WorldWideScience

Sample records for dwell time symmetry

  1. Modelling of Attentional Dwell Time

    DEFF Research Database (Denmark)

    Petersen, Anders; Kyllingsbæk, Søren; Bundesen, Claus

    2009-01-01

    . This confinement of attentional resources leads to the impairment in identifying the second target. With the model, we are able to produce close fits to data from the traditional two target dwell time paradigm. A dwell-time experiment with three targets has also been carried out for individual subjects...... and the model has been extended to fit these data....

  2. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  3. Hold it! memory affects attentional dwell time

    OpenAIRE

    Parks, Emily L.; Hopfinger, Joseph B.

    2008-01-01

    The allocation of attention, including the initial orienting and the subsequent dwell time, is affected by several bottom-up and top-down factors. How item memory affects these processes, however, remains unclear. Here, we investigated whether item memory affects attentional dwell time by using a modified version of the attentional blink (AB) paradigm. Across four experiments, our results revealed that the AB was significantly affected by memory status (novel vs. old), but critically, this ef...

  4. The Broken Symmetry of Time

    International Nuclear Information System (INIS)

    Kastner, Ruth E.

    2011-01-01

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  5. The Broken Symmetry of Time

    Science.gov (United States)

    Kastner, Ruth E.

    2011-11-01

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  6. Yet one more dwell time algorithm

    Science.gov (United States)

    Haberl, Alexander; Rascher, Rolf

    2017-06-01

    The current demand of even more powerful and efficient microprocessors, for e.g. deep learning, has led to an ongoing trend of reducing the feature size of the integrated circuits. These processors are patterned with EUV-lithography which enables 7 nm chips [1]. To produce mirrors which satisfy the needed requirements is a challenging task. Not only increasing requirements on the imaging properties, but also new lens shapes, such as aspheres or lenses with free-form surfaces, require innovative production processes. However, these lenses need new deterministic sub-aperture polishing methods that have been established in the past few years. These polishing methods are characterized, by an empirically determined TIF and local stock removal. Such a deterministic polishing method is ion-beam-figuring (IBF). The beam profile of an ion beam is adjusted to a nearly ideal Gaussian shape by various parameters. With the known removal function, a dwell time profile can be generated for each measured error profile. Such a profile is always generated pixel-accurately to the predetermined error profile, with the aim always of minimizing the existing surface structures up to the cut-off frequency of the tool used [2]. The processing success of a correction-polishing run depends decisively on the accuracy of the previously computed dwell-time profile. So the used algorithm to calculate the dwell time has to accurately reflect the reality. But furthermore the machine operator should have no influence on the dwell-time calculation. Conclusively there mustn't be any parameters which have an influence on the calculation result. And lastly it should take a minimum of machining time to get a minimum of remaining error structures. Unfortunately current dwell time algorithm calculations are divergent, user-dependent, tending to create high processing times and need several parameters to bet set. This paper describes an, realistic, convergent and user independent dwell time algorithm. The

  7. Symmetries in discrete-time mechanics

    International Nuclear Information System (INIS)

    Khorrami, M.

    1996-01-01

    Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc

  8. Space-time and Local Gauge Symmetries

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Train Dwell Time Models for Rail Passenger Service

    Directory of Open Access Journals (Sweden)

    San Hor Peay

    2016-01-01

    Full Text Available In recent years, more studies had been conducted about train dwell time as it is a key parameter of rail system performance and reliability. This paper draws an overview of train dwell time models for rail passenger service from various continents, namely Asia, North America, Europe and Australia. The factors affecting train dwell time are identified and analysed across some rail network operators. The dwell time models developed by various researches are also discussed and reviewed. Finally, the contributions from the outcomes of these models are briefly addressed. In conclusion, this paper suggests that there is a need to further study the factors with strong influence upon dwell time to improve the quality of the train services.

  10. The master symmetry and time dependent symmetries of the differential–difference KP equation

    International Nuclear Information System (INIS)

    Khanizadeh, Farbod

    2014-01-01

    We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)

  11. Coupled oscillators with parity-time symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Tsoy, Eduard N., E-mail: etsoy@uzsci.net

    2017-02-05

    Different models of coupled oscillators with parity-time (PT) symmetry are studied. Hamiltonian functions for two and three linear oscillators coupled via coordinates and accelerations are derived. Regions of stable dynamics for two coupled oscillators are obtained. It is found that in some cases, an increase of the gain-loss parameter can stabilize the system. A family of Hamiltonians for two coupled nonlinear oscillators with PT-symmetry is obtained. An extension to high-dimensional PT-symmetric systems is discussed. - Highlights: • A generalization of a Hamiltonian system of linear coupled oscillators with the parity-time (PT) symmetry is suggested. • It is found that an increase of the gain-loss parameter can stabilize the system. • A family of Hamiltonian functions for two coupled nonlinear oscillators with PT-symmetry is obtained.

  12. The effect of masking in the attentional dwell time paradigm

    DEFF Research Database (Denmark)

    Petersen, Anders

    2009-01-01

    , 1994). In most studies of attentional dwell time, two masked targets have been used. Moore et al. (1996) have criticised the masking of the first target when measuring the attentional dwell time, finding a shorter attentional dwell time when the first mask was omitted. In the presented work, the effect...... of the first mask is further investigated by including a condition where the first mask is presented without a target. The results from individual subjects show that the findings of Moore et al. can be replicated. The results also suggest that presenting the first mask without a target is enough to produce...... an impairment of the second target. Hence, the attentional dwell time may be a combined effect arising from attending to both the first target and its mask....

  13. Is space-time symmetry a suitable generalization of parity-time symmetry?

    International Nuclear Information System (INIS)

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier

    2014-01-01

    We discuss space-time symmetric Hamiltonian operators of the form H=H 0 +igH ′ , where H 0 is Hermitian and g real. H 0 is invariant under the unitary operations of a point group G while H ′ is invariant under transformation by elements of a subgroup G ′ of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 0symmetry and perturbation theory enable one to predict whether H may exhibit real or complex eigenvalues for g>0. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries. - Highlights: • Space-time symmetry is a generalization of PT symmetry. • The eigenvalues of a space-time Hamiltonian are either real or appear as pairs of complex conjugate numbers. • In some cases all the eigenvalues are real for some values of a potential-strength parameter g. • At some value of g space-time symmetry is broken and complex eigenvalues appear. • Some multidimensional oscillators exhibit broken space-time symmetry for all values of g

  14. Spin-dependent dwell time through ferromagnetic graphene barrier

    International Nuclear Information System (INIS)

    Sattari, F.

    2014-01-01

    We investigated the dwell time of electrons tunneling through a ferromagnetic (FM) graphene barrier. The results show that the spin polarization can be efficiently controlled by the barrier width, barrier height, and the incident electron energy. Furthermore, it is found that electrons with different spin orientations will spend different times through the barrier. The difference of the dwell time between spin-up and spin-down electrons arises from the exchange splitting, which is induced by the FM strip. Study results indicate that a ferromagnetic graphene barrier can cause a nature spin filter mechanism in the time domain

  15. Dwell time adjustment for focused ion beam machining

    International Nuclear Information System (INIS)

    Taniguchi, Jun; Satake, Shin-ichi; Oosumi, Takaki; Fukushige, Akihisa; Kogo, Yasuo

    2013-01-01

    Focused ion beam (FIB) machining is potentially useful for micro/nano fabrication of hard brittle materials, because the removal method involves physical sputtering. Usually, micro/nano scale patterning of hard brittle materials is very difficult to achieve by mechanical polishing or dry etching. Furthermore, in most reported examples, FIB machining has been applied to silicon substrates in a limited range of shapes. Therefore, a versatile method for FIB machining is required. We previously established the dwell time adjustment for mechanical polishing. The dwell time adjustment is calculated by using a convolution model derived from Preston’s hypothesis. More specifically, the target removal shape is a convolution of the unit removal shape, and the dwell time is calculated by means of one of four algorithms. We investigate these algorithms for dwell time adjustment in FIB machining, and we found that a combination a fast Fourier transform calculation technique and a constraint-type calculation is suitable. By applying this algorithm, we succeeded in machining a spherical lens shape with a diameter of 2.93 μm and a depth of 203 nm in a glassy carbon substrate by means of FIB with dwell time adjustment

  16. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  17. Recurrence and symmetry of time series: Application to transition detection

    International Nuclear Information System (INIS)

    Girault, Jean-Marc

    2015-01-01

    Highlights: •A new theoretical framework based on the symmetry concept is proposed. •Four types of symmetry present in any time series were analyzed. •New descriptors make possible the analysis of regime changes in logistic systems. •Chaos–chaos, chaos–periodic, symmetry-breaking, symmetry-increasing bifurcations can be detected. -- Abstract: The study of transitions in low dimensional, nonlinear dynamical systems is a complex problem for which there is not yet a simple, global numerical method able to detect chaos–chaos, chaos–periodic bifurcations and symmetry-breaking, symmetry-increasing bifurcations. We present here for the first time a general framework focusing on the symmetry concept of time series that at the same time reveals new kinds of recurrence. We propose several numerical tools based on the symmetry concept allowing both the qualification and quantification of different kinds of possible symmetry. By using several examples based on periodic symmetrical time series and on logistic and cubic maps, we show that it is possible with simple numerical tools to detect a large number of bifurcations of chaos–chaos, chaos–periodic, broken symmetry and increased symmetry types

  18. Dwell time considerations for large area cold plasma decontamination

    Science.gov (United States)

    Konesky, Gregory

    2009-05-01

    Atmospheric discharge cold plasmas have been shown to be effective in the reduction of pathogenic bacteria and spores and in the decontamination of simulated chemical warfare agents, without the generation of toxic or harmful by-products. Cold plasmas may also be useful in assisting cleanup of radiological "dirty bombs." For practical applications in realistic scenarios, the plasma applicator must have both a large area of coverage, and a reasonably short dwell time. However, the literature contains a wide range of reported dwell times, from a few seconds to several minutes, needed to achieve a given level of reduction. This is largely due to different experimental conditions, and especially, different methods of generating the decontaminating plasma. We consider these different approaches and attempt to draw equivalencies among them, and use this to develop requirements for a practical, field-deployable plasma decontamination system. A plasma applicator with 12 square inches area and integral high voltage, high frequency generator is described.

  19. Path integration on space times with symmetry

    International Nuclear Information System (INIS)

    Low, S.G.

    1985-01-01

    Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform

  20. Time symmetry and the Einstein paradox

    International Nuclear Information System (INIS)

    Costa de Beauregard, O.

    1977-01-01

    The characteristic difference between the paleoquantal calculation (addition of partial probabilities) and the neoquantal one (addition of partial amplitudes) for the correlation of photon polarizations in cascade transitions is derived in terms of elementary trigonometry. This deliberate use of simple formulae aims at a transparent rendering of the change in paradigm required by the so-called EPR paradox (which is truly the 1927 Einstein paradox), namely that 1) the two photons do not possess polarizations of their own when leaving the source C, but borrow one later, when interacting with the analysers L and N; 2) the die is thus not cast at C, but later, at L and N; 3) the correlation between the measurements at L and N is tied through C, in their common past. The tight connection between this ''Einstein nonseparability'' and the nonlocality in Feynman's ''theory of positrons'' is demonstrated through an analysis of the e + e - annihilation into two photons. Thus the Einstein paradox corresponds, in the ''new wavelike probability calculus'', to the Loschmid and Zermelo sort of paradox in the old probability calculus. That is, it contrasts the intrinsic time symmetry existing at the elementary level to the factlike macroscopic time asymmetry. The discussion deliberately by-passes the hidden-variable problem, the model in this being Einstein's by-passing of the mechanical aether when proposing special relativity. It is believed today, like in 1905, the problem is tayloring the wording after the (operationally good) mathematics. Moreover, that the change in paradigm, which is needed, comes through a victory of formalism over modelism. (author)

  1. Noether symmetries and integrability in time-dependent Hamiltonian mechanics

    Directory of Open Access Journals (Sweden)

    Jovanović Božidar

    2016-01-01

    Full Text Available We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.

  2. The effect of tubing dwell time on insulin adsorption during intravenous insulin infusions.

    Science.gov (United States)

    Thompson, Cecilia D; Vital-Carona, Jessica; Faustino, E Vincent S

    2012-10-01

    Insulin adsorbs to plastic tubing, which decreases the concentration of an insulin solution delivered from an intravenous infusion set. Dwelling insulin within tubing before starting the infusion decreases adsorption but delays treatment initiation and wastes time in infusion preparation. The lack of data on dwell time effects results in wide variability in practice. We aim to determine the effect of dwell time on insulin concentration from intravenous infusion tubing. In this in vitro study, we used insulin solutions with concentrations of 0.1 unit/mL, 1 unit/mL, and 10 units/mL. Each solution dwelled in intravenous infusion sets for 0, 15, 30, or 60 min. After the dwell, we measured insulin concentrations from the solution bags and tubing. We repeated each insulin concentration-dwell time combination five times. Comparisons were performed using analyses of variance. For each of the three insulin concentrations, the mean insulin concentrations from the tubing were not significantly different between dwell times. Duration of dwell time did not affect insulin adsorption in polypropylene intravenous infusion sets. We recommend that following a 20-mL flush, insulin infusions can be started without any dwell time. Removal of dwell times may improve clinical practice by minimizing preparation time and will allow faster initiation of insulin infusion therapy.

  3. A phantom for verification of dwell position and time of a high dose rate brachytherapy source

    International Nuclear Information System (INIS)

    Madebo, M.; Kron, T.; Pillainayagam, J.; Franich, R.

    2012-01-01

    Accuracy of dwell position and reproducibility of dwell time are critical in high dose rate (HDR) brachytherapy. A phantom was designed to verify dwell position and dwell time reproducibility for an Ir-192 HDR stepping source using Computed Radiography (CR). The central part of the phantom, incorporating thin alternating strips of lead and acrylic, was used to measure dwell positions. The outer part of the phantom features recesses containing different absorber materials (lead, aluminium, acrylic and polystyrene foam), and was used for determining reproducibility of dwell times. Dwell position errors of <1 mm were easily detectable using the phantom. The effect of bending a transfer tube was studied with this phantom and no change of clinical significance was observed when varying the curvature of the transfer tube in typical clinical scenarios. Changes of dwell time as low as 0.1 s, the minimum dwell time of the treatment unit, could be detected by choosing dwell times over the four materials that produce identical exposure at the CR detector.

  4. Time symmetry and interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    de Beauregard, O.C.

    1976-01-01

    A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being ''factlike'' rather than ''lawlike'' (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric acceptance of cognizance as a source of retarded waves, and of will as a sink of advanced waves, is submitted as a central ''paradox'' of the Copernican or Einsteinian sort, out of which new light is shed upon previously known paradoxes, such as the EPR paradox, Schroedinger's cat, and Wigner's friend. Parapsychology is thus found to creep into the picture

  5. Estimation of train dwell time at short stops based on track occupation event data

    NARCIS (Netherlands)

    Li, D.; Daamen, W.; Goverde, R.M.P.

    2015-01-01

    Train dwell time is one of the most unpredictable components of railway operations mainly due to the varying volumes of alighting and boarding passengers. For reliable estimations of train running times and route conflicts on main lines it is however necessary to obtain accurate estimations of dwell

  6. Dwell time-based stabilisation of switched delay systems using free-weighting matrices

    Science.gov (United States)

    Koru, Ahmet Taha; Delibaşı, Akın; Özbay, Hitay

    2018-01-01

    In this paper, we present a quasi-convex optimisation method to minimise an upper bound of the dwell time for stability of switched delay systems. Piecewise Lyapunov-Krasovskii functionals are introduced and the upper bound for the derivative of Lyapunov functionals is estimated by free-weighting matrices method to investigate non-switching stability of each candidate subsystems. Then, a sufficient condition for the dwell time is derived to guarantee the asymptotic stability of the switched delay system. Once these conditions are represented by a set of linear matrix inequalities , dwell time optimisation problem can be formulated as a standard quasi-convex optimisation problem. Numerical examples are given to illustrate the improvements over previously obtained dwell time bounds. Using the results obtained in the stability case, we present a nonlinear minimisation algorithm to synthesise the dwell time minimiser controllers. The algorithm solves the problem with successive linearisation of nonlinear conditions.

  7. Charge conjugation and internal space time symmetries

    International Nuclear Information System (INIS)

    Pavsic, M.; Recami, E.

    1982-01-01

    The relativistic framework in which fundamental particles are regarded as extended objects is adopted. Then it is shown than the geometrical operation which reflects the internal space time particle is equivalent to the operation C which inverts the sign of all its additive charges

  8. Non-Hermitian photonics based on parity-time symmetry

    Science.gov (United States)

    Feng, Liang; El-Ganainy, Ramy; Ge, Li

    2017-12-01

    Nearly one century after the birth of quantum mechanics, parity-time symmetry is revolutionizing and extending quantum theories to include a unique family of non-Hermitian Hamiltonians. While conceptually striking, experimental demonstration of parity-time symmetry remains unexplored in quantum electronic systems. The flexibility of photonics allows for creating and superposing non-Hermitian eigenstates with ease using optical gain and loss, which makes it an ideal platform to explore various non-Hermitian quantum symmetry paradigms for novel device functionalities. Such explorations that employ classical photonic platforms not only deepen our understanding of fundamental quantum physics but also facilitate technological breakthroughs for photonic applications. Research into non-Hermitian photonics therefore advances and benefits both fields simultaneously.

  9. Using Variable Dwell Time to Accelerate Gaze-based Web Browsing with Two-step Selection

    OpenAIRE

    Chen, Zhaokang; Shi, Bertram E.

    2017-01-01

    In order to avoid the "Midas Touch" problem, gaze-based interfaces for selection often introduce a dwell time: a fixed amount of time the user must fixate upon an object before it is selected. Past interfaces have used a uniform dwell time across all objects. Here, we propose an algorithm for adjusting the dwell times of different objects based on the inferred probability that the user intends to select them. In particular, we introduce a probabilistic model of natural gaze behavior while sur...

  10. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    International Nuclear Information System (INIS)

    Balvert, Marleen; Gorissen, Bram L; Den Hertog, Dick; Hoffmann, Aswin L

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D 90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2–5 cc. However, this comes at a cost of a reduction in D 90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D 90% against uncertainty in dwell positions for both models. (paper)

  11. Time-reversal symmetry breaking in quantum billiards

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Florian

    2009-01-26

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  12. Time-reversal symmetry breaking in quantum billiards

    International Nuclear Information System (INIS)

    Schaefer, Florian

    2009-01-01

    The present doctoral thesis describes experimentally measured properties of the resonance spectra of flat microwave billiards with partially broken timereversal invariance induced by an embedded magnetized ferrite. A vector network analyzer determines the complex scattering matrix elements. The data is interpreted in terms of the scattering formalism developed in nuclear physics. At low excitation frequencies the scattering matrix displays isolated resonances. At these the effect of the ferrite on isolated resonances (singlets) and pairs of nearly degenerate resonances (doublets) is investigated. The hallmark of time-reversal symmetry breaking is the violation of reciprocity, i.e. of the symmetry of the scattering matrix. One finds that reciprocity holds in singlets; it is violated in doublets. This is modeled by an effective Hamiltonian of the resonator. A comparison of the model to the data yields time-reversal symmetry breaking matrix elements in the order of the level spacing. Their dependence on the magnetization of the ferrite is understood in terms of its magnetic properties. At higher excitation frequencies the resonances overlap and the scattering matrix elements fluctuate irregularly (Ericson fluctuations). They are analyzed in terms of correlation functions. The data are compared to three models based on random matrix theory. The model by Verbaarschot, Weidenmueller and Zirnbauer describes time-reversal invariant scattering processes. The one by Fyodorov, Savin and Sommers achieves the same for systems with complete time-reversal symmetry breaking. An extended model has been developed that accounts for partial breaking of time-reversal invariance. This extended model is in general agreement with the data, while the applicability of the other two models is limited. The cross-correlation function between forward and backward reactions determines the time-reversal symmetry breaking matrix elements of the Hamiltonian to up to 0.3 mean level spacings. Finally

  13. Spontaneous symmetry breaking in curved space-time

    International Nuclear Information System (INIS)

    Toms, D.J.

    1982-01-01

    An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)

  14. QCD-instantons and conformal space-time inversion symmetry

    International Nuclear Information System (INIS)

    Klammer, D.

    2008-04-01

    In this paper, we explore the appealing possibility that the strong suppression of large-size QCD instantons - as evident from lattice data - is due to a surviving conformal space-time inversion symmetry. This symmetry is both suggested from the striking invariance of highquality lattice data for the instanton size distribution under inversion of the instanton size ρ→(left angle ρ right angle 2 )/(ρ) and from the known validity of space-time inversion symmetry in the classical instanton sector. We project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via conformal stereographic mapping, before investigating conformal inversion. This projection to a compact, curved geometry is both to avoid the occurence of divergences and to introduce the average instanton size left angle ρ right angle from the lattice data as a new length scale. The average instanton size is identified with the radius b of this 5d-sphere and acts as the conformal inversion radius. For b= left angle ρ right angle, our corresponding results are almost perfectly symmetric under space-time inversion and in good qualitative agreement with the lattice data. For (ρ)/(b)→0 we recover the familiar results of instanton perturbation theory in flat 4d-space. Moreover, we illustrate that a (weakly broken) conformal inversion symmetry would have significant consequences for QCD beyond instantons. As a further successful test for inversion symmetry, we present striking implications for another instanton dominated lattice observable, the chirality-flip ratio in the QCD vacuum. (orig.)

  15. A Fuzzy Logic-Based Approach for Estimation of Dwelling Times of Panama Metro Stations

    Directory of Open Access Journals (Sweden)

    Aranzazu Berbey Alvarez

    2015-04-01

    Full Text Available Passenger flow modeling and station dwelling time estimation are significant elements for railway mass transit planning, but system operators usually have limited information to model the passenger flow. In this paper, an artificial-intelligence technique known as fuzzy logic is applied for the estimation of the elements of the origin-destination matrix and the dwelling time of stations in a railway transport system. The fuzzy inference engine used in the algorithm is based in the principle of maximum entropy. The approach considers passengers’ preferences to assign a level of congestion in each car of the train in function of the properties of the station platforms. This approach is implemented to estimate the passenger flow and dwelling times of the recently opened Line 1 of the Panama Metro. The dwelling times obtained from the simulation are compared to real measurements to validate the approach.

  16. Dwell time dependent morphological transition and sputtering yield of ion sputtered Sn

    International Nuclear Information System (INIS)

    Qian, H X; Zeng, X R; Zhou, W

    2010-01-01

    Self-organized nano-scale patterns may appear on a wide variety of materials irradiated with an ion beam. Good manipulation of these structures is important for application in nanostructure fabrication. In this paper, dwell time has been demonstrated to be able to control the ripple formation and sputtering yield on Sn surface. Ripples with a wavelength of 1.7 μm were observed for a dwell time in the range 3-20 μs, whereas much finer ripples with a wavelength of 540 nm and a different orientation were observed for a shorter dwell time in the range 0.1-2 μs. The sputtering yield increases with dwell time significantly. The results provide a new basis for further steps in the theoretical description of morphology evolution during ion beam sputtering.

  17. Influences of dwell time and cursor control on the performance in gaze driven typing

    OpenAIRE

    Helmert, Jens R.; Pannasch, Sebastian; Velichkovsky, Boris M.

    2008-01-01

    In gaze controlled computer interfaces the dwell time is often used as selection criterion. But this solution comes along with several problems, especially in the temporal domain: Eye movement studies on scene perception could demonstrate that fixations of different durations serve different purposes and should therefore be differentiated. The use of dwell time for selection implies the need to distinguish intentional selections from merely per-ceptual processes, described as the Midas touch ...

  18. Impact of Interlayer Dwell Time on Microstructure and Mechanical Properties of Nickel and Titanium Alloys

    Science.gov (United States)

    Foster, B. K.; Beese, A. M.; Keist, J. S.; McHale, E. T.; Palmer, T. A.

    2017-09-01

    Path planning in additive manufacturing (AM) processes has an impact on the thermal histories experienced at discrete locations in simple and complex AM structures. One component of path planning in directed energy deposition is the time required for the laser or heat source to return to a given location to add another layer of material. As structures become larger and more complex, the length of this interlayer dwell time can significantly impact the resulting thermal histories. The impact of varying dwell times between 0 and 40 seconds on the microstructural and mechanical properties of Inconel® 625 and Ti-6Al-4V builds has been characterized. Even though these materials display different microstructures and solid-state phase transformations, the addition of an interlayer dwell generally led to a finer microstructure in both materials that impacted the resulting mechanical properties. With the addition of interlayer dwell times up to 40 seconds in the Inconel® 625 builds, finer secondary dendrite arm spacing values, produced by changes in the thermal history, correspond to increased yield and tensile strengths. These mechanical properties did not appear to change significantly, however, for dwell times greater than 20 seconds in the Inconel® 625 builds, indicating that longer dwell times have a minimal impact. The addition of interlayer dwell times in Ti-6Al-4V builds resulted in a slight decrease in the measured alpha lath widths and a much more noticeable decrease in the width of prior beta grains. In addition, the yield and tensile values continued to increase, nearly reaching the values observed in the rolled plate substrate material with dwell times up to 40 seconds.

  19. On 'Common time' in the four-dimensional symmetry framework

    International Nuclear Information System (INIS)

    Gulati, Shobha

    1980-01-01

    Recently Hsu has advanced a 'Four-Dimensional Symmetry Theory' with a 'Common time' for all inertial frames. He believes that such a 'Common time' is physically possible. However, as a consequence of 'Common time', Hsu asserts that the speed of light in some inertial frames is not necessarily invariant and isotropic - a result, quite contrary to Einstein's Principle of the constancy of the velocity of light. In the present paper, taking Hsu's 'Common time' at its face value, the author has demonstrated that his formulation itself leads to physically absurd results. A 'Common time' for all inertial frames is just not possible. (author)

  20. Time symmetry and asymmetry in quantum mechanics and quantum cosmology

    International Nuclear Information System (INIS)

    Gell-Mann, M.; Hartle, J.B.

    1992-01-01

    The disparity between the time symmetry of the fundamental laws of physics and the time asymmetries of the observed universe has been a subject of fascination for physicists since the late 19th century. It was also for Sakharov, if the authors judge correctly from his writings the following general time asymmetries are observed in this universe: The thermodynamic arrow of time --- the fact that approximately isolated systems are now almost all evolving towards equilibrium in the same direction of time. The psychological arrow of time --- we remember the past, we predict the future. The arrow of time of retarded electromagnetic radiation. The arrow of time supplied by the CP non-invariance of the weak interactions and the CPT invariance of field theory. The arrow of time of the approximately uniform expansion of the universe. The arrow of time supplied by the growth of inhomogeneity in the expanding universe

  1. Common time in a four-dimensional symmetry framework

    International Nuclear Information System (INIS)

    Hsu, J.P.; Sherry, T.N.

    1980-01-01

    Following the ideas of Poincare, Reichenbach, and Grunbaum concerning the convention of setting up clock systems, we analyze clock systems and light propagation within the framework of four-dimensional symmetry. It is possible to construct a new four-dimensional symmetry framework incorporating common time: observers in different inertial frames of reference use one and the same clock system, which is located in any one of the frames. Consequently, simultaneity has a meaning independent of position and independent of frame of reference. A further consequence is that the two-way speeds of light alone are isotropic in any frame. By the choice of clock system there will be one frame in which the one-way speed of light is isotropic. This frame can be arbitrarily chosen. The difference between one-way speeds an two-way speeds of light signals is considered in detail

  2. Time reversal symmetry violation in the YbF molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, B. E., E-mail: ben.sauer@imperial.ac.uk; Devlin, J. A.; Hudson, J. J.; Kara, D. M.; Smallman, I. J.; Tarbutt, M. R.; Hinds, E. A. [Blackett Laboratory Imperial College London, Centre for Cold Matter (United Kingdom)

    2013-03-15

    We present a summary of the techniques used to test time reversal symmetry by measuring the permanent electric dipole moment of the YbF molecule. The results of a recent measurement (Hudson et al., Nature 473:493, 2011) are reported. We review some systematic effects which might mimic time reversal violation and describe how they are overcome. We then discuss improvements to the sensitivity of the apparatus, including both short term technical enhancements as well as a longer term goal to use laser cooled YbF in the experiment.

  3. Association of unipedal standing time and bone mineral density in community-dwelling Japanese women.

    Science.gov (United States)

    Sakai, A; Toba, N; Takeda, M; Suzuki, M; Abe, Y; Aoyagi, K; Nakamura, T

    2009-05-01

    Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.

  4. Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well

    CERN Document Server

    Li, Z J; Liang, J J; Liang, J Q

    2003-01-01

    The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.

  5. General relation between the group delay and dwell time in multicomponent electron systems

    Science.gov (United States)

    Zhai, Feng; Lu, Junqiang

    2016-10-01

    For multicomponent electron scattering states, we derive a general relation between the Wigner group delay and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the spinor wave functions of propagating modes. The difference between the group delay and dwell time comes from both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface of topological insulators, our calculations including the trigonal-warping term show that the decaying modes can contribute greatly to the group delay. The derived relation between the group delay and the dwell time is helpful to unify the two definitions of tunneling time in a quite general situation.

  6. Single-mode Laser by Parity-time Symmetry Breaking

    Science.gov (United States)

    2014-11-21

    solenoid -like Pds5B that reside in direct proximity to Wapl and the Smc3-Scc1 in- teraction interface (fig. S13), implying that Wapl and Pds5 control the...accepted 26 September 2014 10.1126/science.1256904 REPORTS ◥ OPTICS Single-mode laser by parity-time symmetry breaking Liang Feng,1* Zi Jing Wong,1...Ren-Min Ma,1* Yuan Wang,1,2 Xiang Zhang1,2† Effective manipulation of cavity resonant modes is crucial for emission control in laser physics and

  7. Neutral meson tests of time-reversal symmetry invariance

    OpenAIRE

    Bevan, Adrian; Inguglia, Gianluca; Zoccali, Michele

    2013-01-01

    The laws of quantum physics can be studied under the mathematical operation T that inverts the direction of time. Strong and electromagnetic forces are known to be invariant under temporal inversion, however the weak force is not. The BaBar experiment recently exploited the quantum-correlated production of pairs of B0 mesons to show that T is a broken symmetry. Here we show that it is possible to perform a wide range of tests of quark flavour changing processes under T in order to validate th...

  8. An ELM-Based Approach for Estimating Train Dwell Time in Urban Rail Traffic

    Directory of Open Access Journals (Sweden)

    Wen-jun Chu

    2015-01-01

    Full Text Available Dwell time estimation plays an important role in the operation of urban rail system. On this specific problem, a range of models based on either polynomial regression or microsimulation have been proposed. However, the generalization performance of polynomial regression models is limited and the accuracy of existing microsimulation models is unstable. In this paper, a new dwell time estimation model based on extreme learning machine (ELM is proposed. The underlying factors that may affect urban rail dwell time are analyzed first. Then, the relationships among different factors are extracted and modeled by ELM neural networks, on basis of which an overall estimation model is proposed. At last, a set of observed data from Beijing subway is used to illustrate the proposed method and verify its overall performance.

  9. Spontaneous breaking of time-reversal symmetry in topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, Igor N., E-mail: karnaui@yahoo.com

    2017-06-21

    Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.

  10. Explaining Student Behavior at Scale : The Influence of Video Complexity on Student Dwelling Time

    NARCIS (Netherlands)

    Sluis, van der F.; Ginn, J.H.; Zee, van der T.; Haywood, J.; Aleven, V.; Kay, J.; Roll, I.

    2016-01-01

    Understanding why and how students interact with educational videos is essential to further improve the quality of MOOCs. In this paper, we look at the complexity of videos to explain two related aspects of student behavior: the dwelling time (how much time students spend watching a video) and the

  11. Characterizing multiple solutions to the time-energy canonical commutation relation via internal symmetries

    International Nuclear Information System (INIS)

    Caballar, Roland Cristopher F.; Ocampo, Leonard R.; Galapon, Eric A.

    2010-01-01

    Internal symmetries can be used to classify multiple solutions to the time-energy canonical commutation relation (TE-CCR). The dynamical behavior of solutions to the TE-CCR possessing particular internal symmetries involving time reversal differ significantly from solutions to the TE-CCR without those particular symmetries, implying a connection between the internal symmetries of a quantum system, its internal unitary dynamics, and the TE-CCR.

  12. Use of dwell time concept in fission product inventory assessment for CANDU reactors

    International Nuclear Information System (INIS)

    Bae, C.J.; Choi, J.H.; Hwang, H.R.; Seo, J.T.

    2003-01-01

    A realistic approach in calculating the initial fission product inventory within the CANFLEX-NU fuel has been assessed for its applicability to the single channel event safety analysis for CANDU reactors. This approach is based on the dwell time concept in which the accident is assumed to occur at the dwell time when the summation of fission product inventory for all isotopes becomes largest. However, in the current conservative analysis, the maximum total inventory and the corresponding gap inventory for each isotope are used as the initial fission product inventories regardless of the accident initiation time. The fission product inventory analysis has been performed using ELESTRES code considering power histories and burnup of the fuel bundles in the limiting channel. The analysis results showed that the total fission product inventory is found to be largest at 20% dwell time. Therefore, the fission product inventory at 20% dwell time can be used as the initial condition for the single channel event for the CANDU 6 reactors. (author)

  13. Non-uniform dwell times in line source high dose rate brachytherapy: physical and radiobiological considerations

    International Nuclear Information System (INIS)

    Jones, B.; Tan, L.T.; Freestone, G.; Bleasdale, C.; Myint, S.; Littler, J.

    1994-01-01

    The ability to vary source dwell times in high dose rate (HDR) brachytherapy allows for the use of non-uniform dwell times along a line source. This may have advantages in the radical treatment of tumours depending on individual tumour geometry. This study investigates the potential improvements in local tumour control relative to adjacent normal tissue isoeffects when intratumour source dwell times are increased along the central portion of a line source (technique A) in radiotherapy schedules which include a relatively small component of HDR brachytherapy. Such a technique is predicted to increase the local control for tumours of diameters ranging between 2 cm and 4 cm by up to 11% compared with a technique in which there are uniform dwell times along the line source (technique B). There is no difference in the local control rates for the two techniques when used to treat smaller tumours. Normal tissue doses are also modified by the technique used. Technique A produces higher normal tissue doses at points perpendicular to the centre of the line source and lower dose at points nearer the ends of the line source if the prescription point is not in the central plane of the line source. Alternatively, if the dose is prescribed at a point in the central plane of the line source, the dose at all the normal tissue points are lower when technique A is used. (author)

  14. Influence of overloads on dwell time fatigue crack growth in Inconel 718

    Energy Technology Data Exchange (ETDEWEB)

    Saarimäki, Jonas, E-mail: jonas.saarimaki@liu.se [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Moverare, Johan [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden); Siemens Industrial Turbomachinery AB, Materials Technology, SE-61283 Finspång (Sweden); Eriksson, Robert; Johansson, Sten [Division of Engineering Materials, Department of Management and Engineering, Linköping University, SE-58183 Linköping (Sweden)

    2014-08-26

    Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate.

  15. Influence of overloads on dwell time fatigue crack growth in Inconel 718

    International Nuclear Information System (INIS)

    Saarimäki, Jonas; Moverare, Johan; Eriksson, Robert; Johansson, Sten

    2014-01-01

    Inconel 718 is one of the most commonly used superalloys for high temperature applications in gasturbines and aeroengines and is for example used for components such as turbine discs. Turbine discs can be subjected to temperatures up to ∼700 °C towards the outer radius of the disc. During service, the discs might start to develop cracks due to fatigue and long dwell times. Additionally, temperature variations during use can lead to large thermal transients during start-up and shutdown which can lead to overload peaks in the normal dwell time cycle. In this study, tests at 550 °C with an overload prior to the start of each dwell time, have been performed. The aim of the investigation was to get a better understanding of the effects of overloads on the microstructure and crack mechanisms. The microstructure was studied using electron channelling contrast imaging (ECCI). The image analysis toolbox in Matlab was used on cross sections of the cracks to quantify: crack length, branch length, and the number of branches in each crack. It was found that the amount of crack branching increases with an increasing overload and that the branch length decreases with an increasing overload. When the higher overloads were applied, the dwell time effect was almost cancelled out. There is a strong tendency for an increased roughness of the crack path with an increasing crack growth rate

  16. Spontaneous Time Symmetry Breaking in System with Mixed Strategy Nash Equilibrium: Evidences in Experimental Economics Data

    Science.gov (United States)

    Wang, Zhijian; Xu, Bin; Zhejiang Collaboration

    2011-03-01

    In social science, laboratory experiment with human subjects' interaction is a standard test-bed for studying social processes in micro level. Usually, as in physics, the processes near equilibrium are suggested as stochastic processes with time-reversal symmetry (TRS). To the best of our knowledge, near equilibrium, the breaking time symmetry, as well as the existence of robust time anti-symmetry processes, has not been reported clearly in experimental economics till now. By employing Markov transition method to analysis the data from human subject 2x2 Games with wide parameters and mixed Nash equilibrium, we study the time symmetry of the social interaction process near Nash equilibrium. We find that, the time symmetry is broken, and there exists a robust time anti-symmetry processes. We also report the weight of the time anti-symmetry processes in the total processes of each the games. Evidences in laboratory marketing experiments, at the same time, are provided as one-dimension cases. In these cases, time anti-symmetry cycles can also be captured. The proposition of time anti-symmetry processes is small, but the cycles are distinguishable.

