex in modulating microtubule dynamics.
Sharma, Ajeet K
2010-01-01
Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid subunits of the protein is dictated by the sequence of codons (triplets of nucleotide subunits) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechano-chemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is defined as the time of dwell of the ribosome at the corresponding codon. We present an analytical calculation of the distribution of the dwell times of a ribosome in our model. Our theoretical prediction is consistent with the experimental results reported in the literature.
Sharma, Ajeet K; Chowdhury, Debashish
2011-04-01
Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.
Robust linear equation dwell time model compatible with large scale discrete surface error matrix.
Dong, Zhichao; Cheng, Haobo; Tam, Hon-Yuen
2015-04-01
The linear equation dwell time model can translate the 2D convolution process of material removal during subaperture polishing into a more intuitional expression, and may provide relatively fast and reliable results. However, the accurate solution of this ill-posed equation is not so easy, and its practicability for a large scale surface error matrix is still limited. This study first solves this ill-posed equation by Tikhonov regularization and the least square QR decomposition (LSQR) method, and automatically determines an optional interval and a typical value for the damped factor of regularization, which are dependent on the peak removal rate of tool influence functions. Then, a constrained LSQR method is presented to increase the robustness of the damped factor, which can provide more consistent dwell time maps than traditional LSQR. Finally, a matrix segmentation and stitching method is used to cope with large scale surface error matrices. Using these proposed methods, the linear equation model becomes more reliable and efficient in practical engineering.
Time reversal and exchange symmetries of unitary gate capacities
Harrow, A W; Harrow, Aram W.; Shor, Peter W.
2005-01-01
Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.
Directory of Open Access Journals (Sweden)
Naoyuki Matsumoto
2015-07-01
Full Text Available One aspect of carbon nanotube (CNT synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.
Matsumoto, Naoyuki; Oshima, Azusa; Sakurai, Shunsuke; Yamada, Takeo; Yumura, Motoo; Hata, Kenji; Futaba, Don N.
2015-01-01
One aspect of carbon nanotube (CNT) synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT) forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.
Signature of the N=126 shell closure in dwell times of alpha-particle tunneling
Kelkar, N G
2016-01-01
Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number $N$ = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from $N=116$ to $N=132$ in Po nuclei reveals that the tunneling $\\alpha$ particle spends the least amount of time with an $N=126$ magic daughter nucleus. The shell closure at $N=126$ seems to affect the behaviour of the dwell times of the tunneling alpha particles and this occurs through the influence of the $Q$-values involved.
Signature of the N = 126 shell closure in dwell times of alpha-particle tunneling
Kelkar, N. G.; Nowakowski, M.
2016-10-01
Characteristic quantities such as the penetration and preformation probabilities, assault frequency and tunneling times in the tunneling description of alpha decay of heavy nuclei are explored to reveal their sensitivity to neutron numbers in the vicinity of the magic neutron number N = 126. Using realistic nuclear potentials, the sensitivity of these quantities to the parameters of the theoretical approach is also tested. An investigation of the region from N = 116 to N = 132 in Po nuclei reveals that the tunneling α particle spends the least amount of time with an N = 126 magic daughter nucleus. The shell closure at N = 126 seems to affect the behavior of the dwell times of the tunneling alpha particles and this occurs through the influence of the Q-values involved.
Asynchronous H∞ filtering for linear switched systems with average dwell time
Wang, Bo; Zhang, Hongbin; Wang, Gang; Dang, Chuangyin
2016-09-01
This paper is concerned with the H∞ filtering problem for a class of continuous-time linear switched systems with the asynchronous behaviours, where 'asynchronous' means that the switching of the filters to be designed has a lag to the switching of the system modes. By using the Lyapunov-like functions and the average dwell time technique, a sufficient condition is obtained to guarantee the asymptotic stability with a weighted H∞ performance index for the filtering error system. Moreover, the results are formulated in the form of linear matrix inequalities that are numerical feasible. As a result, the filter design problem is solved. Finally, an illustrative numerical example is presented to show the effectiveness of the results.
Jia, Hongwei; Zhao, Jun
2016-08-01
The output regulation problem of switched linear multi-agent systems with stabilisable and unstabilisable subsystems is investigated in this paper. A sufficient condition for the solvability of the problem is given. Owing to the characteristics of switched multi-agent systems, even if each agent has its own dwell time, the multi-agent systems, if viewed as an overall switched system, may not have a dwell time. To overcome this difficulty, we present a new approach, called an agent-dependent average dwell time method. Due to the limited information exchange between agents, a distributed dynamic observer network for agents is provided. Further, a distributed dynamic controller based on observer is designed. Finally, simulation results show the effectiveness of the proposed solutions.
Simple Space-Time Symmetries: Generalizing Conformal Field Theory
Mack, G; Mack, Gerhard; Riese, Mathias de
2004-01-01
We study simple space-time symmetry groups G which act on a space-time manifold M=G/H which admits a G-invariant global causal structure. We classify pairs (G,M) which share the following additional properties of conformal field theory: 1) The stability subgroup H of a point in M is the identity component of a parabolic subgroup of G, implying factorization H=MAN, where M generalizes Lorentz transformations, A dilatations, and N special conformal transformations. 2) special conformal transformations in N act trivially on tangent vectors to the space-time manifold M. The allowed simple Lie groups G are the universal coverings of SU(m,m), SO(2,D), Sp(l,R), SO*(4n) and E_7(-25) and H are particular maximal parabolic subgroups. All these groups G admit positive energy representations. It will also be shown that the classical conformal groups SO(2,D) are the only allowed groups which possess a time reflection automorphism; in all other cases space-time has an intrinsic chiral structure.
Eisenhart lifts and symmetries of time-dependent systems
Cariglia, M.; Duval, C.; Gibbons, G. W.; Horváthy, P. A.
2016-10-01
Certain dissipative systems, such as Caldirola and Kannai's damped simple harmonic oscillator, may be modelled by time-dependent Lagrangian and hence time dependent Hamiltonian systems with n degrees of freedom. In this paper we treat these systems, their projective and conformal symmetries as well as their quantisation from the point of view of the Eisenhart lift to a Bargmann spacetime in n + 2 dimensions, equipped with its covariantly constant null Killing vector field. Reparametrisation of the time variable corresponds to conformal rescalings of the Bargmann metric. We show how the Arnold map lifts to Bargmann spacetime. We contrast the greater generality of the Caldirola-Kannai approach with that of Arnold and Bateman. At the level of quantum mechanics, we are able to show how the relevant Schrödinger equation emerges naturally using the techniques of quantum field theory in curved spacetimes, since a covariantly constant null Killing vector field gives rise to well defined one particle Hilbert space. Time-dependent Lagrangians arise naturally also in cosmology and give rise to the phenomenon of Hubble friction. We provide an account of this for Friedmann-Lemaître and Bianchi cosmologies and how it fits in with our previous discussion in the non-relativistic limit.
Symmetry classification of time-fractional diffusion equation
Naeem, I.; Khan, M. D.
2017-01-01
In this article, a new approach is proposed to construct the symmetry groups for a class of fractional differential equations which are expressed in the modified Riemann-Liouville fractional derivative. We perform a complete group classification of a nonlinear fractional diffusion equation which arises in fractals, acoustics, control theory, signal processing and many other applications. Introducing the suitable transformations, the fractional derivatives are converted to integer order derivatives and in consequence the nonlinear fractional diffusion equation transforms to a partial differential equation (PDE). Then the Lie symmetries are computed for resulting PDE and using inverse transformations, we derive the symmetries for fractional diffusion equation. All cases are discussed in detail and results for symmetry properties are compared for different values of α. This study provides a new way of computing symmetries for a class of fractional differential equations.
Broken Time Translation Symmetry as a Model for Quantum State Reduction
Directory of Open Access Journals (Sweden)
Jasper van Wezel
2010-04-01
Full Text Available The symmetries that govern the laws of nature can be spontaneously broken, enabling the occurrence of ordered states. Crystals arise from the breaking of translation symmetry, magnets from broken spin rotation symmetry and massive particles break a phase rotation symmetry. Time translation symmetry can be spontaneously broken in exactly the same way. The order associated with this form of spontaneous symmetry breaking is characterised by the emergence of quantum state reduction: systems which spontaneously break time translation symmetry act as ideal measurement machines. In this review the breaking of time translation symmetry is first compared to that of other symmetries such as spatial translations and rotations. It is then discussed how broken time translation symmetry gives rise to the process of quantum state reduction and how it generates a pointer basis, Born’s rule, etc. After a comparison between this model and alternative approaches to the problem of quantum state reduction, the experimental implications and possible tests of broken time translation symmetry in realistic experimental settings are discussed.
2015-01-01
Purpose In high-dose-rate (HDR) brachytherapy (BT), the source dwell times and dwell positions are essential treatment planning parameters. An optimal choice of these factors is fundamental to obtain the desired target coverage with the lowest achievable dose to the organs at risk (OARs). This study evaluates relevant dose parameters in cervix brachytherapy in order to assess existing tandem-ring dwell time ratio used at the first HDR BT center in Nigeria, and compare it with an alternative s...
The Scaling of the RMS with Dwell Time in NANOGrav Pulsars
Handzo, Emma; Lommen, Andrea N; Perrodin, Delphine
2015-01-01
Pulsar Timing Arrays (PTAs) are collections of well-timed millisecond pulsars that are being used as detectors of gravitational waves (GWs). Given current sensitivity, projected improvements in PTAs and the predicted strength of the GW signals, the detection of GWs with PTAs could occur within the next decade. One way we can improve a PTA is to reduce the measurement noise present in the pulsar timing residuals. If the pulsars included in the array display uncorrelated noise, the root mean square (RMS) of the timing residuals is predicted to scale as $\\mathrm{T}^{-1/2}$, where T is the dwell time per observation. In this case, the sensitivity of the array can be increased by increasing T. We studied the 17 pulsars in the five year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data set to determine if the noise in the timing residuals of the pulsars observed was consistent with this property. For comparison, we performed the same analysis on PSR B1937+21, a pulsar that is known to dis...
Wang, Zhijian; Xu, Bin; Zhejiang Collaboration
2011-03-01
In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.
Influence of the bulk diffusion of rubidium and sodium atoms in glass on their surface dwell time
Atutov, S. N.; Benimetskii, F. A.; Makarov, A. O.
2017-05-01
This paper presents the results of measurement of the surface potential and the dwell time of Rb and Na atoms on the surface of S-52 molybdenum glass. It is found that at temperatures below the glass transition temperature, the temperature dependence of the dwell time of Rb atoms is well described by the Arrhenius formula. The surface potentials for Rb and Na are measured to be 0.67 and 1.37 eV, respectively. At temperatures above the glass transition temperature, the dwell time of these atoms increases abnormally. The reason for this is that during impact of an atom on the surface of molten glass, it can penetrate into the volume of the window and then return by diffusion and desorb from the surface. In this case, the dwell time of the atom on the glass is determined by the diffusion time and can be very significant, despite the relatively low potential barrier at the surface and high temperature.
Desai, Kush R; Laws, James L; Salem, Riad; Mouli, Samdeep K; Errea, Martin F; Karp, Jennifer K; Yang, Yihe; Ryu, Robert K; Lewandowski, Robert J
2017-06-01
Despite growth in placement of retrievable inferior vena cava filters, retrieval rates remain low. Filters with extended implantation times present a challenge to retrieval, where standard techniques often fail. The development of advanced retrieval techniques has positively impacted retrieval of retrievable inferior vena cava filters with prolonged dwell times; however, there is no precise definition of the time point when advanced techniques become necessary. We aim to define prolonged retrievable inferior vena cava filters dwell time by determining the inflection point when the risk of standard retrieval technique failure increases significantly, necessitating advanced retrieval techniques to maintain overall technical success of retrieval. From January 2009 to April 2015, 762 retrieval procedures were identified from a prospectively acquired database. We assessed patient age/sex, filter dwell time, procedural technical success, the use of advanced techniques, and procedure-related adverse events. Overall retrieval success rate was 98% (n=745). When standard retrieval techniques failed, advanced techniques were used; this was necessary 18% of the time (n=138). Logistic regression identified that dwell time was the only risk factor for failure of standard retrieval technique (odds ratio, 1.08; 95% confidence interval, 1.05-1.10; Ptechnique failure was 40.9%. Adverse events occurred at a rate of 2% (n=18; 15 minor and 3 major). The necessity of advanced techniques to maintain technical success of retrieval increases with dwell time. Patients with retrievable inferior vena cava filters in place beyond 7 months may benefit from referral to centers with expertise in advanced filter retrieval. © 2017 American Heart Association, Inc.
Exposing local symmetries in distorted driven lattices via time-averaged invariants
Wulf, T.; Morfonios, C. V.; Diakonos, F. K.; Schmelcher, P.
2016-05-01
Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.
Exposing local symmetries in distorted driven lattices via time-averaged invariants.
Wulf, T; Morfonios, C V; Diakonos, F K; Schmelcher, P
2016-05-01
Time-averaged two-point currents are derived and shown to be spatially invariant within domains of local translation or inversion symmetry for arbitrary time-periodic quantum systems in one dimension. These currents are shown to provide a valuable tool for detecting deformations of a spatial symmetry in static and driven lattices. In the static case the invariance of the two-point currents is related to the presence of time-reversal invariance and/or probability current conservation. The obtained insights into the wave functions are further exploited for a symmetry-based convergence check which is applicable for globally broken but locally retained potential symmetries.
Turduev, Mirbek
2016-01-01
The great interest to the two and three dimensionally periodic structures, called photonic crystals (PCs), has begun with the pioneer works of Yablonovitch and John as one can efficiently control the propagation of the electromagnetic (EM) waves in the same manner with semiconductors that affect the electron conduction. One of the main peculiar properties of PCs is that they have photonic band gap in the transmission spectrum similar to electronic band gap and hence, they are able to prevent the light to propagate in certain frequency regions irrespective of the propagation direction in space. Inside the band gaps, neither optical modes nor spontaneous emissions exist. Breaking the rotational and mirror symmetries of PC unit cells provides rich dispersive features such as tilted self-collimation, and wavelength de-multiplexing effects. Another important issue in PC designs is that it is feasible to design graded index medium if the parameters of the two dimensional PCs is intentionally rearranged. That type o...
Cooperative action of KIF1A Brownian motors with finite dwell time
Oriola, David; Casademunt, Jaume
2014-03-01
We study in detail the cooperative action of small groups of KIF1A motors in its monomeric (single-headed) form within an arrangement relevant to vesicle traffic or membrane tube extraction. It has been recently shown that under these circumstances, the presence of a finite dwell time in the motor cycle contributes to remarkably enhance collective force generation [D. Oriola and J. Casademunt, Phys. Rev. Lett. 111, 048103 (2013), 10.1103/PhysRevLett.111.048103]. We analyze this mechanism in detail by means of a two-state noise-driven ratchet model with hard-core repulsive interactions. We obtain staircase-shaped velocity-force curves and show that motors self-organize in clusters with a nontrivial force distribution that conveys a large part of the load to the central motors. Under heavy loads, large clusters adopt a synchronic mode of totally asymmetric steps. We also find a dramatic increase of the collective efficiency with the number of motors. Finally, we complete the study by addressing different interactions that impose spatial constraints such as rigid coupling and raft-induced confinement. Our results reinforce the hypothesis that the specificity of KIF1A to axonal vesicular transport may be deeply related to its high cooperativity.
Necessary N-representability Constraints from Time-reversal Symmetry for Periodic Systems
Rubin, Nicholas C
2016-01-01
The variational calculation of the two-electron reduced density matrix (2-RDM) is extended to periodic molecular systems. If the 2-RDM theory is extended to the periodic case without consideration of time-reversal symmetry, however, it can yields energies that are significantly lower than the correct energies. We derive and implement linear constraints that enforce time-reversal symmetry on the 2-RDM without destroying its computationally favorable block-diagonal structure from translational invariance. Time-reversal symmetry is distinct from space-group or spin (SU(2)) symmetries which can be expressed by unitary transformations. The time-reversal symmetry constraints are demonstrated through calculations of the metallic hydrogen chain and the one-dimensional lithium hydride crystal.
Parity-Time Symmetry in Coherently Coupled Vertical Cavity Laser Arrays
Gao, Zihe; Thompson, Bradley J; Carney, P Scott; Choquette, Kent D
2016-01-01
Parity-time (PT) symmetry in optics has been demonstrated in a variety of passive or optically pumped platforms. Here we discuss the notion of PT symmetry in the context of electrically pumped coherently coupled vertical cavity surface emitting laser arrays. Effects of both asymmetric gain distribution and local frequency detuning are considered using temporal coupled mode theory. It is shown theoretically that beam steering, mode evolution and mode hopping are all related to PT symmetry. Experimentally we observed the predicted mode evolution, mode hopping and PT symmetry breaking with quantitative agreement with the theory.
The symmetries and conservation laws of some Gordon-type equations in Milne space-time
Indian Academy of Sciences (India)
S Jamal; A H Kara; A H Bokhari; F D Zaman
2013-05-01
In this letter, the Lie point symmetries of a class of Gordon-type wave equations that arise in the Milne space-time are presented and analysed. Using the Lie point symmetries, it is showed how to reduce Gordon-type wave equations using the method of invariants, and to obtain exact solutions corresponding to some boundary values. The Noether point symmetries and conservation laws are obtained for the Klein–Gordon equation in one case. Finally, the existence of higher-order variational symmetries of a projection of the Klein–Gordon equation is investigated using the multiplier approach.
Time Solutions and Symmetries in Extended Gravity Quantum Cosmology
Directory of Open Access Journals (Sweden)
Capozziello Salvatore
2013-09-01
Full Text Available Minisuperspace models are taken into account searching for Noether symmetries. The existence of conserved quantities gives selection rule to recover classical behaviors in cosmic evolution according to the so called Hartle criterion, that allows to select correlated regions in the configuration space of dynamical variables. We show that such a statement works for general classes of gravity theories. Examples for nonminimally coupled and higher-order models are discussed.
Lie symmetry analysis and soliton solutions of time-fractional $K(m, n)$ equation
Indian Academy of Sciences (India)
G W WANG; M S HASHEMI
2017-01-01
In this note, method of Lie symmetries is applied to investigate symmetry properties of timefractional $K(m, n)$ equation with the Riemann–Liouville derivatives. Reduction of time-fractional $K(m, n)$ equation is done by virtue of the Erdélyi–Kober fractional derivative which depends on a parameter α. Thensoliton solutions are extracted by means of a transformation.
Effect of Dwell Time on the Mental Health of U.S. Military Personnel with Multiple Combat Tours
2012-01-01
government studies of health effects of the Gulf War. Am J Epidemiol. 1998;148(4):315---323. 18. Lazarus RS, Folkman S . Stress , appraisal, and coping ...the theory behind the stress ---exhaustion model is based on stressor duration, lack of an adequate dwell time may prevent the service member from...second deployment.8 Other studies have also identified increases in mental health symp- toms, particularly symptoms of posttraumatic stress disorder
Bifurcations in time-delay fully-connected networks with symmetry
Directory of Open Access Journals (Sweden)
Ferruzzo Correa Diego Paolo
2014-01-01
Full Text Available In this work a brief method for finding steady-state and Hopf bifurcations in a (R + 1-th order N-node time-delay fully-connected network with symmetry is explored. A self-sustained Phase-Locked Loop is used as node. The irreducible representations found due to the network symmetry are used to find regions of time-delay independent stability/instability in the parameter space. Symmetry-preserving and symmetry-breaking bifurcations can be computed numerically using the Sn map proposed in [1]. The analytic results show the existence of symmetry-breaking bifurcations with multiplicity N − 1. A second-order N-node network is used as application example. This work is a generalization of some results presented in [2].
2014-04-01
on mental health outcomes and should be exam- ined to identify key determinants of resilience. The issues of a dwell-titTie policy and whether certain...Gahm GA, Swanson RD, Duma SJ; Association between number of deployments to Iraq and niental health screening outcomes in US Army soldiers. J Clin
Broken versus Non-Broken Time Reversal Symmetry: Irreversibility and Response
Directory of Open Access Journals (Sweden)
Sara Dal Cengio
2016-07-01
Full Text Available We review some approaches to macroscopic irreversibility from reversible microscopic dynamics, introducing the contribution of time dependent perturbations within the framework of recent developments in non-equilibrium statistical physics. We show that situations commonly assumed to violate the time reversal symmetry (presence of magnetic fields, rotating reference frames, and some time dependent perturbations in reality do not violate this symmetry, and can be treated with standard theories and within standard experimental protocols.
Noether's theorem and Lie symmetries for time-dependent Hamilton-Lagrange systems.
Struckmeier, Jürgen; Riedel, Claus
2002-12-01
Noether and Lie symmetry analyses based on point transformations that depend on time and spatial coordinates will be reviewed for a general class of time-dependent Hamiltonian systems. The resulting symmetries are expressed in the form of generators whose time-dependent coefficients follow as solutions of sets of ordinary differential ("auxiliary") equations. The interrelation between the Noether and Lie sets of auxiliary equations will be elucidated. The auxiliary equations of the Noether approach will be shown to admit invariants for a much broader class of potentials, compared to earlier studies. As an example, we work out the Noether and Lie symmetries for the time-dependent Kepler system. The Runge-Lenz vector of the time-independent Kepler system will be shown to emerge as a Noether invariant if we adequately interpret the pertaining auxiliary equation. Furthermore, additional nonlocal invariants and symmetries of the Kepler system will be isolated by identifying further solutions of the auxiliary equations that depend on the explicitly known solution path of the equations of motion. Showing that the invariants remain unchanged under the action of different symmetry operators, we demonstrate that a unique correlation between a symmetry transformation and an invariant does not exist.
Exact control of parity-time symmetry in periodically modulated nonlinear optical couplers
Yang, Baiyuan; Hu, QiangLin; Yu, XiaoGuang
2016-01-01
We propose a mechanism for realization of exact control of parity-time (PT) symmetry by using a periodically modulated nonlinear optical coupler with balanced gain and loss. It is shown that for certain appropriately chosen values of the modulation parameters, we can construct a family of exact analytical solutions for the two-mode equations describing the dynamics of such nonlinear couplers. These exact solutions give explicit examples that allow us to precisely manipulate the system from nonlinearity-induced symmetry breaking to PT symmetry, thus providing an analytical approach to the all-optical signal control in nonlinear PT-symmetric structures.
Classification of Topological Insulators with Time-Reversal and Inversion Symmetry*
Institute of Scientific and Technical Information of China (English)
LIU Lan-Feng; CHEN Bo-Lun; KOU Su-Peng
2011-01-01
In this paper, we find that topological insulators with time-reversal symmetry and inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 c/asses, which are characterized by four Z2 topological variables ζk = O,1 at four points with high symmetry in the Brillouin zone. We obtain the corresponding edge states for each one of these sixteen classes of QSHs. In addition, it is predicted that massless fermionic excitations appear at the quantum phase transition between different QSH states. In the end, we also briefly discuss the threedimensional case.
Time symmetry and interpretation of quantum mechanics. [Paradoxes
Energy Technology Data Exchange (ETDEWEB)
de Beauregard, O.C.
1976-10-01
A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being ''factlike'' rather than ''lawlike'' (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric acceptance of cognizance as a source of retarded waves, and of will as a sink of advanced waves, is submitted as a central ''paradox'' of the Copernican or Einsteinian sort, out of which new light is shed upon previously known paradoxes, such as the EPR paradox, Schroedinger's cat, and Wigner's friend. Parapsychology is thus found to creep into the picture.
Electrically Injected Single Transverse-Mode Coupled Waveguide Lasers by Parity-time (PT) Symmetry
Yao, Ruizhe; Podolskiy, Viktor; Guo, Wei
2016-01-01
In this report, we demonstrate the single transverse-mode operation of InAs quantum dot (QD) broad-area coupled waveguide lasers by parity-time (PT) symmetry. A novel waveguide design is adopted by adding gain and loss in the electrically injected coupled waveguide laser cavity. In such counterintuitive waveguide design, the single mode operation is achieved by harnessing notions from PT symmetry breaking and mode selections. By further varying the loss in the coupled waveguides, the coupled waveguide operation in different PT symmetry regions is experimentally demonstrated and agrees well with the numerical models. The demonstration of an electrically pumped single transverse-mode based on PT symmetry breaking paves a way to the next-generation optoelectronic devices and advanced laser science.
Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.
1993-01-01
We investigate the origin of the arrow of time in quantum mechanics in the context of quantum cosmology. The ``Copenhagen'' quantum mechanics of measured subsystems incorporates a fundamental arrow of time. Extending discussions of Aharonov, Bergmann and Lebovitz, Griffiths, and others we investigate a generalized quantum mechanics for cosmology that utilizes both an initial and a final density matrix to give a time-neutral formulation without a fundamental arrow of time. Time asymmetries can arise for particular universes from differences between their initial and final conditions. Theories for both would be a goal of quantum cosmology. A special initial condition and a final condition of indifference would be sufficient to explain the observed time asymmetries of the universe. In this essay we ask under what circumstances a completely time symmetric universe, with T-symmetric initial and final condition, could be consistent with the time asymmetries of the limited domain of our experience. We discuss the ap...
Noether symmetries and conserved quantities for fractional Birkhoffian systems with time delay
Zhai, Xiang-Hua; Zhang, Yi
2016-07-01
The Noether symmetries and the conserved quantities for fractional Birkhoffian systems with time delay in terms of Riemann-Liouville fractional derivatives are proposed and studied. First, the fractional Pfaff-Birkhoff principle with time delay is proposed, and the fractional Birkhoff's equations with time delay are obtained. Second, based on the invariance of the fractional Pfaff action with time delay under a group of infinitesimal transformations, the Noether symmetric transformations and the Noether quasi-symmetric transformations of the system are defined, and the criteria of the Noether symmetries are established. Finally, the relationship between the symmetries and the conserved quantities are studied, and the Noether theorems for fractional Birkhoffian systems with time delay are established. Some examples are given to illustrate the application of the results.
Directory of Open Access Journals (Sweden)
Dimos Baltas
2010-10-01
Full Text Available Purpose: One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV, then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option.In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices.Material and methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR has been compared to alternative plans with HIPO and free modulation (without MR.All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose (D = were used for treatment plan evaluation and comparison.Results: Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices.In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The
Symmetry Breaking and Time Variation of Gauge Couplings
Calmet, X; Calmet, Xavier; Fritzsch, Harald
2002-01-01
Astrophysical indications that the fine structure constant has undergone a small time variation during the cosmological evolution are discussed within the framework of the standard model of the electroweak and strong interactions and of grand unification. A variation of the electromagnetic coupling constant could either be generated by a corresponding time variation of the unified coupling constant or by a time variation of the unification scale, of by both. The various possibilities, differing substantially in their implications for the variation of low energy physics parameters like the nuclear mass scale, are discussed. The case in which the variation is caused by a time variation of the unification scale is of special interest. It is supported in addition by recent hints towards a time change of the proton-electron mass ratio. Implications for the analysis of the Oklo remains and for quantum optics tests are discussed.
Measurement of Wave Chaotic Eigenfunctions in the Time-Reversal Symmetry-Breaking Crossover Regime
Chung, S H; Wu, D H; Bridgewater, A; Anlage, S M; Chung, Seok-Hwan; Gokirmak, Ali; Wu, Dong-Ho; Anlage, Steven M.
1999-01-01
We present experimental results on eigenfunctions of a wave chaotic system in the continuous crossover regime between time-reversal symmetric and time-reversal symmetry-broken states. The statistical properties of the eigenfunctions of a two-dimensional microwave resonator are analyzed as a function of an experimentally determined time-reversal symmetry breaking parameter. We test four theories of eigenfunction statistics in the crossover regime. We also find a universal correlation between the one-point and two-point statistical parameters for the crossover eigenfunctions.
Directory of Open Access Journals (Sweden)
Ping Xie
2015-10-01
Full Text Available Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA. It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by “hungry” codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.
Dettmers, Robert; Brekelmans, Wouter; Leijnen, Michiel; van der Burg, Boudewijn; Ritchie, Ewan
2016-09-01
Infection following orthopedic implants for bone fixation or joint replacement is always serious and may require removal of the osteosynthetic material. Negative pressure wound therapy with instillation and dwell time (NPWTi-d) is an emerging therapy for the treatment of complex wounds, including infected wounds with osteosynthetic material. The purpose of this case study was to evaluate the outcomes of 4 patients (1 man, 3 women; age range 49 to 71 years) with a postoperative wound infection (POWI) following fracture repair and internal fixation. All patients were at high risk for surgical complications, including infections. Standard infection treatments (antibiotics) had been unsuccessful. Based on the available literature, a NPWTi-d protocol was developed. Following surgical debridement, wounds were instilled with polyhexanide biguanide with a set dwell time of 15 minutes, followed by continuous NPWTi-d of -125 mm Hg for 4 hours. The system was changed every 3 to 4 days until sufficient granulation tissue was evident and negative pressure without instillation could be used. Systemic antibiotics were continued in all patients. Granulation tissue was found to be sufficient in 12 to 35 days in the 4 cases, no recurrence of infection was noted, and the osteosynthesis material remained in place. No adverse events were observed. Research is needed to compare the safety and effectiveness of this adjunct treatment in the management of challenging wounds to other patient and wound management approaches.
Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
Clark, Logan W; Chin, Cheng
2016-01-01
The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...
Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency
Directory of Open Access Journals (Sweden)
Hong Qin
2006-05-01
Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.
Knowledge, Level of Symmetry, and Time of Leader Election
Fusco, Emanuele G.; Pelc, Andrzej
2015-01-01
We study the time needed for deterministic leader election in the ${\\cal LOCAL}$ model, where in every round a node can exchange any messages with its neighbors and perform any local computations. The topology of the network is unknown and nodes are unlabeled, but ports at each node have arbitrary fixed labelings which, together with the topology of the network, can create asymmetries to be exploited in leader election. We consider two versions of the leader election problem: strong LE in whi...
Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors
Schemm, E. R.; Levenson-Falk, E. M.; Kapitulnik, A.
2017-04-01
The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of 3He-B, all of the known or suspected chiral - that is to say time-reversal symmetry-breaking (TRSB) - superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.
Parity-time symmetry from stacking purely dielectric and magnetic slabs
Gear, James; Chu, S T; Rotter, Stefan; Li, Jensen
2015-01-01
We show that Parity-time symmetry in matching electric permittivity to magnetic permeability can be established by considering an effective Parity operator involving both mirror symmetry and coupling between electric and magnetic fields. This approach extends the discussion of Parity-time symmetry to the situation with more than one material potential. We show that the band structure of a one-dimensional photonic crystal with alternating purely dielectric and purely magnetic slabs can undergo a phase transition between propagation modes and evanescent modes when the balanced gain/loss parameter is varied. The cross-matching between different material potentials also allows exceptional points of the constitutive matrix to appear in the long wavelength limit where they can be used to construct ultrathin metamaterials with unidirectional reflection.
Li, Jiaming; Liu, Ji; de Melo, Leonardo; Joglekar, Yogesh N; Luo, Le
2016-01-01
Open physical systems with balanced loss and gain exhibit a transition, absent in their solitary counterparts, which engenders modes that exponentially decay or grow with time and thus spontaneously breaks the parity-time PT symmetry. This PT-symmetry breaking is induced by modulating the strength or the temporal profile of the loss and gain, but also occurs in a pure dissipative system without gain. It has been observed that, in classical systems with mechanical, electrical, and electromagnetic setups with static loss and gain, the PT-symmetry breaking transition leads to extraordinary behavior and functionalities. However, its observation in a quantum system is yet to be realized. Here we report on the first quantum simulation of PT-symmetry breaking transitions using ultracold Li-6 atoms. We simulate static and Floquet dissipative Hamiltonians by generating state-dependent atom loss in a noninteracting Fermi gas, and observe the PT-symmetry breaking transitions by tracking the atom number for each state. W...
Mechanism, time-reversal symmetry, and topology of superconductivity in noncentrosymmetric systems
Scheurer, M. S.
2016-05-01
We analyze the possible interaction-induced superconducting instabilities in noncentrosymmetric systems based on symmetries of the normal state. It is proven that pure electron-phonon coupling will always lead to a fully gapped superconductor that does not break time-reversal symmetry and is topologically trivial. We show that topologically nontrivial behavior can be induced by magnetic doping without gapping out the resulting Kramers pair of Majorana edge modes. In the case of superconductivity arising from the particle-hole fluctuations associated with a competing instability, the properties of the condensate crucially depend on the time-reversal behavior of the order parameter of the competing instability. When the order parameter preserves time-reversal symmetry, we obtain exactly the same properties as in the case of phonons. If it is odd under time reversal, the Cooper channel of the interaction will be fully repulsive leading to sign changes of the gap and making spontaneous time-reversal-symmetry breaking possible. To discuss topological properties, we focus on fully gapped time-reversal-symmetric superconductors and derive constraints on possible pairing states that yield necessary conditions for the emergence of topologically nontrivial superconductivity. These conditions might serve as a tool in the search for topological superconductors. We also discuss implications for oxide heterostructures and single-layer FeSe.
Bloch, Mette L; Jønsson, Line R; Kristensen, Morten T
Originally, the Timed Up & Go (TUG) test was described as including a practice trial before a timed trial, but recent studies in individuals with hip fracture have reported that performance improved with a third trial and that high intertester reliability was achieved when the fastest of 3 timed trials was used. Thus, the fastest of 3 TUG trials is recommended when testing individuals with hip fracture. To our knowledge, no study has examined the number of trials needed to achieve performance stability on the TUG test (defined as no further improvement on subsequent trials) when performed by older individuals without hip fracture. The aim of the study, therefore, was to examine whether a third TUG trial is faster than either of 2 TUG trials conducted according to standardized TUG instructions and whether the fastest of 3 trials is the most appropriate measure to apply in hospitalized and community-dwelling older individuals. Eighty-two participants (50 from a geriatric hospital unit and 32 from an outpatient geriatric center; 52 women, 30 men) with a mean (SD) age of 83.6 (7.9) years were included in this cross-sectional study. All participants (except one from the hospital unit) performed 3 TUG trials, as fast as safely possible on the same day, and separated by up to 1-minute pauses. A rollator (4-wheeled rolling walker) was used as a standardized walking aid in the geriatric hospital unit, whereas participants used their normal walking aid (if any) in the outpatient geriatric center. The fastest trial was trial 3 for 47 (57%), trial 2 for 25 (31%), and trial 1 for 10 (12%). Repeated-measures analyses of variance with Bonferroni corrections showed that TUG times improved from trial 1 to trial 3 (P timed trials was significantly (P < .001) faster than the other 2 trials. We suggest that the fastest of the 3 TUG trials is recorded instead of the second trial in both hospitalized and community-dwelling older individuals.
Directory of Open Access Journals (Sweden)
Fei Lin
2016-03-01
Full Text Available With its large capacity, the total urban rail transit energy consumption is very high; thus, energy saving operations are quite meaningful. The effective use of regenerative braking energy is the mainstream method for improving the efficiency of energy saving. This paper examines the optimization of train dwell time and builds a multiple train operation model for energy conservation of a power supply system. By changing the dwell time, the braking energy can be absorbed and utilized by other traction trains as efficiently as possible. The application of genetic algorithms is proposed for the optimization, based on the current schedule. Next, to validate the correctness and effectiveness of the optimization, a real case is studied. Actual data from the Beijing subway Yizhuang Line are employed to perform the simulation, and the results indicate that the optimization method of the dwell time is effective.
Effective dissipation: Breaking time-reversal symmetry in driven microscopic energy transmission
Brown, Aidan I.; Sivak, David A.
2016-09-01
At molecular scales, fluctuations play a significant role and prevent biomolecular processes from always proceeding in a preferred direction, raising the question of how limited amounts of free energy can be dissipated to obtain directed progress. We examine the system and process characteristics that efficiently break time-reversal symmetry at fixed energy loss; in particular for a simple model of a molecular machine, an intermediate energy barrier produces unusually high asymmetry for a given dissipation. We relate the symmetry-breaking factors found in this model to recent observations of biomolecular machines.
Noether's Symmetry Theorem for Variational and Optimal Control Problems with Time Delay
Frederico, G. S. F.; Torres, D. F. M.
2012-01-01
We extend the DuBois-Reymond necessary optimality condition and Noether's symmetry theorem to the time delay variational setting. Both Lagrangian and Hamiltonian versions of Noether's theorem are proved, covering problems of the calculus of variations and optimal control with delays.
Directory of Open Access Journals (Sweden)
Shahan Derkarabetian
Full Text Available BACKGROUND: Many cave-dwelling animal species display similar morphologies (troglomorphism that have evolved convergent within and among lineages under the similar selective pressures imposed by cave habitats. Here we study such ecomorphological evolution in cave-dwelling Sclerobuninae harvestmen (Opiliones from the western United States, providing general insights into morphological homoplasy, rates of morphological change, and the temporal context of cave evolution. METHODOLOGY/PRINCIPAL FINDINGS: We gathered DNA sequence data from three independent gene regions, and combined these data with Bayesian hypothesis testing, morphometrics analysis, study of penis morphology, and relaxed molecular clock analyses. Using multivariate morphometric analysis, we find that phylogenetically unrelated taxa have convergently evolved troglomorphism; alternative phylogenetic hypotheses involving less morphological convergence are not supported by Bayesian hypothesis testing. In one instance, this morphology is found in specimens from a high-elevation stony debris habitat, suggesting that troglomorphism can evolve in non-cave habitats. We discovered a strong positive relationship between troglomorphy index and relative divergence time, making it possible to predict taxon age from morphology. Most of our time estimates for the origin of highly-troglomorphic cave forms predate the Pleistocene. CONCLUSIONS/SIGNIFICANCE: While several regions in the eastern and central United States are well-known hotspots for cave evolution, few modern phylogenetic studies have addressed the evolution of cave-obligate species in the western United States. Our integrative studies reveal the recurrent evolution of troglomorphism in a perhaps unexpected geographic region, at surprisingly deep time depths, and in sometimes surprising habitats. Because some newly discovered troglomorphic populations represent undescribed species, our findings stress the need for further biological
Zhao, Xudong; Yin, Yunfei; Niu, Ben; Zheng, Xiaolong
2016-08-01
In this paper, the problem of switching stabilization for a class of switched nonlinear systems is studied by using average dwell time (ADT) switching, where the subsystems are possibly all unstable. First, a new concept of ADT is given, which is different from the traditional definition of ADT. Based on the new proposed switching signals, a sufficient condition of stabilization for switched nonlinear systems with unstable subsystems is derived. Then, the T-S fuzzy modeling approach is applied to represent the underlying nonlinear system to make the obtained condition easily verified. A novel multiple quadratic Lyapunov function approach is also proposed, by which some conditions are provided in terms of a set of linear matrix inequalities to guarantee the derived T-S fuzzy system to be asymptotically stable. Finally, a numerical example is given to demonstrate the effectiveness of our developed results.
Directory of Open Access Journals (Sweden)
Mijajlović Miroslav M.
2016-01-01
Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds
Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors
Energy Technology Data Exchange (ETDEWEB)
Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)
2017-04-15
Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.
A late time accelerated FRW model with scalar and vector fields via Noether symmetry
Energy Technology Data Exchange (ETDEWEB)
Vakili, Babak, E-mail: b-vakili@iauc.ac.ir
2014-11-10
We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW) model, a scalar field with potential function V(ϕ) with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ). Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.
A late time accelerated FRW model with scalar and vector fields via Noether symmetry
Directory of Open Access Journals (Sweden)
Babak Vakili
2014-11-01
Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.
A late time accelerated FRW model with scalar and vector fields via Noether symmetry
Vakili, Babak
2014-11-01
We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann-Robertson-Walker (FRW) model, a scalar field with potential function V (ϕ) with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f (ϕ). Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion.
Dereka, Bogdan; Rosspeintner, Arnulf; Li, Zhiquan; Liska, Robert; Vauthey, Eric
2016-04-01
Most symmetric quadrupolar molecules designed for two-photon absorption behave as dipolar molecules in the S1 electronic excited state. This is usually explained by a breakup of the symmetry in the excited state. However, the origin of this process and its dynamics are still not fully understood. Here, excited-state symmetry breaking in a quadrupolar molecule with a D-π-A-π-D motif, where D and A are electron donating and accepting units, is observed in real time using ultrafast transient infrared absorption spectroscopy. The nature of the relaxed S1 state was found to strongly depend on the solvent polarity: (1) in nonpolar solvents, it is symmetric and quadrupolar; (2) in weakly polar media, the quadrupolar state observed directly after excitation transforms to a symmetry broken S1 state with one arm bearing more excitation than the other; and (3) in highly polar solvents, the excited state evolves further to a purely dipolar S1 state with the excitation localized entirely on one arm. The time scales associated with the transitions between these states coincide with those of solvation dynamics, indicating that symmetry breaking is governed by solvent fluctuations.
Symmetry and the arrow of time in theoretical black hole astrophysics
Garofalo, David
2015-01-01
While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of g...
Symmetry of the Lorentz boost: the relativity of colocality and Lorentz time contraction
Sharp, Jonathan C.
2016-09-01
Since the Lorentz boost is symmetric under exchange of x and ct, special relativistic phenomena will also manifest this symmetry. Firstly, simultaneity becomes paired with ‘colocality’ (‘at the same place’), and the ‘Relativity of Colocality’ becomes the dual to the well-known ‘Relativity of Simultaneity’. Further, Lorentz time contraction arises from reversal of the observation conditions pertaining to time dilation, expressible figuratively as ‘Moving clocks run slow, but moving time runs fast’. Symmetry also dictates that the most fundamental observational modes are: (1) the simultaneous observation of length, a process involving both the relativity of simultaneity and length contraction; and (2) the colocal measurement of duration, involving both the relativity of colocality and time contraction. Only the first of these modes is well known. The adoption of this symmetrical lexicon provides a necessary logical basis for interpretational studies of observation and measurement in special relativity.
Symmetry and the Arrow of Time in Theoretical Black Hole Astrophysics
Directory of Open Access Journals (Sweden)
David Garofalo
2015-01-01
Full Text Available While the basic laws of physics seem time-reversal invariant, our understanding of the apparent irreversibility of the macroscopic world is well grounded in the notion of entropy. Because astrophysics deals with the largest structures in the Universe, one expects evidence there for the most pronounced entropic arrow of time. However, in recent theoretical astrophysics work it appears possible to identify constructs with time-reversal symmetry, which is puzzling in the large-scale realm especially because it involves the engines of powerful outflows in active galactic nuclei which deal with macroscopic constituents such as accretion disks, magnetic fields, and black holes. Nonetheless, the underlying theoretical structure from which this accreting black hole framework emerges displays a time-symmetric harmonic behavior, a feature reminiscent of basic and simple laws of physics. While we may expect such behavior for classical black holes due to their simplicity, manifestations of such symmetry on the scale of galaxies, instead, surprise. In fact, we identify a parallel between the astrophysical tug-of-war between accretion disks and jets in this model and the time symmetry-breaking of a simple overdamped harmonic oscillator. The validity of these theoretical ideas in combination with this unexpected parallel suggests that black holes are more influential in astrophysics than currently recognized and that black hole astrophysics is a more fundamental discipline.
Symmetries, Symmetry Breaking, Gauge Symmetries
Strocchi, Franco
2015-01-01
The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...
Symmetries In Evolving Space-time and Their Connection To High-frequency Gravity Wave Production
Beckwith, A. W.
2008-01-01
We present how a worm hole bridge from a prior to the present universe allows us to use symmetry arguments which allow us to generate relic gravity waves, and also non massless gravitons. The relic gravitons are produced due to thermal / vacuum energy transferral from a prior universe using a pseudo time dependent version of the Wheeler De Witt equation as presented by Crowell (2005)
Boltzmann-Gibbs Distribution of Fortune and Broken Time-Reversible Symmetry in Econodynamics
Ao, P
2005-01-01
Within the description of stochastic differential equations it is argued that the existence of Boltzmann-Gibbs type distribution in economy is independent of the time reversal symmetry in econodynamics. Both power law and exponential distributions can be accommodated by it. The demonstration is based on a mathematical structure discovered during a study in gene regulatory network dynamics. Further possible analogy between equilibrium economy and thermodynamics is explored.
Symmetries In Evolving Space-time and Their Connection To High-frequency Gravity Wave Production
Beckwith, A W
2008-01-01
We present how a worm hole bridge from a prior to the present universe allows us to use symmetry arguments which allow us to generate relic gravity waves, and also non massless gravitons. The relic gravitons are produced due to thermal / vacuum energy transferral from a prior universe using a pseudo time dependent version of the Wheeler De Witt equation as presented by Crowell (2005)
Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation
Rui, Wenjuan; Zhang, Xiangzhi
2016-05-01
This paper investigates the invariance properties of the time fractional Derrida-Lebowitz-Speer-Spohn (FDLSS) equation with Riemann-Liouville derivative. By using the Lie group analysis method of fractional differential equations, we derive Lie symmetries for the FDLSS equation. In a particular case of scaling transformations, we transform the FDLSS equation into a nonlinear ordinary fractional differential equation. Conservation laws for this equation are obtained with the aid of the new conservation theorem and the fractional generalization of the Noether operators.
Semiclassical matrix model for quantum chaotic transport with time-reversal symmetry
Energy Technology Data Exchange (ETDEWEB)
Novaes, Marcel, E-mail: marcel.novaes@gmail.com
2015-10-15
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.
Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry
Yan, Mu-Lin; Xiao, Neng-Chao; Huang, Wei; Hu, Sen
2011-01-01
We explore the recent OPERA experiment of superluminal neutrinos in the framework of Special Relativity with de Sitter space-time symmetry (dS-SR). According to Einstein a photon is treated as a massless particle in the framework of Special Relativity. In Special Relativity (SR) we have the universal parameter $c$, the photon velocity $c_{photon}$ and the phase velocity of a light wave in vacuum $c_{wave}=\\lambda\
Dwell time of a Brownian interacting molecule in a cellular microdomain
Taflia, A; Taflia, Adi; Holcman, David
2006-01-01
The time spent by an interacting Brownian molecule inside a bounded microdomain has many applications in cellular biology, because the number of bounds is a quantitative signal, which can initiate a cascade of chemical reactions and thus has physiological consequences. In the present article, we propose to estimate the mean time spent by a Brownian molecule inside a microdomain $\\Omega$ which contains small holes on the boundary and agonist molecules located inside. We found that the mean time depends on several parameters such as the backward binding rate (with the agonist molecules), the mean escape time from the microdomain and the mean time a molecule reaches the binding sites (forward binding rate). In addition, we estimate the mean and the variance of the number of bounds made by a molecule before it exits $\\Omega$. These estimates rely on a boundary layer analysis of a conditional mean first passage time, solution of a singular partial differential equation. In particular, we apply the present results ...
Institute of Scientific and Technical Information of China (English)
QIU JianBin; FENG Gang; YANG Jie
2009-01-01
This paper investigates the problem of robust exponential H_∞ static output feedback controller design for a class of discrete-time switched linear systems with polytopic-type time-varying parametric uncertainties.The objective is to design a switched static output feedback controller guaranteeing the exponential stability of the resulting closed-loop system with a minimized exponential H_∞ performance under average dwell-time switching scheme.Based on a parameter-dependent discontinuous switched Lyapunov function combined with Finsler's lemma and Dualization lemma,some novel conditions for exponential H_∞ performance analysis are first proposed and in turn the static output feedback controller designs are developed.It is shown that the controller gains can be obtained by solving a set of linear matrix inequalities (LMIs),which are numerically efficient with commercially available software.Finally,a simulation example is provided to illustrate the effectiveness of the proposed approaches.
Yao, Hiroshi; Takashima, Yuki; Araki, Yuko; Uchino, Akira; Yuzuriha, Takefumi; Hashimoto, Manabu
2015-11-01
Although physical inactivity is a major public health problem, the causative factors for physical inactivity per se are poorly understood. To address this issue, we investigated the relationship between deep white matter lesions (DWMLs) on magnetic resonance imaging, apathy, and physical activities using structural equation modeling (SEM). We examined 317 community-dwelling elderly subjects (137 men and 180 women with a mean age of 64.5 years) without dementia or clinically apparent depression. Physical activity was assessed with a questionnaire consisting of 3 components (leisure-time, work, and sport activities). The mean score from the apathy scale (a visual analogue version of Starkstein's apathy scale) of the Grades 2-3 DWML group was 420 (95% confidence interval [CI] 379-461), which was lower (more apathetic) than the Grade 0 DWML group score of 478 (95% CI 463-492) after adjustment for education as a covariate. SEM showed that the direct paths from DWMLs or education to apathy were significant, and the direct path from apathy to leisure-time activity was highly significant (β = .25, P depression would have a significant impact on activities of daily living and quality of life. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Lie Symmetry Analysis and Conservation Laws of a Generalized Time Fractional Foam Drainage Equation
Wang, Li; Tian, Shou-Fu; Zhao, Zhen-Tao; Song, Xiao-Qiu
2016-07-01
In this paper, a generalized time fractional nonlinear foam drainage equation is investigated by means of the Lie group analysis method. Based on the Riemann—Liouville derivative, the Lie point symmetries and symmetry reductions of the equation are derived, respectively. Furthermore, conservation laws with two kinds of independent variables of the equation are performed by making use of the nonlinear self-adjointness method. Supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates under Grant No. 201410290039, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527
Time-reversal symmetry breaking hidden order in Sr2(Ir,Rh)O4
Jeong, Jaehong; Sidis, Yvan; Louat, Alex; Brouet, Véronique; Bourges, Philippe
2017-04-01
Layered 5d transition iridium oxides, Sr2(Ir,Rh)O4, are described as unconventional Mott insulators with strong spin-orbit coupling. The undoped compound, Sr2IrO4, is a nearly ideal two-dimensional pseudospin-1/2 Heisenberg antiferromagnet, similarly to the insulating parent compound of high-temperature superconducting copper oxides. Using polarized neutron diffraction, we here report a hidden magnetic order in pure and doped Sr2(Ir,Rh)O4, distinct from the usual antiferromagnetic pseudospin ordering. We find that time-reversal symmetry is broken while the lattice translation invariance is preserved in the hidden order phase. The onset temperature matches that of the odd-parity hidden order recently highlighted using optical second-harmonic generation experiments. The novel magnetic order and broken symmetries can be explained by the loop-current model, previously predicted for the copper oxide superconductors.
Letellier, Christophe; Aguirre, Luis A.
2002-09-01
When a dynamical system is investigated from a time series, one of the most challenging problems is to obtain a model that reproduces the underlying dynamics. Many papers have been devoted to this problem but very few have considered the influence of symmetries in the original system and the choice of the observable. Indeed, it is well known that there are usually some variables that provide a better representation of the underlying dynamics and, consequently, a global model can be obtained with less difficulties starting from such variables. This is connected to the problem of observing the dynamical system from a single time series. The roots of the nonequivalence between the dynamical variables will be investigated in a more systematic way using previously defined observability indices. It turns out that there are two important ingredients which are the complexity of the coupling between the dynamical variables and the symmetry properties of the original system. As will be mentioned, symmetries and the choice of observables also has important consequences in other problems such as synchronization of nonlinear oscillators.
The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics
Holster, A. T.
2003-10-01
Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe.
Time-space symmetry as a solution to the mass hierarchy of charged lepton generations
Van Thuan, Vo
2015-01-01
Based on an extended time-space symmetry, a cylindrical model of gravitational geometrical dynamics with two time-like extra-dimensions leads to a microscopic geodesic description of the curved space-time. Due to interaction of a Higgs-like cosmological potential with individual space-time fluctuations, the original time-space symmetry is spontaneously broken, inducing a strong time-like curvature and a weak space-like deviation curve. As a result, the basic Klein-Gordon-Fock equation of a free massive elementary particle was derived, which implies a duality between the quantum mechanics equation and a microscopic geodesic description in the frame of general relativity. Consequently, Heisenberg inequalities are determined explicitly by the space-time curvatures. Moreover, extending curvatures to higher time-like dimensional hyper-spherical surfaces than one of the basic common cylindrical configuration, we found reasonable mass ratios of all charged leptons and succeeded to fix the number of their generations...
Energy Technology Data Exchange (ETDEWEB)
Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.
2004-09-28
Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing “cognitive signatures” of complex activities, and can facilitate the development of technology aids for information intensive tasks.
Long-time properties of magnetohydrodynamic turbulence and the role of symmetries.
Stawarz, Julia E; Pouquet, Annick; Brachet, Marc-Etienne
2012-09-01
Using direct numerical simulations with grids of up to 512(3) points, we investigate long-time properties of three-dimensional magnetohydrodynamic turbulence in the absence of forcing and examine in particular the roles played by the quadratic invariants of the system and the symmetries of the initial configurations. We observe that when sufficient accuracy is used, initial conditions with a high degree of symmetries, as in the absence of helicity, do not travel through parameter space over time, whereas by perturbing these solutions either explicitly or implicitly using, for example, single precision for long times, the flows depart from their original behavior and can either become strongly helical or have a strong alignment between the velocity and the magnetic field. When the symmetries are broken, the flows evolve towards different end states, as already predicted by statistical arguments for nondissipative systems with the addition of an energy minimization principle. Increasing the Reynolds number by an order of magnitude when using grids of 64(3)-512(3) points does not alter these conclusions. Furthermore, the alignment properties of these flows, between velocity, vorticity, magnetic potential, induction, and current, correspond to the dominance of two main regimes, one helically dominated and one in quasiequipartition of kinetic and magnetic energies. We also contrast the scaling of the ratio of magnetic energy to kinetic energy as a function of wave number to the ratio of eddy turnover time to Alfvén time as a function of wave number. We find that the former ratio is constant with an approximate equipartition for scales smaller than the largest scale of the flow, whereas the ratio of time scales increases with increasing wave number.
Akonur, Alp; Guest, Steven; Sloand, James A.; Leypoldt, John K.
2013-01-01
♦ Background: Remaining edema-free is a challenge for many automated peritoneal dialysis (APD) patients, especially those with fast (“high”) transport characteristics. Although increased use of peritoneal dialysis (PD) solutions with high glucose concentrations may improve volume control, frequent use of such solutions is undesirable. ♦ Methods: We used the 3-pore kinetic model to evaluate 4 alternative therapy prescriptions for the APD day exchange in anuric patients with high, high-average, and low-average transport characteristics. Four prescriptions were modeled: Therapy 1: Optimal, individualized dwell times with a dry periodTherapy 2: Use of a midday exchangeTherapy 3: Use of an icodextrin-containing dialysate during a 14-hour dwellTherapy 4: Use of optimal, individualized dwell times, followed by an icodextrin dwell to complete the daytime period The alternative therapies were compared with a reference standard therapy using glucose solution during a 14-hour dwell. The nighttime prescription was identical in all cases (10 L over 10 hours), and all glucose solutions contained 2.27% glucose. Net ultrafiltration (UF), sodium removal (NaR), total carbohydrate (CHO) absorption, and weekly urea Kt/V for a 24-hour period were computed and compared. ♦ Results: The UF and NaR were substantially higher with therapy 1 than with standard therapy (1034 mL vs 621 mL and 96 mmol vs 51 mmol respectively), without significant changes in CHO absorption or urea Kt/V. However, therapy 1 resulted in reduced β2-microglobulin clearance (0.74 mL/min vs 0.89 mL/min with standard therapy). Compared with therapy 1, therapy 2 improved UF and NaR (1062 mL vs 1034 mL and 99 mmol vs 96 mmol); however, that improvement is likely not clinically significant. Therapy 2 also resulted in a higher Kt/V (2.07 vs 1.72), but at the expense of higher glucose absorption (difference: 42 g). The UF and NaR were highest with a long icodextrin-containing daytime dwell either preceded by a
The $Z_2$ Index of Disordered Topological Insulators with Time Reversal Symmetry
Katsura, Hosho
2015-01-01
We study disordered topological insulators with time reversal symmetry. Relying on the noncommutative index theorem which relates the Chern number to the projection onto the Fermi sea and the magnetic flux operator, we give a precise definition of the $Z_2$ index which is a noncommutative analogue of the Atiyah-Singer $Z_2$ index. We prove that the noncommutative $Z_2$ index is robust against any time-reversal symmetric perturbation including disorder potentials as long as the spectral gap at the Fermi level does not close.
Practicing the attentional Dwell Away?
DEFF Research Database (Denmark)
Petersen, Anders; Kyllingsbæk, Søren; Bundesen, Claus Mogens
2007-01-01
. The results suggest that the majority of subjects may learn to optimize their performance reducing the attentional dwell time effect substantially. Further, the reduction in the attentional dwell time effect seems to be closely linked to the ability of the subject to inhibit eye movements while performing......Studies of the time course of visual attention have identified a temporary functional blindness to the second of two spatially separated targets: attending to one visual stimulus may lead to impairments in identifying a second stimulus presented about 200-500 ms later than the first. The phenomenon...... is known as the attentional dwell time (e.g. Duncan, Ward, Shapiro, 1994). Previous studies of attentional dwell time have all used naive subjects running few (
Energy Technology Data Exchange (ETDEWEB)
Henley, E.M.
1981-09-01
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces. (GHT)
Evidence for special relativity with de Sitter space-time symmetry
Institute of Scientific and Technical Information of China (English)
YAN Mu-Lin
2011-01-01
I show the formulation of de Sitter Special Relativity (dS-SR) based on Dirac-Lu-Zou-Guo's discussions, dS-SR quantum mechanics is formulated, and the dS-SR Dirac equation for hydrogen is suggested. The equation in the earth-QSO framework reference is solved by means of the adiabatic approach. It's found that the fine-structure "constant" α in dS-SR varies with time. By means of the t-z relation of the ACDM model, α's time-dependency becomes redshift z-dependent. The dS-SR's predictions of △α/α agree with data of spectra of 143 quasar absorption systems, the dS-space-time symmetry is SO(3,2) (i.e., anti-dS group) and the universal parameter R (de Sitter ratio) in dS-SR is estimated to be R ≈ 2.73 x 10 ly. The effects of dS-SR become visible at the cosmic space-time scale (i.e., the distance≥ 10 ly). At that scale, dS-SR is more reliable than Einstein SR. The α-variation with time is evidence of SR with de Sitter symmetry.
Borges in my office: the analysis of a man dwelling outside of time.
Shoshani, Michael; Shoshani, Batya
2013-07-01
This article weaves together two threads: the intricacies of the analysis of a difficult-to-reach yet extraordinary patient and the literary works of Jorge Luis Borges, which played a significant role in the analysis as a source of inspiration, enriching the analyst's reverie and opening up new psychic spaces. The authors demonstrate the analyst's recourse to several of Borges's stories in order to enrich his own inner world and to better understand the analysand. Some of these stories are briefly presented through the analyst's dialogue with them, and there is a discussion of their function in facilitating the process of working through issues of time, memory, mortality, and identity, contributing to the enhancement of the patient's ability to come face to face with the unwanted, split-off parts of his self and of reality. © 2013 The Psychoanalytic Quarterly, Inc.
Lie symmetry analysis and explicit solutions of the time fractional fifth-order KdV equation.
Directory of Open Access Journals (Sweden)
Gang Wei Wang
Full Text Available In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided.
Lie symmetry analysis and explicit solutions of the time fractional fifth-order KdV equation.
Wang, Gang Wei; Xu, Tian Zhou; Feng, Tao
2014-01-01
In this paper, using the Lie group analysis method, we study the invariance properties of the time fractional fifth-order KdV equation. A systematic research to derive Lie point symmetries to time fractional fifth-order KdV equation is performed. In the sense of point symmetry, all of the vector fields and the symmetry reductions of the fractional fifth-order KdV equation are obtained. At last, by virtue of the sub-equation method, some exact solutions to the fractional fifth-order KdV equation are provided.
Aspect, Alain
In the early 1980's, observation of a magneto-resistance anomaly in metallic thin films was attributed to the phenomenon of weak localization of electrons and to time-reversal symmetry breaking due to a magnetic field acting upon charged particles. We have observed weak localization of ultra-cold atoms in a 2D configuration, placed in a disordered potential created by a laser speckle. In order to manipulate time-reversal symmetry with our neutral atoms, we take advantage of the slow evolution of our system, and we observe the suppression and revival of weak localization when time reversal symmetry is cancelled and reestablished. References: K. Muller, J. Richard, V. V. Volchkov, V. Denechaud, P. Bouyer, A. Aspect, and V. Josse, ''Suppression and Revival of Weak Localization through Control of Time-Reversal Symmetry,'' Physical Review Letters 114 (20) (2015) and references in. Work supported by the ERC Avanced Grant Quantatop.
Time reversal symmetry broken fractional topological phases at zero magnetic field
Meng, Tobias; Sela, Eran
2014-12-01
We extend the coupled-wire construction of quantum Hall phases, and search for fractional topological insulating states in models of weakly coupled wires at zero external magnetic field. Focusing on systems beyond double copies of fractional quantum Hall states at opposite fields, we find that spin-spin interactions can stabilize a large family of fractional topological phases with broken time reversal invariance. The latter is manifested by spontaneous spin polarization, by a finite Hall conductivity, or by both. This suggests the possibility that fractional topological insulators may be unstable to spontaneous symmetry breaking.
Superluminal Neutrinos from Special Relativity with de Sitter Space-time Symmetry
Yan, Mu-Lin; Huang, Wei
2011-01-01
We explore the recent OPERA experiment of superluminal neutrinos in the framework of Special Relativity with de Sitter space-time symmetry (dS-SR). According to Einstein, the photon is treated as the massless particle in the SR mechanics. The meanings of the universal parameter $c$ and the photon velocity $c_{photon}$ in SR have been analyzed. $c$ can be determined by means of the velocity-composition law in SR kinematically. And $c_{photon}$ is determined by the dispersion relations of SR. It is revealed that $c=c_{photon}$ in Einstein's Special Relativity (E-SR), but $c\
Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors.
Lee, Wei-Cheng; Zhang, Shou-Cheng; Wu, Congjun
2009-05-29
We investigate the competition between the extended s+/--wave and dx2-y2-wave pairing order parameters in the iron-based superconductors. Because of the frustrating pairing interactions among the electron and the hole Fermi pockets, a time-reversal symmetry breaking s+id pairing state could be favored. We analyze this pairing state within the Ginzburg-Landau theory and explore the experimental consequences. In such a state, spatial inhomogeneity induces a supercurrent near a nonmagnetic impurity and the corners of a square sample. The resonance mode between the s+/-- and dx2-y2-wave order parameters can be detected through the B1g Raman spectroscopy.
Institute of Scientific and Technical Information of China (English)
2008-01-01
It has been proved that when the retarded effect (or multiple moment effect) of radiation fields is taken into account,the high order stimulated radiation and stimulated absorption probabilities of light are not the same so that time reversal symmetry would be violated,though the Hamiltonian of electromagnetic interaction is still unchanged under time reversal. The reason to cause time reversal symmetry violation is that certain filial or partial transition processes of bound atoms are forbidden or cannot be achieved due to the law of energy conservation and the special states of atoms themselves. These restrictions would cause the symmetry violation of time reversal of other filial or partial transition processes which can be actualized really. The symmetry violation is also relative to the asymmetry of initial states of bound atoms before and after time reversal. For the electromagnetic interaction between non-bound atoms and radiation field,there is no such kind of symmetry violation of time reversal. In this way,the current formula on the parameters of stimulated radiation and absorption of light with time reversal sym-metry should be revised. A more reliable foundation can be established for the theories of laser and nonlinear optics in which non-equilibrium processes are in-volved.
Institute of Scientific and Technical Information of China (English)
MEI XiaoChun
2008-01-01
It has been proved that when the retarded effect (or multiple moment effect) of radiation fields is taken into account, the high order stimulated radiation and stimulated absorption probabilities of light are not the same so that time reversal symmetry would be violated, though the Hamiltonian of electromagnetic interaction is still unchanged under time reversal.The reason to cause time reversal symmetry violation is that certain filial or partial transition processes of bound atoms are forbidden or cannot be achieved due to the law of energy conservation and the special states of atoms themselves.These restrictions would cause the symmetry violation of time reversal of other filial or partial transition processes which can be actualized really.The symmetry violation is also relative to the asymmetry of initial states of bound atoms before and after time reversal.For the electromagnetic interaction between non-bound atoms and radiation field, there is no such kind of symmetry violation of time reversal.In this way, the current formula on the parameters of stimulated radiation and absorption of light with time reversal sym-metry should be revised.A more reliable foundation can be established for the theories of laser and nonlinear optics in which non-equilibrium processes are in-volved.
Spontaneous symmetry breaking and masses numerical results in DFR noncommutative space-time
Neves, M J
2015-01-01
With the elements of the Doplicher, Fredenhagen and Roberts (DFR) noncommutative formalism, we have constructed the standard electroweak model. To accomplish this task we have begun with the WM-product basis group of symmetry. We have introduced the spontaneous symmetry breaking and the hypercharge in DFR framework. The electroweak symmetry breaking was analyzed and the masses of the new bosons were computed.