  17. The Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times

    DEFF Research Database (Denmark)

    Fonseca, Joao Filipe Paiva; Larsen, Allan; van der Hurk, Evelien

    In this talk, we deal with a generalization of the well-known Vehicle Scheduling Problem(VSP) that we call Simultaneous Vehicle Scheduling and Passenger Service Problem with Flexible Dwell Times (SVSPSP-FDT). The SVSPSP-FDT generalizes the VSP because the original timetables of the trips can...... be changed (i.e., shifted and stretched) in order to minimize a new objective function that aims at minimizing the operational costs plus the waiting times of the passengers at transfer points. Contrary to most generalizations of the VSP, the SVSPSP-FDT establishes the possibility of changing trips' dwell...... times at important transfer points based on expected passenger ows. We introduce a compact mixed integer linear formulation of the SVSPSP-FDT able to address small instances. We also present a meta-heuristic approach to solve medium/large instances of the problem. The e ectiveness of the proposed...

  18. Laser oriented 36K for time reversal symmetry measurements

    International Nuclear Information System (INIS)

    Young, A.R.; Anderson, W.S.; Calaprice, F.P.; Cates, G.D.; Jones, G.L.; Krieger, D.A.; Vogelaar, R.B.

    1995-01-01

    We have produced very large nuclear alignments in radioactive 36 K (half-life 0.34 sec) through laser optical pumping techniques. The 36 K was created through (p,n) reactions using a 50 nA, 22 MeV proton beam, and a 3.3 atmosphere 36 Ar target. Measurements were made with the target cell at room temperature, when direct optical pumping produces nuclear orientation in the 36 K, and at elevated temperatures 160 degree C and 180 degree C where the 36 K is oriented through a combination of direct optical pumping and spin exchange. The fraction of the maximal nuclear alignment for the 180 degree C data was determined to be 0.46±0.07 stat±0.05 syst through measurements of the γ-ray anisotropy following positron decay. Roughly 10 5 or more decays of oriented 36 K occurred each second. The application of the superallowed decay of 36 K to measurements of time-reversal symmetry in β decay is discussed

  19. Central line-associated bloodstream infections and catheter dwell-time: A theoretical foundation for a rule of thumb.

    Science.gov (United States)

    Voets, Philip J G M

    2018-05-14

    Many clinicians know from experience and medical epidemiological literature that the risk of central line-associated bloodstream infections (CLABSI) increases rapidly with a prolonged catheter dwell-time, but how this infection risk increases over time remains obscure. In this manuscript, a clinically useful rule of thumb is derived, stating that the risk of CLABSI increases in a quadratic fashion with the increase in catheter dwell-time. The proposed rule of thumb could be considered a quick and effortless clinical tool to rationally predict the pattern of CLABSI risk with an increasing catheter dwell-time. Copyright © 2018. Published by Elsevier Ltd.

  20. Social anxiety is related to increased dwell time on socially threatening faces.

    Science.gov (United States)

    Lazarov, Amit; Abend, Rany; Bar-Haim, Yair

    2016-03-15

    Identification of reliable targets for therapeutic interventions is essential for developing evidence-based therapies. Threat-related attention bias has been implicated in the etiology and maintenance of social anxiety disorder. Extant response-time-based threat bias measures have demonstrated limited reliability and internal consistency. Here, we examined gaze patterns of socially anxious and nonanxious participants in relation to social threatening and neutral stimuli using an eye-tracking task, comprised of multiple threat and neutral stimuli, presented for an extended time-period. We tested the psychometric properties of this task with the hope to provide a solid stepping-stone for future treatment development. Eye gaze was tracked while participants freely viewed 60 different matrices comprised of eight disgusted and eight neutral facial expressions, presented for 6000ms each. Gaze patterns on threat and neutral areas of interest (AOIs) of participants with SAD, high socially anxious students and nonanxious students were compared. Internal consistency and test-retest reliability were evaluated. Participants did not differ on first-fixation variables. However, overall, socially anxious students and participants with SAD dwelled significantly longer on threat faces compared with nonanxious participants, with no difference between the anxious groups. Groups did not differ in overall dwell time on neutral faces. Internal consistency of total dwell time on threat and neutral AOIs was high and one-week test-retest reliability was acceptable. Only disgusted facial expressions were used. Relative small sample size. Social anxiety is associated with increased dwell time on socially threatening stimuli, presenting a potential target for therapeutic intervention. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [Assertiveness and peripheral intravenous catheters dwell time with ultrasonography-guided insertion in children and adolescents].

    Science.gov (United States)

    Avelar, Ariane Ferreira Machado; Peterlini, Maria Angélica Sorgini; da Pedreira, Mavilde Luz Gonçalves

    2013-06-01

    Randomized controlled trial which aimed to verify whether the use of vascular ultrasound (VUS) increases assertiveness in the use of peripheral venous catheter in children, and the catheter dwell time, when compared to traditional puncture. Data were collected after approval of theethical merit. Children and adolescents undergoing VUS-guided peripheral intravenous (GVUS) or puncture guided by clinical assessment of the venous conditions(CG) were included in the study. Significance level was set at pAssertiveness was found in 73 (71.6%) GVUS catheters and in 84(71.8%) of the CG (p=0.970), and catheter dwell time presented a median of less than one day in both groups (p=0.121), showing nostatistically significant difference. VUS did not significantly influence the results of the dependent variables investigated. ClinicalTrials.govNCT00930254.

  2. Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.

    Science.gov (United States)

    Heyl, Markus; Vojta, Matthias

    2014-10-31

    One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.

  3. Ureteric stent dwelling time: a risk factor for post-ureteroscopy sepsis.

    Science.gov (United States)

    Nevo, Amihay; Mano, Roy; Baniel, Jack; Lifshitz, David A

    2017-07-01

    To evaluate the association between stent dwelling time and sepsis after ureteroscopy, and identify risk factors for sepsis in this setting. The prospectively collected database of a single institution was queried for all patients who underwent ureteroscopy for stone extraction between 2010 and 2016. Demographic, clinical, preoperative and operative data were collected. The primary study endpoint was sepsis within 48 h of ureteroscopy. Logistic regressions were performed to identify predictors of post-ureteroscopy sepsis in the ureteroscopy cohort and specifically in patients with prior stent insertion. Between October 2010 and April 2016, 1 256 patients underwent ureteroscopy for stone extraction. Risk factors for sepsis included prior stent placement, female gender and Charlson comorbidity index. A total of 601 patients had a ureteric stent inserted before the operation and were included in the study cohort, in which the median age was 56 years, 90 patients were women (30%), and 97 patients were treated for positive preoperative urine cultures (16.1%). Postoperative sepsis, Sepsis rates after stent dwelling times of 1, 2, 3 and >3 months were 1, 4.9, 5.5 and 9.2%, respectively. On multivariate analysis, stent dwelling time, stent insertion because of sepsis, and female gender were significantly associated with post-ureteroscopy sepsis in patients with prior stent placement. Patients who undergo ureteroscopy after ureteric stent insertion have a higher risk of postoperative sepsis. Prolonged stent dwelling time, sepsis as an indication for stent insertion, and female gender are independent risk factors. Stent placement should be considered cautiously, and if inserted, ureteroscopy should be performed within 1 month. © 2017 The Authors BJU International © 2017 BJU International Published by John Wiley & Sons Ltd.

  4. Infinite dwell time and group delay in resonant electron tunneling through double complex potential barrier

    Science.gov (United States)

    Opacak, Nikola; Milanović, Vitomir; Radovanović, Jelena

    2017-12-01

    Tunneling times in complex potentials are investigated. Analytical expressions for dwell time, self-interference time and group delay are obtained for the case of complex double delta potentials. It is shown that we can always find a set of parameters of the potential so that the tunneling times achieve very large values and even approach infinity for the case of resonance. The phenomenon of infinite tunneling times occurs for only one particular positive value of the imaginary part of the potential, if all other parameters are given.

  5. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics

    Directory of Open Access Journals (Sweden)

    Matteo Lostaglio

    2015-04-01

    Full Text Available The first law of thermodynamics imposes not just a constraint on the energy content of systems in extreme quantum regimes but also symmetry constraints related to the thermodynamic processing of quantum coherence. We show that this thermodynamic symmetry decomposes any quantum state into mode operators that quantify the coherence present in the state. We then establish general upper and lower bounds for the evolution of quantum coherence under arbitrary thermal operations, valid for any temperature. We identify primitive coherence manipulations and show that the transfer of coherence between energy levels manifests irreversibility not captured by free energy. Moreover, the recently developed thermomajorization relations on block-diagonal quantum states are observed to be special cases of this symmetry analysis.

  6. Symmetries and Invariants of the Time-dependent Oscillator Equation and the Envelope Equation

    CERN Document Server

    Qin, Hong

    2005-01-01

    Single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant* is fundamentally the result of the corresponding symmetry admitted by the oscillator equation with time-dependent frequency.** A careful analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. The symmetries of the envelope equation enable a fast algorithm for finding matched solutions without using the conventional iterative shooting method.

  7. Lie symmetry analysis and soliton solutions of time-fractional K(m, n ...

    Indian Academy of Sciences (India)

    2016-12-03

    Dec 3, 2016 ... Abstract. In this note, method of Lie symmetries is applied to investigate symmetry properties of time- fractional K (m, n) equation with the Riemann–Liouville derivatives. Reduction of time-fractional K (m, n) equation is done by virtue of the Erdélyi–Kober fractional derivative which depends on a parameter α.

  8. PERCEPATAN DWELLING TIME : STRATEGI PENINGKATAN KINERJA PERDAGANGAN INTERNASIONAL PELABUHAN TANJUNG PRIOK

    Directory of Open Access Journals (Sweden)

    Wahyu Septi Utami

    2017-06-01

    Full Text Available Penelitian ini memiliki bertujuan untuk menganalisis strategi kebijakan yang dapat diimplementasikan untuk mempercepat waktu tinggal di pelabuhan Tanjung Priok, dalam rangka meningkatkan kinerja dalam perdagangan internasional. Penelitian ini menunjukkan hasil analisis dari wadah perhitungan impor tinggal waktu di Pelabuhan Tanjung Priok yang saat tinggal di pelabuhan Tanjung Priok pada 2013 adalah 8,59 hari, menunjukkan tinggal waktu masih di bawah standar kelayakan berdasarkan Peraturan Pemerintah Nomor 26 Tahun 2012 tentang Cetak    Biru Sistem Logistik Pembangunan Nasional adalah 3 hari. Berdasarkan hasil analisis SWOT disimpulkan bahwa kinerja Pelabuhan Tanjung Priok berada di quadran saya posisi (1,24; 1,25 Strategi yang digunakan untuk meningkatkan Pelabuhan Tanjung Priok SO tinggal waktu, yaitu meningkatkan jumlah jalur importir MITA, memperbanyak sejajar dengan bea cukai, insentif untuk awal PIB, mengoptimalkan INSW dan adat istiadat, meningkatkan kerjasama para pemangku kepentingan, membangun Cikarang Dry Port (CDP sebagai perluasan dari Komisi Pemilihan Umum Bea Pelabuhan Tanjung Priok.  This research had an aims to to analyze the policy strategies that can be implemented to accelerate the dwelling time at Tanjung Priok port, in order to improve performance in international trade. This research showed results of analysis of container import calculation dwelling time at Tanjung Priok Port that the dwelling time  at Tanjung Priok port in 2013 was 8,59 days, indicating dwelling time is still below standard eligibility is based on Government Regulation No. 26 Year 2012 on the Blueprint of the National Logistics System Development is 3 days. Based on the results of the SWOT analysis concluded that the performance of the Tanjung Priok Port was in quadran I the position (1,24; 1,25 Strategies used to improve the Port of Tanjung Priok is SO dwelling time, ie increasing the number of lanes importers MITA, multiply the parallel to the

  9. Increasing dwell time of mitomycin C in the upper tract with a reverse thermosensitive polymer.

    Science.gov (United States)

    Wang, Agnes J; Goldsmith, Zachariah G; Neisius, Andreas; Astroza, Gaston M; Oredein-McCoy, Olugbemisola; Iqbal, Muhammad W; Simmons, W Neal; Madden, John F; Preminger, Glenn M; Inman, Brant A; Lipkin, Michael E; Ferrandino, Michael N

    2013-03-01

    Abstract Background and Purpose: Topical chemotherapy for urothelial cancer is dependent on adequate contact time of the chemotherapeutic agent with the urothelium. To date, there has not been a reliable method of maintaining this contact for renal or ureteral urothelial carcinoma. We evaluated the safety and feasibility of using a reverse thermosensitive polymer to improve dwell times of mitomycin C (MMC) in the upper tract. Using a porcine model, four animals were treated ureteroscopically with both upper urinary tracts receiving MMC mixed with iodinated contrast. One additional animal received MMC percutaneously. The treatment side had ureteral outflow blocked with a reverse thermosensitive polymer plug. MMC dwell time was monitored fluoroscopically and intrarenal pressures measured. Two animals were euthanized immediately, and three animals were euthanized 5 days afterward. In control kidneys, drainage occurred at a mean of 5.3±0.58 minutes. Intrarenal pressures stayed fairly stable: 9.7±14.0 cm H20. In treatment kidneys, dwell time was extended to 60 minutes, when the polymer was washed out. Intrarenal pressures in the treatment kidneys peaked at 75.0±14.7 cm H20 and reached steady state at 60 cm H20. Pressures normalized after washout of the polymer with cool saline. Average washout time was 11.8±9.6 minutes. No histopathologic differences were seen between the control and treatment kidneys, or with immediate compared with delayed euthanasia. A reverse thermosensitive polymer can retain MMC in the upper urinary tract and appears to be safe from our examination of intrarenal pressures and histopathology. This technique may improve the efficacy of topical chemotherapy in the management of upper tract urothelial carcinoma.

  10. Internal space-time symmetries of massive and massless particles and their unification

    International Nuclear Information System (INIS)

    Kim, Y.S.

    2001-01-01

    It is noted that the internal space-time symmetries of relativistic particles are dictated by Wigner's little groups. The symmetry of massive particles is like the three-dimensional rotation group, while the symmetry of massless particles is locally isomorphic to the two-dimensional Euclidean group. It is noted also that, while the rotational degree of freedom for a massless particle leads to its helicity, the two translational degrees of freedom correspond to its gauge degrees of freedom. It is shown that the E(2)-like symmetry of of massless particles can be obtained as an infinite-momentum and/or zero-mass limit of the O(3)-like symmetry of massive particles. This mechanism is illustrated in terms of a sphere elongating into a cylinder. In this way, the helicity degree of freedom remains invariant under the Lorentz boost, but the transverse rotational degrees of freedom become contracted into the gauge degree of freedom

  11. Dwell time, Hartman effect and transport properties in a ferromagnetic phosphorene monolayer.

    Science.gov (United States)

    Hedayati Kh, Hamed; Faizabadi, Edris

    2018-02-28

    In this paper, spin-dependent dwell time, spin Hartman effect and spin-dependent conductance were theoretically investigated through a rectangular barrier in the presence of an exchange field by depositing a ferromagnetic insulator on the phosphorene layer in the barrier region. The existence of the spin Hartman effect was shown for all energies (energies lower than barrier height) and all incident angles in phosphorene. We also compared our results of the dwell time in the phosphorene structure with similar research performed on graphene. We reported a significant difference between the tunneling time values of incident quasiparticles with spin-up and spin-down. We found that the barrier was almost transparent for incident quasiparticles with a wide range of incident angles and energies higher than the barrier height in phosphorene. We also found that the maximum spin-dependent transmission probability for energies higher than barrier height does not necessarily occur in the zero incident angle. In addition, we showed that the spin conductance for energies higher (lower) than barrier height fluctuates (decays) in terms of barrier thickness. We discovered that, in contrast to graphene, the Klein paradox does not occur in the normal incident in the phosphorene structure. Furthermore, the results demonstrated the achievement of good total conductance at certain thicknesses of the barrier for energies higher than the barrier height. This study could serve as a basis for investigations of the basic physics of tunneling mechanisms and also for using phosphorene as a spin polarizer in designing nanoelectronic devices.

  12. Dwell time, Hartman effect and transport properties in a ferromagnetic phosphorene monolayer

    Science.gov (United States)

    Hedayati Kh, Hamed; Faizabadi, Edris

    2018-02-01

    In this paper, spin-dependent dwell time, spin Hartman effect and spin-dependent conductance were theoretically investigated through a rectangular barrier in the presence of an exchange field by depositing a ferromagnetic insulator on the phosphorene layer in the barrier region. The existence of the spin Hartman effect was shown for all energies (energies lower than barrier height) and all incident angles in phosphorene. We also compared our results of the dwell time in the phosphorene structure with similar research performed on graphene. We reported a significant difference between the tunneling time values of incident quasiparticles with spin-up and spin-down. We found that the barrier was almost transparent for incident quasiparticles with a wide range of incident angles and energies higher than the barrier height in phosphorene. We also found that the maximum spin-dependent transmission probability for energies higher than barrier height does not necessarily occur in the zero incident angle. In addition, we showed that the spin conductance for energies higher (lower) than barrier height fluctuates (decays) in terms of barrier thickness. We discovered that, in contrast to graphene, the Klein paradox does not occur in the normal incident in the phosphorene structure. Furthermore, the results demonstrated the achievement of good total conductance at certain thicknesses of the barrier for energies higher than the barrier height. This study could serve as a basis for investigations of the basic physics of tunneling mechanisms and also for using phosphorene as a spin polarizer in designing nanoelectronic devices.

  13. The influence of the dwell time deviation constraint (DTDC) parameter on dosimetry with IPSA optimisation for HDR prostate brachytherapy

    International Nuclear Information System (INIS)

    Smith, Ryan L.; Millar, Jeremy L.; Panettieri, Vanessa; Mason, Natasha; Lancaster, Craig; Francih, Rick D.

    2015-01-01

    To investigate how the dwell time deviation constraint (DTDC) parameter, applied to inverse planning by simulated annealing (IPSA) optimisation limits large dwell times from occurring in each catheter and to characterise the effect on the resulting dosimetry for prostate high dose rate (HDR) brachytherapy treatment plans. An unconstrained IPSA optimised treatment plan, using the Oncentra Brachytherapy treatment planning system (version 4.3, Nucletron an Elekta company, Elekta AB, Stockholm, Sweden), was generated for 20 consecutive HDR prostate brachytherapy patients, with the DTDC set to zero. Successive constrained optimisation plans were also created for each patient by increasing the DTDC parameter by 0.2, up to a maximum value of 1.0. We defined a “plan modulation index”, to characterise the change of dwell time modulation as the DTDC parameter was increased. We calculated the dose volume histogram indices for the PTV (D90, V100, V150, V200%) and urethra (D10%) to characterise the effect on the resulting dosimetry. The average PTV D90% decreases as the DTDC is applied, on average by only 1.5 %, for a DTDC = 0.4. The measures of high dose regions in the PTV, V150 and V200%, increase on average by less than 5 and 2 % respectively. The net effect of DTDC on the modulation of dwell times has been characterised by the introduction of the plan modulation index. DTDC applied during IPSA optimisation of HDR prostate brachytherapy plans reduce the occurrence of large isolated dwell times within individual catheters. The mechanism by which DTDC works has been described and its effect on the modulation of dwell times has been characterised. The authors recommend using a DTDC parameter no greater than 0.4 to obtain a plan with dwell time modulation comparable to a geometric optimised plan. This yielded on average a 1.5 % decrease in PTV coverage and an acceptable increase in V150%, without compromising the urethral dose.

  14. Investigation of force, contact area, and dwell time in finger-tapping tasks on membrane touch interface.

    Science.gov (United States)

    Liu, Na; Yu, Ruifeng

    2018-06-01

    This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.

  15. Time symmetry and interpretation of quantum mechanics. [Paradoxes

    Energy Technology Data Exchange (ETDEWEB)

    de Beauregard, O.C.

    1976-10-01

    A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being ''factlike'' rather than ''lawlike'' (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric acceptance of cognizance as a source of retarded waves, and of will as a sink of advanced waves, is submitted as a central ''paradox'' of the Copernican or Einsteinian sort, out of which new light is shed upon previously known paradoxes, such as the EPR paradox, Schroedinger's cat, and Wigner's friend. Parapsychology is thus found to creep into the picture.

  16. Universal time versus relativistic time in four-dimensional symmetry framework

    International Nuclear Information System (INIS)

    Chiu, C.B.; Hsu, J.P.; Sherry, T.N.

    1976-12-01

    A new four-dimensional symmetry framework with a universal time is investigated which can be realized by a radioactive clock--the measured survival fraction of unstable particles gives the elapsed time. The world picture turns out to be quite different from that in special relativity. The general space-light transformation and the nonuniversal speed of light in this framework are discussed. The difference between the one-way speed and the two-way speed of a light signal is considered in detail. Moreover, the discussion sheds light on the connection between the universality of the light speed and the clock which does not read universal time. The relation with special relativity theory is examined in a few cases

  17. Lie Symmetry of the Diffusive Lotka–Volterra System with Time-Dependent Coefficients

    Directory of Open Access Journals (Sweden)

    Vasyl’ Davydovych

    2018-02-01

    Full Text Available Lie symmetry classification of the diffusive Lotka–Volterra system with time-dependent coefficients in the case of a single space variable is studied. A set of such symmetries in an explicit form is constructed. A nontrivial ansatz reducing the Lotka–Volterra system with correctly-specified coefficients to the system of ordinary differential equations (ODEs and an example of the exact solution with a biological interpretation are found.

  18. Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->

    Science.gov (United States)

    Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.

    2008-05-01

    By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.

  19. Stair negotiation time in community-dwelling older adults: normative values and association with functional decline.

    Science.gov (United States)

    Oh-Park, Mooyeon; Wang, Cuiling; Verghese, Joe

    2011-12-01

    To establish reference values for stair ascent and descent times in community-dwelling, ambulatory older adults, and to examine their predictive validity for functional decline. Longitudinal cohort study. Mean follow-up time was 1.8 years (maximum, 3.2y; total, 857.9 person-years). Community sample. Adults 70 years and older (N=513; mean age, 80.8 ± 5.1y) without disability or dementia. Not applicable. Time to ascend and descend 3 steps measured at baseline. A 14-point disability scale assessed functional status at baseline and at follow-up interviews every 2 to 3 months. Functional decline was defined as an increase in the disability score by 1 point during the follow-up period. The mean±SD stair ascent and descent times for 3 steps were 2.78 ± 1.49 and 2.83 ± 1.61 seconds, respectively. The proportion of self-reported and objective difficulty was higher with longer stair ascent and descent times (PRehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    Directory of Open Access Journals (Sweden)

    Yanfeng Liu

    2017-10-01

    Full Text Available This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces the auxiliary heating by 7390 MJ, and reduces the annual operation cost by 2010 RMB. Under time and spatial partition heating, optimization analyses were conducted for the two system capacity parameters of the solar collector area and tank volume and the one operation parameter of auxiliary heater setting outlet temperature. The results showed that a reasonable choice of the solar collector area can reduce the dynamic annual cost, the increased tank volume is advantageous to heat storage, and the auxiliary heater setting outlet temperature have greater influence on the indoor heating effect. The advanced opening of solar water heating system and the normal opening of passive air vents are recommended. Based on the comparison of the two modes, the time and spatial partition heating technology is a better choice for rural dwellings.

  1. Symmetries and invariants of the oscillator and envelope equations with time-dependent frequency

    Directory of Open Access Journals (Sweden)

    Hong Qin

    2006-05-01

    Full Text Available The single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant, a fundamental concept in accelerator physics, is fundamentally a result of the corresponding symmetry admitted by the harmonic oscillator equation with linear time-dependent frequency. It is demonstrated that the Lie algebra of the symmetry group for the oscillator equation with time-dependent frequency is eight dimensional, and is composed of four independent subalgebras. A detailed analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. As an application to accelerator physics, the symmetries of the envelope equation enable a fast numerical algorithm for finding matched solutions without using the conventional iterative Newton’s method, where the envelope equation needs to be numerically integrated once for every iteration, and the Jacobi matrix needs to be calculated for the envelope perturbation.

  2. Reversing the irreversible: From limit cycles to emergent time symmetry

    Science.gov (United States)

    Cortês, Marina; Smolin, Lee

    2018-01-01

    In 1979 Penrose hypothesized that the arrows of time are explained by the hypothesis that the fundamental laws are time irreversible [R. Penrose, in General Relativity: An Einstein Centenary Survey (1979)]. That is, our reversible laws, such as the standard model and general relativity are effective, and emerge from an underlying fundamental theory which is time irreversible. In [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007; 90, 044035 (2014), 10.1103/PhysRevD.90.044035; 93, 084039 (2016), 10.1103/PhysRevD.93.084039] we put forward a research program aiming at realizing just this. The aim is to find a fundamental description of physics above the Planck scale, based on irreversible laws, from which will emerge the apparently reversible dynamics we observe on intermediate scales. Here we continue that program and note that a class of discrete dynamical systems are known to exhibit this very property: they have an underlying discrete irreversible evolution, but in the long term exhibit the properties of a time reversible system, in the form of limit cycles. We connect this to our original model proposal in [M. Cortês and L. Smolin, Phys. Rev. D 90, 084007 (2014), 10.1103/PhysRevD.90.084007], and show that the behaviors obtained there can be explained in terms of the same phenomenon: the attraction of the system to a basin of limit cycles, where the dynamics appears to be time reversible. Further than that, we show that our original models exhibit the very same feature: the emergence of quasiparticle excitations obtained in the earlier work in the space-time description is an expression of the system's convergence to limit cycles when seen in the causal set description.

  3. In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings

    NARCIS (Netherlands)

    Ioannou, A.; Itard, L.C.M.; Agarwal, Tushar

    2018-01-01

    Indoor thermal comfort is generally assessed using the PMV or the adaptive model. This research presents the results obtained by in-situ real time measurements of thermal comfort and thermal comfort perception in 17 residential dwellings in the Netherlands. The study demonstrates the new

  4. Influence of dwell times on the thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy

    Czech Academy of Sciences Publication Activity Database

    Guth, S.; Petráš, Roman; Škorík, Viktor; Kruml, Tomáš; Man, Jiří; Lang, K. H.; Polák, Jaroslav

    2015-01-01

    Roč. 80, NOV (2015), s. 426-433 ISSN 0142-1123 R&D Projects: GA MŠk(CZ) EE2.3.30.0063 Institutional support: RVO:68081723 Keywords : Nickel base superalloy * Thermomechanical fatigue * Dwell time * Lifetime behavior * Damage mechanisms Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.162, year: 2015

  5. Time-reversal symmetry breaking by ac field: Effect of ...

    Indian Academy of Sciences (India)

    deviate from 2 thus signalling on the time-reversal breaking by the ac field. ... is also the parity effect: the enchancement is only present if either P or Q is even. ... analysis (see figure 1) is possible and the ergodic zero-dimensional approx-.

  6. Lie symmetry analysis and conservation laws for the time fractional fourth-order evolution equation

    Directory of Open Access Journals (Sweden)

    Wang Li

    2017-06-01

    Full Text Available In this paper, we study Lie symmetry analysis and conservation laws for the time fractional nonlinear fourth-order evolution equation. Using the method of Lie point symmetry, we provide the associated vector fields, and derive the similarity reductions of the equation, respectively. The method can be applied wisely and efficiently to get the reduced fractional ordinary differential equations based on the similarity reductions. Finally, by using the nonlinear self-adjointness method and Riemann-Liouville time-fractional derivative operator as well as Euler-Lagrange operator, the conservation laws of the equation are obtained.

  7. Crossover driven by time-reversal symmetry breaking in quantum chaos

    International Nuclear Information System (INIS)

    Taniguchi, N.; Hashimoto, A.; Simons, B.D.; Altshuler, B.L.

    1994-01-01

    Parametric correlations of the energy spectra of quantum chaotic systems are presented in the presence of time-reversal symmetry-breaking perturbations. The spectra disperse as a function of two external perturbations, one of which preserves time-reversal symmetry, while the other violates it. Exact analytical expressions for the parametric two-point autocorrelation function of the density of states are derived in the crossover region by means of the supermatrix method. For the orthogonal-unitary crossover, the velocity distribution is determined and shown to deviate from Gaussian. (orig.)

  8. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    Science.gov (United States)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  9. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion. Keywords: Noether symmetry, Scalar field cosmology, Vector field cosmology

  10. Asynchronous L1-gain control of uncertain switched positive linear systems with dwell time.

    Science.gov (United States)

    Li, Yang; Zhang, Hongbin

    2018-04-01

    In this paper, dwell time (DT) stability, L 1 -gain performance analysis and asynchronous L 1 -gain controller design problems of uncertain switched positive linear systems (SPLSs) are investigated. Via a time-scheduled multiple linear co-positive Lyapunov function (TSMLCLF) approach, convex sufficient conditions of DT stability and L 1 -gain performance of SPLSs with interval and polytopic uncertainties are presented. Furthermore, by utilizing the feature that the TSMLCLF keeps decreasing even if the controller is running asynchronously with the system, the asynchronous L 1 -gain controller design problem of SPLSs with interval and polytopic uncertainties is investigated. Convex sufficient conditions of the existence of time-varying asynchronous state-feedback controller which can ensure the closed-loop system's positivity, stability and L 1 -gain performance are established, and the controller gain matrices can be calculated instantaneously online. The obtained L 1 -gain in the paper is standard. All the results are presented in terms of linear programming. A practical example is provided to show the effectiveness of the results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Self-consistent Bayesian analysis of space-time symmetry studies

    International Nuclear Information System (INIS)

    Davis, E.D.

    1996-01-01

    We introduce a Bayesian method for the analysis of epithermal neutron transmission data on space-time symmetries in which unique assignment of the prior is achieved by maximisation of the cross entropy and the imposition of a self-consistency criterion. Unlike the maximum likelihood method used in previous analyses of parity-violation data, our method is freed of an ad hoc cutoff parameter. Monte Carlo studies indicate that our self-consistent Bayesian analysis is superior to the maximum likelihood method when applied to the small data samples typical of symmetry studies. (orig.)

  12. Life time fatality risk assessment due to variation of indoor radon concentration in dwellings in western Haryana, India

    International Nuclear Information System (INIS)

    Kansal, Sandeep; Mehra, Rohit; Singh, N.P.

    2012-01-01

    Indoor radon measurements in 60 dwellings belonging to 12 villages of Sirsa, Fatehbad and Hisar districts of western Haryana, India, have been carried out, using LR-115 type II cellulose nitrate films in the bare mode. The annual average indoor radon value in the studied area varies from 76.00 to 115.46 Bq m −3 , which is well within the recommended action level 200–300 Bq m −3 (). The winter/summer ratio of indoor radon ranges from 0.78 to 2.99 with an average of 1.52. The values of annual average dose received by the residents and Life time fatality risk assessment due to variation of indoor radon concentration in dwellings of studied area suggests that there is no significance threat to the human beings due to the presence of natural radon in the dwellings. - Highlights: ► The radon concentration values in the dwellings are 2–3 times more than the world average of 40 Bq m −3 . ► These values are lower than the recommended action level of 200–300 Bq m −3 (). ► The annual effective dose is less than the recommended action level of 3–10 mSv per year (). ► The values of life time fatality risk determined for the studied area are within safe standards. ► There is no significant threat to the human beings due to the presence of natural radon in the dwellings.

  13. Consciousness induced restoration of time symmetry (CIRTS): a psychophysical theoretical perspective

    NARCIS (Netherlands)

    Bierman, D.J.

    2010-01-01

    A theoretical framework is proposed that starts from the assumption that information processing by a brain, while it is sustaining consciousness, is restoring the break in time symmetry in physics. No specifics are given with regard to which physical formalism, either quantum or classical, is the

  14. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2017-04-15

    Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  15. Dwell Time and Surface Parameter Effects on Removal of Silicone Oil From D6ac Steel Using TCA

    Science.gov (United States)

    Boothe, R. E.

    2003-01-01

    This study was conducted to evaluate the impact of dwell time, surface roughness, and the surface activation state on 1,1,1-trichloroethane's (TCA's) effectiveness for removing silicone oil from D6ac steel. Silicone-contaminated test articles were washed with TCA solvent, and then the surfaces were analyzed for residue, using Fourier transform infrared spectroscopy. The predominant factor affecting the ability to remove the silicone oil was surface roughness.

  16. An impaired attentional dwell time after parietal and frontal lesions related to impaired selective attention not unilateral neglect.

    Science.gov (United States)

    Correani, Alessia; Humphreys, Glyn W

    2011-07-01

    The attentional blink, a measure of the temporal dynamics of visual processing, has been documented to be more pronounced following brain lesions that are associated with visual neglect. This suggests that, in addition to their spatial bias in attention, neglect patients may have a prolonged dwell time for attention. Here the attentional dwell time was examined in patients with damage focused on either posterior parietal or frontal cortices. In three experiments, we show that there is an abnormally pronounced attentional dwell time, which does not differ in patients with posterior parietal and with frontal lobe lesions, and this is associated with a measure of selective attention but not with measures of spatial bias in selection. These data occurred both when we attempted to match patients and controls for overall differences in performance and when a single set stimulus exposure was used across participants. In Experiments 1 and 2, requiring report of colour-form conjunctions, there was evidence that the patients were also impaired at temporal binding, showing errors in feature combination across stimuli and in reporting in the correct temporal order. In Experiment 3, requiring only the report of features but introducing task switching led to similar results. The data suggest that damage to a frontoparietal network can compromise temporal selection of visual stimuli; however, this is not necessarily related to a deficit in hemispatial visual attention but it is to impaired target selection. We discuss the implications for understanding visual selection.

  17. Active functional devices using parity-time symmetry optics (Conference Presentation)

    Science.gov (United States)

    Brac de la Perriere, Vincent; Benisty, Henri; Ramdane, Abderrahim; Lupu, Anatole

    2017-05-01

    The progress of nanotechnologies has triggered the emergence of many photonic artificial structures: photonic crystals, metamaterials, plasmonic resonators. Recently the intriguing class of PT-symmetric devices, referring to Parity-Time symmetry [1] has attracted much attention. The characteristic feature of PT-symmetry is that the structures' refractive index profile is complex-valued due to the presence of alternating gain and loss regions in the system. Apart from fundamental research motivations, the tremendous interest in these artificial systems is strongly driven by the practical outcomes expected to foster a new generation of tunable, reconfigurable and non-reciprocal devices. The principle of gain-loss modulation lying in the heart of PT-symmetry optics enables a range of innovative solutions in the field of integrated optics at 1.5μm [2-7]. By using PT-symmetric coupled waveguides and Bragg reflectors as fundamental building blocks, it is possible to build a wide variety of functional optical devices. The PT-symmetry principle provides an alternative way for the realization of active devices that could become functional in a new platform for integrated optics. For instance one major bottleneck of the III-V/Si hybrid integration approach is that each type of active devices (laser, modulator, etc) requires a specific composition of III-V semiconductor alloy, involving a variety of (re)growth challenges. The advantage of the PT-symmetry solution is that the fabrication of all these devices can be done with a single stack of III-V semiconductor alloys that greatly simplifies the technological process. The aim of the current contribution is to provide a survey of the most promising applications of PT-symmetry in photonics with a particular emphases on the transition from theoretical concepts to experimental devices. The intention is to draw attention to the risks and issues related to the practical implementation that are most often overlooked in the basic

  18. Some symmetries in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces

  19. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics

    International Nuclear Information System (INIS)

    Holster, A T

    2003-01-01

    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe

  20. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  1. Conductance fluctuations in disordered superconductors with broken time-reversal symmetry near two dimensions

    International Nuclear Information System (INIS)

    Ryu, S.; Furusaki, A.; Ludwig, A.W.W.; Mudry, C.

    2007-01-01

    We extend the analysis of the conductance fluctuations in disordered metals by Altshuler, Kravtsov, and Lerner (AKL) to disordered superconductors with broken time-reversal symmetry in d=(2+ε) dimensions (symmetry classes C and D of Altland and Zirnbauer). Using a perturbative renormalization group analysis of the corresponding non-linear sigma model (NLσM) we compute the anomalous scaling dimensions of the dominant scalar operators with 2s gradients to one-loop order. We show that, in analogy with the result of AKL for ordinary, metallic systems (Wigner-Dyson classes), an infinite number of high-gradient operators would become relevant (in the renormalization group sense) near two dimensions if contributions beyond one-loop order are ignored. We explore the possibility to compare, in symmetry class D, the ε=(2-d) expansion in d<2 with exact results in one dimension. The method we use to perform the one-loop renormalization analysis is valid for general symmetric spaces of Kaehler type, and suggests that this is a generic property of the perturbative treatment of NLσMs defined on Riemannian symmetric target spaces

  2. Parity-time symmetry meets photonics: A new twist in non-Hermitian optics

    Science.gov (United States)

    Longhi, Stefano

    2017-12-01

    In the past decade, the concept of parity-time (PT) symmetry, originally introduced in non-Hermitian extensions of quantum mechanical theories, has come into thinking of photonics, providing a fertile ground for studying, observing, and utilizing some of the peculiar aspects of PT symmetry in optics. Together with related concepts of non-Hermitian physics of open quantum systems, such as non-Hermitian degeneracies (exceptional points) and spectral singularities, PT symmetry represents one among the most fruitful ideas introduced in optics in the past few years. Judicious tailoring of optical gain and loss in integrated photonic structures has emerged as a new paradigm in shaping the flow of light in unprecedented ways, with major applications encompassing laser science and technology, optical sensing, and optical material engineering. In this perspective, I review some of the main achievements and emerging areas of PT -symmetric and non-Hermtian photonics, and provide an outline of challenges and directions for future research in one of the fastest growing research area of photonics.

  3. Hidden symmetries, AdSDxSn, and the lifting of one-time physics to two-time physics

    International Nuclear Information System (INIS)

    Bars, I.

    1999-01-01

    The massive non-relativistic free particle in d-1 space dimensions, with a Lagrangian L=(m/2)r 2 , has an action with a surprising non-linearly realized SO(d,2) symmetry. This is the simplest example of a host of diverse one-time-physics systems with hidden SO(d,2) symmetric actions. By the addition of gauge degrees of freedom, they can all be lifted to the same SO(d,2) covariant unified theory that includes an extra spacelike and an extra timelike dimension. The resulting action in d+2 dimensions has manifest SO(d,2) Lorentz symmetry and a gauge symmetry Sp(2,R). The symmetric action defines two-time physics. Conversely, the two-time action can be gauge fixed to diverse one-time physical systems. In this paper three new gauge fixed forms that correspond to the non-relativistic particle, the massive relativistic particle, and the particle in AdS d-n xS n curved spacetime will be discussed at the classical level. The last case is discussed at the first quantized and field theory levels as well. For the last case the popularly known symmetry is SO(d-n-1,2)xSO(n+1), but yet we show that the classical or quantum versions are symmetric under the larger SO(d,2). In the field theory version the action is symmetric under the full SO(d,2) provided it is improved with a quantized mass term that arises as an anomaly from operator ordering ambiguities. The anomalous mass term vanishes for AdS 2 xS 0 and AdS n xS n (i.e., d=2n). A quantum test for the presence of two-time-physics in a one-time physics system is that the SO(d,2) Casimir operators have fixed eigenvalues independent of the system. It is shown that this test is successful for the particle in AdS d-n xS n by computing the Casimir operators and showing explicitly that they are independent of n. The strikingly larger symmetry could be significant in the context of the proposed AdS/CFT duality. thinsp copyright 1999 The American Physical Society

  4. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    Science.gov (United States)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-07-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed.

  5. Effects of dwell time of excitation waveform on meniscus movements for a tubular piezoelectric print-head: experiments and model

    International Nuclear Information System (INIS)

    Chang, Jiaqing; Liu, Yaxin; Huang, Bo

    2017-01-01

    In inkjet applications, it is normal to search for an optimal drive waveform when dispensing a fresh fluid or adjusting a newly fabricated print-head. To test trial waveforms with different dwell times, a camera and a strobe light were used to image the protruding or retracting liquid tongues without ejecting any droplets. An edge detection method was used to calculate the lengths of the liquid tongues to draw the meniscus movement curves. The meniscus movement is determined by the time-domain response of the acoustic pressure at the nozzle of the print-head. Starting at the inverse piezoelectric effect, a mathematical model which considers the liquid viscosity in acoustic propagation is constructed to study the acoustic pressure response at the nozzle of the print-head. The liquid viscosity retards the propagation speed and dampens the harmonic amplitude. The pressure response, which is the combined effect of the acoustic pressures generated during the rising time and the falling time and after their propagations and reflections, explains the meniscus movements well. Finally, the optimal dwell time for droplet ejections is discussed. (paper)

  6. Dutch Dwellings

    NARCIS (Netherlands)

    Vries, de B.; Zee, van der A.; Carp, J.C.; Soddu, C.

    2004-01-01

    Applying Generative Design (GD) for dwelling is not very common but it opens up the possibility to study whether GD systems can reproduce existing design typologies. Dutch dwellings as an exemplification of a design typology are analysed using the SAR methodology. Building regulations are used as

  7. The physical capabilities underlying timed "Up and Go" test are time-dependent in community-dwelling older women.

    Science.gov (United States)

    Coelho-Junior, Hélio José; Rodrigues, Bruno; Gonçalves, Ivan de Oliveira; Asano, Ricardo Yukio; Uchida, Marco Carlos; Marzetti, Emanuele

    2018-04-01

    Timed 'Up and Go' (TUG) has been widely used in research and clinical practice to evaluate physical function and mobility in older adults. However, the physical capabilities underlying TUG performance are not well elucidated. Therefore, the present study aimed at investigating a selection of physical capacities underlying TUG performance in community-dwelling older women. Four hundred and sixty-eight apparently healthy older women independent to perform the activities of daily living (mean age: 65.8 ± 6.0 years) were recruited from two specialized healthcare centers for older adults to participate in the study. Volunteers had their medical books reviewed and underwent evaluations of anthropometric data as well as physical and functional capacities. Pearson's correlation results indicate that TUG performance was significantly associated with upper (i.e., handgrip strength) and lower (i.e., sit-to-stand) limb muscle strength, balance (i.e., one-leg stand), lower limb muscle power (i.e., countermovement jump), aerobic capacity (i.e., 6-minute walk test), and mobility (i.e., usual and maximal walking speeds). When the analyses were performed based on TUG quartiles, a larger number of physical capabilities were associated with TUG >75% in comparison with TUG <25%. Multiple linear regression results indicate that the variability in TUG (~20%) was explained by lower limb muscle strength (13%) and power (1%), balance (4%), mobility (2%), and aerobic capacity (<1%), even after adjusted by age and age plus body mass index (BMI). However, when TUG results were added as quartiles, a decrease in the impact of physical capacities on TUG performance was determined. As a whole, our findings indicate that the contribution of physical capabilities to TUG performance is altered according to the time taken to perform the test, so that older women in the lower quartiles - indicating a higher performance - have an important contribution of lower limb muscle strength, while

  8. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  9. Particle dynamics around time conformal regular black holes via Noether symmetries

    Science.gov (United States)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  10. Computation by symmetry operations in a structured model of the brain: Recognition of rotational invariance and time reversal

    Science.gov (United States)

    McGrann, John V.; Shaw, Gordon L.; Shenoy, Krishna V.; Leng, Xiaodan; Mathews, Robert B.

    1994-06-01

    Symmetries have long been recognized as a vital component of physical and biological systems. What we propose here is that symmetry operations are an important feature of higher brain function and result from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in the trion model of the cortex. The trion model is a highly structured mathematical realization of the Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in which the cortical column is the basic neural network of the cortex and is comprised of subunit minicolumns, which are idealized as trions with three levels of firing. A columnar network of a small number of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP's), which can be excited. The MP's are related by specific symmetries: Spatial rotation, parity, ``spin'' reversal, and time reversal as well as other ``global'' symmetry operations in this abstract internal language of the brain. These MP's can be readily enhanced (as well as inherent categories of MP's) by only a small change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the symmetries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte Carlo evolution of the MP's. Examples of the recognition of rotational invariance and of a time-reversed pattern are presented. We propose the possibility of building a logic device from the hardware implementation of a higher level architecture of trion cortical columns.

  11. Time Order and ‘Speaking Out’: Traditional Farming and Beliefs in Europe and Indonesia and Sky Symmetry Considerations

    Directory of Open Access Journals (Sweden)

    Harm Henricus Hollestelle

    2016-09-01

    With the concept of ‘speaking out’ I connect with the theatre training work of Iris Warren and Kristin Linklater. At the same time, while objects and their properties belong to the domain of physics, I will use some basic symmetry concepts from physics. Correlation then takes the form of an interwoven fabric where cause and effect are entangled. Different subsistence practices will correlate with different symmetries, i.e. translational and rotational symmetries, of the sky universe, that can be recognized from artistic expressions like personal ornaments.

  12. Physical activity and not sedentary time per se influences on clustered metabolic risk in elderly community-dwelling women.

    Directory of Open Access Journals (Sweden)

    Andreas Nilsson

    Full Text Available Whether amount of time spent in sedentary activities influences on clustered metabolic risk in elderly, and to what extent such an influence is independent of physical activity behavior, remain unclear. Therefore, the aim of the study was to examine cross-sectional associations of objectively assessed physical activity and sedentary behavior on metabolic risk outcomes in a sample of elderly community-dwelling women.Metabolic risk outcomes including waist circumference, systolic and diastolic blood pressures, fasting levels of plasma glucose, HDL-cholesterol and triglycerides were assessed in 120 community-dwelling older women (65-70 yrs. Accelerometers were used to retrieve daily sedentary time, breaks in sedentary time, daily time in light (LPA and moderate-to-vigorous physical activity (MVPA, and total amount of accelerometer counts. Multivariate regression models were used to examine influence of physical activity and sedentary behavior on metabolic risk outcomes including a clustered metabolic risk score.When based on isotemporal substitution modeling, replacement of a 10-min time block of MVPA with a corresponding time block of either LPA or sedentary activities was associated with an increase in clustered metabolic risk score (β = 0.06 to 0.08, p < 0.05, and an increase in waist circumference (β = 1.78 to 2.19 p < 0.01. All associations indicated between sedentary time and metabolic risk outcomes were lost once variation in total accelerometer counts was adjusted for.Detrimental influence of a sedentary lifestyle on metabolic health is likely explained by variations in amounts of physical activity rather than amount of sedentary time per se. Given our findings, increased amounts of physical activity with an emphasis on increased time in MVPA should be recommended in order to promote a favorable metabolic health profile in older women.

  13. Dwell-Time Distribution, Long Pausing and Arrest of Single-Ribosome Translation through the mRNA Duplex.

    Science.gov (United States)

    Xie, Ping

    2015-10-09

    Proteins in the cell are synthesized by a ribosome translating the genetic information encoded on the single-stranded messenger RNA (mRNA). It has been shown that the ribosome can also translate through the duplex region of the mRNA by unwinding the duplex. Here, based on our proposed model of the ribosome translation through the mRNA duplex we study theoretically the distribution of dwell times of the ribosome translation through the mRNA duplex under the effect of a pulling force externally applied to the ends of the mRNA to unzip the duplex. We provide quantitative explanations of the available single molecule experimental data on the distribution of dwell times with both short and long durations, on rescuing of the long paused ribosomes by raising the pulling force to unzip the duplex, on translational arrests induced by the mRNA duplex and Shine-Dalgarno(SD)-like sequence in the mRNA. The functional consequences of the pauses or arrests caused by the mRNA duplex and the SD sequence are discussed and compared with those obtained from other types of pausing, such as those induced by "hungry" codons or interactions of specific sequences in the nascent chain with the ribosomal exit tunnel.

  14. Shorter daily dwelling time in peritoneal dialysis attenuates the epithelial-to-mesenchymal transition of mesothelial cells

    Science.gov (United States)

    2014-01-01

    Background Peritoneal dialysis (PD) therapy is known to induce morphological and functional changes in the peritoneal membrane. Long-term exposure to conventional bio-incompatible dialysate and peritonitis is the main etiology of inflammation. Consequently, the peritoneal membrane undergoes structural changes, including angiogenesis, fibrosis, and hyalinizing vasculopathy, which ultimately results in technique failure. The epithelial-to-mesenchymal transition (EMT) of mesothelial cells (MCs) plays an important role during the above process; however, the clinical parameters associated with the EMT process of MCs remain to be explored. Methods To investigate the parameters impacting EMT during PD therapy, 53 clinical stable PD patients were enrolled. EMT assessments were conducted through human peritoneal MCs cultured from dialysate effluent with one consistent standard criterion (MC morphology and the expression of an epithelial marker, cytokeratin 18). The factors potentially associated with EMT were analyzed using logistic regression analysis. Primary MCs derived from the omentum were isolated for the in vitro study. Results Forty-seven percent of the patients presented with EMT, 28% with non-EMT, and 15% with a mixed presentation. Logistic regression analysis showed that patients who received persistent PD therapy (dwelling time of 24 h/day) had significantly higher EMT tendency. These results were consistent in vitro. Conclusions Dwelling time had a significant effect on the occurrence of EMT on MCs. PMID:24555732

  15. Lateral Casimir-Polder forces by breaking time-reversal symmetry

    Science.gov (United States)

    Oude Weernink, Ricardo R. Q. P. T.; Barcellona, Pablo; Buhmann, Stefan Yoshi

    2018-03-01

    We examine the lateral Casimir-Polder force acting on a circular rotating emitter near a dielectric plane surface. As the circular motion breaks time-reversal symmetry, the spontaneous emission in a direction parallel to the surface is in general anisotropic. We show that a lateral force arises which can be interpreted as a recoil force because of this asymmetric emission. The force is an oscillating function of the distance between the emitter and the surface, and the lossy character of the dielectric strongly influences the results in the near-field regime. The force exhibits also a population-induced dynamics, decaying exponentially with respect to time on time scales of the inverse of the spontaneous decay rate. We propose that this effect could be detected measuring the velocity acquired by the emitter, following different cycles of excitation and spontaneous decay. Our results are expressed in terms of the Green's tensor and can therefore easily be applied to more complex geometries.

  16. Response of different injector typologies to dwell time variations and a hydraulic analysis of closely-coupled and continuous rate shaping injection schedules

    International Nuclear Information System (INIS)

    Ferrari, A.; Mittica, A.

    2016-01-01

    Highlights: • Direct and indirect acting injectors are tested considering multiple injections. • The injection fusion threshold is higher for ballistic injectors than for stroke-end limited injectors. • The internal dynamics of the injector is analyzed for closely-coupled double injections. • Different regimes are identified and classified in the short dwell time range. • Innovative rate shaping injection schedules are defined for solenoid injectors. - Abstract: The multiple injection performance of Common Rail injectors has been analyzed at a hydraulic test rig as the dwell time was varied. The dependence of the injected volume on the dwell time has been investigated for direct acting piezoelectric and hydraulically-controlled (or indirect-acting) servo injectors. The injected fuel volumes in the long dwell-time range have been shown to be affected by the pressure waves that travel along the high pressure circuit for hydraulically-controlled servo injectors. On the other hand, the influence of pressure-wave-induced disturbances on multiple injection performance has been shown to be negligible for direct acting piezoelectric injectors. An analysis of closely-coupled injections has been conducted on a solenoid injector. When the dwell time is progressively reduced below a critical value, an increase in the fuel quantity that is injected in the second shot is observed. Injection fusion phenomena occur as the dwell time is diminished below a certain threshold and a maximum in the fuel volume, which is injected during the joint injections, is eventually detected for a very short electric dwell time value close to 100 μs. The cycle-to-cycle dispersion around this dwell time value results to be reduced significantly. A previously developed 1D model of the fuel injection system has been applied to analyze the injector transients. Detailed knowledge of the injection dynamics in the short dwell time region is of fundamental importance to optimize the

  17. Spinorial charges and their role in the fusion of internal and space-time symmetries

    International Nuclear Information System (INIS)

    Daniel, M.; Ktorides, C.N.

    1976-01-01

    The advent of supersymmetry immediately led to speculations that a non-trivial mixing of internal and space-time symmetries could be achieved within its framework. In fact, the well-known no-go theorems do not apply to the supersymmetry algebra due to the presence, in the latter, of (anticommuting) spinorial charges. However, not until the recent work of Haag, Lopuszanski and Sohnius did a clearcut picture emerge as to how the aforementioned nontrivial mixing can take place. Most notably, the presence of the conformal algebra within the supersymmetry algebra turns out to be vital. The findings of Haag et al. are solidified through an explicit construction which uses as underlying space the pseudo-Euclidean space E(4, 2), i.e. the space for which the conformal group is the group of rotations, and which employs as main tools the spinors associated with the space E(4, 2). The algebro-geometric approach of Cartan is followed in order to understand both the introduction and the properties of these spinors. In this manner, many insights are gained regarding the mathematical foundations of supersymmetry. Thus, the emergence of the anticommutator, rather than the commutator, among spinor charges is fully understood as a natural algebraic consequence and not as an a priori given fact. In addition, it is clearly seen how an (internal) unitary symmetry group can make its appearance within the supersymmetry scheme and verify, via this explicit construction, the results of Haag et al. (Auth.)

  18. Unification of space-time and internal symmetries through superstrings, with elementary or composite quarks

    International Nuclear Information System (INIS)

    Huebsch, T.

    1987-01-01

    Symmetry properties of a given physical system constrain greatly the theoretical models built in the attempt to describe the system. In complement, the symmetry properties of a system typically undergo dramatic changes during its evolution in time, underpinning the concept of phase transitions. Employing these two ideas we analyze models of Particle Physics at increasingly higher levels of unification, attempting to cover the wide span from the domain of experimentally accessible energies to scales where all the known interactions (including gravity) may be described as low-energy effects of the tremendous and intricate structure of Superstring theories. In particular, we study the scenario of compactification of the Heterotic Superstring theory involving Calabi-Yau manifolds and derive the basic properties of the effective point-field theory action, give a huge class of constructions and devise some techniques for future analysis. Further we study the possibility that the phase-transition from Superstrings to observed particles involves an intermediary phase where the observed particles exhibit compositeness, together with some consequences on the low-energy phenomenology. Finally we include our attempt to modify the SU(5) model, as one of the simplest Grand-unified models, to provide a solution to its difficulties. As we now show, the problems we were trying to address are so generic that some of them remain (in a disguised form) even at the present understanding of the Superstring theories, the most ample constructs of fundamental Physics so far

  19. Spectroscopic Visualization of Inversion and Time-Reversal Symmetry Breaking Weyl Semi-metals

    Science.gov (United States)

    Beidenkopf, Haim

    A defining property of a topological material is the existence of surface bands that cannot be realized but as the termination of a topological bulk. In a Weyl semi-metal these surface states are in the form of Fermi-arcs. Their open-contour Fermi-surface curves between pairs of surface projections of bulk Weyl cones. Such Dirac-like bulk bands, as opposed to the gapped bulk of topological insulators, land a unique opportunity to examine the deep notion of bulk to surface correspondence. We study the intricate properties both of inversion symmetry broken and of time-reversal symmetry broken Weyl semimetals using scanning tunneling spectroscopy. We visualize the Fermi arc states on the surface of the non-centrosymmetric Weyl semi-metal TaAs. Using the distinct structure and spatial distribution of the wavefunctions associated with the different topological and trivial bands we detect the scattering processes that involve Fermi arcs. Each of these imaged scattering processes entails information on the unique nature of Fermi arcs and their correspondence to the topological bulk. We further visualize the magnetic response of the candidate magnetic Weyl semimetal GdPtBi in which the magnetic order parameter is coupled to the topological classification. European Research Council (ERC-StG no. 678702, TOPO-NW\\x9D), the Israel Science Foundation (ISF), and the United States-Israel Binational Science Foundation (BSF).

  20. Study of spontaneously broken conformal symmetry in curved space-times

    International Nuclear Information System (INIS)

    Janson, M.M.

    1977-05-01

    Spontaneous breakdown of Weyl invariance (local scale invariance) in a conformally-invariant extension of a gauge model for weak and electromagnetic interactions is considered. The existence of an asymmetric vacuum for the Higgs field, phi, is seen to depend on the space-time structure via the Gursey-Penrose term, approximately phi + phi R, in the action. (R denotes the scalar curvature.) The effects of a prescribed space-time structure on spontaneously broken Weyl invariance is investigated. In a cosmological space-time, it is found that initially, in the primordial fireball, the symmetry must hold exactly. Spontaneous symmetry breaking (SSB) develops as the universe expands and cools. Consequences of this model include a dependence of G/sub F/, the effective weak interaction coupling strength, on ''cosmic time.'' It is seen to decrease monotonically; in the present epoch (G/sub F//G/sub F/)/sub TODAY/ approximately less than 10 -10 (year) -1 . The effects of the Schwarzschild geometry on SSB are explored. In the interior of a neutron star the Higgs vacuum expectation value, and consequently G/sub F/, is found to have a radial dependence. The magnitude of this variation does not warrant revision of present models of neutron star structures. Another perspective on the problem considered a theory of gravitation (conformal relativity) to be incorporated in the conformally invariant gauge model of weak and electromagnetic interactions. If SSB develops, the vacuum gravitational field equations are the Einstein field equations with a cosmological constant. The stability of the asymmetric vacuum solution is investigated to ascertain whether SSB can occur

  1. Multi-Train Energy Saving for Maximum Usage of Regenerative Energy by Dwell Time Optimization in Urban Rail Transit Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Lin

    2016-03-01

    Full Text Available With its large capacity, the total urban rail transit energy consumption is very high; thus, energy saving operations are quite meaningful. The effective use of regenerative braking energy is the mainstream method for improving the efficiency of energy saving. This paper examines the optimization of train dwell time and builds a multiple train operation model for energy conservation of a power supply system. By changing the dwell time, the braking energy can be absorbed and utilized by other traction trains as efficiently as possible. The application of genetic algorithms is proposed for the optimization, based on the current schedule. Next, to validate the correctness and effectiveness of the optimization, a real case is studied. Actual data from the Beijing subway Yizhuang Line are employed to perform the simulation, and the results indicate that the optimization method of the dwell time is effective.

  2. Null to time-like infinity Green’s functions for asymptotic symmetries in Minkowski spacetime

    International Nuclear Information System (INIS)

    Campiglia, Miguel

    2015-01-01

    We elaborate on the Green’s functions that appeared in http://dx.doi.org/10.1007/JHEP07(2015)115http://arxiv.org/abs/1509.01406 when generalizing, from massless to massive particles, various equivalences between soft theorems and Ward identities of large gauge symmetries. We analyze these Green’s functions in considerable detail and show that they form a hierarchy of functions which describe ‘boundary to bulk’ propagators for large U(1) gauge parameters, supertranslations and sphere vector fields respectively. As a consistency check we verify that the Green’s functions associated to the large diffeomorphisms map the Poincare group at null infinity to the Poincare group at time-like infinity.

  3. SπRIT: A time-projection chamber for symmetry-energy studies

    International Nuclear Information System (INIS)

    Shane, R.; McIntosh, A.B.; Isobe, T.; Lynch, W.G.; Baba, H.; Barney, J.; Chajecki, Z.; Chartier, M.; Estee, J.; Famiano, M.; Hong, B.; Ieki, K.; Jhang, G.; Lemmon, R.; Lu, F.; Murakami, T.; Nakatsuka, N.; Nishimura, M.; Olsen, R.; Powell, W.

    2015-01-01

    A time-projection chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The SπRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as 132 Sn+ 124 Sn. The SπRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode plane. Image charges, produced in the 12096 pads, are read out with the recently developed Generic Electronics for TPCs

  4. Repeated and time-correlated morphological convergence in cave-dwelling harvestmen (Opiliones, Laniatores from Montane Western North America.

    Directory of Open Access Journals (Sweden)

    Shahan Derkarabetian

    Full Text Available BACKGROUND: Many cave-dwelling animal species display similar morphologies (troglomorphism that have evolved convergent within and among lineages under the similar selective pressures imposed by cave habitats. Here we study such ecomorphological evolution in cave-dwelling Sclerobuninae harvestmen (Opiliones from the western United States, providing general insights into morphological homoplasy, rates of morphological change, and the temporal context of cave evolution. METHODOLOGY/PRINCIPAL FINDINGS: We gathered DNA sequence data from three independent gene regions, and combined these data with Bayesian hypothesis testing, morphometrics analysis, study of penis morphology, and relaxed molecular clock analyses. Using multivariate morphometric analysis, we find that phylogenetically unrelated taxa have convergently evolved troglomorphism; alternative phylogenetic hypotheses involving less morphological convergence are not supported by Bayesian hypothesis testing. In one instance, this morphology is found in specimens from a high-elevation stony debris habitat, suggesting that troglomorphism can evolve in non-cave habitats. We discovered a strong positive relationship between troglomorphy index and relative divergence time, making it possible to predict taxon age from morphology. Most of our time estimates for the origin of highly-troglomorphic cave forms predate the Pleistocene. CONCLUSIONS/SIGNIFICANCE: While several regions in the eastern and central United States are well-known hotspots for cave evolution, few modern phylogenetic studies have addressed the evolution of cave-obligate species in the western United States. Our integrative studies reveal the recurrent evolution of troglomorphism in a perhaps unexpected geographic region, at surprisingly deep time depths, and in sometimes surprising habitats. Because some newly discovered troglomorphic populations represent undescribed species, our findings stress the need for further biological

  5. Early time implosion symmetry from two-axis shock-timing measurements on indirect drive NIF experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. D., E-mail: moody4@llnl.gov; Robey, H. F.; Celliers, P. M.; Munro, D. H.; Barker, D. A.; Baker, K. L.; Döppner, T.; Hash, N. L.; Berzak Hopkins, L.; LaFortune, K.; Landen, O. L.; LePape, S.; MacGowan, B. J.; Ralph, J. E.; Ross, J. S.; Widmayer, C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Nikroo, A.; Giraldez, E. [General Atomics, San Diego, California 92186-5608 (United States); Boehly, T. [Laboratory for Laser Energetics, Rochester, New York 14623-1299 (United States)

    2014-09-15

    An innovative technique has been developed and used to measure the shock propagation speed along two orthogonal axes in an inertial confinement fusion indirect drive implosion target. This development builds on an existing target and diagnostic platform for measuring the shock propagation along a single axis. A 0.4 mm square aluminum mirror is installed in the ablator capsule which adds a second orthogonal view of the x-ray-driven shock speeds. The new technique adds capability for symmetry control along two directions of the shocks launched in the ablator by the laser-generated hohlraum x-ray flux. Laser power adjustments in four different azimuthal cones based on the results of this measurement can reduce time-dependent symmetry swings during the implosion. Analysis of a large data set provides experimental sensitivities of the shock parameters to the overall laser delivery and in some cases shows the effects of laser asymmetries on the pole and equator shock measurements.

  6. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2016-01-01

    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  7. Dwell-time effect on the synthesis of a nano-structured material in water by using Ni wire explosion

    International Nuclear Information System (INIS)

    Eom, Gyu Sub; Kwon, Hyeok Jung; Cho, Yong Sub; Paek, Kwang Hyun; Joo, Won Tae

    2014-01-01

    Nickel nano-structured materials are synthesized by using a wire explosion in water. Based on an analysis of each step of the wire explosion, we propose insufficient energy deposition before a plasma restrike as the cause for the inclusion of coarse particles in the wire-explosion product. We confirmed that more energy, in excess of 30%, could be deposited by increasing the dwell time, which resulted from a compression of vapor by the surrounding water and from suppression of plasma restrikes. Because of an increased energy loss into the surrounding water, the specific energy increased by two-fold compared to a gas atmosphere. The synthesized nano-structured nickel showed a uniform particle size of 20 nm with a few coarse particles that were mainly metallic nickel with a little oxide and hydroxide phases. The possibility for large-volume production through a continuous explosion of 300 shots was confirmed.

  8. Introducing a Third Timed Up & Go Test Trial Improves Performances of Hospitalized and Community-Dwelling Older Individuals

    DEFF Research Database (Denmark)

    Bloch, Mette Linding; R. Jønsson, Line R. Jønsson; T. Kristensen, Morten

    2017-01-01

    in hospitalized and community-dwelling older individuals. Methods: Eighty-two participants (50 from a geriatric hospital unit and 32 from an outpatient geriatric center; 52 women, 30 men) with a mean (SD) age of 83.6 (7.9) years were included in this cross-sectional study. All participants (except one from...... the hospital unit) performed 3 TUG trials, as fast as safely possible on the same day, and separated by up to 1-minute pauses. A rollator (4-wheeled rolling walker) was used as a standardized walking aid in the geriatric hospital unit, whereas participants used their normal walking aid (if any......) in the outpatient geriatric center. Results and Discussion: The fastest trial was trial 3 for 47 (57%), trial 2 for 25 (31%), and trial 1 for 10 (12%). Repeated-measures analyses of variance with Bonferroni corrections showed that TUG times improved from trial 1 to trial 3 (P

  9. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  10. Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks

    Science.gov (United States)

    Wang, Zhen; Campbell, Sue Ann

    2017-11-01

    We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with ZN symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.

  11. Current status and future prospect of space and time reversal symmetry violation on low energy neutron reactions

    International Nuclear Information System (INIS)

    Masuda, Yasuhiro

    1993-01-01

    In this report, the papers on symmetry violation under space reflection and time reversal and neutron spin, neutron spin rotation and P-violation, parity nonconservation in neutron capture reaction, some advantage of the search for CP-violation in neutron scattering, dynamic polarization of 139 La target, alexandrite laser for optical pumping, polarized 3 He system for T- and P-violation neutron experiments, control of neutron spin in T-violation neutron experiment, symmetry regarding time and space and angular distribution and angular correlation of radiation and particle beams, T-violation due to low temperature nuclear polarization and axion exploration using nuclear transition are collected. (K.I.)

  12. Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada–Kotera–Ito equation

    Directory of Open Access Journals (Sweden)

    Emrullah Yaşar

    Full Text Available In this paper Lie symmetry analysis of the seventh-order time fractional Sawada–Kotera–Ito (FSKI equation with Riemann–Liouville derivative is performed. Using the Lie point symmetries of FSKI equation, it is shown that it can be transformed into a nonlinear ordinary differential equation of fractional order with a new dependent variable. In the reduced equation the derivative is in Erdelyi–Kober sense. Furthermore, adapting the Ibragimov’s nonlocal conservation method to time fractional partial differential equations, we obtain conservation laws of the underlying equation. In addition, we construct some exact travelling wave solutions for the FSKI equation using the sub-equation method. Keywords: Fractional Sawada–Kotera–Ito equation, Lie symmetry, Riemann–Liouville fractional derivative, Conservation laws, Exact solutions

  13. On spinless null propagation in five-dimensional space-times with approximate space-like Killing symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Breban, Romulus [Institut Pasteur, Paris Cedex 15 (France)

    2016-09-15

    Five-dimensional (5D) space-time symmetry greatly facilitates how a 4D observer perceives the propagation of a single spinless particle in a 5D space-time. In particular, if the 5D geometry is independent of the fifth coordinate then the 5D physics may be interpreted as 4D quantum mechanics. In this work we address the case where the symmetry is approximate, focusing on the case where the 5D geometry depends weakly on the fifth coordinate. We show that concepts developed for the case of exact symmetry approximately hold when other concepts such as decaying quantum states, resonant quantum scattering, and Stokes drag are adopted, as well. We briefly comment on the optical model of the nuclear interactions and Millikan's oil drop experiment. (orig.)

  14. Analysis of Current-mode Detectors For Resonance Detection In Neutron Optics Time Reversal Symmetry Experiment

    Science.gov (United States)

    Forbes, Grant; Noptrex Collaboration

    2017-09-01

    One of the most promising explanations for the observed matter-antimatter asymmetry in our universe is the search for new sources of time-reversal (T) symmetry violation. The current amount of violation seen in the kaon and B-meson systems is not sufficient to describe this asymmetry. The Neutron Optics Time Reversal Experiment Collaboration (NOPTREX) is a null test for T violation in polarized neutron transmission through a polarized 139La target. Due to the high neutron flux needed for this experiment, as well as the ability to effectively subtract background noise, a current-mode neutron detector that can resolve resonances at epithermal energies has been proposed. In order to ascertain if this detector design would meet the requirements for the eventual NOPTREX experiment, prototypical detectors were tested at the NOBORU beam at the Japan Proton Accelerator Research Complex (JPARC) facility. Resonances in In and Ta were measured and the collected data was analyzed. This presentation will describe the analysis process and the efficacy of the detectors will be discussed. Department of Energy under Contract DE-SC0008107, UGRAS Scholarship.

  15. Dwelling Designers

    Science.gov (United States)

    Szekely, George

    2012-01-01

    Children's inventions go far beyond track housing or Ethan Allen furniture; they foreshadow the most innovative ideas in building forms and interior designs. Children improvise with containers and find places in a home that suggest enticing dwellings. A drawer left open becomes a balcony, soap trays become cots, and the space between twin beds…

  16. Raising the energy performance of historical dwellings

    NARCIS (Netherlands)

    van Krugten, L.T.F.; Hermans, L.M.C.; Havinga, L.C.; Pereira Roders, A.R.; Schellen, H.L.

    2016-01-01

    Purpose: Earlier studies assume that historical dwellings and post-war dwellings in particular, are less sustainable than modern dwellings, justifying its demolition. Over time, historical buildings have been transformed and their energy performance improved. However, there is little known on the

  17. Symmetry and symmetry breaking

    International Nuclear Information System (INIS)

    Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.

    1999-01-01

    The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)

  18. Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001).

    Science.gov (United States)

    Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar

    2015-12-01

    Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.

  19. Relative and Absolute Reliability of Timed Up and Go Test in Community Dwelling Older Adult and Healthy Young People

    Directory of Open Access Journals (Sweden)

    Farhad Azadi

    2014-01-01

    Full Text Available Objectives: Relative and absolute reliability are psychometric properties of the test that many clinical decisions are based on them. In many cases, only relative reliability takes into consideration while the absolute reliability is also very important. Methods & Materials: Eleven community-dwelling older adults aged 65 years and older (69.64±3.58 and 20 healthy young in the age range 20 to 35 years (28.80±4.15 using three versions of Timed Up and Go test were evaluated twice with an interval of 2 to 5 days. Results: Generally, the non-homogeneity of the study population was stratified to increase the Intra-class Correlation Coefficient (ICC this coefficient in elderly people is greater than young people and with a secondary task is reduced. In This study, absolute reliability indices using different data sources and equations lead to in more or less similar results. At general, in test–retest situations, the elderly more than the young people must be changed to be interpreted as a real change, not random. The random error contribution is slightly greater in elderly than young and with a secondary task is increased.It seems, heterogeneity leads to moderation in absolute reliability indices. Conclusion: In relative reliability studies, researchers and clinicians should pay attention to factors such as homogeneity of population and etc. As well as, absolute reliability beside relative reliability is needed and necessary in clinical decision making.

  20. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun

    2016-09-02

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  1. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  2. Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1983-01-01

    A system theoretic framework is given for the description of Hamiltonian systems with external forces and partial observations of the state. It is shown how symmetries and conservation laws can be defined within this framework. A generalization of Noether's theorem is obtained. Finally a precise

  3. Borges in my office: the analysis of a man dwelling outside of time.

    Science.gov (United States)

    Shoshani, Michael; Shoshani, Batya

    2013-07-01

    This article weaves together two threads: the intricacies of the analysis of a difficult-to-reach yet extraordinary patient and the literary works of Jorge Luis Borges, which played a significant role in the analysis as a source of inspiration, enriching the analyst's reverie and opening up new psychic spaces. The authors demonstrate the analyst's recourse to several of Borges's stories in order to enrich his own inner world and to better understand the analysand. Some of these stories are briefly presented through the analyst's dialogue with them, and there is a discussion of their function in facilitating the process of working through issues of time, memory, mortality, and identity, contributing to the enhancement of the patient's ability to come face to face with the unwanted, split-off parts of his self and of reality. © 2013 The Psychoanalytic Quarterly, Inc.