Directory of Open Access Journals (Sweden)
Harm Henricus Hollestelle
2016-09-01
With the concept of ‘speaking out’ I connect with the theatre training work of Iris Warren and Kristin Linklater. At the same time, while objects and their properties belong to the domain of physics, I will use some basic symmetry concepts from physics. Correlation then takes the form of an interwoven fabric where cause and effect are entangled. Different subsistence practices will correlate with different symmetries, i.e. translational and rotational symmetries, of the sky universe, that can be recognized from artistic expressions like personal ornaments.
Bogoliubov Fermi Surfaces in Superconductors with Broken Time-Reversal Symmetry
Agterberg, D. F.; Brydon, P. M. R.; Timm, C.
2017-03-01
It is commonly believed that, in the absence of disorder or an external magnetic field, there are three possible types of superconducting excitation gaps: The gap is nodeless, it has point nodes, or it has line nodes. Here, we show that, for an even-parity nodal superconducting state which spontaneously breaks time-reversal symmetry, the low-energy excitation spectrum generally does not belong to any of these categories; instead, it has extended Bogoliubov Fermi surfaces. These Fermi surfaces can be visualized as two-dimensional surfaces generated by "inflating" point or line nodes into spheroids or tori, respectively. These inflated nodes are topologically protected from being gapped by a Z2 invariant, which we give in terms of a Pfaffian. We also show that superconducting states possessing these Fermi surfaces can be energetically stable. A crucial ingredient in our theory is that more than one band is involved in the pairing; since all candidate materials for even-parity superconductivity with broken time-reversal symmetry are multiband systems, we expect these Z2-protected Fermi surfaces to be ubiquitous.
Marzuola, Jeremy L
2009-01-01
We consider a class nonlinear Schr\\"odinger / Gross-Pitaevskii equations (NLS/GP) with a focusing (attractive) nonlinear potential and symmetric double well linear potential. NLS/GP plays a central role in the modeling of nonlinear optical and mean-field quantum many-body phenomena. It is known that there is a critical $L^2$ norm (optical power / particle number) at which there is a symmetry breaking bifurcation of the ground state. We study the rich dynamical behavior near the symmetry breaking point. The source of this behavior in the full Hamiltonian PDE is related to the dynamics of a finite-dimensional Hamiltonian reduction. We derive this reduction, analyze a part of its phase space and prove a {\\it shadowing theorem} on the persistence of solutions, with oscillating mass-transport between wells, on very long, but finite, time scales within the full NLS/GP. The infinite time dynamics for NLS/GP are expected to depart, from the finite dimensional reduction, due to resonant coupling of discrete and contin...
Democratic Mass Matrices from Broken $O(3)_{L} \\times O(3)_{R}$ Flavor Symmetry
Tanimoto, M; Yanagida, T
1999-01-01
We impose $O(3)_L\\times O(3)_R$ flavor symmetry in the supersymmetric standard model. Three lepton doublets $\\ell_i$ transform as an $O(3)_L$ triplet and three charged leptons $\\bar e_i$ as an $O(3)_R$ triplet, while Higgs doublets $H$ and $\\bar H$ are $O(3)_L\\times O(3)_R$ singlets. We discuss a flavor $O(3)_L\\times O(3)_R$ breaking mechanism that leads to "successful" phenomenological mass matrices, so-called "democratic" ones, in which the large degenerate masses of order $0.1\\eV$ which may be accesible to future double that it is well consistent with the observed quark mass hierarchies and the CKM matrix elements.
Field cage development for a time-projection chamber to constrain the nuclear symmetry energy
Estee, J.; Barney, J.; Chajecki, Z.; Famiano, M.; Dunn, J.; Lu, F.; Lynch, W. G.; McIntosh, A. B.; Isobe, T.; Murakami, T.; Sakurai, H.; Shane, R.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Yennello, S.
2012-10-01
The SAMURAI time-projection chamber (sTPC) is being developed for use in the dipole magnet of the newly-commissioned SAMURAI spectrometer at the RIBF facility in Japan. The main scientific objective of the sTPC is to provide constraints on the nuclear symmetry energy at supra-saturation densities. The TPC allows for tracking and identification of light charged particles such as pions, protons, tritons and ^3He. The sTPC must have a Cartesian geometry to match the symmetry of the dipole magnet. The walls of the field cage (FC) detector volume consist of sections of rigid, two-layer circuit boards. Inside and outside copper strips form decreasing equipotentials via a resistor chain, and create a uniform electric field with a maximum of 400 V/cm. The FC volume is hermetically sealed from the enclosure volume to create an insulation volume which can be filled with dry N2 to inhibit corona discharge. I will be presenting the current status of the design and assembly of the sTPC field cage.
Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals.
Mei, Jun; Chen, Zeguo; Wu, Ying
2016-09-02
We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound.
Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices
Zhang, Zhaoyang; Sheng, Jiteng; Yang, Liu; Miri, Mohammad-Ali; Christodoulides, Demetrios N; He, Bing; Zhang, Yanpeng; Xiao, Min
2016-01-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Due to their unusual properties, this family of non-Hermitian systems has recently attracted considerable attention in diverse areas of physics, especially in coupled gain-loss waveguides and optical lattices. Given that multi-level atoms can be quite efficient in judiciously synthesizing refractive index profiles, schemes based on atomic coherence have been recently proposed to realize optical potentials with PT-symmetric properties. Here, we experimentally demonstrate for the first time PT-symmetric optical lattices in a coherently-prepared four-level N-type atomic system. By appropriately tuning the pertinent atomic parameters, the onset of PT symmetry breaking is observed through measuring an abrupt phase-shift jump. The experimental realization of such readily reconfigurable and effectively controllable PT-symmetric periodic lattice structures sets a new stage for further...
Single-valued Hamiltonian via Legendre–Fenchel transformation and time translation symmetry
Energy Technology Data Exchange (ETDEWEB)
Chi, Huan-Hang, E-mail: hhchi@stanford.edu [Physics Department, Stanford University, Stanford, CA 94305 (United States); Institute of Modern Physics and Center for High Energy Physics, Tsinghua University, Beijing 100084 (China); Physics Department, Tsinghua University, Beijing 100084 (China); He, Hong-Jian, E-mail: hjhe@tsinghua.edu.cn [Institute of Modern Physics and Center for High Energy Physics, Tsinghua University, Beijing 100084 (China); Physics Department, Tsinghua University, Beijing 100084 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China)
2014-08-15
Under conventional Legendre transformation, systems with a non-convex Lagrangian will result in a multi-valued Hamiltonian as a function of conjugate momentum. This causes problems such as non-unitary time evolution of quantum state and non-determined motion of classical particles, and is physically unacceptable. In this work, we propose a new construction of single-valued Hamiltonian by applying Legendre–Fenchel transformation, which is a mathematically rigorous generalization of conventional Legendre transformation, valid for non-convex Lagrangian systems, but not yet widely known to the physics community. With the new single-valued Hamiltonian, we study spontaneous breaking of time translation symmetry and derive its vacuum state. Applications to theories of cosmology and gravitation are discussed.
Polar Kerr Effect as Probe for Time-Reversal Symmetry Breaking in Unconventional Superconductors
Energy Technology Data Exchange (ETDEWEB)
Kapitulnik, A.
2010-05-26
The search for broken time reversal symmetry (TRSB) in unconventional superconductors intensified in the past year as more systems have been predicted to possess such a state. Following our pioneering study of TRSB states in Sr{sub 2}RuO{sub 4} using magneto-optic probes, we embarked on a systematic study of several other of these candidate systems. The primary instrument for our studies is the Sagnac magneto-optic interferometer, which we recently developed. This instrument can measure magneto-optic Faraday or Kerr effects with an unprecedented sensitivity of 10 nanoradians at temperatures as low as 100 mK. In this paper we review our recent studies of TRSB in several systems, emphasizing the study of the pseudogap state of high temperature superconductors and the inverse proximity effect in superconductor/ferromagnet proximity structures.
Lie Symmetries, Conservation Laws and Explicit Solutions for Time Fractional Rosenau–Haynam Equation
Qin, Chun-Yan; Tian, Shou-Fu; Wang, Xiu-Bin; Zhang, Tian-Tian
2017-02-01
Under investigation in this paper is the invariance properties of the time fractional Rosenau-Haynam equation, which can be used to describe the formation of patterns in liquid drops. By using the Lie group analysis method, the vector fields and symmetry reductions of the equation are derived, respectively. Moreover, based on the power series theory, a kind of explicit power series solutions for the equation are well constructed with a detailed derivation. Finally, by using the new conservation theorem, two kinds of conservation laws of the equation are well constructed with a detailed derivation. Supported by the Fundamental Research Fund for Talents Cultivation Project of the China University of Mining and Technology under Grant No. YC150003
Institute of Scientific and Technical Information of China (English)
Long Fei; Du Lu-Chun; Mei Dong-Cheng
2009-01-01
The nonequilibrium phase transition and the symmetry revival induced by time delay in a bistable system are investigated. The stationary probability distribution function (SPDF) of the bistable system with time delay and correlated noises are calculated by an analytical method and stochastic simulation respectively. The analytical and simulative results indicate that: (1) There is a certain value of λ(λ denotes the strength of correlations between the multiplicative and additive noises) to make the SPDF symmetric under some time delay; however, above or below the given value, the symmetry will be broken; (2) With the monotonic change of λ, the unimodal peak structure of SPDF becomes bimodal at the beginning, then it becomes unimodal again; this means that there is a reentrance phenomenon in the process; (3) There is a critical value of delay time, which makes the lower peak of SPDF equal to the higher one under the critical condition. This means that the symmetry revival phenomenon emerges.
Energy Technology Data Exchange (ETDEWEB)
Moody, J. D., E-mail: moody4@llnl.gov; Robey, H. F.; Celliers, P. M.; Munro, D. H.; Barker, D. A.; Baker, K. L.; Döppner, T.; Hash, N. L.; Berzak Hopkins, L.; LaFortune, K.; Landen, O. L.; LePape, S.; MacGowan, B. J.; Ralph, J. E.; Ross, J. S.; Widmayer, C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Nikroo, A.; Giraldez, E. [General Atomics, San Diego, California 92186-5608 (United States); Boehly, T. [Laboratory for Laser Energetics, Rochester, New York 14623-1299 (United States)
2014-09-15
An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4 mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements.
Relations among pionic decays of spin-1 mesons from an SU(4)$\\times$U(1) emergent symmetry in QCD
Nishihara, Hiroki
2016-01-01
Motivated by recent results by lattice analysis, we assume that the spin-1 mesons of $\\left( \\rho, \\omega, a_1, \\rho', \\omega', b_1, f_1, h_1\\right)$ make a representation of $\\mathbf{16}$ of U(4) emergent symmetry in two-flavor QCD when the chiral symmetry is not broken. We study the decay properties of the spin-1 mesons by using a chiral model with an SU(4)$\\times$U(1) hidden local symmetry. We first show that, since the SU(4) symmetry is spontaneously broken together with the chiral symmetry, each coupling of the interaction among one pion and two spin-1 mesons is proportional to the mass difference of the relevant spin-1 mesons similarly to the Goldberger-Treiman relation. In addition, some of one-pion couplings are related with each other by the SU(4) symmetry. We further show that there is a relation among the mass of $\\rho'$ meson, the $\\rho'\\pi\\pi$ coupling and the $\\rho'$-photon mixing strength as well as the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation for the $\\rho$ meson. From the relations...
Zhang, Rong; Li, Qian-Wen; Tang, F. R.; Yang, X. Q.; Bai, L.
2017-08-01
We investigate the performance at a given power of a thermoelectric heat engine with broken time-reversal symmetry, and derive analytically the efficiency at a given power of a thermoelectric generator within linear irreversible thermodynamics. A universal bound on the efficiency of the thermoelectric heat engine is achieved under a strong constraint on the Onsager coefficients, and some interesting features are further revealed. Our results demonstrate that there exists a trade-off between efficiency and power output, and the efficiency at a given power may surpass the Curzon-Ahlborn limit due to broken time-reversal symmetry. Moreover, optimal efficiency at a given power can be achieved, which indicates that broken time-reversal symmetry offers physically allowed ways to optimize the performance of heat engines. Our study may contribute to the interesting guidelines for optimizing actual engines.
Neves, M. J.; Abreu, Everton M. C.
2016-04-01
With the elements of the Doplicher-Fredenhagen-Roberts (DFR) noncommutative formalism, we have constructed a standard electroweak model. We have introduced the spontaneous symmetry breaking and the hypercharge in DFR framework. The electroweak symmetry breaking was analyzed and the masses of the new bosons were computed.
A note on proper affine symmetry in Kantowski-Sachs and Bianchi type III space-times
Shabbir, Ghulam
2016-01-01
We investigate proper affine symmetry for the Kantowski-Sachs and Bianchi type III space-times by using holonomy and decomposability, the rank of the 6X6 Riemann matrix and direct integration techniques. It is shown that the very special classes of the above space-times admit proper affine vector fields.
CP and other Symmetries of Symmetries
Trautner, Andreas
2016-01-01
Outer automorphisms of symmetries ("symmetries of symmetries") in relativistic quantum field theories are studied, including charge conjugation (C), space-reflection (P) , and time-reversal (T) transformations. The group theory of outer automorphisms is pedagogically introduced and it is shown that CP transformations are special outer automorphisms of the global, local, and space-time symmetries of a theory. It is shown that certain discrete groups allow for a group theoretical prediction of parameter independent CP violating complex phases with fixed geometrical values. The remainder of this thesis pioneers the study of outer automorphisms which are not related to C, P, or T. It is shown how outer automorphisms, in general, relate symmetry invariants and, in theories with spontaneous symmetry breaking, imply relations between different vacuum expectation values. Thereby, outer automorphisms can give rise to emergent symmetries. An example model with a discrete symmetry and three copies of the Standard Model ...
Breban, Romulus
2015-01-01
Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact...
Energy Technology Data Exchange (ETDEWEB)
Hamilton, R [Univ Arizona, Tucson, AZ (United States); Patel, P; Balaggan, K; Restori, M; Ilginis, T [Moorfields Eye Hospital, London (United Kingdom); Drew, M; McGovern, M; Vitali, J; Marsteller, L [Salutaris Medical Devices, Inc., Tucson, AZ (United States)
2015-06-15
Purpose: To evaluate the variations in dwell times and doses expected when using an episcleral brachytherapy device for treatment of neovascular agerelated macular degeneration (n-AMD) based on accurate imaging modalities Methods: Data from 40 eyes from 40 subjects with known n- AMD acquired through the Distance of Choroid Study (DOCS) conducted at Moorfields Eye Hospital was used to determine the target depth; the distance from the outer scleral surface of the eye, through the choroid, to the apex of the choroidal neovascularization (CNV). Each subject underwent, in triplicate, enhanced-depth Spectral Domain Optical Coherence Tomography (SD-OCT), Swept Source Optical Coherence Tomography, (SS-OCT) and Ocular Ultrasound (O-US). These data are the most comprehensive and accurate measurements of the dimensions of the CNV and adjacent layers of the eye for this cohort of patients. During treatment of n-AMD, patients receive a dose of 24Gy to the apex at the target depth. Using the percentage depth dose for a Sr-90 episcleral brachytherapy device, dwell times and doses to the apex were computed to determine the expected variations. Results: The mean target depth and the 95% confidence interval (CI) determined by combining O-US with SD-OCT were 1326 (956,1696)µm and with SS-OCT were 1332 (970,1693)µm. The calculated corresponding mean dwell times and 95% (CI) were 334 (223,445)s and 335 (226,445)s for SD-OCT and SS-OCT determined depths, respectively. The corresponding mean apex dose and 95% (CI) were 24 (35.9,18.0)Gy (SD-OCT) and 24 (35.6,18.1)Gy (SS-OCT). Conclusion: For episcleral brachytherapy treatment of n-AMD, using a patient population average target depth for treatment planning is inadequate, resulting in dose variations of a factor of approximately two over the 95% CI and larger variations for a nontrivial segment of the population. Each patient should have individualized imaging studies to determine the target depth for use in the dwell time calculation
Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.
2016-09-01
Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.
Belich, H.; Bakke, K.
2016-03-01
The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.
Energy Technology Data Exchange (ETDEWEB)
Breban, Romulus [Institut Pasteur, Paris Cedex 15 (France)
2016-09-15
Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact symmetry approximately hold when other concepts such as decaying quantum states, resonant quantum scattering, and Stokes drag are adopted, as well. We briefly comment on the optical model of the nuclear interactions and Millikan's oil drop experiment. (orig.)
Breban, Romulus
2016-09-01
Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact symmetry approximately hold when other concepts such as decaying quantum states, resonant quantum scattering, and Stokes drag are adopted, as well. We briefly comment on the optical model of the nuclear interactions and Millikan's oil drop experiment.
ON THE NOETHER SYMMETRY AND LIE SYMMETRY OF MECHANICAL SYSTEMS
Institute of Scientific and Technical Information of China (English)
梅凤翔; 郑改华
2002-01-01
The Noether symmetry is an invariance of Hamilton action under infinitesimal transformations of time and the coordinates. The Lie symmetry is an invariance of the differential equations of motion under the transformations. In this paper, the relation between these two symmetries is proved definitely and firstly for mechanical systems. The results indicate that all the Noether symmetries are Lie symmetries for Lagrangian systems meanwhile a Noether symmetry is a Lie symmetry for the general holonomic or nonholonomic systems provided that some conditions hold.
Gelfand-Dickey Algebra and Higher Spin Symmetries On $T^2=S^1\\times S^1$
Sedra, M B
2007-01-01
We focus in this work to renew the interest in higher conformal spins symmetries and their relations to quantum field theories and integrable models. We consider the extension of the conformal Frappat et al. symmetries containing the Virasoro and the Antoniadis et al. algebras as particular cases describing geometrically special diffeomorphisms of the two dimensional torus $T^2$. We show in a consistent way, and explicitly, how one can extract these generalized symmetries from the Gelfand-Dickey algebra. The link with Liouville and Toda conformal field theories is established and various important properties are discussed.
A neutrino mixing model based on an $A_4\\times Z_3\\times Z_4$ flavour symmetry
Ky, Nguyen Anh; Van, Nguyen Thi Hong
2016-01-01
A model of a neutrino mixing with an $A_4\\times Z_3\\times Z_4$ flavour symmetry is suggested. In addition to the standard model fields, the present model contains six new fields which transform under different representations of $A_4\\times Z_3\\times Z_4$. The model is constructed to slightly deviate from a tri-bi-maximal model in agreement with the current experimental data, thus, all analysis can be done in the base of the perturbation method. Within this model, as an application, a relation between the mixing angles ($\\theta_{12}, \\theta_{23}, \\theta_{13}$) and the Dirac CP-violation phase ($\\delta_{CP}$) is established. This relation allows a prediction of $\\delta_{CP}$ and the Jarlskog parameter ($J_{CP}$). The predicted value $\\delta_{CP}$ is in the 1$\\sigma$ region of the global fit for both the normal- and inverse neutrino mass ordering and gives $J_{CP}$ to be within the bound $|J_{CP}|\\leq 0.04$. For an illustration, the model is checked numerically and gives values of the neutrino masses (of the ord...
Kose, Yujiro; Ikenaga, Masahiro; Yamada, Yosuke; Morimura, Kazuhiro; Takeda, Noriko; Ouma, Shinji; Tsuboi, Yoshio; Yamada, Tatsuo; Kimura, Misaka; Kiyonaga, Akira; Higaki, Yasuki; Tanaka, Hiroaki
2016-12-01
This study aimed to ascertain if performance on the Timed Up and Go (TUG) test is associated with indicators of brain volume and cognitive functions among community-dwelling older adults with normal cognition or mild cognitive impairment. Participants were 80 community-dwelling older adults aged 65-89years (44 men, 36 women), including 20 with mild cognitive impairment. Participants completed the TUG and a battery of cognitive assessments, including the Mini-Mental State Examination (MMSE), the Logical Memory I and II (LM-I, LM-II) subtests of the Wechsler Memory Scale-Revised; and the Trail Making Test A and B (TMT-A, TMT-B). Bilateral, right- and left-side medial temporal area atrophy as well as whole gray and white matter indices were determined with the Voxel-based Specific Regional Analysis System for Alzheimer's Disease. We divided participants into three groups based on TUG performance: "better" (≤6.9s); "normal" (7-10s); and "poor" (≥10.1s). Worse TMT-A and TMT-B performance showed significant independent associations with worse TUG performance (P<0.05, P<0.01 for trend, respectively). After adjusting for covariates, severe atrophy of bilateral, right-, and left-side medial temporal areas were significantly independently associated with worse TUG performance (P<0.05 for trend). However, no significant associations were found between MMSE, LM-I, LM-II, whole gray and white matter indices, and TUG performance. Worse TUG performance is related to poor performance on TMT-A and TMT-B, and is independently associated with severe medial temporal area atrophy in community-dwelling older adults. Copyright © 2016 Elsevier Inc. All rights reserved.
Harter, Andrew K; Joglekar, Yogesh N
2016-01-01
Open, non-equilibrium systems with balanced gain and loss, known as parity-time ($\\mathcal{PT}$)-symmetric systems, exhibit properties that are absent in closed, isolated systems. A key property is the $\\mathcal{PT}$-symmetry breaking transition, which occurs when the gain-loss strength, a measure of the openness of the system, exceeds the intrinsic energy-scale of the system. We analyze the fate of this transition in disordered lattices with non-Hermitian gain and loss potentials $\\pm i\\gamma$ at reflection-symmetric sites. Contrary to the popular belief, we show that the $\\mathcal{PT}$-symmetric phase is protected in the presence of a correlated (periodic) disorder which leads to a positive $\\mathcal{PT}$-symmetry breaking threshold. We uncover a veiled symmetry of such disordered systems that is instrumental for the said protection, and show that this symmetry leads to new localization behavior across the $\\mathcal{PT}$-symmetry breaking transition. We elucidate the interplay between such localization and ...
Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry
DEFF Research Database (Denmark)
Wölms, Konrad Udo Hannes
In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise......-dimensions without any symmetries. Even though the bulk of a quantum Hall system is insulating, it exhibits gapless edge modes. It is therefore dierent from other insulating two-dimensional materials. It was soon realized after the discovery of the quantum Hall eect, that there is a quantized invariant (topological...... of the topological phases that received a lot of attention in recent years, is the one-dimensional topological superconducting phase, without time-reversal symmetry [5]. Similar to the quantum Hall eect, this phase exhibits edge excitations, which are zerodimensional for one-dimensional systems. For this particular...
Jamal, Sameerah
In this paper, we study the geometric properties of generators for the Klein-Gordon equation on classes of space-time homogeneous Gödel-type metrics. Our analysis complements the study involving the “Symmetries of geodesic motion in Gödel-type spacetimes” by U. Camci (J. Cosmol. Astropart. Phys., doi:10.1088/1475-7516/2014/07/002). These symmetries or Killing vectors (KVs) are used to construct potential functions admitted by the Klein-Gordon equation. The criteria for the potential function originates from three primary sources, viz. through generators that are identically the Killing algebra, or with the KV fields that are recast into linear combinations and third, real subalgebras within the Killing algebra. This leads to a classification of the (1 + 3) Klein-Gordon equation according to the catalogue of infinitesimal Lie and Noether point symmetries admitted. A comprehensive list of group invariant functions is provided and their application to analytic solutions is discussed.
Directory of Open Access Journals (Sweden)
Adil Jhangeer
2016-01-01
Full Text Available Petrov Type D-Levi-Civita (DLC space-time is considered in two different coordinates, that is, spherical and cylindrical. Noether gauge symmetries and their corresponding conserved quantities for respective metric with the restricted range of parameters and coordinates are discussed.
Singh, Abhishek; De Bisschop, Cathérine; Schut, Henk; Van Humbeeck, Jan; Van Den Mooter, Guy
2015-10-01
Compression of miconazole-poly (1-vinylpyrrolidone-co-vinyl acetate) (PVPVA64) solid dispersions prepared by spray drying and hot-melt extrusion was performed to gain insights into effect of compression pressure, dwell time, and preparation method on compression-dependent phase behavior. The solid dispersions prepared by spray drying were initially phase-separated showing two glass transition temperature (Tg), whereas the extruded samples showed one single Tg indicating better mixing. Compression caused mixing of spray-dried solid dispersions at high compression pressures and especially high dwell times. The extruded systems showed no statistically significant differences. However, physical mixtures made up from extruded samples containing 20% and 40% of active pharmaceutical ingredient underwent mixing upon compression. Coincidence Doppler measurements were performed to quantify the free volume of PVPVA64 which is a major contributor to the free volume in the solid dispersion matrix. A small but significant difference was found between the open free volume of the pure polymer subjected to varied manufacturing processes. Compression-induced plastic deformation and plastic flow enhances molecular mobility leading to mixing of different domains in solid dispersions. Different manufacturing methods may result in products with similar free volume, thereby showing similar molecular mobility.
Directory of Open Access Journals (Sweden)
Guallar-Castillón Pilar
2011-06-01
Full Text Available Abstract Background Evidence on the relation between leisure-time physical activity (LTPA and health-related quality of life (HRQoL in older adults is based primarily on clinical trials of physical exercise programs in institutionalized persons and on cross-sectional studies of community-dwelling persons. Moreover, there is no evidence on whether leisure-time sedentary behavior (LTSB is associated with HRQoL independently of LTPA. This study examined the longitudinal association between LTPA, LTSB, and HRQoL in older community-dwelling adults in Spain. Methods Prospective cohort study of 1,097 persons aged 62 and over. In 2003 LTPA in MET-hr/week was measured with a validated questionnaire, and LTSB was estimated by the number of sitting hours per week. In 2009 HRQoL was measured with the SF-36 questionnaire. Analyses were done with linear regression and adjusted for the main confounders. Results Compared with those who did no LTPA, subjects in the upper quartile of LTPA had better scores on the SF-36 scales of physical functioning (β 5.65; 95% confidence interval [CI] 1.32-9.98; p linear trend Conclusions Greater LTPA and less LTSB were independently associated with better long-term HRQoL in older adults.
SπRIT: A time-projection chamber for symmetry-energy studies
Energy Technology Data Exchange (ETDEWEB)
Shane, R. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); McIntosh, A.B. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Isobe, T. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Lynch, W.G., E-mail: lynch@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Baba, H. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Barney, J.; Chajecki, Z. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Chartier, M. [Department of Physics, University of Liverpool, Liverpool, Merseyside, L69 7ZE (United Kingdom); Estee, J. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Famiano, M. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); Hong, B. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Ieki, K. [Department of Physics, Rikkyo University, Toshima‐ku, Tokyo 171‐8501 (Japan); Jhang, G. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Lemmon, R. [Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, Cheshire WA4 4AD (United Kingdom); Lu, F. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Murakami, T.; Nakatsuka, N. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606-8502 (Japan); Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Olsen, R. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Powell, W. [Department of Physics, University of Liverpool, Liverpool, Merseyside, L69 7ZE (United Kingdom); and others
2015-06-01
A time-projection chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The SπRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as {sup 132}Sn+{sup 124}Sn. The SπRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode plane. Image charges, produced in the 12096 pads, are read out with the recently developed Generic Electronics for TPCs.
S$\\pi$RIT: A time-projection chamber for symmetry-energy studies
Shane, R; Isobe, T; Lynch, W G; Baba, H; Barney, J; Chajecki, Z; Chartier, M; Estee, J; Famiano, M; Hong, B; Ieki, K; Jhang, G; Lemmon, R; Lu, F; Murakami, T; Nakatsuka, N; Nishimura, M; Olsen, R; Powell, W; Sakurai, H; Taketani, A; Tangwancharoen, S; Tsang, M B; Usukura, T; Wang, R; Yennello, S J; Yurkon, J
2014-01-01
A Time-Projection Chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (S$\\pi$RIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The S$\\pi$RIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as $^{132}$Sn + $^{124}$Sn. The S$\\pi$RIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode. Image charges are produced in the 12096 pads, and are read out with the recently developed Generic Electronics for TPCs.
Vondráček, M.; Cornils, L.; Minár, J.; Warmuth, J.; Michiardi, M.; Piamonteze, C.; Barreto, L.; Miwa, J. A.; Bianchi, M.; Hofmann, Ph.; Zhou, L.; Kamlapure, A.; Khajetoorians, A. A.; Wiesendanger, R.; Mi, J.-L.; Iversen, B.-B.; Mankovsky, S.; Borek, St.; Ebert, H.; Schüler, M.; Wehling, T.; Wiebe, J.; Honolka, J.
2016-10-01
We report on the quenching of single Ni adatom moments on Te-terminated Bi2Te2Se and Bi2Te3 topological insulator surfaces. The effect is noted as a missing x-ray magnetic circular dichroism for resonant L3 ,2 transitions into partially filled Ni 3 d states of theory-derived occupancy nd=9.2 . On the basis of a comparative study of Ni and Fe using scanning tunneling microscopy and ab initio calculations, we are able to relate the element specific moment formation to a local Stoner criterion. Our theory shows that while Fe adatoms form large spin moments of ms=2.54 μB with out-of-plane anisotropy due to a sufficiently large density of states at the Fermi energy, Ni remains well below an effective Stoner threshold for local moment formation. With the Fermi level remaining in the bulk band gap after adatom deposition, nonmagnetic Ni and preferentially out-of-plane oriented magnetic Fe with similar structural properties on Bi2Te2Se surfaces constitute a perfect platform to study the off-on effects of time-reversal symmetry breaking on topological surface states.
Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators.
Chang, Cui-Zu; Li, Mingda
2016-03-31
The quantum anomalous Hall effect (QAHE), the last member of Hall family, was predicted to exhibit quantized Hall conductivity σ(yx) = e2/h without any external magnetic field. The QAHE shares a similar physical phenomenon with the integer quantum Hall effect (QHE), whereas its physical origin relies on the intrinsic topological inverted band structure and ferromagnetism. Since the QAHE does not require external energy input in the form of magnetic field, it is believed that this effect has unique potential for applications in future electronic devices with low-power consumption. More recently, the QAHE has been experimentally observed in thin films of the time-reversal symmetry breaking ferromagnetic (FM) topological insulators (TI), Cr- and V- doped (Bi,Sb)2Te3. In this topical review, we review the history of TI based QAHE, the route to the experimental observation of the QAHE in the above two systems, the current status of the research of the QAHE, and finally the prospects for future studies.
Time-Reversal Symmetry Violation in Molecules Induced by Nuclear Magnetic Quadrupole Moments
Flambaum, V. V.; DeMille, D.; Kozlov, M. G.
2014-09-01
Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions.
Recovering parity-time symmetry in highly dispersive coupled optical waveguides
Nguyen, Ngoc B.; Maier, Stefan A.; Hong, Minghui; Oulton, Rupert F.
2016-12-01
Coupled photonic systems satisfying parity-time symmetry (PTS) provide flexibility to engineer the flow of light including non-reciprocal propagation, perfect laser-absorbers, and ultra-fast switching. Achieving the required index profile for an optical system with ideal PTS, i.e. n(x)=n{(-x)}* , has proven to be difficult due to the challenge of controlling gain, loss and material dispersion simultaneously. Consequently, most research has focused on dilute or low gain optical systems where material dispersion is minimal. In this paper, we study a model system of coupled inorganic semiconductor waveguides with potentially high gain (>1500 cm-1) and dispersion. Our analysis makes use of coupled mode theory’s parameters to quantify smooth transitions between PTS phases under imperfect conditions. We find that the detrimental influence of gain-induced dispersion is counteracted and the key features of PTS optical systems are recovered by working with non-identical waveguides and bias pumping of the optical waveguides. Our coupled mode theory results show excellent agreement with numerical solutions, proving the robustness of coupled mode theory in describing various degrees of imperfection in systems with PTS.
Smith, Erin; Walsh, Lorcan; Doyle, Julie; Greene, Barry; Blake, Catherine
2017-08-01
The Timed Up and Go test (TUG) is used as a measure of functional ability in older adults; however, the method of measurement does not allow us to determine which aspects of the test deficits occur in. The aim of the present study was to examine the ability of the quantitative TUG (QTUG) to measure performance during the TUG test under three different conditions - single task, motor task and cognitive dual task - and to compare performance between fallers and non-fallers in high-functioning community-dwelling older adults. A total of 37 community-dwelling older adults, 16 with a self-reported falls history in the previous year, were recruited. Participants underwent a falls risk assessment with a physiotherapist including the QTUG under three conditions (single task, motor task, cognitive dual-task). A total of 10 clinical parameters were chosen for analysis using mancova and a series of ancova, with age, sex and body mass index included as covariates. The mancova analysis showed a significant difference across the three task conditions (Wilk's Lambda F20,186 = 3.37, P time in double support. When faller and non-faller differences were explored, cadence and stride velocity was greater, and stride time longer in those with a prior history of falls. In community-dwelling older adults, these preliminary results show that a cognitive dual-task significantly (P time-to-stand observed with a motor task. Although no statistical difference was found between fallers and non-fallers for many of the parameters, cadence, stride time and stride velocity were statistically different (P < 0.05). A larger sample size and more assessment points might lead to more definitive findings. These results highlight the need for further research to examine QTUG performance under dual-task conditions between fallers and non-fallers in this population, and to look at the ability of dual-task QTUG assessment to measure change longitudinally and the effectiveness of therapeutic
${\\mathbb Z}_2\\times {\\mathbb Z}_2$-graded Lie Symmetries of the L\\'evy-Leblond Equations
Aizawa, N; Tanaka, H; Toppan, F
2016-01-01
The first-order differential L\\'evy-Leblond equations (LLE's) are the non-relativistic analogs of the Dirac equation, being square roots of ($1+d$)-dimensional Schr\\"odinger or heat equations. Just like the Dirac equation, the LLE's possess a natural supersymmetry. In previous works it was shown that non supersymmetric PDE's (notably, the Schr\\"odinger equations for free particles or in the presence of a harmonic potential), admit a natural ${\\mathbb Z}_2$-graded Lie symmetry. In this paper we show that, for a certain class of supersymmetric PDE's, a natural ${\\mathbb Z}_2\\times{\\mathbb Z}_2$-graded Lie symmetry appears. In particular, we exhaustively investigate the symmetries of the $(1+1)$-dimensional L\\'evy-Leblond Equations, both in the free case and for the harmonic potential. In the free case a ${\\mathbb Z}_2\\times{\\mathbb Z}_2$-graded Lie superalgebra, realized by first and second-order differential symmetry operators, is found. In the presence of a non-vanishing quadratic potential, the Schr\\"odinger...
Chaichian, M; Presnajder, P; Tureanu, A
2005-04-22
We present a systematic framework for noncommutative (NC) quantum field theory (QFT) within the new concept of relativistic invariance based on the notion of twisted Poincare symmetry, as proposed by Chaichian et al. [Phys. Lett. B 604, 98 (2004)]. This allows us to formulate and investigate all fundamental issues of relativistic QFT and offers a firm frame for the classification of particles according to the representation theory of the twisted Poincare symmetry and as a result for the NC versions of CPT and spin-statistics theorems, among others, discussed earlier in the literature. As a further application of this new concept of relativism we prove the NC analog of Haag's theorem.
Doshi, Mehul Harshad; Narayanan, Govindarajan
2016-12-01
Chronic post-thrombotic obstruction of the inferior vena cava (IVC) or iliocaval junction is an uncommon complication of long indwelling IVC filter. When such an obstruction is symptomatic, endovascular treatment options include stent placement with or without filter retrieval. Filter retrieval becomes increasingly difficult with longer dwell times. We present a case of symptomatic post-thrombotic obstruction of the iliocaval junction related to Günther-Tulip IVC filter (Cook Medical Inc, Bloomington, IN) with dwell time of 4753 days, treated successfully with endovascular filter removal and stent reconstruction. Filter retrieval and stent reconstruction may be a treatment option in symptomatic patients with filter-related chronic IVC or iliocaval junction obstruction, even after prolonged dwell time.
Direct test of time-reversal symmetry in the entangled neutral kaon system at a \\phi-factory
Bernabeu, J; Villanueva-Perez, P
2013-01-01
We present a novel method to perform a direct T (time reversal) symmetry test in the neutral kaon system, independent of any CP and/or CPT symmetry tests. This is based on the comparison of suitable transition probabilities, where the required interchange of in out states for a given process is obtained exploiting the Einstein-Podolsky-Rosen correlations of neutral kaon pairs produced at a \\phi-factory. In the time distribution between the two decays, we compare a reference transition like the one defined by the time ordered decays (l^-,\\pi\\pi) with the T -conjugated one defined by (3\\pi^0, l^+). With the use of this and other T conjugated comparisons, the KLOE-2 experiment at DAFNE could make a significant test.
Lepton Masses in a Minimal Model with Triplet Higgs and $S_3\\times Z_4$ Flavor Symmetry
Mitra, Manimala
2008-01-01
Viable neutrino and charged lepton masses and mixings are obtained by imposing the $S_3 \\times Z_4$ flavor symmetry in a model with a few additional Higgs and no extra fermions. We use $SU(2)_L$ triplet Higgs which are arranged as a doublet of $S_3$, and standard model singlet Higgs which are also put as doublets of $S_3$. We break the $S_3$ symmetry in this minimal model by giving vacuum expectation values (VEV) to the additional Higgs fields. Dictated by the minimum condition for the scalar potential, we obtain certain VEV alignments which allow us to maintain exact $\\mu-\\tau$ symmetry in the neutrino sector, while breaking it maximally for the charged leptons. This helps us to simultaneously explain the hierarchical charged lepton masses, and the neutrino masses and mixings. In particular, we obtain maximal $\\theta_{23}$ and zero $\\theta_{13}$. We allow for a mild breaking of the $\\mu-\\tau$ symmetry for the neutrinos and study the phenomenology. We give predictions for $\\theta_{13}$ and the CP violating Ja...
Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals
Mei, Jun
2016-09-02
We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î
Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces
Schaft, A.J. van der
1983-01-01
A system theoretic framework is given for the description of Hamiltonian systems with external forces and partial observations of the state. It is shown how symmetries and conservation laws can be defined within this framework. A generalization of Noether's theorem is obtained. Finally a precise def
A late time accelerated FRW model with scalar and vector fields via Noether symmetry
Vakili, Babak
2014-01-01
We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann-Robertson-Walker (FRW) model, a scalar field with potential function $V(\\phi)$ with which the gravity part of the action is minimally coupled and a vector field its kinetic energy is coupled with the scalar field by a coupling function $f(\\phi)$. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology i...
Iyyappan, I.; Ponmurugan, M.
2017-09-01
We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.
Tanaka, Satoshi; Garmon, Savannah; Kanki, Kazuki; Petrosky, Tomio
2016-08-01
We have theoretically investigated the time-symmetry-breaking phase-transition process for two discrete states coupled with a one-dimensional continuum by solving the nonlinear eigenvalue problem for the effective Hamiltonian associated with the discrete spectrum. We obtain the effective Hamiltonian with use of the Feshbach-Brillouin-Wigner projection method. Strong energy dependence of the self-energy appearing in the effective Hamiltonian plays a key role in the time-symmetry-breaking phase transition: As a result of competition in the decay process between the Van Hove singularity and the Fano resonance, the phase transition becomes a higher-order transition when both the two discrete states are located near the continuum threshold.
Barry, Emma; Galvin, Rose; Keogh, Claire; Horgan, Frances; Fahey, Tom
2014-02-01
The Timed Up and Go test (TUG) is a commonly used screening tool to assist clinicians to identify patients at risk of falling. The purpose of this systematic review and meta-analysis is to determine the overall predictive value of the TUG in community-dwelling older adults. A literature search was performed to identify all studies that validated the TUG test. The methodological quality of the selected studies was assessed using the QUADAS-2 tool, a validated tool for the quality assessment of diagnostic accuracy studies. A TUG score of ≥13.5 seconds was used to identify individuals at higher risk of falling. All included studies were combined using a bivariate random effects model to generate pooled estimates of sensitivity and specificity at ≥13.5 seconds. Heterogeneity was assessed using the variance of logit transformed sensitivity and specificity. Twenty-five studies were included in the systematic review and 10 studies were included in meta-analysis. The TUG test was found to be more useful at ruling in rather than ruling out falls in individuals classified as high risk (>13.5 sec), with a higher pooled specificity (0.74, 95% CI 0.52-0.88) than sensitivity (0.31, 95% CI 0.13-0.57). Logistic regression analysis indicated that the TUG score is not a significant predictor of falls (OR = 1.01, 95% CI 1.00-1.02, p = 0.05). The Timed Up and Go test has limited ability to predict falls in community dwelling elderly and should not be used in isolation to identify individuals at high risk of falls in this setting.
Huang, Qing; Zhdanov, Renat
2014-09-01
In this paper, group analysis of the time fractional Harry-Dym equation with Riemann-Liouville derivative is performed. Its maximal symmetry group in Lie’s sense and the corresponding optimal system of subgroups are determined. Similarity reductions of the equation under study are performed. As a result, the reduced fractional ordinary differential equations are deduced, and some group invariant solutions in explicit form are obtained as well.
Haynes, S E
1983-10-01
It is widely known that linear restrictions involve bias. What is not known is that some linear restrictions are especially dangerous for hypothesis testing. For some, the expected value of the restricted coefficient does not lie between (among) the true unconstrained coefficients, which implies that the estimate is not a simple average of these coefficients. In this paper, the danger is examined regarding the additive linear restriction almost universally imposed in statistical research--the restriction of symmetry. Symmetry implies that the response of the dependent variable to a unit decrease in an expanatory variable is identical, but of opposite sign, to the response to a unit increase. The 1st section of the paper demonstrates theoretically that a coefficient restricted by symmetry (unlike coefficients embodying other additive restrictions) is not a simple average of the unconstrained coefficients because the relevant interacted variables are inversly correlated by definition. The next section shows that, under the restriction of symmetry, fertility in Finland from 1885-1925 appears to respond in a prolonged manner to infant mortality (significant and positive with a lag of 4-6 years), suggesting a response to expected deaths. However, unscontrained estimates indicate that this finding is spurious. When the restriction is relaxed, the dominant response is rapid (significant and positive with a lag of 1-2 years) and stronger for declines in mortality, supporting an aymmetric response to actual deaths. For 2 reasons, the danger of the symmetry restriction may be especially pervasive. 1st, unlike most other linear constraints, symmetry is passively imposed merely by ignoring the possibility of asymmetry. 2nd, modles in a wide range of fields--including macroeconomics (e.g., demand for money, consumption, and investment models, and the Phillips curve), international economics (e.g., intervention models of central banks), and labor economics (e.g., sticky wage
Response of a quantum system to a time-dependent external field and dynamical symmetry of the system
Wang, S J; Weiguny, A; Wiese, H
1998-01-01
The response of a quantum system to a time-dependent periodic external field is investigated in connection with the dynamical symmetry breaking and level dynamics of the adiabatic states of the system. The main results are as follows. (A) When the periodic external field preserves the dynamical symmetry of the system, its response is like that of elastic matter. (B) When the periodic external field breaks the dynamical symmetry, several cases may occur: (a) in the adiabatic limit, the system still responds elastically; (b) if the initial state is an eigenstate of the evolution operator U(T) for one period T of the external field, the system evolves in time cyclically and responds quasi-elastically; (c) if the initial state is not an eigenstate of the evolution operator U(T), the system evolves in time non-cyclically and responds non-elastically. The detailed non-elastic behaviour depends on the statistical nature of the adiabatic eigenstates of the system. If the adiabatic spectrum is chaotic, the non-elastic...
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
Closeout Report - Search for Time Reversal Symmetry Violation with TREK at J-PARC
Energy Technology Data Exchange (ETDEWEB)
Kohl, Michael [Hampton Univ., VA (United States)
2015-04-15
academic positions. Two former graduate students of the group have graduated and received their PhD degrees in nuclear physics (Dr. Anusha Liyanage and Dr. Ozgur Ates). In particular, this award has enabled Dr. Kohl to pursue the TREK project (Time Reversal Experiment with Kaons) at J-PARC, which he has been leading and advancing as International Spokesperson. Originally proposed as a search for time reversal symmetry violation [6], the project has evolved into a precision test of lepton flavor universality in the Standard Model along with sensitive searches for physics beyond the Standard Model through a possible discovery of new particles such as a sterile neutrino or a neutral gauge boson from the hidden sector in the mass region up to 300 MeV/c2 [7]. Experiment TREK/E36, first proposed in 2010, has been mounted between November 2014 and April 2015, and commissioning with beam has been started in April 2015, with production running anticipated in early summer and late fall 2015. It uses the apparatus from the previous KEK/E-246 experiment with partial upgrades to measure the ratio of decay widths of leptonic two-body decays of the charged kaon to µν and eν, respectively, which is highly sensitive to the ratio of electromagnetic charged lepton couplings and possible new physics processes that could differentiate between μ and e, hence breaking lepton flavor universality of the Standard Model. Through the searches for neutral massive particles, TREK/E36 can severely constrain any new physics scenarios designed to explain the proton radius puzzle [12, 13].
Hsu, Jong-Ping
2013-01-01
Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a
Directory of Open Access Journals (Sweden)
H. Bello-Villalobos
2006-06-01
Full Text Available Objetivo: Determinar los factores que inciden en el tiempo de permanencia de un catéter endovenoso central. Antecedentes: En el paciente con cáncer existen factores propios del estado de inmunocompromiso por el tumor y los efectos colaterales de su tratamiento que aumentan la probabilidad de infección y consecuentemente reducen el tiempo de uso de un catéter. Sujetos: Se integró una cohorte de 306 pacientes con cáncer, con una edad promedio de 59 ± 14,5 años. Intervenciones: Se definió tiempo cero como el día de colocación del catéter. Diariamente se buscaron signos clínicos de infección por catéter, con toma de hemocultivos simultáneos cada 7 días. El desenlace primario fue infección del catéter y el alternativo fin de tratamiento, obstrucción o fallecimiento del paciente. Se comparó el tiempo de permanencia del catéter infectado vs no infectado y su relación con factores de riesgo potenciales. Resultados: Se colocaron 306 catéteres para un total de 4.043 días/catéter. Se infectaron 25 (8,2%. La sobrevida media global fue de 50 días. Se encontró que a mayor tiempo de permanencia, mayor fue la incidencia de infección. En el análisis de sobrevida ajustado, la presencia de infección a distancia (OR = 4,71, IC95% = 1,7-10,1, p = 0,002 fue el factor que mostró una asociación significativa. Conclusiones: El tiempo de vida útil de un catéter es amplia, limitada por la presencia de infección a distancia como factor de riesgo potencial de infección por catéter.Objective: To determine the factors that affect the dwell time of a central venous catheter. Background: The own immunodeficiency in cancer patient and the collateral effects of their treatment increase the probability of infection and reduce the time of use of a catheter. Subjects: Incipient cohort of 306 patients with cancer, with an average age of 59 ± 14.5 years. Interventions: Time zero like the day of the placement of the catheter was defined. Daily
Benisty, Henri; Lupu, Anatole
2017-05-01
The evolving field of optics for information and communication is currently seeking directions to expand the data rates in all concerned devices, fiber-based or on chips. We describe here two possibilities where the new concept of PT-symmetry in optics [1,2] can be exploited to help high data rate operation, considering either transverse or longitudinal aspects of modal selection, and assuming that data are carried using precise modes. The first aspect is transverse multimode transport. In this case, a fiber or a waveguide carries a few modes, say 4 to 16, and at nodes, they have to undergo a demux/mux operation to add or drop a subset of them, as much as possible without affecting the others. We shall consider to this end the operation as described in ref. [3] : if a PT-symmetric "potential", which essentially consists of a transverse gain-loss profile with antisymmetry, is applied to a waveguide, it has a very different impact on the different modes and mode families in the waveguide. One can in particular find situations where only two modes of the passive waveguide to be analyzed may enter into a gain regime, and not the other ones. From this scheme and others [4], we will discuss what is the road left towards an actual device, either in dielectrics or in case plasmonics is envisioned [5], i.e. with rather constant losses, but the possible advantage of miniaturization. The second aspect is longitudinal mode selection. The special transport properties of PT-symmetric Bragg gratings are now well established. In order to be used within a data management system, attention has to be paid to the rejection rate of Bragg gratings, and to the flatness of their response in the targeted window. To this end, a slow modulation of both real and imaginary parts of the periodic pattern of the basically PT-symmetric waveguide can help, in the general spirit of "apodization", but now with more parameters. We will detail some aspects of the designs introduced in [6] , notably
Vansteenkiste, Pieter; Cardon, Greet; Philippaerts, Renaat; Lenoir, Matthieu
2015-01-01
Although analysing software for eye-tracking data has significantly improved in the past decades, the analysis of gaze behaviour recorded with head-mounted devices is still challenging and time-consuming. Therefore, new methods have to be tested to reduce the analysis workload while maintaining accuracy and reliability. In this article, dwell time percentages to six areas of interest (AOIs), of six participants cycling on four different roads, were analysed both frame-by-frame and in a 'fixation-by-fixation' manner. The fixation-based method is similar to the classic frame-by-frame method but instead of assigning frames, fixations are assigned to one of the AOIs. Although some considerable differences were found between the two methods, a Pearson correlation of 0.930 points out a good validity of the fixation-by-fixation method. For the analysis of gaze behaviour over an extended period of time, the fixation-based approach is a valuable and time-saving alternative for the classic frame-by-frame analysis.
Symmetry Breaking/Restoration in a Non-Simply Connected Space-Time
Hatanaka, H; Ohnishi, K; Sakamoto, M; Hatanaka, Hisaki; Matsumoto, Seiho; Ohnishi, Katsuhiko; Sakamoto, Makoto
2000-01-01
Field theories compactified on non-simply connected spaces, which in general allow to impose twisted boundary conditions, are found to unexpectedly have a rich phase structure. One of characteristic features of such theories is the appearance of critical radii, at which some of symmetries are broken/restored. A phase transition can occur at the classical level, or can be caused by quantum effects. The spontaneous breakdown of the translational invariance of compactified spaces is another characteristic feature. As an illustrative example,the O(N) $\\phi^4$ model on $M^3\\otimes S^1$ is studied and the novel phase structure is revealed.
Atmanspacher, Harald
2003-01-01
Many philosophical and scientific discussions of topics of mind-matter research make implicit assumptions, in various guises, about the distinction between mind and matter. Currently predominant positions are based on either reduction or emergence, providing either monistic or dualistic scenarios. A more-involved framework of thinking, which can be traced back to Spinoza and Leibniz, combines the two scenarios, dualistic (with mind and matter separated) and monistic (with mind and matter unseparated), in one single picture. Based on such a picture, the transition from a domain with mind and matter unseparated to separate mental and material domains can be viewed as a result of a general kind of symmetry breaking, which can be described formally in terms of inequivalent representations. The possibility of whether this symmetry breaking might be connected to the emergence of temporal directions from temporally non-directed or even non-temporal levels of reality will be discussed. Correlations between mental and material aspects of reality could then be imagined as remnants of such primordial levels. Different conceivable types of inequivalent representations would lead to correlations with different characteristics.
Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.
Pillai, Ajay S; Jirsa, Viktor K
2017-06-07
In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.
Ultrahigh-energy photons as probes of Lorentz symmetry violations in stringy space-time foam models.
Maccione, Luca; Liberati, Stefano; Sigl, Günter
2010-07-09
The time delays between γ rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultrahigh energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violation effects way too small for explaining the observed time delays.
Ultra high energy photons as probes of Lorentz symmetry violations in stringy space-time foam models
Energy Technology Data Exchange (ETDEWEB)
Maccione, Luca [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Liberati, Stefano [SISSA, Trieste (Italy); INFN, Trieste (Italy); Sigl, Guenter [Hamburg Univ. (Germany). Inst. fuer Theoretische Physik
2010-03-15
The time delays between gamma-rays of different energies from extragalactic sources have often been used to probe quantum gravity models in which Lorentz symmetry is violated. It has been claimed that these time delays can be explained by or at least put the strongest available constraints on quantum gravity scenarios that cannot be cast within an effective field theory framework, such as the space-time foam, D-brane model. Here we show that this model would predict too many photons in the ultra-high energy cosmic ray flux to be consistent with observations. The resulting constraints on the space-time foam model are much stronger than limits from time delays and allow for Lorentz violations effects way too small for explaining the observed time delays. (orig.)
Kawamura, Yoshiharu
2015-01-01
We study the quantization of systems with local particle-ghost symmetries. The systems contain ordinary particles including gauge bosons and their counterparts obeying different statistics. The particle-ghost symmetry is a kind of fermionic symmetry, different from the space-time supersymmetry and the BRST symmetry. Subsidiary conditions on states guarantee the unitarity of systems.
DEFF Research Database (Denmark)
Welling, Helen; Duelund Mortensen, Peder; Wiell Nordberg, Lene
2006-01-01
values and needs in differnet situations, lifestyles and stages. The study is based on information from users in new housing schemes in and around Copenhagen - 'open building' dwellings that reveal a variety of approaches to these problems? The analysis of the dwellings show that the architecture...... of the 'open dwelling' is dependent on three basic conditions: the static condition, the suitable condition and the situational condition. Each condition has its own powerful way of articulation. Our aim is to translate the observations of the projects in concepts and models that are applicable in new projects....
On the spontaneous time-reversal symmetry breaking in synchronously-pumped passive Kerr resonators
Rossi, J; Kevrekidis, P G; Haragus, M
2016-01-01
We study the spontaneous temporal symmetry breaking instability in a coherently-driven passive optical Kerr resonator observed experimentally by Xu and Coen in Opt.~Lett.~{\\bf 39}, 3492 (2014). We perform a detailed stability analysis of the Lugiato-Lefever model for the optical Kerr resonators and analyze the temporal bifurcation structure of stationary symmetric and the emerging asymmetric states as a function of the pump power. For intermediate pump powers a pitchfork loop is responsible for the destabilization of symmetric states towards stationary asymmetric ones while at large pump powers we find the emergence of periodic asymmetric solutions via a Hopf bifurcation. From a theoretical perspective, we use local bifurcation theory in order to analyze the most unstable eigenmode of the system. We also explore a non-conservative variational approximation capturing, among others, the evolution of the solution's amplitude, width and center of mass. Both methods provide insight towards the pitchfork bifurcatio...
Space-time symmetries and the Yang-Mills gradient flow
Del Debbio, Luigi; Rago, Antonio
2013-01-01
The recent introduction of the gradient flow has provided a new tool to probe the dynamics of quantum field theories. The latest developments have shown how to use the gradient flow for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In this paper we introduce infinitesimal translations along the gradient flow for gauge theories, and study the corresponding Ward identities. This approach is readily generalized to the case of gauge theories defined on a lattice, where the regulator breaks translation invariance. The Ward identities in this case lead to a nonperturbative renormalization of the energy-momentum tensor. We discuss an application of this method to the study of dilatations and scale invariance on the lattice.
DEFF Research Database (Denmark)
Bloch, Mette L; Jønsson, Line R; Kristensen, Morten T
2016-01-01
BACKGROUND AND PURPOSE: Originally, the Timed Up & Go (TUG) test was described as including a practice trial before a timed trial, but recent studies in individuals with hip fracture have reported that performance improved with a third trial and that high intertester reliability was achieved when...
Acoustic classification of dwellings
DEFF Research Database (Denmark)
Berardi, Umberto; Rasmussen, Birgit
2014-01-01
Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on soun...... exchanging experiences about constructions fulfilling different classes, reducing trade barriers, and finally increasing the sound insulation of dwellings.......Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...... insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...
Makizako, Hyuma; Shimada, Hiroyuki; Doi, Takehiko; Tsutsumimoto, Kota; Nakakubo, Sho; Hotta, Ryo; Suzuki, Takao
2017-04-01
Lower extremity functioning is important for maintaining activity in elderly people. Optimal cutoff points for standard measurements of lower extremity functioning would help identify elderly people who are not disabled but have a high risk of developing disability. The purposes of this study were: (1) to determine the optimal cutoff points of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for predicting the development of disability and (2) to examine the impact of poor performance on both tests on the prediction of the risk of disability in elderly people dwelling in the community. This was a prospective cohort study. A population of 4,335 elderly people dwelling in the community (mean age = 71.7 years; 51.6% women) participated in baseline assessments. Participants were monitored for 2 years for the development of disability. During the 2-year follow-up period, 161 participants (3.7%) developed disability. The optimal cutoff points of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for predicting the development of disability were greater than or equal to 10 seconds and greater than or equal to 9 seconds, respectively. Participants with poor performance on the Five-Times Sit-to-Stand Test (hazard ratio = 1.88; 95% CI = 1.11-3.20), the Timed "Up & Go" Test (hazard ratio = 2.24; 95% CI = 1.42-3.53), or both tests (hazard ratio = 2.78; 95% CI = 1.78-4.33) at the baseline assessment had a significantly higher risk of developing disability than participants who had better lower extremity functioning. All participants had good initial functioning and participated in assessments on their own. Causes of disability were not assessed. Assessments of lower extremity functioning with the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test, especially poor performance on both tests, were good predictors of future disability in elderly people dwelling in the community.
Smith, Erin; Walsh, Lorcan; Doyle, Julie; Greene, Barry; Blake, Catherine
2016-01-01
The timed up and go (TUG) test is a commonly used assessment in older people with variations including the addition of a motor or cognitive dual-task, however in high functioning older adults it is more difficult to assess change. The quantified TUG (QTUG) uses inertial sensors to detect test and gait parameters during the test. If it is to be used in the longitudinal assessment of older adults, it is important that we know which parameters are reliable and under which conditions. This study aims to examine the relative reliability of the QTUG over five consecutive days under single, motor and cognitive dual-task conditions. Twelve community dwelling older adults (10 females, mean age 74.17 (3.88)) performed the QTUG under three conditions for five consecutive days. The relative reliability of each of the gait parameters was assessed using intra-class correlation coefficient (ICC 3,1) and standard error of measurement (SEM). Five of the measures demonstrated excellent reliability (ICC>0.70) under all three conditions (time to complete test, walk time, number of gait cycles, number of steps and return from turn time). Measures of variability and turn derived parameters demonstrated weak reliability under all three conditions (ICC=0.05-0.49). For the most reliable parameters under single-task conditions, the addition of a cognitive task resulted in a reduction in reliability suggesting caution when interpreting results under these conditions. Certain sensor derived parameters during the QTUG test may provide an additional resource in the longitudinal assessment of older people and earlier identification of falls risk.
Line Nodes and Time Reversal Symmetry Breaking in p-wave Sr2RuO4
Annett, Jf; Gyorffy, Bl; Litak, G.; Wysokinski, Ki
2001-03-01
The superconductor Sr_2RuO4 exhibits broken time reversal symmetry and has a contant Knight shift below Tc. These experiments suggest a pairing state of the ^3He-A type, d(k) = (k_x+ik_y)hatz. On the other hand specific heat measurements of Nishizaki Maeno and Mao (J. Phys. Soc. Japan 69, 572 (2000)) imply that the gap has line nodes. To resolve this contradiction we calculate the energy gap and heat capacity in several alternative scenarios for the pairing interaction. We find that on-site Hunds rule exchange cannot produce the observed T_c. Nearest neighbour spin independent attraction leads to d-wave pairing, while nearest neighbour parallel spin interaction leads to a p-wave state with no line nodes. However we can also obtain a state with line nodes on the alpha-beta Fermi surface sheets, and time reversal symmetry breaking on the gamma sheet. We discuss the possible physical origin of this state and the comparison with available experimental data.
Energy Technology Data Exchange (ETDEWEB)
Szirmai, G.; Szirmai, E. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Zamora, A. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Lluis Companys 23, E-08010 Barcelona (Spain)
2011-07-15
We propose an experimentally feasible setup with ultracold alkaline-earth-metal atoms to simulate the dynamics of U(1) lattice gauge theories in 2 + 1 dimensions with a Chern-Simons term. To this end we consider the ground-state properties of spin-5/2 alkaline-earth-metal fermions in a honeycomb lattice. We use the Gutzwiller projected variational approach in the strongly repulsive regime in the case of filling 1/6. The ground state of the system is a chiral spin-liquid state with 2{pi}/3 flux per plaquette, which violates time-reversal invariance. We demonstrate that due to the breaking of time-reversal symmetry the system exhibits quantum Hall effect and chiral edge states. We relate the experimentally accessible spin fluctuations to the emerging gauge-field dynamics. We discuss also properties of the lowest energy competing orders.
Nucci, M. C.
2016-09-01
We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.
Kojima, Gotaro; Masud, Tahir; Kendrick, Denise; Morris, Richard; Gawler, Sheena; Treml, Jonathan; Iliffe, Steve
2015-04-03
Falling is common among older people. The Timed-Up-and-Go Test (TUG) is recommended as a screening tool for falls but its predictive value has been challenged. The objectives of this study were to examine the ability of TUG to predict future falls and to estimate the optimal cut-off point to identify those with higher risk for future falls. This is a prospective cohort study nested within a randomised controlled trial including 259 British community-dwelling older people ≥65 years undergoing usual care. TUG was measured at baseline. Prospective diaries captured falls over 24 weeks. A Receiver Operating Characteristic curve analysis determined the optimal cut-off point to classify future falls risk with sensitivity, specificity, and predictive values of TUG times. Logistic regression models examined future falls risk by TUG time. Sixty participants (23%) fell during the 24 weeks. The area under the curve was 0.58 (95% confidence interval (95% CI) = 0.49-0.67, p = 0.06), suggesting limited predictive value. The optimal cut-off point was 12.6 seconds and the corresponding sensitivity, specificity, and positive and negative predictive values were 30.5%, 89.5%, 46.2%, and 81.4%. Logistic regression models showed each second increase in TUG time (adjusted for age, gender, comorbidities, medications and past history of two falls) was significantly associated with future falls (adjusted odds ratio (OR) = 1.09, 95% CI = 1.00-1.19, p = 0.05). A TUG time ≥12.6 seconds (adjusted OR = 3.94, 95% CI = 1.69-9.21, p = 0.002) was significantly associated with future falls, after the same adjustments. TUG times were significantly and independently associated with future falls. The ability of TUG to predict future falls was limited but with high specificity and negative predictive value. TUG may be most useful in ruling in those with a high risk of falling rather than as a primary measure in the ascertainment of risk.
Sound Insulation between Dwellings
DEFF Research Database (Denmark)
Rasmussen, Birgit
2011-01-01
Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...
Sound insulation between dwellings
DEFF Research Database (Denmark)
Rasmussen, Birgit
2011-01-01
Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...
Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking.
Poo, Yin; He, Cheng; Xiao, Chao; Lu, Ming-Hui; Wu, Rui-Xin; Chen, Yan-Feng
2016-07-08
One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-reversal and parity symmetries of the magnetic photonic crystals designed, we observe oblique incident space wave propagating one-way in the magnetic photonic crystals with positive or negative refraction occurring at interfaces, which can be manipulated upon the incident angle and operating frequency. Our work may offer a potential platform to realize some exotic photoelectronic and microwave devices such as one-way imaging and one-way cloaking.
Scattering matrices with block symmetries
Życzkowski, Karol
1997-01-01
Scattering matrices with block symmetry, which corresponds to scattering process on cavities with geometrical symmetry, are analyzed. The distribution of transmission coefficient is computed for different number of channels in the case of a system with or without the time reversal invariance. An interpolating formula for the case of gradual time reversal symmetry breaking is proposed.
Time-delay and Doppler tests of the Lorentz symmetry of gravity
Bailey, Quentin G
2009-01-01
Modifications to the classic time-delay effect and Doppler shift in General Relativity (GR) are studied in the context of the Lorentz-violating Standard-Model Extension (SME). We derive the leading Lorentz-violating corrections to the time-delay and Doppler shift signals, for a light ray passing near a massive body. It is demonstrated that anisotropic coefficients for Lorentz violation control a time-dependent behavior of these signals that is qualitatively different from the conventional case in GR. Estimates of sensitivities to gravity-sector coefficients in the SME are given for current and future experiments, including the recent Cassini solar conjunction experiment.
Nicolis, Alberto
2011-01-01
For relativistic quantum field theories, we consider Lorentz breaking, spatially homogeneous field configurations or states that evolve in time along a symmetry direction. We dub this situation "spontaneous symmetry probing" (SSP). We mainly focus on internal symmetries, i.e. on symmetries that commute with the Poincare group. We prove that the fluctuations around SSP states have a Lagrangian that is explicitly time independent, and we provide the field space parameterization that makes this manifest. We show that there is always a gapless Goldstone excitation that perturbs the system in the direction of motion in field space. Perhaps more interestingly, we show that if such a direction is part of a non-Abelian group of symmetries, the Goldstone bosons associated with spontaneously broken generators that do not commute with the SSP one acquire a gap, proportional to the SSP state's "speed". We outline possible applications of this formalism to inflationary cosmology.
Future complete Einsteinian space times with U(1) symmetry, the unpolarized case
Choquet-Bruhat, Y
2003-01-01
I prove the existence of vacuum $S^{1}$ symmetric Einsteinian, unpolarized, space times which are complete in the direction of the expansion, for small initial data, without supposing that the $S^{1}$ orbits are orthogonal to the 3-manifolds, as was done in previous work in collaboration with V. Moncrief.