  4. Using mid infrared technology as new method for the determination of the dwell time of salivary substitutes on three dimensional gingiva models

    Directory of Open Access Journals (Sweden)

    Karin Engelhart

    2016-03-01

    Full Text Available Abstract Background Many people suffer from dry mouth (xerostomia due to radiotherapy treatment of head and neck cancer, diseases like Sjogren’s syndrome or as adverse effects to prescribed medications. Salivary substitute products like gels or sprays are often used for treatment. Efficacy of those oral care products are regularly assessed by validated or even not validated questionnaires. To determine the adhesion effect over time more objectively a new and sensitive method was established. The following study was designed to assess the dwell time of different oral care products in vitro. Method Two different types of surfaces were covered with oral care products and washed using a definite protocol with artificial saliva salt solution. First, oral care gels or oral care sprays were spread to a polystyrene surface of 2.25 cm2, then onto cell based three-dimensional gingiva models. The surfaces were washed ten times with artificial saliva salt solution. The resulting washing solutions were examined using mid infrared spectroscopy in order to detect ingredients of the oral care products. Results All assessed oral care gels or oral care sprays and their components were detected very sensitive. Even traces of the products were detected in the eluent and thus enabled to differentiate the dwell times of the different products. In general, the dwell time of oral care gels on polystyrene or gingiva models was longer than that of oral care sprays. The use of gingiva models improved the differentiation between different products. Conclusions MIR spectroscopy turned out to be a sensitive method to detect salivary substitutes. Differences between single components and different products can be detected. The described method is a simple, reliable and easy process to evaluate the dwell time of oral care products in vitro and thus a useful tool to design optimised salivary substitute products. Ethics This is an in vitro study. No ethics or consent was

  5. Virtual Realities: How Remote Dwelling Populations Become More Remote Over Time despite Technological Improvements

    Directory of Open Access Journals (Sweden)

    Dean Carson

    2010-05-01

    Full Text Available For those who have access to them, technologies of various sorts play a key role in maintaining connections between small and geographically dispersed settlements and to the wider World. For technologies to work in remote areas, there must be a framework of adaptability which ensures that users can adapt their practices to suit the new technology, technologies can be customised for local conditions, and an institutional infrastructure (including a regulatory environment allows these adaptations to occur. In recent times, remote Australia’s “power to persuade” government to consider its needs when designing regulatory environments has diminished as a result of the changing nature of remote economies. This paper uses two case examples—that of air transport technology and that of communications technology—to demonstrate how a poor regulatory environment in effect increases the isolation of remote settlements. In the case of air transport, over regulation has made the cost of adoption and access too high for many remote dwellers. In the case of communications technology, de-regulation has made it difficult for remote dwellers to demand equity of access to infrastructure. We conclude by suggesting that regulatory systems need to be more aware of the unique conditions facing remote populations. Research into the persistently low rates of technology adoption in remote areas needs to be more cognizant of the regulatory adaptability aspect.

  6. Spontaneous breaking of time-reversal symmetry in strongly interacting two-dimensional electron layers in silicon and germanium.

    Science.gov (United States)

    Shamim, S; Mahapatra, S; Scappucci, G; Klesse, W M; Simmons, M Y; Ghosh, A

    2014-06-13

    We report experimental evidence of a remarkable spontaneous time-reversal symmetry breaking in two-dimensional electron systems formed by atomically confined doping of phosphorus (P) atoms inside bulk crystalline silicon (Si) and germanium (Ge). Weak localization corrections to the conductivity and the universal conductance fluctuations were both found to decrease rapidly with decreasing doping in the Si:P and Ge:P delta layers, suggesting an effect driven by Coulomb interactions. In-plane magnetotransport measurements indicate the presence of intrinsic local spin fluctuations at low doping, providing a microscopic mechanism for spontaneous lifting of the time-reversal symmetry. Our experiments suggest the emergence of a new many-body quantum state when two-dimensional electrons are confined to narrow half-filled impurity bands.

  7. Practicing the Attentional Dwell Away?

    DEFF Research Database (Denmark)

    Petersen, Anders; Kyllingsbæk, Søren; Bundesen, Claus

    2007-01-01

    Studies of the time course of visual attention have identified a temporary functional blindness to the second of two spatially separated targets: attending to one visual stimulus may lead to impairments in identifying a second stimulus presented about 200-500 ms later than the first. The phenomenon...... is known as the attentional dwell time (e.g. Duncan, Ward, Shapiro, 1994). Previous studies of attentional dwell time have all used naive subjects running few (.... The results suggest that the majority of subjects may learn to optimize their performance reducing the attentional dwell time effect substantially. Further, the reduction in the attentional dwell time effect seems to be closely linked to the ability of the subject to inhibit eye movements while performing...

  8. The subtle danger of symmetry restrictions in time series regressions, with application to fertility models.

    Science.gov (United States)

    Haynes, S E

    1983-10-01

    It is widely known that linear restrictions involve bias. What is not known is that some linear restrictions are especially dangerous for hypothesis testing. For some, the expected value of the restricted coefficient does not lie between (among) the true unconstrained coefficients, which implies that the estimate is not a simple average of these coefficients. In this paper, the danger is examined regarding the additive linear restriction almost universally imposed in statistical research--the restriction of symmetry. Symmetry implies that the response of the dependent variable to a unit decrease in an expanatory variable is identical, but of opposite sign, to the response to a unit increase. The 1st section of the paper demonstrates theoretically that a coefficient restricted by symmetry (unlike coefficients embodying other additive restrictions) is not a simple average of the unconstrained coefficients because the relevant interacted variables are inversly correlated by definition. The next section shows that, under the restriction of symmetry, fertility in Finland from 1885-1925 appears to respond in a prolonged manner to infant mortality (significant and positive with a lag of 4-6 years), suggesting a response to expected deaths. However, unscontrained estimates indicate that this finding is spurious. When the restriction is relaxed, the dominant response is rapid (significant and positive with a lag of 1-2 years) and stronger for declines in mortality, supporting an aymmetric response to actual deaths. For 2 reasons, the danger of the symmetry restriction may be especially pervasive. 1st, unlike most other linear constraints, symmetry is passively imposed merely by ignoring the possibility of asymmetry. 2nd, modles in a wide range of fields--including macroeconomics (e.g., demand for money, consumption, and investment models, and the Phillips curve), international economics (e.g., intervention models of central banks), and labor economics (e.g., sticky wage

  9. Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 8, č. 6 (2016), s. 52 ISSN 2073-8994 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : parity-time symmetry * Schrodinger equation * physical Hilbert space * inner-product metric operator * real exceptional points * solvable models * quantum Big Bang * quantum Inflation period Subject RIV: BE - Theoretical Physics Impact factor: 1.457, year: 2016

  10. Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation

    Science.gov (United States)

    Baleanu, Dumitru; Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa

    2018-06-01

    In this work, we investigate the Lie symmetry analysis, exact solutions and conservation laws (Cls) to the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGDK) equation with Riemann-Liouville (RL) derivative. The time fractional CDGDK is reduced to nonlinear ordinary differential equation (ODE) of fractional order. New exact traveling wave solutions for the time fractional CDGDK are obtained by fractional sub-equation method. In the reduced equation, the derivative is in Erdelyi-Kober (EK) sense. Ibragimov's nonlocal conservation method is applied to construct Cls for time fractional CDGDK.

  11. Universe symmetries

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1984-01-01

    The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr

  12. Focused ion beam scan routine, dwell time and dose optimizations for submicrometre period planar photonic crystal components and stamps in silicon

    International Nuclear Information System (INIS)

    Hopman, Wico C L; Ay, Feridun; Hu, Wenbin; Gadgil, Vishwas J; Kuipers, Laurens; Pollnau, Markus; Ridder, Rene M de

    2007-01-01

    Focused ion beam (FIB) milling is receiving increasing attention for nanostructuring in silicon (Si). These structures can for example be used for photonic crystal structures in a silicon-on-insulator (SOI) configuration or for moulds which can have various applications in combination with imprint technologies. However, FIB fabrication of submicrometre holes having perfectly vertical sidewalls is still challenging due to the redeposition effect in Si. In this study we show how the scan routine of the ion beam can be used as a sidewall optimization parameter. The experiments have been performed in Si and SOI. Furthermore, we show that sidewall angles as small as 1.5 0 are possible in Si membranes using a spiral scan method. We investigate the effect of the dose, loop number and dwell time on the sidewall angle, interhole milling and total milling depth by studying the milling of single and multiple holes into a crystal. We show that the sidewall angles can be as small as 5 0 in (bulk) Si and SOI when applying a larger dose. Finally, we found that a relatively large dwell time of 1 ms and a small loop number is favourable for obtaining vertical sidewalls. By comparing the results with those obtained by others, we conclude that the number of loops at a fixed dose per hole is the parameter that determines the sidewall angle and not the dwell time by itself

  13. Symmetry in running.

    Science.gov (United States)

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  14. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    Science.gov (United States)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  15. Closeout Report - Search for Time Reversal Symmetry Violation with TREK at J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, Michael [Hampton Univ., VA (United States)

    2015-04-15

    academic positions. Two former graduate students of the group have graduated and received their PhD degrees in nuclear physics (Dr. Anusha Liyanage and Dr. Ozgur Ates). In particular, this award has enabled Dr. Kohl to pursue the TREK project (Time Reversal Experiment with Kaons) at J-PARC, which he has been leading and advancing as International Spokesperson. Originally proposed as a search for time reversal symmetry violation [6], the project has evolved into a precision test of lepton flavor universality in the Standard Model along with sensitive searches for physics beyond the Standard Model through a possible discovery of new particles such as a sterile neutrino or a neutral gauge boson from the hidden sector in the mass region up to 300 MeV/c2 [7]. Experiment TREK/E36, first proposed in 2010, has been mounted between November 2014 and April 2015, and commissioning with beam has been started in April 2015, with production running anticipated in early summer and late fall 2015. It uses the apparatus from the previous KEK/E-246 experiment with partial upgrades to measure the ratio of decay widths of leptonic two-body decays of the charged kaon to µν and eν, respectively, which is highly sensitive to the ratio of electromagnetic charged lepton couplings and possible new physics processes that could differentiate between μ and e, hence breaking lepton flavor universality of the Standard Model. Through the searches for neutral massive particles, TREK/E36 can severely constrain any new physics scenarios designed to explain the proton radius puzzle [12, 13].

  16. Space-time symmetry and quantum Yang-Mills gravity how space-time translational gauge symmetry enables the unification of gravity with other forces

    CERN Document Server

    Hsu, Jong-Ping

    2013-01-01

    Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a

  17. Radon in Norwegian dwellings

    International Nuclear Information System (INIS)

    Strand, T.; Green, B.M.R; Lomas, P.R.; Mangnus, K.; Stranden, E.

    1991-01-01

    Measurements of radon in indoor air have been made in a total of about 7500 randomly selected dwellings in Norway from all parts of the country. The number of selected dwellings in each municipality is about proportional to its population, except for the two largest municipalities, Oslo and Bergen, where somewhat smaller samples were taken due to the higher population density. The measurements were performed by nuclear track detectors from the National Radiological Protection Boards in United Kingdom, and the integration time for the measurements was 6 months. The detectors were spread evenly over all seasons of the year to eliminate influence from seasonal variation in the radon level. One single measurement was performed in each dwelling: in the main bedroom. The results shows that the distribution of radon concentrations in Norwegian bedrooms is log-normal. The aritmetic mean of the measurements, including all categories of dwellings, is calculated to be 51 Bq/m 3 and the corresponding geometric mean to be 26 Bq/m 3 . In a large proportion of single-family houses the living room and the kitchen are located on the ground floor while the bedrooms are located one floor higher. The results of the study shows that the radon level is somewhat higher at the ground floor than on the first floor, and higher in the basement than on the first floor. Taking this into account, and assuming that measurements in bedrooms on the first floor is a representative average for living room and kitchen, the average radon concentration for Norwegian dwellings is estimated to be between 55-65 Bq/m 3 . In this estimate, possible influences of the fact that the winters 87/88 and 88/89 were much warmer than normal and may therefor have lowered the results, has been taken into account. 15 refs., 9 figs., 15 tabs

  18. Parity-time symmetry optics for modal selection in transverse and longitudinal waves (Conference Presentation)

    Science.gov (United States)

    Benisty, Henri; Lupu, Anatole

    2017-05-01

    The evolving field of optics for information and communication is currently seeking directions to expand the data rates in all concerned devices, fiber-based or on chips. We describe here two possibilities where the new concept of PT-symmetry in optics [1,2] can be exploited to help high data rate operation, considering either transverse or longitudinal aspects of modal selection, and assuming that data are carried using precise modes. The first aspect is transverse multimode transport. In this case, a fiber or a waveguide carries a few modes, say 4 to 16, and at nodes, they have to undergo a demux/mux operation to add or drop a subset of them, as much as possible without affecting the others. We shall consider to this end the operation as described in ref. [3] : if a PT-symmetric "potential", which essentially consists of a transverse gain-loss profile with antisymmetry, is applied to a waveguide, it has a very different impact on the different modes and mode families in the waveguide. One can in particular find situations where only two modes of the passive waveguide to be analyzed may enter into a gain regime, and not the other ones. From this scheme and others [4], we will discuss what is the road left towards an actual device, either in dielectrics or in case plasmonics is envisioned [5], i.e. with rather constant losses, but the possible advantage of miniaturization. The second aspect is longitudinal mode selection. The special transport properties of PT-symmetric Bragg gratings are now well established. In order to be used within a data management system, attention has to be paid to the rejection rate of Bragg gratings, and to the flatness of their response in the targeted window. To this end, a slow modulation of both real and imaginary parts of the periodic pattern of the basically PT-symmetric waveguide can help, in the general spirit of "apodization", but now with more parameters. We will detail some aspects of the designs introduced in [6] , notably

  19. Profiling Occupant Behaviour in Danish Dwellings using Time Use Survey Data - Part II: Time-related Factors and Occupancy

    DEFF Research Database (Denmark)

    Barthelmes, V.M.; Li, R.; Andersen, R.K.

    2018-01-01

    Occupant behaviour has been shown to be one of the key driving factors of uncertainty in prediction of energy consumption in buildings. Building occupants affect building energy use directly and indirectly by interacting with building energy systems such as adjusting temperature set...... occupant profiles for prediction of energy use to reduce the gap between predicted and real building energy consumptions. In this study, we exploit diary-based Danish Time Use Surveys for understanding and modelling occupant behaviour in the residential sector in Denmark. This paper is a continuation......-points, switching lights on/off, using electrical devices and opening/closing windows. Furthermore, building inhabitants’ daily activity profiles clearly shape the timing of energy demand in households. Modelling energy-related human activities throughout the day, therefore, is crucial to defining more realistic...

  20. Radon studies in Indian dwellings

    International Nuclear Information System (INIS)

    Khan, A.J.

    2000-01-01

    The indoor radon ( 222 Rn) concentration has been measured by Solid State Nuclear Track Detectors (SSNTDs) in large number of Indian dwellings. Radon concentrations were measured in different parts of the country. In the first study, radon concentrations were measured in 143 dwellings of Udaipur, Bikaner and Banswara towns of Rajasthan province. The distributions of the time-averaged indoor radon concentration in these three towns of the Rajasthan fit an approximately log normal distribution. The geometric mean (GM) values of radon concentrations in these three places were found to be 74 Bq m -3 , 46 Bq m -3 and 66 Bq m -3 with a geometric standard deviation (GSD) of 2.2, 2.2 and 2.5 respectively. In another study, radon concentrations were measured in about 150 dwellings of hilly regions of the country. The measurements were carried out in Kohima (Nagaland), Baijnath and Palampur (Himachal Pradesh). The distribution of radon concentration in Kohima dwellings was found to be approximately log normal, however, the radon distribution in Baijnath and Palampur dwellings seems to be bimodal. The GM values of the radon concentrations for 65 dwellings in Kohima and 43 dwellings in Baijnath and Palampur were 88 Bq m -3 and 134 Bq m -3 with GSD of 1.7 and 2.5 respectively. The results are discussed in detail. (author)

  1. Generalized global symmetries

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian

    2015-01-01

    A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

  2. Non-commutative phase space and its space-time symmetry

    International Nuclear Information System (INIS)

    Li Kang; Dulat Sayipjamal

    2010-01-01

    First a description of 2+1 dimensional non-commutative (NC) phase space is presented, and then we find that in this formulation the generalized Bopp's shift has a symmetric representation and one can easily and straightforwardly define the star product on NC phase space. Then we define non-commutative Lorentz transformations both on NC space and NC phase space. We also discuss the Poincare symmetry. Finally we point out that our NC phase space formulation and the NC Lorentz transformations are applicable to any even dimensional NC space and NC phase space. (authors)

  3. Timed Up and Go test, atrophy of medial temporal areas and cognitive functions in community-dwelling older adults with normal cognition and mild cognitive impairment.

    Science.gov (United States)

    Kose, Yujiro; Ikenaga, Masahiro; Yamada, Yosuke; Morimura, Kazuhiro; Takeda, Noriko; Ouma, Shinji; Tsuboi, Yoshio; Yamada, Tatsuo; Kimura, Misaka; Kiyonaga, Akira; Higaki, Yasuki; Tanaka, Hiroaki

    2016-12-01

    This study aimed to ascertain if performance on the Timed Up and Go (TUG) test is associated with indicators of brain volume and cognitive functions among community-dwelling older adults with normal cognition or mild cognitive impairment. Participants were 80 community-dwelling older adults aged 65-89years (44 men, 36 women), including 20 with mild cognitive impairment. Participants completed the TUG and a battery of cognitive assessments, including the Mini-Mental State Examination (MMSE), the Logical Memory I and II (LM-I, LM-II) subtests of the Wechsler Memory Scale-Revised; and the Trail Making Test A and B (TMT-A, TMT-B). Bilateral, right- and left-side medial temporal area atrophy as well as whole gray and white matter indices were determined with the Voxel-based Specific Regional Analysis System for Alzheimer's Disease. We divided participants into three groups based on TUG performance: "better" (≤6.9s); "normal" (7-10s); and "poor" (≥10.1s). Worse TMT-A and TMT-B performance showed significant independent associations with worse TUG performance (Pareas were significantly independently associated with worse TUG performance (Parea atrophy in community-dwelling older adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables

    Science.gov (United States)

    Andrews, D. L.

    2018-03-01

    To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light-matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of structured or twisted light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications.

  5. Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior.

    Science.gov (United States)

    Pillai, Ajay S; Jirsa, Viktor K

    2017-06-07

    In order to maintain brain function, neural activity needs to be tightly coordinated within the brain network. How this coordination is achieved and related to behavior is largely unknown. It has been previously argued that the study of the link between brain and behavior is impossible without a guiding vision. Here we propose behavioral-level concepts and mechanisms embodied as structured flows on manifold (SFM) that provide a formal description of behavior as a low-dimensional process emerging from a network's dynamics dependent on the symmetry and invariance properties of the network connectivity. Specifically, we demonstrate that the symmetry breaking of network connectivity constitutes a timescale hierarchy resulting in the emergence of an attractive functional subspace. We show that behavior emerges when appropriate conditions imposed upon the couplings are satisfied, justifying the conductance-based nature of synaptic couplings. Our concepts propose design principles for networks predicting how behavior and task rules are represented in real neural circuits and open new avenues for the analyses of neural data. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Tunneling time in fluctuating symmetric double wells: Suppression and enhancement of tunneling by spatial symmetry-preserving perturbations

    International Nuclear Information System (INIS)

    Kar, Susmita; Bhattacharyya, S.P.

    2011-01-01

    Graphical abstract: Spatial symmetry-preserving sinusoidal fluctuations of symmetric double-well parameters cause enhancement of tunneling at ω ∼ ω 0 while rectified sinusoidal fluctuations suppress it at ω∼(ω 0 )/2 . Research highlights: → Spatial symmetry-preserving sinusoidal and rectified sinusoidal fluctuations of symmetrical double-well parameters have contrasting effects on tunneling. → Sinusoidal fluctuations at frequency ω ∼ ω 0 causes resonance enhancement of tunneling, ω 0 being the 0 + ↔ 1 + transition frequency. → Under rectified sinusoidal fluctuations at a frequency ω∼1/2 ω 0 suppression or coherent destruction of tunneling is observed due to barrier localization. → The observations are explained by energy-gain analysis and analysis of the time-dependent overlap amplitudes. - Abstract: We investigate how tunneling-time gets affected by spatial symmetry preserving fluctuations in the parameters determining the width, barrier height and well-depth of a symmetric double-well potential. Sinusoidal and rectified sinusoidal fluctuations of the well-parameters are shown to have contrasting effects. Significant enhancement of tunneling is noticed when the well-parameters fluctuate sinusoidally with frequency ω ∼ ω 0 while under rectified sinusoidal perturbation, quenching of tunneling takes place at a fluctuation frequency ω∼1/2 ω 0 ,ω 0 , being the frequency of the lowest transition allowed by the fluctuation induced spatial perturbation of even parity. Time-dependent Hellmann-Feynman theorem is invoked to analyze the energy changes induced by fluctuations. It turns out that the enhancement of tunneling in the sinusoidally fluctuating double well at frequency ω ∼ ω 0 is caused by transition to 1 ± levels under the barrier while in the rectified sinusoidal field at ω∼1/2 ω 0 , a two-photon like process suppresses the tunneling by inducing barrier localization.

  7. Space-time symmetries and the Yang-Mills gradient flow

    CERN Document Server

    Del Debbio, Luigi; Rago, Antonio

    2013-01-01

    The recent introduction of the gradient flow has provided a new tool to probe the dynamics of quantum field theories. The latest developments have shown how to use the gradient flow for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In this paper we introduce infinitesimal translations along the gradient flow for gauge theories, and study the corresponding Ward identities. This approach is readily generalized to the case of gauge theories defined on a lattice, where the regulator breaks translation invariance. The Ward identities in this case lead to a nonperturbative renormalization of the energy-momentum tensor. We discuss an application of this method to the study of dilatations and scale invariance on the lattice.

  8. Breaking Symmetry in Time-Dependent Electronic Structure Theory to Describe Spectroscopic Properties of Non-Collinear and Chiral Molecules

    Science.gov (United States)

    Goings, Joshua James

    Time-dependent electronic structure theory has the power to predict and probe the ways electron dynamics leads to useful phenomena and spectroscopic data. Here we report several advances and extensions of broken-symmetry time-dependent electronic structure theory in order to capture the flexibility required to describe non-equilibrium spin dynamics, as well as electron dynamics for chiroptical properties and vibrational effects. In the first half, we begin by discussing the generalization of self-consistent field methods to the so-called two-component structure in order to capture non-collinear spin states. This means that individual electrons are allowed to take a superposition of spin-1/2 projection states, instead of being constrained to either spin-up or spin-down. The system is no longer a spin eigenfunction, and is known a a spin-symmetry broken wave function. This flexibility to break spin symmetry may lead to variational instabilities in the approximate wave function, and we discuss how these may be overcome. With a stable non-collinear wave function in hand, we then discuss how to obtain electronic excited states from the non-collinear reference, along with associated challenges in their physical interpretation. Finally, we extend the two-component methods to relativistic Hamiltonians, which is the proper setting for describing spin-orbit driven phenomena. We describe the first implementation of the explicit time propagation of relativistic two-component methods and how this may be used to capture spin-forbidden states in electronic absorption spectra. In the second half, we describe the extension of explicitly time-propagated wave functions to the simulation of chiroptical properties, namely circular dichroism (CD) spectra of chiral molecules. Natural circular dichroism, that is, CD in the absence of magnetic fields, originates in the broken parity symmetry of chiral molecules. This proves to be an efficient method for computing circular dichroism spectra

  9. SU-E-T-16: A Comparison of Expected Dwell Times and Dose Variations for NAMD Patients Treated with An Episcleral Brachytherapy Device

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, R [Univ Arizona, Tucson, AZ (United States); Patel, P; Balaggan, K; Restori, M; Ilginis, T [Moorfields Eye Hospital, London (United Kingdom); Drew, M; McGovern, M; Vitali, J; Marsteller, L [Salutaris Medical Devices, Inc., Tucson, AZ (United States)

    2015-06-15

    Purpose: To evaluate the variations in dwell times and doses expected when using an episcleral brachytherapy device for treatment of neovascular agerelated macular degeneration (n-AMD) based on accurate imaging modalities Methods: Data from 40 eyes from 40 subjects with known n- AMD acquired through the Distance of Choroid Study (DOCS) conducted at Moorfields Eye Hospital was used to determine the target depth; the distance from the outer scleral surface of the eye, through the choroid, to the apex of the choroidal neovascularization (CNV). Each subject underwent, in triplicate, enhanced-depth Spectral Domain Optical Coherence Tomography (SD-OCT), Swept Source Optical Coherence Tomography, (SS-OCT) and Ocular Ultrasound (O-US). These data are the most comprehensive and accurate measurements of the dimensions of the CNV and adjacent layers of the eye for this cohort of patients. During treatment of n-AMD, patients receive a dose of 24Gy to the apex at the target depth. Using the percentage depth dose for a Sr-90 episcleral brachytherapy device, dwell times and doses to the apex were computed to determine the expected variations. Results: The mean target depth and the 95% confidence interval (CI) determined by combining O-US with SD-OCT were 1326 (956,1696)µm and with SS-OCT were 1332 (970,1693)µm. The calculated corresponding mean dwell times and 95% (CI) were 334 (223,445)s and 335 (226,445)s for SD-OCT and SS-OCT determined depths, respectively. The corresponding mean apex dose and 95% (CI) were 24 (35.9,18.0)Gy (SD-OCT) and 24 (35.6,18.1)Gy (SS-OCT). Conclusion: For episcleral brachytherapy treatment of n-AMD, using a patient population average target depth for treatment planning is inadequate, resulting in dose variations of a factor of approximately two over the 95% CI and larger variations for a nontrivial segment of the population. Each patient should have individualized imaging studies to determine the target depth for use in the dwell time calculation

  10. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    Science.gov (United States)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  11. SU-E-T-16: A Comparison of Expected Dwell Times and Dose Variations for NAMD Patients Treated with An Episcleral Brachytherapy Device

    International Nuclear Information System (INIS)

    Hamilton, R; Patel, P; Balaggan, K; Restori, M; Ilginis, T; Drew, M; McGovern, M; Vitali, J; Marsteller, L

    2015-01-01

    Purpose: To evaluate the variations in dwell times and doses expected when using an episcleral brachytherapy device for treatment of neovascular agerelated macular degeneration (n-AMD) based on accurate imaging modalities Methods: Data from 40 eyes from 40 subjects with known n- AMD acquired through the Distance of Choroid Study (DOCS) conducted at Moorfields Eye Hospital was used to determine the target depth; the distance from the outer scleral surface of the eye, through the choroid, to the apex of the choroidal neovascularization (CNV). Each subject underwent, in triplicate, enhanced-depth Spectral Domain Optical Coherence Tomography (SD-OCT), Swept Source Optical Coherence Tomography, (SS-OCT) and Ocular Ultrasound (O-US). These data are the most comprehensive and accurate measurements of the dimensions of the CNV and adjacent layers of the eye for this cohort of patients. During treatment of n-AMD, patients receive a dose of 24Gy to the apex at the target depth. Using the percentage depth dose for a Sr-90 episcleral brachytherapy device, dwell times and doses to the apex were computed to determine the expected variations. Results: The mean target depth and the 95% confidence interval (CI) determined by combining O-US with SD-OCT were 1326 (956,1696)µm and with SS-OCT were 1332 (970,1693)µm. The calculated corresponding mean dwell times and 95% (CI) were 334 (223,445)s and 335 (226,445)s for SD-OCT and SS-OCT determined depths, respectively. The corresponding mean apex dose and 95% (CI) were 24 (35.9,18.0)Gy (SD-OCT) and 24 (35.6,18.1)Gy (SS-OCT). Conclusion: For episcleral brachytherapy treatment of n-AMD, using a patient population average target depth for treatment planning is inadequate, resulting in dose variations of a factor of approximately two over the 95% CI and larger variations for a nontrivial segment of the population. Each patient should have individualized imaging studies to determine the target depth for use in the dwell time calculation

  12. Symmetries and conservation laws in the single-time Lagrangian form of the Fokker-type relativistic dynamics

    International Nuclear Information System (INIS)

    Tretyak, V.I.; Gaida, R.P.

    1980-01-01

    Symmetry properties of the single-time relativistic Lagrangian of an N-particle-system corresponding to the many-time action of the Fokker-type, which are a function of derivatives of particle coordinates with respect to time up to infinite order, are investigated. The conditions for quasi-invariance for such a Lagrangian, with respect to a representation of an arbitrary group in infinite continuation of configuration space of the system, are discussed. Using these conditions a general expression for the Lagrangian, securing Poincare covariance of corresponding equations of motion, is found, and the conservation laws related to this covariance are formulated. In the case of tensor interaction, the expansion of conserved quantities in c -1 up to terms of the order c -4 is performed. (author)

  13. Charge transport of graphene ferromagnetic-insulator-superconductor junction with pairing state of broken time reversal symmetry

    Directory of Open Access Journals (Sweden)

    Yaser Hajati

    2015-04-01

    Full Text Available We investigate the charge transport through a graphene-based ferromagnetic-insulator-superconductor junction with a broken time reversal symmetry (BTRS of dx2−y2 + is and dx2−y2 + idxy superconductor using the extended Blonder-Tinkham-Klapwijk formalism. Our analysis have shown several charateristics in this junction, providing a useful probe to understand the role of the order parameter symmetry in the superconductivity. We find that the presence of the BTRS (X state in the superconductor region has a strong effect on the tunneling conductance curves which leads to a decrease in the height of the zero-bias conductance peak (ZBCP. In particular, we show that the magnitude of the superconducting proximity effect depends to a great extent on X and by increasing X, the zero-bias charge conductance oscillations with respect to the rotation angle β are suppressed. In addition, we find that at the maximum rotation angle β = π/4, introducing BTRS in the FIS junction causes oscillatory behavior of the zero-bias charge conductance with the barrier strength (χG by a period of π and by approaching the X to 1, the amplitude of charge conductance oscillations increases. This behavior is drastically different from none BTRS similar graphene junctions. At last, we suggest an experimental setup for verifying our predicted effects.

  14. Interplay of Coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands

    Science.gov (United States)

    Mandal, Ipsita; Nandkishore, Rahul M.

    2018-03-01

    Coulomb interactions famously drive three-dimensional quadratic band crossing semimetals into a non-Fermi liquid phase of matter. In a previous work [Nandkishore and Parameswaran, Phys. Rev. B 95, 205106 (2017), 10.1103/PhysRevB.95.205106], the effect of disorder on this non-Fermi liquid phase was investigated, assuming that the band structure was isotropic, assuming that the conduction and valence bands had the same band mass, and assuming that the disorder preserved exact time-reversal symmetry and statistical isotropy. It was shown that the non-Fermi liquid fixed point is unstable to disorder and that a runaway flow to strong disorder occurs. In this paper, we extend that analysis by relaxing the assumption of time-reversal symmetry and allowing the electron and hole masses to differ (but continuing to assume isotropy of the low energy band structure). We first incorporate time-reversal symmetry breaking disorder and demonstrate that there do not appear any new fixed points. Moreover, while the system continues to flow to strong disorder, time-reversal-symmetry-breaking disorder grows asymptotically more slowly than time-reversal-symmetry-preserving disorder, which we therefore expect should dominate the strong-coupling phase. We then allow for unequal electron and hole masses. We show that whereas asymmetry in the two masses is irrelevant in the clean system, it is relevant in the presence of disorder, such that the `effective masses' of the conduction and valence bands should become sharply distinct in the low-energy limit. We calculate the RG flow equations for the disordered interacting system with unequal band masses and demonstrate that the problem exhibits a runaway flow to strong disorder. Along the runaway flow, time-reversal-symmetry-preserving disorder grows asymptotically more rapidly than both time-reversal-symmetry-breaking disorder and the Coulomb interaction.

  15. Photo control of transport properties in a disordered wire: Average conductance, conductance statistics, and time-reversal symmetry

    International Nuclear Information System (INIS)

    Kitagawa, Takuya; Oka, Takashi; Demler, Eugene

    2012-01-01

    In this paper, we study the full conductance statistics of a disordered 1D wire under the application of light. We develop the transfer matrix method for periodically driven systems to analyze the conductance of a large system with small frequency of light, where coherent photon absorptions play an important role to determine not only the average but also the shape of conductance distributions. The average conductance under the application of light results from the competition between dynamic localization and effective dimension increase, and shows non-monotonic behavior as a function of driving amplitude. On the other hand, the shape of conductance distribution displays a crossover phenomena in the intermediate disorder strength; the application of light dramatically changes the distribution from log-normal to normal distributions. Furthermore, we propose that conductance of disordered systems can be controlled by engineering the shape, frequency and amplitude of light. Change of the shape of driving field controls the time-reversals symmetry and the disordered system shows analogous behavior as negative magneto-resistance known in static weak localization. A small change of frequency and amplitude of light leads to a large change of conductance, displaying giant opto-response. Our work advances the perspective to control the mean as well as the full conductance statistics by coherently driving disordered systems. - Highlights: ► We study conductance of disordered systems under the application of light. ► Full conductance distributions are obtained. ► A transfer matrix method is developed for driven systems. ► Conductances are dramatically modified upon the application of light. ► Time-reversal symmetry can also be controlled by light application.

  16. Effect of a dual task on quantitative Timed Up and Go performance in community-dwelling older adults: A preliminary study.

    Science.gov (United States)

    Smith, Erin; Walsh, Lorcan; Doyle, Julie; Greene, Barry; Blake, Catherine

    2017-08-01

    The Timed Up and Go test (TUG) is used as a measure of functional ability in older adults; however, the method of measurement does not allow us to determine which aspects of the test deficits occur in. The aim of the present study was to examine the ability of the quantitative TUG (QTUG) to measure performance during the TUG test under three different conditions - single task, motor task and cognitive dual task - and to compare performance between fallers and non-fallers in high-functioning community-dwelling older adults. A total of 37 community-dwelling older adults, 16 with a self-reported falls history in the previous year, were recruited. Participants underwent a falls risk assessment with a physiotherapist including the QTUG under three conditions (single task, motor task, cognitive dual-task). A total of 10 clinical parameters were chosen for analysis using mancova and a series of ancova, with age, sex and body mass index included as covariates. The mancova analysis showed a significant difference across the three task conditions (Wilk's Lambda F 20,186  = 3.37, P task and faller status (Wilk's Lambda F 20,192  = 1.131, P = 0.321) was found. ancova results for each of the parameters showed overall differences between single, motor and cognitive tasks for all of the variables, except time in double support. When faller and non-faller differences were explored, cadence and stride velocity was greater, and stride time longer in those with a prior history of falls. In community-dwelling older adults, these preliminary results show that a cognitive dual-task significantly (P performance in almost all parameters, with a significant (P task. Although no statistical difference was found between fallers and non-fallers for many of the parameters, cadence, stride time and stride velocity were statistically different (P performance under dual-task conditions between fallers and non-fallers in this population, and to look at the ability of dual

  17. A Time-Space Symmetry Based Cylindrical Model for Quantum Mechanical Interpretations

    Science.gov (United States)

    Vo Van, Thuan

    2017-12-01

    Following a bi-cylindrical model of geometrical dynamics, our study shows that a 6D-gravitational equation leads to geodesic description in an extended symmetrical time-space, which fits Hubble-like expansion on a microscopic scale. As a duality, the geodesic solution is mathematically equivalent to the basic Klein-Gordon-Fock equations of free massive elementary particles, in particular, the squared Dirac equations of leptons. The quantum indeterminism is proved to have originated from space-time curvatures. Interpretation of some important issues of quantum mechanical reality is carried out in comparison with the 5D space-time-matter theory. A solution of lepton mass hierarchy is proposed by extending to higher dimensional curvatures of time-like hyper-spherical surfaces than one of the cylindrical dynamical geometry. In a result, the reasonable charged lepton mass ratios have been calculated, which would be tested experimentally.