A simple block representation of reversible cellular automata with time-symmetry
Arrighi, Pablo
2012-01-01
Reversible Cellular Automata (RCA) are a physics-like model of computation consisting of an array of identical cells, evolving in discrete time steps by iterating a global evolution G. Further, G is required to be shift-invariant (it acts the same everywhere), causal (information cannot be transmitted faster than some fixed number of cells per time step), and reversible (it has an inverse which verifies the same requirements). An important, though only recently studied special case is that of Time-symmetric Cellular Automata (TSCA), for which G and its inverse are related via a local operation. In this note we revisit the question of the Block representation of RCA, i.e. we provide a very simple proof of the existence of a reversible circuit description implementing G. This operational, bottom-up description of G turns out to be time-symmetric, suggesting interesting connections with TSCA. Indeed we prove, using a similar technique, that a wide class of them admit an Exact block representation (EBR), i.e. one...
Chen, Hui-Ya; Tang, Pei-Fang
2016-03-01
Dual-task Timed "Up & Go" (TUG) tests are likely to have applications different from those of a single-task TUG test and may have different contributing factors. The purpose of this study was to compare factors contributing to performance on single- and dual-task TUG tests. This investigation was a cross-sectional study. Sixty-four adults who were more than 50 years of age and dwelled in the community were recruited. Interviews and physical examinations were performed to identify potential contributors to TUG test performance. The time to complete the single-task TUG test (TUGsingle) or the dual-task TUG test, which consisted of completing the TUG test while performing a serial subtraction task (TUGcognitive) or while carrying water (TUGmanual), was measured. Age, hip extensor strength, walking speed, general mental function, and Stroop scores for word and color were significantly associated with performance on all TUG tests. Hierarchical multiple regression models, without the input of walking speed, revealed different independent factors contributing to TUGsingle performance (Mini-Mental Status Examination score, β=-0.32), TUGmanual performance (age, β=0.35), and TUGcognitive performance (Stroop word score, β=-0.40; Mini-Mental Status Examination score, β=-0.31). At least 40% of the variance in the performance on the 3 TUG tests was not explained by common clinical measures, even when the factor of walking speed was considered. However, this study successfully identified some important factors contributing to performance on different TUG tests, and other studies have reported similar findings for single-task TUG test and dual-task gait performance. Although the TUGsingle and the TUGcognitive shared general mental function as a common factor, the TUGmanual was uniquely influenced by age and the TUGcognitive was uniquely influenced by focused attention. These results suggest that both common and unique factors contribute to performance on single- and dual
Li, Qiongge; Chan, Maria F
2017-01-01
Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street
Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street
Panaggio, Mark J; Hu, Peiguang; Abrams, Daniel M
2013-01-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counter-intuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive dens...
Asymptotically anti-de Sitter space-times: symmetries and conservation laws revisited
Barnich, G.; Brandt, F.; Claes, K.
2004-02-01
In this short note, we verify explicitly in static coordinates that the non trivial asymptotic Killing vectors at spatial infinity for anti-de Sitter space-times correspond one to one to the conformal Killing vectors of the conformally flat metric induced on the boundary. The fall-off conditions for the metric perturbations that guarantee finiteness of the associated conserved charges are derived.
Scaling symmetry, renormalization, and time series modeling: the case of financial assets dynamics.
Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L
2013-12-01
We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments' stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.
One Electron Atom in Special Relativity with de Sitter Space-Time Symmetry
Institute of Scientific and Technical Information of China (English)
闫沐露
2012-01-01
The de Sitter invariant Special Relativity （dS-SR） is SR with constant curvature, and a natural extension of usual Einstein SR （E-SR）. In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that： （i） The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/（hc） keeps to be invariant; （ii） （2s^1/2 - 2p^1/2）-splitting due to dS-SR QM effects： By means of perturbation theory, that splitting △E（z） are calculated analytically, which belongs to O（1/R^2）-physics of dS-SR QM. Numerically, we find that when ｜R｜ = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE（z） 〉〉 1 （Lamb shift）. This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.
Fluctuation theorem, nonlinear response, and the regularity of time reversal symmetry
Porta, Marcello
2010-06-01
The Gallavotti-Cohen fluctuation theorem (FT) implies an infinite set of identities between correlation functions that can be seen as a generalization of Green-Kubo formula to the nonlinear regime. As an application, we discuss a perturbative check of the FT relation through these identities for a simple Anosov reversible system; we find that the lack of differentiability of the time reversal operator implies a violation of the Gallavotti-Cohen fluctuation relation. Finally, a brief comparison to Lebowitz-Spohn FT is reported.
SAMURAI Time-Projection Chamber: A device for constraining the symmetry energy
Shane, R.; Andrews, K.; Barney, J.; Brophy, B.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Ersoy, E.; Estee, J.; Gilbert, J.; Lu, F.; Lynch, W. G.; Tsang, M. B.; McIntosh, A. B.; Yennello, S. J.; Dye, S.; Elhoussieny, M.; Famiano, M.; Snow, C.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Powell, W.
2013-04-01
The SAMURAI-TPC is a time-projection chamber to be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Facility at RIKEN, Japan. It is designed to detect charged pions as well as light charged particles up to oxygen produced in heavy ion collisions. Design of the TPC is based on the EOS TPC with similar dimensions. However, the TPC will be equipped with the newly designed General Electronics for TPCs (GET). One of the proposed experimental programs using the TPC is to measure pi+/pi- ratios from heavy-ion collisions which should provide constraints on the asymmetry term in the nuclear equation of state at densities about twice saturation density. In this talk, the design and construction of the detector will be discussed.
Xiao, Bo; Yu, Yang; Ma, Tzuhsuan; Shvets, Gennady; Anlage, Steven M
2016-01-01
Photonic topological insulators are an interesting class of materials whose photonic band structure can have a bandgap in the bulk while supporting topologically protected unidirectional edge modes. Recent studies on bianisotropic metamaterials that emulate the electronic quantum spin Hall effect using its electromagnetic analog are examples of such systems with relatively simple and elegant design. In this paper, we present a novel rotating magnetic dipole antenna, composed of two perpendicularly oriented helical coils, that can efficiently excite the unidirectional topologically protected surface waves in the bianisotropic metawaveguide (BMW) structure recently realized by Ma, et al., despite the fact that the BMW does not break time-reversal invariance. In addition to achieving high directivity, the antenna can be tuned continuously to excite reflectionless edge modes to the two opposite directions with various amplitude ratios. We demonstrate its performance through experiment and compare to simulation re...
Anomalous parity-time-symmetry transition away from an exceptional point
Ge, Li
2016-07-01
Parity-time (PT ) symmetric systems have two distinguished phases, e.g., one with real-energy eigenvalues and the other with complex-conjugate eigenvalues. To enter one phase from the other, it is believed that the system must pass through an exceptional point, which is a non-Hermitian degenerate point with coalesced eigenvalues and eigenvectors. Here we reveal an anomalous PT transition that takes place away from an exceptional point in a nonlinear system: as the nonlinearity increases, the original linear system evolves along two distinct PT -symmetric trajectories, each of which can have an exceptional point. However, the two trajectories collide and vanish away from these exceptional points, after which the system is left with a PT -broken phase. We first illustrate this phenomenon using a coupled-mode theory and then exemplify it using paraxial wave propagation in a transverse periodic potential.
Anomalous Parity-Time Symmetry Transition away from an Exceptional Point
Ge, Li
2016-01-01
Parity-time (PT) symmetric systems have two distinguished phases, e.g., one with real energy eigenvalues and the other with complex conjugate eigenvalues. To enter one phase from the other, it is believed that the system must pass through an exceptional point, which is a non-Hermitian degenerate point with coalesced eigenvalues and eigenvectors. In this letter we reveal an anomalous PT transition that takes place away from an exceptional point in a nonlinear system: as the nonlinearity increases, the original linear system evolves along two distinct PT-symmetric trajectories, each of which can have an exceptional point. However, the two trajectories collide and vanish away from these exceptional points, after which the system is left with a PT-broken phase. We first illustrate this phenomenon using a coupled mode theory and then exemplify it using paraxial wave propagation in a transverse periodic potential.
Studies of parity and time reversal symmetries in neutron scattering from165Ho
Haase, D. G.; Gould, C. R.; Koster, J. E.; Roberson, N. R.; Seagondollar, L. W.; Soderstrum, J. P.; Schneider, M. B.; Zhu, X.
1988-12-01
We describe searches for parity and time reversal violations in the scattering of polarized neutrons from polarized and aligned165Ho targets. We have completed a search with 7.1 and 11.0 MeV neutrons for PoddTodd terms in the elastic scattering forward amplitude of the form s. ( I×K), where s is the neutron spin, I is the target spin and k is the neutron momentum vector. The target was a single crystal of holmium, polarized horizontally along its b axis by a 1 Tesla magnetic field. The neutrons were polarized vertically. Differences in the neutron transmission were measured for neutrons with spins parallel (antiparallel) to I×k. The P,T violating analyzing powers were found to be consistent with zero at the few 10-3 level: ρP,T(7.1 MeV)=-0.88 (±2.02) x 10-3, ρP,T(11.0 MeV)=-0.4 (±2.88) x 10-3. We have also attempted to find enhancements with MeV neutrons in P-violation due to the term s k. We are preparing an aligned target cryostat for investigations of PevenTodd terms {bd(Ik)(I×k)s} in neutron scattering. The target will be a single crystal cylinder of165Ho cooled to 100 mK in a bath of liquid helium and rotated by a shaft from a room temperature stepping motor. The cylinder will be oriented vertically and the alignment ( c) axis oriented horizontally. Warming or rotation of the sample allows one to separate effects that mimic the sought-after time reversal violating term.
Indoor radon measurements in Turkey dwellings.
Celebi, N; Ataksor, B; Taskın, H; Bingoldag, N Albayrak
2015-12-01
In this work, indoor radon radioactivity concentration levels have been measured in dwellings of Turkey within the frame of the National Radon Monitoring Programme. The (222)Rn concentrations were measured with time-integrating passive nuclear etched track detectors in 7293 dwellings in 153 residential units of 81 provinces, and the radon map of Turkey was prepared. Indoor radon concentrations were distributed in the range of 1-1400 Bq m(-3). The arithmetic mean of the radon gas concentration was found to be 81 Bq m(-3); the geometric mean was 57 Bq m(-3) with a geometric standard deviation of 2.3.
Kobayashi, Michikazu
2014-01-01
We show that a momentum operator of a translational symmetry may not commute with an internal symmetry operator in the presence of a topological soliton in non-relativistic theories. As a striking consequence, there appears a coupled Nambu-Goldstone mode with a quadratic dispersion consisting of translational and internal zero modes in the vicinity of a domain wall in an O(3) sigma model, a magnetic domain wall in ferromagnets with an easy axis.
Time-reversal symmetry breaking by ac ﬁeld: Effect of commensurability in the frequency domain
Indian Academy of Sciences (India)
V E Kravtsov
2002-02-01
It is shown that the variance of the linear dc conductance ﬂuctuations in an open quantum dot under high-frequency ac pumping depends signiﬁcantly on the spectral content of the ac ﬁeld. For a sufﬁciently strong ac ﬁeld the dc conductance ﬂuctuations are much stronger for the periodic pumping than in the case of the noise ac ﬁeld of the same intensity. The reduction factor in a static magnetic ﬁeld takes the universal value of 2 only for the white-noise pumping. In general may deviate from 2 thus signalling on the time-reversal breaking by the ac ﬁeld. For the bi-harmonic ac ﬁeld of the form () = 0 [cos(1 ) + cos(2 )] we predict the enchancement of effects of -symmetry breaking at commensurate frequencies 2/1 = /. In the high-temperature limit there is also the parity effect: the enchancement is only present if either or is even.
Observation of Quantum Spin Hall States in InAs/GaSb Bilayers under Broken Time-Reversal Symmetry
Du, Lingjie; Knez, Ivan; Sullivan, Gerard; Du, Rui-Rui
2014-03-01
Topological insulators (TIs) are a novel class of materials with nontrivial surface or edge states. Time-reversal symmetry (TRS) protected TIs are characterized by the Z2 topological invariant. The fate of the Z2 TIs under broken TRS is a fundamental question in understanding the physics of topological matter but remains largely unanswered. Here we show, a two-dimensional TI is realized in an inverted electron-hole bilayer engineered from InAs/GaSb semiconductors which retains robust helical liquid (HL) edge states under a strong magnetic field. Wide conductance plateaus of 2e2/h value are observed; they persist to 10T applied in-plane field before transitioning to a trivial semimetal. In a perpendicular field up to 35T, broken TRS leads to a spatial separation of the movers in Kramers pair and consequently the intra-pair backscattering phase space vanishes, i.e., the conductance increases from 2e2/h in strong fields manifesting chiral edge transport. We propose a phenomenological phases diagram, where inside the topological gap the HL transfers into a ``canned helical state'' driven by perpendicular fields. Our findings suggest that once established, the HL is remarkably resilient and only undergoes adiabatic deformation under TRS breaking. The work at Rice was supported by DOE, NSF, and Welch Foundation.
Feng, Lian-Li; Tian, Shou-Fu; Wang, Xiu-Bin; Zhang, Tian-Tian
2016-09-01
In this paper, the time fractional Fordy-Gibbons equation is investigated with Riemann-Liouville derivative. The equation can be reduced to the Caudrey-Dodd-Gibbon equation, Savada-Kotera equation and the Kaup-Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. Supported by the Fundamental Research Funds for Key Discipline Construction under Grant No. XZD201602, the Fundamental Research Funds for the Central Universities under Grant Nos. 2015QNA53 and 2015XKQY14, the Fundamental Research Funds for Postdoctoral at the Key Laboratory of Gas and Fire Control for Coal Mines, the General Financial Grant from the China Postdoctoral Science Foundation under Grant No. 2015M570498, and Natural Sciences Foundation of China under Grant No. 11301527
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
Häring, Reto Andreas
1993-01-01
The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.
Aoki, Shigeru; Uchiyama, Jumpei; Ito, Manabu
2014-06-01
Differences between laboratory and commercial tablet presses are frequently observed during scale-up of tableting process. These scale-up issues result from the differences in total compression time that is the sum of consolidation and dwell times. When a lubricated blend is compressed into tablets, the tablet thickness produced by the commercial tablet press is often thicker than that by a laboratory tablet press. A new punch shape design, designated as shape adjusted for scale-up (SAS), was developed and used to demonstrate the ability to replicate scale-up issues in commercial-scale tableting processes. It was found that the consolidation time can be slightly shortened by changing the vertical curvature of the conventional punch head rim. However, this approach is not enough to replicate the consolidation time. A secondary two-stage SAS punch design and an embossed punch head was designed to replicate the consolidation and dwell times on a laboratory tablet press to match those of a commercial tablet press. The resulting tablet thickness using this second SAS punch on a laboratory tablet press was thicker than when using a conventional punch in the same laboratory tablet press. The secondary SAS punches are more useful tools for replicating and understanding potential scale-up issues. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Symmetry and Condensed Matter Physics
El-Batanouny, M.; Wooten, F.
2008-03-01
Preface; 1. Symmetry and physics; 2. Symmetry and group theory; 3. Group representations: concepts; 4. Group representations: formalism and methodology; 5. Dixon's method for computing group characters; 6. Group action and symmetry projection operators; 7. Construction of the irreducible representations; 8. Product groups and product representations; 9. Induced representations; 10. Crystallographic symmetry and space-groups; 11. Space groups: Irreps; 12. Time-reversal symmetry: color groups and the Onsager relations; 13. Tensors and tensor fields; 14. Electronic properties of solids; 15. Dynamical properties of molecules, solids and surfaces; 16. Experimental measurements and selection rules; 17. Landau's theory of phase transitions; 18. Incommensurate systems and quasi-crystals; References; Bibliography; Index.
Acoustic classification of dwellings
DEFF Research Database (Denmark)
Berardi, Umberto; Rasmussen, Birgit
2014-01-01
insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... of descriptors, number of classes, and class intervals occurred between national schemes. However, a proposal “acoustic classification scheme for dwellings” has been developed recently in the European COST Action TU0901 with 32 member countries. This proposal has been accepted as an ISO work item. This paper...
CPT Symmetry Without Hermiticity
Mannheim, Philip D
2016-01-01
In the literature the $CPT$ theorem has only been established for Hamiltonians that are Hermitian. Here we extend the $CPT$ theorem to quantum field theories with non-Hermitian Hamiltonians. Our derivation is a quite minimal one as it requires only the time independent evolution of scalar products and invariance under complex Lorentz transformations. The first of these requirements does not force the Hamiltonian to be Hermitian. Rather, it forces its eigenvalues to either be real or to appear in complex conjugate pairs, forces the eigenvectors of such conjugate pairs to be conjugates of each other, and forces the Hamiltonian to admit of an antilinear symmetry. The latter requirement then forces this antilinear symmetry to be $CPT$, with Hermiticity of a Hamiltonian thus only being a sufficient condition for $CPT$ symmetry and not a necessary one. $CPT$ symmetry thus has primacy over Hermiticity, and it rather than Hermiticity should be taken as a guiding principle for constructing quantum theories. With confo...
DEFF Research Database (Denmark)
Denisov, S.; Flach, S.; Ovchinnikov, A. A.
2002-01-01
We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...
Boucherie, Quentin; Gentile, Gaëtan; Chalançon, Coralie; Sciortino, Vincent; Blin, Olivier; Micallef, Joëlle; Bonin-Guillaume, Sylvie
2017-01-01
The aim of this study was to assess the prevalence of long-term antipsychotic (AP) use in community-dwelling patients with dementia considering hospitalization periods as AP exposure or not. A retrospective study was carried out from 2009 to 2012 on a PACA-Alzheimer cohort (which included 31 963 patients in 2009 and 36 442 in 2012 from 5 million inhabitants). Three groups of patients were identified according to the longest exposure to APs without interruption: nonusers, short-term users (≤3 successive months without discontinuation), and long-term users. Sensitivity analyses on hospitalization periods were carried out. The percentage of patients with at least one AP dispensing was stable over the study period (25.6% in 2009 vs. 26.5% in 2012). In 2012, 27.6% were AP long-term users. This increased to 46.7% when hospitalization periods were counted as AP exposure. In comparison with nonusers, AP users took more benzodiazepines and antidepressants. Short-term users were men [odds ratio (OR)=1.2, 95% confidence interval (CI) (1.1-1.3)] older than 85 years old [OR=1.2, 95% CI (1.1-1.2)]. Long-term users were more exposed to benzodiazepines [OR=1.2, 95% CI (1.1-1.4)]. This study showed that long-term use of AP remained frequent in community-dwelling patients with dementia. It also showed that the prevalence of long-term users almost doubled when hospitalization periods were counted as AP exposure. This underlines the need to consider hospitalization periods when assessing medication exposure in populations with frequent periods of hospitalization.
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
Moreira, Bruno de Souza; Dos Anjos, Daniela Maria da Cruz; Pereira, Daniele Sirineu; Sampaio, Rosana Ferreira; Pereira, Leani Souza Máximo; Dias, Rosângela Corrêa; Kirkwood, Renata Noce
2016-03-03
Fear of falling is a common and potentially disabling problem among older adults. However, little is known about this condition in older adults with diabetes mellitus. The aims of this study were to investigate the impact of the fear of falling on clinical, functional and gait variables in older women with type 2 diabetes and to identify which variables could predict the fear of falling in this population. Ninety-nine community-dwelling older women with type 2 diabetes (aged 65 to 89 years) were stratified in two groups based on their Falls Efficacy Scale-International score. Participants with a score Timed Up and Go test (TUG), the five times sit-to-stand test (5-STS) and handgrip strength. Gait parameters were obtained using the GAITRite® system. Participants with a fear of falling were frailer and presented more depressive symptoms and worse performance on the TUG and 5-STS tests compared with those without a fear of falling. The group with the fear of falling also walked with a lower velocity, cadence and step length and increased step time and swing time variability. The multivariate regression analysis showed that the likelihood of having a fear of falling increased 1.34 times (OR 1.34, 95 % CI 1.11-1.61) for a one-point increase in the Geriatric Depression Scale (GDS-15) score and 1.36 times (OR 1.36, 95 % CI 1.07-1.73) for each second of increase in the TUG performance. The fear of falling in community-dwelling older women with type 2 diabetes mellitus is associated with frailty, depressive symptoms and dynamic balance, functional mobility and gait deficits. Furthermore, both the GDS-15 and the TUG test predict a fear of falling in this population. Therefore, these instruments should be considered during the assessment of diabetic older women with fear of falling.
Sound classification of dwellings
DEFF Research Database (Denmark)
Rasmussen, Birgit
2012-01-01
dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity....... Descriptors, range of quality levels, number of quality classes, class intervals, denotations and descriptions vary across Europe. The diversity is an obstacle for exchange of experience about constructions fulfilling different classes, implying also trade barriers. Thus, a harmonized classification scheme...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...
Directory of Open Access Journals (Sweden)
Tiago S. Alexandre
2012-10-01
Full Text Available OBJECTIVE: To determine the accuracy of the Timed Up and Go Test (TUGT for screening the risk of falls among community-dwelling elderly individuals. METHOD: This is a prospective cohort study with a randomly by lots without reposition sample stratified by proportional partition in relation to gender involving 63 community-dwelling elderly individuals. Elderly individuals who reported having Parkinson's disease, a history of transitory ischemic attack, stroke and with a Mini Mental State Exam lower than the expected for the education level, were on a wheelchair and that reported a single fall in the previous six months were excluded. The TUGT, a mobility test, was the measure of interested and the occurrence of falls was the outcome. The performance of basic activities of daily living (ADL and instrumental activities of daily living (IADL was determined through the Older American Resources and Services, and the socio-demographic and clinical data were determined through the use of additional questionnaires. Receiver Operating Characteristic Curves were used to analyze the sensitivity and specificity of the TUGT. RESULTS: Elderly individuals who fell had greater difficulties in ADL and IADL (pOBJETIVO: Determinar a acurácia do Timed Up and Go Test (TUGT para rastrear risco de quedas em idosos da comunidade. MÉTODO: Trata-se de um estudo de coorte prospectivo com amostra sorteada aleatoriamente, sem reposição e estratificada por partilha proporcional em relação ao sexo de 63 idosos da comunidade. Excluíram-se idosos com doença de Parkinson, ataque isquêmico transitório, acidente vascular encefálico, Miniexame do Estado Mental inferior ao considerado normal de acordo com a escolaridade, movimentação exclusiva por cadeira de rodas e relato de uma queda nos seis meses anteriores à primeira entrevista. O TUGT, um teste de mobilidade, foi a medida testada, e o desfecho, a ocorrência de queda. Mensuraram-se atividades básicas (ABVD e
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
Directory of Open Access Journals (Sweden)
Kirstin Peters
2010-11-01
Full Text Available A well-known result by Palamidessi tells us that πmix (the π-calculus with mixed choice is more expressive than πsep (its subset with only separate choice. The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel when running two copies in parallel. In both proofs, the role of breaking (initial symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from πmix into πsep. We indicate how the respective proofs can be adapted and exhibit the consequences of varying notions of uniformity and reasonableness. In each case, the ability to break initial symmetries turns out to be essential.
Weakly broken galileon symmetry
Energy Technology Data Exchange (ETDEWEB)
Pirtskhalava, David [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Santoni, Luca; Trincherini, Enrico [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); INFN, Sezione di Pisa, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Vernizzi, Filippo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, Gif-sur-Yvette cédex, F-91191 (France)
2015-09-01
Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.
Temporal Architecture: Poetic Dwelling in Japanese buildings
Directory of Open Access Journals (Sweden)
Michael Lazarin
2014-07-01
Full Text Available Heidegger’s thinking about poetic dwelling and Derrida’s impressions of Freudian estrangement are employed to provide a constitutional analysis of the experience of Japanese architecture, in particular, the Japanese vestibule (genkan. This analysis is supplemented by writings by Japanese architects and poets. The principal elements of Japanese architecture are: (1 ma, and (2 en. Ma is usually translated as ‘interval’ because, like the English word, it applies to both space and time. However, in Japanese thinking, it is not so much an either/or, but rather a both/and. In other words, Japanese architecture emphasises the temporal aspect of dwelling in a way that Western architectural thinking usually does not. En means ‘joint, edge, the in-between’ as an ambiguous, often asymmetrical spanning of interior and exterior, rather than a demarcation of these regions. Both elements are aimed at producing an experience of temporality and transiency.
Peters, Kirstin
2010-01-01
A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...
Peters, Kirstin; 10.4204/EPTCS.41.10
2010-01-01
A well-known result by Palamidessi tells us that \\pimix (the \\pi-calculus with mixed choice) is more expressive than \\pisep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla offered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of incestual processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (initial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result - based on a proper formalization of what it means to break symmetries without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reasonable encoding from \\pimix into \\pisep. We...
Sinha, Debdeep; Ghosh, Pijush K
2015-04-01
A class of nonlocal nonlinear Schrödinger equations (NLSEs) is considered in an external potential with a space-time modulated coefficient of the nonlinear interaction term as well as confining and/or loss-gain terms. This is a generalization of a recently introduced integrable nonlocal NLSE with self-induced potential that is parity-time-symmetric in the corresponding stationary problem. Exact soliton solutions are obtained for the inhomogeneous and/or nonautonomous nonlocal NLSE by using similarity transformation, and the method is illustrated with a few examples. It is found that only those transformations are allowed for which the transformed spatial coordinate is odd under the parity transformation of the original one. It is shown that the nonlocal NLSE without the external potential and a (d+1)-dimensional generalization of it admits all the symmetries of the (d+1)-dimensional Schrödinger group. The conserved Noether charges associated with the time translation, dilatation, and special conformal transformation are shown to be real-valued in spite of being non-Hermitian. Finally, the dynamics of different moments are studied with an exact description of the time evolution of the "pseudowidth" of the wave packet for the special case in which the system admits a O(2,1) conformal symmetry.
Sinha, Debdeep; Ghosh, Pijush K.
2015-04-01
A class of nonlocal nonlinear Schrödinger equations (NLSEs) is considered in an external potential with a space-time modulated coefficient of the nonlinear interaction term as well as confining and/or loss-gain terms. This is a generalization of a recently introduced integrable nonlocal NLSE with self-induced potential that is parity-time-symmetric in the corresponding stationary problem. Exact soliton solutions are obtained for the inhomogeneous and/or nonautonomous nonlocal NLSE by using similarity transformation, and the method is illustrated with a few examples. It is found that only those transformations are allowed for which the transformed spatial coordinate is odd under the parity transformation of the original one. It is shown that the nonlocal NLSE without the external potential and a (d +1 )-dimensional generalization of it admits all the symmetries of the (d +1 )-dimensional Schrödinger group. The conserved Noether charges associated with the time translation, dilatation, and special conformal transformation are shown to be real-valued in spite of being non-Hermitian. Finally, the dynamics of different moments are studied with an exact description of the time evolution of the "pseudowidth" of the wave packet for the special case in which the system admits a O (2 ,1 ) conformal symmetry.
Energy Technology Data Exchange (ETDEWEB)
Xia, Jing
2010-04-05
Polar Kerr effect in the spin-triplet superconductor Sr{sub 2}RuO{sub 4} was measured with high precision using a Sagnac interferometer with a zero-area Sagnac loop. We observed non-zero Kerr rotations as big as 65 nanorad appearing below T{sub c} in large domains. Our results imply a broken time reversal symmetry state in the superconducting state of Sr{sub 2}RuO{sub 4}, similar to {sup 3}He-A.
UV completion without symmetry restoration
Endlich, Solomon; Penco, Riccardo
2013-01-01
We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding "radial" modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.
Symmetry Non-restoration at High Temperature
Rius, N
1998-01-01
We discuss the (non)-restoration of global and local symmetries at high temperature. First, we analyze a two-scalar model with $Z_2 \\times Z_2$ symmetry using the exact renormalization group. We conclude that inverse symmetry breaking is possible in this kind of models within the perturbative regime. Regarding local symmetries, we consider the $SU(2) \\otimes U(1)$ gauge symmetry and focus on the case of a strongly interacting scalar sector. Employing a model-independent chiral Lagrangian we find indications of symmetry restoration.
A model of intrinsic symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Ge, Li [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China); Li, Sheng [Department of Physics, Zhejiang Normal University, Zhejiang 310004 (China); George, Thomas F., E-mail: tfgeorge@umsl.edu [Office of the Chancellor and Center for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Department of Physics and Astronomy, University of Missouri-St. Louis, St. Louis, MO 63121 (United States); Sun, Xin, E-mail: xin_sun@fudan.edu.cn [Research Center for Quantum Manipulation, Department of Physics, Fudan University, Shanghai 200433 (China)
2013-11-01
Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry.
Directory of Open Access Journals (Sweden)
Wassim M. Haddad
2012-02-01
Full Text Available In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our dynamical system model, and using Lyapunov stability theory we show that the proposed thermodynamic model has finite-time convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop clear and rigorous connections between irreversibility, the second law of thermodynamics, and the entropic arrow of time.
Gauging without Initial Symmetry
Kotov, Alexei
2016-01-01
The gauge principle is at the heart of a good part of fundamental physics: Starting with a group G of so-called rigid symmetries of a functional defined over space-time Sigma, the original functional is extended appropriately by additional Lie(G)-valued 1-form gauge fields so as to lift the symmetry to Maps(Sigma,G). Physically relevant quantities are then to be obtained as the quotient of the solutions to the Euler-Lagrange equations by these gauge symmetries. In this article we show that one can construct a gauge theory for a standard sigma model in arbitrary space-time dimensions where the target metric is not invariant with respect to any rigid symmetry group, but satisfies a much weaker condition: It is sufficient to find a collection of vector fields v_a on the target M satisfying the extended Killing equation v_{a(i;j)}=0 for some connection acting on the index a. For regular foliations this is equivalent to merely requiring the distribution orthogonal to the leaves to be invariant with respect to leaf...
Prediction of human eye fixations using symmetry
Kootstra, Gert; Schomaker, Lambert
2009-01-01
Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of
NIF-scale re-emission sphere measurements of early-time Tr = 100 eV hohlraum symmetry (invited).
Dewald, E L; Thomas, C; Milovich, J; Edwards, J; Sorce, C; Kirkwood, R; Meeker, D; Jones, O; Izumi, N; Landen, O L
2008-10-01
The indirect-drive National Ignition Campaign (NIC) proposes to set the first 2 ns of hohlraum radiation symmetry by observing the instantaneous soft x-ray re-emission pattern from a high-Z sphere in place of the ignition capsule. To assess this technique under NIC conditions, we used the Omega Laser Facility to image the re-emission of Bi coated spheres with 200 ps temporal, 50-100 microm spatial, and 30% spectral resolution. The sphere is driven by 70% NIC-scale vacuum Au hohlraums heated to Tr=100 eV using two cones per side laser beam illumination. The experiments have demonstrated the required accuracies of <3%P(2)/P(0) and <3%P(4)/P(0) Legendre mode flux asymmetry at both 900 and 1200 eV re-emission photon energies. The re-emission patterns at 900 and 1200 eV are also consistent with each other and their relative dependence on radiation temperature. We measured the P(2)/P(0) and P(4)/P(0) dependence to laser cone power ratio. View factor calculations are in agreement with the experimentally measured radiation flux and re-emit images when assuming 55% inner beam and 100 % outer beam coupling into x rays at the hohlraum wall.
Spectral theorem and partial symmetries
Energy Technology Data Exchange (ETDEWEB)
Gozdz, A. [University of Maria Curie-Sklodowska, Department of Mathematical Physics, Institute of Physics (Poland); Gozdz, M. [University of Maria Curie-Sklodowska, Department of Complex Systems and Neurodynamics, Institute of Informatics (Poland)
2012-10-15
A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.
Horizontal Symmetry: Bottom Up and Top Down
Lam, C S
2011-01-01
A group-theoretical connection between horizontal symmetry $\\G$ and fermion mixing is established, and applied to neutrino mixing. The group-theoretical approach is consistent with a dynamical theory based on $U(1)\\times \\G$, but the dynamical theory can be used to pick out the most stable mixing that purely group-theoretical considerations cannot. A symmetry common to leptons and quarks is also discussed. This higher symmetry picks $A_4$ over $S_4$ to be the preferred symmetry for leptons.
Directory of Open Access Journals (Sweden)
Harold L. Merriman
2011-01-01
Full Text Available Though popular, there is little agreement on what whole-body vibration (WBV parameters will optimize performance. This study aimed to clarify the effects of age, sex, hertz and time on four physical function indicators in community-dwelling older adults (=32. Participants were exposed to 2 min WBV per session at either 2 Hz or 26 Hz and outcome measures were recorded at 2, 20 and 40 min post-WBV. Timed get up-and-go and chair sit-and-reach performances improved post-WBV for both sexes, were significantly different between 2 Hz and 26 Hz treatments (≤0.05 and showed statistically significant interactions between age and gender (≤0.01. Counter movement jump and timed one-legged stance performances showed a similar but non-significant response to 2 Hz and 26 Hz treatments, though male subjects showed a distinct trended response. Age and gender should be statistically controlled and both 2 Hz and 26 Hz exert a treatment effect.
Symmetry and symmetry breaking in particle physics
Tsou, ST
1998-01-01
Symmetry, in particular gauge symmetry, is a fundamental principle in theoretical physics. It is intimately connected to the geometry of fibre bundles. A refinement to the gauge principle, known as ``spontaneous symmetry breaking'', leads to one of the most successful theories in modern particle physics. In this short talk, I shall try to give a taste of this beautiful and exciting concept.
MOSTAFAZADEH, Ali
2013-01-01
PHYSICAL REVIEW A 87, 012103 (2013) Invisibility and PT symmetry Ali Mostafazadeh* Department of Mathematics, Koc¸ University, Sarıyer 34450, Istanbul, Turkey (Received 9 July 2012; published 3 January 2013) For a general complex scattering potential defined on a real line, we show that the equations governing invisibility of the potential are invariant under the combined action of parity and time-reversal (PT ) transformation. We determine the PT -symmetric as well as no...
Symmetry protected single photon subradiance
Cai, Han; Svidzinsky, Anatoly A; Zhu, Shi-Yao; Scully, Marlan O
2016-01-01
We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shift cannot be neglected. We find that anti-symmetric states are subradiant states for distribution with reflection symmetry. These states can be prepared by anti-symmetric optical modes and converted to superradiant states by properly tailored 2\\pipulses. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.
Koh, Meng-Hock; Bonneau, L.; Quentin, P.; Hao, T. V. Nhan; Wagiran, Husin
2017-01-01
Background: For a long time, fission barriers of actinide nuclei have been mostly microscopically calculated for even-even fissioning systems. Calculations in the case of odd nuclei have been performed merely within a so-called equal-filling approximation (EFA) as opposed to an approach taking explicitly into account the time-reversal-breaking properties at the mean-field level—and for only one single-particle configuration. Purpose: We study the dependence of the fission barriers on various relevant configurations (e.g., to evaluate the so-called specialization energy). In addition, we want to assess the relevance of the EFA approach as a function of the deformation, which has been already found for the ground-state deformation. Methods: Calculations within the Hartree-Fock plus BCS approach with self-consistent particle blocking have been performed by using the SkM* Skyrme effective interaction in the particle-hole channel and a seniority force in the particle-particle channel. Axial symmetry has been imposed throughout the whole fission path while the intrinsic parity symmetry has been allowed to be broken in the outer fission barrier region. Results: Potential-energy curves have been determined for six different configurations in 235U and four in 239Pu. Inner and outer fission barriers have been calculated along with some spectroscopic properties in the fission isomeric well. These results have been compared with available data. The influence of time-reversal-breaking mean fields on the solutions has been investigated. Conclusions: A sizable configuration dependence of the fission barrier (width and height) has been demonstrated. A reasonable agreement with available systematic evaluations of fission-barrier heights has been found. The EFA approach has been validated at the large elongations occurring at the outer-barrier region.
Occurrence and Distribution of Cave Dwelling Frogs of Peninsular India
Directory of Open Access Journals (Sweden)
Jayant Biswas
2014-10-01
Full Text Available The life in subterranean caves always needs a high degree of biological adaptability, due to its unusual ecosystem. The cave dwelling species usually get selected from preadapted biological traits for cave life. The cave dwelling tendencies in frog are very uncommon. Majority of reported cave frogs usually prefer cave for temporary shelter. In India, the biospeleological inventory is still in its primary stage. Till date no serious attempt has been taken to understand the cave dwelling habitat for any frog in India. Inspite of it, in India time to time various reports on natural histories of anurans reveal its cave dwelling tendencies. On the basis of personal observations and available literature in this report I have documented the occurrences and distributions of five cave dwelling frogs of India. Common biological traits from all the established cave frogs, which could be referred as preadapted for cave life, have been discussed. Further, the possible threats and IUCN status of each discussed species has been highlighted.
Indoor environmental quality in French dwellings and building characteristics
Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne
2016-03-01
A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).
Energy Technology Data Exchange (ETDEWEB)
Vasek, P. [Institute of Physics ASCR, Cukrovarnicka 10, 162 53 Prague 6 (Czech Republic)]. E-mail: vasek@fzu.cz; Shimakage, H. [KARC, National Institute of Information and Communication Technology, 588-2 Iwaoka, Kobe, 651-2492 (Japan); Wang, Z. [KARC, National Institute of Information and Communication Technology, 588-2 Iwaoka, Kobe, 651-2492 (Japan)
2004-09-15
The longitudinal and transverse voltages (resistances) have been measured for MgB{sub 2} in zero external magnetic fields. Samples were prepared in the form of thin film and patterned into the usual Hall bar shape. In close vicinity of the critical temperature T{sub c} non-zero transverse resistance has been observed. Its dependence on the transport current has been also studied. New scaling between transverse and longitudinal resistivities has been observed in the form {rho}{sub xy} {approx} d{rho}{sub xx}/dT. Several models for explanation of the observed transverse resistances and breaking of reciprocity theorem are discussed. One of the most promising explanation is based on the idea of time-reversal symmetry violation.
Asymmetry, Symmetry and Beauty
Directory of Open Access Journals (Sweden)
Abbe R. Kopra
2010-07-01
Full Text Available Asymmetry and symmetry coexist in natural and human processes. The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.
Jaffé, Hans H
1977-01-01
This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.
Lattice Regularization and Symmetries
Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc
2006-01-01
Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.
Deriving diffeomorphism symmetry
Kleppe, Astri
2014-01-01
In an earlier article, we have "derived" space, as a part of the Random Dynamics project. In order to get locality we need to obtain reparametrization symmetry, or equivalently, diffeomorphism symmetry. There we sketched a procedure for how to get locality by first obtaining reparametrization symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present article.
Van Isacker, P
2010-01-01
The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.
Bosetti, Hadrien; Posch, Harald A; Dellago, Christoph; Hoover, William G
2010-10-01
Recently, a new algorithm for the computation of covariant Lyapunov vectors and of corresponding local Lyapunov exponents has become available. Here we study the properties of these still unfamiliar quantities for a simple model representing a harmonic oscillator coupled to a thermal gradient with a two-stage thermostat, which leaves the system ergodic and fully time reversible. We explicitly demonstrate how time-reversal invariance affects the perturbation vectors in tangent space and the associated local Lyapunov exponents. We also find that the local covariant exponents vary discontinuously along directions transverse to the phase flow.
Symmetries of Massive and Massless Neutrinos
Kim, Y S
2016-01-01
Wigner's little groups are subgroups of the Lorentz group dictating the internal space-time symmetries of massive and massless particles. These little groups are like O(3) and E(2) for massive and massless particles respectively. While the geometry of the O(3) symmetry is familiar to us, the geometry of the flat plane cannot explain the E(2)-like symmetry for massless particles. However, the geometry of a circular cylinder can explain the symmetry with the helicity and gauge degrees of freedom. It is shown further that the symmetry of the massless particle can be obtained as a zero-mass limit of O(3)-like symmetry for massive particles. It is shown further that the polarization of massless neutrinos is a consequence of gauge invariance, while the symmetry of massive neutrinos is still like O(3).
Symmetry constraints on many-body localization
Potter, Andrew C.; Vasseur, Romain
2016-12-01
We derive general constraints on the existence of many-body localized (MBL) phases in the presence of global symmetries, and show that MBL is not possible with symmetry groups that protect multiplets (e.g., all non-Abelian symmetry groups). Based on simple representation theoretic considerations, we derive general Mermin-Wagner-type principles governing the possible alternative fates of nonequilibrium dynamics in isolated, strongly disordered quantum systems. Our results rule out the existence of MBL symmetry-protected topological phases with non-Abelian symmetry groups, as well as time-reversal symmetry-protected electronic topological insulators, and in fact all fermion topological insulators and superconductors in the 10-fold way classification. Moreover, extending our arguments to systems with intrinsic topological order, we rule out MBL phases with non-Abelian anyons as well as certain classes of symmetry-enriched topological orders.
Britten, Laura; Addington, Christine; Astill, Sarah
2017-04-11
Falls are a common cause of injury in older adults, with the prevention of falls being a priority for public health departments around the world. This study investigated the feasibility, and impact of an 8 week contemporary dance programme on modifiable physical (physical activity status, mobility, sedentary behaviour patterns) and psychosocial (depressive state, fear of falling) risk factors for falls. An uncontrolled 'pre-post' intervention design was used. Three groups of older (60 yrs.+) adults were recruited from local community groups to participate in a 3 separate, 8 week dance programmes. Each programme comprised two, 90 min dance classes per week. Quantitative measures of physical activity, sedentary behaviour, depression, mobility and fear of falling were measured at baseline (T1) and after 8 weeks of dance (T2). Weekly attendance was noted, and post-study qualitative work was conducted with participants in 3 separate focus groups. A combined thematic analysis of these data was conducted. Of the 38 (Mean Age = 77.3 ± 8.4 yrs., 37 females) who attended the dance sessions, 22 (21 females; 1 male; mean age = 74.8, ±8.44) consented to be part of the study. Mean attendance was 14.6 (±2.6) sessions, and mean adherence was 84.3% (±17). Significant increases in moderate and vigorous physical activity were noted, with a significant decrease in sitting time over the weekdays (p dance programme as a means of being active, health Benefits, and dance-related barriers and facilitators. The recruitment of older adults, good adherence and favourability across all three sites indicate that a dance programme is feasible as an intervention, but this may be limited to females only. Contemporary dance has the potential to positively affect the physical activity, sitting behaviour, falls related efficacy, mobility and incidence of depression in older females which could reduce their incidence of falls. An adequately powered study with control groups are
Manipulating one-way space wave and its refraction by time-reversal and parity symmetry breaking
Yin Poo; Cheng He; Chao Xiao; Ming-Hui Lu; Rui-Xin Wu; Yan-Feng Chen
2016-01-01
One-way transmission and negative refraction are the exotic wave properties founded in photonic crystals which attract a great attention due to their promising applications in photonic devices. How to integrate such two phenomena in one material or device is interesting and valuable. In this work, we theoretically and experimentally demonstrate that one-way electromagnetic space wave can be realized by means of two-dimensional magnetic photonic crystals. Simultaneously breaking the time-rever...
Dingwell, J B; Davis, B L; Frazier, D M
1996-08-01
The purpose of this research was to evaluate a newly developed system for assessing and providing feedback of gait symmetry information in real time to subjects walking on a motorised treadmill (the CCF Treadmill). The advantages of the system are that it allows the rapid collection and comparison of temporal and kinetic parameters of gait for multiple successive strides, at a constant known speed, without forcing subjects to target their footsteps. Gait asymmetries of six normal (mean age 42.7 years) and six unilateral transtibial amputee subjects (mean age 41.7, and average 6.0 years using a prosthesis) were quantified. The amputee group was the reevaluated after receiving five minutes of training with each of three different types of real-time visual feedback (RTVF). Asymmetries in the measured parameters before feedback were 4.6 times greater in the amputee population than in the normal group, and were consistent with the finding of previous authors. Significant decreases in gait asymmetry were demonstrated for all forms of feedback after amputees received feedback training. Results, however, indicated that gait asymmetries for different variables are not necessarily related, and that more work needs to be done to identify those variables for which attaining a more symmetrical gait pattern is most beneficial. Further work also needs to be done to determine the long term effects of such RTVF training. The CCF Treadmill and RTVF were shown to be potentially useful tools both for defining rehabilitation targets and for quantifying patients' progress towards those goals.
Unified symmetry of Vacco dynamical systems
Institute of Scientific and Technical Information of China (English)
Li Yuan-Cheng; Jing Hong-Xing; Xia Li-Li; Wang Jing; Hou Qi-Bao
2007-01-01
Based on the total time derivative along the trajectory of the time, we study the unified symmetry of Vacco dynamical systems. The definition and the criterion of the unified symmetry for the system are given. Three kinds of conserved quantities, i.e. the Noether conserved quantity, the generalized Hojman conserved quantity and the Mei conserved quantity, are deduced from the unified symmetry. An example is presented to illustrate the results.
Ermolenko, Alexander E; Perepada, Elena A
2007-01-01
The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.
Energy Technology Data Exchange (ETDEWEB)
Rubio-Marcos, F., E-mail: frmarcos@icv.csic.es [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Marchet, P.; Merle-Mejean, T. [SPCTS, UMR 6638 CNRS, Universite de Limoges, 123, Av. A. Thomas, 87060 Limoges (France); Fernandez, J.F. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain)
2010-09-01
Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O{sub 3} were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K{sub 3}LiNb{sub 6}O{sub 17}, tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO{sub 3} modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO{sub 3} modified KNN.
Directory of Open Access Journals (Sweden)
Miloslav Znojil
2016-06-01
Full Text Available For a given operator D ( t of an observable in theoretical parity-time symmetric quantum physics (or for its evolution-generator analogues in the experimental gain-loss classical optics, etc. the instant t c r i t i c a l of a spontaneous breakdown of the parity-time alias gain-loss symmetry should be given, in the rigorous language of mathematics, the Kato’s name of an “exceptional point”, t c r i t i c a l = t ( E P . In the majority of conventional applications the exceptional point (EP values are not real. In our paper, we pay attention to several exactly tractable toy-model evolutions for which at least some of the values of t ( E P become real. These values are interpreted as “instants of a catastrophe”, be it classical or quantum. In the classical optical setting the discrete nature of our toy models might make them amenable to simulations. In the latter context the instant of Big Bang is mentioned as an illustrative sample of possible physical meaning of such an EP catastrophe in quantum cosmology.
Hargittai, Istvan
1992-01-01
From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c
Renner, R
2007-01-01
Given a quantum system consisting of many parts, we show that symmetry of the system's state, i.e., invariance under swappings of the subsystems, implies that almost all of its parts are virtually identical and independent of each other. This result generalises de Finetti's classical representation theorem for infinitely exchangeable sequences of random variables as well as its quantum-mechanical analogue. It has applications in various areas of physics as well as information theory and cryptography. For example, in experimental physics, one typically collects data by running a certain experiment many times, assuming that the individual runs are mutually independent. Our result can be used to justify this assumption.
A comparative study of indoor radon concentrations between dwellings and schools
Kapdan, E.; Altinsoy, N.
2012-04-01
The aim of this study is to determine the relationship of radon concentrations between dwellings and the schools located in the same regions and to obtain related indoor average radon concentration dwelling-school correction factor for similar locations. The research has been carried out by determining indoor radon concentrations at schools and dwellings located at the same districts in the selected two separate research fields called The Former Adapazari region and The New Adapazari region in the city of Adapazari using a total of 81 Cr-39 passive radon detectors for 75 days. The average radon concentrations have been determined for the dwellings and the schools in 15 districts of the Former Adapazari region as 59.9 Bq m-3 and 57.1 Bq m-3, respectively. The results in 4 districts of the New Adapazari region were 63.5 Bq m-3 for the dwellings and 61.0 Bq m-3 for the schools. Moreover, the annual effective doses were calculated as 1.33 mSv/y and 1.41 mSv/y for the dwellings of Former Adapazari and New Adapazari, respectively. It was seen that the doses received in the dwellings are about four times the doses received in the schools. The indoor radon concentration dwelling-school correction factor was found to be 1.04±0.01 for the research area.
Rašin, Andrija
1994-01-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Directory of Open Access Journals (Sweden)
Joe Rosen
2005-12-01
Full Text Available Abstract: The symmetry principle is described in this paper. The full details are given in the book: J. Rosen, Symmetry in Science: An Introduction to the General Theory (Springer-Verlag, New York, 1995.
Directory of Open Access Journals (Sweden)
Gajos Aleksander
2014-01-01
Full Text Available Quantum entanglement of K and B mesons allows for a direct experimental test of time-reversal symmetry independent of CP violation. The T symmetry can be probed by exchange of initial and final states in the reversible transitions between flavor and CP- definite states of the mesons which are only connected by the T conjugation. While such a test was successfully performed by the BaBar experiment with neutral B mesons, the KLOE-2 detector can probe T -violation in the neutral kaons system by investigating the process with KS → π±l∓νl and KL → 3π0 decays. Analysis of the latter is facilitated by a novel reconstruction method for the vertex of KL → 3π0 decay which only involves neutral particles. Details of this new vertex reconstruction technique are presented as well as prospects for conducting the direct T symmetry test at the KLOE-2 experiment.
Dwelling Water Tanks in Diyarbakir
Directory of Open Access Journals (Sweden)
Ali Ceylan
2008-02-01
Full Text Available BACKGROUND: In this connection, the object of this study has been to identify and compare the microbiological contamination and residue chlorine levels in the main network water that is taken from the Dicle Dam and distributed in Diyarbakir Province Centre and in the tanks of dwellings that use this water as well as the effects of the maintenance, hygiene, and physical conditions of these tanks on microbiological contamination. METHODS: Water samples were taken from both the tank input side network water and tank output side tank waters of 200 dwellings with water tanks in Diyarbakir city centre (tank entrance network side water for 200 and tank output side tank water for 200 within the framework of the research study. RESULTS: Coliform bacteria were detected in 35% of the tank entrance side network water samples and in 52.0% percent of the tank output side water samples. Faecal coliform bacteria were not detected in tank entrance side network water samples, but they existed in 2.5% of the tank output side water samples. Free residue chlorine level was found to be over 0.2 ppm in 67% of tank entrance side network water samples and in 35% of the tank output side water samples. Coliform bacteria were detected in 95.5% of the tank entrance side network water samples, of which free residue chlorine level were below 0.2 ppm. Total germ growth was detected in 52.0% of the tank entrance side network water samples and in 67.5% of the tank output side water samples. The most frequently isolated bacteria both in tank entrance side network and tank output side water samples were found to be Bacillus spp. Bacillus type bacteria were found in 48% of tank entrance side network water samples and 57.5% of the tank output side water samples. Filamentous fungi were prevalent in 8% of all the samples examined within the study and the most commonly isolated filamentous fungi were Aspergillus spp (5.5% and Penicillum spp (2.5%. Water tanks of dwellings contain more
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-04-15
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Neutrinos and flavor symmetries
Tanimoto, Morimitsu
2015-07-01
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Neutrinos and flavor symmetries
Energy Technology Data Exchange (ETDEWEB)
Tanimoto, Morimitsu
2015-07-15
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Kishi, Ryohei; Nakano, Masayoshi
2011-04-21
A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.
Forbes, Mark R; Muma, Katherine E; Smith, Bruce P
2004-01-01
For aquatic mites parasitic on dragonflies, completion of their life cycle depends on their being returned to appropriate water bodies by their hosts, after completion of engorgement. We examined whether differences among hosts in timing of emergence or phenotypic attributes might affect their probability of return to an emergence pond, and hence success of mites. Parasitized males and females of the dragonfly Sympetrum obtrusum (Hagen) did not differ in overall recapture rates. Females that had wing cell symmetry and emerged early were more likely to be recaptured than females that emerged later or had wing cell asymmetry, but there were no consistent relations between these variables and parasitism by mites. No such relations between wing cell asymmetry, emergence date, and recapture likelihood were found for males. Using randomization tests, we found that mean intensities of Arrenurus planus (Marshall) mites at host emergence were the same for recaptured females and females not recaptured; however, males that were recaptured had lower mean intensities of mites at emergence than males not recaptured. Further, mature females carried more mites than mature males, and the latter had fewer mites than newlyemerged males not recaptured. Biases in detachment of engorging mites do not explain the differences in parasitism between mature males and females, nor the differences in mite numbers between mature males and newly emerged males that were not recaptured. Rather, heavily parasitized males appear to disperse or die and are not recaptured, which should have implications for dispersal of mites and fitness of male hosts.
Polynomial Graphs and Symmetry
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Polynomial Graphs and Symmetry
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Generalization of Friedberg-Lee Symmetry
Huang, Chao-Shang; Liao, Wei; Zhu, Shou-Hua
2008-01-01
We study the possible origin of Friedberg-Lee symmetry. First, we propose the generalized Friedberg-Lee symmetry in the potential by including the scalar fields in the field transformations, which can be broken down to the FL symmetry spontaneously. We show that the generalized Friedberg-Lee symmetry allows a typical form of Yukawa couplings, and the realistic neutrino masses and mixings can be generated via see-saw mechanism. If the right-handed neutrinos transform non-trivially under the generalized Friedberg-Lee symmetry, we can have the testable TeV scale see-saw mechanism. Second, we present two models with the $SO(3)\\times U(1)$ global flavour symmetry in the lepton sector. After the flavour symmetry breaking, we can obtain the charged lepton masses, and explain the neutrino masses and mixings via see-saw mechanism. Interestingly, the complete neutrino mass matrices are similar to those of the above models with generalized Friedberg-Lee symmetry. So the Friedberg-Lee symmetry is the residual symmetry in...
Energy Technology Data Exchange (ETDEWEB)
El Naschie, M.S. [King Abdul Aziz City of Science and Technology, Riyadh (Saudi Arabia)
2007-04-15
The notion of a particle-like state emerging from a symmetry breaking is given five corresponding pictures. We start from a geometrical picture in two dimensions involving a modular curve constructed using 336 triangles. The same number of building blocks is found again, this time as 336 contact points in the ten dimensional space of super string theory in the context of the largest kissing number of lattice sphere packing. The next corresponding representation is an abstract one pertinent to the order of the simple linear Lie group SL(2, n) in seven dimensions (n = 7) which leads to 336 symmetries. Subsequently a tensorial picture is given using the Riemannian tensor of relativity theory but this time in an eight dimensional space (n = 8) for which the number of independent components is again 336. Finally we use a physical string theory related picture in the 12 dimensions of F theory to find 336 moduli space dimensions representing the instanton cells of our theory. It is evident that the five preceding pictures are ten fold interconnected and exchangeable. This additional mental freedom does not only enhance the feeling of understanding, but also facilitates the easy recognition of complex mathematical relations and its connection to the physical concepts.
Bouwknegt, P G
1995-01-01
W-symmetry is an extension of conformal symmetry in two dimensions. Since its introduction in 1985, W-symmetry has become one of the central notions in the study of two-dimensional conformal field theory. The mathematical structures that underlie W-symmetry are so-called W-algebras, which are higher-spin extensions of the Virasoro algebra. This book contains a collection of papers on W-symmetry, covering the period from 1985 through 1993. Its main focus is the construction of W-algebras and their representation theory. A recurrent theme is the intimate connection between W-algebras and affine
Dynamics-dependent symmetries in Newtonian mechanics
Holland, Peter
2014-01-01
We exhibit two symmetries of one-dimensional Newtonian mechanics whereby a solution is built from the history of another solution via a generally nonlinear and complex potential-dependent transformation of the time. One symmetry intertwines the square roots of the kinetic and potential energies and connects solutions of the same dynamical problem (the potential is an invariant function). The other symmetry connects solutions of different dynamical problems (the potential is a scalar function). The existence of corresponding conserved quantities is examined using Noethers theorem and it is shown that the invariant-potential symmetry is correlated with energy conservation. In the Hamilton-Jacobi picture the invariant-potential transformation provides an example of a field-dependent symmetry in point mechanics. It is shown that this transformation is not a symmetry of the Schroedinger equation.
Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.
2016-03-01
Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different
Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking
Directory of Open Access Journals (Sweden)
Christian Appold
2010-06-01
Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.
Miller, G A
2003-01-01
Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...
Mathieu Moonshine and Symmetry Surfing
Gaberdiel, Matthias R; Paul, Hynek
2016-01-01
Mathieu Moonshine, the observation that the Fourier coefficients of the elliptic genus on K3 can be interpreted as dimensions of representations of the Mathieu group M24, has been proven abstractly, but a conceptual understanding in terms of a representation of the Mathieu group on the BPS states, is missing. Some time ago, Taormina and Wendland showed that such an action can be naturally defined on the lowest non-trivial BPS states, using the idea of `symmetry surfing', i.e., by combining the symmetries of different K3 sigma models. In this paper we find non-trivial evidence that this construction can be generalized to all BPS states.
Heisenberg symmetry and hypermultiplet manifolds
Antoniadis, Ignatios; Petropoulos, P Marios; Siampos, Konstantinos
2015-01-01
We study the emergence of Heisenberg (Bianchi II) algebra in hyper-K\\"ahler and quaternionic spaces. This is motivated by the r\\^ole these spaces with this symmetry play in $\\mathcal{N}=2$ hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-K\\"ahler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing cosmological constant. We further apply this method for the two hyper-K\\"ahler spaces with Heisenberg algebra, which is reduced to $U(1)\\times U(1)$ at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry -- as opposed to $\\text{Heisenberg} \\ltimes U(1)$. We finally discuss the realization of the latter by gauging appropriate $Sp(2,4)$ generators in $\\mathcal{N}=2$ conformal supergravity.
Watashige, T.; Tsutsumi, Y.; Hanaguri, T.; Kohsaka, Y.; Kasahara, S.; Furusaki, A.; Sigrist, M.; Meingast, C.; Wolf, T.; Löhneysen, H. v.; Shibauchi, T.; Matsuda, Y.
2015-07-01
Junctions and interfaces consisting of unconventional superconductors provide an excellent experimental playground to study exotic phenomena related to the phase of the order parameter. Not only does the complex structure of unconventional order parameters have an impact on the Josephson effects, but it also may profoundly alter the quasiparticle excitation spectrum near a junction. Here, by using spectroscopic-imaging scanning tunneling microscopy, we visualize the spatial evolution of the LDOS near twin boundaries (TBs) of the nodal superconductor FeSe. The π /2 rotation of the crystallographic orientation across the TB twists the structure of the unconventional order parameter, which may, in principle, bring about a zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in contrast, does not exhibit any signature of a zero-energy peak, and an apparent gap amplitude remains finite all the way across the TB. The low-energy quasiparticle excitations associated with the gap nodes are affected by the TB over a distance more than an order of magnitude larger than the coherence length ξa b. The modification of the low-energy states is even more prominent in the region between two neighboring TBs separated by a distance ≈7 ξa b . In this region, the spectral weight near the Fermi level (≈±0.2 meV ) due to the nodal quasiparticle spectrum is almost completely removed. These behaviors suggest that the TB induces a fully gapped state, invoking a possible twist of the order parameter structure, which breaks time-reversal symmetry.
From physical symmetries to emergent gauge symmetries
Energy Technology Data Exchange (ETDEWEB)
Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Di Filippo, Francesco [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Dipartamento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno,I-84081 Fisciano (Italy); Garay, Luis J. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain)
2016-10-17
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
From physical symmetries to emergent gauge symmetries
Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.
2016-10-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.
From physical symmetries to emergent gauge symmetries
Barceló, Carlos; Di Filippo, Francesco; Garay, Luis J
2016-01-01
Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent grav...
Optimization leads to symmetry
Institute of Scientific and Technical Information of China (English)
Chenghong WANG; Yuqian GUO; Daizhan CHENG
2004-01-01
The science of complexity studies the behavior and properties of complex systems in nature and human society.Particular interest has been put on their certain simple common properties.Symmetry is one of such properties.Symmetric phenomena can be found in many complex systems.The purpose of this paper is to reveal the internal reason of the symmetry.Using some physical systems and geometric objects,the paper shows that many symmetries are caused by optimization under certain criteria.It has also been revealed that an evolutional process may lead to symmetry.
Approximate and renormgroup symmetries
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling
2009-07-01
''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)
Symmetries in atmospheric sciences
Bihlo, Alexander
2009-01-01
Selected applications of symmetry methods in the atmospheric sciences are reviewed briefly. In particular, focus is put on the utilisation of the classical Lie symmetry approach to derive classes of exact solutions from atmospheric models. This is illustrated with the barotropic vorticity equation. Moreover, the possibility for construction of partially-invariant solutions is discussed for this model. A further point is a discussion of using symmetries for relating different classes of differential equations. This is illustrated with the spherical and the potential vorticity equation. Finally, discrete symmetries are used to derive the minimal finite-mode version of the vorticity equation first discussed by E. Lorenz (1960) in a sound mathematical fashion.
Increased gait unsteadiness in community-dwelling elderly fallers
Hausdorff, J. M.; Edelberg, H. K.; Mitchell, S. L.; Goldberger, A. L.; Wei, J. Y.
1997-01-01
OBJECTIVE: To test the hypothesis that quantitative measures of gait unsteadiness are increased in community-dwelling elderly fallers. STUDY DESIGN: Retrospective, case-control study. SETTING: General community. PARTICIPANTS: Thirty-five community-dwelling elderly subjects older than 70 years of age who were capable of ambulating independently for 6 minutes were categorized as fallers (age, 82.2 +/- 4.9 yrs [mean +/- SD]; n = 18) and nonfallers (age, 76.5 +/- 4.0 yrs; n = 17) based on history; 22 young (age, 24.6 +/- 1.9 yrs), healthy subjects also participated as a second reference group. MAIN OUTCOME MEASURES: Stride-to-stride variability (standard deviation and coefficient of variation) of stride time, stance time, swing time, and percent stance time measured during a 6-minute walk. RESULTS: All measures of gait variability were significantly greater in the elderly fallers compared with both the elderly nonfallers and the young subjects (p < .0002). In contrast, walking speed of the elderly fallers was similar to that of the nonfallers. There were little or no differences in the variability measures of the elderly nonfallers compared with the young subjects. CONCLUSIONS: Stride-to-stride temporal variations of gait are relatively unchanged in community-dwelling elderly nonfallers, but are significantly increased in elderly fallers. Quantitative measurement of gait unsteadiness may be useful in assessing fall risk in the elderly.
Gonzalez-Ayala, Julian; Calvo Hernández, A.; Roco, J. M. M.
2016-07-01
The main unified energetic properties of low dissipation heat engines and refrigerator engines allow for both endoreversible or irreversible configurations. This is accomplished by means of the constraints imposed on the characteristic global operation time or the contact times between the working system with the external heat baths and modulated by the dissipation symmetries. A suited unified figure of merit (which becomes power output for heat engines) is analyzed and the influence of the symmetries on the optimum performance discussed. The obtained results, independent on any heat transfer law, are faced with those obtained from Carnot-like heat models where specific heat transfer laws are needed. Thus, it is shown that only the inverse phenomenological law, often used in linear irreversible thermodynamics, correctly reproduces all optimized values for both the efficiency and coefficient of performance values.
Dark Energy and Spacetime Symmetry
Directory of Open Access Journals (Sweden)
Irina Dymnikova
2017-03-01
Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.
Exercise and risk of injurious fall in home-dwelling elderly
Iinattiniemi, Sari; Jokelainen, Jari; Luukinen, Heikki
2008-01-01
OBJECTIVES: To examine the relationship between different types of physical exercise and the risk of subsequent fall-related injury. STUDY DESIGN: A prospective study of the home-dwelling elderly. METHODS: A population sample of home-dwelling subjects aged 85 years or older (n = 512) in northern Finland participated in the study. Baseline data were collected by home-nursing staff through postal questionnaires and clinical tests. Frequency and times of physical exercise--that is, walking exe...
Marchis, Iuliana
2009-01-01
Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.
2016-01-01
The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.
Schaft, A.J. van der
1987-01-01
It is argued that the existence of symmetries may simplify, as in classical mechanics, the solution of optimal control problems. A procedure for obtaining symmetries for the optimal Hamiltonian resulting from the Maximum Principle is given; this avoids the actual calculation of the optimal
De Filippo, E; Auditore, L; Baran, V; Berceanu, I; Cardella, G; Colonna, M; Geraci, E; Gianì, S; Grassi, L; Grzeszczuk, A; Guazzoni, P; Han, J; La Guidara, E; Lanzalone, G; Lombardo, I; Maiolino, C; Minniti, T; Pagano, A; Papa, M; Piasecki, E; Pirrone, S; Politi, G; Pop, A; Porto, F; Rizzo, F; Russotto, P; Santoro, S; Trifirò, A; Trimarchi, M; Verde, G; Vigilante, M; Wilczyński, J; Zetta, L
2012-01-01
We show new data from the $^{64}$Ni+$^{124}$Sn and $^{58}$Ni+$^{112}$Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.
Loebbert, Florian
2016-01-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfeld's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dila...
Tests of gravitational symmetries with radio pulsars
Shao, LiJing; Wex, Norbert
2016-09-01
Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.
Tests of Gravitational Symmetries with Radio Pulsars
Shao, Lijing
2016-01-01
Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.