  18. Late endovascular removal of Günther-Tulip inferior vena cava filter and stent reconstruction of chronic post-thrombotic iliocaval obstruction after 4753 days of filter dwell time: a case report with review of literature.

    Science.gov (United States)

    Doshi, Mehul Harshad; Narayanan, Govindarajan

    2016-12-01

    Chronic post-thrombotic obstruction of the inferior vena cava (IVC) or iliocaval junction is an uncommon complication of long indwelling IVC filter. When such an obstruction is symptomatic, endovascular treatment options include stent placement with or without filter retrieval. Filter retrieval becomes increasingly difficult with longer dwell times. We present a case of symptomatic post-thrombotic obstruction of the iliocaval junction related to Günther-Tulip IVC filter (Cook Medical Inc, Bloomington, IN) with dwell time of 4753 days, treated successfully with endovascular filter removal and stent reconstruction. Filter retrieval and stent reconstruction may be a treatment option in symptomatic patients with filter-related chronic IVC or iliocaval junction obstruction, even after prolonged dwell time.

  19. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults.

    Science.gov (United States)

    Reid, N; Healy, G N; Gianoudis, J; Formica, M; Gardiner, P A; Eakin, E E; Nowson, C A; Daly, R M

    2018-02-26

    The mechanisms through which excessive sitting time impacts health are important to understand. This study found that each hour of sitting per day was not associated with physical function, although associations with poor body composition were observed. Reducing sitting time for improved weight management in older adults needs further exploration. To examine the association of sitting time and breaks in sitting time with muscle mass, strength, function, and inflammation in older Australians. Data from the thigh-worn activPAL3™ monitor (7-day continuous wear) was used to derive time spent sitting (hours) and total number of sit-stand transitions per day. Body composition (dual energy X-ray absorptiometry), lower-body muscle strength, function (timed up-and-go [TUG], 4-m gait speed, four square step test, 30-second sit-to-stand), and serum inflammatory markers (interleukin-[IL-6], IL-8, IL-10, tumor necrosis factor-alpha [TNF-α], and adiponectin) were measured. Multiple regression analyses, adjusted for age, sex, ethnicity, education, employment status, marital status, number of prescription medications, smoking status, vitamin D, and stepping time, were used to assess the associations. Data from 123 community-dwelling older adults (aged 65-84 years, 63% female) were used. Total daily sitting time was associated with lower percentage lean mass (β [95%CI], - 1.70% [- 2.30, - 1.10]) and higher total body fat mass (2.92 kg [1.94, 3.30]). More frequent breaks in sitting time were associated with a 45% reduced risk of having pre-sarcopenia (OR = 0.55; 95% CI 0.34, 0.91; model 1), defined as appendicular lean mass divided by BMI. No significant associations were observed for sitting time or breaks in sitting with measures of muscle strength, function, or inflammation. In older community-dwelling adults, greater sitting time was associated with a lower percentage lean mass, while more frequent breaks in sitting time were associated with lower odds of having

  20. Symmetry witnesses

    Science.gov (United States)

    Aniello, Paolo; Chruściński, Dariusz

    2017-07-01

    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.

  1. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study.

    Science.gov (United States)

    Li, Qiongge; Chan, Maria F

    2017-01-01

    Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.

  2. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.

    Science.gov (United States)

    Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  3. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street

    Science.gov (United States)

    Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  4. Evidence of time symmetry violation in the interaction of nuclear particles

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Rioux, C.; Roy, R.; Conzett, H.E.; von Rossen, P.; Hinterberger, F.

    1981-01-01

    Measurements of the proton polarization in the reactions 7 Li( 3 He,p/sub pol/) 9 Be and 9 Be( 3 He,p/sub pol/) 11 B and of the analyzing powers of the inverse reactions, initiated by polarized protons at the same c.m. energies, show significant differences which imply the failure of the polarization--analyzing-power theorem and, prima facie, of time-reversal invariance in these reactions

  5. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  6. Scaling symmetry, renormalization, and time series modeling: the case of financial assets dynamics.

    Science.gov (United States)

    Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L

    2013-12-01

    We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments' stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.

  7. Scaling symmetry, renormalization, and time series modeling: The case of financial assets dynamics

    Science.gov (United States)

    Zamparo, Marco; Baldovin, Fulvio; Caraglio, Michele; Stella, Attilio L.

    2013-12-01

    We present and discuss a stochastic model of financial assets dynamics based on the idea of an inverse renormalization group strategy. With this strategy we construct the multivariate distributions of elementary returns based on the scaling with time of the probability density of their aggregates. In its simplest version the model is the product of an endogenous autoregressive component and a random rescaling factor designed to embody also exogenous influences. Mathematical properties like increments’ stationarity and ergodicity can be proven. Thanks to the relatively low number of parameters, model calibration can be conveniently based on a method of moments, as exemplified in the case of historical data of the S&P500 index. The calibrated model accounts very well for many stylized facts, like volatility clustering, power-law decay of the volatility autocorrelation function, and multiscaling with time of the aggregated return distribution. In agreement with empirical evidence in finance, the dynamics is not invariant under time reversal, and, with suitable generalizations, skewness of the return distribution and leverage effects can be included. The analytical tractability of the model opens interesting perspectives for applications, for instance, in terms of obtaining closed formulas for derivative pricing. Further important features are the possibility of making contact, in certain limits, with autoregressive models widely used in finance and the possibility of partially resolving the long- and short-memory components of the volatility, with consistent results when applied to historical series.

  8. 24 CFR 203.38 - Location of dwelling.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Location of dwelling. 203.38... § 203.38 Location of dwelling. At the time a mortgage is insured there must be located on the mortgaged property one or more dwellings designed principally for residential use for not more than four families...

  9. On the reduction of symmetry for static flat space-time in some general cylindrical-like coordinates

    International Nuclear Information System (INIS)

    Bokhari, A.H.; Bokhari, N.A.

    1987-09-01

    Flat static metric in terms of general cylindrical-like coordinates is considered and symmetry is reduced step by step. It turns out that the maximal and the minimal symmetry remains the same as that of the Minkowski or the Schwarzschild type. As soon as the dimensions of the metric are reduced, the symmetry turns out to be 6 or 3 in terms of independent Killing vector fields, respectively, not yet filling all the gaps between 10 to 8 to 4 or from 10 to 8 to 6 to 4 to 3 to 1. (author). 8 refs

  10. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  11. Theory of superconductivity with non-Hermitian and parity-time reversal symmetric Cooper pairing symmetry

    Science.gov (United States)

    Ghatak, Ananya; Das, Tanmoy

    2018-01-01

    Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.

  12. Odd-parity magnetoresistance in pyrochlore iridate thin films with broken time-reversal symmetry

    Science.gov (United States)

    Fujita, T. C.; Kozuka, Y.; Uchida, M.; Tsukazaki, A.; Arima, T.; Kawasaki, M.

    2015-01-01

    A new class of materials termed topological insulators have been intensively investigated due to their unique Dirac surface state carrying dissipationless edge spin currents. Recently, it has been theoretically proposed that the three dimensional analogue of this type of band structure, the Weyl Semimetal phase, is materialized in pyrochlore oxides with strong spin-orbit coupling, accompanied by all-in-all-out spin ordering. Here, we report on the fabrication and magnetotransport of Eu2Ir2O7 single crystalline thin films. We reveal that one of the two degenerate all-in-all-out domain structures, which are connected by time-reversal operation, can be selectively formed by the polarity of the cooling magnetic field. Once formed, the domain is robust against an oppositely polarised magnetic field, as evidenced by an unusual odd field dependent term in the magnetoresistance and an anomalous term in the Hall resistance. Our findings pave the way for exploring the predicted novel quantum transport phenomenon at the surfaces/interfaces or magnetic domain walls of pyrochlore iridates. PMID:25959576

  13. Solar low energy dwellings

    International Nuclear Information System (INIS)

    Hestnes, Anne Grete

    2000-01-01

    By now, a lot has been learnt about how to reduce energy use in dwellings using solar and low energy technologies, and many good examples can be found throughout Europe. Still, they are not quite the common feature we would expect them to be, i.e. they have not really penetrated the market. The reason for this is in part a result of the fact that the designers and developers of these buildings have not looked at what the market wants and needs, but rather at how to use a set of given technologies. The buildings are the result of a technology push rather than a market pull and have therefore, often, been detached or semidetached dwellings with different solar technologies added on in less than optimal ways. In order to increase market penetration, it is time to look at the market trends and relate to these. Fortunately, quite a few European architects have realized this and have started designing somewhat different residential buildings. The paper focuses on examples of the new trends in solar residential architecture and by that, hopefully, it shows that we are on the right track. (au)

  14. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetries

    Science.gov (United States)

    Lu, Jin-Cheng; Chen, Xiao-Dong; Deng, Wei-Min; Chen, Min; Dong, Jian-Wen

    2018-07-01

    The valley is a flexible degree of freedom for light manipulation in photonic systems. In this work, we introduce the valley concept in magnetic photonic crystals with broken inversion symmetry. One-way propagation of bulk states is demonstrated by exploiting the pseudo-gap where bulk states only exist at one single valley. In addition, the transition between Hall and valley-Hall nontrivial topological phases is also studied in terms of the competition between the broken inversion and time-reversal symmetries. At the photonic boundary between two topologically distinct photonic crystals, we illustrate the one-way propagation of edge states and demonstrate their robustness against defects.

  15. Quantification of glutathione transverse relaxation time T2 using echo time extension with variable refocusing selectivity and symmetry in the human brain at 7 Tesla

    Science.gov (United States)

    Swanberg, Kelley M.; Prinsen, Hetty; Coman, Daniel; de Graaf, Robin A.; Juchem, Christoph

    2018-05-01

    Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T2 of GABA, a weakly coupled system, to quantify T2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine

  16. Associations between Perceived Neighborhood Walkability and Walking Time, Wellbeing, and Loneliness in Community-Dwelling Older Chinese People in Hong Kong.

    Science.gov (United States)

    Yu, Ruby; Cheung, Osbert; Lau, Kevin; Woo, Jean

    2017-10-09

    This study examined the cross-sectional associations between perceived neighborhood walkability and walking time, physical activity, wellbeing, and loneliness, and examined which components of walkability were most strongly associated with better wellbeing and less loneliness in older adults. Participants were community-dwelling Chinese adults aged 60+ ( n = 181). Walkability was measured using nine items selected from the Chinese version of the abbreviated Neighborhood Environment Walkability Scales (NEWS) and NEWS for Chinese Seniors. Outcomes were walking time, physical activity, wellbeing (life satisfaction, happiness, sense of purpose and meaning in life), and loneliness. The mean age of the participants was 71.7 ± 7.8 years. Walkability was positively associated with walking time ( p = 0.001, p for trend walkable had higher scores for life satisfaction ( p = 0.002) and happiness ( p = 0.002), and lower scores for loneliness ( p = 0.019), compared with those who perceived their neighborhoods as less walkable. However, perceived neighborhood walkability was not associated with sense of purpose and meaning in life. Among components of walkability, land use mix-access, infrastructure and safety for walking, and traffic safety showed the strongest associations with the measures of wellbeing. The results of this study support the importance of neighborhood walkability for health behavior and wellbeing of older adults. The wellbeing of older adults may be enhanced through the improvement of land use mix-access, infrastructure for walking, and traffic safety.

  17. Broken space-time symmetries and mechanisms of rectification of ac fields by nonlinear (non)adiabatic response

    DEFF Research Database (Denmark)

    Denisov, S.; Flach, S.; Ovchinnikov, A. A.

    2002-01-01

    We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...... is employed to explain the effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry breakings and the mechanisms of rectification of the current in such a system.......We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...

  18. Situations of dwelling

    DEFF Research Database (Denmark)

    Welling, Helen; Duelund Mortensen, Peder; Wiell Nordberg, Lene

    2006-01-01

    This article explores changeable dwellings that offer the possibility of satisfying spontaneous activities and needs arising from today's changing family patterns. It deals with dwellings that provide people with room for development and flexibility - an open framework, which can be adapted to new...

  19. Calculation of the ortho–para conversion of hydrogen in a p–type silicon lattice using a dwell time approach

    International Nuclear Information System (INIS)

    Herman, R M; Suarez, A; Sofo, J; Lewis, J C

    2012-01-01

    Quantitative spectroscopic studies of hydrogen in a p–type silicon lattice at room temperature and at reduced temperature have led to rates for the ortho-para conversion process. The characteristic relaxation time at room temperature is about 8 hours. Explanations of this rate on the basis of the interaction between the interstitial H 2 and naturally occurring 29 Si using the Wigner rate expression encounter several difficulties, the principal being that the decay would involve multiexponential decay, in contradiction to observation. In an earlier work we calculated the rate assuming that the ortho–para conversion was effected during scattering of holes from the hydrogen molecules. The result was smaller than observed by several orders of magnitude. In the present work it is assumed that sp z holes diffuse randomly throughout the Si lattice, dwelling on effective areas associated with sp z sites. The transition matrix elements are the same as for the scattering mechanism. The resultant characteristic time at room temperature we find to be 1000 hr. Considering the uncertainties in the calculation the discrepancy between our result and observation is not sufficient as to negate our physical picture.

  20. Robust iterative learning control for multi-phase batch processes: an average dwell-time method with 2D convergence indexes

    Science.gov (United States)

    Wang, Limin; Shen, Yiteng; Yu, Jingxian; Li, Ping; Zhang, Ridong; Gao, Furong

    2018-01-01

    In order to cope with system disturbances in multi-phase batch processes with different dimensions, a hybrid robust control scheme of iterative learning control combined with feedback control is proposed in this paper. First, with a hybrid iterative learning control law designed by introducing the state error, the tracking error and the extended information, the multi-phase batch process is converted into a two-dimensional Fornasini-Marchesini (2D-FM) switched system with different dimensions. Second, a switching signal is designed using the average dwell-time method integrated with the related switching conditions to give sufficient conditions ensuring stable running for the system. Finally, the minimum running time of the subsystems and the control law gains are calculated by solving the linear matrix inequalities. Meanwhile, a compound 2D controller with robust performance is obtained, which includes a robust extended feedback control for ensuring the steady-state tracking error to converge rapidly. The application on an injection molding process displays the effectiveness and superiority of the proposed strategy.

  1. A physical model study of the travel times and reflection points of SH-waves reflected from transversely isotropic media with tilted symmetry axes

    Science.gov (United States)

    Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung

    2012-05-01

    In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.

  2. Predictive Cutoff Values of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for Disability Incidence in Older People Dwelling in the Community.

    Science.gov (United States)

    Makizako, Hyuma; Shimada, Hiroyuki; Doi, Takehiko; Tsutsumimoto, Kota; Nakakubo, Sho; Hotta, Ryo; Suzuki, Takao

    2017-04-01

    Lower extremity functioning is important for maintaining activity in elderly people. Optimal cutoff points for standard measurements of lower extremity functioning would help identify elderly people who are not disabled but have a high risk of developing disability. The purposes of this study were: (1) to determine the optimal cutoff points of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for predicting the development of disability and (2) to examine the impact of poor performance on both tests on the prediction of the risk of disability in elderly people dwelling in the community. This was a prospective cohort study. A population of 4,335 elderly people dwelling in the community (mean age = 71.7 years; 51.6% women) participated in baseline assessments. Participants were monitored for 2 years for the development of disability. During the 2-year follow-up period, 161 participants (3.7%) developed disability. The optimal cutoff points of the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test for predicting the development of disability were greater than or equal to 10 seconds and greater than or equal to 9 seconds, respectively. Participants with poor performance on the Five-Times Sit-to-Stand Test (hazard ratio = 1.88; 95% CI = 1.11-3.20), the Timed "Up & Go" Test (hazard ratio = 2.24; 95% CI = 1.42-3.53), or both tests (hazard ratio = 2.78; 95% CI = 1.78-4.33) at the baseline assessment had a significantly higher risk of developing disability than participants who had better lower extremity functioning. All participants had good initial functioning and participated in assessments on their own. Causes of disability were not assessed. Assessments of lower extremity functioning with the Five-Times Sit-to-Stand Test and the Timed "Up & Go" Test, especially poor performance on both tests, were good predictors of future disability in elderly people dwelling in the community. © 2017 American Physical Therapy Association

  3. Prediction of Human Eye Fixations using Symmetry

    OpenAIRE

    Kootstra, Gert; Schomaker, Lambert R. B.

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. In this paper, we discuss local symmetry as a measure of saliency. We propose a number of symmetry models and perform an eye-tracking study with human participants viewing photographic i...

  4. Profiling Occupant Behaviour in Danish Dwellings using Time Use Survey Data - Part I: Data Description and Activity Profiling

    DEFF Research Database (Denmark)

    Barthelmes, V.M.; Li, R.; Andersen, R.K.

    2018-01-01

    Occupant behaviour has been shown to be one of the key driving factors of uncertainty in prediction of energy consumption in buildings. Building occupants affect building energy use directly and indirectly by interacting with building energy systems such as adjusting temperature set...... occupant profiles for prediction of energy use to reduce the gap between predicted and real building energy consumptions. To generate accurate occupant profiles for the residential sector in Denmark, the Danish time use surveys are considered an essential data source. The latest Danish diarybased time use......-points, switching lights on/off, using electrical devices and opening/closing windows. Furthermore, building inhabitants’ daily activity profiles clearly shape the timing of energy demand in households. Modelling energy-related human activities throughout the day, therefore, is crucial to defining more realistic...

  5. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  6. The reliability of the quantitative timed up and go test (QTUG) measured over five consecutive days under single and dual-task conditions in community dwelling older adults.

    Science.gov (United States)

    Smith, Erin; Walsh, Lorcan; Doyle, Julie; Greene, Barry; Blake, Catherine

    2016-01-01

    The timed up and go (TUG) test is a commonly used assessment in older people with variations including the addition of a motor or cognitive dual-task, however in high functioning older adults it is more difficult to assess change. The quantified TUG (QTUG) uses inertial sensors to detect test and gait parameters during the test. If it is to be used in the longitudinal assessment of older adults, it is important that we know which parameters are reliable and under which conditions. This study aims to examine the relative reliability of the QTUG over five consecutive days under single, motor and cognitive dual-task conditions. Twelve community dwelling older adults (10 females, mean age 74.17 (3.88)) performed the QTUG under three conditions for five consecutive days. The relative reliability of each of the gait parameters was assessed using intra-class correlation coefficient (ICC 3,1) and standard error of measurement (SEM). Five of the measures demonstrated excellent reliability (ICC>0.70) under all three conditions (time to complete test, walk time, number of gait cycles, number of steps and return from turn time). Measures of variability and turn derived parameters demonstrated weak reliability under all three conditions (ICC=0.05-0.49). For the most reliable parameters under single-task conditions, the addition of a cognitive task resulted in a reduction in reliability suggesting caution when interpreting results under these conditions. Certain sensor derived parameters during the QTUG test may provide an additional resource in the longitudinal assessment of older people and earlier identification of falls risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...... exchanging experiences about constructions fulfilling different classes, reducing trade barriers, and finally increasing the sound insulation of dwellings.......Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...

  8. On the applicability of short time measurements to the determination of annual average of radon concentration in dwelling

    International Nuclear Information System (INIS)

    Loskiewicz, J.; Olko, P.; Swakon, J.; Bogacz, J.; Janik, M.; Mazur, D.; Mazur, J.

    1998-01-01

    The variation of radon concentration in some houses in the Krakow region was investigated in order to compare results obtained using various measuring techniques. It is concluded that short-term measurements should last at least 4 days to avoid errors exceeding 30%; that weather parameters and human activity during the measurement should be recorded; that measurements should be repeated several times under various weather conditions; that seasonal variation in the region should be taken into account. (A.K.)

  9. Associations between Perceived Neighborhood Walkability and Walking Time, Wellbeing, and Loneliness in Community-Dwelling Older Chinese People in Hong Kong

    Directory of Open Access Journals (Sweden)

    Ruby Yu

    2017-10-01

    Full Text Available This study examined the cross-sectional associations between perceived neighborhood walkability and walking time, physical activity, wellbeing, and loneliness, and examined which components of walkability were most strongly associated with better wellbeing and less loneliness in older adults. Participants were community-dwelling Chinese adults aged 60+ (n = 181. Walkability was measured using nine items selected from the Chinese version of the abbreviated Neighborhood Environment Walkability Scales (NEWS and NEWS for Chinese Seniors. Outcomes were walking time, physical activity, wellbeing (life satisfaction, happiness, sense of purpose and meaning in life, and loneliness. The mean age of the participants was 71.7 ± 7.8 years. Walkability was positively associated with walking time (p = 0.001, p for trend <0.001 but not with physical activity. After adjusting for socio-demographic characteristics, health conditions, lifestyle, and negative life events, those who perceived their neighborhoods as walkable had higher scores for life satisfaction (p = 0.002 and happiness (p = 0.002, and lower scores for loneliness (p = 0.019, compared with those who perceived their neighborhoods as less walkable. However, perceived neighborhood walkability was not associated with sense of purpose and meaning in life. Among components of walkability, land use mix-access, infrastructure and safety for walking, and traffic safety showed the strongest associations with the measures of wellbeing. The results of this study support the importance of neighborhood walkability for health behavior and wellbeing of older adults. The wellbeing of older adults may be enhanced through the improvement of land use mix-access, infrastructure for walking, and traffic safety.

  10. Time-dependent Gross-Pitaevskii equation for composite bosons as the strong-coupling limit of the fermionic broken-symmetry random-phase approximation

    International Nuclear Information System (INIS)

    Strinati, G.C.; Pieri, P.

    2004-01-01

    The linear response to a space- and time-dependent external disturbance of a system of dilute condensed composite bosons at zero temperature, as obtained from the linearized version of the time-dependent Gross-Pitaevskii equation, is shown to result also from the strong-coupling limit of the time-dependent BCS (or broken-symmetry random-phase) approximation for the constituent fermions subject to the same external disturbance. In this way, it is possible to connect excited-state properties of the bosonic and fermionic systems by placing the Gross-Pitaevskii equation in perspective with the corresponding fermionic approximations

  11. Gamma radiation in dwellings

    International Nuclear Information System (INIS)

    Mjoenes, L.

    1981-08-01

    A nationwide investigation has been made into the gamma radiation in Swedish dwellings. The measurements were made with small detectors containing thermoluminescent dosimeters. The detectors were sent to the selected participants by mail. 1300 dwellings were included in the investigation. In each dwelling three measurements were made: one detector was placed in the kitchen, one in the living-room and one in the bedroom. The mean annual absorbed tissue dose in dwellings in Sweden was found to be 0.65 mGy (corresponding to an exposition rate of 12 μR/h) when the contribution from cosmic radiation had been subtracted. That represents an annual collective dose of about 4000 mansieverts to the population of Sweden. From a previous investigation we have calculate the mean value for the gamma radiation in Swedish dwellings for 1950 to be 0.4 mGy/a (8μR/h). The reason for the relatively large increase in the mean value is an increased use of building materials on stone, particularly of lightweight concrete based on alum shale, from 1940 to middle 1960s. The production of this type of lightweight concrete was discontinued in 1975 and the use of other stone-based building materials has decreased. The mean value of gamma radiation in Swedish dwellings is therefore expected to decrease slowly in the future if this tendency holds. Sweden has some 3.5 million dwellings. About 10 % of them have mean values of 1 mGy/a (19 μR/h) or more, 0.2 % have 3 mGy/a (57 μR/h) or more and a couple of hundred 5 mGy/a (95 μR/h or more. The mean value for detached houses was found to be 0.43 mGy/a (8 μR/h) and for dwellings in multi-family houses 0.80 mGy/a (15 μR/h). The investigation dwellings have also been classified according to the building materials, the year of construction and the degree of urbanization of the area. (author)

  12. Radon in Norwegian dwellings

    International Nuclear Information System (INIS)

    Strand, T.; Green, B.M.R.; Lomas, P.R.

    1992-01-01

    The results of a large-scale survey of radon concentrations in Norwegian dwellings are reported. Measurements of radon have been made in a total of 7500 dwellings. The dwellings were randomly selected and the number in each municipality is proportional to its population. The measurements were performed using etched track detectors from the National Radiological Protection Board in the UK. One detector was placed in the main bedroom in each dwelling for 6 months. The annual average of radon concentration in Norwegian bedrooms is calculated to be 51 Bq.m -3 . The frequency distribution is approximately log-normal with a geometric mean of 26 Bq.m -3 and about 4% of the bedrooms have concentrations above 200 Bq.m -3 . The radon concentrations are found to be about 40% higher for bedrooms in single-family houses than in blocks of flats and other multifamily houses. In a large proportion of single-family houses the living room and the kitchen are located on the ground floor and the bedrooms on the first floor. An additional factor is that the winters of 1987-1988 and 1988-1989 were much warmer than normal. Taking these factors into account, the average radon concentration in Norwegian dwellings is estimated to be between 55 and 65 Bq.m -3 . (author)

  13. A model of intrinsic symmetry breaking

    International Nuclear Information System (INIS)

    Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin

    2013-01-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry

  14. Timed up and go test combined with self-rated multifactorial questionnaire on falls risk and sociodemographic factors predicts falls among community-dwelling older adults better than the timed up and go test on its own.

    Science.gov (United States)

    Ibrahim, Azianah; Singh, Devinder Kaur Ajit; Shahar, Suzana; Omar, Mohd Azahadi

    2017-01-01

    Early detection of falls risk among older adults using simple tools may assist in fall prevention strategies. The aim of this study was to identify the best parameters associated with previous falls, either the timed up and go (TUG) test combined with sociodemographic factors and a self-rated multifactorial questionnaire (SRMQ) on falls risk or the TUG on its own. Falls risk was determined based on parameters associated with previous falls. This was a retrospective cohort study. The study was conducted in a community setting. The participants were 1,086 community-dwelling older adults, with mean age of 69.6±5.6 years. Participants were categorized into fallers and nonfallers based on their history of falls in the past 12 months. Participants' sociodemographic data was taken, and SRMQ consisting of five falls-related questions was administered. Participants performed the TUG test twice, and the mean was taken as the result. A total of 161 participants were categorized as fallers (14.8%). Multivariate logistic regression analysis showed that the model ( χ 2 (6)=61.0, p factors (gender, cataract/glaucoma and joint pain), as well as the SRMQ items "previous falls history" (Q1) and "worried of falls" (Q5), was more robust in terms of falls risk association compared to that with TUG on its own ( χ 2 (1)=10.3, p factors and SRMQ with TUG is more favorable as an initial falls risk screening tool among community-dwelling older adults. Subsequently, further comprehensive falls risk assessment may be performed in clinical settings to identify the specific impairments for effective management.

  15. BOOK REVIEW: Symmetry Breaking

    Science.gov (United States)

    Ryder, L. H.

    2005-11-01

    One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would

  16. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  17. Factors Contributing to Single- and Dual-Task Timed "Up & Go" Test Performance in Middle-Aged and Older Adults Who Are Active and Dwell in the Community.

    Science.gov (United States)

    Chen, Hui-Ya; Tang, Pei-Fang

    2016-03-01

    Dual-task Timed "Up & Go" (TUG) tests are likely to have applications different from those of a single-task TUG test and may have different contributing factors. The purpose of this study was to compare factors contributing to performance on single- and dual-task TUG tests. This investigation was a cross-sectional study. Sixty-four adults who were more than 50 years of age and dwelled in the community were recruited. Interviews and physical examinations were performed to identify potential contributors to TUG test performance. The time to complete the single-task TUG test (TUGsingle) or the dual-task TUG test, which consisted of completing the TUG test while performing a serial subtraction task (TUGcognitive) or while carrying water (TUGmanual), was measured. Age, hip extensor strength, walking speed, general mental function, and Stroop scores for word and color were significantly associated with performance on all TUG tests. Hierarchical multiple regression models, without the input of walking speed, revealed different independent factors contributing to TUGsingle performance (Mini-Mental Status Examination score, β=-0.32), TUGmanual performance (age, β=0.35), and TUGcognitive performance (Stroop word score, β=-0.40; Mini-Mental Status Examination score, β=-0.31). At least 40% of the variance in the performance on the 3 TUG tests was not explained by common clinical measures, even when the factor of walking speed was considered. However, this study successfully identified some important factors contributing to performance on different TUG tests, and other studies have reported similar findings for single-task TUG test and dual-task gait performance. Although the TUGsingle and the TUGcognitive shared general mental function as a common factor, the TUGmanual was uniquely influenced by age and the TUGcognitive was uniquely influenced by focused attention. These results suggest that both common and unique factors contribute to performance on single- and dual

  18. Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry

    DEFF Research Database (Denmark)

    Wölms, Konrad Udo Hannes

    In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... phase the edge excitations are called Majorana bound states and they are interesting in themselves. There has been a lot of eort in detecting Majorana bound states in the lab. One reason is that these excitations provide evidence that a system is indeed in a topological phase. It is therefore required...... to have unambiguous experimental evidence for the presence Majorana bound states, which in turn requires a good theoretical understanding of the physics associated with Majorana bound states. In particular for the most common experimental methods that are used to study them, the signature of Majorana...

  19. Searches for violation of the combined space reflection (P) and time reversal (T) symmetry in solid state experiments

    International Nuclear Information System (INIS)

    Sushkov, O.P.

    2002-01-01

    Full text: Electric dipole moment (EDM) of an elementary particle is a manifestation of the violation of the fundamental TP-symmetry. Because of the CRT-theorem TP-violation is related to CP-violation. Present experimental limitations on electron and neutron EDM as well as limitations on nuclear Schiff moments impose important constrains on physics beyond the standard model. Unfortunately the standard approaches for search of EDM in atomic, molecular, and neutron experiments are close to their sensitivity limit. There are novel suggestions for searches of the fundamental TP-violation in solid state experiments. Two groups lead by Lamoreaux (Los Alamos) and Hunter (Amherst college) are preparing these experiments. We calculate the expected effect. The improvement of sensitivity compared to the present level can reach 6-8 orders of magnitude!

  20. Radon in dwellings in Northern Ireland. 1993 review

    International Nuclear Information System (INIS)

    Green, B.; Lomas, P.; O'Riordan, M.

    1993-01-01

    Measurements of radon made in some 1500 dwellings throughout Northern Ireland by the autumn of 1993 show that the average concentration is 19 Bq m -3 with some values up to fifty times higher. Around 30 of these dwellings are above the Action Level of 200 Bq m -3 adopted by the Government. Data are presented in considerable detail and various forms. Several hundred dwellings in Northern Ireland are estimated to exceed the Action Level, most of which are in a separately designated Affected Area in the southeast. Recommendations are made to promote the discovery and remedy of dwellings above the Action Level throughout Northern Ireland. (author)

  1. Prediction of human eye fixations using symmetry

    NARCIS (Netherlands)

    Kootstra, Gert; Schomaker, Lambert

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of

  2. Tube-dwelling invertebrates

    NARCIS (Netherlands)

    Hölker, Franz; Vanni, Michael J.; Kuiper, Jan J.; Meile, Christof; Grossart, Hans Peter; Stief, Peter; Adrian, Rita; Lorke, Andreas; Dellwig, Olaf; Brand, Andreas; Hupfer, Michael; Mooij, Wolf M.; Nützmann, Gunnar; Lewandowski, Jörg

    2015-01-01

    There is ample evidence that tube-dwelling invertebrates such as chironomids significantly alter multiple important ecosystem functions, particularly in shallow lakes. Chironomids pump large water volumes, and associated suspended and dissolved substances, through the sediment and thereby compete

  3. Radon in dwellings

    International Nuclear Information System (INIS)

    1987-01-01

    This report gives a review of the present situation in Sweden concerning the knowledge and research on radon in dwellings.The responsibilities and need for actions in this field are examined. Costs and possibilities for financial help to install radonreducing equipment are also treated. (L.E.)

  4. Temporal Asymmetry, Entropic Irreversibility, and Finite-Time Thermodynamics: From Parmenides–Einstein Time-Reversal Symmetry to the Heraclitan Entropic Arrow of Time

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2012-02-01

    Full Text Available In this paper, we combine the two universalisms of thermodynamics and dynamical systems theory to develop a dynamical system formalism for classical thermodynamics. Specifically, using a compartmental dynamical system energy flow model we develop a state-space dynamical system model that captures the key aspects of thermodynamics, including its fundamental laws. In addition, we establish the existence of a unique, continuously differentiable global entropy function for our dynamical system model, and using Lyapunov stability theory we show that the proposed thermodynamic model has finite-time convergent trajectories to Lyapunov stable equilibria determined by the system initial energies. Finally, using the system entropy, we establish the absence of Poincaré recurrence for our thermodynamic model and develop clear and rigorous connections between irreversibility, the second law of thermodynamics, and the entropic arrow of time.

  5. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  6. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  7. Symmetries of dynamically equivalent theories

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Tyutin, I.V. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Lebedev Physics Institute, Moscow (Russian Federation)

    2006-03-15

    A natural and very important development of constrained system theory is a detail study of the relation between the constraint structure in the Hamiltonian formulation with specific features of the theory in the Lagrangian formulation, especially the relation between the constraint structure with the symmetries of the Lagrangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter problem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article, we consider from the very beginning a more general problem: how the symmetry structures of dynamically equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions. (author)

  8. Sound classification of dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2012-01-01

    National schemes for sound classification of dwellings exist in more than ten countries in Europe, typically published as national standards. The schemes define quality classes reflecting different levels of acoustical comfort. Main criteria concern airborne and impact sound insulation between...... dwellings, facade sound insulation and installation noise. The schemes have been developed, implemented and revised gradually since the early 1990s. However, due to lack of coordination between countries, there are significant discrepancies, and new standards and revisions continue to increase the diversity...... is needed, and a European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs 2009-2013, one of the main objectives being to prepare a proposal for a European sound classification scheme with a number of quality...

  9. Dwelling with design

    OpenAIRE

    Paavilainen, Heidi

    2013-01-01

    Dwelling with Design offers a throughout look at the domestic meanings of design. The research is based on studying households in and around Helsinki, in order to find out what role, if any, design plays in the domestication of a product. The picture emerging from the research is quite different from design’s public and professional image represented for example in the interior decoration magazines, where designed qualities such as usability, reliability, interesting branding and aesthetic co...

  10. Radon measurements in mines and dwellings

    International Nuclear Information System (INIS)

    Urban, M.

    1985-01-01

    Radon measurements using a time integrating passive radon dosemeter (MAKROFOL track etch detector) have been performed in Brazilian and German mines and dwellings. The present state of the measurement technique is summarized. The results are presented together with exposure calculations and dose estimations for occupational exposure in open pit and underground mines and for the general public in houses. (orig./HP) [de

  11. Dealing with radon in dwellings

    International Nuclear Information System (INIS)

    Castren, O.

    1987-01-01

    A review is made of the measurements, regulatory initiatives and remedial action taken in Finland since the discovery in 1981 of the first indoor radon concentrations higher than 10,000 Bq/m 3 . The emphasis is on the results of measurements, explanations of them and their use for the rational solution of the radon problems. Localizing the high-concentration areas and dwellings has been one of the main objectives. The latest radon map is based on measurements in 8,150 dwellings in 235 localities. The geographical distribution cannot be explained only by the uranium concentration of the bedrock. The main reason for deviations is the ground permeability. The local fine structure is most notably influenced by the glacifluvial sand and grvel formations (eskers and ice-marginal formations). The highest concentrations are often caused by synergism between an elevated uranium concentration, situation on an esker and a great temperature difference between indoor and outdoor air. They are usually connected with a large seasonal variation, the concentration being at maximum during the coldest time in winter. Indoor radon distribution is compared with newly published maps on the incidence of lung cancer in Finland

  12. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    Science.gov (United States)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  13. Sound classification of dwellings in the Nordic countries

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Turunen-Rise, Iiris

    1997-01-01

    be met. The classification system is based on limit values for airborne sound insulation, impact sound pressure level, reverberation time and indoor and outdoor noise levels. The purpose of the standard is to offer a tool for specification of a standardised acoustic climate and to promote constructors......A draft standard INSTA 122:1997 on sound classification of dwellings is for voting as a common national standard in the Nordic countries (Denmark, Norway, Sweden, Finland, Iceland) and in Estonia. The draft standard specifies a sound classification system with four classes A, B, C and D, where...... class C is proposed as the future minimum requirements for new dwellings. The classes B and A define criteria for dwellings with improved or very good acoustic conditions, whereas class D may be used for older, renovated dwellings in which the acoustic quality level of a new dwelling cannot reasonably...