Partial Dynamical Symmetry as an Intermediate Symmetry Structure
Leviatan, A
2003-01-01
We introduce the notion of a partial dynamical symmetry for which a prescribed symmetry is neither exact nor completely broken. We survey the different types of partial dynamical symmetries and present empirical examples in each category.
Quantized Response and Topological Magnetic Insulators with Inversion Symmetry
Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.
2012-01-01
We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at
Quantized Response and Topological Magnetic Insulators with Inversion Symmetry
Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.
2012-01-01
We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at tim
Hidden flavor symmetries of SO(10) GUT
Bajc, Borut
2016-01-01
The Yukawa interactions of the SO(10) GUT with fermions in 16-plets (as well as with singlets) have certain intrinsic ("built-in") symmetries which do not depend on the model parameters. Thus, the symmetric Yukawa interactions of the 10 and 126 dimensional Higgses have intrinsic discrete $Z_2\\times Z_2$ symmetries, while the antisymmetric Yukawa interactions of the 120 dimensional Higgs have a continuous SU(2) symmetry. The couplings of SO(10) singlet fermions with fermionic 16-plets have $U(1)^3$ symmetry. We consider a possibility that some elements of these intrinsic symmetries are the residual symmetries, which originate from the (spontaneous) breaking of a larger symmetry group $G_f$. Such an embedding leads to the determination of certain elements of the relative mixing matrix $U$ between the matrices of Yukawa couplings $Y_{10}$, $Y_{126}$, $Y_{120}$, and consequently, to restrictions of masses and mixings of quarks and leptons. We explore the consequences of such embedding using the symmetry group con...
Mei Symmetry and Lie Symmetry of Relativistic Hamiltonian System
Institute of Scientific and Technical Information of China (English)
FANG Jian-Hui; YAN Xiang-Hong; LI Hong; CHEN Pei-Sheng
2004-01-01
The Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are studied. The definition and criterion of the Mei symmetry and the Lie symmetry of the relativistic Hamiltonian system are given. The relationship between them is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained.An example is given to illustrate the application of the result.
Symmetries in nuclear structure
Allaart, K; Dieperink, A
1983-01-01
The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...
Leviatan, A
2010-01-01
This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.
Schwichtenberg, Jakob
2015-01-01
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.
Energy Technology Data Exchange (ETDEWEB)
Takahashi, K.; Nakamura, Y. [Nagasaki Univ. (Japan)] Shimizu, Y. [Kumagai Gumi Co. Ltd., Tokyo (Japan)
1998-10-20
Two years after the above-titled earthquake, an examination was performed on inhabitants in the temporary dwelling houses in Kobe, center of the calamity, and problems caused by a long stay there were clarified together with a grasp of the evolving problems by comparing the result of survey carried out immediately after the disaster. The number of such temporary dwelling houses amounted to 29,128 within Kobe City and 3,168 outside of the city. According to the room arrangement, they were either one f 4 types : 2-rooms with a kitchen, 1 room with a kitchen, dormitory and those specifically for aged persons. There were 59,449 applications at the first offer of 2,702 houses. The priority of their assignments and so on are explained. As for the housing structure, numerous complaints concerned with the room temperature, noise and so forth. As for the living environment, lack of nearby commodity shop, omission of transportation access, ill drainage of the housing sites were pointed out and the matters of demand to the local authorities included the installation of mail post and street lights. As for the health management, insomnia, stiff shoulder, lumbago and other bad physical conditions were revealed. The financial difficulty and the high house rent were obstacles to migrate to other places. The prolonged temporary lives worsened the apprehension of dwellers for the earthquake, typhoon, fire and alike. Some features for the calamity are described in comparison with the result of survey on those who were compelled to live under similar conditions by the eruption of Mr. Fugen. 6 refs., 13 figs., 15 tabs.
Symmetries in Lagrangian Field Theory
Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia
2015-06-01
By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.
Symmetries in fluctuations far from equilibrium.
Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L
2011-05-10
Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.
Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study
Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.
2016-11-01
It is a well known and important problem in the aircraft engine industry that alloy Ti-6242 shows a significant reduction in fatigue life, termed dwell debit, if a stress dwell is included in the fatigue cycle, whereas Ti-6246 does not; the mechanistic explanation for the differing dwell debit of these alloys has remained elusive for decades. In this work, crystal plasticity modelling has been utilised to extract the thermal activation energies for pinned dislocation escape for both Ti alloys based on independent experimental data. This then allows the markedly different cold creep responses of the two alloys to be captured accurately and demonstrates why the observed near-identical rate sensitivity under non-dwell loading is entirely consistent with the dwell behaviour. The activation energies determined are then utilised within a recently developed thermally-activated discrete dislocation plasticity model to predict the strain rate sensitivities of the two alloys associated with nano-indentation into basal and prism planes. It is shown that Ti-6242 experiences a strong crystallographic orientation-dependent rate sensitivity while Ti-6246 does not which is shown to agree with recently published independent measurements; the dependence of rate sensitivity on indentation slip plane is also well captured. The thermally-activated discrete dislocation plasticity model shows that the incorporation of a stress dwell in fatigue loading leads to remarkable stress redistribution from soft to hard grains in the classical cold dwell fatigue rogue grain combination in alloy Ti-6242, but that no such load shedding occurs in alloy Ti-6246. The key property controlling the behaviour is the time constant of the thermal activation process relative to that of the loading. This work provides the first mechanistic basis to explain why alloy Ti-6242 shows a dwell debit but Ti-6246 does not.
Kac-Moody Symmetry in Hosotani Model
Shiraishi, Kiyoshi
2012-01-01
The symmetry of the massive tower of fields in higher-dimensional Yang-Mills theory compactified on a space-time of the form M_d x S^1 is clarified. The transformations form a loop algebra, a class of Kac-Moody algebras. Since the symmetry is spontaneously broken, vector fields "eat" Goldstone bosons and acquire masses. The field of zero-mass mode can also become massive provided that the field of the internal component develops a vacuum expectation value. The relation between the "restoration" of the symmetry in massive modes and the gauge transformation of the zero-mode vacuum field is discussed.
Golubitsky, Martin
2012-04-01
Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.
Lovelady, Benjamin C
2015-01-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dim Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected SO(n) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an SO(n-1,1) connection on the spacetime. The principal fiber bundle character of the original SO(n) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
Gauge symmetry from decoupling
Energy Technology Data Exchange (ETDEWEB)
Wetterich, C., E-mail: c.wetterich@thphys.uni-heidelberg.de
2017-02-15
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Directory of Open Access Journals (Sweden)
C. Wetterich
2017-02-01
Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Gauge symmetry from decoupling
Wetterich, C.
2017-02-01
Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang-Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.
Lovelady, Benjamin C.; Wheeler, James T.
2016-04-01
According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.
Superconductivity and symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)
2012-02-15
In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
Energy Technology Data Exchange (ETDEWEB)
Blum, Alexander Simon
2009-06-10
This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)
Baldo, M.; Burgio, G. F.
2016-11-01
The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry energy in relation to nuclear structure, astrophysics of Neutron Stars and supernovae, and heavy ion collision experiments, trying to elucidate the connections of these different fields on the basis of the symmetry energy peculiarities. The interplay between experimental and observational data and theoretical developments is stressed. The expected future developments and improvements are schematically addressed, together with most demanded experimental and theoretical advances for the next few years.
A hidden classical symmetry of QCD
Glozman, L Ya
2016-01-01
The classical part of the QCD partition function (the integrand) has, ignoring irrelevant exact zero modes of the Dirac operator, a local SU(2N_F) \\supset SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A symmetry which is absent at the Lagrangian level. This symmetry is broken anomalously and spontaneously. Effects of spontaneous breaking of chiral symmetry are contained in the near-zero modes of the Dirac operator. If physics of anomaly is also encoded in the same near-zero modes, then their truncation on the lattice should recover a hidden classical SU(2N_F) symmetry in correlators and spectra. This naturally explains observation on the lattice of a large degeneracy of hadrons, that is higher than the SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A chiral symmetry, upon elimination by hands of the lowest-lying modes of the Dirac operator. We also discuss an implication of this symmetry for the high temperature QCD.
Indoor air quality in typical temperate zone Australian dwellings
Molloy, S. B.; Cheng, M.; Galbally, I. E.; Keywood, M. D.; Lawson, S. J.; Powell, J. C.; Gillett, R.; Dunne, E.; Selleck, P. W.
2012-07-01
We report the results of a comprehensive study of indoor air quality in typical temperate zone Australian dwellings. Forty dwellings located over an 800 km2 area in the south-east of Melbourne with a range of ages, materials and structures representative of Australian dwellings were selected. A range of indoor air quality pollutants were sampled both inside and outside for one week each in Winter/Spring 2008 and Summer/Autumn 2009. Information was collected on house characteristics, the surrounding areas and occupant activities during the sampling. Weekly indoor averaged CO2 (536 ± 121 ppm), CO (0.3 ± 0.2 ppm), PM2.5 (8.4 ± 4.0 μg m-3), temperatures (21.2 ± 2.0 °C), water vapour mixing ratios (7.9 ± 1.3 g kg-1), benzene (1.3 ± 1.1 μg m-3), toluene (8.8 ± 7.9 μg m-3) and xylenes (6.2 ± 6.7 μg m-3) varied from 1.1 to approximately three times higher compared to the equivalent outdoors concentrations. Formaldehyde (12.2 ± 4.7 ppb), other carbonyls (7.9 ± 2.6 ppb) and total volatile organic compounds (181.1 ± 89.5 μg m-3) had indoor concentrations of factors between eight and 12 times higher compared to outdoor concentrations. Weekly averaged indoor ozone (0.7 ± 0.7 ppb), NO2 (8.4 ± 3.9 ppb) and PM10 (20.4 ± 8.1 μg m-3) were significantly lower than outdoors. Correlations and factor analysis showed the major influences on this indoor air quality were (a) dwelling age, whereby dwellings constructed in recent decades compared to older buildings were found to have increased concentrations of the highly elevated species formaldehyde, other carbonyls and total volatile organic compounds, and (b) combustion and cooking activities that increased the concentrations of multiple species including CO, CO2, NO2, H2O and particles. The indoor pollutant concentrations from this study were in general comparable with or lower than other Australian or overseas studies.
Population and dwelling unit estimates from space.
Webster, C J
1996-05-01
"To increase the utility of satellite imagery as a source of cheap and current information for planning and managing cities some problems have to be resolved.... One answer is to adopt interpretation methods that use the increased information in a more detailed scene. This paper reports on attempts to measure the morphological patterns in an urban satellite scene and to use these for image interpretation. The interpretation task addressed is the estimation of residential dwelling units from the patterns discernible in high resolution satellite images of cities. The practical results include dwelling estimates that can be aggregated to any geographical unit of analysis, population estimates for cities and a dwelling density surface that can be categorised into any number of residential land-use classes."
Hidden symmetries in dilaton-axion gravity
Kechkin, O V
1996-01-01
Four--dimensional Einstein--Maxwell--dilaton--axion system restricted to space--times with one non--null Killing symmetry is formulated as the three--dimensional gravity coupled sigma--model. Several alternative representations are discussed and the associated hidden symmetries are revealed. The action of target space isometries on the initial set of (non--dualized ) variables is found. New mulicenter solutions are obtained via generating technique based on the formulation in terms of the non--dualized variables.
Noether symmetries in the phase space
Díaz, Bogar; Galindo-Linares, Elizabeth; Ramírez-Romero, Cupatitzio; Silva-Ortigoza, Gilberto; Suárez-Xique, Román; Torres del Castillo, Gerardo F.; Velázquez, Mercedes
2014-09-01
The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.
Noether symmetries in the phase space
Directory of Open Access Journals (Sweden)
Bogar Díaz
2014-09-01
Full Text Available The constants of motion of a mechanical system with a finite number of degrees of freedom are related to the variational symmetries of a Lagrangian constructed from the Hamiltonian of the original system. The configuration space for this Lagrangian is the phase space of the original system. The symmetries considered in this manner include transformations of the time and may not be canonical in the standard sense.
Invariants of broken discrete symmetries
Kalozoumis, P; Diakonos, F K; Schmelcher, P
2014-01-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Baldo, M
2016-01-01
The nuclear symmetry energy characterizes the variation of the binding energy as the neutron to proton ratio of a nuclear system is varied. This is one of the most important features of nuclear physics in general, since it is just related to the two component nature of the nuclear systems. As such it is one of the most relevant physical parameters that affect the physics of many phenomena and nuclear processes. This review paper presents a survey of the role and relevance of the nuclear symmetry energy in different fields of research and of the accuracy of its determination from the phenomenology and from the microscopic many-body theory. In recent years, a great interest was devoted not only to the Nuclear Matter symmetry energy at saturation density but also to its whole density dependence, which is an essential ingredient for our understanding of many phenomena. We analyze the nuclear symmetry energy in different realms of nuclear physics and astrophysics. In particular we consider the nuclear symmetry ene...
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.
Energy Technology Data Exchange (ETDEWEB)
Joshipura, A.S. [Physical Research Laboratory, Navarangpura, Ahmedabad (India)
2008-01-15
The possible maximal mixing seen in the oscillations of atmospheric neutrinos has led to the postulate of {mu}-{tau} symmetry, which interchanges {nu}{sub {mu}} and {nu}{sub {tau}}. We argue that such a symmetry need not be special to neutrinos but can be extended to all fermions. The assumption that all fermion mass matrices are approximately invariant under the interchange of the second and the third generation fields is shown to be phenomenologically viable and has interesting consequences. In the quark sector, the smallness of V{sub ub} and V{sub cb} can be consequences of this approximate 2-3 symmetry. The same approximate symmetry can simultaneously lead to a large atmospheric mixing angle and can describe the leptonic mixing quite well. We identify two generic scenarios leading to this. One is based on the conventional type-I seesaw mechanism and the other follows from the type-II seesaw model. The latter requires a quasi-degenerate neutrino spectrum for obtaining large atmospheric neutrino mixing in the presence of an approximate {mu}-{tau} symmetry. (orig.)
Artificial Neural Networks, Symmetries and Differential Evolution
Urfalioglu, Onay
2010-01-01
Neuroevolution is an active and growing research field, especially in times of increasingly parallel computing architectures. Learning methods for Artificial Neural Networks (ANN) can be divided into two groups. Neuroevolution is mainly based on Monte-Carlo techniques and belongs to the group of global search methods, whereas other methods such as backpropagation belong to the group of local search methods. ANN's comprise important symmetry properties, which can influence Monte-Carlo methods. On the other hand, local search methods are generally unaffected by these symmetries. In the literature, dealing with the symmetries is generally reported as being not effective or even yielding inferior results. In this paper, we introduce the so called Minimum Global Optimum Proximity principle derived from theoretical considerations for effective symmetry breaking, applied to offline supervised learning. Using Differential Evolution (DE), which is a popular and robust evolutionary global optimization method, we experi...
Weiss, Asia; Whiteley, Walter
2014-01-01
This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme. Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology. The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...
Seeing Science through Symmetry
Gould, L. I.
Seeing Through Symmetry is a course that introduces non-science majors to the pervasive influence of symmetry in science. The concept of symmetry is usedboth as a link between subjects (such as physics, biology, mathematics, music, poetry, and art) and as a method within a subject. This is done through the development and use of interactive multimedia learning environments to stimulate learning. Computer-based labs enable the student to further explore the concept by being gently led from the arts to science. This talk is an update that includes some of the latest changes to the course. Explanations are given on methodology and how a variety of interactive multimedia tools contribute to both the lecture and lab portion of the course (created in 1991 and taught almost every semester since then, including one in Sweden).
Binary Tetrahedral Flavor Symmetry
Eby, David A
2013-01-01
A study of the T' Model and its variants utilizing Binary Tetrahedral Flavor Symmetry. We begin with a description of the historical context and motivations for this theory, together with some conceptual background for added clarity, and an account of our theory's inception in previous works. Our model endeavors to bridge two categories of particles, leptons and quarks, a unification made possible by the inclusion of additional Higgs particles, shared between the two fermion sectors and creating a single coherent system. This is achieved through the use of the Binary Tetrahedral symmetry group and an investigation of the Tribimaximal symmetry evidenced by neutrinos. Our work details perturbations and extensions of this T' Model as we apply our framework to neutrino mixing, quark mixing, unification, and dark matter. Where possible, we evaluate model predictions against experimental results and find excellent matching with the atmospheric and reactor neutrino mixing angles, an accurate prediction of the Cabibb...
Segmentation Using Symmetry Deviation
DEFF Research Database (Denmark)
Hollensen, Christian; Højgaard, L.; Specht, L.
2011-01-01
and evaluate the method. The method uses deformable registration on computed tomography(CT) to find anatomical symmetry deviations of Head & Neck squamous cell carcinoma and combining it with positron emission tomography (PET) images. The method allows the use anatomical and symmetrical information of CT scans...... to improve automatic delineations. Materials: PET/CT scans from 30 patients were used for this study, 20 without cancer in hypopharyngeal volume and 10 with hypharyngeal carcinoma. An head and neck atlas was created from the 20 normal patients. The atlas was created using affine and non-rigid registration...... of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...
Leadership, power and symmetry
DEFF Research Database (Denmark)
Spaten, Ole Michael
2016-01-01
Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...... experienced moments of symmetry and that necessary and sufficient conditions to bring forth such moments include a strong working alliance and the coach being aware of the power at play....
Energy Technology Data Exchange (ETDEWEB)
Chanowitz, M.S.
1990-09-01
The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.
Trautmann, Wolfgang; Russotto, Paolo
2016-01-01
The nuclear equation-of-state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. In particular, the equation-of-state of asymmetric matter and the symmetry energy representing the difference between the energy densities of neutron matter and of symmetric nuclear matter are not sufficiently well constrained at present. The density dependence of the symmetry energy is conventionally expressed in the form of the slope parameter L describing the derivative with respect to density of the symmetry energy at saturation. Results deduced from nuclear structure and heavy-ion reaction data are distributed around a mean value L=60 MeV. Recent studies have more thoroughly investigated the density range that a particular observable is predominantly sensitive to. Two thirds of the saturation density is a value typical for the information contained in nuclear-structure data. Higher values exceeding saturation have been shown to be probed with meson production and collective ...
Gravitation and Duality Symmetry
D'Andrade, V C; Pereira, J G
2005-01-01
By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.
517 DWELLING DENSITY VARIABILITY ACROSS GOVERNMENT ...
African Journals Online (AJOL)
Osondu
approach. This finding was supported by the results of a chi-square test which found that, at 95% ... of life. Key words: dwelling density, home spaces, housing units, multifamily apartments ... single interior space is typically referred to as a room ...
25 CFR 700.53 - Dwelling, replacement.
2010-04-01
... § 700.55. (b) May include existing dwellings for resale, new construction, modular homes, mobile homes... person if, after he receives a replacement housing payment and any available housing assistance payments... supplemental income payments received from public agencies. If the person's monthly income pattern is...
Flavour from accidental symmetries
Energy Technology Data Exchange (ETDEWEB)
Ferretti, Luca [SISSA/ISAS and INFN, I-34013 Trieste (Italy); King, Stephen F. [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Romanino, Andrea [SISSA/ISAS and INFN, I-34013 Trieste (Italy)
2006-11-15
We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries.
Symmetry, structure, and spacetime
Rickles, Dean
2007-01-01
In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
Energy Technology Data Exchange (ETDEWEB)
Yerin, Yuriy; Omelyanchouk, Alexander [Verkin Inst. for Low Temperature Physics and Engineering. 61103 Kharkiv (Ukraine); Drechsler, Stefan-Ludwig; Brink, Jeroen van den; Efremov, Dmitriy [Inst. for Theorretical Solid State Physics at the Leibniz Inst. for Solid State an Materials Research, IFW-Dresden, D-01171 Dresden (Germany)
2016-07-01
Within the Ginzburg-Landau formalism we provide a classification of all possible ground states (GS) of a three-band superconductor (3BSC) where either frustrated states with BTRS or a single non-BTRS GS with unconventional/conventional s-wave symmetry, respectively, exist. The necessary condition for a BTRS GS in general cannot be reduced to a ''-''sign of the product of all interband couplings (IBC) valid in the case of 3 equivalent bands with repulsive equal IBC, only. It corresponds to a maximal IBC frustration. We show that with increasing diversity of the parameter space this frustration is reduced and the regions of possible BTRS GS start to shrink. We track possible evolutions of a BTRS GS of a 3BSC based doubly-connected system in an external magnetic field. Depending on its parameters, a magnetic flux can induce various current density leaps, connected with adiabatic or non-adiabatic transitions from BTRS to non-BTRS states and vice versa. The current induced magnetic flux response of samples with a doubly-connected geometry e.g. as a thin tube provides a suitable experimental tool for the detection of BTRS GS.
Dieperink, AEL; van Neck, D; Suzuki, T; Otsuka, T; Ichimura, M
2005-01-01
The role of isospin asymmetry in nuclei and neutron stars is discussed, with an emphasis on the density dependence of the nuclear symmetry energy. Results obtained with the self-consistent Green function method are presented and compared with various other theoretical predictions. Implications for t
Quantum entanglement and symmetry
Energy Technology Data Exchange (ETDEWEB)
Chruscinski, D; Kossakowski, A [Institute of Physics, Nicolaus Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland)
2007-11-15
One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.
Quantum entanglement and symmetry
Chruściński, D.; Kossakowski, A.
2007-11-01
One of the main problem in Quantum Information Theory is to test whether a given state of a composite quantum system is entangled or separable. It turns out that within a class of states invariant under the action of the symmetry group this problem considerably simplifies. We analyze multipartite invariant states and the corresponding symmetric quantum channels.
Gray, P L
2003-01-01
"The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...
Symmetries in fundamental physics
Sundermeyer, Kurt
2014-01-01
Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...
Crumpecker, Cheryl
2003-01-01
Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)
Pels, D.L.
1996-01-01
While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that sy
Applications of chiral symmetry
Pisarski, R D
1995-01-01
I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)
Einmahl, John; Gan, Zhuojiong
2016-01-01
Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they a
Symmetries of hadrons after unbreaking the chiral symmetry
Glozman, L Ya; Schröck, M
2012-01-01
We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.
Sound classification of dwellings in the Nordic countries
DEFF Research Database (Denmark)
Rindel, Jens Holger; Turunen-Rise, Iiris
1997-01-01
A draft standard INSTA 122:1997 on sound classification of dwellings is for voting as a common national standard in the Nordic countries (Denmark, Norway, Sweden, Finland, Iceland) and in Estonia. The draft standard specifies a sound classification system with four classes A, B, C and D, where...... class C is proposed as the future minimum requirements for new dwellings. The classes B and A define criteria for dwellings with improved or very good acoustic conditions, whereas class D may be used for older, renovated dwellings in which the acoustic quality level of a new dwelling cannot reasonably...
Relativistic RPA in axial symmetry
Arteaga, D Pena; 10.1103/PhysRevC.77.034317
2009-01-01
Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.
Segvić Klarić, M; Kosalec, I; Mastelić, J; Piecková, E; Pepeljnak, S
2007-01-01
To characterize antifungal activities of essential oil of thyme (Thymus vulgaris L.) and pure thymol, as comparative substance, on different mould species isolated from damp dwellings. Fifty samples of wall scrapes were collected from damp dwellings in Zagreb, the capital of Croatia. The members of the following mould genera were recovered from the samples: Aspergillus (44%), Penicillium (18%) Alternaria, Ulocladium, Absidia and Mucor (8%) Cladosporium, Trichoderma and Rhizopus (6%), and Chaetomium (2%). Two strains of Stachybotrys chartarum were isolated from damp dwellings in Slovakia. Antifungal activities of the thyme essential oil, which contains p-cymene (36.5%), thymol (33.0%) and 1,8-cineole (11.3%) as main components, and pure thymol were determined by the dilution method and exposure to vaporous phase of the oil. Minimum inhibitory concentrations (MIC) of both thymol and essential oil were bellow 20 microg ml(-1), except for Mucor spp. (50.20 microg ml(-1)). Thymol exhibited approximately three-times stronger inhibition than essential oil of thyme. The vaporous phase of the thyme essential oil (82 microg l(-1)) in glass chambers strongly suppressed the sporulation of moulds during 60 days of exposure. The thyme essential oil possesses a wide range spectrum of fungicidal activity. The vaporous phase of the oil exhibited long-lasting suppressive activity on moulds from damp dwellings. Essential oil of thyme and thymol could be used for disinfection of mouldy walls in the dwellings in low concentration.
On Symmetries in Optimal Control
van der Schaft, A. J.
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
On Symmetries in Optimal Control
Schaft, A.J. van der
1986-01-01
We discuss the use of symmetries in solving optimal control problems. In particular a procedure for obtaining symmetries is given which can be performed before the actual calculation of the optimal control and optimal Hamiltonian.
A relativistic symmetry in nuclei
Energy Technology Data Exchange (ETDEWEB)
Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)
2007-11-15
We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.
Invariants of broken discrete symmetries
Kalozoumis, P.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.
2014-01-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying in particular to acoustic, optical and matter waves. Nonvanishing values of the invariant currents provide a systematic ...
Vladan Nikolić; Ljiljana Radović; Biserka Marković
2015-01-01
The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D a...
Dynamical Symmetries in Classical Mechanics
Boozer, A. D.
2012-01-01
We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…
Emergence of Symmetries from Entanglement
CERN. Geneva
2016-01-01
Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.
Active and passive cooling methods for dwellings
DEFF Research Database (Denmark)
Oropeza-Perez, Ivan; Østergaard, Poul Alberg
2018-01-01
they might be applied, and what their energy needs are. Secondly, what scientific analysis has been carried out and what the major findings are. Thirdly, what their economic and technical feasibility of use at the stage of implementation and operation within a dwelling are. Then, either with the reviewed......In this document a review of three active as well as ten passive cooling methods suitable for residential buildings is carried out. The review firstly addresses how the various technologies cool the space according to the terms of the building heat balance, under what technical conditions...... studies or with a simulation modelling, an assessment of temperature drop of each cooling method within a standard-size dwelling is carried out. Also, a comparison of initial investment, energy consumption, maintenance, retrofitting and required space is done. Thereafter, with this information, a decision...
Leadership, power and symmetry
DEFF Research Database (Denmark)
Spaten, Ole Michael
2016-01-01
regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each......Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... session. Thereafter we executed qualitative interviews with both managers and employees. Subsequently, a Thematic Analysis resulted in several themes, including power and moments of symmetry in the coaching relationship. One main conclusion is that the most fruitful coaching was obtained when the coachee...
Symmetry rules How science and nature are founded on symmetry
Rosen, Joe
2008-01-01
When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.
Effect of music on pain for home-dwelling persons with dementia.
Park, Heeok
2010-09-01
The purpose of this study was to investigate the effect of music on pain for home-dwelling persons with dementia. A quasiexperimental design was used. Fifteen subjects listened to their preferred music for 30 minutes before peak agitation time, for 2 days per week, followed by no music for 2 weeks. The process was repeated once. The finding of this study showed that mean pain levels after listening to music were significantly lower than before listening to the music (t=2.21, df=28; p music intervention to control pain for home-dwelling persons with dementia.
Impact of UK Building Regulations on design and thermal performance of dwellings
Institute of Scientific and Technical Information of China (English)
LIM; D; 姚润明
2009-01-01
This paper looks at the progressive impact of UK Building Regulations (Part L) on the energy consumption of dwellings with respect to thermal performance of the building envelope. It provides an overview of building legislation,highlighting progressive improvement in building elemental U-values and compliance methods. The focus centres on Building Regulations from 1965 to 2006,at a time when energy conservation has become an integral component of building control due to environmental concerns. Simulation software is used to compare energy consumption for 5 typical UK dwelling types through a series of case studies which illustrate the rate of impact over recent years.
1985-08-01
way to choose among them. Spirals can occur in natural figures, e.g. a spiralled tail or a coil of rope or vine tendril, and in line drawings. Since...generated and removes it and all regions similar to it from the list of regions. The end result is a pruned list of distinct optimal regions. 4.7...that, at least to a first approximation, the potential symmetry regions pruned by the locality restriction are not perceptually salient. For example
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Momeni, Davood
2014-01-01
The symmetry issue for Galileons has been studied. In particular we address scaling (conformal) and Noether symmetrized Galileons. We have been proven a series of theorems about the form of Noether conserved charge (current) for irregular (not quadratic) dynamical systems. Special attentions have been made on Galileons. We have been proven that for Galileons always is possible to find a way to "symmetrized" Galileo's field .
Energy Technology Data Exchange (ETDEWEB)
Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)
2010-06-01
Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.
Conserved symmetries in noncommutative quantum mechanics
Kupriyanov, V G
2014-01-01
We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in f{i}eld theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. F{i}rst we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time.
Conserved symmetries in noncommutative quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Kupriyanov, V.G. [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil)
2014-09-11
We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in field theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. First we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Uncertainty analysis of energy consumption in dwellings
Energy Technology Data Exchange (ETDEWEB)
Pettersen, Trine Dyrstad
1997-12-31
This thesis presents a comprehensive study of an energy estimation model that can be used to examine the uncertainty of predicted energy consumption in a dwelling. The variation and uncertainty of input parameters due to the outdoor climate, the building construction and the inhabitants are studied as a basis for further energy evaluations. The occurring variations of energy consumption in nominal similar dwellings are also investigated due to verification of the simulated energy consumption. The main topics are (1) a study of expected variations and uncertainties in both input parameters used in energy consumption calculations and the energy consumption in the dwelling, (2) the development and evaluation of a simplified energy calculation model that considers uncertainties due to the input parameters, (3) an evaluation of the influence of the uncertain parameters on the total variation so that the most important parameters can be identified, and (4) the recommendation of a simplified procedure for treating uncertainties or possible deviations from average conditions. 90 refs., 182 figs., 73 tabs.
Invariants of Broken Discrete Symmetries
Kalozoumis, P. A.; Morfonios, C.; Diakonos, F. K.; Schmelcher, P.
2014-08-01
The parity and Bloch theorems are generalized to the case of broken global symmetry. Local inversion or translation symmetries in one dimension are shown to yield invariant currents that characterize wave propagation. These currents map the wave function from an arbitrary spatial domain to any symmetry-related domain. Our approach addresses any combination of local symmetries, thus applying, in particular, to acoustic, optical, and matter waves. Nonvanishing values of the invariant currents provide a systematic pathway to the breaking of discrete global symmetries.
Loss of Exchange Symmetry in Multiqubit States under Ising Chain Evolution
Institute of Scientific and Technical Information of China (English)
Sudha; B. G. Divyamani; A. R. Usha Devi
2011-01-01
Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange symmetry of initially symmetric multiqubit states. Specifically we show that among 4-qubit states obeying exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time evolution with Ising Hamiltonian. Attributing the loss of symmetry of the initially symmetric states to rotational asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all N-qubit states (N ＞ 5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.%@@ Keeping in view of importance of exchange symmetry aspects in studies on spin squeezing of multiqubit states, we show that the one-dimensional Ising Hamiltonian with nearest neighbor interactions does not retain the exchange symmetry of initially symmetric multiqubit states.Specifically we show that among 4-qubit states obeying exchange symmetry, all states except W class (and their linear combination) lose their symmetry under time evolution with Ising Hamiltonian.Attributing the loss of symmetry of the initially symmetric states to rotational asymmetry of the one-dimensional Ising Hamiltonian with more than 3 qubits, we indicate that all N-qubit states (N > 5) obeying permutation symmetry lose their symmetry after time evolution with Ising Hamiltonian.
Modified Friedberg-Lee symmetry for neutrino mixing
Zhao, Zhen-hua
2015-12-01
In this paper, we put forward a special neutrino mass matrix which is invariant under a modified Friedberg-Lee (FL) transformation νe→νe-2 ξ and νμ ,τ→νμ ,τ+ξ with ξ being a space-time independent element of the Grassmann algebra. Compared to the original FL symmetry (with the transformation νe ,μ ,τ→νe ,μ ,τ+ξ ) which results in the TM2 neutrino mixing, the modified FL symmetry will lead us to the TM1 mixing which has a better agreement with the experimental results. While the original FL symmetry has to be broken in order to produce a realistic neutrino mass spectrum, the modified FL symmetry is allowed to remain intact and give us a vanishing m1. A combination of the FL symmetry with the μ -τ reflection symmetry is also discussed.
A Method of Image Symmetry Detection Based on Phase Information
Institute of Scientific and Technical Information of China (English)
WU Jun; YANG Zhaoxuan; FENG Dengchao
2005-01-01
Traditional methods for detecting symmetry in image suffer greatly from the contrast of image and noise, and they all require some preprocessing. This paper presents a new method of image symmetry detection. This method detects symmetry with phase information utilizing logGabor wavelets, because phase information is stable and significant, while symmetric points produce patterns easy to be recognised and confirmable in local phase. Phase method does not require any preprocessing, and its result is accurate or invariant to contrast, rotation and illumination conditions. This method can detect mirror symmetry, rotating symmetry and curve symmetry at one time. Results of experiment show that, compared with pivotal element algorithm based on intensity information, phase method is more accurate and robust.
Directory of Open Access Journals (Sweden)
Vladan Nikolić
2015-02-01
Full Text Available The idea of construction of twin buildings is as old as architecture itself, and yet there is hardly any study emphasizing their specificity. Most frequently there are two objects or elements in an architectural composition of “twins” in which there may be various symmetry relations, mostly bilateral symmetries. The classification of “twins” symmetry in this paper is based on the existence of bilateral symmetry, in terms of the perception of an observer. The classification includes both, 2D and 3D perception analyses. We start analyzing a pair of twin buildings with projection of the architectural composition elements in 2D picture plane (plane of the composition and we distinguish four 2D keyframe cases based on the relation between the bilateral symmetry of the twin composition and the bilateral symmetry of each element. In 3D perception for each 2D keyframe case there are two sub-variants, with and without a symmetry plane parallel to the picture plane. The bilateral symmetry is dominant if the corresponding symmetry plane is orthogonal to the picture plane. The essence of the complete classification is relation between the bilateral (dominant symmetry of the architectural composition and the bilateral symmetry of each element of that composition.
Qureshi, Muhammad Amer; Mahomed, K S
2016-01-01
A study of proper teleparallel conformal vector field in spherically symmetric static space-times is given using the direct integration technique and diagonal tetrads. In this study we show that the above space-times do not admit proper teleparallel conformal vector fields.
Recoil-deposited Po-210 in radon dwellings
Energy Technology Data Exchange (ETDEWEB)
Samuelsson, C.
1990-12-31
Short-lived decay products of Rn-222 plate out on all surfaces in a house containing radon gas. Following the subsequent alpha decays of the mother nuclei, the daughter products Pb-214 and Pb-210 are superficially and permanently absorbed. Due to its long half-life (22 y) the activity of absorbed Pb-210 accumulates in the surface. The activity of Pb-210, or its decay products, can thus reflect the past randon daughter and plate-out history of a house over several decades. Our results and experience from measurements of Po-210 and Rn-222 in 22 dwellings will be presented. In these studies the Po-210 surface activity of one plane glass sheet per dwelling (window panes were not used) has been determined and compared with the period of exposure times the mean radon concentration measured over a two-month period. Considering the large uncertainty in the integrated radon exposure estimate the surface {sup 210}Po correlates well (r=0.73) with the accumulated radon exposure. The {sup 210}Po activity of the glass samples has been measured non-destructively using an open-flow pulse ionization chamber and this detector has also been successfully applied in field exercises.
Recoil-deposited Po-210 in radon dwellings
Energy Technology Data Exchange (ETDEWEB)
Samuelsson, C.
1990-01-01
Short-lived decay products of Rn-222 plate out on all surfaces in a house containing radon gas. Following the subsequent alpha decays of the mother nuclei, the daughter products Pb-214 and Pb-210 are superficially and permanently absorbed. Due to its long half-life (22 y) the activity of absorbed Pb-210 accumulates in the surface. The activity of Pb-210, or its decay products, can thus reflect the past randon daughter and plate-out history of a house over several decades. Our results and experience from measurements of Po-210 and Rn-222 in 22 dwellings will be presented. In these studies the Po-210 surface activity of one plane glass sheet per dwelling (window panes were not used) has been determined and compared with the period of exposure times the mean radon concentration measured over a two-month period. Considering the large uncertainty in the integrated radon exposure estimate the surface {sup 210}Po correlates well (r=0.73) with the accumulated radon exposure. The {sup 210}Po activity of the glass samples has been measured non-destructively using an open-flow pulse ionization chamber and this detector has also been successfully applied in field exercises.
{sup 220}Rn and its progeny in dwellings of Korea
Energy Technology Data Exchange (ETDEWEB)
Kim, Chang-Kyu [International Atomic Energy Agency, Agency' s Laboratories, A-1400, Vienna (Austria)], E-mail: chang.kyu.kim@iaea.org; Kim, Young-Jae; Lee, Hwa-Yong; Chang, Byung-Uck [Korea Institute of Nuclear Safety, P.O. Box 114, Yusong, Daejeon 305-338 (Korea, Republic of); Tokonami, Shinji [Radon Research Group, National Institute of Radiological Sciences (Japan)
2007-09-15
Concentrations of {sup 220}Rn and its progeny were measured in 450 dwellings from 2002 to 2004 using two kinds of simple passive {sup 222}Rn and {sup 220}Rn monitors, Radopot{sup TM} and {sup 220}Rn progeny monitor. The annual arithmetic mean (AM) and geometric mean (GM) of {sup 220}Rn concentrations were 40.4 and 10.7Bqm{sup -3}, respectively. The annual arithmetic mean (AM) of EEC{sub Tn} concentration was 0.89{+-}0.70Bqm{sup -3}, and the annual geometric mean (GM) was 0.60Bqm{sup -3} (95% confidence interval: 0.43-0.78Bqm{sup -3}). The concentrations of {sup 220}Rn in Korean-style houses built with mud block were about two times higher than those in apartments. The average annual effective dose due to inhalation exposure to {sup 220}Rn and its progeny in dwellings was 0.25mSvy{sup -1}.
Chinese Climate and Vernacular Dwellings
Directory of Open Access Journals (Sweden)
Feifei Sun
2013-01-01
Full Text Available The industrial and economic expansion of China, particularly its rapid urbanization, has resulted in dramatic increased consumption of energy resources and the resulting environmental impacts at local, regional and global levels. Although a national program aimed at the technological development of sustainable buildings with energy saving potential is ongoing, it is also appropriate to consult vernacular architectural tradition. This holds the potential to learn and adapt important cultural ideas developed over time on the art of balancing thermal comfort between climate and limited resources. This paper explores the five different climatic regions into which China is partitioned by the Chinese authorities: severe cold region, cold region, moderate region, hot summer and cold winter region, and hot summer and mild winter region. Analysis of each region covers the climate and its vernacular architecture with a special focus on how sustainability was addressed. Finally, regional climate scenario has been analyzed on the basis of data from Meteonorm V6.1 with special attention paid to passive design strategies.
Dynamical symmetries of the shell model
Energy Technology Data Exchange (ETDEWEB)
Van Isacker, P
2000-07-01
The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)
Hidden Symmetries, Central Charges and All That
de Wit, Bernard; Wit, Bernard de; Nicolai, Hermann
2001-01-01
In this review we discuss hidden symmetries of toroidal compactifications of eleven-dimensional supergravity. We recall alternative versions of this theory which exhibit traces of the hidden symmetries when still retaining the massive Kaluza-Klein states. We reconsider them in the broader perspective of M-theory which incorporates a more extended variety of BPS states. We also argue for a new geometry that may underly these theories. All our arguments point towards an extension of the number of space-time coordinates beyond eleven.
Supersymmetric defect models and mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Kachru, Shamit; Torroba, Gonzalo
2013-11-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Supersymmetric Defect Models and Mirror Symmetry
Hook, Anson; Torroba, Gonzalo
2013-01-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d N=4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d N=2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of N=4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Dynamical Symmetry Breaking in RN Quantum Gravity
Directory of Open Access Journals (Sweden)
A. T. Kotvytskiy
2011-01-01
Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.
Ratchet due to broken friction symmetry
DEFF Research Database (Denmark)
Norden, Bengt; Zolotaryuk, Yaroslav; Christiansen, Peter Leth
2002-01-01
A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must...
Tests of fundamental symmetries with beta decay
vanKlinken, J
1996-01-01
Since the fall of parity in electroweak interactions the discrete transformations of parity, charge conjugation and time reversal are under close scrutiny for any sign of deviation from maximality where symmetry breaking seems to be complete (like P violation in beta decay) and for any sign of symme
Farmer, David W
1995-01-01
In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ
Yale, Paul B
2012-01-01
This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi
Greene, Brian R
1997-01-01
Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.
Localization of Dwell Fatigue Cracks in Ti-6242 Alloy Samples
Rokhlin, S. I.; Kim, J.-Y.; Xie, B.; Yakovlev, V. A.; Zoofan, B.
2003-03-01
An in-situ ultrasonic guided wave technique is employed for real-time monitoring of crack initiation and evolution during dwell, cyclic fatigue and creep tests of Ti-6242 alloy samples. Ultrasonic signals are acquired continuously during the test at different levels of fatigue load using a high-speed data acquisition system. The initiation time and growth history of primary and multiple secondary cracks are assessed. Localization of the secondary cracks is performed by both the in-situ ultrasonic method and an ultrasonic immersion scanning method which we call "vertical C-scan" (VC scan). The VC scan is developed for imaging small cracks aligned normal to the fatigue sample axis. The fusion of ultrasonic and microradiographic images exhibits good agreement in crack location. Joint use of the three techniques provides location, shape, and size of the secondary cracks.
Nova, Omar; Peña, Néstor; Ney, Michel
2015-03-01
Perfectly matched layer stability in 3-D finite-difference time-domain simulations is demonstrated for two piezoelectric crystals: barium sodium niobate and bismuth germanate. Stability is achieved by adapting the discretization grid to meet a central-difference scheme. Stability is demonstrated by showing that the total energy of the piezoelectric system remains constant in the steady state.
Munkler, Hagen
2015-01-01
Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in terms of minimal surfaces of the $AdS_5 \\times S^5$ superstring. We employ the classical integrability of the Green-Schwarz superstring on $AdS_5 \\times S^5$ to derive the superconformal and Yangian $Y[\\mathfrak{psu}(2,2|4)]$ Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.
Modelling window opening behaviour in Danish dwellings
DEFF Research Database (Denmark)
Andersen, Rune Vinther; Olesen, Bjarne W.; Toftum, Jørn
2011-01-01
In this paper we present and analyse data from two studies of window opening behaviour in residential buildings in Denmark. Based on measurements of indoor environment, weather and window opening behaviour in 15 dwellings, we propose a model that will predict window opening behaviour. The data...... showed that other factors than thermal effects impact the behaviour of the occupants. Some of these factors were included in the model. We present data from repeated questionnaire surveys that show that occupants tend to adjust heating setpoints, adjust clothing and operate windows when feeling thermally...
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Rosensteel, George
1995-01-01
Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.
Applications of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Directory of Open Access Journals (Sweden)
Angel Garrido
2011-01-01
Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.
SYMMETRY IN WORLD TRADE NETWORK
Institute of Scientific and Technical Information of China (English)
Hui WANG; Guangle YAN; Yanghua XIAO
2009-01-01
Symmetry of the world trade network provides a novel perspective to understand the world-wide trading system. However, symmetry in the world trade network (WTN) has been rarely studied so far. In this paper, the authors systematically explore the symmetry in WTN. The authors construct WTN in 2005 and explore the size and structure of its automorphism group, through which the authors find that WTN is symmetric, particularly, locally symmetric to a certain degree. Furthermore, the authors work out the symmetric motifs of WTN and investigate the structure and function of the symmetric motifs, coming to the conclusion that local symmetry will have great effect on the stability of the WTN and that continuous symmetry-breakings will generate complexity and diversity of the trade network. Finally, utilizing the local symmetry of the network, the authors work out the quotient of WTN, which is the structural skeleton dominating stability and evolution of WTN.
Wilczek, Frank
2004-01-01
Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).
Symmetry of crystals and molecules
Ladd, Mark
2014-01-01
This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.
Energy Technology Data Exchange (ETDEWEB)
Strocchi, F. [Scuola Normale Superiore, Classe di Scienze, Pisa (Italy)
2008-07-01
This new edition of Prof. Strocchi's well received primer on rigorous aspects of symmetry breaking presents a more detailed and thorough discussion of the mechanism of symmetry breaking in classical field theory in relation with the Noether theorem. Moreover, the link between symmetry breaking without massless Goldstone bosons in Coulomb systems and in gauge theories is made more explicit in terms of the delocalized Coulomb dynamics. Furthermore, the chapter on the Higgs mechanism has been significantly expanded with a non-perturbative treatment of the Higgs phenomenon, at the basis of the standard model of particle physics, in the local and in the Coulomb gauges. Last but not least, a subject index has been added and a number of misprints have been corrected. From the reviews of the first edition: The notion of spontaneous symmetry breaking has proven extremely valuable, the problem is that most derivations are perturbative and heuristic. Yet mathematically precise versions do exist, but are not widely known. It is precisely the aim of his book to correct this unbalance. - It is remarkable to see how much material can actually be presented in a rigorous way (incidentally, many of the results presented are due to Strocchi himself), yet this is largely ignored, the original heuristic derivations being, as a rule, more popular. - At each step he strongly emphasizes the physical meaning and motivation of the various notions introduced, a book that fills a conspicuous gap in the literature, and does it rather well. It could also be a good basis for a graduate course in mathematical physics. It can be recommended to physicists as well and, of course, for physics/mathematics libraries. J.-P. Antoine, Physicalia 28/2, 2006 Strocchi's main emphasis is on the fact that the loss of symmetric behaviour requires both the non-symmetric ground states and the infinite extension of the system. It is written in a pleasant style at a level suitable for graduate students in
Exact Dynamical and Partial Symmetries
Leviatan, A
2010-01-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
Exact dynamical and partial symmetries
Energy Technology Data Exchange (ETDEWEB)
Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)
2011-03-01
We discuss a hierarchy of broken symmetries with special emphasis on partial dynamical symmetries (PDS). The latter correspond to a situation in which a non-invariant Hamiltonian accommodates a subset of solvable eigenstates with good symmetry, while other eigenstates are mixed. We present an algorithm for constructing Hamiltonians with this property and demonstrate the relevance of the PDS notion to nuclear spectroscopy, to quantum phase transitions and to mixed systems with coexisting regularity and chaos.
Physical Theories with Average Symmetry
Alamino, Roberto C.
2013-01-01
This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violat...
Physical Theories with Average Symmetry
Alamino, Roberto C
2013-01-01
This Letter probes the existence of physical laws invariant only in average when subjected to some transformation. The concept of a symmetry transformation is broadened to include corruption by random noise and average symmetry is introduced by considering functions which are invariant only in average under these transformations. It is then shown that actions with average symmetry obey a modified version of Noether's Theorem with dissipative currents. The relation of this with possible violations of physical symmetries, as for instance Lorentz invariance in some quantum gravity theories, is briefly commented.
The conservation of orbital symmetry
Woodward, R B
2013-01-01
The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope
Karp, Dagan; Riggins, Paul; Whitcher, Ursula
2011-01-01
We exhaustively analyze the toric symmetries of CP^3 and its toric blowups. Our motivation is to study toric symmetry as a computational technique in Gromov-Witten theory and Donaldson-Thomas theory. We identify all nontrivial toric symmetries. The induced nontrivial isomorphisms lift and provide new symmetries at the level of Gromov-Witten Theory and Donaldson-Thomas Theory. The polytopes of the toric varieties in question include the permutohedron, the cyclohedron, the associahedron, and in fact all graph associahedra, among others.
Givental graphs and inversion symmetry
Dunin-Barkowski, P; Spitz, L
2012-01-01
Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and then we obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.
Leptogenesis and residual CP symmetry
Energy Technology Data Exchange (ETDEWEB)
Chen, Peng; Ding, Gui-Jun [Department of Modern Physics, University of Science and Technology of China,Hefei, Anhui 230026 (China); King, Stephen F. [Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)
2016-03-31
We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z{sub 2} in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S{sub 4} flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.
Symmetry fractionalization and twist defects
Tarantino, Nicolas; Lindner, Netanel H.; Fidkowski, Lukasz
2016-03-01
Topological order in two-dimensions can be described in terms of deconfined quasiparticle excitations—anyons—and their braiding statistics. However, it has recently been realized that this data does not completely describe the situation in the presence of an unbroken global symmetry. In this case, there can be multiple distinct quantum phases with the same anyons and statistics, but with different patterns of symmetry fractionalization—termed symmetry enriched topological order. When the global symmetry group G, which we take to be discrete, does not change topological superselection sectors—i.e. does not change one type of anyon into a different type of anyon—one can imagine a local version of the action of G around each anyon. This leads to projective representations and a group cohomology description of symmetry fractionalization, with the second cohomology group {H}2(G,{{ A }}{{abelian}}) being the relevant group. In this paper, we treat the general case of a symmetry group G possibly permuting anyon types. We show that despite the lack of a local action of G, one can still make sense of a so-called twisted group cohomology description of symmetry fractionalization, and show how this data is encoded in the associativity of fusion rules of the extrinsic ‘twist’ defects of the symmetry. Furthermore, building on work of Hermele (2014 Phys. Rev. B 90 184418), we construct a wide class of exactly-solvable models which exhibit this twisted symmetry fractionalization, and connect them to our formal framework.
Cooper, Fred; Khare, Avinash; Comech, Andrew; Mihaila, Bogdan; Dawson, John F.; Saxena, Avadh
2017-01-01
We discuss the stability properties of the solutions of the general nonlinear Schrödinger equation (NLSE) in 1+1 dimensions in an external potential derivable from a parity-time ({ P }{ T }) symmetric superpotential W(x) that we considered earlier, Kevrekidis et al (2015 Phys. Rev. E 92 042901). In particular we consider the nonlinear partial differential equation \\{{{i}} {\\partial }t+{\\partial }x2-{V}-(x)+| \\psi (x,t){| }2κ \\} \\psi (x,t)=0, for arbitrary nonlinearity parameter κ. We study the bound state solutions when {V}-(x) =(1/4-{b}2){\\text{sech}}2(x), which can be derived from two different superpotentials W(x), one of which is complex and { P }{ T } symmetric. Using Derrick's theorem, as well as a time dependent variational approximation, we derive exact analytic results for the domain of stability of the trapped solution as a function of the depth b 2 of the external potential. We compare the regime of stability found from these analytic approaches with a numerical linear stability analysis using a variant of the Vakhitov-Kolokolov (V-K) stability criterion. The numerical results of applying the V-K condition give the same answer for the domain of stability as the analytic result obtained from applying Derrick's theorem. Our main result is that for κ \\gt 2 a new regime of stability for the exact solutions appears as long as b\\gt {b}{{crit}}, where {b}{{crit}} is a function of the nonlinearity parameter κ. In the absence of the potential the related solitary wave solutions of the NLSE are unstable for κ \\gt 2.
Institute of Scientific and Technical Information of China (English)
李双双; 延军平
2012-01-01
西太平洋板块俯冲引发的强震与我国东北地区强震活动存在密切联系,对西太平洋板块俯冲带未来强震做出准确的趋势判断,对我国防御重大地震灾害具有重大意义.通过可公度信息提取方法对1900年来西太平洋俯冲带北部地区Ms≥8强震进行分析,认为西太平洋俯冲带北部地区在2013年、2014年和2017年强震信号较强,有可能发生较大震级地震.其中2014年信号要强于2013年和2017年.通过震中迁移分析,发现其空间迁移经纬向具有同步性和对称性,其中有6次明显的南迁和6次北迁,纬向迁移对称轴在43°N左右；经向震中迁移,其对称轴在146°E左右,未来强震可能向东北方向迁移,其空间对称轴恰位于千岛群岛海沟和日本海沟两大地质构造的转换处.%Natural disaster risk assessment is one of the hot fields of the study of natural disaster. The key point is to identify the trend of significant natural disasters. The strong earthquake activity on the seductions zone shows the correlativity with the earthquake activity in Northeast area at space-time. It is of great significance to analyze the possible occurring time of the earthquake. Study on Tendency of Judgment of futures Ms≧8 earthquake in northwestern pacific plate seductions using the method of commensurability information extract and butterfly structure. We believe that there is a strong signal that the earthquake whose level is greater than the eighth grade will occur in 2013, 2014 and 2017. It becomes more likely in 2014. From the earthquake migration, we find that the space distributions of epifocus have obviously symmetry. There is 6 times of migration from north to south and return. According to these, the Ms ≧8 earthquake will occur on the eastern side of 146°E longitude and northern side of 43° N latitude, the symmetry axis located demarcation between Japan Trench and Kurite trench. The physical mechanism of the spatial symmetry
Energy Technology Data Exchange (ETDEWEB)
T' Jampens, Stephane; /Orsay
2006-09-18
This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity
The practice of dwelling and the nature of decision making
DEFF Research Database (Denmark)
Fyhn, Håkon; Baron, Nina
2016-01-01
There exists a political desire to make buildings more energy efficient and resilient to extreme weather. For existing private housing this is done through refurbishment and retrofitting. In response, various projects and policies aiming to influence decisions made by homeowners in relation...... of dwelling”. We see maintenance, refurbishment and reparations as part of an ongoing practice of dwelling. In this light, decision making is just one of many aspects that contribute to shaping the actions of homeowners when they invest time and money in their properties....... to refurbishment. Focus on decisions seems to be based on a perspective where actions are understood to be the result of isolated decisions. By means of case studies from Denmark and Norway we challenge this point of view. Based on a practice theoretical approach we argue that homeowners’ actions should be seen...
Symmetry reduction related with nonlocal symmetry for Gardner equation
Ren, Bo
2017-01-01
Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.
PREFACE: Symmetries in Science XV
Schuch, Dieter; Ramek, Michael
2012-08-01
Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There
Bosonization and Mirror Symmetry
Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia
2016-01-01
We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Energy Technology Data Exchange (ETDEWEB)
Heeck, Julian
2013-04-15
Augmenting the Standard Model by three right-handed neutrinos allows for an anomaly-free gauge group extension G{sub max}=U(1){sub B−L}×U(1){sub L{sub e−L{sub μ}}}×U(1){sub L{sub μ−L{sub τ}}}. Simple U(1) subgroups of G{sub max} can be used to impose structure on the righthanded neutrino mass matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism. We show how this framework can be used to gauge the approximate lepton-number symmetries behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable relations among mixing parameters.
Bosonization and mirror symmetry
Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia
2016-10-01
We study bosonization in 2 +1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O (2 )-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a "chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.
The meaning of dwelling features: conceptual and methodological issues
Coolen, H.C.C.H.
2008-01-01
This study is about the meaning of dwelling features. It relates the research areas of housing preferences and the meaning of a dwelling with each other and with aspects of the means-end approach as applied in marketing research. It results in a conceptual and methodological framework for studying t
Origins and Application of Postmodern Trends in Private Dwelling-Houses of Lithuania, 1987–1998
Directory of Open Access Journals (Sweden)
Aistė Galaunytė
2013-10-01
Full Text Available On 28 September 1987, the resolution No. 264 On Further Development of Individual Housing in the Republic passed by the Central Committee of the Council of Ministers of the Lithuanian SSR restored the typological group of private dwelling-houses to Lithuanian towns after a break of nearly three decades. Post-modern trends in architecture that prevailed in western countries at that time reached Lithuania in the form of limited spectrum of architectural press. Architectural expression of individual dwelling-houses in Lithuania relied specifically on projects published in foreign magazines (mostly, of Japan, the U.S.A and Western Europe, and later – in the local periodicals. Different features of such analogous architecture were adapted in Lithuanian dwelling-houses in different ways: the spatial structure of the building was used and interpreted in ones, while in the others – only certain specific details, most often published in such professional press. Three groups of individual dwelling-houses were formed: the elite – benchmark-type, typical -adapted and self-taught architecture. They represented examples of architecture, which over the ten-year’s period were built in parallel and intense mode, until finally the economic conditions prevalent in the post-Soviet Lithuania led to the more practical approach to one’s housing, and the style of post-modernism became unfashionable in Lithuania just like in the remaining part of the world.
Indoor air quality in energy-efficient dwellings: levels and sources of pollutants.
Derbez, Mickaël; Wyart, Guillaume; Le Ponner, Eline; Ramalho, Olivier; Ribéron, Jacques; Mandin, Corinne
2017-09-28
Worldwide, public policies are promoting energy-efficient buildings and accelerating the thermal renovation of existing buildings. The effects of these changes on the indoor air quality (IAQ) in these buildings remain insufficiently understood. In this context, a field study was conducted in 72 energy-efficient dwellings to describe the pollutants known to be associated with health concerns. Measured parameters included the concentrations of 19 volatile organic compounds and aldehydes, nitrogen dioxide, particulate matter (PM2.5 ), radon, temperature and relative humidity. The air stuffiness index and night-time air exchange rate were calculated from the monitored carbon dioxide (CO2 ) concentrations. Indoor and outdoor measurements were performed at each dwelling during one week in each of the two following seasons: heating and non-heating. Moreover, questionnaires were completed by the occupants to characterize the building, equipment, household and occupants' habits. Perspective on our results was provided by previous measurements made in low-energy European dwellings. Statistical comparisons with the French housing stock and a pilot study showed higher concentrations of terpenes, i.e., alpha-pinene and limonene, and hexaldehyde in our study than in previous studies. Alpha-pinene and hexaldehyde are emitted by wood or wood-based products used for the construction, insulation, decoration and furnishings of the dwellings, whereas limonene is more associated with discontinuous sources related to human activities. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Symmetry Breaking by Nonstationay Optimisation
Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.
2008-01-01
We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in
Lie Symmetries of Ishimori Equation
Institute of Scientific and Technical Information of China (English)
SONG Xu-Xia
2013-01-01
The Ishimori equation is one of the most important (2+1)-dimensional integrable models,which is an integrable generalization of (1+1)-dimensional classical continuous Heisenberg ferromagnetic spin equations.Based on importance of Lie symmetries in analysis of differential equations,in this paper,we derive Lie symmetries for the Ishimori equation by Hirota's direct method.
Hole localization and symmetry breaking
Broer, R; Nieuwpoort, W.C.
1999-01-01
A brief overview is presented of some theoretical work on the symmetry breaking of electronic wavefunctions that followed the early work on Bagus and Schaefer who observed that a considerable lower SCF energy could be obtained for an ionized state of the O2 molecule with a 1s hole if the symmetry re
Symmetry Breaking by Nonstationay Optimisation
Prestwich, S.; Hnich, B.; Rossi, R.; Tarim, S.A.
2008-01-01
We describe a new partial symmetry breaking method that can be used to break arbitrary variable/value symmetries in combination with depth first search, static value ordering and dynamic variable ordering. The main novelty of the method is a new dominance detection technique based on local search in
The joint choice of tenure, dwelling type and size
DEFF Research Database (Denmark)
Frenkel, Amnon; Bendit, Eduard; Kaplan, Sigal
Real-estate market trends regarding housing preferences for tenure, dwelling type and size carry long term implications for cities’ spatial development and compactness. Much attention have been given to the impact of household demographics and socio-economic characteristics on joint housing choices...... that active versus home-oriented lifestyle plays an important role in housing preferences of tenure, dwelling type and size, while controlling for household socio-economic characteristics. The choice model employed for tenure and dwelling type coupled with dwelling unit size is the multinomial logit ordered...... regarding housing preferences, socio-economic characteristics, and activity patterns. The empirical findings show that the tendency of knowledge-workers to reside in owned large dwelling units, preferably single detached houses, increases with high engagement in home-oriented activities, while the tendency...
Asymptotic Symmetries from finite boxes
Andrade, Tomas
2015-01-01
It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a "box." This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the Anti-de Sitter and Poincar\\'e asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2+1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS$_3$ and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.
Discrete symmetries in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Schieren, Roland
2010-12-02
The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)
Shape analysis with subspace symmetries
Berner, Alexander
2011-04-01
We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Gomis, Joaquim; Not, Daniel
2017-02-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Extended Galilean symmetries of non-relativistic strings
Batlle, Carles; Not, Daniel
2016-01-01
We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.
Symmetry and Quantum Transport on Networks
Salimi, S; Soltanzadeh, M M
2011-01-01
We study the classical and quantum transport processes on some finite networks and model them by continuous-time random walks (CTRW) and continuous-time quantum walks (CTQW), respectively. We calculate the classical and quantum transition probabilities between two nodes of the network. We numerically show that there is a high probability to find the walker at the initial node for CTQWs on the underlying networks due to the interference phenomenon, even for long times. To get global information (independent of the starting node) about the transport efficiency, we average the return probability over all nodes of the network. We apply the decay rate and the asymptotic value of the average of the return probability to evaluate the transport efficiency. Our numerical results prove that the existence of the symmetry in the underlying networks makes quantum transport less efficient than the classical one. In addition, we find that the increasing of the symmetry of these networks decreases the efficiency of quantum t...
Hopf-algebra description of noncommutative-spacetime symmetries
2003-01-01
I give a brief summary of the results reported in hep-th 0306013 in collaboration with G. Amelino-Camelia and F. D'Andrea. I focus on the analysis of the symmetries of $\\kappa$-Minkowski noncommutative space-time, described in terms of a Weyl map. The commutative space-time notion of Lie-algebra symmetries must be replaced by the one of Hopf-algebra symmetries. However, in the Hopf algebra sense, it is possible to construct an action in $\\kappa$-Minkowski which is invariant under a 10-generat...
Test of Lorentz symmetry with trapped ions
Pruttivarasin, Thaned
2016-05-01
The outcome of an experiment should not depend on the orientation of the apparatus in space. This important cornerstone of physics is deeply engrained into the Standard Model of Physics by requiring that all fields must be Lorentz invariant. However, it is well-known that the Standard Model is incomplete. Some theories conjecture that at the Planck scale Lorentz symmetry might be broken and measurable at experimentally accessible energy scales. Therefore, a search for violation of Lorentz symmetry directly probes physics beyond the Standard model. We present a novel experiment utilizing trapped calcium ions as a direct probe of Lorentz-violation in the electron-photon sector. We monitor the energy between atomic states with different orientations of the electronic wave-functions as they rotate together with the motion of the Earth. This is analogous to the famous Michelson-Morley experiment. To remove magnetic field noise, we perform the experiment with the ions prepared in the decoherence-free states. Our result improves on the most stringent bounds on Lorentz symmetry for electrons by 100 times. The experimental scheme is readily applicable to many ion species, hence opening up paths toward much improved test of Lorentz symmetry in the future. (Ph. D. Advisor: Hartmut Haeffner, University of California, Berkeley).
Theory Overview of Testing Fundamental Symmetries
Mavromatos, Nick E
2013-01-01
I review first some theoretical motivations for violation of Lorentz and/or CPT Invariance. Although the latter symmetries may be violated in a quantum gravity setting, nevertheless there are situations in which these violations are due to a given classical background geometry that may characterised early epochs of our Universe, and in fact be responsible for the observed dominance of matter over antimatter in the Universe. In this way I estimate some of the coefficients of the Standard Model Extension (SME), which is a framework for a field theoretic study of such a breakdown of fundamental symmetries. Then I describe briefly some tests of these symmetries, giving emphasis in low-energy antiproton physics and electric dipole moment measurements, of interest to this conference. I also mention the r\\^ole of entangled states of neutral mesons in providing independent measurements of T(ime reversal) and CP Violation, thus providing independent tests of CPT symmetry, as well as novel ("smoking-gun" type) tests of...
On systems having Poincaré and Galileo symmetry
Energy Technology Data Exchange (ETDEWEB)
Holland, Peter, E-mail: peter.holland@gtc.ox.ac.uk
2014-12-15
Using the wave equation in d≥1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated with the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics.
Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System
Institute of Scientific and Technical Information of China (English)
FANGJian-Hui
2003-01-01
The Mei symmetry and the Lie symmetry of a rotational relativistic variable mass system are studied. The definitions and criteria of the Mei symmetry and the Lie symmetry of the rotational relativistic variable mass system are given. The relation between the Mei symmetry and the Lie symmetry is found. The conserved quantities which the Mei symmetry and the Lie symmetry lead to are obtained. An example is given to illustrate the application of the result.
Marostica passive solar dwelling, Marostica, Italy
Energy Technology Data Exchange (ETDEWEB)
Scudo, G. [DPPPE, Milano (Italy)
1999-07-01
This project consists of four separate buildings; three terraces comprising 24 dwellings in all, and one four-storey housing block containing 16 flats. The principal objective was to build low-cost housing in which innovative passive solar components could be incorporated at costs acceptable for public housing schemes (maximum 10% of the overall cost). An 'open-loop passive system', developed in Italy about 20 years ago by Barra-Costantini, was chosen. Warm air produced in the solar air panel circulates freely in the storage ceiling, into the rooms and back to the bottom of the air panel by gravity. The system supplies 30% of the net space-heating load. (author)
Acoustic quality and sound insulation between dwellings
DEFF Research Database (Denmark)
Rindel, Jens Holger
1999-01-01
to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the dif-ficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...
Acoustic quality and sound insulation between dwellings
DEFF Research Database (Denmark)
Rindel, Jens Holger
1998-01-01
to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...