  14. 25 CFR 700.53 - Dwelling, replacement.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Dwelling, replacement. 700.53 Section 700.53 Indians THE... Policies and Instructions Definitions § 700.53 Dwelling, replacement. The term replacement dwelling means a dwelling selected by the head of a household as a replacement dwelling that meets the criteria of this...

  15. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  16. Balancing out dwelling and moving: optimal sensorimotor synchronization

    Science.gov (United States)

    Girard, Benoît; Guigon, Emmanuel

    2015-01-01

    Sensorimotor synchronization is a fundamental skill involved in the performance of many artistic activities (e.g., music, dance). After a century of research, the manner in which the nervous system produces synchronized movements remains poorly understood. Typical rhythmic movements involve a motion and a motionless phase (dwell). The dwell phase represents a sizable fraction of the rhythm period, and scales with it. The rationale for this organization remains unexplained and is the object of this study. Twelve participants, four drummers (D) and eight nondrummers (ND), performed tapping movements paced at 0.5–2.5 Hz by a metronome. The participants organized their tapping behavior into dwell and movement phases according to two strategies: 1) Eight participants (1 D, 7 ND) maintained an almost constant ratio of movement time (MT) and dwell time (DT) irrespective of the metronome period. 2) Four participants increased the proportion of DT as the period increased. The temporal variabilities of both the dwell and movement phases were consistent with Weber's law, i.e., their variability increased with their durations, and the longest phase always exhibited the smallest variability. We developed an optimal statistical model that formalized the distribution of time into dwell and movement intervals as a function of their temporal variability. The model accurately predicted the participants' dwell and movement durations irrespective of their strategy and musical skill, strongly suggesting that the distribution of DT and MT results from an optimization process, dependent on each participant's skill to predict time during rest and movement. PMID:25878154

  17. Real time fingertip detection using radial symmetry transform%基于径向对称变换的实时指尖检测算法

    Institute of Scientific and Technical Information of China (English)

    梅萍华; 李斌; 朱中的; 汪孔桥

    2011-01-01

    对于很多基于视觉的徒手人机交互系统,指尖的检测是其中的关键环节.为此提出了一种新颖简单但高效的方法来实现不同背景下的指尖检测,该算法不需要进行任何前景分割来辅助定位.针对指尖自身的形状所具有的径向对称性质,采用改进的径向对称变换算法先检测出指尖的候选点,然后通过肤色判别操作来帮助实现指尖的准确定位.实验结果表明,本文算法在不同的实际背景下都具有很好的检测效果,对光照的鲁棒性也较高,并且能够达到实时.%The fingertip is an important feature whose detection is the key connection for many vision-based barehanded HCI systems.A novel, simple but effective methodology for fingertip detection under different backgrounds was presented, and no foreground segmentation is required to assist the location.The detection was mainly based on the radial symmetry transform according to the fingertip's special shape,which had a sensible radial symmetry.Subsequently, skin color discrimination was adopted to help locate the fingertip well.Experimental results show that the proposed algorithm performs well in different backgrounds and is robust to the influence of illumination in a real-time system.

  18. Accuracy of Timed Up and Go Test for screening risk of falls among community-dwelling elderly Acurácia do Timed Up and Go Test para rastrear risco de quedas em idosos da comunidade

    Directory of Open Access Journals (Sweden)

    Tiago S. Alexandre

    2012-10-01

    Full Text Available OBJECTIVE: To determine the accuracy of the Timed Up and Go Test (TUGT for screening the risk of falls among community-dwelling elderly individuals. METHOD: This is a prospective cohort study with a randomly by lots without reposition sample stratified by proportional partition in relation to gender involving 63 community-dwelling elderly individuals. Elderly individuals who reported having Parkinson's disease, a history of transitory ischemic attack, stroke and with a Mini Mental State Exam lower than the expected for the education level, were on a wheelchair and that reported a single fall in the previous six months were excluded. The TUGT, a mobility test, was the measure of interested and the occurrence of falls was the outcome. The performance of basic activities of daily living (ADL and instrumental activities of daily living (IADL was determined through the Older American Resources and Services, and the socio-demographic and clinical data were determined through the use of additional questionnaires. Receiver Operating Characteristic Curves were used to analyze the sensitivity and specificity of the TUGT. RESULTS: Elderly individuals who fell had greater difficulties in ADL and IADL (pOBJETIVO: Determinar a acurácia do Timed Up and Go Test (TUGT para rastrear risco de quedas em idosos da comunidade. MÉTODO: Trata-se de um estudo de coorte prospectivo com amostra sorteada aleatoriamente, sem reposição e estratificada por partilha proporcional em relação ao sexo de 63 idosos da comunidade. Excluíram-se idosos com doença de Parkinson, ataque isquêmico transitório, acidente vascular encefálico, Miniexame do Estado Mental inferior ao considerado normal de acordo com a escolaridade, movimentação exclusiva por cadeira de rodas e relato de uma queda nos seis meses anteriores à primeira entrevista. O TUGT, um teste de mobilidade, foi a medida testada, e o desfecho, a ocorrência de queda. Mensuraram-se atividades básicas (ABVD e

  19. Spiral symmetry

    CERN Document Server

    Hargittai, Istvan

    1992-01-01

    From the tiny twisted biological molecules to the gargantuan curling arms of many galaxies, the physical world contains a startling repetition of spiral patterns. Today, researchers have a keen interest in identifying, measuring, and defining these patterns in scientific terms. Spirals play an important role in the growth processes of many biological forms and organisms. Also, through time, humans have imitated spiral motifs in their art forms, and invented new and unusual spirals which have no counterparts in the natural world. Therefore, one goal of this multiauthored book is to stress the c

  20. Y BALANCE TEST™ ANTERIOR REACH SYMMETRY AT THREE MONTHS IS RELATED TO SINGLE LEG FUNCTIONAL PERFORMANCE AT TIME OF RETURN TO SPORTS FOLLOWING ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION.

    Science.gov (United States)

    Garrison, J Craig; Bothwell, James M; Wolf, Gina; Aryal, Subhash; Thigpen, Charles A

    2015-10-01

    Restoration of symmetrical strength, balance, and power following anterior cruciate ligament reconstruction (ACL-R) are thought to be important factors for successful return to sports. Little information is available regarding early rehabilitation outcomes and achieving suggested limb indices of 90% on functional performance measures at the time of return to sports (RTS). To examine the relationship between symmetry of the anterior reach of the Y Balance Test™ at 12 weeks and functional performance measures at time of return to sports after anterior cruciate ligament (ACL) reconstruction. Retrospective Cohort. Forty subjects (mean ± SD age, 17.2 ± 3.8 years) who were in the process of rehabilitation following ACL reconstruction. Each subject volunteered and was enrolled in the study during physical therapy following ACL-R. Participants averaged two visits per week in physical therapy until the time of testing for RTS. The Y Balance Test™ was assessed at 12 weeks. Participants completed a battery of tests at RTS (6.4 ± 1.1 months) including triple hop distance (THD), single hop distance (SHD), isometric knee extension strength (KE), and the Vail Sport Test™. Side to side difference was calculated for the Y Balance Test™ anterior reach and limb symmetry indices (LSI) were computed for THD, SHD, and KE. Multiple regression models were used to study the relationship between variables at 12 weeks and RTS while controlling for age, gender, type of graft, and pain score. In addition, subjects were dichotomized based on a side-to-side Y Balance anterior reach difference into high risk (>4 cm) or low risk (≤4 cm) categories. A receiver operating characteristic (ROC) curve was used to identify individuals at 12 weeks who do not achieve 90% limb symmetry indices at time of RTS testing. . A statistically significant association was seen between Y Balance ANT at 12 weeks and SHD at RTS (β = -1.46, p = 0.0005, R(2) = 0.395), THD at RTS

  1. At the origins of mass: elementary particles and fundamental symmetries

    International Nuclear Information System (INIS)

    Iliopoulos, Jean; Englert, Francois

    2015-01-01

    After a brief recall of the history of cosmology, the author proposes an overview of the different symmetries (symmetries in space and in time, internal symmetries, local or gauge symmetries), describes the mass issue (gauge interactions, quarks and leptons as matter mass constituents, chirality), addresses the spontaneous symmetry breaking (the Curie theorem, spontaneous symmetry breaking in classical physics and in quantum physics, the Goldstone theorem, spontaneous symmetry breaking in presence of gauge interactions), presents the standard theory (electromagnetic and weak interactions, strong interactions, relationship with experiment). An appendix presents elementary particles, and notably reports the story of the neutrino

  2. Origin of family symmetries

    International Nuclear Information System (INIS)

    Nilles, Hans Peter

    2012-04-01

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  3. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  4. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics

    International Nuclear Information System (INIS)

    Rubio-Marcos, F.; Marchet, P.; Merle-Mejean, T.; Fernandez, J.F.

    2010-01-01

    Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O 3 were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K 3 LiNb 6 O 17 , tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO 3 modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO 3 modified KNN.

  5. Role of sintering time, crystalline phases and symmetry in the piezoelectric properties of lead-free KNN-modified ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Marcos, F., E-mail: frmarcos@icv.csic.es [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain); Marchet, P.; Merle-Mejean, T. [SPCTS, UMR 6638 CNRS, Universite de Limoges, 123, Av. A. Thomas, 87060 Limoges (France); Fernandez, J.F. [Electroceramic Department, Instituto de Ceramica y Vidrio, CSIC, Kelsen 5, 28049 Madrid (Spain)

    2010-09-01

    Lead-free KNN-modified piezoceramics of the system (Li,Na,K)(Nb,Ta,Sb)O{sub 3} were prepared by conventional solid-state sintering. The X-ray diffraction patterns revealed a perovskite phase, together with some minor secondary phase, which was assigned to K{sub 3}LiNb{sub 6}O{sub 17}, tetragonal tungsten-bronze (TTB). A structural evolution toward a pure tetragonal structure with the increasing sintering time was observed, associated with the decrease of TTB phase. A correlation between higher tetragonality and higher piezoelectric response was clearly evidenced. Contrary to the case of the LiTaO{sub 3} modified KNN, very large abnormal grains with TTB structure were not detected. As a consequence, the simultaneous modification by tantalum and antimony seems to induce during sintering a different behaviour from the one of LiTaO{sub 3} modified KNN.

  6. Symmetry, asymmetry and dissymmetry

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zollner, G.

    1987-01-01

    The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr

  7. Symmetry and electromagnetism

    International Nuclear Information System (INIS)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs

  8. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  9. Gauge symmetry breaking

    International Nuclear Information System (INIS)

    Weinberg, S.

    1976-01-01

    The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy

  10. Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato’s Exceptional Points

    Directory of Open Access Journals (Sweden)

    Miloslav Znojil

    2016-06-01

    Full Text Available For a given operator D ( t of an observable in theoretical parity-time symmetric quantum physics (or for its evolution-generator analogues in the experimental gain-loss classical optics, etc. the instant t c r i t i c a l of a spontaneous breakdown of the parity-time alias gain-loss symmetry should be given, in the rigorous language of mathematics, the Kato’s name of an “exceptional point”, t c r i t i c a l = t ( E P . In the majority of conventional applications the exceptional point (EP values are not real. In our paper, we pay attention to several exactly tractable toy-model evolutions for which at least some of the values of t ( E P become real. These values are interpreted as “instants of a catastrophe”, be it classical or quantum. In the classical optical setting the discrete nature of our toy models might make them amenable to simulations. In the latter context the instant of Big Bang is mentioned as an illustrative sample of possible physical meaning of such an EP catastrophe in quantum cosmology.

  11. Symmetry breaking patterns for inflation

    Science.gov (United States)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2018-06-01

    We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.

  12. Symmetries of Chimera States

    Science.gov (United States)

    Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina

    2018-05-01

    Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.

  13. Parastatistics and gauge symmetries

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1982-01-01

    A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed

  14. A direct test of time-reversal symmetry in the neutral K meson system with KS → πℓν and KL → 3π0 at KLOE-2

    Directory of Open Access Journals (Sweden)

    Gajos Aleksander

    2014-01-01

    Full Text Available Quantum entanglement of K and B mesons allows for a direct experimental test of time-reversal symmetry independent of CP violation. The T symmetry can be probed by exchange of initial and final states in the reversible transitions between flavor and CP- definite states of the mesons which are only connected by the T conjugation. While such a test was successfully performed by the BaBar experiment with neutral B mesons, the KLOE-2 detector can probe T -violation in the neutral kaons system by investigating the process with KS → π±l∓νl and KL → 3π0 decays. Analysis of the latter is facilitated by a novel reconstruction method for the vertex of KL → 3π0 decay which only involves neutral particles. Details of this new vertex reconstruction technique are presented as well as prospects for conducting the direct T symmetry test at the KLOE-2 experiment.

  15. Structural symmetry and protein function.

    Science.gov (United States)

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  16. Quantum master equation method based on the broken-symmetry time-dependent density functional theory: application to dynamic polarizability of open-shell molecular systems.

    Science.gov (United States)

    Kishi, Ryohei; Nakano, Masayoshi

    2011-04-21

    A novel method for the calculation of the dynamic polarizability (α) of open-shell molecular systems is developed based on the quantum master equation combined with the broken-symmetry (BS) time-dependent density functional theory within the Tamm-Dancoff approximation, referred to as the BS-DFTQME method. We investigate the dynamic α density distribution obtained from BS-DFTQME calculations in order to analyze the spatial contributions of electrons to the field-induced polarization and clarify the contributions of the frontier orbital pair to α and its density. To demonstrate the performance of this method, we examine the real part of dynamic α of singlet 1,3-dipole systems having a variety of diradical characters (y). The frequency dispersion of α, in particular in the resonant region, is shown to strongly depend on the exchange-correlation functional as well as on the diradical character. Under sufficiently off-resonant condition, the dynamic α is found to decrease with increasing y and/or the fraction of Hartree-Fock exchange in the exchange-correlation functional, which enhances the spin polarization, due to the decrease in the delocalization effects of π-diradical electrons in the frontier orbital pair. The BS-DFTQME method with the BHandHLYP exchange-correlation functional also turns out to semiquantitatively reproduce the α spectra calculated by a strongly correlated ab initio molecular orbital method, i.e., the spin-unrestricted coupled-cluster singles and doubles.

  17. Symmetry and symmetry breaking in quantum mechanics

    International Nuclear Information System (INIS)

    Chomaz, Philippe

    1998-01-01

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation

  18. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated

  19. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  20. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  1. Indoor radon measurements in dwellings of Mizoram

    International Nuclear Information System (INIS)

    Lalramengzami, R.; Laldawngliana, C.; Sinha, D.; Ghosh, S.; Dwivedi, K.K.

    1995-01-01

    The concentration of indoor radon has been measured in some dwellings of Mizoram state by employing time integrated method using solid state nuclear track detector. This state is located in the north eastern region of India which has been identified as a high background area. The indoor radon levels determined in this work are compared with data obtained from other regions of India and the Environmental Protection Agency (EPA) prescribed safe limit. (author). 7 refs., 2 figs

  2. Symmetries in nature

    International Nuclear Information System (INIS)

    Mainzer, K.

    1988-01-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs

  3. Symmetries in nature

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, K

    1988-05-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.

  4. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  5. 12 CFR 541.10 - Dwelling unit.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Dwelling unit. 541.10 Section 541.10 Banks and... FEDERAL SAVINGS ASSOCIATIONS § 541.10 Dwelling unit. The term dwelling unit means the unified combination of rooms designed for residential use by one family, other than a single-family dwelling. ...

  6. 7 CFR 3550.106 - Dwelling requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Dwelling requirements. 3550.106 Section 3550.106... Waste Disposal Grants § 3550.106 Dwelling requirements. (a) Modest dwelling. The property must be one... § 3550.63. (b) Post-repair condition. Dwellings repaired with section 504 funds need not be brought to...

  7. Association of fall history with the Timed Up and Go test score and the dual task cost: A cross-sectional study among independent community-dwelling older adults.

    Science.gov (United States)

    Asai, Tsuyoshi; Oshima, Kensuke; Fukumoto, Yoshihiro; Yonezawa, Yuri; Matsuo, Asuka; Misu, Shogo

    2018-05-21

    To investigate the associations between fall history and the Timed Up and Go (TUG) test (single-TUG test), TUG test while counting aloud backwards from 100 (dual-TUG test) and the dual-task cost (DTC) among independent community-dwelling older adults. This cross-sectional study included 537 older adults who lived independently in the community. Data on fall history in the previous year were obtained by self-administrated questionnaire. The single- and dual-TUG tests were carried out, and the DTC value was computed from these results. Associations between fall history and these TUG-related values were analyzed using multivariate logistic regression models. The participants were divided into fall risk groups using the cut-off values of those significantly associated with falling, and the odds ratios (OR) were computed. Slower single-TUG test scores and lower DTC values were significantly associated with fall history after adjusting for potential confounders (single-TUG test score: OR 1.133, 95% CI 1.029-1.249; DTC value: OR 0.984, 95% CI 0.968-0.998). Older adults with slower single-TUG test scores and lower DTC values reported a fall history more often than those in other categories (OR compared with the lower-risk single-TUG and lower-risk DTC groups: 3.474, 95% CI 1.881-6.570). Slower single-TUG test scores and lower DTC values are associated with fall history among independent community-dwelling older adults. To some extent, dual task performance might provide added value for fall assessment, compared with administering the TUG test alone. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.

  8. Reflections on symmetries at SPIN '94

    International Nuclear Information System (INIS)

    Page, S.A.

    1995-01-01

    In my view, the parallel sessions on ''Symmetries'' were amongst the most stimulating sessions of this conference. Speakers reported on experimental tests of Charge Symmetry, Parity, and Time Reversal violation and their theoretical interpretation, spanning a wide range of energy scales and experimental techniques. I hope that this brief summary will whet the reader's appetite to explore the many contributed papers which follow

  9. Symmetry properties of fractional diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Gazizov, R K; Kasatkin, A A; Lukashchuk, S Yu [Ufa State Aviation Technical University, Karl Marx strausse 12, Ufa (Russian Federation)], E-mail: gazizov@mail.rb.ru, E-mail: alexei_kasatkin@mail.ru, E-mail: lsu@mail.rb.ru

    2009-10-15

    In this paper, nonlinear anomalous diffusion equations with time fractional derivatives (Riemann-Liouville and Caputo) of the order of 0-2 are considered. Lie point symmetries of these equations are investigated and compared. Examples of using the obtained symmetries for constructing exact solutions of the equations under consideration are presented.

  10. Radon in dwellings in Sweden

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1980-01-01

    Studies on specific activities in building materials, gamma-radiation levels in dwellings, the concentrations of radon and daughters in the air indoors and the concentration of radon in tap water are in progress in Sweden. On the basis of these investigations and of the investigation of Hultqvist from the beginning of the 1950's, an attempt has been made to show how the radiation doses in dwellings have changed or may be changed by human activities and what these changes imply in terms of collective dose. The annual collective absorbed dose in the basal cells of the critical bronchial region have increased from 11 x 10 3 man-Gy for the occupants of dwellings existing in 1950 to 25 x 10 3 man-Gy for dwellings existing in 1975

  11. 25 CFR 256.15 - How long will I have to wait for repair, renovation, or replacement of my dwelling?

    Science.gov (United States)

    2010-04-01

    ... replacement of my dwelling? 256.15 Section 256.15 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR... replacement of my dwelling? The length of time that it takes to accomplish the work to be done on your dwelling is dependent on: (a) Whether funds are available; (b) The type of work to be done; (c) The climate...

  12. Temporal Architecture: Poetic Dwelling in Japanese buildings

    Directory of Open Access Journals (Sweden)

    Michael Lazarin

    2014-07-01

    Full Text Available Heidegger’s thinking about poetic dwelling and Derrida’s impressions of Freudian estrangement are employed to provide a constitutional analysis of the experience of Japanese architecture, in particular, the Japanese vestibule (genkan. This analysis is supplemented by writings by Japanese architects and poets. The principal elements of Japanese architecture are: (1 ma, and (2 en. Ma is usually translated as ‘interval’ because, like the English word, it applies to both space and time.  However, in Japanese thinking, it is not so much an either/or, but rather a both/and. In other words, Japanese architecture emphasises the temporal aspect of dwelling in a way that Western architectural thinking usually does not. En means ‘joint, edge, the in-between’ as an ambiguous, often asymmetrical spanning of interior and exterior, rather than a demarcation of these regions. Both elements are aimed at producing an experience of temporality and transiency.

  13. From physical symmetries to emergent gauge symmetries

    International Nuclear Information System (INIS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  14. The Symmetry of Multiferroics

    OpenAIRE

    Harris, A. Brooks

    2006-01-01

    This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...

  15. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-03-15

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions

  16. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    International Nuclear Information System (INIS)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-01-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P_2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using

  17. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    Science.gov (United States)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different

  18. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  19. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  20. Evidence for Time-Reversal Symmetry Breaking of the Superconducting State near Twin-Boundary Interfaces in FeSe Revealed by Scanning Tunneling Spectroscopy

    Directory of Open Access Journals (Sweden)

    T. Watashige

    2015-08-01

    Full Text Available Junctions and interfaces consisting of unconventional superconductors provide an excellent experimental playground to study exotic phenomena related to the phase of the order parameter. Not only does the complex structure of unconventional order parameters have an impact on the Josephson effects, but it also may profoundly alter the quasiparticle excitation spectrum near a junction. Here, by using spectroscopic-imaging scanning tunneling microscopy, we visualize the spatial evolution of the LDOS near twin boundaries (TBs of the nodal superconductor FeSe. The π/2 rotation of the crystallographic orientation across the TB twists the structure of the unconventional order parameter, which may, in principle, bring about a zero-energy LDOS peak at the TB. The LDOS at the TB observed in our study, in contrast, does not exhibit any signature of a zero-energy peak, and an apparent gap amplitude remains finite all the way across the TB. The low-energy quasiparticle excitations associated with the gap nodes are affected by the TB over a distance more than an order of magnitude larger than the coherence length ξ_{ab}. The modification of the low-energy states is even more prominent in the region between two neighboring TBs separated by a distance ≈7ξ_{ab}. In this region, the spectral weight near the Fermi level (≈±0.2  meV due to the nodal quasiparticle spectrum is almost completely removed. These behaviors suggest that the TB induces a fully gapped state, invoking a possible twist of the order parameter structure, which breaks time-reversal symmetry.

  1. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  2. Summary: Symmetries and spin

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig

  3. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  4. Quantum symmetry for pedestrians

    International Nuclear Information System (INIS)

    Mack, G.; Schomerus, V.

    1992-03-01

    Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)

  5. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    At the Heart of Quantum Field Theory! Aritra Kr. ... principle of symmetry was not held as something very fundamental ... principle of local symmetry: the laws of physics are invariant un- .... Next, we would show that different coefficients of a state ...

  6. Charged fluids with symmetries

    Indian Academy of Sciences (India)

    It is possible to introduce many types of symmetries on the manifold which restrict the ... metric tensor field and generate constants of the motion along null geodesics .... In this analysis we have studied the role of symmetries for charged perfect ...

  7. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  8. Ricci inheritance symmetry in general relativity

    International Nuclear Information System (INIS)

    Bokhari, A.H.; Al-Dweik, A.; Zaman, F.D.; Karim, M.; Kubel, D.

    2010-01-01

    In an earlier paper (see Nuovo Cimento B, 19 (2004) 1187) it was conjectured that none of the well-known spherically symmetric static space-time solutions of the Einstein equations admit non-trivial Ricci inheritance symmetry. In this paper we discuss Ricci inheritance (R I) symmetry in three well-known non static spherically symmetric space-time metrics and show that our conjecture is also valid in non-static space-time metrics.

  9. Symmetry and symmetry breaking in modern physics

    International Nuclear Information System (INIS)

    Barone, M; Theophilou, A K

    2008-01-01

    In modern physics, the theory of symmetry, i.e. group theory, is a basic tool for understanding and formulating the fundamental principles of Physics, like Relativity, Quantum Mechanics and Particle Physics. In this work we focus on the relation between Mathematics, Physics and objective reality

  10. Associations of sedentary time and moderate-vigorous physical activity with sleep-disordered breathing and polysomnographic sleep in community-dwelling adults.

    Science.gov (United States)

    Kline, Christopher E; Krafty, Robert T; Mulukutla, Suresh; Hall, Martica H

    2017-05-01

    The purpose of this study was to evaluate the relationship between daytime activity (sedentary time, moderate- to vigorous-intensity physical activity [MVPA]) and indices of polysomnographically (PSG) assessed sleep, including sleep-disordered breathing (SDB). One hundred and thirty-six adults (65% female, 59.8 ± 9.1 years, body mass index [BMI] 30.3 ± 6.9 kg m -2 ) provided daily estimates of time spent in light-, moderate-, and vigorous-intensity activity for 6-14 days (mean 9.9 ± 1.8 days) prior to laboratory PSG. Daily sedentary time was calculated as the amount of time spent awake and not in light-, moderate-, or vigorous-intensity activity; time spent in moderate- and vigorous-intensity activity were combined for MVPA. Indices of PSG sleep included timing (sleep midpoint), duration (total sleep time), continuity (sleep efficiency), depth (% slow-wave sleep), and SDB (apnea-hypopnea index [AHI]). Using median splits of sedentary time and MVPA, analyses of covariance examined their relationship with sleep following adjustment for age, sex, race, employment, education, BMI, existing cardiovascular disease, depression history, and mean daily wake time. Binary logistic regression examined the odds of having at least mild-severity SDB (AHI ≥ 5) according to sedentary time, MVPA, and their combination. Adults with above-median sedentary time (i.e., >841.9 min/day) had significantly greater AHI (P = .04) and lower odds of mild SDB (P = .03) compared to adults with low sedentary time; adults with high MVPA (>30.5 min/day) had significantly lower AHI compared to adults with low MVPA (P = .04). When examined in the same model, adults with high sedentary time and low MVPA had significantly higher AHI (P < .01) and higher odds of having mild SDB (P = .03) than all the other groups. No other sleep measures were related to sedentary time, MVPA, or their combination. Sedentary time and MVPA were associated with SDB. Whether reducing sedentary

  11. Radon in dwellings in Sweden

    International Nuclear Information System (INIS)

    Swedjemark, G.A.

    1978-04-01

    Studies on the specific activities in building materials, the γ-radiation levels in dwellings, the concentrations of radon and daughters in the air indoors and the concentration of radon in tap water are in progress in Sweden. On basis of these investigations and of the investigation of Hultqvist from the beginning of the 1950s, an attempt has been made to show how the radiation doses in dwellings have changed or may be changed by human activities and what these changes imply in terms of collective dose. The annual collective absorbed dose in the basal cells of the critical bronchial region have increased from 11 . 10 3 manGy for the occupants of dwellings existing in 1950 to 25 . 10 3 manGy for dwellings existing in 1975. If the building of houses continues as at present it can be estimated that the annual collective dose will be between 25 and 31 . 10 3 manGy for the dwellings of 1985. (author)

  12. Irreversible and endoreversible behaviors of the LD-model for heat devices: the role of the time constraints and symmetries on the performance at maximum χ figure of merit

    Science.gov (United States)

    Gonzalez-Ayala, Julian; Calvo Hernández, A.; Roco, J. M. M.

    2016-07-01

    The main unified energetic properties of low dissipation heat engines and refrigerator engines allow for both endoreversible or irreversible configurations. This is accomplished by means of the constraints imposed on the characteristic global operation time or the contact times between the working system with the external heat baths and modulated by the dissipation symmetries. A suited unified figure of merit (which becomes power output for heat engines) is analyzed and the influence of the symmetries on the optimum performance discussed. The obtained results, independent on any heat transfer law, are faced with those obtained from Carnot-like heat models where specific heat transfer laws are needed. Thus, it is shown that only the inverse phenomenological law, often used in linear irreversible thermodynamics, correctly reproduces all optimized values for both the efficiency and coefficient of performance values.

  13. Is CP a gauge symmetry?

    International Nuclear Information System (INIS)

    Choi, K.; Kaplan, D.B.; Nelson, A.E.

    1993-01-01

    Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)

  14. Symmetries and conservation laws of the damped harmonic oscillator

    Indian Academy of Sciences (India)

    We work with a formulation of Noether-symmetry analysis which uses the properties of infinitesimal point transformations in the space-time variables to establish the association between symmetries and conservation laws of a dynamical system. Here symmetries are expressed in the form of generators. We have studied the ...

  15. Quantized Response and Topological Magnetic Insulators with Inversion Symmetry

    NARCIS (Netherlands)

    Turner, A.M.; Zhang, Y.; Mong, R.S.K.; Vishwanath, A.

    2012-01-01

    We study three-dimensional insulators with inversion symmetry in which other point group symmetries, such as time reversal, are generically absent. We find that certain information about such materials’ behavior is determined by just the eigenvalues under inversion symmetry of occupied states at

  16. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  17. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  18. Correlations between isospin dynamics and Intermediate Mass Fragments emission time scales: a probe for the symmetry energy in asymmetric nuclear matter

    International Nuclear Information System (INIS)

    De Filippo, E; Cardella, G; Guidara, E La; Pagano, A; Papa, M; Amorini, F; Colonna, M; Gianì, S; Grassi, L; Han, J; Maiolino, C; Auditore, L; Minniti, T; Baran, V; Berceanu, I; Geraci, E; Grzeszczuk, A; Guazzoni, P; Lanzalone, G; Lombardo, I

    2013-01-01

    We show new data from the 64 Ni+ 124 Sn and 58 Ni+ 112 Sn reactions studied in direct kinematics with the CHIMERA detector at INFN-LNS and compared with the reverse kinematics reactions at the same incident beam energy (35 A MeV). Analyzing the data with the method of relative velocity correlations, fragments coming from statistical decay of an excited projectile-like (PLF) or target-like (TLF) fragments are discriminated from the ones coming from dynamical emission in the early stages of the reaction. By comparing data of the reverse kinematics experiment with a stochastic mean field (SMF) + GEMINI calculations our results show that observables from neck fragmentation mechanism add valuable constraints on the density dependence of symmetry energy. An indication is found for a moderately stiff symmetry energy potential term of EOS.

  19. Hidden gauge symmetry

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1979-01-01

    This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)

  20. Sequential flavor symmetry breaking

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-01-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  1. Sequential flavor symmetry breaking

    Science.gov (United States)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  2. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  3. Generalized symmetry algebras

    International Nuclear Information System (INIS)

    Dragon, N.

    1979-01-01

    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  4. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  5. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...... hypopharyngeal cancer patients to find anatomical symmetry and evaluate it against the standard deviation of the normal patients to locate pathologic volumes. Combining the information with an absolute PET threshold of 3 Standard uptake value (SUV) a volume was automatically delineated. The overlap of automated....... The standard deviation of the anatomical symmetry, seen in figure for one patient along CT and PET, was extracted for normal patients and compared with the deviation from cancer patients giving a new way of determining cancer pathology location. Using the novel method an overlap concordance index...

  6. Statistical symmetries in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs

  7. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  8. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  9. Flavour from accidental symmetries

    International Nuclear Information System (INIS)

    Ferretti, Luca; King, Stephen F.; Romanino, Andrea

    2006-01-01

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries

  10. 7 CFR 3550.57 - Dwelling requirements.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Dwelling requirements. 3550.57 Section 3550.57... AGRICULTURE DIRECT SINGLE FAMILY HOUSING LOANS AND GRANTS Section 502 Origination § 3550.57 Dwelling requirements. (a) Modest dwelling. The property must be one that is considered modest for the area, must not be...

  11. Indoor environmental quality in French dwellings and building characteristics

    Science.gov (United States)

    Langer, Sarka; Ramalho, Olivier; Derbez, Mickaël; Ribéron, Jacques; Kirchner, Severine; Mandin, Corinne

    2016-03-01

    A national survey on indoor environmental quality covering 567 residences in mainland France was performed during 2003-2005. The measured parameters were temperature, relative humidity, CO2, and the indoor air pollutants: fourteen individual volatile organic compounds (VOC), four aldehydes and particulate matter PM10 and PM2.5. The measured indoor concentrations were analyzed for correlations with the building characteristics: type of dwelling, period of construction, dwelling location, type of ventilation system, building material, attached garage and retrofitting. The median night time air exchange rate (AER) for all dwellings was 0.44 h-1. The night time AER was higher in apartments (median = 0.49 h-1) than in single-family houses (median = 0.41 h-1). Concentration of formaldehyde was approximately 30% higher in dwellings built after 1990 compared with older ones; it was higher in dwellings with mechanical ventilation and in concrete buildings. The VOC concentrations depended on the building characteristics to various extents. The sampling season influenced the majority of the indoor climate parameters and the concentrations of the air pollutants to a higher degree than the building characteristics. Multivariate linear regression models revealed that the indoor-outdoor difference in specific humidity, a proxy for number of occupants and their indoor activities, remained a significant predictor for most gaseous and particulate air pollutants. The other strong predictors were outdoor concentration, smoking, attached garage and AER (in descending order).

  12. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  13. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  14. Dwelling towers of Czech castles

    Czech Academy of Sciences Publication Activity Database

    Durdík, Tomáš

    2009-01-01

    Roč. 63, - (2009), s. 139-150 ISSN 1875-2896. [Meeting of Europa Nostra Scientific Council /44./. Kilkenny, 27.09.2008-02.10.2008] Institutional research plan: CEZ:AV0Z80020508 Keywords : castle * castellology * dwelling tower * donjon * keep * medieval archaeology * architecture * Bohemia * Middle Ages Subject RIV: AC - Archeology, Anthropology, Ethnology

  15. Particle transport in urban dwellings

    International Nuclear Information System (INIS)

    Cannell, R.J.; Goddard, A.J.H.; ApSimon, H.M.

    1988-01-01

    A quantitative investigation of the potential for contamination of a dwelling by material carried in on the occupants' footwear has been completed. Data are now available on the transport capacity of different footwear for a small range of particle sizes and contamination source strengths. Additional information is also given on the rate of redistribution

  16. Executive functioning independently predicts self-rated health and improvement in self-rated health over time among community-dwelling older adults.

    Science.gov (United States)

    McHugh, Joanna Edel; Lawlor, Brian A

    2016-01-01

    Self-rated health, as distinct from objective measures of health, is a clinically informative metric among older adults. The purpose of our study was to examine the cognitive and psychosocial factors associated with self-rated health. 624 participants over the age of 60 were assessed at baseline, and of these, 510 were contacted for a follow-up two years later. Measures of executive function and self-rated health were assessed at baseline, and self-rated health was assessed at follow-up. We employed multiple linear regression analyses to investigate the relationship between executive functioning and self-rated health, while controlling for demographic, psychosocial and biological variables. Controlling for other relevant variables, executive functioning independently and solely predicted self-rated health, both at a cross-sectional level, and also over time. Loneliness was also found to cross-sectionally predict self-rated health, although this relationship was not present at a longitudinal level. Older adults' self-rated health may be related to their executive functioning and to their loneliness. Self-rated health appeared to improve over time, and the extent of this improvement was also related to executive functioning at baseline. Self-rated health may be a judgement made of one's functioning, especially executive functioning, which changes with age and therefore may be particularly salient in the reflections of older adults.

  17. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  18. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  19. N=1 superstrings with spontaneously broken symmetries

    International Nuclear Information System (INIS)

    Ferrara, S.

    1988-01-01

    We construct N=1 chiral superstrings with spontaneously broken gauge symmetry in four space-time dimensions. These new string solutions are obtained by a generalized coordinate-dependent Z 2 orbifold compactification of some non-chiral five-dimensional N=1 and N=2 superstrings. The scale of symmetry breaking is arbitrary (at least classically) and it can be chosen hierarchically smaller than the string scale (α') -1/2 . (orig.)

  20. Survey of off-grid dwellings : January and February 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report presents statistics from the results of a survey on off-grid dwellings in the Yukon. Two hundred and fifty-eight surveys were completed, and all questions asked in the survey were represented in this document. Dwellings were defined as any buildings in which people slept or ate, including cabins, cottages, lodges and camps, year-round or otherwise. Information was provided on whether or not the dwellings were main residences or recreational properties and the lengths of time in which the dwellings were used. Comments were presented on the difficulties of getting mortgages or other financing for off-grid dwellings. Detailed and specific questions were asked, requiring information about distances from electric poles and intentions to connect to the grid; whether or not the property was a subsistence and/or commercial residence; energy sources currently used; heating systems; light sources; water pumping; power generators; telephones; wind and solar power generators; and, costs involved in purchase and maintenance of energy systems. A series of questions revolved around the use, cost and maintenance of generators. Maintenance and installation costs of photovoltaic systems and wind power generators were presented. Micro-hydro system generators were discussed. Future involvement in energy programs was suggested with specific reference to off-grid energy programs. The survey concluded with comments and questions about off-grid energy in general. tabs.

  1. Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. Copyright 2001 Wiley-Liss, Inc.

  2. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  3. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2018-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .

  4. Radon measurements in hispaniola dwellings

    International Nuclear Information System (INIS)

    Gutierrez, J.; Colgan, P.A.; Cancio, D.

    1996-01-01

    The results of a national radon survey and a number of regional surveys of radon in spanish dwelling are reviewed. The best estimate of the geometric mean of indoor radon concentrations is 41.1. Bq/m -3 and single-family dwellings have been shown to be more at risk than apartments. Results need to be interpreted with some caution due to differences in survey methodologies and measurement procedures. The risks from radon exposure are put in perspective by comparison with other voluntary risks. Finally, although a number of 'high risk' areas have already been identified, it is concluded that implementation of a national programme to reduce radon exposure may await a better definition of the problem extent. (authors). 20 refs., 1 tab

  5. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  6. Symmetry and inflation

    International Nuclear Information System (INIS)

    Chimento, Luis P.

    2002-01-01

    We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology

  7. Meaningful spatial and temporal sequences of activities in dwelling

    NARCIS (Netherlands)

    Hematalikeikha, M.A.; Coolen, H.C.C.H.; Pourdeihimi, S.

    2014-01-01

    Human activities based on human needs are affected by affordances and meanings that occur in the dwelling. Activities over time and space have meaningful sequences. The meaningfulness of activities in the cultural framework is conditioned by its special temporality and spatiality. Also, temporal or

  8. Observational Aspects of Symmetries of the Neutral B Meson System

    CERN Document Server

    Fidecaro, Maria; Ruf, Thomas

    2015-01-01

    We revisit various results, which have been obtained by the BABAR and Belle Collaborations over the last twelve years, concerning symmetry properties of the Hamiltonian, which governs the time evolution and the decay of neutral B mesons. We find that those measurements, which established CP violation in B meson decay, 13 years ago, had as well established T (time-reversal) symmetry violation. They also confirmed CPT symmetry in the decay (T$_{CPT}$ = 0) and symmetry with respect to time-reversal ( $\\epsilon$ = 0) and to CPT ($\\delta$ = 0) in the $B^0 \\bar{B}^0$ oscillation.

  9. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  10. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  11. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  12. Molecular symmetry and spectroscopy

    CERN Document Server

    Bunker, Philip; Jensen, Per

    2006-01-01

    The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...

  13. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  14. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that

  15. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  16. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  17. Groups and Symmetry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Aspects of W∞ symmetry

    International Nuclear Information System (INIS)

    Sezgin, E.

    1991-08-01

    We review the structure of W ∞ algebras, their super and topological extensions, and their contractions down to (super) w ∞ . Emphasis is put on the field theoretic realizations of these algebras. We also review the structure of w ∞ and W ∞ gravities and comment on various applications of W ∞ symmetry. (author). 42 refs

  19. Non-Noetherian symmetries

    International Nuclear Information System (INIS)

    Hojman, Sergio A.

    1996-01-01

    The purpose of these lectures is to present some of the ways in which non-Noetherian symmetries are used in contemporary mathematical physics. These include, among others, obtaining conservation laws for dynamical systems, solving non-linear problems, getting alternative Lagrangians for systems of differential equations and constructing symplectic structures and Hamiltonians for dynamical systems starting from scratch

  20. Detection symmetry and asymmetry

    NARCIS (Netherlands)

    du Buf, J.M.H.

    1991-01-01

    Experiments were performed on the detection symmetry and asymmetry of incremental and decremental disks, as a function of both disk diameter and duration. It was found that, for a background luminance of 300cd.m-2, thresholds of dynamic (briefly presented) foveal disks are symmetrical for all

  1. From symmetries to dynamics

    International Nuclear Information System (INIS)

    Stern, J.

    2000-01-01

    The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)

  2. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  3. Big break for charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)

    2003-06-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the

  4. Symmetry of priapulids (Priapulida). 1. Symmetry of adults.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Priapulids possess a radial symmetry that is remarkably reflected in both external morphology and internal anatomy. It results in the appearance of 25-radial (a number divisible by five) symmetry summarized as a combination of nonaradial, octaradial, and octaradial (9+8+8) symmetries of scalids. The radial symmetry is a secondary appearance considered as an evolutionary adaptation to a lifestyle within the three-dimensional environment of bottom sediment. The eight anteriormost, or primary, scalids retain their particular position because of their innervation directly from the circumpharyngeal brain. As a result of a combination of the octaradial symmetry of primary scalids, pentaradial symmetry of teeth, and the 25-radial symmetry of scalids, the initial bilateral symmetry remains characterized by the single sagittal plane. Copyright 2001 Wiley-Liss, Inc.

  5. Symmetries in physics and harmonics

    International Nuclear Information System (INIS)

    Kolk, D.

    2006-01-01

    In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)

  6. Current induced magnetic flux response in frustrated three-band superconductors as a bulk probe of broken time reversal symmetry (BTRS) ground states

    Energy Technology Data Exchange (ETDEWEB)

    Yerin, Yuriy; Omelyanchouk, Alexander [Verkin Inst. for Low Temperature Physics and Engineering. 61103 Kharkiv (Ukraine); Drechsler, Stefan-Ludwig; Brink, Jeroen van den; Efremov, Dmitriy [Inst. for Theorretical Solid State Physics at the Leibniz Inst. for Solid State an Materials Research, IFW-Dresden, D-01171 Dresden (Germany)

    2016-07-01

    Within the Ginzburg-Landau formalism we provide a classification of all possible ground states (GS) of a three-band superconductor (3BSC) where either frustrated states with BTRS or a single non-BTRS GS with unconventional/conventional s-wave symmetry, respectively, exist. The necessary condition for a BTRS GS in general cannot be reduced to a ''-''sign of the product of all interband couplings (IBC) valid in the case of 3 equivalent bands with repulsive equal IBC, only. It corresponds to a maximal IBC frustration. We show that with increasing diversity of the parameter space this frustration is reduced and the regions of possible BTRS GS start to shrink. We track possible evolutions of a BTRS GS of a 3BSC based doubly-connected system in an external magnetic field. Depending on its parameters, a magnetic flux can induce various current density leaps, connected with adiabatic or non-adiabatic transitions from BTRS to non-BTRS states and vice versa. The current induced magnetic flux response of samples with a doubly-connected geometry e.g. as a thin tube provides a suitable experimental tool for the detection of BTRS GS.

  7. Arithmetic crystal classes of magnetic symmetries

    International Nuclear Information System (INIS)

    Angelova, M.N.; Boyle, L.L.

    1993-01-01

    The symmetries and properties of a broad class of magnetic crystals are described by magnetic space groups which contain both (unitary) spatial symmetry operations and their combinations with the (anti-unitary operation of) time inversion, 0. The spatial symmetry operations form a halving, non-magnetic, space group H of the magnetic group M such that M=H+aH. As an abstract group the magnetic group M is isomorphic to a non-magnetic group G. The anti-unitary operator a is simply the time inversion 0 when M is a grey group but a product of time inversion with some spatial operation belonging to the coset G-H when M is a black-and-white group. (Author)

  8. Unified Symmetry of Hamilton Systems

    International Nuclear Information System (INIS)

    Xu Xuejun; Qin Maochang; Mei Fengxiang

    2005-01-01

    The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.

  9. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  10. Symmetry and topology in evolution

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.

    1991-10-01

    This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)

  11. Family symmetries in F-theory GUTs

    CERN Document Server

    King, S F; Ross, G G

    2010-01-01

    We discuss F-theory SU(5) GUTs in which some or all of the quark and lepton families are assigned to different curves and family symmetry enforces a leading order rank one structure of the Yukawa matrices. We consider two possibilities for the suppression of baryon and lepton number violation. The first is based on Flipped SU(5) with gauge group SU(5)\\times U(1)_\\chi \\times SU(4)_{\\perp} in which U(1)_{\\chi} plays the role of a generalised matter parity. We present an example which, after imposing a Z_2 monodromy, has a U(1)_{\\perp}^2 family symmetry. Even in the absence of flux, spontaneous breaking of the family symmetry leads to viable quark, charged lepton and neutrino masses and mixing. The second possibility has an R-parity associated with the symmetry of the underlying compactification manifold and the flux. We construct an example of a model with viable masses and mixing angles based on the gauge group SU(5)\\times SU(5)_{\\perp} with a U(1)_{\\perp}^3 family symmetry after imposing a Z_2 monodromy.

  12. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  13. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  14. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  15. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  16. Group analysis and renormgroup symmetries

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.

    1996-01-01

    An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs

  17. Symmetries and conserved quantities in geodesic motion

    International Nuclear Information System (INIS)

    Hojman, S.; Nunez, L.; Patino, A.; Rago, H.

    1986-01-01

    Recently obtained results linking several constants of motion to one (non-Noetherian) symmetry to the problem of geodesic motion in Riemannian space-times are applied. The construction of conserved quantities in geodesic motion as well as the deduction of geometrical statements about Riemannian space-times are achieved

  18. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  19. Symmetries and microscopic physics

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1997-01-01

    This book is based on a course of lectures devoted to the applications of group theory to quantum physics. The purpose is to give students a precise idea of general principles involving the concept of symmetry and to present practical methods used to calculate physical properties derived from symmetries. The first chapter is an introduction to the main results of group theory, 2 chapters highlight principles and methods concerning geometrical transformations in the space of states, state degeneracy and perturbation theory. The last 4 chapters investigate the applications of these methods to atom physics, nuclear structure and elementary particles. A chapter is devoted to the atom of hydrogen and another to the isospin. Numerous exercises and problems, some with their corrections, are proposed. (A.C.)

  20. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  1. Symmetry rules. How science and nature are founded on symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J.

    2008-07-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences. (orig.)

  2. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  3. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    International Nuclear Information System (INIS)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance

  4. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  5. Gravitation, Symmetry and Undergraduates

    Science.gov (United States)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  6. Symmetry breaking and chaos

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    1999-01-01

    Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field

  7. Symmetry and statistics

    International Nuclear Information System (INIS)

    French, J.B.

    1974-01-01

    The concepts of statistical behavior and symmetry are presented from the point of view of many body spectroscopy. Remarks are made on methods for the evaluation of moments, particularly widths, for the purpose of giving a feeling for the types of mathematical structures encountered. Applications involving ground state energies, spectra, and level densities are discussed. The extent to which Hamiltonian eigenstates belong to irreducible representations is mentioned. (4 figures, 1 table) (U.S.)

  8. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  9. Lie symmetries and superintegrability

    International Nuclear Information System (INIS)

    Nucci, M C; Post, S

    2012-01-01

    We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.

  10. Symmetry in music

    International Nuclear Information System (INIS)

    Herrero, O F

    2010-01-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  11. Symmetry methods for option pricing

    Science.gov (United States)

    Davison, A. H.; Mamba, S.

    2017-06-01

    We obtain a solution of the Black-Scholes equation with a non-smooth boundary condition using symmetry methods. The Black-Scholes equation along with its boundary condition are first transformed into the one dimensional heat equation and an initial condition respectively. We then find an appropriate general symmetry generator of the heat equation using symmetries and the fundamental solution of the heat equation. The symmetry generator is chosen such that the boundary condition is left invariant; the symmetry can be used to solve the heat equation and hence the Black-Scholes equation.

  12. Lung doses from radon in dwellings and influencing factors

    International Nuclear Information System (INIS)

    Stranden, E.

    1980-01-01

    The radon concentration in Norwegian dwellings and the lung doses received by the Norwegian population are reported. The biological effects of these doses are discussed. The mean value of radon-daughters in Norwegian dwellings was found to be about 7x10 -3 WL (working levels). This corresponds to an annual exposure of about 0.3 WLM (working level months). From studies of the lung cancer statistics of Norway, this exposure may account for about 10% of the annual lung cancer cases in Norway. The variations in the radon concentration inside dwellings are discussed, and the influence of exhalation, ventilation and meteorological parameters upon the respiratory dosage is studied. From the risk estimates performed, the consequences of an increased indoor radon concentration due to reduced ventilation or introduction of building materials with high radium concentrations are discussed. From comparison of the population doses from different sources of radiation, it is evident that a possible future increase in the radon concentration in dwellings is one of the most serious radiation protection problems of our time. (author)

  13. Environmental radon dosimetry in Indian dwellings and workplaces

    Energy Technology Data Exchange (ETDEWEB)

    Kant, K. [K.L.Mehta Dayanand College for Women, Dept. of Physics, Haryana (India); Upadhyay, S.B. [B.S.A. College, Dept. of Physics, Mathura, (India)

    2006-07-01

    Measurements of radon and its progeny in the dwellings and environment of workplaces are important because the radiation dose to human population due to inhalation of radon and its progeny contribute more than 50% of the total dose from natural sources and is the second leading cause of lung cancer after smoking. Recent experimental and epidemiological studies suggest that inhalation of radon progeny, which are the most important source of irradiation of the human respiratory track in workplace and domestic environment could be a cause of lung cancer. The quantification of iidual radon exposure over a long time period is one of the main issues. In the present study, we will report the results of radon monitoring carried out in the environment of workplaces of an oil refinery, LPG bottling plant, thermal power plant and gas power plant, besides the typical and modern Indian dwellings using alpha sensitive L.R.-115 type II solid-state nuclear track detectors in order to quantify the dose to the workers and the inhabitants. For comparison, the radon and its progeny levels were also measured in dwellings far away from the plants. Radon and its progeny levels were found higher in the environment of workplaces and dwellings in the vicinity of the plants. The details of the results obtained will be reported in the full paper. (authors)

  14. Environmental radon dosimetry in Indian dwellings and workplaces

    International Nuclear Information System (INIS)

    Kant, K.; Upadhyay, S.B.

    2006-01-01

    Measurements of radon and its progeny in the dwellings and environment of workplaces are important because the radiation dose to human population due to inhalation of radon and its progeny contribute more than 50% of the total dose from natural sources and is the second leading cause of lung cancer after smoking. Recent experimental and epidemiological studies suggest that inhalation of radon progeny, which are the most important source of irradiation of the human respiratory track in workplace and domestic environment could be a cause of lung cancer. The quantification of individual radon exposure over a long time period is one of the main issues. In the present study, we will report the results of radon monitoring carried out in the environment of workplaces of an oil refinery, LPG bottling plant, thermal power plant and gas power plant, besides the typical and modern Indian dwellings using alpha sensitive L.R.-115 type II solid-state nuclear track detectors in order to quantify the dose to the workers and the inhabitants. For comparison, the radon and its progeny levels were also measured in dwellings far away from the plants. Radon and its progeny levels were found higher in the environment of workplaces and dwellings in the vicinity of the plants. The details of the results obtained will be reported in the full paper. (authors)

  15. 517 DWELLING DENSITY VARIABILITY ACROSS GOVERNMENT ...

    African Journals Online (AJOL)

    Osondu

    confidence level, apartment type had no significant effect on dwelling density in ... words: dwelling density, home spaces, housing units, multifamily apartments ... spaces for work, Obateru (2005) defined .... of Statistics Year Book, 2008; Seeling et al., ... stress. The bedroom and habitable room indicators show similar trend.

  16. Cooking exhaust systems for low energy dwellings

    NARCIS (Netherlands)

    Jacobs, P.; Borsboom, W.A.

    2017-01-01

    Especially in airtight low energy dwellings exhaust systems are of utmost importance as cooking can be a major source of PM2.5 exposure. Dwellings should be designed including facilities enabling extraction of at least 83 dm3/s (300 m3/h) directly to outside. Residents should be able to select an

  17. Neutrino properties and fundamental symmetries

    International Nuclear Information System (INIS)

    Bowles, T.J.

    1996-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using 3 He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs

  18. Spinor Structure and Internal Symmetries

    Science.gov (United States)

    Varlamov, V. V.

    2015-10-01

    Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.

  19. Dual symmetry in gauge theories

    International Nuclear Information System (INIS)

    Koshkarov, A.L.

    1997-01-01

    Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory

  20. New four-dimensional symmetry

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1976-01-01

    A new picture of nature is proposed in which there are only two fundamental universal constants anti e (identical with e/c) and dirac constant (identical with dirac constant/c). The theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincare--Einstein principle of relativity for the laws of physics and the Newtonian concept of time. One obtains a new space--light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the ''lifetime dilatation'' of unstable particles, the Michelson--Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Doppler frequency shift, which can be tested experimentally by measuring the second-order frequency shift

  1. Discrete symmetries with neutral mesons

    Science.gov (United States)

    Bernabéu, José

    2018-01-01

    Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.

  2. Dynamical symmetries of the shell model

    International Nuclear Information System (INIS)

    Van Isacker, P.

    2000-01-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  3. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  4. Inertial Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.

    2018-03-19

    We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.

  5. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...

  6. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  7. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  8. Dwelling on Everyday Car Journeys

    DEFF Research Database (Denmark)

    Tølbøll, Lene; Jensen, Hanne Louise

    different traffic conditions as well as the emotional states related to the drivers’ thoughts about work and family issues, the materiality of the car and the recreational activities inside the car. Analyses are based on a web-based questionnaire, sent to 373 participating drivers in the Big Data research...... project Intelligent Transportation System Platform North Denmark (Lahrmann 2012). In that project data on e.g. position and speed was collected via an On Board Unit from more than 400 cars in 2012-2014 (Tøfting et. al. 2014). The full dataset includes a driven distance of approximately 14 million km...... experiences related to commuting. The findings will be discussed using theoretical inspiration from Sheller (2004), Bull (2003) and Thrift (2004) and we will suggest that the various emotional experiences of the commuters are of great importance for their ability to use of the car as a dwelling place....

  9. Dynamical Symmetry Breaking of Extended Gauge Symmetries

    OpenAIRE

    Appelquist, Thomas; Shrock, Robert

    2003-01-01

    We construct asymptotically free gauge theories exhibiting dynamical breaking of the left-right, strong-electroweak gauge group $G_{LR} = {\\rm SU}(3)_c \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R \\times {\\rm U}(1)_{B-L}$, and its extension to the Pati-Salam gauge group $G_{422}={\\rm SU}(4)_{PS} \\times {\\rm SU}(2)_L \\times {\\rm SU}(2)_R$. The models incorporate technicolor for electroweak breaking, and extended technicolor for the breaking of $G_{LR}$ and $G_{422}$ and the generation of fermion ...

  10. Dynamical Symmetry Breaking in RN Quantum Gravity

    Directory of Open Access Journals (Sweden)

    A. T. Kotvytskiy

    2011-01-01

    Full Text Available We show that in the RN gravitation model, there is no dynamical symmetry breaking effect in the formalism of the Schwinger-Dyson equation (in flat background space-time. A general formula for the second variation of the gravitational action is obtained from the quantum corrections hμν (in arbitrary background metrics.

  11. Discrete symmetries, strong CP problem and gravity

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1993-05-01

    Spontaneous breaking of parity or time reversal invariance offers a solution to the strong CP problem, the stability of which under quantum gravitational effects provides an upper limit on the scale of symmetry breaking. Even more important, these Planck scale effects may provide a simple and natural way out of the resulting domain wall problem. (author). 22 refs

  12. Tests of fundamental symmetries and interactions - using nuclei and lasers

    NARCIS (Netherlands)

    Jungmann, Klaus Peter

    State of the art laser technology and modern spectroscopic methods allow to address issues of fundamental symmetries and fundamental interactions in atoms with high precision experiments. In particular the discrete symmetries Parity (P), Charge Conjugation (C), Time Reversal (T) as well as their

  13. Discrete symmetries for spinor field in de Sitter space

    International Nuclear Information System (INIS)

    Moradi, S.; Rouhani, S.; Takook, M.V.

    2005-01-01

    Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e., in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed

  14. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  15. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  16. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  17. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  18. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  19. Increased gait unsteadiness in community-dwelling elderly fallers

    Science.gov (United States)

    Hausdorff, J. M.; Edelberg, H. K.; Mitchell, S. L.; Goldberger, A. L.; Wei, J. Y.

    1997-01-01

    OBJECTIVE: To test the hypothesis that quantitative measures of gait unsteadiness are increased in community-dwelling elderly fallers. STUDY DESIGN: Retrospective, case-control study. SETTING: General community. PARTICIPANTS: Thirty-five community-dwelling elderly subjects older than 70 years of age who were capable of ambulating independently for 6 minutes were categorized as fallers (age, 82.2 +/- 4.9 yrs [mean +/- SD]; n = 18) and nonfallers (age, 76.5 +/- 4.0 yrs; n = 17) based on history; 22 young (age, 24.6 +/- 1.9 yrs), healthy subjects also participated as a second reference group. MAIN OUTCOME MEASURES: Stride-to-stride variability (standard deviation and coefficient of variation) of stride time, stance time, swing time, and percent stance time measured during a 6-minute walk. RESULTS: All measures of gait variability were significantly greater in the elderly fallers compared with both the elderly nonfallers and the young subjects (p elderly fallers was similar to that of the nonfallers. There were little or no differences in the variability measures of the elderly nonfallers compared with the young subjects. CONCLUSIONS: Stride-to-stride temporal variations of gait are relatively unchanged in community-dwelling elderly nonfallers, but are significantly increased in elderly fallers. Quantitative measurement of gait unsteadiness may be useful in assessing fall risk in the elderly.

  20. Trieste lectures on mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hori, K [Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario (Canada)

    2003-08-15

    These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 + 1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. (author)

  1. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  2. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  3. Solar-assisted low energy dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Esbensen, T V

    1980-02-01

    The Zero Energy House Group was formed as a subproject of the CCMS Solar Energy Pilot Study in 1974 by seven participating countries experimenting with solar-assisted low-energy dwellings for temperate and northern European climatic conditions. A Zero Energy House is one in which solar energy is used to meet the reduced energy needs of buildings incorporating various thermal energy conservation features. This final report of the Zero Energy House Group includes brief descriptions of 13 major low-energy dwellings in the participating CCMS countries. An overall assessment of the state-of-the-art in solar-assisted low-energy dwellings is also included.

  4. An introduction to Yangian symmetries

    International Nuclear Information System (INIS)

    Bernard, D.

    1992-01-01

    Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs

  5. Killing symmetries in neutron transport

    International Nuclear Information System (INIS)

    Lukacs, B.; Racz, A.

    1992-10-01

    Although inside the reactor zone there is no exact continuous spatial symmetry, in certain configurations neutron flux distribution is close to a symmetrical one. In such cases the symmetrical solution could provide a good starting point to determine the non-symmetrical power distribution. All possible symmetries are determined in the 3-dimensional Euclidean space, and the form of the transport equation is discussed in such a coordinate system which is adapted to the particular symmetry. Possible spontaneous symmetry breakings are pointed out. (author) 6 refs

  6. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  7. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  8. Nuclear probes of fundamental symmetries

    International Nuclear Information System (INIS)

    Adelberger, E.G.

    1983-01-01

    Nuclear experiments which probe the parity (P) and time-reversal (T) symmetries and lepton-number conservation are reviewed. The P-violating NN interaction, studied in the NN system and in light nuclei, provides an unique window on ΔS=0 hadronic weak processes. Results are in accord with expectations. Sensitive searches for T-violation via detailed balance, T-odd correlations in γ and β-decay, and a possible neutron electric dipole moment (EDM) are discussed. No T-violation is observed. The EDM limit is almost good enough to eliminate one of the leading theoretical explanations for CP violation. Experimental studies of double β-decay are reviewed. Although ββ nu nu decay has been convincingly detected in geochemical experiments there is no evidence for the lepton number violating ββ decay mode

  9. Pomeranchuk conjecture and symmetry schemes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Morales, A.; Ruegg, H. [Junta de Energia Nuclear, Madrid (Spain); European Organization for Nuclear Research, Geneva (Switzerland); University of Geneva, Geneva (Switzerland)

    1963-01-15

    Pomeranchuk has conjectured that the cross-sections for charge-exchange processes vanish asymptotically as the energy tends to infinity. (By ''charge'' it is meant any internal quantum number, like electric charge, hypercharge, .. . ). It has been stated by several people that this conjecture implies equalities among the total cross-sections whenever any symmetry scheme is invoked for the strong interactions. But to our knowledge no explicit general proof of this statement has been given so far. We want to give this proof for any compact Lie group. We also prove, under certain assumptions, that the equality of the total cross-sections implies that s{sup -l} times the charge-exchange forward scattering absorptive amplitudes tend to zero as s -> ∞.

  10. Symmetry breaking in gauge glasses

    International Nuclear Information System (INIS)

    Hansen, K.

    1988-09-01

    In order to explain why nature selects the gauge groups of the Standard Model, Brene and Nielsen have proposed a way to break gauge symmetry which does not rely on the existence of a Higgs field. The observed gauge groups will in this scheme appear as the only surviving ones when this mechanism is applied to a random selection of gauge groups. The essential assumption is a discrete space-time with random couplings. Some working assumptions were made for computational reasons of which the most important is that quantum fluctuations were neclected. This work presents an example which under the same conditions show that a much wider class of groups than predicted by Brene and Nielsen will be broken. In particular no possible Standard Model Group survives unbroken. Numerical calculations support the analytical result. (orig.)

  11. Measurement Techniques for Radon in Mines, Dwellings and the Environment

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1983-06-01

    Definitions and units appropriate for radon and radon daughters are given. The principle methods of detection are ionization chamber, scintillation technique, nuclear track detector, thermoluminescent discs and alpha spectrometry. The activity concentration is determined by grab sampling and subsequent measurement, frequent or continuous grab sampling and measurement and continuous sampling and long time integrated measurement. Sampling and measurement strategies for mines, dwellings and the environment are discussed. (author)

  12. High-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Lee Jenchi.

    1990-01-01

    The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation

  13. Acclimation responses to temperature vary with vertical stratification: implications for vulnerability of soil-dwelling species to extreme temperature events.

    Science.gov (United States)

    van Dooremalen, Coby; Berg, Matty P; Ellers, Jacintha

    2013-03-01

    The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent exposure to extreme temperatures for surface-dwelling species than for soil-dwelling species. Therefore soil-dwelling species are expected to have poor acclimation responses to cope with temperature changes. We used five species of surface-dwelling and four species of soil-dwelling Collembola that habituate different depths in the soil. We tested for differences in tolerance to extreme temperatures after acclimation to warm and cold conditions. We also tested for differences in acclimation of the underlying physiology by looking at changes in membrane lipid composition. Chill coma recovery time, heat knockdown time and fatty acid profiles were determined after 1 week of acclimation to either 5 or 20 °C. Our results showed that surface-dwelling Collembola better maintained increased heat tolerance across acclimation temperatures, but no such response was found for cold tolerance. Concordantly, four of the five surface-dwelling Collembola showed up to fourfold changes in relative abundance of fatty acids after 1 week of acclimation, whereas none of the soil-dwelling species showed a significant adjustment in fatty acid composition. Strong physiological responses to temperature fluctuations may have become redundant in soil-dwelling species due to the relative thermal stability of their subterranean habitat. Based on the results of the four species studied, we expect that unless soil-dwelling species can temporarily retreat to avoid extreme temperatures, the predicted increase in heat waves under climatic change renders these soil-dwelling species more vulnerable to extinction than species with better physiological capabilities. Being able to act under a larger thermal

  14. 25 CFR 700.55 - Decent, safe, and sanitary dwelling.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Decent, safe, and sanitary dwelling. 700.55 Section 700... PROCEDURES General Policies and Instructions Definitions § 700.55 Decent, safe, and sanitary dwelling. (a) General. The term decent, safe, and sanitary dwelling means a dwelling which— (1) Meets applicable federal...

  15. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  16. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  17. Holography without translational symmetry

    CERN Document Server

    Vegh, David

    2013-01-01

    We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.

  18. Nonlocal symmetries and nonlocal conservation laws of Maxwell's equations

    International Nuclear Information System (INIS)

    Anco, S.C.; Bluman, G.

    1997-01-01

    Nonlocal symmetries are obtained for Maxwell's equations in three space-time dimensions through the use of two potential systems involving scalar and vector potentials for the electromagnetic field. Corresponding nonlocal conservation laws are derived from these symmetries. The conservation laws yield nine functionally independent constants of motion which cannot be expressed in terms of the constants of motion arising from local conservation laws for space-time symmetries. These nine constants of motion represent additional conserved quantities for the electromagnetic field in three space endash time dimensions. copyright 1997 American Institute of Physics

  19. Integrable systems and lie symmetries in classical mechanics

    International Nuclear Information System (INIS)

    Sen, T.

    1986-01-01

    The interrelationship between integrability and symmetries in classical mechanics is studied. Two-dimensional time- and velocity-independent potentials form the domain of the study. It is shown that, contrary to folklore, existence of a single finite symmetry does not ensure integrability. A method due to Darboux is used to construct potentials that admit a time-independent invariant. All potentials admitting invariants linear or quadratic in the momentum coordinates are constructed. These are the only integrable potentials which can be expressed as arbitrary functions of certain arguments. A complete construction of potentials admitting higher-order invariants does not seem possible. However, the necessary general forms for potentials that admit a particular invariant of arbitrary order are found. These invariants must be spherically symmetric in the leading terms. Two kinds of symmetries are studied: point Lie symmetries of the Newtonian equations of motion for conservative potentials, and point Noether symmetries of the action functionals obtained from the standard Lagrangians associated with these potentials. All conservative potentials which admit these symmetries are constructed. The class of potentials admitting Noether symmetries is shown to be a subclass of those admitting Lie symmetries

  20. Study on construction of temporary dwellings and problems caused by living long time on Hanshin-Awaji Great Earthquake; Hanshin / Awaji daishinsai ni okeru okyu kasetsu jutaku no secchi to chokikan shiyo suru baai no kadai ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Nakamura, Y. [Nagasaki Univ. (Japan)] Shimizu, Y. [Kumagai Gumi Co. Ltd., Tokyo (Japan)

    1998-10-20

    Two years after the above-titled earthquake, an examination was performed on inhabitants in the temporary dwelling houses in Kobe, center of the calamity, and problems caused by a long stay there were clarified together with a grasp of the evolving problems by comparing the result of survey carried out immediately after the disaster. The number of such temporary dwelling houses amounted to 29,128 within Kobe City and 3,168 outside of the city. According to the room arrangement, they were either one f 4 types : 2-rooms with a kitchen, 1 room with a kitchen, dormitory and those specifically for aged persons. There were 59,449 applications at the first offer of 2,702 houses. The priority of their assignments and so on are explained. As for the housing structure, numerous complaints concerned with the room temperature, noise and so forth. As for the living environment, lack of nearby commodity shop, omission of transportation access, ill drainage of the housing sites were pointed out and the matters of demand to the local authorities included the installation of mail post and street lights. As for the health management, insomnia, stiff shoulder, lumbago and other bad physical conditions were revealed. The financial difficulty and the high house rent were obstacles to migrate to other places. The prolonged temporary lives worsened the apprehension of dwellers for the earthquake, typhoon, fire and alike. Some features for the calamity are described in comparison with the result of survey on those who were compelled to live under similar conditions by the eruption of Mr. Fugen. 6 refs., 13 figs., 15 tabs.

  1. Symmetry chains and adaptation coefficients

    International Nuclear Information System (INIS)

    Fritzer, H.P.; Gruber, B.

    1985-01-01

    Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains

  2. Collective states and crossing symmetry

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1977-01-01

    Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out

  3. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  4. ''Natural'' left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Pati, J.C.

    1975-01-01

    It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed

  5. Symmetry guide to ferroaxial transitions

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav

    2016-01-01

    Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  6. Dwelling thermal renovation: which stakes, which solutions?

    International Nuclear Information System (INIS)

    Delduc, Paul; Demeulenaere, Laurence; Verdure, Mathieu; Ayong Le Kama, Alain; Fuk Chun Wing, Dimitri; Kiefer, Noemie; Mauroux, Amelie; Charlier, Dorothee; Hini, Sihame; Pinto Silva, Kleber; Giraudet, Louis Gaetan; Nauleau, Marie-Laure; Daussin-Benichou, Jeanne-Marie; Teissier, Olivier; Finidori, Esther; Grandjean, Alain; Allibe, Benoit; Gadrat, Pierre; Couriol, Aude; Menard, Francois; Rouquette, Celine; Houriez, Guillaume; Francois, Dominique; Aubert, Celine; Canardon, Daniel

    2015-01-01

    This publication proposes three sets of contributions. The first one addresses context and stakes. The contributions propose: a literature review on household behaviour and investments in energy efficiency, a focus on the key role of dwellings in energy transition through a comparative study of the four pathways of the National Debate for Energy Transition, and a discussion about consensus and uncertainties regarding the determining factors of heating temperature in dwellings. The second set addresses public policies and their assessment: improvement of the technical-economical assessment of the benefit of dwelling energetic renovations, discussion of the organisation and results of a survey on dwelling, equipment, and energy needs and uses, an analysis of several measures aimed at reaching objectives of energy efficiency of dwellings, a discussion of renovation works quality, a discussion of the impact of the sustainable development tax credit on thermal renovation, the optimisation of energy renovation in co-properties by third party financing, some foreign examples of policies in favour of dwelling thermal renovation. The third set of contributions addresses the needed technical, organisational and market evolutions: how the building sector can face the challenges of energy transition, the possibilities to propose innovative solutions adapted to existing housing buildings, and a comparative analysis of material and building equipment costs and market structures in Europe. Other texts are proposed in appendix: the origin of the Phebus survey, a description of incentive arrangements, and a map of climate zones in France

  7. Neurobiological Mediators of Squalor-dwelling Behavior.

    Science.gov (United States)

    Kahn, David A

    2017-09-01

    Squalor-dwelling behavior has been characterized as living in conditions so unsanitary that feelings of revulsion are elicited among visitors. This behavior is commonly associated with an insensitivity to distress/disgust and a failure to understand the direness of one's living situation, which leads to social isolation and impairment in quality of life. Etiologically, several associations have been described in the literature, including age-related decline, lower socioeconomic status, and rural dwelling status. Primary neuropsychiatric disorders, such as psychosis, alcoholism, dementia, personality disorders, developmental delays, and learning or physical disabilities are frequently seen in squalor-dwelling individuals. However, none of these disorders seems to be necessary or sufficient to explain the behavior. Neurobiologically, squalor-dwelling behavior has been associated with frontal lobe dysfunction as evidenced by executive dysfunction; however, cognitive impairments also fail to completely explain this behavior. The purpose of this report is to describe a typical case of squalor-dwelling behavior and use it as an example to illustrate the complexity of uncovering the neurobiological basis for this maladaptive personal and public health threat. Neuroimaging findings from our case and a review of the literature point toward decreased activity in the insular cortex and the amygdala as a unifying biological explanation for squalor-dwelling behaviors.

  8. Symmetry Breaking in a random passive scalar

    Science.gov (United States)

    Kilic, Zeliha; McLaughlin, Richard; Camassa, Roberto

    2017-11-01

    We consider the evolution of a decaying passive scalar in the presence of a gaussian white noise fluctuating shear flow. We focus on deterministic initial data and establish the short, intermediate, and long time symmetry properties of the evolving point wise probability measure for the random passive scalar. Analytical results are compared directly to Monte Carlo simulations. Time permitting we will compare the predictions to experimental observations.

  9. Lorentz Transformation from Symmetry of Reference Principle

    International Nuclear Information System (INIS)

    Petre, M.; Dima, M.; Dima, A.; Petre, C.; Precup, I.

    2010-01-01

    The Lorentz Transformation is traditionally derived requiring the Principle of Relativity and light-speed universality. While the latter can be relaxed, the Principle of Relativity is seen as core to the transformation. The present letter relaxes both statements to the weaker, Symmetry of Reference Principle. Thus the resulting Lorentz transformation and its consequences (time dilatation, length contraction) are, in turn, effects of how we manage space and time.

  10. Mobile work, multilocal dwelling and spaces of wellbeing.

    Science.gov (United States)

    Gorman-Murray, Andrew; Bissell, David

    2018-05-01

    Mobile work is increasingly common. For our purposes, mobile work entails long-distance commuting arrangements with periods living away from the primary domestic residence that may be considered 'home'. Mobile work reconfigures the relational fabric of 'home', introducing multilocal mooring points into worker's lives, and thus reshaping the spatial and temporal patterns and meanings of dwelling. Geography and cognate disciplines have begun to investigate the spatialities and temporalities of mobile work and multilocal dwelling, including the complexities of space-time management, but as yet little attention has been given to implications and impacts on the wellbeing of workers and their families - this is despite growing concern for worker and family wellbeing in some mobile work sectors, such as FIFO mining. Wellbeing is also a complex and multivalent concept, taking in objective and subjective dimensions, including health indicators and quality of life. In this context, this paper reviews recent literature on mobile work and multilocal dwelling and geographies of wellbeing to identify productive intersections for conceptual and empirical development. We suggest that provocations about space-times of wellbeing (Fleuret and Prugneau, 2015) and wellbeing as a relational, situated assemblage (Atkinson, 2013) are productive for analysing wellbeing in a context of mobility and multilocality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Fifty years of symmetry operations

    International Nuclear Information System (INIS)

    Wigner, E.P.

    1978-01-01

    The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions

  12. Symmetry inheritance of scalar fields

    International Nuclear Information System (INIS)

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  13. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  14. Hyperbolic-symmetry vector fields.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  15. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  16. Spontaneous emergence of gauge symmetry

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1987-05-01

    Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)

  17. Discrete symmetries in the MSSM

    International Nuclear Information System (INIS)

    Schieren, Roland

    2010-01-01

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)

  18. Axions from chiral family symmetry

    International Nuclear Information System (INIS)

    Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.

    1985-01-01

    We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)

  19. Infinite-Order Symmetries for Quantum Separable Systems

    International Nuclear Information System (INIS)

    Miller, W.; Kalnins, E.G.; Kress, J.M.; Pogosyan, G.S.

    2005-01-01

    We develop a calculus to describe the (in general) infinite-order differential operator symmetries of a nonrelativistic Schroedinger eigenvalue equation that admits an orthogonal separation of variables in Riemannian n space. The infinite-order calculus exhibits structure not apparent when one studies only finite-order symmetries. The search for finite-order symmetries can then be reposed as one of looking for solutions of a coupled system of PDEs that are polynomial in certain parameters. Among the simple consequences of the calculus is that one can generate algorithmically a canonical basis for the space. Similarly, we can develop a calculus for conformal symmetries of the time-dependent Schroedinger equation if it admits R separation in some coordinate system. This leads to energy-shifting symmetries

  20. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  1. Infinite-order symmetries for quantum separable systems

    International Nuclear Information System (INIS)

    Miller, W.; Kalnins, E.G.; Kress, J.M.; Pogosyan, G.S.

    2005-01-01

    A calculus to describe the (in general) infinite-order differential operator symmetries of a nonrelativistic Schroedinger eigenvalue equation that admits an orthogonal separation of variables in Riemannian n space is developed. The infinite-order calculus exhibits structure not apparent when one studies only finite-order symmetries. The search for finite-order symmetries can then be reposed as one of looking for solutions of a coupled system of PDEs that are polynomial in certain parameters. Among the simple consequences of the calculus is that one can generate algorithmically a canonical basis for the space. Similarly, it can develop a calculus for conformal symmetries of the time-dependent Schroedinger equation if it admits R separation in some coordinate system. This leads to energy-shifting symmetries [ru

  2. Study of CP Symmetry Violation in the Charmonium-K*(892) Channel By a Complete Time Dependent Angular Analysis (BaBar Experiment)

    Energy Technology Data Exchange (ETDEWEB)

    T' Jampens, Stephane; /Orsay

    2006-09-18

    This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity

  3. The nucleon- nucleon interaction and symmetries

    International Nuclear Information System (INIS)

    Van Oers, W.T.H.

    1992-11-01

    With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state ι=ο and the other for the isotopic spin state ι=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or λλ system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp →λλ and pp→ ≡ ≡. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs

  4. On systems having Poincaré and Galileo symmetry

    International Nuclear Information System (INIS)

    Holland, Peter

    2014-01-01

    Using the wave equation in d≥1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated with the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics

  5. Asymptotic symmetries, holography and topological hair

    Science.gov (United States)

    Mishra, Rashmish K.; Sundrum, Raman

    2018-01-01

    Asymptotic symmetries of AdS4 quantum gravity and gauge theory are derived by coupling the holographically dual CFT3 to Chern-Simons gauge theory and 3D gravity in a "probe" (large-level) limit. Despite the fact that the three-dimensional AdS4 boundary as a whole is consistent with only finite-dimensional asymptotic symmetries, given by AdS isometries, infinite-dimensional symmetries are shown to arise in circumstances where one is restricted to boundary subspaces with effectively two-dimensional geometry. A canonical example of such a restriction occurs within the 4D subregion described by a Wheeler-DeWitt wavefunctional of AdS4 quantum gravity. An AdS4 analog of Minkowski "super-rotation" asymptotic symmetry is probed by 3D Einstein gravity, yielding CFT2 structure (in a large central charge limit), via AdS3 foliation of AdS4 and the AdS3/CFT2 correspondence. The maximal asymptotic symmetry is however probed by 3D conformal gravity. Both 3D gravities have Chern-Simons formulation, manifesting their topological character. Chern-Simons structure is also shown to be emergent in the Poincare patch of AdS4, as soft/boundary limits of 4D gauge theory, rather than "put in by hand" as an external probe. This results in a finite effective Chern-Simons level. Several of the considerations of asymptotic symmetry structure are found to be simpler for AdS4 than for Mink4, such as non-zero 4D particle masses, 4D non-perturbative "hard" effects, and consistency with unitarity. The last of these in particular is greatly simplified because in some set-ups the time dimension is explicitly shared by each level of description: Lorentzian AdS4, CFT3 and CFT2. Relatedly, the CFT2 structure clarifies the sense in which the infinite asymptotic charges constitute a useful form of "hair" for black holes and other complex 4D states. An AdS4 analog of Minkowski "memory" effects is derived, but with late-time memory of earlier events being replaced by (holographic) "shadow" effects. Lessons

  6. Symmetry breaking by bifundamentals

    Science.gov (United States)

    Schellekens, A. N.

    2018-03-01

    We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.

  7. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  8. Quark diquark symmetry breaking

    International Nuclear Information System (INIS)

    Souza, M.M. de

    1980-01-01

    Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt

  9. Partially integrable nonlinear equations with one higher symmetry

    International Nuclear Information System (INIS)

    Mikhailov, A V; Novikov, V S; Wang, J P

    2005-01-01

    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)

  10. Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study

    Science.gov (United States)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.

    2016-11-01

    It is a well known and important problem in the aircraft engine industry that alloy Ti-6242 shows a significant reduction in fatigue life, termed dwell debit, if a stress dwell is included in the fatigue cycle, whereas Ti-6246 does not; the mechanistic explanation for the differing dwell debit of these alloys has remained elusive for decades. In this work, crystal plasticity modelling has been utilised to extract the thermal activation energies for pinned dislocation escape for both Ti alloys based on independent experimental data. This then allows the markedly different cold creep responses of the two alloys to be captured accurately and demonstrates why the observed near-identical rate sensitivity under non-dwell loading is entirely consistent with the dwell behaviour. The activation energies determined are then utilised within a recently developed thermally-activated discrete dislocation plasticity model to predict the strain rate sensitivities of the two alloys associated with nano-indentation into basal and prism planes. It is shown that Ti-6242 experiences a strong crystallographic orientation-dependent rate sensitivity while Ti-6246 does not which is shown to agree with recently published independent measurements; the dependence of rate sensitivity on indentation slip plane is also well captured. The thermally-activated discrete dislocation plasticity model shows that the incorporation of a stress dwell in fatigue loading leads to remarkable stress redistribution from soft to hard grains in the classical cold dwell fatigue rogue grain combination in alloy Ti-6242, but that no such load shedding occurs in alloy Ti-6246. The key property controlling the behaviour is the time constant of the thermal activation process relative to that of the loading. This work provides the first mechanistic basis to explain why alloy Ti-6242 shows a dwell debit but Ti-6246 does not.

  11. A comparative study of indoor radon concentrations between dwellings and schools

    International Nuclear Information System (INIS)

    Kapdan, E.; Altinsoy, N.

    2012-01-01

    The aim of this study is to determine the relationship of radon concentrations between dwellings and the schools located in the same regions and to obtain related indoor average radon concentration dwelling–school correction factor for similar locations. The research has been carried out by determining indoor radon concentrations at schools and dwellings located at the same districts in the selected two separate research fields called The Former Adapazari region and The New Adapazari region in the city of Adapazari using a total of 81 Cr-39 passive radon detectors for 75 days. The average radon concentrations have been determined for the dwellings and the schools in 15 districts of the Former Adapazari region as 59.9 Bq m −3 and 57.1 Bq m −3 , respectively. The results in 4 districts of the New Adapazari region were 63.5 Bq m −3 for the dwellings and 61.0 Bq m −3 for the schools. Moreover, the annual effective doses were calculated as 1.33 mSv/y and 1.41 mSv/y for the dwellings of Former Adapazari and New Adapazari, respectively. It was seen that the doses received in the dwellings are about four times the doses received in the schools. The indoor radon concentration dwelling–school correction factor was found to be 1.04±0.01 for the research area.

  12. Systematic model building with flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plentinger, Florian

    2009-12-19

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and

  13. Systematic model building with flavor symmetries

    International Nuclear Information System (INIS)

    Plentinger, Florian

    2009-01-01

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays μ → eγ, τ → μγ, and τ → eγ which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and to search for phenomenological

  14. Astroparticle tests of Lorentz symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.

  15. Symmetry of quantum molecular dynamics

    International Nuclear Information System (INIS)

    Burenin, A.V.

    2002-01-01

    The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru

  16. Symmetry of quantum intramolecular dynamics

    International Nuclear Information System (INIS)

    Burenin, Alexander V

    2002-01-01

    The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)

  17. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  18. Scale symmetry and virial theorem

    International Nuclear Information System (INIS)

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  19. Supergauge symmetry in local quantum field theory

    International Nuclear Information System (INIS)

    Ferrara, S.

    1974-01-01

    The extension of supergauge symmetry to four-dimensional space-time allows to investigate the possible role of this symmetry in conventional local quantum field theory. The supergauge algebra is obtained by adding to the conformal group of space-time two Majorana spinor generators and the chiral charge. The commutation properties of the algebra are used to derive the most general form of the superfield. This field contains two Majorana spinors, two scalar fields, a chiral doublet, and a real vector field called the vector superfield. The covariant derivatives defined, together with the scalar and vector multiplets are the basic ingredients used in order to build up supergauge symmetric Lagrangians. It is shown that the only possible fields which can be considered as supergauge invariant Lagrangians are the F and D components of the scalar and vector multiplets respectively

  20. PT-symmetry management in oligomer systems

    International Nuclear Information System (INIS)

    Horne, R L; Cuevas, J; Kevrekidis, P G; Whitaker, N; Abdullaev, F Kh; Frantzeskakis, D J

    2013-01-01

    We study the effects of management of the PT-symmetric part of the potential within the setting of Schrödinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two. (paper)

  1. Strings, Branes and Symmetries

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs

  2. New symmetries for the Dirac equation

    International Nuclear Information System (INIS)

    Linhares, C.A.; Mignaco, J.A.

    1990-06-01

    We study through both the matrix and differential-form formalism the SU(4) symmetry relating spin 1/2 particles. Minimal left ideals of the Clifford algebra are shown to be irreducible representations of these particles. Their physical interpretation relies on their mutual relationship via parity, time reversal and their product. The implication of these features on the spectrum proliferation problem on the lattice is emphasized. (author)

  3. Stochastic mechanism of symmetry breaking

    International Nuclear Information System (INIS)

    Baseyan, H.Z.

    1983-01-01

    A new symmetry breaking mechanism conditioned by presence of random fields in vacuum is proposed. Massive Yang-Mills fields finally arise, that may be interpreted as ''macroscopic'' manifestation of the ''microscopic'' Yang-Mills massless theory

  4. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander; Wand, Michael D.; Mitra, Niloy J.; Mewes, Daniel; Seidel, Hans Peter

    2011-01-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more

  5. Symmetries in the Lagrangean formalism

    International Nuclear Information System (INIS)

    Grigore, D.R.

    1987-09-01

    We generalize the analysis of Levy-Leblond for lagrangean systems with symmetry. We prove that this analysis goes through practically unchanged and after that we analyse in detail some examples.(author)

  6. Primary evaluation of the radon situation in dwellings in Saxony by long-time integrating measurements, comparison of the results with short-time measurements and determination of the radon activity concentration in the ground of the land; Erstbewertung zur Radonsituation von Haeusern im Freistaat Sachsen mittels langzeitintegrierenden Messungen, Vergleich der Ergebnisse mit Kurzzeitmessungen und Erfassung der Radon-Aktivitaetskonzentration in der Bodenluft der Grundstuecke

    Energy Technology Data Exchange (ETDEWEB)

    Alisch-Mark, M.; Keck, D.; Preusse, W.; Taube, A.; Busch, H.; Heinrich, T. [Staatliche Betriebsgesellschaft fuer Umwelt und Landwirtschaft, Sachsen (Germany)

    2016-07-01

    A measurement program was carried out for primary evaluation of dwellings in terms of radon situation. Short-time measurements were compared with annual averages and checked for their suitability for forecasting the annual averages. In 89% of the cases studied, the average annual values could be predicted by short-time measurements, differences were observed depending on the date of the short-time measure. In addition, radon activity concentrations were determined in the soil air in the ground and compared with the expected areas of forecasting map of Saxony. Discrepancies were found primarily in areas which are marked by a smallscale geology. The data obtained showed that the geogenic radon potential and the year of construction of the house represent factors influencing the probability of exceedance of the reference value of 300 Bq/m{sup 3}.

  7. Renormgroup symmetry for solution functionals

    International Nuclear Information System (INIS)

    Shirkov, D.V.; Kovalev, V.F.

    2004-01-01

    The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)

  8. Conformal symmetry in quantum finance

    International Nuclear Information System (INIS)

    Romero, Juan M; Lavana, Ulises; Miranda, Elio Martínez

    2014-01-01

    The quantum finance symmetries are studied. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited and the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schrödinger algebra representation is constructed. In addition, it is shown that the operators of this last representation are not hermitian and not conserved.

  9. Decoherence and discrete symmetries in deformed relativistic kinematics

    Science.gov (United States)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  10. The Symmetry behind Extended Flavour Democracy and Large Leptonic Mixing

    CERN Document Server

    Silva-Marcos, Joaquim I

    2002-01-01

    We show that there is a minimal discrete symmetry which leads to the extended flavour democracy scenario constraining the Dirac neutrino, the charged lepton and the Majorana neutrino mass term ($M_R$) to be all proportional to the democratic matrix, with all elements equal. In particular, this discrete symmetry forbids other large contributions to $M_R$, such as a term proportional to the unit matrix, which would normally be allowed by a $S_{3L}\\times S_{3R}$ permutation symmetry. This feature is crucial in order to obtain large leptonic mixing, without violating 't Hooft's, naturalness principle.

  11. Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2014-12-01

    Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)

  12. Imprints of Nuclear Symmetry Energy on Properties of Neutron Stars

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Gearheart, Michael; Hooker, Joshua; Krastev, Plamen G; Lin Weikang; Newton, William G; Wen Dehua; Xu Chang; Ko Cheming; Xu Jun

    2011-01-01

    Significant progress has been made in recent years in constraining the density dependence of nuclear symmetry energy using terrestrial nuclear laboratory data. Around and below the nuclear matter saturation density, the experimental constraints start to merge in a relatively narrow region. At supra-saturation densities, there are, however, still large uncertainties. After summarizing the latest experimental constraints on the density dependence of nuclear symmetry energy, we highlight a few recent studies examining imprints of nuclear symmetry energy on the binding energy, energy release during hadron-quark phase transitions as well as the ω-mode frequency and damping time of gravitational wave emission of neutron stars.

  13. Radon in dwellings and shelters in Zagreb

    International Nuclear Information System (INIS)

    Lokobauer, N.; Franic, Z.; Sencar, J.; Bauman, A.

    1994-01-01

    Since 1990, radon activity was measured in dwellings of Zagreb. In only small number of dwellings radon activity exceeded 100 Bq.m -3 . Since the inhabitants of Croatia have to stay in the facilities below the ground due to the war against Croatia, the paper gives also data on radon activity measured in the shelters and cellars in 1991. Measurements were performed using Kodak LR-115 detectors, type II. At several locations radon activity was measured with a silicon detector (Radhome). Radon values obtained for the shelters, cellars and dwellings at all locations were compared. With respect to children as most susceptable population group the paper gives data on radon activity for kindergartens and elementary schools (and its shelters) where children usually spend almost one-third to the day. (orig.)

  14. Recommended action levels for radon in dwellings

    International Nuclear Information System (INIS)

    1988-01-01

    The recommendation made by a group appointed by the Directorate of Public Health, arrives at the conclusion that radon in Norwegian dwellings implies a substantial health problem for the country. For this reason it is recommended that actions should be taken to reduce the radiation exposure from radon in Norway. Upper levels for such actions are set to 200 Bq/m 3 (radon in air of dwellings) for new contructions. For existing dwellings having concentrations of 200 - 800 Bq/m 3 , simple and unexpensive remedial actions to reduce levels are sufficient. When levels exceed 800 Bq/m 3 , more elaborate and costly actions are necessary. An evaluation of the extent of the radon problem in Norway is included, together with a survey of the cost and benefit involved in choosing various levels for remedial actions

  15. PREFACE: Symmetries in Science XVI

    Science.gov (United States)

    2014-10-01

    This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster

  16. Nuclear symmetries at low isospin

    International Nuclear Information System (INIS)

    Juillet, Olivier

    1999-01-01

    With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr

  17. Measurements of radon concentrations in dwelling houses

    International Nuclear Information System (INIS)

    Birkholz, W.; Klink, T.

    1993-01-01

    Radon and its daughter products gain in importance in health protection and radiation safety. Especially in the southern region of Saxony radon concentrations in dwellings may be high by former silver and uranium mines. We found radon contents of about 20.000 Bq/m 3 in dwellings. To redevelop such houses it is necessary to know intrude path of radon. In present work we studied different measuring systems, active and passive detectors, short and long term integrating devices. By means of investigation of radon sources several redeveloping methods are rates as well from radiological as from civil engineering point of view. (author)

  18. Symmetry-protected coherent relaxation of open quantum systems

    Science.gov (United States)

    van Caspel, Moos; Gritsev, Vladimir

    2018-05-01

    We compute the effect of Markovian bulk dephasing noise on the staggered magnetization of the spin-1/2 XXZ Heisenberg chain, as the system evolves after a Néel quench. For sufficiently weak system-bath coupling, the unitary dynamics are found to be preserved up to a single exponential damping factor. This is a consequence of the interplay between PT symmetry and weak symmetries, which strengthens previous predictions for PT -symmetric Liouvillian dynamics. Requirements are a nondegenerate PT -symmetric generator of time evolution L ̂, a weak parity symmetry, and an observable that is antisymmetric under this parity transformation. The spectrum of L ̂ then splits up into symmetry sectors, yielding the same decay rate for all modes that contribute to the observable's time evolution. This phenomenon may be realized in trapped ion experiments and has possible implications for the control of decoherence in out-of-equilibrium many-body systems.

  19. Symmetry breaking during seeded growth of nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Xia, Younan

    2012-11-14

    Currently, most of the reported noble-metal nanocrystals are limited to a high level of symmetry, as constrained by the inherent, face-centered cubic (fcc) lattice of these metals. In this paper, we report, for the first time, a facile and versatile approach (backed up by a clear mechanistic understanding) for breaking the symmetry of an fcc lattice and thus obtaining nanocrystals with highly unsymmetrical shapes. The key strategy is to induce and direct the growth of nanocrystal seeds into unsymmetrical modes by manipulating the reduction kinetics. With silver as an example, we demonstrated that the diversity of possible shapes taken by noble-metal nanocrystals could be greatly expanded by incorporating a series of new shapes drastically deviated from the fcc lattice. This work provides a new method to investigate shape-controlled synthesis of metal nanocrystal.

  20. Antihydrogen spectroscopy and fundamental symmetry tests

    DEFF Research Database (Denmark)

    Ximenez Rodrigues Alves, Bruno

    2018-01-01

    The baryon asymmetry remains an important unanswered question in physics nowadays. The Standard Model of Particle Physics predicts that matter and antimatter should have been created in equal amounts in early stages of the universe. However, our universe seems to be pretty much empty of antimat......- ter. This discrepancy between theory and observation triggers scientists to investigate the properties of antimatter. A comparison between matter and antimatter properties constitutes a test of the charge conjugation-parity-time reversal (CPT) symmetry and any violation of this symmetry can open...... the doors for new physics and a possible explanation for the baryon asymmetry. Antihydrogen, the bound state of a positron and an antiproton, is the simplest anti-atom one can make. This thesis reports on the measurement of the resonance frequency of the 1S–2S transition in magnetically trapped antihydrogen...

  1. Conformal symmetries of FRW accelerating cosmologies

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2014-01-01

    We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage

  2. Superconductivity without inversion symmetry in CePt3Si

    International Nuclear Information System (INIS)

    Frigeri, P.A.; Agterberg, D.F.; Koga, A.; Sigrist, M.

    2005-01-01

    Based on symmetry arguments by Anderson, the following conditions are necessary for the formation of Cooper pairs: spin-singlet pairing relies on time-reversal symmetry, while spin-triplet pairing requires parity in addition. The rather general formulation of this rule has led to the common belief that the lack of an inversion center in a material would prevent spin-triplet pairing indiscriminately. In this presentation, we discuss symmetry aspects of superconductivity in a class of systems without inversion symmetry which is connected with spin-orbit coupling. We can show that, not only spin singlet pairing, but also certain spin triplet states remain unaffected by the loss of inversion symmetry. Moreover, the absence of an inversion center reduces the effect of paramagnetic limiting for spin-singlet pairing states in an external magnetic field. Based on this symmetry analysis, we examine the recently discovered heavy Fermion superconductor CePt 3 Si, where a missing inversion plane leads to the well-known Rashba-type of spin-orbit coupling. In particular, the problem of the pairing symmetry will be addressed as well as several properties of the superconducting phase which appears close to a quantum phase transition between a paramagnetic and antiferromagnetic phase. The same kind of analysis will also be done for another example UIr

  3. Geometry of Majorana neutrino and new symmetries

    CERN Document Server

    Volkov, G G

    2006-01-01

    Experimental observation of Majorana fermion matter gives a new impetus to the understanding of the Lorentz symmetry and its extension, the geometrical properties of the ambient space-time structure, matter--antimatter symmetry and some new ways to understand the baryo-genesis problem in cosmology. Based on the primordial Majorana fermion matter assumption, we discuss a possibility to solve the baryo-genesis problem through the the Majorana-Diraco genesis in which we have a chance to understand creation of Q(em) charge and its conservation in our D=1+3 Universe after the Big Bang. In the Majorana-Diraco genesis approach there appears a possibility to check the proton and electron non-stability on the very low energy scale. In particle physics and in our space-time geometry, the Majorana nature of the neutrino can be related to new types of symmetries which are lying beyond the binary Cartan-Killing-Lie algebras/superalgebras. This can just support a conjecture about the non-completeness of the SM in terms of ...

  4. Survey of Ground Dwelling Arthropods Associated with Two Habitat ...

    African Journals Online (AJOL)

    Survey of Ground Dwelling Arthropods Associated with Two Habitat Types in the Jos ... in the mean abundance of ground dwelling arthropods in relation to taxa. ... Food availability and vegetation cover were found to be critical to arthropods ...

  5. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  6. Fundamental symmetry studies at Los Alamos using epithermal neutrons

    International Nuclear Information System (INIS)

    Bowman, C.D.; Bowman, J.D.; Yuan, V.W.

    1988-01-01

    Fundamental symmetry studies using intense polarized beams of epithermal neutrons are underway at the LANSCE facility of the Los Alamos National Laboratory. Three classes of symmetry experiments can be explored: parity violation, and time reversal invariance violation for both parity-violating and parity-conserved observables. The experimental apparatus is described and performance illustrated with examples of recent measurements. Possible improvements in the facilities and prospective experiments are discussed. 15 refs., 10 figs

  7. Folded Sheet Versus Transparent Sheet Models for Human Symmetry Judgments

    Directory of Open Access Journals (Sweden)

    Jacques Ninio

    2011-07-01

    Full Text Available As a contribution to the mysteries of human symmetry perception, reaction time data were collected on the detection of symmetry or repetition violations, in the context of short term visual memory studies. The histograms for reaction time distributions are rather narrow in the case of symmetry judgments. Their analysis was performed in terms of a simple kinetic model of a mental process in two steps, a slow one for the construction of the representation of the images to be compared, and a fast one, in the 50 ms range, for the decision. There was no need for an additional ‘mental rotation’ step. Symmetry seems to facilitate the construction step. I also present here original stimuli showing a color equalization effect across a symmetry axis, and its counterpart in periodic patterns. According to a “folded sheet model”, when a shape is perceived, the brain automatically constructs a mirror-image representation of the shape. Based in part on the reaction time analysis, I present here an alternative “transparent sheet” model in which the brain constructs a single representation, which can be accessed from two sides, thus generating simultaneously a pattern and its mirror-symmetric partner. Filtering processes, implied by current models of symmetry perception could intervene at an early stage, by nucleating the propagation of similar perceptual groupings in the two symmetric images.

  8. Low frequency sounds in dwellings : A case control study

    NARCIS (Netherlands)

    van den Berg, Frits (G P)

    2000-01-01

    The purpose of this study is to systematically assess the level and spectral distribution of low frequency (LF) sounds in dwellings. Measurements of broad and narrow hand sound levels have been made in 36 Dutch dwellings in 1998. In 19 dwellings there were complaints about LF noise, in 17 others no

  9. Curriculum Making as the Enactment of Dwelling in Places

    Science.gov (United States)

    Ross, Hamish; Mannion, Greg

    2012-01-01

    This article uses an account of dwelling to interrogate the concept of curriculum making. Tim Ingold's use of dwelling to understand culture is productive here because of his implicit and explicit interest in intergenerational learning. His account of dwelling rests on a foundational ontological claim--that mental construction and representation…

  10. 24 CFR 9.153 - Distribution of accessible dwelling units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Distribution of accessible dwelling units. 9.153 Section 9.153 Housing and Urban Development Office of the Secretary, Department of Housing... dwelling units. Accessible dwelling units required by § 9.152 shall, to the maximum extent feasible, be...

  11. 24 CFR 8.26 - Distribution of accessible dwelling units.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Distribution of accessible dwelling units. 8.26 Section 8.26 Housing and Urban Development Office of the Secretary, Department of Housing... accessible dwelling units. Accessible dwelling units required by § 8.22, 8.23, 8.24 or 8.25 shall, to the...

  12. Environmental impact of NORM in Israeli dwellings

    International Nuclear Information System (INIS)

    Neeman, E.; Steiner, V.

    2002-01-01

    In the last decade the construction of public dwellings in Israel has been intensified. New construction sites are being created and new construction materials, local or imported, are being used. Since the origin of the building materials is essentially the soil, they inherit the radioactive properties of the environment. The level of Natural Occurring Radioactive Materials (NORM),from the decay chains of the ubiquitous radio nuclides U 238 ,Th 232 ,U 235 and K 40 ,as well as artificial radioisotopes like Cs 137 ,in building materials needs to be controlled, in order to limit the gamma and Radon radiation dose of the general public in dwellings. The Ministry of the Environment collaborates with other institutions to evaluate, document and control the NORM content in our environment, based on international standards. The operation of quarries is controlled to ensure a low NORM content in raw building materials. The use of bottom and fly ash, abundantly produced in electrical power stations, in constructions is also being controlled. A new Israeli standard controls the NORM content in building materials such as to limit the radiation dose in dwellings from this practice to 0.45 mSv /year. Special construction solutions are developed and used in areas with high Radon concentration in the soil. The aim is to maintain the Radon concentration in dwellings below the Action Limit of 200 Bq/m 3

  13. Radon in your dwellings - problems and mitigation

    International Nuclear Information System (INIS)

    Srivastava, D.S.

    2011-01-01

    The problem of radon in dwellings gained importance in 1984 after the Stanely Watra's house incidence in Pennsylvania USA. Since then several radon measuring techniques have been identified and instrumentations developed. National survey programs were started for monitoring radon levels in dwellings by Government authorities in all developed and developing countries including India. Successively, the measurement of thoron levels was also found desirable especially in high radiation background areas. A lot of work has been done since then by scientists and university researches and thousands of publications have been made in this field. Several developed countries have given guide lines for initiating action to reduce radon levels in dwellings if it is beyond 200-400 Bq/m 2 . The recommended 'action level' is found to depend upon the authorities making the recommendations. This talk is aimed to produce public awareness about the health hazard posed by concentration of naturally occurring radon gas in our dwellings, the sources of its production and mitigation of radon problem. The matter will be discussed in a general way using ppt presentation. (author)

  14. Symmetries of the quantum damped harmonic oscillator

    International Nuclear Information System (INIS)

    Guerrero, J; López-Ruiz, F F; Aldaya, V; Cossío, F

    2012-01-01

    For the non-conservative Caldirola–Kanai system, describing a quantum damped harmonic oscillator, a couple of constant-of-motion operators generating the Heisenberg–Weyl algebra can be found. The inclusion of the standard time evolution generator (which is not a symmetry) as a symmetry in this algebra, in a unitary manner, requires a non-trivial extension of this basic algebra and hence of the physical system itself. Surprisingly, this extension leads directly to the so-called Bateman dual system, which now includes a new particle acting as an energy reservoir. In addition, the Caldirola–Kanai dissipative system can be retrieved by imposing constraints. The algebra of symmetries of the dual system is presented, as well as a quantization that implies, in particular, a first-order Schrödinger equation. As opposed to other approaches, where it is claimed that the spectrum of the Bateman Hamiltonian is complex and discrete, we obtain that it is real and continuous, with infinite degeneracy in all regimes. (paper)

  15. The nucleon- nucleon interaction and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Van Oers, W T.H.

    1992-11-01

    With the advent of the possibility to study nucleon-nucleon scattering at medium energies, its extension to investigate fundamental symmetries was recognized early on. It was precisely the introduction of rotational invariance, parity conservation, time reversal invariance, and isotopic spin conversation that led to the description of the N - N scattering matrix in terms of five complex amplitudes: one set of five for proton-proton scattering and one set of five for neutron-proton scattering, or alternatively, one set for the isotopic spin state {iota}={omicron} and the other for the isotopic spin state {iota}=1. Clearly, if one or more of the above constraints are removed, there are additional amplitudes that need to be considered. To be meaningful, experiment requires observables that are particularly sensitive to the violation of a conservation law or symmetry principle. During the last decade a series of precision experiments has been performed to measure charge- symmetry breaking in n - p elastic scattering (corresponding to isotopic spin non-conservation), and to measure parity violation in p-p scattering. For a particle-anti-particle system,like the pp or {lambda}{lambda} system one can raise the question of CP violation in a system other than the neutral kaon system may become possible in the near future through pp {yields}{lambda}{lambda} and pp{yields} {identical_to} {identical_to}. A description is given of the ongoing efforts to measure charge symmetry breaking, parity violation and CP violation.(author). 42 refs., 6 figs.

  16. The dwelling space of postnatal care.

    Science.gov (United States)

    Smythe, Elizabeth A; Payne, Deborah; Wilson, Sally; Wynyard, Sue

    2013-06-01

    This paper considers the dwelling space of postnatal care, how being-there feels for the woman going through the experience of matrescence. The research takes a hermeneutic approach and draws on philosophical notions from Heidegger. 'What is the nature of the dwelling space of valued postnatal care?'. Appropriate ethics approval was gained. Participants were midwives, nurses, women, and other relevant stakeholders. There were 4 focus groups involving 11 participants and 19 individual interviews. Data collection was conducted over a one week period by a team of three researchers. An interview schedule had been organised by the administrator at the Centre. Participants chose whether to come to the centre to be interviewed, or be interviewed in their own homes. Most interviews were an hour. All interviews were tape recorded and transcribed, with the participant's permission. Data was analysed through a hermeneutic process set in the context of related literature. When women are invited into a dwelling space that strengthens them they feel 'mothered': being listened to, have their needs anticipated, and are cared for in a loving manner. In such a way they grow confidence. A child health nurse reported the difference such care made to on-going mothering at home. All women deserve a dwelling space in their early days of matrescence. Small birthing centres perhaps achieve such care and ambience more easily than large institutional units. Nevertheless, wherever the place, practices need to be enabled that foster the spirit of dwelling. Copyright © 2012 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  17. 222Rn Measurements in Dwellings of Argentina

    International Nuclear Information System (INIS)

    Gnoni, G.; Canoba, A.; Czerniczyniec, M.

    2011-01-01

    Radon gas ( 222 Rn) is responsible of about fifty per cent of the world population dose due to natural sources, being the most important pathway the inhalation of radon progeny, specially indoors. Radon concentration has been measured in dwellings at different locations in Argentina. The places selected to be evaluated are representative of the different geologic zones of the country. Near 3000 dwellings have been analyzed since 1983 up today. The measuring methods used in this case were track etched detectors, electrets and detectors based on activated charcoal adsorption. Two different methods with track etched detectors were used: a simple one, which determines only the average radon concentration, and a second one that measures both radon concentration and the equilibrium factor (F) between radon and its daughters. The last one is a method that uses two Makrofol passive track detectors in the same device. The average radon concentration value obtained from all the dwellings evaluated was 44.2 Bq.m-3. The annual effective dose calculated from this average concentration, using a dosimetric factor of 25 μSv.a- 1. (Bq.m -3 ) -1 , which assumes an equilibrium factor of 0.4, was 1.11 mSv. The average value obtained from the 222 dwellings evaluated by the second method was 49.3 Bq.m -3 and 0,37 the equilibrium factor, resulting the annual effective dose estimated 1,44 mSv. The measured equilibrium factor of 0,37 allows us to verify the assumed equilibrium factor of 0,4. Finally, radon levels in dwellings of Argentina are within the acceptable values for population, not being necessary to implement remedial actions, except in isolate cases that are still under study. (authors)

  18. Robustness of the division symmetry in Escherichia coli and functional consequences of symmetry breaking

    International Nuclear Information System (INIS)

    Gupta, Abhishekh; Lloyd-Price, Jason; Oliveira, Samuel M D; Yli-Harja, Olli; Muthukrishnan, Anantha-Barathi; Ribeiro, Andre S

    2014-01-01

    The morphological symmetry of the division process of Escherichia coli is well-known. Recent studies verified that, in optimal growth conditions, most divisions are symmetric, although there are exceptions. We investigate whether such morphological asymmetries in division introduce functional asymmetries between sister cells, and assess the robustness of the symmetry in division to mild chemical stresses and sub-optimal temperatures. First, we show that the difference in size between daughter cells at birth is positively correlated to the difference between the numbers of fluorescent protein complexes inherited from the parent cell. Next, we show that the degree of symmetry in division observed in optimal conditions is robust to mild acidic shift and to mild oxidative stress, but not to sub-optimal temperatures, in that the variance of the difference between the sizes of sister cells at birth is minimized at 37 °C. This increased variance affects the functionality of the cells in that, at sub-optimal temperatures, larger/smaller cells arising from asymmetric divisions exhibit faster/slower division times than the mean population division time, respectively. On the other hand, cells dividing faster do not do so at the cost of morphological symmetry in division. Finally we show that at suboptimal temperatures the mean distance between the nucleoids increases, explaining the increased variance in division. We conclude that the functionality of E. coli cells is not immune to morphological asymmetries at birth, and that the effectiveness of the mechanism responsible for ensuring the symmetry in division weakens at sub-optimal temperatures. (paper)

  19. Symmetry and Asymmetry Level Measures

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available Usually, Symmetry and Asymmetry are considered as two opposite sides of a coin: an object is either totally symmetric, or totally asymmetric, relative to pattern objects. Intermediate situations of partial symmetry or partial asymmetry are not considered. But this dichotomy on the classification lacks of a necessary and realistic gradation. For this reason, it is convenient to introduce "shade regions", modulating the degree of Symmetry (a fuzzy concept. Here, we will analyze the Asymmetry problem by successive attempts of description and by the introduction of the Asymmetry Level Function, as a new Normal Fuzzy Measure. Our results (both Theorems and Corollaries suppose to be some new and original contributions to such very active and interesting field of research. Previously, we proceed to the analysis of the state of art.

  20. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.